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Abstract

We address the question of the exact form of the dispersion relation for light-cone string excitations
in string theory in AdS3 x §3 x T* with mixed R-R and NS-NS 3-form fluxes. The analogy with string
theory in AdSs5 x 53 suggests that in addition to the data provided by the perturbative near-BMN expansion
and symmetry algebra considerations there is another source of information for the dispersion relation — the
semiclassical giant magnon solution. In earlier work in arXiv:1303.1037 and arXiv:1304.4099 we found that
the symmetry algebra constraints, which are consistent with a perturbative expansion, do not completely
determine the form of the dispersion relation. The aim of the present paper is to fix the dispersion relation by
constructing a generalisation of the known dyonic giant magnon soliton on § 3 to the presence of a non-zero
NS-NS flux described by a WZ term in the string action (with coefficient ¢). We find that the angular
momentum of this soliton gets shifted by a term linear in world-sheet momentum p. We also discuss the
symmetry algebra of the string light-cone S-matrix and show that the exact dispersion relation, which should
have the correct perturbative BMN and semiclassical giant magnon limits, should also contain such a linear
momentum term. The simplicity of the resulting bound-state picture provides a strong argument in favour
of this dispersion relation.
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1. Introduction

Recently two of us studied superstring theory on AdS3 x S x T# with mixed R-R and NS-NS
3-form fluxes [1,2] with the aim of solving it using the same integrability-based methods as
developed in the pure R—R flux case (see [3,4] and references therein). The tree-level light-cone
gauge S-matrix for BMN string excitations [5] was computed in [1]. These excitations have the
following perturbative dispersion relation

er=1-2+(ptq2=\/1£qp)? + (1- )P (1L.1)

Here 0 < ¢ < 1 is the coefficient of the NS-NS flux (§ = /1 — g2 is the coefficient of the R-R
flux) and p is the spatial momentum of a 2-d string fluctuation.” In general, (1.1) is expected to

receive corrections at higher orders in the inverse string tension (h = ‘2/—3) expansion. To obtain
the exact S-matrix the first step is to find the exact generalisation of the dispersion relation (1.1).
Using symmetry considerations, as in the AdSs5 x S5 case [6], in [2] the exact generalisation of
the dispersion relation was suggested to be

ex =\/Mi+4(1 — ¢*)h? sin2g, (1.2)

where the “central charge” M. is not uniquely determined. The condition that (1.2) should re-
duce to (1.1) in the near-BMN limit h > 1, p <« 1 with p = hp fixed implies that

Mi=1+ghp+---=1%gp+0(h"). (1.3)

If one assumes that the dispersion relation should be manifestly periodic in p (i.e. with M4
being a smooth periodic function of p, which would apply if there were an underlying spin chain
system) then the simplest consistent form of M would be [2]

Mi=1i2qhsing. (1.4)

As was noted in [2], such a manifestly periodic dispersion relation (1.2), (1.4) suggestive of
an underlying spin chain picture also naturally emerges upon formally discretizing the spatial
direction in the string action (with step h™!).

There is, however, no a priori reason to expect a spin chain interpretation to apply to the
string integrable system for g # 0. It does not apparently apply for ¢ = 1 when the world-sheet
theory is related to a WZW model (which is solved in conformal gauge using, e.g., an effective
free-field representation). For this reason it would be important to have an independent argument
for or against the explicitly periodic choice (1.4) made in [2].

In the AdSs x S° string case, in addition to the light-cone symmetry algebra considerations and
the perturbative near-BMN expansion, there was a third string-theory-based source of informa-
tion for the dispersion relation — the semiclassical giant magnon solution. The aim of the present
paper is to use this third approach to complement previous work on the first two approaches [1,2]
and shed further light on the exact form of the mixed-flux dispersion relation. Following [7-9],
we consider a giant magnon solution on §3 with two angular momenta (J;, J») and find that its
energy is given by (E, J; — 00)

2 The quantized coefficient of the WZ term in the string action is k = 2w gh.
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E—J =\/Mi+4(1 —qz)hzsinzg, (1.5)
My = J, £ ghp. (1.6)

For g = 0 this reduces to the standard dispersion relation for a dyonic giant magnon [8,9]. In the
giant magnon construction the momentum p is related to the angle A¢; between the end-points of
an open rigid string moving along a circle of S so that p € (—, 7). One may formally consider
the energy as periodic in p by periodically extending (1.6) to the whole interval p € (—o0, 00).?

The giant magnon solution is interpreted as a bound state of J, elementary “magnons” (string
excitations) so that for J, = 1 this relation corresponds to (1.2) with an exact linear expression
for M4 (i.e. without any higher order corrections in (1.3))

My =1+ ghp. (1.7)

The resulting dispersion relation (1.5), (1.7) has the nice feature that for g = 1, i.e. in WZW
model limit, it directly reduces to the expected massless dispersion relation

g=1: ex=1=xhp. (1.8)

To derive (1.5), (1.6) we shall start with the bosonic string moving in R x S> in the presence
of an NS—NS flux, i.e. described by an action with a WZ term proportional to ¢, and consider
its classical solutions (see also [1] and references therein). Some previous discussions of similar
classical solutions in this model appeared in [10—12] but they will not be used here. Since the
string model on R x S3 in the conformal gauge can be interpreted as a principal chiral model
with a WZ term proportional to g, to find solutions for g # 0 from solutions in the g = 0 case
one may use the fact that the g # 0 equations of motion written in terms of SU(2) currents are
related to the g = 0 equations of motion through a world-sheet coordinate transformation.

In Section 2 we will review the classical string equations on R x $3 in conformal gauge
described by the SU(2) principal chiral model with a WZ term proportional to g. We will then
discuss the corresponding conserved charges, pointing out an ambiguity in the action related to
boundary terms, and describe a procedure for constructing classical solutions for ¢ # 0 from
their ¢ = 0 counterparts, illustrating it on the example of the rigid circular string solution on §3.

In Section 3 we will construct the dyonic giant magnon solution generalising the solution of
[7,8] to the g # 0 case. We will find the corresponding relation between the energy, the finite
angular momentum component J>, and the effective kink charge, equal to the separation angle
A¢1 between the rigid open string endpoints. Claiming that the latter should be interpreted as in
[7,8] as the magnon world-sheet momentum p, we obtain the dispersion relation (1.5), (1.6).

In Section 4 we will further justify this momentum identification by considering the limit of
large angular momentum which isolates and effectively decouples fast string motion of extended
slowly varying string configurations such as the giant magnon. In this limit the string motion is
described by a g # 0 generalisation of the familiar Landau-Lifshitz model [ 13—15]. The Landau-
Lifshitz equations are known to admit a “spin wave” soliton [16—19] which may be interpreted
as the large J» limit of the dyonic giant magnon solution. The world-sheet momentum p of this

3 The periodicity in p becomes irrelevant in the perturbative string theory limit of h >> 1 when we set p = h! p for
fixed p so that p goes to zero.
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Landau-Lifshitz soliton has a straightforward definition that confirms its identification with A¢;
of the giant magnon. The resulting dispersion relation represents the large J» limit of (1.5), i.e.

2(1 — g*)h?
Eip=E—1 —J2=—th+%sinzg+0(fz_2). (1.9)
2

In Section 5 we will revisit the discussion of the world-sheet S-matrix of the mixed-flux
AdS3 x S3 theory in [1,2]. We will first review the light-cone symmetry algebra and then sug-
gest a modification to the conjecture for the central charge function M4 in [2], switching from
(1.7) to (1.4). Doing so, we recover the semiclassical g # 0 dyonic giant magnon dispersion re-
lation (1.5), (1.6) by considering the bound states of elementary excitations (with J> being the
number of constituents) and taking an appropriate strong-coupling limit. The simplicity of the
bound-state picture provides a strong argument in favour of the linear momentum function (1.7).

Some concluding remarks will be made in Section 6. In Appendix A we will comment on
the relation between the dyonic giant magnon solution and the soliton of the corresponding
Pohlmeyer reduced theory.

2. Classical string solutions on R x S3 for ¢ # 0

In this section we shall discuss the relation between the g = 0 and g # 0O classical string equa-
tions on R x §3 that we will use in the following section to find the unique generalisation of
the standard ¢ = 0 dyonic giant magnon solution of [8] to g # 0. We will see that the ¢ =0
and ¢ # 0 equations written in terms of the current J = g~ dg are related by a world-sheet
coordinate transformation. Our strategy will be (i) to perform this world-sheet coordinate trans-
formation on the g = O current of a given solution to obtain its g # O counterpart and (ii) starting
with this new current to solve for the coordinates of the g # 0 solution.

The string action in the conformal gauge is equivalent to that of the principal chiral model
with a Wess—Zumino term with the coefficient g € (0, 1)

h s 1 ~ 3 1 abe monn ~ -1
S=—3| | ¥o50Q+3-) —q | Fo e r@udplo) | Ja=g g, 2.1)

where h is the string tension, g € SU(2) and ot = %(r +o0),0L =0; £ 0,.
2.1. Classical equations

The equation of motion for the above action is
A+9)3-Jr+ (-3 3J-=0, J=g 'dg. (2.2)
or, equivalently
(1—q)o_Ry + (1 +¢q)a;8_=0, RK=dgg . (2.3)
Supplemented with the flatness condition (2.2) can be rewritten as
3+J—+%(1+Q)[3+’3—]=0, 3—3+—%(1—Q)[3+73—]=0~ 24
The formal transformation of the world-sheet coordinates

ot 55t = (1 :I:q)cri (2.5)
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then maps the ¢ # O current equations to the ¢ = 0 equations, provided the currents are left
unaltered (i.e. this is not a conformal transformation that leaves the classical equations invariant).
Furthermore, the Virasoro conditions (assuming that the target space time coordinate is t =« 1)

tr(33) = —2«* (2.6)

are invariant under this transformation. Given a solution for ¢ = 0 the map (2.5) allows us to
construct the g # 0 counterpart, J, of the ¢ = 0 current. It then remains to solve the defining
equations of JJ for the function g, or, e.g., for the 4 real (2 complex) S embedding coordinates
Xm.m=1,...,4(Z;,i=1,2)

S zZ Z
Jr=glorg. g= < T ) € SU(Q2), (2.7)
2 1

Zi=X1+iXs,  Zpy=X3+iXe,  Xp=1, |Zf=1 (2.8)

The relation 0+ g = gJ+ then gives first order differential equations for the complex embedding
coordinates in terms of the current J

Z=3L7. (2.9)
Taking an additional derivative these imply
0,0-Z=030"Z+33"Z, 80 Z=0320"Z+3731 2. (2.10)

Subtracting these equations gives the compatibility condition 0+ IZ=0_ o4 Z, which corre-
sponds to the flatness condition for Jj. Adding the two equations one obtains

- | - 1
a+afz+rzz+5q[3+,371TZ=o, Q=543 (2.11)

where have we used the fact that since J4+ are traceless and anti-hermitian the anti-commutator
{J+, J—} is proportional to the identity.
In order to solve for Z we decouple (2.9) into two first order equations

Porzi -3z + (32" - 325z =0, (2.12)
30,22 - 320-20+ (332 32 22 =0 (2.13)

These linear first order partial differential equations can be solved using the method of charac-
teristics and their solution will involve an undetermined function. At the same time, the original
equations (2.9) are four first order equations for two variables, which uniquely determine the so-
lution up to integration constants. Therefore, we still need to impose some additional conditions.
This we can do by decoupling the second order equations (2.11) as

C12 C12~
040-Z1+ 970+ 21 +(:2 +¢qChy —q~—2141+1>zl =0, (2.14)
32 32
Cy Ca1 .2
3+3—Zz+f13T3+Zz+ Q+qC22—q3TJ+ Z, =0, (2.15)
+ +

where C = %[fpr, J_17. The undetermined function can then be fixed by substituting the solution
of the first order equations into the above second order equations.”

4 Notice that Egs. (2.14) and (2.15) are related through complex conjugation. This does not imply that Z| and Z, are
complex conjugates of each other as we shall see in more detail later on. The above second order differential equations
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2.2. Conserved charges

The equations of motion (2.2), (2.3) imply that we have two conserved SU(2) currents, the
left-invariant and the right-invariant one

Lo=3a—qeabd’,  Ra=HRa+qgeaf®, — 9,L°=8,R*=0. (2.16)

Using these we can construct conserved charges in the standard way

QL=h/do- Go+ 431, QR=h/da (Ro— qf1). 2.17)

For the dyonic giant magnon solution that is the main subject of this paper, there are a particular
pair of charges that we will be interested in

i

J=-1 (Tr[Qr - 03] + Tr[Qk - 031), M= 4(—Tr[QL -03] + Tr[Qg - 03]). (2.18)

T4
We will parametrise the 3-sphere as
Zi=X|+iX, =sin0e'?, Zr=X3+iX4=cos0e'?, (2.19)

or, equivalently, in terms of the Euler angles

g = eV Ry — 20, 0, = 1 + ¢, Op =1 — $n. (2.20)

The bosonic string action (2.1) then takes the form
h
S = -3 / d%0 [8,0096 + sin® 09,413 ¢y + cos 03,¢23" P

+q(c0826 + ) (162 — h261)], 2.21)

where a, b =0, 1 stand for the world-sheet coordinates 7, o with the metric n = diag(—1, 1)
and "= 0;, "= 9, . The last g-dependent term comes from the Wess—Zumino term, in which the
parameter ¢ corresponds to an ambiguity in defining a local 2-d action.” The c-term is a total
derivative and does not, of course, affect the equations of motion. However, if we consider string
solutions with non-trivial boundary conditions (which includes the case of interest — the dyonic
giant magnon) then it will affect the corresponding Noether global charges as we shall discuss
below.

As we are using the conformal gauge with the residual conformal symmetry fixed by choosing
t = kT the Virasoro constraints take the following explicit form

62 4 62 4 sin’ 9((2’)12 + ¢%) + cos? 9((]5% + ¢§) =2,
66 + sin2 011 + cos2 0y = 0. (2.22)

admit two separate solutions corresponding to roots of a quadratic equation. Requiring that the final solution is consistent
with the original ¢ = 0 solution then uniquely fixes the choice of these roots giving rise to solutions for Z and Z, that
in general are not related by complex conjugation.

5 In general, the string couples locally to the antisymmetric B-field, while the defining equations — the conformal invari-
ance conditions or, to leading order, the supergravity equations of motion — depend on the three-form field strength H.
Therefore, there is a gauge freedom in choice of the B-field and in the presence of the boundary this necessitates a
boundary term parametrising this ambiguity. At the moment we will leave it arbitrary and fix it later via natural physical
requirements appropriate for the giant magnon solution.
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The translational invariance of the full string action under shifts of 7, ¢1 and ¢, leads to the
following conserved Noether charges: the energy and the angular momenta (here o € (—m, 7))

E =2rhk, (2.23)
Ji=h / do [sinzeq'sl — %(cos 20 + C)¢;2:|, (2.24)
L=h / do [coszeq'sz + %(Cos 20 + C)q§1i|. (2.25)

Here J; » follow directly from the action (2.21). The c-terms are of course total derivatives and
thus contribute only if ¢; or ¢, have non-trivial boundary values or if periodicity in o is not
imposed (as will be the case for the giant magnon solution).

Let us compare (2.24), (2.25) with the charges J and M (2.18) that were derived from the
SU(2)-invariant currents (2.17). Substituting the parametrisation (2.19) into (2.17) we find

J=h / do [sin29¢'>1 — %(cos 20 + 1)(]52}, (2.26)

M=h / do |:cosz O + %(cos 20 — 1)451}, (2.27)
and hence

Ji=J— %hq(c— DA, h=M-— %hq(c+ DA, (2.28)

Api = ¢i(m) — ¢pi(—7). (2.29)

Thus to match J and M with J; and J, we need different choices of ¢ (= %1), i.e. J and M cannot
be obtained as Noether charges from a local action (2.21) with equations of motion equivalent to
(2.2). This, of course, is not a contradiction as the difference appears only due to the boundary
“twist” terms A¢;, but if non-zero such terms break manifest SU(2) symmetry.®

The dyonic giant magnon solution we will be interested in is a classical soliton representing a
“bound state” of string excitations above the BMN vacuum. The latter corresponds to a point-like
string moving along a great circle of S°

9:5, $1=kT, ¢ =0. (2.30)

For the point-like BMN solution
E—J1=0, Ji=1 (2.31)

In the g = 0 case, the giant magnon limit [7] involves taking both E and Jj to infinity (i.e.
k — 00) with their difference held fixed

E, Ji—>oo, e=E—J,, J)=fixed. (2.32)

Also, as in [7] the string is assumed to be open so that rescaling T and o by ¥ — oo the spatial
interval may be decompactified

X =Ko, Kk— 00, x € (—00,+00), (2.33)

6 Let us note also that in general, the currents conserved (9, ji“ =0) on the equations of motion are defined modulo a

trivial term €2? dp fi where the functions f; (that may, in principle, break some manifest global symmetries) contribute
to the corresponding charges only if they have non-trivial boundary twists.



B. Hoare et al. / Nuclear Physics B 879 [PM] (2014) 318-347 325

and the non-zero angle between the end points of the string

A¢1 = ¢1(x =00) — ¢1(x = —00), (2.34)

may be related to the 2-d momentum p. Then €, which plays the role of the energy of the state
relative to the BMN vacuum, can be expressed as a function of p and J;.

As we shall see below, for g # 0 the requirement that £ — J; remains finite in the k — oo
limit (and also the classical action is finite when evaluated on one period of the dyonic giant
magnon solution) implies that

c=1. (2.35)

In this case the action (2.21) becomes explicitly

h
S=-3 / d%0 (9,006 + sin® 03,413 p1 + cos? 09,4239 + 2q€*? cos® 0,¢13p2).
(2.36)

The physical reason for this particular choice of B,,,-term in the string action is that it van-
ishes at & = 7. This implies the vanishing of force on the ends of the open string (representing
the giant magnon solution) moving along the great circle corresponding to ¢. As usual, the
boundary term in the variation of the string action specifies the boundary conditions for the
open string end-points. The variation of (2.36) under the variation of ¢ gives the condition
f dt ¢ (sin2 00,01 —q cos2 09, ¢2)|o=0. = 0. Since the end-points of the giant magnon move
along the great circle 6,0, = 5 the g-dependent term vanishes and we just have the standard
free-ends condition 0y ¢1|g=0,r = 0.
From (2.29) we then get

J=1J, M = J, — ghAgy. 2.37)

Here A¢; plays the role of kink charge, which, as for g = 0, can be identified with the 2-d spatial
momentum p of the soliton. Recalling that the quantized WZ level k is related to ¢ as k = 2w hg,
we may write M as

M:Jz—thzjz—k%, p=Adi. (2.38)

Here A¢; € (0, ) but being an angular coordinate it may defined modulo 2, and then the same
may be assumed about p, i.e. M may be considered as a periodic function of p.’

Also, for a physical closed string A¢; should be equal to 27n where n is an integer winding
number, or, equivalently, the total momentum of a bound state of magnons representing a physical
state should be quantized

> pi=27n. (2.39)
i

This is consistent with both M and J, in (2.38) taking integer values for such states.
This relation between M and J, is suggestive of how the dyonic giant magnon dispersion
relation is to be modified in the presence of the NS-NS flux (cf. (1.5), (1.6)).

7 The issue of periodicity is a subtle one and we will return to it later in Section 3.3 after we have derived the relevant
expressions for the energy and angular momenta of the dyonic giant magnon as functions of the solution parameters
(which include A¢y).
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2.3. An example of a solution: rigid circular string

Before turning to the construction of the giant magnon solution for g # 0 let us illustrate
the general procedure of finding g # O solutions from their ¢ = 0 counterparts on the example
of a rigid circular string on 3 [20,21]. The standard ¢ = 0 solution written in the embedding
coordinates reads

L L )
le—exp[l(w—i—m)a +i(w—m)o ],

V2
1
Zy=—explilo—m)oT +i(+myo~], m*+ao® =« (2.40)
V2
For this solution the SU(2) currents are (see (2.7))
-~ . m wexp[—2im(cT —o7)]
=1 wexpRim(ct —o7)] —m ’
~ —m wexp[—2im(cT —o7)]
J-= wexpRim(ct —o7)] m ’
_ _1 ~ AN 2 2
Q=—2u@d) =0’ —m’, (2.41)
Performing the world-sheet coordinate transformation (2.5) gives the g # O currents
~ . m wexp[—2im[ct —o~ +qct +07)]]
=t wexpRim[lct —o~ + g6 +07)]] —m ’
~ . —m wexp[—2im[cT —o” +q(cT +0o7)]]
J- =1 wexpim[lot —o~ + g6 +07)]] m ’
_ 0 expRim(ct —o~ +q(0cT +07))]
C_me<—exp[—2im(a+ —o" +q0tT+07))] 0 ’

(2.42)

with £2 unchanged, while the decoupled equations for the embedding coordinates (2.14)—(2.15)
become

310-Z1 —2qmid Z1 + (0 —m* —2gm*)Z; =0, (2.43)

A1 0_Zo +2gmids Zo + (0* —m* —2gm*) Z, = 0. (2.44)
Fourier decomposing the solution as

Z1 =apexplipst +inol, Zy =byexplivy,t —ino], (2.45)

and requiring that the modes reduce to those of the g = 0 circular string solution one obtains

U = gm ++/ g?m? + @2, Um = —qm ++/ q*m? + 2. (2.46)

The normalisation condition |Z;|? 4+ |Z3|> = 1 together with the Virasoro constraints 9+Z; x
0+ ZT +0+220+75 = k2 = w? + m? then determine a, and b, up to a phase giving

Zy =,/ % exp(i[(W —gm)t —mo]), W=,/0?+q’m? (2.48)
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In the parametrisation (2.19) this solution takes the form

W —gm
2w

The two angular momenta associated to shifts in ¢; and ¢» computed from (2.24), (2.25) are

sinf) = , o1 =W +gm)t + mo, ¢ = (W —gm)t —mo. (2.49)

J1 = Jo =mh(W 4 cqgm), (2.50)

where ¢ parametrises the ambiguity in the choice of the total derivative term in the action (2.21).
The expression for energy then takes the form

E =2t = \/(J — 2wheqm)? + 4w2h2m?(1 — ). J = Jy + Jr =20, 2.51)
Expanding in large J we get

2 2h2 1— PAY)
% + 0(‘]—2)' (2.52)

The choice ¢ = 0 here gives the standard BMN limit £ = J when J — oo.

E=J —2mhcgm +

3. Dyonic giant magnon on R x S in the presence of NS-NS flux
3.1. Review of ¢ =0 case
Let us start with a review of the standard dyonic giant magnon solution on $3 in the absence

of an NS—NS flux, i.e. for ¢ = 0 in the action (2.21). In the notation of Section 2 the dyonic giant
magnon solution, labelled by the two independent parameters b (or v) and p, takes the form [8]

70— [b + i tanh(&X cos p)]exp(it) 7, — sech(X cos p) exp(i7 sin p) G.1)
' (1+b)172 LT (1+ )12 ’ '
vsecp T
b:7’ UG(O, 1)7 pe((), _)9 be(09oo)v (32)
V1 =12 2

where X’ and T are related to the world-sheet coordinates 7, o through a boost of velocity v and
arescaling by «

P x —vt T t—vx (3.3)
V17 IV .
t=«r, X =Ko, T € (—00, 00), o€ (—m,m)), X € (—00, 00). 3.4

Here we have already taken the limit k — oo and thus “decompactified” the spatial direction x.
x — o0 correspond to the endpoints of the string moving in the ¢ direction, while p € (0, %)
is the parameter associated with the angular momentum in the ¢, direction. We may of course
extend the parameter ranges so that v € (—1, 1), p € (—m, ) \ {—%, %} to cover also the soliton
moving in the opposite direction. These ranges correspond to b € (—00, 00) and hence A¢; €
(—m,m).

This solution satisfies the boundary conditions

., AP
x — foo: Zj—exp lt:ttT , Zr—0, 3.5)

where
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A¢ = 2arctanb ! € 0, ) 3.6)

corresponds to the angle between the rigid open string endpoints which move in the ¢ direction
on the great circle 6 = 7.

The finite combination of energy E with J; and the angular momentum J, for this solution
are given by

_2h (14 b%cos? p)1/?
142 cos p ’ 142

E—J; tan p. 3.7
The case of p = 0 thus corresponds to the S? giant magnon of [7] (then Z, in (3.1) becomes real)
with J; = 0. In addition to J> another “charge” parameter of this solution is the “kink charge”
A¢1. Expressing the energy in terms of these charges we get

/ 4h? A

This becomes the usual dyonic giant magnon dispersion relation upon the identification [7,8] of
the magnon momentum with the separation angle: p = A¢;.

Let us mention that if one considers a more general solution where the string moves also along
an S! in the torus part of AdS3 x § 3 % T then the dispersion relation (3.8) is modified as follows:

VE2—P2— =,/Jz2+4h2sinzg, (39

where P is the (large) momentum in S' with E, P and J; scaling as k — oo. This follows
simply from the formal Lorentz invariance in the R, x S}p subspace in the decompactification

limit (equivalently, the contribution of the R, and SJb to the Virasoro condition can be absorbed
into a rescaling of t and o).

3.2. Dyonic giant magnon for q # 0

Let us now generalise the above solution to the g # 0 case using the procedure outlined in
Section 2. First we are to re-express the current, constructed from the ¢ = 0 solution (3.1) via
(2.7), in terms of 5F, defined in (2.5), giving us the current J of the ¢ # 0 solution. Anticipating
that the g # 0 solution is again most conveniently written in terms of boosted world-sheet coor-
dinates we introduce the boosted world-sheet coordinates X', 7~ which are related to the q#0
world-sheet coordinates 7, X by a boost of velocity v, i.e.

1 N
5*:(1@)0*:5(515), f=«t, I=«é,

P X—vf 5 f—vk 310
“me e o

Note that the boosted world-sheet coordinates of the ¢ = 0 and g # 0 cases are related via

X=X+qT, T=T+qX. (3.11)
It is useful also to introduce rescaled coordinates & and 7, defined as

£ =Xcosp, ii="T sinp. (3.12)
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The coordinate transformation from the original light-cone coordinates o * to £, 7 is then

ot = ! v/ Lo .ﬁ + 5 )
2k(14+¢g)V 1 —v\sinp cosp
1 1— i 3
o= iy BN S ) (3.13)
2k(1 —g)V 1 +v\sinp cosp

Written in &, 7 coordinates Egs. (2.12)—(2.13) become

0;Z1 + Ad;Z1 + BZ) =0, 0p 2y + A*0522 + B*Z, =0, (3.14)
where
[1—v~ [14v A ~
(1+4q) H_zdzl —(-q %‘ﬁl m+gb +iqgtanhé
A=tanp =tanp - —, (3.15)
g leosp@I — 313
(1 +q) /232 + (1 —g) /232!
_sech?€ + (k + i tanh &)(b + iutanh &) (3.16)
= —1 pos y .
(u+1)(b+gm+itanh&)
1 b2 2
p= YITDICOS o (1~ wytanp. (3.17)
sin p
We can then write (3.14) as an ordinary differential equation
dZ,;
— +BZ1=0 (3.18)
3
valid along the characteristic curve
dn ~ . - -
£:A(r§) = 5= | dEAE)+ Co. (3.19)
Evaluating the integrals of A and B we obtain
. 2ilk + k%1 + (k — s1)ulé
11=/d53<s)=— = Dule
21+ s (1 +u)
- [1+k%+s51(s1 —k)(1 +u)]In[2(s; cosh& + i sinh &)2]
+ Incoshé — 5 ,
20 +sP) (A +u)
. 2(1 + 5152)€ — im(1 — ¢?) In[2(s| cosh & + i sinh &)2]
12=/d§A(§)=tan,o EAL ,
21+ 52)
s1=k+qm, so=m+ qgk. (3.20)
The solution for Z; is then obtained by integrating (3.18)
Zi = f(CoG, ) exp[— / dé B(é)} = f(ii = L®)exp[-1 ()] (3.21)

We can determine f by substituting this solution into (2.14). This gives
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£l =2rf (@) + 17 =82 =0, (3.22)
i 1 i 14+q(g —2v) )
r=—|————-1), S=—-|1+ s (3.23)
2(sin,o\/l—v2 > 2< sinp(1 —g2)v/1 —v?
which has the solutions
f)=e™", ax=r=s4. (3.24)

Requiring that in the limit ¢ — 0 we recover the dyonic giant magnon solution (3.1) leads to
b4 1-— qv)
. (3.25)
sinpv/1—02 1—¢2
We can now determine the Z, solution by taking the complex conjugate of (3.21), but to ensure
the correct ¢ = 0 limit in this case we should take

fR)=e""*= exp(z’z[ 94 —v) + 1]) (3.26)
sinp(1 — g2)/1 — v2

After fixing the normalisation constants using the Virasoro condition and |Z;|*> + |Z1|> = 1 we
obtain the solution written in terms of the original X, 7 coordinates (3.3)

f(2) = e =exp (i

B (b + i tanh[cos p(X + g T)]) exp(it)

Z A ’ (3.27)
(1402172
Z, = sech[cos p(X + qT)]eXPfl [sinp(T +q&X) — qx])’ (3.28)
(1+bH)1/2
b = sec (70_61 + sin) (3.29)
=secp N gsinp |. ’

This generalises (3.1), (3.2) to the g # 0 case. It is straightforward to verify that the solution
(3.27)—(3.29) satisfies the defining equations (2.9). Written in the parametrisation (2.19) it takes
the form®

__sech[cos p(X +¢T)]

056 S (3.30)
(1+ 5212
o1 :t—i—arctan(l;_]tanh[cosp(X+qT)]), ¢ =sinp(T +qX) — qx, (3.31)
3 _ x—uvut __ t—uvx
where as in (3.3) here X = T T = Nt

The asymptotics of this ¢ # 0 dyonic giant magnon solution (3.27), (3.28) have the same form
as in the ¢ = 0 case (3.5)

A
X = fo00: Z—> exp(it ii%), Zy — 0, (3.32)
AP = 2arctanb~! € O, 7). (3.33)

Here we have restricted so that A¢; € (0, ), corresponding to be (0, 00). As in the ¢ =0 case
these ranges can be extended to (—, 7) and (—o00, 00) respectively.

8 One can check that this solution remains valid also for g = 1 (it satisfies the Virasoro constraints and equations
of motion for (2.21)) even though the world-sheet coordinate transformation (2.5) which we used to derive it becomes

degenerate. Furthermore, written in terms of the group element (2.20) the solution factorises as expected: g = exp(% (t—

1

x)03) - gg(t+x). Itis interesting to note that the right-invariant current is particularly simple in this limit: 0_gg™" =io3.
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3.3. Conserved charges and dispersion relation

For the ¢ = 0 dyonic giant magnon the energy E and the angular momentum J; diverge
with their difference staying finite. This is no longer true in general for g # 0: the behaviour of
E — Jp happens to depend on the definition of Jj in (2.24) which is sensitive to the total derivative
ambiguity (~ ¢) in the Wess—Zumino term in (2.21).° We find from (2.23)—(2.25)

0
E—J =h / dx (1 - |:sin298,¢1 - %(cos 20 + c)ax¢2D, (3.34)
o0
Jr=h / dx |:cos26’8,¢>2 + %(cos 20 + c)8x¢>1}, (3.35)
—0oQ

where we used the rescaled world-sheet coordinates (¢, x) = (kt,x0) with ¢, x € (—00, 00).
Computing these integrals for the solution (3.30), (3.31) we find

\/1 —¢2+4 (bcosp —gsinp)? |
E—Ji=2h (115D cosp + th(c — DA@, (3.36)
Agy = —cos p(g cos p + bsin p)x|>,, (3.37)
J =M+ St Dhgag. M=2n2P =90 (3.38)
2 1+ b2
where A¢; is given in (3.33), the divergent expression for Agr = ¢ (x = 00) — P2 (x = —00)

follows from (3.31) and M was defined in (2.18), (2.27). We conclude that E — Jj is finite only
ifc=1.10 Remarkably, this is exactly the case (cf. (2.28)) when the charge Ji (2.24) coincides
with J in (2.18), (2.26) which corresponds to manifestly SU(2) invariant current.

Eliminating p and expressing b in terms of A¢; in (3.33) gives

A
c=1: E—J= \/MZ +4h2(1 — ¢2) sin? % M = J, — ghA¢;. (3.39)

Let us comment on the values of parameters here (with ¢ € (0, 1)). As in the ¢ = 0 case, when
constructing the solution we restrict to A¢; € (0, ), or equivalently b € (0, 00). Taking also
p € (0, %), this implies the restriction v > v, (g, p) > v«(q,0) = g, where v, is a function of ¢
and p whose explicit form follows from (3.29). As before, we may extend the parameter ranges
sothat v € (—1,1) and p € (—m, ) \ {—%, 5} and thus b € (—00, 00) and A¢ € (=7, ).

Note also that M in (3.38) is single-valued; J» = M + ghA¢; formally shifts if we shift
A¢; by its period. As was already mentioned in Section 2.2, the shift is integer as the WZ level
k = 2mhgq should be quantized.

9 The infinite contribution of the total derivative term comes from the infinite (in the ¥ — o0 limit) number of “wind-
ings” of the ¢ # 0 giant magnon around the circle of ¢, i.e. A¢p = o0 in (3.31).

10 et us note again that this choice is not related to the parameters of the solution itself but only to the total derivative
term in the action (2.21) or to the definition of the corresponding Noether charge Jq. Let us mention also that the
importance of similar WZ-term related boundary terms in the presence of non-trivial kinks was emphasised in a similar
context in [22].
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It remains to relate the “kink charge” A¢; (3.33) to the world-sheet momentum p. In general,
there is no universal definition of world-sheet momentum (the total momentum vanishes as we
are dealing with a reparametrisation-invariant theory). In the present case the preferred gauge
used to define the near-BMN S-matrix is the uniform light-cone gauge (see [23] for a review). In
the g = 0 case the momentum was identified in [7,8] with the angular separation

p=A¢, (3.40)

and this relation was indeed demonstrated to apply in the uniform light-cone gauge for the origi-
nal (J, =0) [7] giant magnon [24,23]. Heuristically, the relation (3.40) is not expected to change
upon switching on non-zero values of J, and ¢. First, there should be no momentum flow in
¢ direction in (3.31) as it is linear in ¢ and x, i.e. the relevant momentum should be associated
with ¢1. Expressing ¢ and ¢; in terms of two other string coordinates — ¢ and 8 in (3.30), (3.31)
and treating 6 as a spatial coordinate along the string (cos 6 changes from its maximal value to
zero and then back) we get'!

¢1(,0) =t+arctan[l;_1\/1 — (1 +b2) cos26], (3.41)

¢(1,0) = wi + rarccosh[(y/ 1 + 52 cos6) '], (3.42)

(1 —¢g%)sinpyV/1—v2—gq(w—gq) \/1 — g%+ (beosp — g sinp)?
w = = ,

1—qv sinp—qgcosp
2
= m, (3.43)
_ 4 tbtanp (3.44)
gb —tanp

Here the independent parameters are p and b associated, respectively, with two conserved
charges — J» and p (see (3.33), (3.38)). The expression for ¢; has indeed the same form as
for the J, =0, g =0 case, i.e. it depends on p (or J») and g only via b in (3.29). Then a natural
definition of the world-sheet momentum corresponding to ¢ is

P=/d9 0 p10991 =/d9 dod1 = A1, (3.45)

where we have taken into account that 3;¢; (¢, ) = 1.'” The same conclusion is indeed reached
in the uniform light-cone gauge where one has [23] x_ = ¢ —t, xy = (1 —a)t +ap =71,

1" This form of the solution is also useful for understanding its qualitative features. In particular, we see that the three

parameters b, w and r each control a different type of behaviour. b = cot % € (—o0, oo) measures the distance between
the end points of the string, while w € (—1, 1) measures the angular velocity in the ¢, direction. The string also winds
in the ¢, direction and the size of these windings is controlled by € (—o0, 00). From the expressions for b, w and r
in (3.29), (3.43), (3.44) it is clear that the NS-NS flux does not introduce any new qualitative behaviours, i.e. they are
all present for ¢ = 0. However, for fixed ¢ (i.e. for a given string background) the solution is parametrised by only two
independent parameters (for example (v, p) or (b, p)) and hence only certain combinations of these three behaviours are
allowed. As we let g vary the NS—NS flux can support certain configurations that would not otherwise be obtainable.

12 L et us note also that general, given a rigid moving-wave soliton described by some profile function ¢ = ¢(x —vt) one
may define the momentum as p = [ dx py¢’ where py, is the momentum density corresponding to f. For the 52 giant
magnon described in the light-cone gauge with constant J; -density, this leads to p = 2 arccos v [24]. One can see that the
relation cos g = v between p and the soliton centre of mass velocity v generalises also to J, # 0 and g # 0 cases (v=v
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p+=U—-a)py —ap; =1, p_ = p, + p;. Here a is a gauge parameter (we ignore winding in
the ¢ direction as we are interested in the decompactification limit J; — oo). The Virasoro con-
dition (which is unchanged by the presence of the WZ term ~ ¢) then implies ¥_ + p;¥' = 0. In
the present case ¢ is to be identified with ¢ (see [1]) and x! stand for all other “transverse” coor-
dinates. Thus the world-sheet momentum is pys = — [ do pixl = [doXx_=Ap=A¢ = p.?

Using (3.40) in (3.39) we arrive at the following g 7 0 generalisation of the dyonic magnon
dispersion relation'*

E—Jy= \/ (2~ ghp)? + 412 (1 —g?) sin? £ (3.46)

It is worth noting that, as in the g = 0 case (see Eq. (3.9)), the generalisation of this dispersion
relation to the case when the string also moves along an S' in the torus part of the background is
simply given by replacing E — ~/E2 — P2 where P is the (large) momentum in S'. Again the
reason for this is the formal Lorentz invariance in the R; x S ]}/ subspace in the decompactification
limit.

Finally, let us derive the quantization condition for J> (a similar argument for the ¢ = 0 case
appeared in [7,8]). As one can see from (3.28) or (3.42) the giant magnon motion is time-periodic
in the ¢, direction with period T (3.43) assuming that the shift of  is compensated by a shift of x
so that X’ + ¢T and thus 6 stays unchanged. In fact, the solution is explicitly periodic in x4 =
in the light-cone gauge discussed above, where x4 = (1 —a)t +a¢; =t +ax_ =1t (x_ = f(0),
¢ = wt + g(0), see (3.41), (3.42)). The changes over the period 6t =T are §6 =0, ¢ = 2m,
8¢ =6t =T sothatdx_ =8¢ — 8t =0, x4 =T.

This periodicity implies that there is an associated action variable, which should take integer
values upon semiclassical quantization Indeed, in general, for an integrable Hamiltonian system
one can define action variables Iy = 5 - f pidg’ where the y; form a basis of Liouville torus
cycles. The Bohr—Sommerfeld condition then implies that /; should take integer values in the
quantum theory. In the present case we can obtain the action variable I associated to the above
cycle in phase space from'>

N
2nl=S-T— (3.47)
oT |,

Here S = S(T, p) is the light—cone gauge string action computed over one period T on the giant
magnon solution (we assume that the parameters p and b are expressed in terms of T in (3.43)

in (3.1) when p = 0). From (3.27), (3.28) the string centre of mass coordinates are z; = limy— oo ffn g—;Zi (t,k0),i.e.
z1 = \/lbﬁe" 1, 720=0,ie. they describe a motion along a circle in the (X1, X2) plane with linear (tangent) velocity

given by (cf. (3.33)) v= \/7 = cos %

13 Thus the relation between world-sheet momentum and A¢1 does not depend on the gauge parameter a; this was
observed for ¢ = 0 in [24] and agrees also with the near-BMN expansion for g # 0 in [1].

14 por completeness, one should also check that the “off-diagonal” components of the SU(2) charges (2.17) vanish
on this solution and indeed this is the case. We can also construct these “off-diagonal” charges by considering the
corresponding Noether currents following from the local action (2.21). For these charges to be well-defined, i.e. for the
spatial component of the current to go to zero as x — 0o we again find that we should fix ¢ = 1. Furthermore, these
charges also vanish on the solution, i.e. there is no additional contribution from the non-trivial boundary conditions.

15 Note that [pidg' = f(;r dr /j:; dxpig' =S+TH=5— Tg—% where we used the Hamilton-Jacobi equation H =

_ 98
ar
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and p in (3.40), (3.33)). Since the string action is reparametrisation-invariant, its value is gauge-
independent and so it can be evaluated, e.g., in the conformal gauge (even though the periodicity
of the solution is not manifest in this gauge — ¢; gets an additional shift ~ T). Considering
w > 0 we compute the action (2.21) (keeping c arbitrary and including the —9“#9,¢ term) on the
solution (3.30), (3.31) to find

2(1—¢? 1 1
——=+ -q(c+ DA — —Tq(c— 1)A¢2},
tanp —gb 2 4r
where T is given in (3.43), A¢q in (3.33), (3.40), and A¢» in (3.37) is divergent. Thus the action,
like E — Jp in (3.36), is finite only if ¢ = 1, once again supporting the choice of the boundary
term made above in (2.35), (2.36). Eliminating p in favour of T or w = ZT” (recall we consider
w > 0) using (3.43), i.e.

S= 2nh|:— (3.48)

=2+ 52— [} = g1 + 61 — w?) — quiP?

2
e = : 3.49
an” p . (3.49)
gives (here b = cot5 and w = QT”)
= S _ 2(1 — g»HV1 —w?
2rh ql;«/l —w?—(1-¢q2 +h2 - [\/(1 —¢> +52)(1 —w?) —qu]z)l/z
+ap- (3.50)

Substituting into (3.47) we find that the action variable associated to the periodic motion in ¢; is
nothing but J, given in (3.38), i.e.

I=1J. (3.51)

Thus J> should be quantized, which is consistent with the near-BMN perturbation theory [1]
where the dispersion relation is a limit of (3.46) with J, = 1, and with the bound-state analysis
in Section 5.

4. Giant magnon in the Landau-Lifshitz limit

Let us now check (3.40), (3.46) by considering a particular large angular momentum limit
(when both J; and J, are large) in which the string action reduces to a Landau-Lifshitz (LL)
model in which there is a natural definition for the world-sheet momentum.

In the g = 0 case the LL model admits a well-known “spin wave” soliton solution which, in
fact, may be interpreted as a limit of the giant magnon of the original string sigma model, and
we shall find its generalisation to ¢ # 0. In the LL model one can give a natural definition to the
spatial 2-d momentum of the soliton and as we shall see it is consistent with (3.40), (3.45) and
the resulting energy—momentum relation agrees with large J> expansion of (3.46).

4.1. Landau-Lifshitz model for q # 0

To derive the LL model from the string action on R x S° one introduces a collective coordinate
to isolate the “fast” string motion associated to the large total angular momentum and obtains the
effective action describing the remaining “slow” degrees of freedom [13—15]. Let us parametrise
S3 as
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Z1=X| +iXs =sin0e? = U, U =sinde®,
Zr=X3+iXa=c0s0e? =Ure', U,=-cosfe P,
1 1
a=2@1+¢2), f=5(h1— ), U1 + |0 = 1. (4.1)

The angle « and the CP! coordinates U;, Us correspond to the § 1 Hopf fibration of S3. The
conformal-gauge string Lagrangian is £ = —%8+t8_t + %ES where the > part in (2.21) written
in the above coordinates takes the form

Ls=0,00_0+d,ad_o+3.p0_B—(1+¢)daC_ — (1 —q)d_aCy
— gc(d;ad_B — 3, Bd_a), Ci=cos2004p. 4.2)

With ¢ = k7 the Virasoro constraints are

(3£0)? = 201aCyx + (010)> + (318)* = «2. (4.3)
Introducing n; = U'o; U or explicitly

i1 = (sin20 cos 28, sin 20 sin 2, cos 26), =1, 4.4)

1
8+C_ - 3_C+ = —E&‘i./'knia_i_nja_nk,

1, - . -
G047 07 =0,00.6+0, 0~ CC_, (4.5)

we may rewrite the Lagrangian in (2.21) and the Virasoro constraints as

1
Ls=-3:n-0_n+@pa—Cy)@-a—C_)—q@iaC_ —d_aCy)

4
— ge(dsad_p — 04 fi_a), (4.6)
) 2
doo— Comicy|1- ::2) . @.7)

Let us now take the large total angular momentum limit directly in the action (as in [14]) using
the Virasoro constraints to eliminate «.'® Introducing u = o — ¢ and expanding in large x (which
corresponds to large angular momentum limit with both J; and J, being large!”) we find, after
solving for u using the Virasoro constraints d+u = C+ + O(k—1),'®

1
Ls= 18+n -0_n —2kC; +2qkCqs + 2qckds B + O(K_l). 4.8)
Finally, using the equation of motion d;n; = gosn; + O(k~1) we arrive at the following g # 0
generalisation of the Landau—Lifshitz action

16 Here we take the limit directly in the action rather than the equations of motion in order to determine the contribution
to the LL action from the total derivative in the WZ term.

17" This one can see from the large k expansion of Jy =2(J1 + J2) =« + f g—;q[c + cos(20)]f§ + O(K*l).

18 we dropped the total derivative term 2« 9z u and the constant term «% which do not depend on g.
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1
SLL = —h/ drdx [Cz —qCx + g(l —q%)(@eni)* — qcaxﬂ}, 4.9)

where t =«x7, x =ko and C, = cos 26 Baﬂ.lg

The LL model action (4.9) is invariant under translations of (¢, x) and SO(3) rotations of n;.
The former give two conserved charges — 2-d energy and 2-d momentum of the “slow” variables
(which are no longer fixed by the Virasoro constraints)

Erp = h/ dx <—q(cos 20 4+ )3+ %(1 — ¢%)[(3:0)* + sin? 29(8xﬂ)2]), (4.10)
_ h dLsg _
P = —E/dx 56,8 = h/dx €08 20, B. (4.11)
Then
EiL+qPuL= h/ dx (—qcaxﬂ + %(1 — ¢%)[(3x6)* + sin? 29(8xﬁ)2]>. (4.12)

Before discussing the LL model counterpart of the giant magnon solution let us consider the
corresponding LL limit of the rigid circular string solution of Section 2.3. The solution in (2.47),
(2.48) may be written as

1 qm
cosf=— [1+ , a=,/k2—(1—qg?)m3t,
ﬁ\/ VK2 = (1 —g*m? ( )

B=m(o+q1). (4.13)

Taking the large « limit we get, to leading order,

[ (1 —g*m?
o d=g)m”

1
cosf = —, =
V2 « 2K

:|r, B=m(oc +qr1), 4.14)

which solve the LL equations of motion. The corresponding conserved charges (4.10), (4.11) are
1 5 m?
EyL=2rh —qcm+§(1 -q¢)—|,  PL=0, (4.15)
K

which is consistent with a large angular momentum expansion of the full string energy (2.52)
(here Eyp = E — Jy and J; = 2mhk).

19 In this procedure we use the Virasoro constraints in the action which in general may not necessarily lead to a correct
result but in the present case indeed gives the same expression for the LL action as the systematic procedure based on
uniform gauge fixing and large « expansion developed in [14]. The same conclusion is also easily reached for g # 0 by
taking the same limit directly at the level of string equations of motion:

a4 (0 — C—) + d—_n; (04 — Cy) — & jxn 04 0—nj +q(d4ad_n; — d_adyn;) + O(k~') =0.
Using the expansion of the Virasoro constraints (4.7) to eliminate o gives
: O + e om (82 — 92 . 9 -1y _
2k(0r — qOo)n; +&;jkn (30 - Bf)nk +q(Cy0-n; —C_9d4n;) + O(K ) =0.

For g # 0 the time derivatives of n; are not suppressed but go as d:n; = qoyn; + o). Eliminating them recursively
from the above equation gives (d; — g ds)n; = — % (1- q2)sijknj 83 ny + 0(:{*2) which follows from the action (4.9).



B. Hoare et al. / Nuclear Physics B 879 [PM] (2014) 318-347 337

4.2. Landau—Lifshitz limit of the dyonic giant magnon solution

When taking the Landau—Lifshitz or large « limit we required that the derivative d,n; stays
finite. However, since the giant magnon solution is itself a large « solution depending only on
(t,x) = (k7,Kk0), in this case d,n; ~ O (k). Therefore we also need to take an appropriate limit
of the parameters in (3.27)—(3.29) to obtain the corresponding solution of the LL model. We have
from (3.30), (3.31)

kcosp 1—gqu tanh(cos p(X +¢T))

0y COSO = — ,
7 /14521 —02 cosh(cos p(X +¢qT))
1 —qv cosz(arctan(l;_1 tanh[cos p(X + ¢7T)]))
0y 8 =K COS p—=
b1 — 02 cosh(cos p(X +g7T))
+K( i q_”) (4.16)
—|lg—sinp———|, .
2\ V1—1v?
so that to take the LL limit we need to assume that in the large « limit
sinp~1+0(k™?), v~O0(k"). 4.17)
In this limit we have (cf. (3.2), (3.29))
vsecp ~ 1
tanp ~k > 1, b= ——— =fixed, b=b+0O("). (4.18)
— (G

Under this assumption the conserved charges (3.34), (3.35) of the ¢ # 0 dyonic giant magnon
take the form (c = 1)
2hx
1+ b?
Ap = 2arctanbh ! + 0(/(—1),
E—J (14 b?)arctanb™!
n 1
2
Thus in the Landau-Lifshitz limit £ — J; and J, diverge with their ratio staying finite. Eliminat-
ing b and « from the above expressions we reproduce the large J, expansion of (3.46)

2hi

E—J = l+b2+0(l<0),

+ O(KO), Jo =

1- +0(k72). (4.19)

E—Ji=J—qhAg +0(J5"). (4.20)

To construct the corresponding LL solution let us first consider the ¢ = 0 case. Expanding the
g = 0 giant magnon (3.1) at large x we get”"

b? —1 ) b
200=—bo + 2kt + > T +arctan| b~ tanh| o — —7 } |,
K K

b? —1 4 b
28 =bo — T 4 arctan| b~ " tanh| o — —7 | |,
2k K

sech(o — %r)

V14 b2

cosf = “4.21)

20 Note also that the Virasoro constraints take the expected form 0+o — C+ =« — %sechz((r — %‘[).
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These B and 6 indeed solve the ¢ = 0 LL equations: they describe the known “pulse” or “spin
wave” LL soliton found in [16-18].>! The corresponding conserved charges are

h h
EiL=3 [ dx (6'% +sin*20B'%) = = (4.22)
P = h/ dx (1 + cos20)B’ = 2harctan b1, 4.23)
4hx

where we have subtracted the values for the ground state solution 6 = /2, ¢; = k7, ¢ =0to
obtain finite expressions. Here Jg is the angular momentum corresponding to translations in .
Comparing with (4.19) we see that in the Landau-Lifshitz limit we have

P =hA¢, Jg=2J. (4.25)
This then supports the identification of A¢; with the spatial momentum p and leads to the fol-

lowing familiar dispersion relation for the LL soliton

2h* . ,p -1
Eyp =—sin“=, p=h""Py, (4.26)
J 2
which is also the leading term in the large J, expansion of the dyonic giant magnon energy in
38),E—J—> Jh+ ELL.22
The generalisation of the relevant large « expansion of the giant magnon solution to g # 0 is

(1-gH*-1)
—‘L'
2k

b
—i—arctan|:b_1 tanh(o +g97——(1 —qz)r>:|,
K
(1-¢)H@®* -1
2k
o sech[o + gt — %(1 —g)1]

V1+5b?

These $ and 6 satisfy the g # 0 LL equations of motion for (4.9) while « solves the Virasoro
constrains

20 =—b(0 +qt) +2kT +

b
28 =0b(oc +qt) — T+ arctan|:b_1 tanh(c +qt — —(1 - qz)r>],
K

cos . 4.27)

2K
Note that one can also obtain the g # 0 solution for B and 6 by applying the world-sheet co-
ordinate transformation T =1, 0 —> 6 =0 — ¢t, 0y = 0g, 0r = 07 — q 05 aftgr which the LL
equations following from (4.9) take the standard form d.n; = ik (1-— qz)e,-jknj agnk.

dro —Cop =k — i(1 — ¢*)sech? |:0 +q7 — é(1 - qz)rj|. (4.28)
K

21 This soliton is non-topological (i.e. it can be continuously deformed into the vacuum 6 = %). Upon semiclassical
quantization [25,18] its U (1) charge J, is quantized and the quantum soliton J, = 1 state may be identified with the
elementary magnon state.

22 In the AdSs x 3 case the leading term of the expansion is protected and thus it also agrees with the small h expansion
of the dyonic giant magnon energy, matching the expression following from the coherent state expectation value of the
one-loop ferromagnetic spin chain Hamiltonian.
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The corresponding energy (4.10) that generalises (4.22) to the g # 0 case is found to be (taking
c=1)

ELLzh/dx [—q(l +cos20)p’ + %(1 —q%)(0'? + sin’ 20/3’2)}

h
= —2hgarctanb™' + (1 — ¢?) = (4.29)

while the expressions for Py and Jg remain the same as in (4.23) and (4.24). As a result,
Eq. (4.25) is unchanged while we find the following generalisation of the LL soliton dispersion
relation (4.26)

202(1—¢% . ,p
————sin” =,

2
This agrees with the large J, expansion of the giant magnon energy (3.46) found in Section 3
thus supporting the identification of the magnon momentum (3.40) made there.

EiL=—qhp+ p=h"'PL. (4.30)

5. Symmetry algebra of light-cone gauge S-matrix and exact dispersion relation

In this section we will go back to the discussion of the world-sheet S-matrix of the mixed-flux
AdS; x S3 theory of [1,2]. We shall first review the symmetry algebra that underlies the light-
cone gauge S-matrix. Then we shall suggest a modification of one of the conjectures in [2] to
find that we can recover the semiclassical g 7% 0 dyonic giant magnon dispersion relation (3.46)
derived in Section 3.3 by considering the bound states of the theory and taking an appropriate
strong-coupling limit.

5.1. Symmetry algebra

As the type IIB supergravity backgrounds with NS—-NS and R-R 3-form fluxes are related
by S-duality, the space—time symmetry of our background should not depend on ¢. Indeed, the
AdS3 x §3 part of the world-sheet action can be described by the same supercoset geometry
[PSU(1,1]2) x PSU(1, 112)]/[SU(1, 1) x SU(2)] [26] with g appearing only as a parameter in
the action [27].

For this reason it is not surprising that the symmetry algebra of the world-sheet S-matrix [1,2]
describing scattering above the BMN string (which should be a subalgebra of the supercoset
symmetry preserved by the BMN vacuum) should not depend on ¢. The dependence on g then
enters through the form of its representation on states [2].

The relevant symmetry takes the form of a direct sum of two copies of an algebra with the
central extensions identified.”® The generators of a single copy of this algebra are: (i) two U (1)
generators R and £; (ii) four supercharges Q4+ and &44 (£ denote the charges under the
U (1) x U (1) bosonic subalgebra); (iii) three central extension generators &, 33 and K. Defining

93?:%(%+2), EB:%(ER—S), (5.1

the non-vanishing (anti-)commutation relations are given by

23 The symmetry algebra here is the same as in the case of the S-matrix of the Pohlmeyer-reduced theory corresponding
to the AdS3 x s3 superstring [28,29].
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[B,Quirl=+iQss,  [B, 617 =+iGis,
{Quis, Q1) =P, [(Gir.6s) =R, (Qir. Gra)=HiM+C.  (52)

These are consistent with the following set of reality conditions
B =-8, 0l =65, M=-m P'=f =c (5.3)

This superalgebra is a centrally-extended semi-direct sum of u(1) (generated by B) with two
copies of the superalgebra psu(1]1), i.e.

[u(1) € psu(1]1)?] x u(l) x R*. (5.4)

The central extensions are represented by the generators 91 (corresponding to u(1)) and €, P
and K. There is only a single copy of the four central extensions in the symmetry of the full
S-matrix

[u(l) € psu(1]1)?]” s u(l) x R (5.5)

The particular (reducible) representation of this symmetry algebra of interest to us here con-
sists of one complex boson ¢ and one complex fermion . The action of the U (1) and fermionic
generators are discussed in [2]; here we will just focus on the central extensions. These generators
have the following action on the one-particle states

i
M, ¢, B, &}|P+) = {iEMi,Ci,Pi,Ki}IQDi), (5.6)

where @4 € {¢+, ¥+}. These representation parameters should be real functions of the energy
and momentum of the state. Furthermore, the closure of the algebra requires that these four
parameters satisfy a constraint that is interpreted as the dispersion relation

2

C2—£+PK 5.7
= + K+ 6.7

The tree-level S-matrix was computed in [ 1] and from this result the leading-order expressions
for the representation parameters in the near-BMN expansion (h — o0o) were written down in [2]:

et i i
My=1lxqp, Ci=—, Pe=—2y1-¢’p, Ki=2y1-¢’p. (53
Here, the momentum p of a near-BMN excitation is related to the magnon momentum p of
Sections 3 and 4 in the usual way, i.e. through a rescaling by the string tension h

_P
p=L. (5.9)

Substituting these near-BMN expressions (5.8) into (5.7) we reproduce the expected near-BMN
dispersion relation [1]

er=\/U£ap? +(1-?)pP =1 — >+ (p£ 2. (5.10)

Exact completions of C+, P+ and K4 were then proposed in [2] based on various algebraic
requirements and analogy with the pure R—R flux case:

e4 h / . h / .
Ciz?, Pi:i l—qz(l—elp), Ki:i 1—(,]2(1—6‘ lp). (511)

Substituting these exact expression into the dispersion relation (5.7) we find
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£4 :\/Mi+4h2(1 — %) sinzg. (5.12)
An exact completion for M4 conjectured in [2] was
Mi=1 :|:2qhsing. (5.13)

However, it is now clear that this is not consistent with the semiclassical result (3.46). Instead,
the expression that is consistent with both the near-BMN limit (5.10) and the semiclassical result
(3.46) is simply

My =1=ghp. (5.14)

This alternative completion is not only compatible with the semiclassical result, but also has an-
other advantage in that the construction of the bound-state dispersion relation is far more natural
than in the case of (5.13), as we will explain below.

5.2. Zhukovsky variables

To discuss the bound-state dispersion relation we need to briefly describe the effect of the
choice of (5.14) as oppose to (5.13) on the exact S-matrix. In [2] the S-matrix was written down
in terms of the Zhukovsky variables xf (to be defined below), up to four overall phase factors.
Various equations for these overall factors that follow from unitarity, braiding unitarity and cross-
ing symmetry were listed there. Here we will not address the issue of these factors, which is still
an open question for the mixed-flux case, i.e. will leave them unfixed.”*

The key point is that the S-matrix expressed as a function of the Zhukovsky variables xi[
maintains exactly the same form as in [2]. It is only the map from xi to the energy/momentum
of the scattering states and their dispersion relation that are modified due to the change from
(5.13) to (5.14). It is important to note that many of the key properties of the S-matrix, including
the Yang—Baxter equation, unitarity, braiding unitarity and crossing symmetry are satisfied (so
long as the overall factors satisfy the equations as written in [2]) without the use of either this
map or the dispersion relation.

The map between the Zhukovsky variables and the energy/momentum corresponding to (5.12)

with arbitrary M. is a straight-forward generalisation of the familiar one”’:
+ 2
X hy/1— 1 1
elp:_fa 8i=7.q<xl_—_+_x;+__>’
Xy 2i x1 X3
. er+ M. 2hy/1 —¢?%sin®
xi[:riei’g, = £+ Vs = 1 z, (5.15)

with the dispersion relation (5.12) expressed as

24 For the pure R—R case there have been a number of works studying these overall factors [30-33], leading to a
conjecture in [4]. In [2] there was some discussion of the strong-coupling limit of these factors in the mixed-flux case.
However, this discussion is likely to need modification in light of the results of this paper, and furthermore, the recipe
presented there cannot be extend beyond this strong-coupling limit, due to inconsistencies with unitarity [34]. We thank
R. Roiban for drawing this last point to our attention.

25 Here the definitions of x:it have a natural periodic extension of the region p € (0, ) to the whole line, which is con-
sistent with the semiclassical identification of p with the angular separation of the dyonic giant magnon string end-points.
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1 I 2%M
+ T - (5.16)

Xfi+—F—xy ——= .
Tl Y o n/1-¢2
As discussed above, the My is unconstrained by the algebra, and hence could be an arbitrary
function of the momentum provided it has the required near-BMN and strong-coupling limits.
The choice of (5.14) corresponds to
+
. X4
My =1xqghp=1=Fighlog—. (5.17)
Xt

Substituting (5.17) for M+ in (5.16) we get

1 1 2i
|:,/1 —q2<x;r + x_+> inqlogxI] - [,/1 —qz<xjE + x__> F2q logxi:| =4
+ +
(5.18)

It follows from this representation that we can define a “generalised” Zhukovsky map

| .
M(xi+x—)¢2q10gxi=u, XiEZXi(uilH)’ (5-19)

+

that “solves” the dispersion relation. However, it is apparent that the analytic structure of the
inverse, x4 (u), of (5.19) will be considerably more complicated than in the case of the pure R—R
flux (¢ = 0), and indeed it is not clear whether this set of variables is the most illuminating for
studying the complex structure of the spectral curve (5.18).

5.3. Bound-state dispersion relation

To construct the bound-state dispersion relation we first need to know the position of the poles
of the S-matrix. Technically, for this we should also have the exact form of the four phase factors
mentioned above. However, at the position of a pole corresponding to a bound state we expect
that the residue of the S-matrix given in [2] should project onto a short representation of the
symmetry algebra (i.e. a boson and a fermion). From the form of the S-matrix it is then clear that
candidate positions for poles (and the corresponding short bound-state representations) include’®

(:  xf=x, {|¢i¢;>, mw;)wiw;Z—iww;)},

(i): xi=x4", {|1/fi1ﬁ/i>’ ¢¢1ﬂ’i>—<ﬂi<p’iz—i|¢¢¢;)}, (5.20)

where

xf
O+ = = Nt = i(x;—x+). (5.21)
Xt

On physical grounds we would expect that the bound states should form in the sector associ-
ated to the 3-sphere and indeed this is what happens in the g = 0 case of pure R-R flux [35]. As
the field ¢4 is associated to the 3-sphere we expect there to be a pole corresponding to case (i) in
(5.20), and not to case (ii).

26 Here the unprimed and primed variables correspond to the two incoming particles in the scattering process.
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The bound-state energy and momentum should be given by the sum of those of the two con-
stituent states

EP =es+¢, p? =p+p. (5.22)
From (5.15) it immediately follows that

. xit hy/1—q?2 1 1
elp(2) — i_ E(z) : hyl—g~ (xf — =5 —Xi+ —_> (5.23)
Xt 2 Xt Xt
Therefore, we can interpret the Zhukovsky variables for the bound state as
fo_ =x, xf)_ =x. (5.24)

Denoting x] = x,~ = x4 at the position of the pole, the dispersion relations for the two con-
stituent particles of the bound state are then

1 2)— 1 2iMy
X+ +— — x:(t) =

X+ «P7 n/1-¢2

1 1 2i M/
@)+ +
X + — X — — = ————. (5.25)
P Xt hy1- g2
Summing these up we find the dispersion relation for the bound state
(2
1 1 2iMY
)+ -
x4+ —xy - — = , (5.26)
x(iz )+ xf ) hy/1— g2
where
MP =My + M. (5.27)

We thus see that the eigenvalue My of the central generator 91 is additive when acting on the
two (and higher) particle states. Indeed, this follows immediately from the fact that its coproduct
is the standard one [2,35,1,36] (i.e. it is just given by the usual Leibniz action).

It follows from the definition of My in (5.17) that the value of 9t acting on the bound state is

(2)+

MP =2+ ghp® =2Fighlog =t — o

(5.28)
It is crucial to note that the simplicity found here, in particular, the fact that x* drop out without
any additional work, is a direct consequence of the fact that My in (5.14), (5.17) are linear

functions of p. Furthermore, it is clear that this procedure will iterate, giving a tower of bound
states with

(N)+
M(N) N :l:th(N) = N Fighlog (N) (5.29)
The resulting dispersion relation for the N-particle bound state is then
) _ 2 2 pV
E% (N £ ghp™)~ +4h2(1 — ¢2) sin - (5.30)

This agrees with the semiclassical result (3.46) after quantizing the angular momentum: J, = N.
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It is worth noting that this agreement requires the bound-state momentum to satisfy the bound
Ip"™| < 7 (at least in the semiclassical h — oo limit). This is implied by the identification of
this momentum with that of the semiclassical dyonic giant magnon, which in turn is given by
the separation angle of the string end-points. This suggests that any momentum p should be
understood as defined modulo 27 (and thus may be taken to lie in the range |p| < 7). Then
the momentum conservation should also be considered modulo 277.>” The consequences of this
rather unusual dispersion relation and its interpretation are important topics for further study.

6. Concluding remarks

In this paper we have supplemented the information provided by the perturbative near-BMN
expansion [1] and the light-cone symmetry algebra [2] with the construction of the semiclassical
dyonic giant magnon solution in AdS3 x §3 x T* string theory with mixed flux to propose the
exact form of the corresponding dispersion relation. We have seen that the presence of the WZ
term representing the NS—NS flux in the bosonic string action leads to subtleties associated to the
proper choice of boundary terms and the definition of angular momenta, which become important
for non-trivial open-string solutions like the giant magnon.

We reviewed the symmetry algebra for the string light-cone gauge S-matrix and introduced
a new set of Zhukovsky variables corresponding to the proposed dispersion relation. Analysing
the resulting bound-state dispersion relation, we found that it has a simple structure (5.30) and
agrees with the giant magnon dispersion relation (3.46). The implications of this new dispersion
relation for the structure of the yet undetermined “phase factors” in the exact S-matrix [2] remain
to be studied.

It would be interesting to provide further checks of the dispersion relation (1.5), (1.7). One
possibility would be through a two-loop perturbative string computation like that done in the
AdSs x S5 [37] and AdSs x S? x TO cases [38]. It appears, however, that the near-flat space
limit [39] used in these papers is not sufficient to determine the g-dependence of the two-loop
correction to the dispersion relation (e.g., a potential gp> term will not be seen in this limit).
Therefore, to check (1.7) one would need to do the full near-BMN two-loop computation of
the two-point function, which is yet to be performed in the AdSs x > case. One may also get
additional information about the perturbative expansion of the dispersion relation and S-matrix
using unitarity-based methods [40,34].

Another check of (1.5), (1.7) would be to confirm that the first semiclassical (one-loop) cor-
rection to the giant magnon energy (3.46) vanishes’® as was shown in the case of the AdSs x §°
giant magnon in [41-43]. This should indeed be the case since (i) the one-loop corrections in
the string and the corresponding Pohlmeyer reduced theory should match [44] (since the clas-
sical equations and thus the leading fluctuations near a classical solution are directly related)
and (ii) the solution of the reduced theory corresponding to the giant magnon is essentially the
same as in the ¢ = 0 case up to a simple rescaling of the mass scale by /1 — g2 (see [2] and
Appendix A below).

27 Note that in the g — 1 limit the sin? g term drops out of the dispersion relation and it might appear somewhat
unnatural to take this definition. However, in this limit the classical string solution remains well-defined. Furthermore,

ip
e 2 still appears in the definition of x::tt and thus the S-matrix. These both suggest that the momentum should continue
to be defined modulo 2.
28 In semiclassical limit Jo ~hJ> and J> and p are fixed while one expands in large h.
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Finally, to use the dispersion relation (1.5), (1.7) and the corresponding S-matrix as a starting
point for computing the string spectrum, it would be important to have a better understanding
of the analytic structure of the complex spectral curve (5.18), in particular, identifying the cor-
responding uniformizing variables (the analogs of those introduced in the AdSs x S° case in
[45.46]).
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Appendix A. Relation to soliton of the Pohlmeyer reduced theory

Let us briefly describe the relation between the g # 0 generalisation of the giant magnon so-
lution, found in Section 3.2, and the corresponding soliton of the Pohlmeyer reduction of R x §3
string theory with g # 0, which is the complex sine-Gordon model with the mass parameter
rescaled by /1 — g2 [1]. This generalises the relation between the soliton of the complex sine-
Gordon model and the ¢ = 0 dyonic giant magnon used in [8].

The Lagrangian density of the Pohlmeyer reduced theory and the relation of the string em-
bedding coordinates X, to the reduced variables are given by [1]

1
L=0,00_¢+tan gy xo_x + Ekz(l — g?%) cos2g,

1
k2cos2¢=0,X-0_X, i3 sin® pdy x = :Fiamnk,x’" 3, X"a_x*a3 x!. (A.1)

These can be written in terms of the SU(2) current J in (2.7) as follows:

K% cos2¢p = —%tr(&rﬁ_), i3 sin? pay x = :t%tr([fpr, J3-10234). (A.2)
Substituting the expressions (3.27)—(3.31) for the g # 0 giant magnon solution into Jj+ the cor-
responding reduced theory solution is found to be

cos p
- cosh[cos p(X +¢gT)]’
where 7 and X’ were defined in (3.3). Then

o iy _ cospexpli sinp(T +qX)]
Y =singert = cosh[cos p(X +¢qT)] (A4

is recognised as the familiar complex sine-Gordon soliton solution.

sing x =2sinp(T +qX), (A.3)
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