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Abstract

In this thesis, we explore the different texture zero models of neutrino mass matrices in
presence of an additional eV-scale sterile neutrino. The presence of an additional flavor of
neutrino of eV-scale was first hinted by the LSND experiment, which is now popularly known
as the LSND anomaly. In the (3+1) scenario, that is, three active and one light sterile neutrino
the system becomes more complicated and constrained. For theoretical understanding of the
eV scale sterile neutrino and their admixture with the three active neutrinos, we consider
the Minimal Extended Seesaw (MES) mechanism. MES mechanism is an extension to the
canonical type-I seesaw mechanism with an additional gauge singlet chiral field ‘S’. The
construction of MES mechanism is such that an eV scale sterile neutrino naturally appears
without the need to include any Yukawa coupling or mass scale for sterile neutrino. Neutrino
mass matrix my in MES is built from (3 x 3) form of Dirac neutrino mass matrix Mp, (3 x 3)
form of Majorana neutrino mass matrix Mg and (1 x 3) row matrix Mg which couples the
singlet field ‘S’ with the three right-handed neutrinos.

In our work, we study the texture zeros of neutrino mass matrices within the context
of MES mechanism. We consider different zero textures of Mp, Mg and Mg which finally
propagates as zeros of my, in MES. We explore the zero textures of both m3*® and m?}** in
our study. Accordingly we consider the (3 x 3) and (4 x 4) form of neutrino mass matrix

of MES mechanism. We restrict ourselves to phenomenologically predictive scenarios :



xii

(4+4) scheme, (5+3) scheme and (6+2) scheme where the digit within the pairs represent the
number of zeros of Mp and My respectively along with suitable zero textures of Ms. There
are a large number of combinations of Mp, Mg and Mg within the predictive scenario which
leads to the desired zero texture of mf’,“ and m“‘,x“. However, S3 group permutation between
the different combinations of Mp, Mg and My leads to only a minimum number of basic cases.
On realizing the textures we arrive at certain correlations between the neutrino mass matrix
elements. We check the viability of the textures by scanning their respective correlations
under recent neutrino oscillation data. For viability check of m$** we consider different
constrained ranges of the Dirac and Majorana CP phases and discuss the role played by the
CP phases in determining the viability of the textures. Textures which are allowed within 30
range of experimental data are then realized via suitable Abelian flavor symmetry group Z, by
extending the Standard Model with few scalar fields. We also find that §3 symmetric textures
follows a definite pattern of symmetry realization. We demonstrate how symmetry realization

of the §3 symmetric textures can be obtained by a simple interchange of Z, transformation of

the right-handed neutrino singlets of the basic combination.
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INTRODUCTION

1.1 A brief overview on neutrinos

The horizon of our knowledge for understanding of the underlying working principles of
the universe has been dramatically expanded by the theoretical and experimental efforts and
achievements for the last few decades. In the journey of such scientific endeavour in various
fields for unearthing the mysteries, new challenges pose in the way of formulation of theories
as well as experimentations. One of such interesting challenges in particle physics is massive
neutrinos. In 1930, W. Pauli first proposed a concept of % spin, zero electric charge and zero

mass particle called neutrino for understanding the continuous energy spectrum of the f3
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decay process, otherwise, the finger would have pointed to the question of validity of the
celebrated principle of conservation of energy. Almost 26 years after Pauli’s proposition of
neutrino, in 1956, F. Reines and C. Cowan [1] could detect anti-neutrino in a nuclear reactor

through inverse beta decay reaction :

Ve+p—et+n. (1.1)

Later in 1962 the muon neutrino was discovered at Brookhaven National Laboratory [2]
whereby it was observed that neutrinos produced in association with muons behave differently
as those produced in association with electrons. The third type of neutrino - v; was discovered
in 2001 at the DONUT ("Direct Observation of Nu Tau") experiment at Fermilab [3].

The myth of neutrinos being massless was finally broken in the late 1990’s by various
neutrino experiments [4—13] which observed that neutrinos produced with a particular flavor
eigenstate, oscillate to a different flavor after propagating a macroscopic distance. This
quantum mechanical phenomenon, known as "neutrino oscillation", gives us the insight that
neutrino flavor or weak eigenstates for interactions are different from their mass eigenstates
implying that neutrinos do mix and thus have a non zero mass. Since neutrinos are massless
in the Standard Model of electroweak theory, the strong experimental evidence of neutrino
oscillations indicating neutrinos being massive is new physics beyond Standard Model.
Although the oscillation experiments have shown neutrinos to be massive, but their masses
are in about sub-eV scale, that is, several times smaller than the mass of an electron. The
smallness of neutrino mass still remains to be an enigma and is believed to open the doors
for new and unexplored area of physics related to such small mass scales beyond Standard
Model. It is also believed that a deeper understanding of these elusive neutrinos may hold
a clue to the long standing problem of the fermion mass generation as well as some long

standing cosmological issues.
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Besides the three active neutrino species at the sub-eV scale, there could be a possibility
of the existence of additional light sterile neutrino states at the eV scale, which may be
solution for the anomalous results of the LSND experiment [14, 15]. Subsequently a number
of other experiments [16—19] have been performed, but their results could not rule out the
LSND anomaly. In such scenario, the proposition of at least one light sterile neutrino has
been gathering attentions of both theoretical and experimental physicists. The presence of
such eV scale sterile neutrinos shall be a new challenge in particle physics and shall also
have implications to other fields like astrophysics and cosmology.

The study of neutrino masses, mixing and number of species is important for enhancing
the clarity of our understanding of some phenomena or beginning of new search in unknown
terrain of physics which have been summarised with no exhaustive list in the following.
Neutrinos are a unique tool for searching various aspects of physics on scales ranging from
10733 to 10%8cm. (i) Applications in particle physics include: VN, uN, eN scattering for
existence/properties of quarks and QCD; weak decays for Fermi theory, parity violation,
mixing; neutral current, electroweak unification, field theory etc.; neutrino mass for constraint
on TeV scale physics, grand unification, superstrings, extra dimensions. (ii) Similarly
applications in astrophysics and cosmology include: core of Sun, atmospheric neutrinos,
violent events like GRBs, AGNs etc.; large scale structure (dark matter); nucleosynthesis
of small atomic number (big bang) to large atomic number (supernova) via stable atomic

number for iron (steller); baryogenesis for matter-antimatter asymmetry of the early universe.

1.2 Experimental evidences and neutrino oscillations

It is clear beyond any doubt from the solar and atmospheric observations in a number of
experiments like Homestake, Gallex, SAGE, Super-Kamiokande (SK) and SNO collabo-
rations that neutrinos change their identities (flavors) on transit from one place to another.

These gave rise to the solar and atmospheric neutrino anomalies and the LSND anomaly
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after the LSND experiment at Los Alamos National Laboratory. The first watershed proof
of neutrino oscillations was the results of the Superkamiokande experiment (SK) [9] in
1998 that observed an up-down asymmetry of high energy events generated by atmospheric
neutrinos (V) and thereby providing a model independent proof of oscillation of atmospheric
neutrinos. Similarly, the Sudbury Neutrino Observatory (SNO) was the first experiment
which gave the first clear evidence for solar neutrino (V,) oscillation [7, 8]. Apart from
the natural sources there are a number of short and long base line laboratory experiments
where neutrinos are produced in accelerators and reactors. K2K (KEK to Kamioka) is the
first long baseline neutrino accelerator experiment [11] which was designed to confirm the
oscillation of atmospheric neutrinos detected at Super-K experiment. Results from K2K
were found to be consistent with the oscillation of atmospheric neutrinos reported by SK
collaboration. There are a number of other neutrino oscillation experiments like Daya Bay
[20, 21], Double CHOOZ [22], KamLAND [23], MINOS [24], NOVA [25], RENO [26],
T2K [27] and so on, which not only have given clear evidence of neutrino oscillation but
have also provided precise and solid information regarding the oscillation parameters. There
are a few completed/ongoing (or future plan) non-oscillation experiments [28-33] required
to measure the mass scale, Dirac or Majorana, hierarchy of mass orderings of the three active
neutrinos etc. of which information and measurements are not possible in the oscillation
experiments.

In the oscillation experiments, neutrinos are detected in charged-current (CC) weak
interaction processes with weak eigenstates or flavors : V,, v, V. The neutrino mass matrix,
in general, is not diagonal which implies that neutrino flavor eigenstates (V,, vy, V) are
different from the mass eigenstates (vy, V2, v3). Therefore, the probability that a neutrino
with flavor eigenstate |v) to be in the same eigenstate will oscillate with time.

A neutrino flavor eigenstate |vy) produced with a definite flavor at time ¢ = 0, after

travelling some distance L evolves as:
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n n
Va(t)) =) Ugi[Vi(1)) = Y Ugie ™" |vi). (1.2)
i=1 i=1
Here n represents the number of light neutrino species, U is a unitary matrix, known as the

neutrino mixing matrix which relates the neutrino flavor eigenstates with mass eigenstates.

Probability of flavor transition from flavor eigenstate v — Vg is given by
Pop = | (vg|Va(t)) [ = Y UgiUpiUajU e "5 Ei). (1.3)
ij

For ultrarelativistic limit for tiny neutrino mass, we can approximate p; >> m;, p; ~ p; and
S 2 Am?; . . .
|P| ~FE and E; ~ p; + ;"—l;, Ei—E;~ % and ¢ = L. Using orthogonality condition of mass

eigenstates, the transition probability in Eq. (1.3) can be rewritten as

Pop = 8ap —4 Y Re(UgUpUq,Uj ) sin* Aij+2 Y Im(UgUpUajUs ;) sin24;j,  (1.4)

i>j i>j
where
2 2 2
p = T o Amy LJE (15)
VT 4E T T V2 m/MeV '

and Amizj represents the mass squared difference of two neutrino mass eigenstates v; and v;.

Transition probability in Eq. (1.4) shows oscillatory behaviour where oscillation length /77 is

jose _ATE 1o E(MeV)

~ — . — - 1.6
Y Amizj Am?(eV?) " Am? (eV?) (1.6)

lfj‘c is the distance between any two closest minima or maxima of the transition probability.
Eq. (1.4) depicts that, for neutrinos to undergo flavor oscillation, Amizj must be non-vanishing,
that is, neutrinos must have different masses. Thus, experimental observation from neutrino
oscillation shows that, at least one of the neutrino mass eigenstates |v;) should have non-zero

mass, so that there exists at least one non-zero mass difference between any two neutrino mass
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eigenstate in accordance with the condition Amizj # 0. Also UqUg; # 0, that is, they must mix.

Furthermore, the oscillation experiment to be sensitive to a given value Aml-zj, the baseline
L and oscillation length [?*“ should be of the same order L ~ [?°°, that is, the experiment
should be set up with the condition E /L ~ Am?j. For L << [°¢ (E /L >> Am?), oscillation
effects are negligible because sin? A;j << 1. Conversely, for L >> [°°¢, oscillation effects
are negligible, due to averaging over neutrino spectrum and the uncertainty over baseline

length, leading to the average value (sin®A;;) = 1/2.

Two-flavor case

Considering the oscillation between the two species V, and v, mixing matrix U is of 2 x 2

form as

cos® sinf
U= , (1.7)

—sin@ cos0

where 6 is the mixing angle. Two-flavor oscillation involves only one mass squared difference

Am? and the transition probability takes the form
22 o L
Py, vy, =sin 206 sin (1.27Am E) . (1.8)

Three-flavor case

For oscillation between the three flavors Vv,, v, vz, the neutrino mixing matrix Uy takes a
more complicated 3 x 3 form, which connects the neutrino mass eigenstate (vy, v, v3) and

flavor eigenstate (Ve, vy, Vr) as

Ve U U Uz %!
Ve | = | U1 U Ups Vo |- (1.9)

Vi Us; U Usz V3
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In the flavor basis, the flavor eigenstate for charged lepton coincides with its mass eigenstate.
Thus, the charged lepton mixing matrix (U ZT) is diagonal. Thus, the total lepton mixing matrix
U=U IT Uy coincides with the neutrino mixing matrix Uy. The standard parametrization of

the lepton mixing matrix is given by

Upuns = U.P, (1.10)
where
C12€13 512€13 S13€7i6
U= —812€23 — C12523513ei5 C12€23 — S12523513ei5 §23C13 ’ (1'11)
S12823 — C12€23813€"0  —c12823 — s12€23513€0  €23¢13
and
1 O 0
P=|0 ¢ % 0 . (1.12)
0 0 59

The above parametrization consists of three mixing angles 0;;, 83, 6,3, one Dirac CP violat-
ing phase 6 and two Majorana CP phases o, 3. The three rotation angles are related to the
physical observables in the first approximation as: 6,3 = 6,4, the atmospheric angle, which
can be measured in the atmospheric neutrino oscillation experiments; 0y, = 6,,;, solar angle,
determined from solar neutrino experiments and 613 = B,.4¢s0r, reactor angle from reactor
neutrino oscillation experiments. It is interesting to note that in the above parametrization,
Dirac CP phase 6 is always associated with the reactor angle 63, which implies that for
vanishing reactor angle 6 remains undetermined and hence doesnot appear in the mixing
matrix U. A measure of Dirac CP violation is given by Jarlskog rephasing invariant [34] Jcp
where

Jep = ImUa UpaU U} - (1.13)
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In accordance with the PDG parametrization Jcp takes the following form
2 .
JCP = §12523513C€12€23C3 sind. (1.14)

From Eq. (1.14) it is obvious that for Jcp # 0, CP violating phase 0 as well as all the mixing

angles must be non-zero.

1.3 Seesaw mechanism

For the possibility of inter-species oscillations to occur, neutrinos must be massive and do
mix among themselves. The mass squared differences and mixing angles measured by the
experiments tell that the mass of a neutrino is about six orders of magnitude smaller than that
of an electron and two of the three mixing angles are very large. To understand such tiny
masses and large mixing angles of neutrinos, the successful neutrino models are so far based
on the seesaw mechanism which is briefly discussed below.

In the premise of the Standard Model (SM) of particle physics the neutrino is massless
due to the following aspects of the model: (i) the absence of the right-handed partner (vg) and
(i1) the exactness of B — L global symmetry. There is a possibility of constructing a model
relaxing these two assumptions of SM with inclusion of (i) one right-handed neutrinos (Ng)
per generation making the SM completely quark-lepton symmetric with the gauge group
SU(2)1 x SU(2)g x U(1)p—1 [35, 36]. The electric charge takes the form Q = I3, + I3 + 25£.
Hence it can be concluded that below the scale vg where SU(2)g x U(1)p_r, breaks down
to SM and above the electroweak scale My, one can have the relation Alzp = —AI%L [37].
This relation has a profound consequence that neutrinos are Majorana particle exhibiting
lepton number violating phenomena in nature like vOB 8 processes. Seesaw mechanism
is based on such ideas and serves to be one of the most simple and attractive model for

generating tiny neutrino masses [38—41]. There are three forms of seesaw mechanisms which
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are generally used: type-I, type-II and type-Ill seesaw mechanism. The basic idea of seesaw
mechanism is to generate ultra small neutrino mass by inclusion of very heavy external fields,
thereby forming a seesaw between both the mass scales. In type-1, type-II and type-III seesaw
mechanism, the external heavy fields are the three right-handed neutrino singlets, one scalar
Higgs triplet and three SU (2) triplet respectively, thereby going beyond the SM in their own
way. Our work mainly concentrates on type-I seesaw mechanism and its minimal extension.
We shall therefore have a brief discussion on type-I seesaw only.
Type-I seesaw

Here the SM extension is done by including three right-handed neutrinos which are singlets
under SU (2). Presence of such right-handed neutrinos allow Dirac mass term for neutrinos.
In addition, Majorana mass term is also possible for electrically neutral neutrinos.

The total Lagrangian for neutrinos takes the form
1
—D%:.,%MD—FD%MR :MD\_/RVL+§\_/ICQMRVR+I’I-C.- (1.15)

Here L and R stands for left and right-handedness respectively. Mp, Mg are the complex
3 x 3 Dirac and symmetric Majorana mass matrices respectively.

Combined Mp and Mg gives rise to the 6 X 6 Majorana mass matrix M of the form:

0 Mp
M= : (1.16)

ML Mg
The Dirac mass term Mp is of the order of electroweak scale, owing to its origin from
vev of Higgs field . On the other hand, the Majorana mass term Mg, invariant under
SU(3)c x SU(2)r x U(1)y, remains unconstrained by gauge symmetry and therefore can
have arbitrarily large mass and can be many orders larger than the electroweak scale, that is,

Mpg > Mp. The mass matrix M in Eq. (1.16) on block diagonalization leads to the famous
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seesaw mechanism

miE" = —MpMz ' M}, (1.17)

The light neutrino mass matrix m, in Eq. (1.17) is inversely proportional to the large
Majorana mass Mg. The mass scale for M, is often taken to be of the order of GUT scale,
in order to explain sub-eV scale neutrino masses. The smallness of neutrino mass my is a
direct consequence of large mass scale of Mg. This is the basic principle of type-I seesaw

mechanism.

1.4 Experimental hints beyond 3 light neutrino paradigm

During the last two decades, the neutrino physics has witnessed a tremendous progress in
the precision measurement of neutrino parameters like mixing angles (0;3, 013, 6,3) and
mass squared differences (Am%l, |Am%3 |) of the three active neutrinos in experiments as well
as theoretical formulation of underlying theory to understand the three neutrino paradigm.
Physicists around the globe have been putting constant efforts to solve the long standing
problems of origin of such a small mass scale, CP violation and mass hierarchy to name
a few. Amidst the mysteries that still prevails in the three neutrino paradigm, there are a
number of oscillation experiments which yields some intriguing yet controversial results
which cannot be explained in the three neutrino framework. Such anomalous results have
been found in both appearance and disappearance measurement experiments, some of which
are discussed below:

LSND Experiment: Liquid Scintillation Neutrino Detector (LSND) [14, 15] at the Los
Alamos Neutron Science Centre was designed for the search of v, — V, oscillation with a
baseline of L ~ 30m. It uses high intensity proton beam (~ 800MeV') to produce pions which
decays to muons. u™ that are produced decays at rest to produce V. The experiment was

set up to search for v, which if produced will undergo V,p — e'n with the protons present
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in the detector. The signal that one looks for is the Cherenkov radiation produced by e™
in the detector with (20 < E, < 60MeV) and a 2.2MeV 7 produced from neutron capture
on a free proton: np — d7y. The final LSND oscillation results taken from 1993 — 1998
shows a clear excess of (87 £22.4 +6.0) events corresponding to an oscillation probability
of (0.264 £0.067 4-0.045)% . The oscillation probability between v, and V., however
corresponds to mass squared difference Am? ~ 1 eV? which contradicts with the solar and
atmospheric mass squared differences in the three neutrino paradigm :Amfol =7.5x107%eV?

2
and Am,,,

= 2.3 x 1073eV?. This is known as the LSND anomaly which hints towards the
presence of an additional neutrino state with mass of the order of eV scale.

MiniBooNE: The Mini Booster Neutrino Experiment [16] at Fermilab has been designed
to test the LSND results. The baseline was kept at L~ 50m but with same L/E as the LSND
experiment. Here proton beams of energy 8MeV were focussed on a Be target producing
pions and kaons which decays to v, and V,;. The experiment is capable of running in both the
modes: neutrino mode; V;; — V. oscillation search and antineutrino mode; vV, — V,. Their
antineutrino oscillation data are consistent for the range Am? =~ (0.01 — 1.0)eV and have
some overlap with the LSND antineutrino oscillation data. At low energies, an event excess
of 162 +47.8 (3.40) was observed whose energy distribution was found to be marginally
compatible with simple two-neutrino oscillation scenario.

Radiochemical Experiments (Gallium radioactive source experiments): The Gallex
and SAGE solar neutrino experiments have been tested with intense radioactive sources >!Cr
and 37Ar placed in the detector [17, 18]. The v, that are produced during the radioactive

decay have been detected through the same process employed for solar neutrino detection:

Vo +"1Ga =" Ge+e. (1.18)

It was found that the the ratio of expected to observed counts of "' Ge, averaged between

both the experiments was 2.7¢ low. On analysing the data in terms of neutrino oscillation
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indicates the mass squared difference to be Am? > 0.35 eV? at 99% C.L.. This can be
interpreted as oscillation between Vv, and some fourth flavor of neutrino and thereby evading
detection.

Reactor experiments: Neutrinos from reactor experiments are basically electron an-
tineutrinos emitted from subsequent -decay of unstable fission fragments. The neutron-rich
fission fragments undergoes inverse beta decay reaction V, + p — n+e™ with the hydrogen
present in Liquid scintillator detector.Almost all the energies of the electron antineutrino is
carried away by the positron, which serves as a prompt signal. A recent re-evaluation reports
an increase in the V, flux from reactors upto 3.5%. This small increase in flux although has no
effect on KamLLAND’s solar parameter results, when combined with the previously observed
small deficits at smaller distances, results in a larger average deficit of 5.7%. This is known
as the reactor antineutrino anomaly. Such a deficit can be explained with an additional flavor
of neutrino with mass squared difference |Am?| > 1.5¢V? [19].

In addition, recent cosmological data from cosmological microwave background (CMB)
and Large Scale Structure (LSS) on weakly interacting relativistic “dark radiation” prefers
additional degrees of freedom (d.o.f.) [42]. Light sterile neutrinos beyond SM serves to
be the most natural and convincing candidate corresponding to the extra d.o.f.. If this new
source of radiation is attributed to addtional neutrino species then WMAP data points towards
the bound on the number of neutrinos to be N, s = 3.84 +0.40 [43].

The above experimental anomalies can be explained on extending the SM with one (or
more) neutrino state with mass at the eV scale. However, LEP data [44] on measurement of
Z-line shape, limits the number of light neutrinos coupling to the Z boson to be 3. Thus, the
new neutrino state must be a singlet fermion under SM which doesnot participate in weak
interactions, that is, the new neutrino state must be ‘sterile’. The sterile neutrinos donot take
part in ordinary charged and neutral current weak interactions, but mix significantly with the

three active neutrinos.
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On the other hand, the results provided by KAMREN experiment [45], MINOS exper-
iment [46], ICARUS [47], v, — Carbon scattering experiment [48] and Planck data [49]
could not support sterile neutrino state, but could not rule out also. The NEOS collaboration
[50] has set an upper limit on mixing angle 6,4 with sin®26;4 < 0.1 for Am%” ranging from
(0.2—2.3)eV? at 90% C.L..

Recently in May 2018, the MiniBooNE collaboration [51] once again confirmed the
excess of events reported by the LSND experiment and the significance of the combined
LSND and MiniBooNE excesses was reported to be 6.10. Again the ANITA experiment
[52], in August 2018, reported that they observed two unusual upgoing air shower events,
which are consistent with the 7-lepton decay origin but contradicts the standard neutrino-
matter interaction models. Sterile neutrinos can serve as a possible explanation [53] for
the unusual upward air shower events at ANITA experiment. All these controversies have
raised one’s curiosity and posed new challenges so as to develop a particle physics model to
accommodate the light sterile neutrino and at the same time to have a consistent cosmological
model. Many new oscillation experiments are proposed/planned to testify the status of
sterile neutrinos and reach to a definitive conclusion. It has been observed that with recent
reactor flux prediction, there has been a considerable improvement in the global fits when
five neutrino framework, that is, when two sterile neutrinos are considered [54]. However,
an analysis in [55] shows that the viability of a cosmological model with two eV scale
sterile neutrinos depends significantly on the choice of the cosmological data sets used in the
analysis and the fitting procedures. Their analysis depicts that conclusive statement regarding
the viability of a cosmologically consistent model with two sterile neutrinos still cannot
be made. The authors of Ref. [56] performed an analysis on both the 3+1 and 3+2 mixing
schemes and found a preference of 3+1 framework over 342. They found that the parameter
goodness of fit obtained in the 3+2 scheme is mainly due to increased number of oscillation

parameters as compared to 3+1 scheme and therefore is mainly a statistical effect. Presence
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of thermalized sterile neutrinos in early Universe although is compatible with Big-Bang
Nucleosynthesis data [57], the presence of more than one sterile neutrino is disfavored [58].
Thus, the four neutrino framework is considered to be the minimal extension and a more
consistent cosmological model.

In the context of four neutrino scheme, there are three possible ways of adding a sterile
neutrino in the SM mass patterns- (i) 3+1 scheme, with three active neutrinos of sub-eV scale
and one sterile neutrino of eV scale [59, 60] (ii) 2+2 scheme, where two different neutrino
pairs differ in their mass by eV? (iii) 1+3 scheme, where three active neutrinos are in eV scale
and one sterile neutrino lighter than the three active neutrinos. The solar and atmospheric
data [61] disfavors the 2+2 scheme. Also, the 1+3 scheme is disfavored from cosmology
[62, 63]. In our work we shall concentrate on the (3+1) scheme which is considered to be the

minimal form.

1.5 Theoretical framework for (3+1) neutrino scheme

In the four-neutrino scenario, the neutrino flavor eigenstate vy (0 = e, U, 7,s) are related to

their mass eigenstate v; (i = 1,2,3,4) via

UqiVi. (1.19)

4
Va:

i=1

Assuming the charged lepton mass matrix to be diagonal, the complex symmetric 4 x 4

Majorana neutrino mass matrix in the flavor basis can be written as

Mee Mey  Ner  Meg

j Mep  Mup Muc My
m&*4 = vmdiasyT — . (1.20)

Mer My Mgy Mgy

Mes  Mys Mgy Mg
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The symmetric Majorana mass matrix m“‘,x“ contains ten independent mass elements unlike
six in the three neutrino scenario. Here, my,'“® = (my,my,m3,my) is the diagonal neutrino

mass matrix in the mass basis. Diagonalizing matrix V is the 4 x 4 PMNS-like leptonic

mixing matrix which can be expressed as

V =UP. (1.21)

Here U represents the mixing matrix for Dirac neutrinos. Apart from the solar (6,), atmo-
spheric (6,3) and reactor (0;3) mixing angles, the mixing matrix U contains three active-sterile
mixing (ASM) angles 614, 6>4 and 634 which quantifies the vy —V, , vy — Vv, and vy — vz
mixings respectively, along with three Dirac CP violating phases.

Parametrizing U explicitly as [64]

U = (R34Ro4R14) (R23R13)R12, (1.22)

R;;/R;; are the 4 x 4 rotation matrix in the i flavor space and 8,3, 814, 624 are the Dirac CP

violating phases

10 0 0 1 0 0 0
01 0 0 N 0 4 0 spe
R34 = , Rog= : (1.23)
00 C34 534 0 0 1 0
0 0 —s34 c3g 0 —S24€i524 0 C4

where ¢;; = cos 6;}, s;; = sin 6;;.
The matrix P in Eq. (1.21) is a diagonal matrix with three Majorana phases (o, 3,7)

which can be written as

P =diag(1, e—ia/Z’ e_i(B/z_SB),e_i(7/2_614)). (1.24)
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Fig. 1.1 Mass spectrum in 3+1 scheme for normal (SNH) and inverted (SIH) hierarchy.

Apart from the 5 new mixing parameters (3 ASM angles and 2 Dirac CP phases 914, 624)
mentioned above, the (3+1) model also involves one new mass squared difference Am%SND =
AmfLl /43 between the eV scale sterile neutrino and the light active neutrinos. The additional
sterile neutrino along with the three active neutrinos can have two possible mass arrangements:
the sterile neutrino mass can either be higher (Amﬁl > 0) or lower (Amﬁl < 0) than the mass
of the three active neutrinos. In the latter case, the additional sterile state is the lightest while
the three active neutrinos are of mass ~eV each leading to )’ m ~ 3¢V which is inconsistent
by cosmological observation [65]. Thus, considering that the sterile neutrino is heavier than
the three active neutrinos, the three mass squared difference in the 3+1 picture follows the
condition

|Am3,| << |Am3,| << |Am7, . (1.25)

As the sign of \Am%l | is yet to be pinned down, two mass spectra are possible (Fig. 1.1)
(i) Normal hierarchy (SNH) with m; << my << m3z << my.

(1) Inverted hierarchy (SIH) with myq >> m| >~ my >> m3
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1.5.1 Minimal extended seesaw mechanism

In order to accommodate light sterile neutrinos in theory with mass ranging from eV-keV
scale, a number of new mechanisms have been proposed [66—75]. A general analysis of
the active-sterile mixing have also been studied in Ref. [76]. In the three neutrino scenario
seesaw mechanism has played a major role for the theoretical understanding of the smallness
of neutrino masses. In the (3+1) framework, the authors of Ref. [67] made a similar approach
for generating an eV scale sterile neutrino within the seesaw framework. In the context of
type-I seesaw mechanism, an eV scale sterile neutrino can be realized by bringing one of
the heavy right-handed neutrinos (~ 10'* GeV) states down to the eV scale [67]. However,
such a scenario is quite trivial as the seesaw Lagrangian already has atleast one particle at
the desired eV scale and therefore contradicts the seesaw spirit. For accommodating an
eV scale sterile neutrino, the authors of Ref. [67] considered an extension of the canonical
type-I seesaw mechanism whereby the Standard Model is extended by an additional neutral
heavy fermion (heavier than the SM scale), apart from the three right-handed neutrinos. This
extended version of the canonical type-I seesaw mechanism is popularly known as Minimal
Extended Seesaw (MES) Mechanism. In the MES framework, an eV scale sterile neutrino
is generated without the priori presence of states with eV scale masses and is therefore more
within the seesaw spirit. We now present a details on the MES mechanism in the following
which shall be the common formalism of all the chapters thereafter.

For the theoretical understanding of the origin of an eV scale sterile neutrino as well
as its mixing with the three active neutrinos, the authors of Ref. [67] studied the minimal
extension of canonical type-I seesaw mechanism, popularly known as minimal extended
seesaw mechanism (MES). In MES mechanism, the Standard Model is extended with
an additional gauge singlet chiral field ‘S’, apart from the three right-handed neutrinos
(Ver; Vur, Vzr)- Within this scenario, an eV scale sterile neutrino naturally appears, without

needing to insert any small mass term for vj.
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Thus the Lagrangian representing Dirac and Majorana mass terms with sterile neutrino

mass term is of the following form [67]
Ly oC 1 oC
—%n = ViMpvr+ S MSVR—l-EVRMRVR—i—h.C.. (1.26)

With only one extra gauge singlet field ‘S’, the mass matrix My is a 1 x 3 row matrix which
couples the singlet field ‘S’ and the three right-handed neutrinos. In the (v;, Vg, S¢) basis, the

neutrino mass matrix becomes a 7 x 7 matrix of the following form

0 Mp O
my =ML Mg MT|. (1.27)
0 Ms O

On implementing the seesaw approximation Mg > Mg > Mp the heavy RH v are much
heavier than the electroweak scale and hence gets decoupled at low energy scale. Block
diagonalization of Eq. (1.27) using seesaw approximation reduces the 7 X 7 neutrino mass
matrix in the basis (vz,S¢) to a 4 X 4 mass matrix of the following form:

MpMy'ME  MpMy'M!

my = — : (1.28)
Ms(Mz )T Mf MM M1

m$** in Eq. (1.28) is a square matrix containing four light eigenstates corresponding to three

active neutrinos and one sterile neutrino [68] and their masses gets suppresed by a factor

4x4 i

My I which is within the seesaw spirit. However, the determinant of the mass matrix my,*" is
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zero.
det(my**) = det(MpMyg ' M}) det[—MsMy ' ML
+MsMy ' Mp(MpMy ' Mpy) ™ MpMg ' Mg ]
(1.29)
= det(MpMyz 'M}) det|Ms(Mg ' — Mg Y MI]
=0.
m$*# is therefore a matrix of rank 3 which implies that at least one of the active neutrinos

is massless. Here, both Mp and Mp are considered to be non-singular.

There can be three possible scenarios [68] for the mass scale of My :
1) Mp ~ Mg: Within this scenario, m“‘,x“ is a nearly democratic matrix which implies maximal
active-sterile mixing and therefore is incompatible with experimental observations.
2) Mp > My : Under this scenario, the active neutrinos are heavier than the sterile state.
Block diagonalization of Eq. (1.28) then leads to the active-sterile neutrino mass matrix at the
leading order of the form m, = —MpMy "M g which is the same as type-I seesaw mechanism
and also a vanishing sterile neutrino mass. In view of the experimental observations on
active-sterile mass squared differences which is ~ ¢V? would then imply that all the three
active neutrinos are located at the eV scale. This would lead to a large value of ) m; resulting
in tensions with standard cosmological constraints. We shall therefore, concentrate on the
third and only possible scenario where Mg > Mp.

As Mg > Mp, the seesaw approximation can be applied once again to Eq. (1.28) to obtain

the modified active neutrino mass matrix to its leading term as

m33 ~ MpMg 'ME (MsMz "MD" Mg(M ") ME — MpM ' M}, (1.30)
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with the mass of the sterile neutrino as
—144T
mg ~ —MsMp " Ms . (1.31)

The mass matrix Mg being a 1 X 3 row matrix, prevents the right-hand-side of Eq. (1.30) from
vanishing. There would have been an exact cancellation between the two terms of Eq. (1.30)
if Mg would have been a square matrix.
The active-sterile neutrino mixing matrix takes the form-
(1—iRRMU R

Vo~ , (1.32)
—R'U  1-3R'R

where U is the unitary matrix diagonalising the mass matrix m%,“.

R3x1 = MpMy 'ME (MsMg 'ME) ™! = (Vo Vg, Vea) (1.33)

Ry = (Ve4,Vu4,Vr4)T defines the strength of active-sterile mixing and is essentially sup-
pressed by the ratio &'(Mp)/ O (Ms).

An illustration have also been made in Ref. [67] where one arrives at m; ~ 1.3 €V,
my ~ 0.05eV and R ~ 0.2 , assuming Mp ~ 102GeV, Mg=~5x 102 GeV and Mg ~ 2 x 10
GeV.

Within the context of MES mechanism, at least three heavy right-handed neutrinos are
required so as to suppress the masses of active as well as sterile neutrinos. Two of the heavy
right-handed neutrinos generates two massive active neutrinos, while one of them gives rise
to the mass of v,.

The minimal extended seesaw mechanism is an extension to the canonical type-I seesaw
mechanism. Due to the absence of fermionic degrees of freedom, type-II seesaw does

not provide the possibility of light sterile neutrinos. Although the neutral components of
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fermionic triplets in type-III seesaw plays similar role as the right-handed neutrinos in type-
I seesaw, they are not gauge singlets and therefore cannot be accounted for light sterile

neutrinos.

1.6 Texture zeros and symmetry realization

Texture zeros

Texture zero models have been successful in explaining the masses and mixings in both
the sectors - quarks and leptons. Zeros in the mass matrix elements is the simplest and
transparent way of inducing relations among the physical quantities (masses, mixing angles
and CP phases) of the mass matrix m, and thereby reducing the number of free parameters
[77]. A complex symmetric Majorana neutrino mass matrix m3*3 for three active neutrinos
has nine physical quantities : three neutrino masses, three mixing angles, one Dirac CP
phase and two Majorana CP phases which leads to four correlation conditions among the
physical quantities [78, 79]. One zero in m, corresponds to one-zero texture, two zeros in
my corresponds to two-zero texture and so on. Free parameters can be further reduced if one
considers a vanishing neutrino mass (m; = 0 (NH) or m3 = 0 (IH)) along with zero textures
of my. One vanishing neutrino mass along with one-zero in m, imposes only two correlation
conditions: one related to the vanishing absolute value and another to the vanishing argument
on the parameters-masses, mixing angles and CP phases [80]. More number of zeros implies
more correlation conditions, that is, more restrictions on the mass matrix m,. In that sense,
two-zero textures are more restrictive and thereby lead to more predictive models compared
to the one-zero textures. Apart from zero textures of my, there are a number of papers in
literature where zeros of m;, ! are also explored leading to interesting phenomenologies [81].

Zeros in the light neutrino mass matrices can be imposed directly by hand. A complex

symmetric neutrino mass matrix 753 has six independent entries. However, in the three
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neutrino scenario, the current neutrino oscillation data disfavours the neutrino mass matrices
with three or more zeros [78]. There are °C; = 20 possible three-zero textures of m%,“, but
none of them are compatible with neutrino oscillation data. Similarly, out of 15 possible
two-zeros textures of m%,X3, only 7 patterns can withstand the current experimental data
[78]. And out of 6 possible one-zero textures [80], 4 textures survive the experimental
constraints with inverted mass ordering (m3 = 0), whereas in normal mass ordering (m; = 0)
all the 6 textures are ruled out at 30 range of experimental values. From a more deeper
theoretical front, zeros in the light neutrino mass matrices can also be imposed via type-I
seesaw mechanism which is the prime candidate for understanding the smallness of neutrino
mass. In the context of type-I seesaw mechanism, the light neutrino mass matrix my is the
product of a more basic Dirac neutrino mass matrix Mp and right-handed Majorana neutrino
mass matrix Mg. It has been highlighted by many authors [82—84] that zeros of Mp and Mg
propagates as zeros in effective neutrino mass matrix m, via type-I seesaw mechanism. Thus,
considering zeros in Mp and Mg will be more natural than considering zeros in m, alone.
Apart from type-I seesaw mechanism, zero textures of m, have also been investigated in the
framework of Inverse seesaw [85-94] mechanism .

A detailed study on texture zeros have also been made in the (3+1) picture, [95-99], that
is, three active and one light sterile neutrino. In the (3+1) scenario, the neutrino mass matrix
my takes a (4 x 4) form with 10 independent entries. However, it is to be mentioned that

4x4

in my,*" zeros are allowed only in the active sector of the mass matrix. Zeros in the sterile

sector, that is, in the fourth row and column are disfavored by neutrino oscillation data.

Symmetry realization

Texture zero models in general, seems to be quite arbitrary and will not lead to renormalizable
models [100]. However, zeros implemented through suitable Abelian symmetries with an

extended scalar sector can promote the texture zero schemes into renormalizable field theories
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[101]. In our work, for realization of the zero textures of the fermion mass matrices we
shall concentrate on discrete Abelian flavor symmetry group Z,. A group G is said to be
Abelian, if all the elements of the group are commutable to each other, that is , ab = ba for
any elements a,b in the group G. If " = e, where e is the identity element of the group,
then ‘n’ is said to be the order of the group and is also defined as the number of elements of
the group G. The element ‘a’, which can generate the whole group elements is called the
generator of the group. A discrete Abelian group Z, has elements (1, ®, ®*, ®>.....,0" 1)
where ®" = 1 and @ = ¢/ is the generator of the group.

For a given mass matrix with zeros in arbitrary entries, it is always possible to find
suitable Abelian symmetry group Z, with an extended scalar sector such that the texture
zeros originates from these symmetries [101, 102]. Vice versa, Abelian symmetries may
also be used to impose zeros in any arbitrary entries of the mass matrix [103, 104]. Apart
from Abelian symmetry group, realization of zero textures is also possible by non-abelian
flavor symmetry approach [105]. In presence of an additional flavor symmetry (G jav0r), the

Standard Model symmetry gets extended to

GZSU(?))CXSU(Z)LXU(I)YXGﬂavm, (1.34)

with the condition that Lagrangian of the theory continues to remain invariant on leptonic
field transformation under the group G f4y0-

Considering the Yukawa Lagrangian

3
_ o= - 1 o
- % = Z (YijDL,-‘Pilej ‘Jl‘YijDL,-(pijVRj + EVVUXUVR:'CVIQ) +h.c.. (1.35)
i,j=1
Here Dy, [g, Vg are the left-handed SU (2), doublets, right-handed SU (2), singlets and right-

handed neutrino singlets respectively. ¢;; represents the Higgs doublet with hypercharge +1

and ¢ ;= iT¢* with hypercharge -1. ¥j; are the (3 x 3) complex Yukawa coupling matrices.
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From the Lagrangian in Eq. (1.35) it is evident that one can have a total of nine Higgs
doublet ¢; J((ﬁj}) and six gauge singlet scalar y;;. Their respective non-zero vaccum ex-
pectation values v;;(1;;) and w;; leads to the charged lepton mass matrix (M));; = vj;Yij,
Dirac neutrino mass matrix (Mp); = U jf/,- ; and right-handed Majorana neutrino mass matrix
(MR)ij = wijWij.

General methods for symmetry realization of zero textures has been provided in paper
[100], whereby two methods have been propounded for enforcing zeros in fermion mass

matrices by means of Abelian symmetry group with an extended scalar sector. However,

specific guidelines for minimal symmetry realization of texture zeros are still lacking.

1.7 Present status of neutrino masses and mixings

The parameter space for three active neutrinos include two independent mass squared differ-
ences (Am?,, Am3,), the three mixing angles (812, 013, 623), Dirac CP violating phase & and
Majorana CP violating phases o, 3.

e 30 values of the two mass squared differences are provided below [106]:
Am3, = (6.93—7.97) x 1075 eV>. (1.36)

|Am3,| = (2.37—-2.63) x 1073 eV? (NH),

(1.37)
=(2.33-2.60) x 107% eV? (IH).
From the experimental data it is evident that the two mass squared difference Amfo lar =
2
Am%] and Amilmosph eric = \Am%l | differ by two orders of magnitude and thus R, = inmﬁl ~
31

102, The sign of ]Am%l\ is not yet known and hence the neutrino mass ordering whether
normal or inverted still remains to be an open question. Moreover, the absolute mass scale of

my,my,m3 is yet to be ascertained.
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e The three mixing angles 0;;, 8,3, 813 are constrained within 3¢ as [106]:

sin® 05 = (2.50 —3.54) x 1071,
sin® 03 = (1.85 —2.46) x 1072 (NH),

= (1.86—2.48) x 1072 (IH), (1.38)
sin 63 = (3.79—-6.16) x 10! (NH),

=(3.83-6.37) x 1071 (IH).

The reactor mixing angle ;3 ## 0 but is comparatively smaller than the other two mixing
angles. Octant of the atmospheric mixing angle 6,3 is yet to be determined and hence can lie

either in the first octant (6,3 < 7/4) or second octant (623 > 7w /4).

e Dirac as well as Majorana CP phases remains unconstrained (0 — 27) at 30 range.

e With three active and one eV scale sterile neutrino, the mass squared difference
Am%SND and the active-sterile mixing, represented by the fourth row and column in the 4 x 4

diagonalizing matrix Vpyys are constrained [107-109] within 30 as:

Vos|? = (0.012 —0.047),
Vual? = (0.005 —0.03), (139)
[Vea|* < 0.16,

Ami onp = (0.87 —2.04)e V2.

Here Am%SND = (Amﬁl or Ami3) depending on whether the hierarchy is Normal (Ame) or

Inverted (Am?“).
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1.8 Motivation for present work

Although neutrino physics has witnessed a tremendous progress in last few decades in
both theoretical and experimental fronts, neutrinos continue to enthral us with a number of
questions, some of which are listed below:

e Why are neutrino masses so tiny compared to other fermions?

e Why are the two mixing angles of neutrinos are large compared to quark mixing?

e What is the absolute mass scale of neutrinos?

e What is the nature of neutrinos: Dirac or Majorana particles?

e How many neutrino species are there?

e What is the mass hierarchy of neutrinos: Normal or Inverted?

e CP violating phases are yet to be determined?

e Are there light sterile states of neutrinos- answer to LSND anomaly?

In theoretical pursuit of understanding of neutrino masses and mixing, the seesaw mecha-
nism has been recognised as the most popular and successful approach in literature. Seesaw
models are the neutrino mass matrices constructed from the following fermion mass matrices:
the Dirac neutrino mass matrices Mp and heavy right handed Majorana mass matrices Mg
as basis of the models. The fermion mass matrices Mp and Mg are not completely known
from the point of view of experiments. Under such a scenario, phenomenological approaches
for model building have been playing a useful tool for interpreting new experimental data
on leptons as well as quarks. It is expected that these approaches will provide hints on the
underlying symmetries of the lepton flavor structure and thereby help in constructing a more
realistic model for the same.

The phenomenology of the neutrino mass matrices m, hints at negligibly small contribu-
tions of certain entries compared to others of the matrices. Thus the simplest approach is
to consider neutrino mass matrix with zeros in arbitrary entries. Such textures of neutrino

mass matrix with independent zero entries in it are popularly known as ‘texture zeros’. Zeros
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in arbitrary entries of the fermion mass matrices can also be imposed via discrete Abelian
flavor symmetry group Z,. Flavor symmetries are horizontal symmetries, that is, it unifies
fermions of different families, in contrast to GUT symmetry, where the unification takes
place vertically among the different members of each family. Flavor symmetry or family
symmetry acting on the three families of the SM might prove to be a guiding principle in
solving the long standing flavor problem.

Now the motivation of the present work is primarily and broadly based on (i) theoretical
understanding of the LSND anomaly in the framework of Minimal Extended Seesaw (MES)
as described in the preceding Section, (i1) study of texture zeros of MES neutrino mass
matrices acquired from texture zeros of fermion mass matrices involved, (iii) also origin of

zeros from flavour symmetry groups.

1.8.1 Layout of the thesis

In Chapter 2 we re-investigate the one-zero textures in m%,w within the (3+1) scheme in the

context of MES mechanism. For realization of the one-zero textures of m3 3 in the context
of MES mechanism we consider the zero textures of 3 x 3 form of Mp, Mg and 1 x 3 matrix
M for phenomenologically predictive cases having total number of zeros of Mp and Mg
to be eight. With this motivation, we consider the (4+4) scheme, (5+3) scheme and (6+2)
scheme, where the digits of a pair represent the number of zeros of Mp and Mg respectively.
We also present the S3 group transformation existing between the different combinations
of Mp,Mpg and Mg which yields similar phenomenology. The textures which are found to
be viable in our study are realized via Abelian symmetry group Z; by extending the SM to
include few scalar fields.
4x4

In Chapter 3 we study the two-zero textures of m " in the context of MES mechanism.

The 4 x 4 MES model deals with 3 x 3 (Mp), 3 X3 (Mg) and 1 x 3 mass matrix (Ms). As
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the 4 x 4 MES matrix is a matrix of rank three so we consider only those two-zero textures
which are of rank three which reduces the number of feasible zero textures to 12, out of 15.
We consider the (4+4) scheme, that is, 4 zeros in Mp and 4 zeros in Mg along with one/two
zero textures of Mg for realization of the 12 two-zero textures of m?**. Similar to m3*3, S3
group transformation exists among the different textures of Mp, Mg and My in m3** as well,
all of which shows similar phenomenology. We also discuss the role of Dirac and Majorana
CP phases in determining the viability of the textures. Textures which are allowed within 3o

range of experimental values are realized by discrete Abelian symmetry group Zy with the

extension of standard model to include some scalar fields.

In Chapter 4 we present the realization of the rank 3 two-zero textures of m3** under MES
mechanism considering (5+3) and (6+2) scheme. Correlations of each textures are examined
under recent neutrino oscillation data. We also discuss the interplay of Dirac and Majorana
CP phases in determining the viability of the textures. S3 group permutations of Mp, Mg and
M under (5+3) scheme is also discussed in this chapter. Viable texturesare then realized via

Zy Abelian symmetry group.

In Chapter 5 we finally conclude our work of the thesis in this Chapter along with a broad

outlines of the scope of the thesis for extension of future research.



Study of texture zeros of MES nz3*° and Z;

symmetry realization

2.1 Introduction

This chapter is based on the work published in our paper [98]. The procedure of realization
of texture zeros of neutrino mass matrices my, the predictive power of such models and the
origin of texture zeros from flavor group symmetry have been discussed in the section 1.6 of

Chapter 1. In the three neutrino scenario, texture zeros of m, have been extensively studied in
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literature [110-124]. A complex symmetric neutrino mass matrix m%,X3 with six independent

entries can have six possible one-zero textures. However, with one vanishing neutrino mass
only four one-zero textures survive the experimental constraints in inverted hierarchical mass
ordering, whereas none of the textures survive with normal hierarchical mass ordering [80].
Similarly, out of 15 possible two-zero textures only 7 textures are allowed by experimental
data [78]. Zeros in m, can also be realized via type-I seesaw mechanism. In the context
of type-I seesaw mechanism, zeros of Dirac neutrino mass matrix (Mp) and right-handed
Majorana neutrino mass matrix (Mg) propagates [82—84] as zeros in the effective neutrino
mass matrix (my). Thus, the study of zero textures of Mp and Mg are more natural than
the study of zero textures of m, alone. Without giving any emphasis on the number and/or
position of zeros of m,y, the author of Ref. [82] have studied all possible zeros of Mp and Mg
in the context of type-I seesaw mechanism for predictive scenario, whereby the sum of zeros
of Mp and Mp, is eight. Following the similar approach, in this chapter, we explore the zero
textures of m%,w in the (3+1) scenario, that is, with an additional eV scale sterile neutrino
apart from the three active neutrinos. In presence of the sterile species the system becomes
more constrained. In the (3+1) scenario, a number of textures previously allowed in three
neutrino scenario may be ruled out based on current neutrino data with active-sterile mixings.
Remaining allowed textures may be tested in the ongoing or future experiments.

In this chapter we realize the zero textures of n3*> in the context of Minimal Extended
Seesaw (MES) mechanism for predictive scenario. MES is an extension of the canonical
type-1 seesaw mechanism, whereby the Standard Model (SM) is extended by an additional
gauge singlet chiral field ‘S’ along with three right-handed neutrinos. This results into a
naturally occurring eV scale sterile neutrino without requiring to impose any tiny Yukawa
term for v,. MES mechanism deals with (3 x 3) Mp, (3 x 3) Mg and (1 x 3) row matrix Mg

which couples the singlet field ‘S’ with the three right-handed neutrinos. For realization

of zero textures of m, we consider the zero textures of Mp, Mr and Mg which will finally
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propagate as zeros in my. Under predictive scenario there are three possible mappings of
Mp and My along with suitable zero textures of My : (i) (4+4) scheme (ii) (5+3) scheme and
(ii1) (6+2) scheme, where the numbers within a pair represents the number of zeros of Mp
and My respectively. A similar study was performed by the authors of Ref. [97] whereby
they considered the minimal scenario of 5 zeros of Mp and 4 zeros as well as diagonal Mg,
which happens to be a few cases of the predictive scenario. We therefore, will not consider
the diagonal form of Mg with 5 zeros in Mp in our study.

Interestingly we also find that fermion mass matrices in our study are related to each
other via S3 permutation group under MES mechanism. This eases our job of dealing only
with a few basic combinations of Mp, Mg and Mg. Enforcing zeros in my lead to a number
of constraint conditions, named as correlations, whereby different mass matrix elements of
m3*3 are related to each other. We check the viability of each of the textures under recent
neutrino oscillation data. We consider a texture to be viable only if it shows consistency with
experimental data. We find that out of four experimentally allowed one-zero textures of m,,
only three textures m,; = 0,my; = 0 and m;; = 0 can be realized in the context of predictive
scenario and MES mechanism. However, recent neutrino oscillation data allows only one
texture my; = 0. We also perform symmetry realization of those textures of Mp, Mg and Mg
which leads to viable one-zero textures of m,. We consider the Z7 Abelian symmetry group
for realization of the viable textures with an extension of the Standard Model to include a
few scalar fields.

This chapter is organised as follows: Section 2.2 deals with a brief review on Minimal
Extended Seesaw (MES) mechanism. In Section 2.3, we present S3 transformations of the
fermion mass matrices and their invariance under MES formalism. Section 2.4 presents
all phenomenologically viable one-zero textures of m%,“. Subsections 2.4.1 and 2.4.2 deal
with zero textures of Mp, Mg and Mg under the (4 +4) and (5 + 3) schemes along with their

respective correlations obtained in each case. In Section 2.5, we check the consistency of the
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correlations obtained by each set of the fermion mass matrices in context of current neutrino
oscillation data. In Section 2.6 Zy group symmetry realization of all the viable textures are

presented. And finally we conclude in Section 2.7.

2.2 Minimal extended seesaw (MES) mechanism

Minimal Extended Seesaw mechanism [67] is an extension of the type-I seesaw mechanism
wherein the SM is extended with four additional singlets - three right-handed neutrinos
and one gauge singlet chiral field ‘S’. In this scenario, an eV scale sterile neutrino appears
naturally, without the need of any fine tuning to mass term for v,;. A detailed analysis of
MES mechanism have been presented in Chapter 1, but for ready reference, we discuss it
briefly here.

The Lagrangian representing Dirac and Majorana mass terms with sterile neutrino mass

term is of the following form
y qC 1 5C
—%n=ViMpVr+ S MSvR+§vRMRvR+h.c.. (2.1)

Here My is a (1 x 3) row matrix which couples the singlet field ‘S’ and the three right-handed
neutrinos. In the context of MES mechanism, the light neutrino mass matrix m3*3 gets

modified to the following form
m33 = MpMg ' MY (MsMz "MD" Mg(Mg )T ME — MpM ' M, (2.2)

with

ms = —MsMg'MY. (2.3)
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Here my is the sterile neutrino mass term. The strength of active-sterile mixing represented

by the fourth column of the mixing matrix is given by
R3x1 = MpMg 'M§ (MsMg 'ME) ™' = (Vo Vg, Vea) . (2.4)

In our work we try to realize the one-zero textures of mé” (Table 2.1) in the MES mechanism
(Eq. (2.2)). To proceed we consider the zero textures of Mp, Mg and Mg for predictive scenario
: (4+4) scheme, (5+3) scheme and (6+2) scheme, where in a pair within the bracket, the
first digit represents the number of zeros of Mp and the second digit represents the number
of zeros of Mg. On implementation of MES mechanism, these zeros propagate as zeros to

m%,XS.

3x3

2.3 s invariance of m;,

We find that there exist a number of combinations of zero textures of Mp, Mg and Mg which
map into the same m,, of Eq. (2.2). This correspondence is due to S3 group transformations
among the different Dirac neutrino mass matrices Mp, among different right-handed Ma-
jorana neutrino mass matrices Mg, among different M. Of course, the author of Ref. [82]
used this technique in his work for finding out all possible zeros of Mp and My, to realize a
particular zero texture of my.

S3 is the smallest non-Abelian discrete group. A group Sy is said to be non-Abelian if
ab # ba, for all elements a,b of the group. A permutation group is formed by all possible per-
mutation among N objects x; (i = 1,2,3,.....N), that is, (x1,x2, ...... LXN) = (X Xy e JXiy)-
Such a group with N elements is denoted by Sy and is called the symmetry group with order
N!. For N = 3, the order of the permutation group S3 is 3! = 6. The six elements of S3 can

be represented by 3 x 3 matrices as
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1 00
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0 01 0 01 1 00
(2.5)
0 01 0

—_
e}
—
e}
()

BA=11 0 0|, AB=]|0 0 1|, ABA=|0 0 1

010 1 00 010

Denoting A = a and BA = b, we obtain a*> = b® = E, where E is the identity element.
Also, it is to be noted that BAB = ABA. The element A and BA can generate the whole group
and hence they are the generators of the group (¢ =A,b = BA,ab = ABA,ba = B,aba = AB).

The following S5 transformations of Mp, Mg and Mg keep m, invariant:

Mp — MpZ, Mg —Z'MgZ, Mgs— MsZ. (2.6)
I with
Z € S3=(A,A%,B,AB,BA,ABA). (2.7)
3x3

2.4 One-zero textures of m;,

All experimentally viable one-zero textures of n3*3 for three active neutrinos are presented
in the Table 2.1. The m, having elements either m., = 0 or my; = 0 is not permitted by
current neutrino data. The remaining four textures mey = 0,myc = 0,myy = 0,my; =0 are

allowed [80]. It is interesting to note that all experimentally allowed one-zero textures of m,

Umy, Mg and MST M are symmetric and hence they entail permutations of both rows and columns
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have mass eigenvalues in inverted hierarchical (IH) mass ordering i.e., mj >~ my >> m3 and

no normal hierarchical one-zero texture of n3*? is allowed.
Table 2.1 All possible one-zero textures in 33

Mee = 0 Mey =0 mer =0

0 X X X 0 X X X 0
X X X 0 X X X X X
X X X X X X 0 X X
mu‘u—O m”T—O meZO
X X X X X X X X X
X 0 X X X 0 X X X
X X X X 0 X X X O

It is again point to ponder over in two-zero textures: our detailed investigation shows that
no two-zero textures are phenomenologically viable in presence of sterile neutrino i.e., (3+1)
models, although they are allowed in 3-active neutrino mass models without sterile neutrino

3x3

states. Thus m;,*” in MES are allowed for one-zero textures of inverted hierarchical mass

ordering only.

2.4.1 4 zerosin Mp and 4 zeros in My

There are °C4 = 126 number of possible 4-zero textures of Mp and 6C4 = 15 number of
possible 4-zero textures of Mg. Current neutrino data do not permit those Mp consisting of
row-zero or block-zero, because the row-zero textures are uninteresting since they yield one
massless, decoupled neutrino. Again block-zero textures may also be neglected because they
lead to scaling i.e., the neutrino mass matrix has a right eigen vector with one zero entry
corresponding to the eigenvalue zero. This implies that the PMNS matrix has one zero matrix
element which contradicts experiments [82]. Again, MES mechanism requires Mp and Mg

to be singular. Therefore, all row-zero, block-zero and column-zero forms of Mp and Mg are
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uninteresting in our study. There are 18 row-zero, 18 column-zero and 9 block-zero textures
of Mp, hence the number of viable 4-zero textures of Mp are 81. Again out of 15 four-zero

textures of Mg, the following are non-singular which is a mandatory requirement for seesaw

mechanism:
0 B O 0 0 C A 0 O
Mi=|B o o, Mp=|o D o|. Mi=]0 0 E (2.8)
0 0 F C 0 0 0O E O

S5 transformations according to Eq. (2.6) lead us to only one basic texture of Mg =
M, where the other two textures can be obtained from S3 transformations of My. These
transformations connect different texture zeros of Mp, Mg and My to produce zero in the
same location of the neutrino mass matrix m,. In our work, only one-zero textures of Mg are

allowed as follows:
MM =0 s 53, MP=(s1 0 s3) and MY =(s; s, 0). (2.9)

Now the following cases of one-zero textures have been realized in MES formalism:

Case I: realization of m;.—¢

It can be realized by the choice of three sets of Mp, Mg and Ms for m;; = 0 in the neutrino

mass matrix resulting three correlations.
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Case I(a):
0 b ¢
Me=Ms, MY =|a ¢ 0|, MY=( 53). (2.10)
00 i
V2
o = —VoaVipam s Vealts & Mee) @.11)
U H 2.
V, d
M ) (2.12)
Vea Mer  VeaSi
Casel(b):
0 b 0
2
Mp=My, M5 =|d e f|. MP=(s1 0 s), (2.13)
0 0 i
Mee = —V2ms. (2.14)
V, d
uh _ Mur . (2.15)
Vea Mer  Ve4Si
Case I(c):
a b 0
Mg=Ms, MY = mM? = 2.16
R — MR, p =1d e 0], S _(Sl S3), ( . )
0 0 i
VeaVyamg +m
My = —VZmg+ ﬂ’ 2.17
pp 7 (2.17)
V ds\E A
us _ G512 e (2.18)

Va  asiE+bsiA
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Each of these three basic cases of Eq. (2.10), (2.13), (2.16) gives a number of suitable combi-
nations of Mp, Mg and My via Eq. (2.6) which leading to the same m.; = 0 are presented in

Table 2.3, 2.4 and 2.5.

Case II: realization of m, .

mer can be generated by following set of Mg,Mp and Mg

0 b ¢
Me=My, MY =1a0 |, MV=0 s s) (2.19)

g 00

The correlation on enforcement of zero for m,; is

2 mf”
myy = —Vigms+ ——, (2.20)
mrr

Ve _e b 2.21)

Via f 2Vuasy

2.4.2 5 zerosin Mp and 3 zeros in My

There are °Cs = 126 number of possible 5-zero textures of Mp, out of which only 36 textures

are non-singular. For 3-zero textures of Mg, we have 6C3 = 20 possible zero textures, out of

which, 14 are non-singular. These non-singular Mg have been presented in the Table 2.2.
The S5 transformations according to the Eq. (2.6) lead to only the following four basic

3-zero textures of Mg which are need to be studied and other textures are the results of S3
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Table 2.2 All possible three zero textures of Mg.

—~
W
Nl

My M) 3 My My

0 B C 0 0 C 0 B O 0 0 C A 0 C

B 0 E 0 D E B 0 E 0 DO 0 0 E

C E O C E O 0 E F c 0 F C E O

MO M i iR M0

A 0 O A 0 O A 0 O A B 0 A B 0

0 0 E 0 DO 0 D E B 0 E B 0 O

0 E F 0 0 F 0 E O 0 E O 0 0 F

(11) (12) (13) (14)

My My My My -

0 B C 0 B C 0 B O A 0 C

B 0 0 B D O B D 0 0 DO -

cC 0 F c 0 0 0 0 F cC 00
transformations keeping m, invariant:

0 B C A 0 O A B O A B O
M’=|p o E|l. M=|o D o|. M =|B o0 E|. M{"=|B 0 o

C E O 0 0 F 0 E O 0 0 F

(2.22)

In our study, we have seen that M ,(31) can never generate zero texture of m, whatever
the choice of Mp may be. Hence the rest 13 textures of Mg shall be effective for our work.
Again the diagonal M 1@ in combination with 5-zero Mp has been used by the authors in the
Ref. [97] for study. Therefore, we do not present the results for this case because it shall be

mere a repetition only.

Case I1I : realization of m;;—g
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Case IlI(a):The following combination

0 b O
Mg=M", MY =10 e f|, MP =@ 0 s3), (2.23)

g 00

leads to m;r—o with the correlation
V2 ¢
s = VeV, + "), (2.24)
eT
V

Yus Mz, T (2.25)

Vea Mer  Vess3 '
Again §3 transformations enable us to find another five combinations of Mp, Mr and Mg

giving mrr—o with the same correlations presented in Table 2.6.

Case III(b):
0 0 ¢
Mg=MY,  MP=a 0 f|, MI=@ s 0), (2.26)
0 h 0

leads to m;z—o. Implementing S3 transformations, we have another five combinations giving

mzr—o with the same following correlation presented in the Table 2.7.

VedViar + iy (2.27)

)

2
Voams + mee

= (2.28)




2.4 One-zero textures of m3*3 41

Case IV: realization of m,.;—

It can be generated with the following combination

0 b O
Mg=my", M) =1a 0 |, MI=( s 0 (2.29)
0 0 i
It leads to the correlation
2
m
My = —Vigms+ —, (2.30)
Mg
V b Ab
A LA (2.31)
V”4 Szd Bd

Through §3 transformations one can have another five combinations of Mp, Mg and Mgy

yielding the same correlations.

Case V: realization of m,,—

It can be generated with

0 b c
Me=My",  MP =140 0|, Ms=(0 0 s3). (2.32)
0 h O

S3 transformations lead to another combinations of Mp, Mg and Mg which gives the following

correlation
Mee  Meg (2.33)
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2.5 Viability of such texture zeros of 7, under current neu-
trino data

Since one-zero textures of m, are inverted hierarchical models, so the expressions for their
matrix elements in terms of neutrino parameters i.e., experimental observables with setting

approximately m3 = 0 are given by-

2 2 i 2 2
Mee = M CToC3 +Mmoe” “ 575073

is dia is
Mey = mic12¢13(—812¢23 — €12513523€'° ) +mae™“s1ac13(c12023 — S12513523€"°),

2i

io [0 1)
Mer = myc12¢13(512523 — c12513¢23€'”) +mae™ “s12c13(—c12523 — s12813¢23€"°),

512 2ia i5\2
myy = m(—s12¢23 — c12813523€'° )" +mae”” (crac23 — s12513523€'°)”, (2.34)

5 5
myc = my(—S12¢23 — c12513523€'°) (512523 — c12513¢23€")

2i05(

s s
+mpe”*(c12c23 — s12513523€"° ) (—C12523 — S12513¢23€"°),

i5\2 diat 512
Mmer = my(s12523 — c12513¢23€'° )" +mae™ % (—c12523 — s12513¢23€'°)”,

where ¢;; = cos 6;; and 5;; = sin 6;;

0 and « are the Dirac CP phase and Majorana phase respectively.

2.5.1 Zero textures in (4+4) scenario

We now examine the different cases presented in the preceding Section 2.4.1 under the

current neutrino data:
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Case I(a):

The set of the following matrices

0 b c A0 0
My'=|da e 0|, M=(s1 0 53, Mg=Ms=|0 0 E|, (235
00 i 0 E 0

are put in Eq. (2.2) and we get the following low energy neutrino mass matrix, sterile neutrino

mass and the active-sterile neutrino mixing as

bzsgA _ 2bc bds3 + beAs% _ce _bi
E2g3 E Es) E2s3 E E
33 _ | bds; beAs% ce e2s§A 2dess el
" Bt TE G T B TE | (2.36)
bi el
~F —F 0
with
bs3A
5 Eig Vea
s
— 1 — | dsiE+eA _
my=——", R= HT{% = | Vs | - (2.37)
0 0
Eq. (2.36) and (2.37) provide the following correlation
2
My (Vams + mee)
My = —VeaVyams + —=—% : (2.38)
2Mer

and

Vu4 mu T d
Yud Tt 4 (2.39)
Vea Mer — VeaSi

The above texture becomes experimentally viable if both the correlations in Egs. (2.38)
and (2.39) are consistent with current neutrino data presented in section 1.7 of Chapter

1. Using 30 values of the parameters and the values of (80deg < o < 110deg) and
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3x3

v~ and Z7 symmetry realization

0(140deg < 6 < 220deg) as already predicted for m¢; = 0 in Ref. [97], we plot ney Vs my

from Eq. (2.38), and % vs my from Eq. (2.39) as shown in Fig. 2.1 and 2.2 respectively.

0.035 ¢

M, (€V)

0.025

0.020 ¢

0.030 ¢

%':3‘

> T
:k..‘f'. 0

o
o &% AN

.

i T

.
®e
.

Fig. 2.2 Allowed range for the ratio (%) as predicted by Eq. (2.39) for case 1(a).

From Fig. 2.1 it is evident that for the allowed range of m, (0.01912-0.03910)eV, m;

ranges from sub eV scale to few eV scale but favorable domain belongs to less than 1 eV

which is fairly consistent with the upper bound, that is, 1.5 eV as predicted by global analysis

of 3+1 neutrino oscillation data.

The relation in Eq. (2.39) is experimentally allowed for the choice of the parameters in

the ratio (%) lying between (—1.5 < (%) < —0.1) (Fig. 2.2).

Transformations under S3 give a number of cases being capable of producing m;; =0

with the same correlations listed in the Table 2.3.

Case I(b):
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Table 2.3 Allowed zero textures of Mp, Mg and Mg leading to m¢; = 0 (Case I(a)).

Correlation
1% . MDi'
Mo Mx M e
’ (1
Moy = —VeaVyams + HHZ—‘:; [%(Veams + Mg )]
a b 0
do f| m MY (i=j=3)
0 h O
a b 0
0e f| Mm% M{P (i=j=3)
g 00
a 0 ¢
d e 0| My M (i=j=2)
00
a 0 ¢
0e f| My M{ (i=j=2)
g 00
0 b c
do | ms M (i=j=1)
0 h O
We consider the following matrices:
0 b 0 A 0 O
3
My =\da e f|. M=(1 0 s3), Mp=Mg=|0 0 E
0 0 i 0 E O
Employing these matrices in Eq. (2.2) we have
b2s3A2 bds; | beAs;  bf b
Ezs% ES] EZS% f F
3x3 _ | »a beAs: b 23A | 2dessA 2 i
G S8 &
bi el
—E - 0

(2.40)

(2.41)
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) f}gbs? Vea
my = _;Tl’ R= %—f— zze;%s = | Vi | (2.42)
0 0
with the following correlation
Mee = —V2ms, (2.43)

and

V‘u4 muf d
ety T (2.44)
Vea  mzr  Vessy

As seen from Fig. 2.3, for allowed range of |m,,.| ~ (0.014 —0.018)eV, the above texture

0.0180
0.0175 |
0.0170 -
$0.0165 |
20.0160
£0.0155 |
0.0150 -
0.0145 -
0.0140

mg(eV)
Fig. 2.3 Allowed range of m; as predicted by Eq. (2.43) for case 1(b).

predicts (0.2 < mg < 1.5)eV, which is in fair agreement with the global analysis data. For
Eq. (2.44), the condition for (%) is the same as in case I(a) (Fig. 2.2). Again S3 transforma-
tions lead to a number of cases producing m¢; = 0 with the same correlations presented in

Table 2.4.

Case I(c): We consider m; =0
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Table 2.4 Allowed zero textures of Mp, Mg and Mg leading to m;; = 0 (Case I(b))

Correlation
\% T MDi'
Mp Mg Mg %::’Z—’:T —Ve4lw(€:1)»)
. (1
mee:_Ve%l_mS
a 0 0
d e f| M2 MY (i=j=3)
0 h O
0 b 0
d e f| mMi MY (i=j=23)
g 00
0 0 ¢ 5
d e f| My MY (i=j=1)
g 00
0 0 ¢
d e f| M5 MY (i=j=1)
0 h O
a 0 0
d e f| My MY (i=j=1)
00 i
a b 0 A0 O
MY =1ad ¢ 0|, M=(s1 0 53, Me=Ms=|0 0 E|, (249
00 i 0 E O

and using it in Eq. (2.2) we have the light (3 x 3) neutrino mass matrix, sterile neutrino mass

and active-sterile mixing matrix as

b*s3A + 2abs; (ae+bd)s3 + beAs? _bi
E2s? Es) Es) E2s? E
3X3 _ | (ae+bd)s; beAs% ezsgA 2dess ei
v Es) + Ezs% S%E2 + Es) 2 (246)
_bi _e 0

E E
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as1E+bs3A

Es%

Vs as1E + bs3A
_ 5 p | duEreas | — ed _ G515 TONHA 2.47
s ’ Es? V“4 ’ V”4 ds1E + es3A ( )

0 0

Ve4

From Eq. (2.46) and (2.47) we get the following relations:-

(Ve4Vu4ms + me,u)2
My = —Vumg + , (2.48)
uu udltts V624ms T Mgy
and
V ds|E A
wa _ dn® Tt essa (2.49)

V.4 a as E +bs3A

Plotting my,, vs mg from Eq. (2.48), it is seen from Fig 2.4, that for allowed range of

0.030 =

0.025 ¢

§ 0.020 [ °
I
£0.015 |

0.010 ¢

0.005 ~ ‘ ‘ ‘ ‘
0.0 0.5 1.0 1.5 2.0

my(eV)
Fig. 2.4 Range of m; as predicted by Eq. (2.48).

myy ~ (.005 —.03)eV, mg have its value well below the upper bound =~ 1.5 eV. However
Eq. (2.49) has a large number of parameters involved and hence gives ample scope for
adjusting the parameters as required. S3 transformations give a number of cases which lead

to my; = 0 with the same correlation as Eq. (2.48) and (2.49) as shown in the Table 2.5.
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Table 2.5 Allowed zero textures of Mp, Mg and Mg leading to m;; = 0 (Case I(c))

Correlation
My My M Vua _ (Mp)ij(Mg) JeStp+(Mp )it (MR) 11y
s Vea ™ (Mp)nj(MR) jxs, (M)t (MR) 1S,y

_ 2 (V34Vu4ms+mw)2
Mup = _V[.L4m5 B B—

V624ms+mee
a b 0
de 0| My M{" (i=1j=1p=1k=21=1,m=3n=2)
00 i
a 0 ¢
d o f| M5 MY (=1,j=1p=1k=21=3m=3n=2)
0 h 0
a 0 ¢
d o f| mMi MY (=1j=1p=1k=21=3m=3n=2)
0 h 0
0 b ¢
0 e f| My MY (i=1,j=3p=1k=1,1=2m=2n=2)
g 00
0 b ¢
0 e f| M& MP (i=1,j=3p=1k=3,1=2,m=1n=2)
g 00

Case II: We consider m,; = 0.

0 b ¢ A 0 O
Mg): d 0 f|, M;=(0 s s3) and Mr=Mr=10 0 E|. (2.50)
g 00 0 E 0

The above set of matrices applied in Eq. (2.2) gives

P’s3+c®s3s  be  —bf | cfs:

2ES2S3 - F 2F + 2ES3 O
3x3 —bf | cfss &> s dg
Mty 2 T 2Es3 —a Tt 2Ess A |’ (2.51)
_dg _g
0 A )
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b
5 i + 255 Ve
§283
My = ———, R= % Via (2.52)
0 0
From Eq. (2.51) and (2.52) we get the following correlation:
2
m
My = —Vigmy+—, (2.53)

Mg

and

Ve4 . c b

=+ . (2.54)
Ve 2Vus
myy vs m from Eq. (2.53) gives a plot as shown in Fig. 2.5 below. From the figure, it is

LT g W AT
0.030 s .','f-t'.i '7:‘! '-’.'3‘2-"-!-_'.{ ..,'::',
. ot \-‘-.“_-,'- [T o Yoo
""-7'-:"-'-':'. . ‘i;-&u"’
%):().()25 r
3
g

0.020 1

0.015

m(eV)

Fig. 2.5 Predicted range of sterile mass m; from Eq. (2.53) for case II.

evident that the above texture predicts the value of m, which is not compatible with current
oscillation data. Thus this texture is ruled out.

2.5.2 Zero textures in (5+3) scenario

Case III(a): Now we consider the case for m;; =0

0 b 0 A B O
(5) _ _ 0 d _y10) _
Mp'=10 e f| Ms=(si s3) and Mr=Mp '=|B 0 0
g 00

(2.55)
0 0 F
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Putting these in Eq. (2.2) gives
Ap? | bFs? Ab besF | bf b
Bt 32s§1 BT 32;§ T
3x3 _ | Ab bes*F bf A2 | EsF 2 £
e g gl e
b
4 =
bF
) FS%I Ve
__%5 — s s | =
ms —_— F 9 R = eBs‘? + 5 pr— VlJ,4 (2.57)
0 0
Eq. (2.56) and (2.57) gives
_ Mpe 2 2.58
Mey = Ve4V/.L4ms+ " [Ve4ms +mee]7 (2.58)
et
and
V m
Vit e | S (2.59)

Vea Moz Veass

From Fig. 2.6 it is seen that for allowed range of m,y ~ (0.02 —0.04)eV, mj as predicted by

0.040 -
0.035 F

0.030 |

M, (€V)

0.025 ¢

0.020 r,

m(eV)

Fig. 2.6 Sterile neutrino mass m; from Eq. (2.58).

the above texture have a small range of value ~ (0.00 — 0.06)eV which falls under the upper

bound by global analysis data but in tension. For the small range of m; this texture may be

considered as viable. Under S3 permutation it gives a number of cases leading to m¢; =0
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with the same correlation shown in the Table 2.6.

Table 2.6 Allowed zero textures of Mp, Mg and My leading to m;; = 0 in the (5+3) picture
(Case III(a)).

Mp Mpg Mg Correlation
0 b 0

d e O MY MY ey =—VeaVyamg+ 25 [Vimg+me.]
00 i

0 0 ¢

do f| MY ud —do-
0 h O

0 0 ¢

0 e f| MY M{ —do-
g 00

a 0 0

deo|l M) MV ~do-
00 i

a 0 0

do | M mb —do—
0 h O

Case III(b): We consider the case for m;; =0

0 0 ¢ A B 0O
MO=|ag 0 f|, Mi=(s1 52 0) and Mg=MY =|B 0 E|. (2.60)

0 h O 0 E O

Putting in Eq. (2.2) gives

Ac’s3 _ 2Bctsy _ 2Bcfsy + cdsy + Acfs} _ch
E%s? EZs EZs Es; E2s2 E
3x3 _ 2Bcfsy | cdsy | Acfss  2dsyf  2Bsyf? | As3f? fh
m = | _ =2b¢ 2 /52 2J 2. 2. _Jn 2.61
v EZs + Es; + Ezs% Es; E2s) Ezs% E |’ ( )
ch _fh
~E E 0
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c(Asp—Bsy)
) et Vet
_ 5 _ | a, rAss—Bs)) | —
my = A 5 R H + Zj % L VIJ4
0 0

From Eq. (2.61) and (2.62) we get the following relations:-

(Ve4V[,L4ms + Mey )2
Vez4ms + Mee

Y

)
Myy = —Viams

Vid _mye  d
Vea Mer  VeaSi .

(2.62)

(2.63)

(2.64)

The correlation (2.63) is same as that for case I(c),whereby m; has its value well below the

predicted upper bound. Eq. (2.64) on the other hand have the same interpretation as the

above cases for Eq. (2.39). Thus this texture is allowed by neutrino oscillation data.

Table 2.7 Allowed zero textures of Mp,Mg and Mg leading to m;; = 0 in the (5+3) picture

(Case III(b)).

Correlation

Mo My Mg oo
2
My = —=Vggms + —(Vﬂ;}:;nzfmn::#)

a 0 0
deo| MP MV (i=j=2)
00 i
a 0 0
do | M) MY (i=j=3)
0 h O
0 b 0
deo| MY MY (i=j=3)
00 i
0 b 0
0 e f| MY M{ (i=j=3)
g 00
0 0 ¢
0 e f| M My (i=j=2)
g 00
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Case 1V: For m,.; = 0, we take

0 b 0 A B O
M,g): d o f|, My=(s1 s2 0), MR:M,(JO)Z B 0O
00 i 0 0 F

Eq. (2.2) gives

b*st bds; 0
(2Bsy5,—As3) Asy—2Bs|
X3 — bds _ 4 d’s, _fi
v As,—2Bs; F T 2Bs;—As, F |’
_[fi _Z
0 F F
b(B—A) b(ASz—Sl)
) 2S]B + As% Ve4
S
1
mg = —— R = d _ Bd =
s A ’ 2S1 AS2 Vu4
0 0

The above equations yield the following correlation-

2
m
myy = —VZ2umg+ ’”,
up ua's Mg
and
Vea s1b  Ab
V#4 - Szd Bd.

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

Eq. (2.68) and (2.53) being the same has the same prediction for mg, which is not allowed

by current neutrino oscillation data. Thus for both the cases of (4+4) and (5+3), m.; =0

textures are ruled out.
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Case V: For my;, = 0, the set of matrices is

0 b c A B 0
MP =140 0|, M=0 0 s3) and Mg=M"=|p 0 0o|. 70
0 h O 0 0 F

Then Eq. (2.2) gives

B? B B
myd=|_btd o _dif @2.71)
Abh  _dh  AR?
B? B B?
which yields
5 é Ve4
53
§ — —— y R = = . 2.72
m, F 0 0 (2.72)
0 0

The above equation gives the following correlations-

Mee _ Meg (2.73)
Moy — Myr ’

The current neutrino data do not match with this correlation and hence this set of matrices
is ruled out. S3 invariance gives a number of cases with the same correlation as Eq. (2.73)

which are also ruled out. Thus m;,;, = 0 is not a possible zero in presence of sterile neutrino.

2.6 Symmetry realization

It is observed that for every set of fermion mass matrices with texture zeros in arbitrary
entries, a scalar sector exists. Such texture zeros can be imposed by an Abelian discrete
symmetry group Z,. The procedure of implementation of zero in the entry of the neutrino

mass matrices in the method-2 of Ref. [100] is followed here to enforce zeros of our viable
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structures only. We consider a diagonal M; which amounts to six-zeros in this matrix used in
the seesaw mechanism. There are a number of papers where zero textures are realized via an
extended scalar sector under Abelian symmetry group. In this work, we concentrate on the
smallest possible Z, cyclic group. But smaller groups like Z3, Z, etc. are not sufficient to

arrive at our intended textures. We consider the next possible Z; symmetry group.

2 3 4 5 6
Z1=(l,0,0%,0°, 0", 0, ®°)

2 .
where @ = e7 is the generator of the group. For the case I(a) under Z; we consider the

leptonic fields to transform as-

3 57 2
D, — o’ D,, , er — W°ep, Ver = Ver
Dy =Dy, HR—=HR, Vg = OVy,: (2.74)
A 37 5 3
Dy — 0°Dy, TR — O TR, Vip — O Vo,

Here D, I and vy, are the SU(2),, doublets, the RH SU (2),, singlets and the RH neutrino

Jjr»
singlets respectively. The bilinears D leR,l_) iz Vig> vaR C _lij relevant for M; ,Mp and Mg

respectively transforms as-

1 © o o 0 o 1 o
~ ~ T 1
Dlip=10> 1 & |, Duvi=]1 o &*|, Vvl Vi=| 0o o> o
0 o o o ot o 0’ ot o
(2.75)

We introduce three SU (2);, doublet Higgs (®,®,,D3) transforming under Z; as-

O 5D, Db, D3 00b;. (2.76)
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The Z7 invariant Yukawa Lagrangian becomes

— L = Y] |Dy ®1eg +Yay Dy, @1 Ug + YD, @378 + YR Do, vy, + YRD,, P3 Ve, -
+Y2D1DNL®1 VeR + YZI%D”Li:;vFLR + Y3D3DTLéZVTR + h.C

The Higgs field after acquiring a vacuum expectation value gives the following form of M;

and Mp-
m. 0 O 0 b ¢
My=10 my 0 | Mp=1d e 0]- (2.78)
0 0 mg 0 0 i

We also introduce a scalar singlet y for Mg transforming as-
X oK (2.79)

To prevent mass term of the form S¢S as demanded by MES model, we transform the singlet
field ‘S’ as -
S — wS. (2.80)

In addition we consider two scalar singlets A;, A, for Mg where
M=, = ot (2.81)

This leads to the following form of Mg and My

A 0 O
Mr=10 0 E ’ Ms = (S] 0 S3> ’ (282)

0 E O
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which are the required zero textures for case I(a) leading to m;; = 0. Interestingly we find
that realization of all the other set of matrices as listed in Table 2.3, follows a typical pattern.
The first set of matrices of Table 2.3, follows Eq. (2.6) with the element “BA” of the S3 group,

where
0 01

BA=11 0 0]l. (2.83)
010

The matrix in Eq. (2.83) refers to the interchange of the third with the first column, second
with the third and first with the second column. It is found that if we follow the similar
pattern and exchange the transformations of Ve, — Vg, Vg — Vi, and Vi — V,, of
the representative case(case I(a)) of Eq.(2.74), at the same time keeping the transformation of
D i IR ®,x,S and A of Eq. (2.74), (2.76), (2.79), (2.80) and (2.81) respectively the same, then
this gives us the first set of matrices of Table 2.3. Similarly the second set of matrices being
generated by the the element “B” of S3, requires only the interchange in the transformation of
Ver & Vi, of Eq. (2.74) and so on. Thus all the textures presented in Table 2.3, 2.4, 2.5, 2.6
and 2.7 can be realized from their respective transformations of the basic texture in each
case I(a), I(b), I(c), II(a) and III(b) by simply interchanging the transformations of the RH
neutrino singlets, keeping all other field transformations the same for each case.

Symmetry realization of all the basic texture zeros are listed in Table 2.8.

Table 2.8 Z7 Symmetry Realization of all the allowed basic cases.

Scheme Mp,Mr,Ms De;,Dy.Dyy  er, MR, TR VersVurs Ve X's &'s S Als

(4+d) M(e)2) 1,00 Lo, o 1,0 0° o lLoo o 1o
3)()2) L' 0%’ 1,0 0’ o 1,00 o 1,0

(543) (5)(10)2) ,0°1 o o1 1, 0%, 0? o 1,0 o | o
6)(9)(3) 0’ 0,0 00’0 1,0° 0 o’ 1,0° o 1,0’
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2.7 Conclusion

We have systematically explored the texture zeros of three active neutrino sector of neutrino
mass matrices in the minimal extended type-I seesaw (MES) mechanism with one sterile
neutrino (gauge singlet) of 1eV scale. The phenomenologically predictive cases of such
scenario in conformity with current neutrino data dictate that the sum of zeros of Mp and Mg
is eight irrespective of zeros in Mg. With this hypothesis we have considered three schemes
like (6+2), (5+3) and (4+4) where the paired numbers represent the number of zeros in Mp
and My, respectively. It has been seen that there is no viable structure of the type (6+2) at all.
The (5+3) and (4+4) schemes are productive because these can generate one-zero texture
of my like mer = 0, m¢z = 0 and (5+3) can additionally give my, = 0. On enforcement of
zeros, some constraint relations termed as correlations have been obtained which are then
scanned under the current available neutrino data of 30 range. The current neutrino data do
not support my, = 0 and m,.; = 0 but there are some allowed cases for m¢; = 0. We have
found that there are different set of Mp, Mg and My corresponding to a given viable set of
such matrices under the transformations S3 in Eq. (2.6) and the results have been presented
in Table 2.3-2.7. Interestingly no two-zero texture survives in presence of sterile neutrino,
otherwise there is a number of phenomenologically viable structures studied in literature.
We have implemented Z; Abelian symmetry to realize the viable structures of Mp and
Mpg which require 1 scalar singlet (}) and 3 Higgs’ doublets (®) in case of (4+4) scheme.
One of Higgs’ doublets is SM Higgs’ doublet which transforms trivially and the rest are
extended sector. Again in case of (5+3) scheme, we require 1 scalar singlet and 2 Higgs’
doublets one of which is SM doublet and the other belongs to extended sector. Also two
singlets are needed for zeros in sterile mass matrix Ms. We presented the detail procedure of
implementing Z; symmetry for case I(a) as a representative case only. We have also exhibited
how other set of matrices obtained by permutation with the elements of S3 can be realized

by Z; by simply interchanging the transformations of the RH neutrino singlets from their
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respective basic cases.The symmetry realizations of the basic sets of Mp, Mg and Mg are

shown in Table 2.8 for (4+4) and (5+3) schemes.



Understanding of 2-zero textures of MES

m?** and Zo symmetry realization

3.1 Introduction

This chapter is based on our work presented in Ref. [99]. In Chapter 2, we have explored

3x

the zero textures of 3 x 3 neutrino mass matrix m;, 3 and found that no two-zero textures

of m3 %3 survives in the context of MES mechanism under predictive scenario, that is (4+4),



62 Understanding of 2-zero textures of MES m** and Zg symmetry realization

(5+3), (6+2) scheme, where digits in the pair represents the number of zeros of Mp and Mg
respectively.

In this chapter, we are motivated to relook into the two-zero textures of neutrino mass
matrix my in its (4 x 4) form in the context of MES mechanism. For realization of the two-
zero textures of m$*# via MES mechanism we shall concentrate on the predictive scenario
of (4+4) scheme, that is, equal contribution of zeros of Mp and Mg respectively, along with
suitable zero textures of M.

The compatibility scenario of texture zeros with recent experimental data are quite
different in (3 x 3) and (4 x 4) form of neutrino mass matrix m,. With three active neutrinos,
out of 15 possible two-zero textures only 7 textures are allowed [78] by experimental
data. Whereas in (3+1) paradigm, all the 15 two-zero textures of m“‘,X4 are found to be
compatible [96] with experiments, provided zeros are in the active sector of my<*. Zeros in
the sterile sector, that is, fourth row and fourth column of m‘\‘,X4 is not allowed by experimental
constraints.

Again, the determinant of mi‘,x“ in MES mechanism [67] vanishes and as such it can-
not be a matrix of rank 4. Out of 15 possible two-zero textures of m*4, 12 textures
(A1,A»,B3,B4,C,D1,D>,E|,E;, Fy, F>, F3) are of rank 3, while the other three textures (B, B,
and E3 ) are of rank 4. We shall therefore concentrate only on the 12 two-zero textures of
m$>* which are of rank 3. In our work, we find that all the 12 two-zero textures can be
realized under the (4+4) scheme in MES mechanism. Implementation of zeros in m‘\‘,X4 leads
to a number of correlations whereby different mass matrix elements are related to each other.
We check the viability of each of the textures by examining their respective correlations
under recent neutrino oscillation data by keeping the Dirac and Majorana CP phases with or

without restricting to certain values. We observe that there is an inter-play of the CP phases

on determining the dynamics of a texture.
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There are a large number of combinations of Mp, Mg and Mg with diagonal charged
lepton mass matrices M; under the (4+4) scheme which lead to the desired two-zero textures
in m$*4. However, S3 group permutation between the fermion mass matrices under MES
mechanism leads us to a minimum number of basic combination which generates the desired
zero textures in the 4 x 4 neutrino mass matrix. In our work, the prospective textures of
Mp, Mg and Mg for generating two-zero textures in m, are realized with Zy cyclic group
symmetry. For this realization we extend the SM with few scalar singlets and doublets.

The chapter is organised as follows: Section 3.2 includes a brief discussion on the MES
mechanism for convenience. In section 3.3 we review the viable two-zero textures of m*%.
Section 3.4 includes a brief review on the four-zero textures of Mp and My along with zero
textures of Mg, followed by the S3 invariance of fermion mass matrices in the MES formalism.
In section 3.5, the two-zero textures are realized in the context of MES mechanism. Also we
present the correlations for each texture under the (4+4) scheme. In section 3.6, we check
the viability of each texture under recent neutrino oscillation data for both unconstrained

and constrained CP phases. In section 3.7 symmetry realization of the allowed textures are

presented. Finally we conclude in section 3.8.

3.2 Minimal extended seesaw (MES) mechanism

In MES mechanism, the Standard Model is extended with four additional singlets - three
right-handed neutrinos and one gauge singlet chiral field ‘S’. This leads to a (7 x 7) form
of neutrino mass matrix m, which on applying seesaw approximation M >> Mg > Mp

reduces to

MpMz'ME  MpM;'MT
iy = — kD kS 3.1)
Ms(M ) Mb MMy MY
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m*% is a square matrix of rank three and hence one of the active neutrino mass states remains

as massless. The mass matrix m5* can have at most rank 3 since

det(my**) = det(MpMyg ' M}) det[—MsMy ' ML
+MsMyg ' ML (MpMz 'Mp) "' MpM ' MY a2
= det(MpMy 'M}) det{Ms(My ' — Mg Y MI]

=0

where both Mp and Mp are considered to be non-singular. Thus at least one of the active
neutrino mass states remains as massless.

Block diagonalization of Eq. (3.1) leads to the mass of the sterile neutrino as

ms ~ —MsMyg 'M& (3.3)

3.3 Two-zero textures of m;**

Table 3.1 Viable two-zero textures [96] of rank 3. Here ‘X’ indicates the elements with
non-zero entries.

A A, B; B,
0 0 X X 0 X 0 X X 0 X X X X 0 X
0 X X X X X X X 0 0 X X X X X X
X X X X 0 X X X X X X X 0 X 0 X
X X X X X X X X X X X X X X X X
c D, D, E
X X X X X X X X X X X X 0 X X X
X 0 X X X 0 0 X X X 0 X X 0 X X
X X 0 X X 0 X X X 0 0 X X X X X
X X X X X X X X X X X X X X X X
E, F b 2
0 X X X X 0 0 X X 0 X X X X 0 X
X X X X 0 X X X 0 X 0 X X X 0 X
X X 0 X 0 X X X X 0 X X 0 0 X X
X X X X X X X X X X X X X X X X
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We consider only those two-zero textures of m** of rank 3 which are listed in Table 3.1.
There exist a P symmetry [96] between the textures Ay — A3, B3 — By, D1 — D>, E — E3,

F>, — F5 of the form

Ay =P APy, (3.4)
where
1 00O
0010
PHT - (3.5)
0100
0001

However, no such symmetry exists for the texture C and Fj.

In this work we consider the m“‘,x“ form of MES mechanism (Eq. (3.1)) to realize the

two-zero textures of m, in Table 3.1.

3.4 (4+4) Scheme and S; invariance

Four-zero textures of Mp:

There are °Cy = 126 possible 4 zero textures of Mp. However, the requirement of non
singular Mp as demanded by the condition in Eq. (3.2) rules out those textures of Mp which
are either of row zero, column zero or block zero. The row-zero or block-zero structures
of Mp are also not useful as they lead to one neutrino massless and decoupled from others,
and zero entry in PMINS matrix respectively [82]. Barring these forbidden textures, the rest
81 four-zero textures of Mp on amalgamating with 4 zero textures of M and one/two zero

textures of My can produce the two zero textures of m§<*.
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Four-zero textures of Mpg:

Similarly, out of 15 four-zero textures of Mg only three remains non-singular.

0 B 0 00 C A0 O
Mi=|B o o, Mi=|lo D o|, Mg=]|0 0 E (3.6)
00 F C 0 0 0 E 0

S3 invariance according to Eq. (3.8) leads to one basic form of Mg = M. The other two
forms are obtained by S3 permutation of Mpg.

Zero textures of Mg:

Since the sterile sector of méx“ involves the active sterile mixing matrix Mg, we consider

the zero textures of My in such a way that non-zero terms appears in the fourth row and
column of the mass matrix. We find that under the (4+4) scheme, two-zero texture of Mg
is not allowed. Only one-zero texture of Mg can lead to non-vanishing entries in the sterile

sector. Possible one-zero texture of Mg are given by Eq. (3.7).
MYV =0 s 55, MP=(s; 0 s3) and MP =(s; s, 0). (3.7)

The non-singular textures of Mg, one-zero textures of Mg and all the 81 textures of Mp are
mapped together in order to achieve the two-zero textures of mf,” (Table 3.1). Furthermore,
different combination of Mp, Mg and Mg produces zeros in the same location of m‘\‘,X4 due to
their interconvertability nature according to Eq. (3.8).

S3 invariance under (4+4) scheme:

We find that under (4+4) scheme, there exists S3 permutation1 between different combinations

of Mp, Mg and Mg which keeps m‘\‘,X4 invariant.

'For details, refer to section 2.3, Chapter 2
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Under the S3 permutation group Mp, Mg and My transform as:
Mp — MpZ, Mg — Z"MrZ, Ms— MSZ. (3.8)

This reduces the voluminous work of exploring a large number of combinations of
Mp,Mpg and Mg and eases our job thereby making it more economic as only a few zero

textures of Mp and Mp are required to deal with.

3.5 Realization of two-zero textures in (4+4) scheme

Under (4+4) scheme, the viable two-zero textures of m, can be realized from some basic
combinations of Mp, Mr and Mg along with certain correlations among the neutrino param-
eters. Corresponding to each such combination, there exist another five combinations of
Mp, Mg and M obtainable via S3 transformations in Eq. (3.8) leading to the same textures
and correlations as the basic combination yields. In our study, we find a total of 24 textures of
Mp (Table 3.2) which can generate the two-zero textures of m‘\‘,X4 along with their respective
Mj and Mg (Eq. (3.7)).
Class A

Class A consists of two textures A; and A, that allow only NH mass ordering. There are three
basic combinations of Mp, Mg and My for each of the texture A; and A. Using Mg = M in

Eq. (3.6), the particular four-zero textures of Mp (Table 3.2) and one-zero textures of My in

Eq. (3.7), we can construct the textures A; and A with different correlations:
Texture A1: The following combination of Mp and Mg

(@): Mp=Mm), — Mg=MmD. (3.9)
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Table 3.2 Four-zero textures of Mp.
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(3.10)
(3.11)
(3.12)

eAs;

gEs|

Ms =M.
dES1

Mrglgs = Ny,
m
uy +
Mmrg
3
_

My
Mzg
Mp

()

in Eq. (3.1) gives the following correlations

Eq. (3.1) yields

(3.13)

Mer
Mes

-+

Mmrr
Mzg

(3.14)
(3.15)

meT + bAS3 '
MY, Mg=mP

Mes

mys
Mp

(c):
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Eq. (3.1) yields
Myumgs = my, (3.16)

hA
Moy _ Dz | 0053 (3.17)
m'uS m'u# dESl

Equations of the form (3.11), (3.14) and (3.17) enlighten us with the idea of the allowed

es3A  dEs
gEs1’ bAs3

range of the parameter values of and Z‘éﬁ respectively. A particular texture leads
to a number of such correlations which give the allowed range of the ratio of the elements of

Mp, Mg and M. However, such correlations do not guarantee the viability of a texture.

Texture A;: For the texture A, we present below the combinations of Mp and Mg and

their respective correlations from Eq. (3.1).

(@: Mp=My,  Mg=MP. (3.18)
2 Mry Mmrr hAS3
_ - . 3.19
Muullss = Mys Mys My * dEs; G-19)
b): Mp=MmYy, — Mg=MmD. (3.20)
Mk _ o (%) B (3.21)
mys Mg Meg Mey bs3A

(€): Mp=MY, — Mg=m (3.22)
A
Mooy = ml,, b = AT O3 (3.23)

Mrg mee  gEs)

The u — 7 exchange symmetry between the textures are evident from Eq. (3.10)-(3.19),

Eq. (3.13)-(3.21), Eq. (3.16)-(3.23).
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Class B:

Each of the textures B3 and By has three basic combinations of Mg, Mp and Mg. With

Mpg = My the combinations and their correlations are given below:

Texture Bjs:
(@: Mp=m), — Mg=mD.
mss:2<mus)’ me‘C: mee_l_iAz‘
My myz meg mer  Eg
b): Mp=my —~— Mg=m
Mez _ myzt ) m‘l,'s) _ Meg _ MrgMeg
Mes mys ’ Mg Meg MgsMlet
(¢): Mp=Mmy", — Mg=m?
2 Mrs Mer  hs3A

MeeNlgs = My, = .
“ Mes  Mee asiE

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

Texture B4: The combinations of Mp, Mg which generates the texture B4 are (a) M L()g ) M él)

(b) Ml()lo),Mél) and (c) Ml()lz),Méz)

the correlations in Eq. (3.25), (3.27) and (3.29) respectively.

Class C:

There is only one basic combination that generates the texture C.

Mr=M§, Mp=M}) — Mg=m".

M ) myg Mee ) Met + a’E
Mg myz )’ Mey Myt ceA’

with correlations which are u — 7 exchange symmetric to

(3.30)

(3.31)
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Class D:

Texture Dy and D5 consists of three basic combination of Mp, My and M.

Texture Dy:

(@): Mp=M.",  Mg=Mm{ (3.32)

MerMgg = Mz, = + . (3.33)

b): Mp=M.",  Mg=m" (3.34)
Mep _ o (%) o Mer  Mu | a8E (3.35)
Mes Mg Mey My bfA

(€): Mp=My", — Mg=m?> (3.36)
Nee —9 (mes) 7 Mry _ Met + gle. (3.37)
Moy My Mys — Mey  es3A

Texture D,: The combination (a) Mém),Méz) by M 1()16),M§1) (c) Ml()lg),Méz) generate
the texture D, with correlations which are 4 — 7 exchange symmetric to Eq. (3.33), (3.35)

and (3.37) respectively.

Class E:

Each of the texture £ and E» has one basic combination of Mp, Mg and Mj.

Texture E:

Mr=M, Mp=m\" — Mg=m". (3.38)

Mew _ o (Tws - - 3.39
= ) MrsMey — MegMys = My tMes. (3.39)
Meg My
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Texture Ep: With ML()ZO),MS) we arrive at the correlations which are g — 7 exchange

symmetric to Eq. (3.39).

Class F:

Each of the textures Fi, F> and F3 posses one basic combination of Mp, Mg and Mj.

Texture Fj:
Mr=Ms, Mp=M}" — Ms=M{ (3.40)
Mz My m2,
Texture F>:
Mr=M§, Mp=M}) — Ms=M{. (3.42)
2 Met mrr MeeMzg
My Mgs = M5 2 — = : (3.43)
HATTSS Hs (mes ) Mrg m%s
(22)

Texture F3: The combination My, My~ ,M §3) generates the texture F3 with correlations

which are y — 7 exchange symmetric to Eq. (3.43).

3.6 Experimental compatibility of the textures with cur-
rent neutrino data

We shall consider a texture to be viable if the correlations corresponding to the texture show
the consistency with the current neutrino data. The numerical procedure of consistency check
of a given correlation is as follows: we first calculate the respective ranges of values of
neutrino mass matrix elements m;; with (i, j = e, U, T, s) from their respective expressions
given in the Appendix A, using 3¢ values of masses and mixing angles of the recent neutrino

oscillation data [Refer section 1.7, chapter 1] with and without constraining CP phases.
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Also we calculate the allowed ranges of values for the expression involving m;; in lhs and
rhs of a given correlation while plotting them against sin 834 which is constrained from
an upper bound < 0.4 [109]. In our analysis, we have taken its lower limit as 0. Under
such condition if the two plots (lhs of the correlation vs sin 834 and rhs of the correlation
vs sin 634) overlap in a considerable range, then the given correlation is taken as consistent.
Again for those textures whose correlations are not significantly different in respect of their
phenomenologies, only the correlations of one of them as a representative case are plotted
against sin 634 taking the range from (0 — 0.4) for both the mass order: normal hierarchy
(NH) and inverted hierarchy (IH). As the plots are made with or without constraining the
Dirac and Majorana CP phases, for convenience, we have classified the textures into (i) CP
phase dependent textures, of which the correlations are sensitive to the variation of CP phases
and (ii) CP phase independent textures, of which, the correlations do not respond to the
variation of the CP phases. Constrained CP phases mean that we pick up smaller ranges
of values of unknown CP phases from the complete range (0 — 27) at our own choice as a

representative case and plot the correlations to check the consistency.

3.6.1 Class A
CP phase dependent textures:

Texture A} and A, has ee = 0,ett =0 and ee = 0,e7 = 0 respectively in its 4 x 4 form
(Table 3.1). Class A allows only normal hierarchy (NH) spectrum in the 3+1 scenario [96] .

Therefore, we present only the normal hierarchical case for class A.

Case I:
The basic combinations in Eq. (3.9) and Eq. (3.22) for texture A; and A; respectively lead to
the correlation of the form as in Eq. (3.10). On plotting the lhs and rhs of this correlation

MM and m%s against sin 634 with the CP phases running unconstrained from 0 to 27, we
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see that there is overlapping of the two graphs for sin 834 > 0.08 in Fig. 3.1 (left plot). Thus,
the textures are experimentally allowed for sin 634 > 0.08 that puts a lower limit on sin 634
for these textures.

It is interesting to note that there is strong interplay of CP phases as the choice of Y= 813 =
(0—30%),8 = 84 = (0—45%),814 = (180° —225°), ¢ = (315° — 360°), the overlapping
appears only for values of sin 6834 > 0.12. The allowed range with CP unconstrained are now
squeezed when CP is constrained to the ranges under consideration. Of course this particular
choice of constrained CP phases are in no way unique. The survey of constraining phases
shows that these textures are never allowed for the lower values of the mixing angles 0s4.
Thus this puts a constraint on the lower limit of 634. Fig. 3.1 shows the scatter plots of the

correlation in Eq. (3.10) under both the cases of with or without constraining CP phases.

0.20 [ 0.20 [

w015} w015
H g
I I
0.10 | £0.10 |
£ £
20.05) 5005}
0()0 _ ‘e % "\ L L 0400 n L L L
0.0 0.1 02 03 0.4 0.0 0.1 0.2 03 0.4

sinfzy sinfsy

Fig. 3.1 Scatter plots for Eq. (3.10) where : m m;mg and m m2,. The left plot is for
unconstrained CP phases while the right plot is for constrained ranges of CP phases: Y= 6;3 =
(0—30°), 8 = 84 = (0—45%), 814 = (180° —225%), & = (315" — 360°) (Texture A1, A7).

These particular combinations in Eq. (3.9) and Eq. (3.22) also yield a number of corre-
lations involving the parameters of their respective Mp, Mg and Ms. From these equations
one can determine the allowed range of the ratio of the parameter values. One such equation
for each texture is given in Eq. (3.11) and (3.19) (second correlation) for texture A and A,
respectively. As a representative case we plot the Eq. (3.11) in Fig. 3.2. Similar evaluation of

the values of the ratio of the parameters of Mp, Mg and Mg can be obtained from the scatter

es3A
8Es)

plots for all the textures. The values of the parameters in Eq. (3.11) remain almost the

same for both unconstrained and constrained ranges of CP phases (Fig. 3.2). From Fig. 3.1, it
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is seen that the texture is allowed for values of sin 634 > 0.08 without constraining CP phases,

es3A

Es, < 1.8 for

while sin 634 > 0.12 with constrained CP phases. Therefore, the value of

es3A
8Esi

unconstrained CP phases (left plot of Fig. 3.2) and < 1 when CP values are constrained
toy =83 = (0—30°),8 = &y = (0—45), 514 = (180° — 225°), ¢ = (315° — 360°) (right

plot of Fig. 3.2).

0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

Si[l034 sinfsy

Fig. 3.2 Scatter plots for Eq. (3.11) for unconstrained (left plot) and constrained CP values
(right plot) (y = 813 = (0—30°), 8 = &y = (0 —459), 814 = (180° — 225%), a0 = (315° —
360%) (Texture Ap).

Case II:

The basic combinations in Eq. (3.12) and (3.20) of texture A| and A; respectively yields
correlation in Eq. (3.13) and Eq. (3.21) which possess y — T symmetry. Both the equations
behave differently under recent neutrino oscillation data. This is evident from Fig. 3.3 and

Fig. 3.4 below.

0.8
;‘ . 0.6
£ 3
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Il 0.4
§F| EFOAZ
O FBREE e : : 0.0 : : : :
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
Siﬂ034(NH) sin934(NH)

Fig. 3.3 Scatter plots for Eq. (3.13) where : = Z_Z andm 2 <M> The left plot is for

Meg
unconstrained CP phases. The right plot is for constrained ranges : v = (0 —30°), 514 =
(0—10°),8 = (0—30°),8;3 = (150° — 180%), ot = (0 —90°), 84 = (0 — 180°) (Texture A1).
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The left plot of Fig. 3.3 shows that when CP phases are not constrained, the texture is
allowed only for values of sin 634 ~ (0.06 — 0.2). For other values of sin 634 there exists no
overlapping between lhs and rhs of Eq. (3.13) and hence the texture is disallowed for those
ranges.

A fair interplay of the CP phases has also been witnessed in the right plot of Fig. 3.3.
When CP phases are constrained to ¥ = (0 —30°), 814 = (0 — 10°),8 = (0 —30°), 813 =
(150° — 180°), ¢ = (0 —90°), 824 = (0 — 180°), the texture becomes viable in the range

sin B34 = (0.12 —0.22). However, we also find that the texture withstands for any choice of

the ranges of the CP phases.

1.0

s w0.8
51 %06
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3 E$0.4
5 0.2
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Fig. 3.4 Scatter plots for Eq. (3.21) where : m "ni—’:: andm 2 (%) Left plot is for uncon-

strained CP phases and right plot for ¥, 8, 84 = (0—5°) and 814 = a = (145 — 170°), ;3 =
(70° —90%) (Texture A»).

On the other hand for the texture A, we find that there exists a clear overlapping between
the lhs and rhs of the correlation (3.21) for all values of sin 634 = (0 — 0.4) without restricting
CP phases to a particular range. This shows that the texture is allowed for all ranges of
sin 634. However, the texture is not viable when CP values are constrained to small values like
¥,B,84 = (0—5% and 814 = a = (145° — 170°), &3 = (70° —90°). This becomes visible

in Fig. 3.4 as lhs and rhs are separated leading to inconsistency of the correlation.
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CP phase independent textures

There exist some combinations of Mp, Mg and Mg leading to certain correlations which
remain consistent with the current neutrino data with or without constraining CP phases.
Such combinations are discussed below.

Case III:

The basic combination in Eq. (3.15) and (3.18) for texture A| and A; respectively, leads to
the correlation in Eq. (3.16). We find that there exists a fair overlapping between both sides
of Eq. (3.16) for unconstrained CP phases. Again CP phases have been restricted to different
segments of the values, still the correlation remains unaffected. Even on putting zero values
for all the CP phases, the texture continues to survive within 30 range of oscillation data.
Fig. 3.5 shows the scatter plot of the correlation (3.16) for unconstrained CP phases while
Fig. 3.6 demonstrates its insensitivity to the variation of the CP phases.

0.20

00 0.1 0 P 0. 3
sin634

Fig. 3.5 Scatter plots for Eq. (3.16) for unconstrained CP phases where : m my;ms and m
mis (Texture Aq,Ap).

3.6.2 C(ClassB

Out of four textures By, B,B3,B,4 in class B, only two of them B3, B, are of rank 3. Bj3
has zeros in its e — u and p — u entries of the m$*4, and By is having zeros in e — T and
T — 7 entries. Class B allows all the three mass patterns: normal hierarchy (NH), inverted

hierarchy (IH) and quasi degenerate (QD). However, MES mechanism requires one of the
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Fig. 3.6 Scatter plots for Eq. (3.16) for different ranges of CP phases. The upper left plot
is for y = a = 84 = (0—30°),8;3 = (0—90°), B = (0 —60°). The upper right plot is for
y =814 = (225 —270°), a0 = (180° —225%), &3 = &4 = (90° — 135%), B = (0 —45). The
lower left plot is for ¥ = (90° — 135%), o = (0 —90°), 84 = (315° —360°), &3 = (225° —
270%), B = (0—45%), 814 = (180° —225%). The lower right plot is for y = (30° —90°), & =
84 = 613 = (0—-90%), B = (135° — 180Y), 814 = (90° — 135°) (Texture Ay, A»).

active neutrinos to be massless and hence QD spectrum is ruled out. Therefore, in our

analysis we shall consider only the NH and IH patterns of the textures B3 and Bj.

CP phase dependent textures

Out of the three basic combinations of Mp, Mg and Mg for B3z and B4, two combinations
show CP phase dependence when their correlations are plotted for different ranges of CP
values.

Case I:

The combination in Eq. (3.24) of B3 and case (a) of B4 lead to the same correlation in
Eq. (3.25) due to ut symmetry.

Scatter plots for NH spectrum in Fig. 3.7 for correlation in Eq. (3.25) shows that when
CP phases are unconstrained, the texture is allowed excluding only for a narrow range of

~ (0 —0.02) of sinB34. However, when CP phases are constrained to: y = 6j4 = 013 =
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(0—459), B = (180° —225°), 8,4 = a = (0 — 30°), the texture is allowed only for the range
~ (0.02 —0.16) of sin B34. The overlapping of the correlation disappears beyond the above
range of sin 034, and hence the texture is disfavoured for this range. This shows the CP phase

dependencies of the texture. Similar phenomenology has been observed for IH spectrum.

sinfsy

Fig. 3.7 Scatter plots for Eq. (3.25) where : = Z—i and m Z(Z_ﬁi) The left plot is for

unconstrained and right plot for constrained CP phases (y = 814 = 813 = (0 —45°),8 =
(180° —225%), 854 = o = (0 — 30°)) for NH spectrum (Texture B3 and By).

Case II:
Scatter plots for correlation in Eq. (3.27) (texture B3) and its u — T counterpart for case (b)

(texture By) are plotted in Fig. 3.8 - Fig. 3.10 for NH and IH.

Texture B3:

Normal Hierarchy: From the Fig. 3.8 it is seen that the plot for Eq. (3.27)(second
correlation) disallows the range ~ (0 — 0.08) when CP phases are kept unconstrained (left
plot). When CP phases are constrained to the ranges ¥ = 8 = (45 —90°), ¢ = 814 = 84 =
(0 —30%),8;3 = (180° —225°), the overlapping of lhs and rhs disappears and hence the
texture is forbidden for the range under consideration. The first correlation shows similar
phenomenology whereby the texture is allowed for the range of sin 834 > 0.02 when CP
phases are unconstrained. For similar ranges of constrained CP phases, the first correlation is

also not allowed. This shows that the texture depends on the CP phases.
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Fig. 3.8 Scatter plots for Eq. (3.27) (second correlation) where : m 2 (m“) — et and m

Meg

% The left plot is for unconstrained CP phases and right plot for constrained ranges of

CP phases : y= 8 = (459 —90%), a0 = 814 = 824 = (0—30"), ;3 = (180° —225°) for NH
spectrum (Texture B3).

Inverted Hierarchy: For IH case, we find that for unconstrained CP phases both the
correlations are allowed for all ranges of sin 634. Fig. 3.9 shows the scatter plot for the first
correlation against sin 034. However, the overlapping vanishes for the first correlation when
phases are constrained to y = o = ;3 = (180° —2259), 814 = B = (225 — 270°), 84 =

(180° —210°) and thus the texture is disallowed.

0.0 Lite '{ . . . . () Lo . . .
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

sinfsy sinfsy

Fig. 3.9 Scatter plots for Eq. (3.27) where : m %< and m ::i—i: The left and right plot is

for unconstrained and constrained ranges (y = & = &3 = (180° —225%), 84 = B = (225° —
2700), O = (180O — 2100)) of CP phases respectively for IH spectrum (Texture B3).

Texture By:

Normal Hierarchy: For the texture B4, when CP phases are unconstrained, the second
correlation is allowed for all ranges of the experimentally permissible range of sin 034 (left
plot of Fig. 3.10). However, when CP phases are constrained to y = 8 = (320° —360°), 84 =
(0—20°), 813 = a = (340° —360°), 554 = (180° —200°), the texture is not allowed (right
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plot). For the first correlation we find that the allowed range of sin 634 > 0.02 and sin 834 >

0.06 respectively for unconstrained and constrained ranges of CP phases.

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
sinfsy sinfy

Fig. 3.10 Scatter plots for correlation in case (b) for unconstrained (left plot) and con-
strained (right plot) CP phases: y = f8 = (320° —360°),814 = (0 —20°),8;3 = o =
(340° — 360°), 854 = (180° —200°) for NH spectrum where : m 2 (’,’1’1—“> — e e
(Texture By).

Inverted Hierarchy: For IH it has been observed that the texture is allowed for values of
sin B34 > 0.02 (first correlation) and all values of sin 634 = (0—0.4) (second correlation) when
CP phases are not constrained. When CP phases are constrained to y = (270° —360°), 84 =
8 = (0—-30°),8 = a = (315° — 360°), ;3 = (180° — 225°), overlapping disappears for
second correlation and the texture is not allowed. The phenomenology is similar to NH case,

however, with different ranges of CP phases.

CP phase independent textures

Case III:

Scatter plots of the correlation in Eq. (3.29) generated by the combination in Eq. (3.28)
(texture B3) and case (c) (texture By) for both NH and IH are presented in Fig. 3.11. The
correlation remains consistent for unconstrained CP phases as well as when CP phases are

constrained to different ranges.
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sinf34(NH) sinf34(1H)

Fig. 3.11 Scatter plots of Eq. (3.29) for unconstrained CP phases for NH(left plot) and IH
(right plot). Here m m mig, m mgs (Texture B3 and By).

3.6.3 Class C

The class C consists of only one member, the texture C itself. It doesnot exhibit P, ; symmetry
with any other texture. The texture C has zeros in its it and 77 entry of the mass matrix.
In (4+4) scheme of MES m,, there are a total of 6 combinations of Mp, Mg and Mg which
can generate the texture C. There is one basic combination of Mp, Mg and Mg which can be
transformed to the other five combinations via S3 group symmetry in Eq. (3.8). The basic
combination is presented in Eq. (3.30) that yields the correlation in Eq. (3.31) which is similar
to the correlation in Eq. (3.25) for texture B3. Hence the scatter plots for unconstrained and
constrained CP phases are the same as shown in Fig. 3.7. The texture C, therefore, is allowed
for all values of sin 6834 > 0.02 for unconstrained CP phases. If CP phases are constrained to
y =314 = 813 = (0—45°), B = (180° —225%), 8,4 = o = (0 — 30°), the texture is allowed

only for a small range of sin 634 ~ (0.02 —0.16). This is the same for both NH and IH cases.

3.64 ClassD

The class D consists of two textures D; and D, with zeros in their respective y, 17, and
ut, 77 entries. Both NH and IH are favored by these textures. Also D and D, possess Pz
symmetry according to Eq. (3.4). There are three basic combinations for each texture with
respective correlation which behaves differently under unconstrained as well as constrained

CP phases.
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CP phase dependent textures

Case I:

The correlation my;mg, = m,zm in Eq. (3.33) for texture D, is similar to Eq. (3.10) and (3.23)
for texture A and A, respectively. The scatter plots for NH spectrum is therefore similar to
Fig. 3.1. Similar phenomenology has been observed for IH case, the texture is not viable
for the range of sin 634 ~ (0 — 0.06), when CP phases are unconstrained. But when the CP
phases are restricted to the values of Y= 814 = 8 = o = (0—30°), 813 = &4 = (0 —45Y),
the texture is allowed only for the range of sin 634 ~ (0.12 —0.4).

Case II:

The basic combination in Eq. (3.34) (texture D) leads to the correlation in Eq. (3.35) and
case (b) (texture D») leads to correlation which is 4 — 7 symmetric to Eq. (3.35). Scatter

plots are presented in Fig. 3.12 and 3.13.

Texture Dy:

Normal Hierarchy: The NH spectrum of the texture D with the correlation in Eq. (3.35)
is allowed for all ranges of sin 834 with or without constraining the CP phases and hence is
CP phase independent texture.

Inverted Hierarchy: Fig. 3.12 shows that for unconstrained CP phases, the texture is
allowed for all values of sin 834. However, the correlation is not consistent for small ranges

of Y= 84 = (0—10%), 83 = 814 = (0—30%), & = (0 —20°) and B=unconstrained.

Texture D5:

Normal Hierarchy: In the NH case, overlapping of the lhs and rhs of the correlation
ceases for unconstrained CP phases and hence the texture is forbidden (Fig. 3.13, left plot).

Inverted Hierarchy: For TH the texture is allowed for sin 634 ~ (0 — 0.2) when CP phases

are unconstrained (Fig. 3.13, right plot). However, the texture is not allowed when CP values
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Fig. 3.12 Scatter plots for Eq. (3.35) with unconstrained (left) and constrained (right) CP
phases :(y = 84 = (0—10°), 813 = 8§14 = (0—30°), @ = (0 —20%), B=unconstrained) for

IH spectrum. Here : m %, m 2 ("ni—’j:) (Texture Dy).

are constrained as ¥ = 814 = (90° — 130%), ot = B = &4 = (0—30Y), §;3 = (45° —907).

0.0 0.1 0.2 0.3 0.4
sinfs4(NH) sinfs4(IH)

Fig. 3.13 Scatter plots for correlation in case (b) with unconstrained CP phases. The left and
right plot is for NH and IH respectively. Here: m 7<t, m 2 (;”1—25) (Texture D).

Case III:
The basic combination in case (c) for texture D, leads to the correlation which is g — 7
symmetric to Eq. (3.37).
Normal Hierarchy: For NH case, the texture is not allowed as the overlapping between
the left-hand side and right-hand side vanishes even when CP phases are kept unconstrained.
Inverted Hierarchy: For IH, it has been observed that for unconstrained CP phase
the texture is allowed for sin 634 > 0.02 in Fig. 3.14. But when constrained to different
ranges of CP values y = 8 = (135 — 180°), 814 = (315" —360°),8;3 = (0 —90%), ¢ =
(270° — 3159), 84 = (180° — 225°) the texture is not allowed.
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Fig. 3.14 Scatter plots for case (c) with unconstrained (left) and constrained CP phases (right)
(y =B = (135 — 180°), 514 = (315° — 360°), 813 = (0 —90°), o = (270° — 315°), 8,4 =
(180" —225%)) for IH spectrum. Here: m e, 2 (%;) (Texture Dy).

CP phase independent textures

Case IV:

The correlation my,, mg; = mﬁ ¢ generated by the basic combination in case (a) for texture Dy
is similar to the correlation in Eq. (3.16) and (3.19) for the texture A;,A; respectively. The
correlation plots for NH are therefore similar to Fig. 3.5. For IH, the correlation plot shows
similar phenomenology, whereby the texture remains as an allowed texture for any ranges of

CP phases. The texture, therefore, is CP phase independent.

Case V:
The combination in Eq. (3.36) for the texture D gives the correlation in Eq. (3.37). In this

case also, we have seen that the texture is allowed for all ranges of CP values.

3.6.5 ClassE

The first correlation in Eq. (3.39) for texture £ being similar to Eq. (3.35) exhibits CP phase
independence. However, when the CP phases are unconstrained, the lhs and rhs of the second
correlation for texture E7 show very poor coincidence within 30 range of experimental data

(Fig. 3.15, right plot) . Thus, texture £; may be ruled out.
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Similarly, for texture E5, the second correlation shows poor overlapping (Fig. 3.15, left
plot) and on the other hand the first correlation being similar to that of case (b) for texture D,

is not consistent for NH spectrum. Thus, texture E» is also ruled out.

£0.008 S :

g £0.014 1

ﬁ 0.006 7. ﬁ 0.012 }

" g 1,0.010 |

= -

% 0.004 {8 £0008}

g , £0.006 |

IE 0.002 ¢ '30.004 H

g £ 0.002 | S

= -

£0.000 —— - £0.000 - :
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

sinfz4(Texture E) sinf34(Texture E,)

Fig. 3.15 Scatter plots for Eq. (3.39) with unconstrained CP phases. Here: m mgm.y —
MerMy s, W mymes (Texture Eq, left plot); m mysmec — meymes, m mymes (Texture Ep,
right plot).

3.6.6 ClassF

The class F consists of three textures Fi, F> and F3 which can fit NH, IH and quasi-degenerate
(QD) spectrum. However, MES mechanism restricts only to NH and IH spectrum. Also the
textures F, and F3 possess P, symmetry between them. There exists one basic combination
of Mp, Mg and My for each texture which leads to their specific correlations. The consistency

of the correlations is verified in the same procedure:

Texture Fj: The correlation m,.mgz = mgs in Eq. (3.41) is similar to Eq. (3.29) for texture
B3 which shows no variation to CP phases (Fig. 3.11). The second correlation in Eq. (3.41)

shows variations with CP phases. This can be seen in Fig. 3.16.

Texture F»: The combination in Eq. (3.42) leads to two correlations in Eq. (3.43). Phe-
nomenology of the first correlation has already been presented in Fig. 3.5. The correlation is

CP phase independent for both NH and IH spectrum. Scatter plots for the second correlation
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are presented in Fig. 3.17.

Texture F3: The first correlation of texture F3 is similar to Eq. (3.10) which has already
been plotted in Fig. 3.1. The second correlation remains unaffected with variation in CP
phases which depicts that this texture is independent of CP phases.

For the textures F, F,, F3 one correlation shows CP dependency while the other is CP

independent. Thus the textures shows hybrid nature of CP dependence

CP phase dependent textures

Texture F;:

For both NH and IH spectrum, the texture is allowed for the range of sin 634 > 0.02 when
CP phases are unconstrained. However, when constrained to range y = &4 = (130° —
180°),814 = B = 813 = & = (0 — 30°) the texture is allowed for two ranges of sin 634 ~
(0—0.04) and ~ (0.3 —0.4) for NH case. Similarly for the constrained ranges: y = (210° —
225%), 814 = (0—30%), B = (120° — 150°), 83 = (140° — 180°), ¢ = &4 = (340° —360°)
the texture is allowed for two ranges of sin 634 ~ (0.02 — 0.1) and =~ (0.35 — 0.4) for IH case.

Scatter plots for NH spectrum of texture F; are presented in Fig. 3.16.

sinfsy

Fig. 3.16 Scatter plots for Eq. (3.41) (second correlation) with unconstrained (left) and
constrained CP phases (right) (Y = &4 = (130° — 180°), 814 = B = 813 = o = (0—30)) for

. Myt ) Mup MusMz
NH spectrum. Here: m 2 (mm> s ™ T (Texture F1).

Texture F>:

For NH spectrum with unconstrained CP phases, texture is not allowed for the range sin 634 ~
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(0 —0.08). When CP phases are constrained to y = (315° —360°), 814 = (0 —30%),8 =
(270° — 3159), 813 = (120° — 180%), & = (0 — 45°), 6,4 =unconstrained, the overlapping
ceases and the texture is not allowed.

Similar phenomenology has been observed for IH spectrum. When CP phases are
unconstrained the texture is allowed through out the range sin034 = (0 — 0.4). Again
the texture is not viable when CP phases are constrained to the ranges of choice: y =
(0—100°), 814 = (0—30°), ¢ = (0 —60°), 813 = 84 = B =unconstrained for IH spectrum.

We present the scatter plots for NH in Fig. 3.17.
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Fig. 3.17 Scatter plots for Eq. (3.43)(second correlation) with unconstrained(left) and con-
strained CP phases(right) (y = (315 —360°), 84 = (0 —30%), B = (270° — 315%), ;3 =
(120° — 180°), ¢ = (0 — 45), 8,4=unconstrained) for NH spectrum. Here: m 2 (Z—:) — Max

My’
m % (Texture F>).

es

CP phase independent textures

The first correlation in Eq. (3.41)(Texture F7), Eq. (3.43) (Texture F3) and second correlation
of texture F3 doesnot respond to CP variations.

For convenience the results are summarized in Table 3.3 where we have presented the
allowed range of sin 634 for each texture for both unconstrained and constrained CP phases.
The constrained CP phases mentioned here are those values of CP phases for which the

(10) (1)

scatter plots for each textures are obtained. Texture B3 with M 1()9) ,Mél); By with My ™ Mg’

E\, E», F1, F; and F3 have 2 correlations each and thereby have two allowed ranges of sin 034.
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Table 3.3 Results: Textures with different combinations of Mp, Mg, Mg allowed in the range
of sin 634 are presented. Second column represents the basic combination of Mp and Mg
(Mg = M, for all the cases). Textures not allowed by constrained CP phases are labelled as
‘NA’. Textures allowed for all values of sin 034 are labelled as ‘All’.

Texture Mp,Mg No. of Range of sin 634 when CP phases are
correlations Unconstrained Constrained
NH IH NH IH
Aq (1),2) 1 > 0.08 - >0.12 -
3),2) 1 (0.06—0.2) - (0.12—-0.22) -
5),2) 1 All - All -
Ar 2),2) 1 > 0.08 - >0.12 -
4),(2) 1 All - NA -
(6),(2) 1 All - All -
B3 (7),(1) 1 > 0.02 > 0.02 (0.02—0.16) (0.02—0.16)
9),(1) 2 > 0.02 All NA NA
> 0.08 All NA > 0.08
(11),(2) 1 All All All All
By ®),(1) 1 > 0.02 > 0.02 (0.02—0.16) (0.02—0.16)
(10),(1) 2 > 0.04 > 0.02 > 0.02 > 0.04
All All NA NA
(12),(2) 1 All All All All
C (23),(1) 1 > 0.02 > 0.02 (0.02—-0.16) (0.02—0.16)
D, (13),(2) 1 > 0.08 > 0.06 >0.12 >0.12
(15),(1) 1 All All All NA
(17),(2) 1 All All All All
D, (14),(2) 1 All All All All
(16),(1) 1 (0—0.06) (0—0.22) NA (0—0.02)
(18),(2) 1 All > 0.02 NA NA
E, (19),(1) 2 All - All -
> 0.04 - NA -
E, (20),(1) 2 (0—0.06) - NA -
> 0.04 - NA -
F (24),(3) 2 All All All All
> 0.02 > 0.02 (0—0.04) (0.02—0.1)
(0.3—-0.4) (0.35—-0.4)
I2) (21),(3) 2 All All All All
> 0.08 All NA NA
F; (22),(3) 2 > 0.08 > 0.06 >0.12 >0.12
All All All All
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The second correlation for texture Fy allows two values of sin 034 viz. (0 —0.04),(0.3—0.4)
for NH and (0.02—0.1),(0.35 —0.4) for IH (Constrained CP phases).
Phenomenologically allowed two-zero textures of (A{,A2,B1,B2,B3,B4 and C) in 3
active neutrino scenario [78] as well as in the 3+1 picture along with sterile sector [96]
have been realized in MES with the corresponding consistent correlations excluding the
textures B and B; in the m‘\‘,X4 not being matrices of rank 3. Again the two-zero textures

(D1,Ds,E,E>, Fy,F, and F3) which are phenomenologically allowed in (3 + 1) picture but

not in 3 active neutrino case, have also been realized in MES with consistent correlations.

3.7 Symmetry realization

Zeros of the fermion mass matrices which propagate as zeros of my can be realized by an
Abelian flavor symmetry Z, with an extended scalar sector. The paper [100] employed the
Abelian symmetries in the context of type-I seesaw mechanism to generate the zeros in
the arbitrary entries of the fermion mass matrices. For symmetry realization of the viable
textures in the context of MES mechanism under consideration, we adopt the method-2 of
Ref. [100]. We are considering the charged lepton mass matrix M; to be diagonal through
out the chapter. We have found the Zg symmetry group suitable for realization of the textures.
The Zo symmetry group consists of the elements (1,0, w?, 0°, 0*, ®°, 0®, ®’, ®®) with
©=es being the generator of the group. We present a representative case of the symmetry
realization for texture A; case(a).

The transformations of the leptonic fields under Zy are considered as-

D, = ®'D,, er— @er,  Vey = OVep
Dy, — @D — o Vi — 01V, (3.44)
ur ur HR HR, UR UR :

Dy — oDy, e — 0O1R, Vi, — @V,
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Dj,, Ig and vy, represent the SU(2);, doublets, the RH SU (2),, singlets and the RH neutrino
singlets respectively. The bilinears Dj, Ig, D, Vi, v,Z;e clv jr are respectively relevant for M

,Mp and Mg and they transform as-

o0 0 ot 0 0 o 0’ © o
~ ~ T 1
Dylip= o 1 @], Duvip=|w® 1 o |5 Vil Vi=|w’ o 1
0® o o’ 0 o o° 0 1 o
(3.45)

We introduce three SU(2);, doublet Higgs (P, D, ®3) transforming under Zy as-
d; 5P, DDy, Dy 0’Ds. (3.46)

The Zy invariant Yukawa Lagrangian becomes

—D% - Y]ZIDeLq)ZER + Yzlzl_)uLcI)] ‘u,R + Y313D1Lq)3 TR + YlDzDeLqB3 VﬂR (3 47)
+Y2D1D‘ul‘i2veR + YZDZD’U,L@] VIJR + YSDIDTLé:‘SVER + Y3D3DTL¢ZVTR + h.C..

The Higgs field after acquiring a vacuum expectation value gives the following form of M;

and Mp-
me 0 0 0 b O
Mi=10 my 0|, Mp=1d e 0]- (3.48)
0 0 mg g 0 I

We also introduce a scalar singlet y for Mg transforming as-

2 — o'y, (3.49)
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which leads to the following form of Mg

A 0 O
Mr=1|0 0 E|. (3.50)
0O E O

To prevent bare mass term of the form S¢S as demanded by MES model, we transform the
singlet field ‘S’ as -
S — oS. (3.51)

Two scalar singlets A1, A, transforming as
)yl — (1)7)»1 s /12 — (1)312, (3.52)
leads to the following form of Mg

Mg = (sl 0 S3) ) (3.53)

which are the required zero textures in Eq. (3.9) for texture A;.

Symmetry realization of all the other S3 symmetric textures follows a definite pattern.

We take the element “A”of the S5 group?

010
A=110 0f, (3.54)

0 01

2Refer sec. 2.3 for details.
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whereby there exist an interchange of the first and second column of the matrix “A”. Following
the similar pattern if we interchange the Zy transformation of the RH v singlets of the basic

combination in Eq. (3.44), that is, exchanging v,, < vy, or
4
Ver = O Vep,  Vyp —> OV, (3.55)

meanwhile keeping the transformation of vz, as well as that of D iR, ®P,x and A the same as
that for the basic case in Eq. (3.44), (3.46), (3.49), (3.51) and (3.52) we arrive at the following

set of matrices

a 0 0
Mp=|d e 0|, Mgr=Mg, Ms:(O 52 53)- (3.56)

0 h I

The above set of matrices in Eq.(3.56) are simply the transformations of the basic set of
matrices in Eq.(3.48) and Eq.(3.50) by the element “A” of the S3 group.

Similarly one can arrive at the symmetry realization of the other textures by simply
interchanging the transformations of the RH neutrino singlets according to the interchange of
the columns of the respective elements of S3 group for each set of combinations of Mp, Mg
and Mg, meanwhile keeping all other field transformations the same as the basic texture for
each case.

Symmetry realization of all the basic combinations for each texture are listed in Table 3.4.
For all the basic combinations the right handed Majorana neutrino mass matrix is the same,
Mg = My, Therefore, in our work we keep the transformation of the right handed neutrino
singlets Vg, to be the same as Eq. (3.44) for each basic texture. The transformations of the left
handed SU(2),, doublets D, , right handed SU (2),, singlets I, Higgs doublets ¢'s, singlet

field ‘S’ and scalar singlets A's are presented in Table 3.4.
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Table 3.4 Zy Symmetry realization of all the basic cases.

Texture Mp,Ms De Dy, Dy er,lr, T ¥'s S Als
A(ii)  3)2) @, 0,0* o' 1,0° 1,0%0° o o o
iii 5(2) o1, w00 1,000 o o o
( ) ( ) ) 9 ) ) Y )
A 2)2) o e @00 1,000 0o o0
(i) 4Q2) o000 o' 0’1l 1,0%0° o o o’
(iii) (6)2) 0% 0,1 00'0 l,0®o o o 0°
B;(i) (1) o,0,0 oo’ o® 1,0%0° o I1,0b
(@)  (9)(1) o, 0,0* 1,00° 1,0%°0° o 1,0°
iii 12 1,0 o’ ol 00t 10,0 o o o
( ) ( ) b 9 ) bl 9 )
Bs(i) (8)(1) o, 00" 00 e 1,00 o 1,0b
ii 10)(1) o’,0*, 0’ 1,0%0* 1,0°,0 o 1,08
( ) ( ) 9 Y ) ) ) )
(iii)  (12)(2) 1,0°,0? o’ 0t o 10,00 o o o
C 23)(1) @, 0% 0* o 0’0 1,000 o 1,0
Di(i) (13)2) 0’0’1 o' o 1,000 o o, o°
ii 15)(1) o,0",0® o, 0,0° 1,0°%0* o 1,08
( ) ( ) I 9 ) ) Y )
(i) (17)(2) o*0’,0® o o' 0’ 1,0% 0’ o o o’
Dy(i) (14)(2) o, 1,0° oot 1000 o o o
(i)  (16)(1) o’,0%0* o 0 e’ 1,0%0* o 1,08
(i)  (18)(2) o*0b 0’ o o’,0* 1,0%0° o o, 6o’
E; (19)(1) b 0" 0 o’ o0 loo® o 1,08
E> 20)(1) b @, 0* oo, 0 1,00 o 1,o0°
F 24)(3) 1,0°, 0 Lo, 0° loo® o 1,0
23 2D2) o’ l,0* 01,0 10,0 o o, o°
F (22)(3) o, 0%1 0,01 1,00 o 1,0

3.8 Conclusion

In chapter 2, we explored the 3 x 3 neutrino mass matrix my and found that no two-zero
textures can be realized in the context of MES mechanism and predictive scenario. In this
chapter we have realized the two-zero textures of (4 x 4) neutrino mass matrix my in the
context of MES mechanism under (4+4) scheme. No two-zero texture of Mg has been useful
for realizing the desired textures. As demanded by MES mechanism, we consider only
those two-zero textures, which are of rank 3 (A{,A>,B3,B4,C,D,D,,E,E>,Fi,F>,F3). On
realizing the textures we have arrived at certain correlations for each texture which are then

checked under recent neutrino oscillation data. In our analysis, we have considered the values
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of sin B34 = (0.0 — 0.40). The viability of a texture has been checked under two conditions:
(i) unconstrained (0 — 360°) Dirac and Majorana CP phases and (ii) constraining the CP
phases to different segment of values.

In our analysis, it has been observed that when CP phases are unconstrained, recent
neutrino oscillation data disfavours both the texture E;,E; of class E, as its correlation
remains inconsistent. Similarly, out of three combinations of Mp, Mg and My for texture D,
two combinations in case (b) and case(c) for NH are ruled out. Our results of the numerical
study of the textures have been summarised in the Table 3.3.

Under CP phase dependent textures, we have found there are a number of textures which
is allowed for some ranges of sin 834 when CP remains unconstrained. However, when CP
phases are constrained to different ranges the texture requires different ranges of sin 834 for its
viability. This kind of behaviour have been observed for textures A;,A3,B3,B4,C,D1,D7, F, F3
with combinations : Mp, Mg = (1),(2),(3),(2); (2),(2); (7),(1); (8),(1); (23),(1); (13),(2);
(16),(1) (IH); (24),(3) (second correlation) and (22),(3) (first correlation) respectively.
These textures are sensitive to CP phases in the sense that the different ranges of CP values
demands different ranges of sin 634 for its viability (Table. 3.3).

Again for a number of cases it has been found that the texture is allowed for all ranges of
sin 634 when CP phases are kept unconstrained, but has failed to survive when CP phases
are constrained to certain ranges. Such behaviours are seen for texture A,, B3, B4, D1, >
with the combination of Mp, Mg = (4),(2); (9), (1) (first correlation, IH); (10), (1) (second
correlation); (15)(1) (IH) and (21), (3) (second correlation, TH) respectively.

For certain textures we have seen that for unconstrained CP phases the correlations
survived for a small range of sin 634. However, for constrained ranges of CP phases, it has
been found that the correlations remain inconsistent and the textures are not allowed. This is
evident from Table 3.3 for texture B3, D», F> for Mp,Ms = (9),(1) (NH); (16), (1)(NH) &
(18),(2) IH) and (21),(3) (second correlation, NH) respectively.
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Interestingly we have found that there also exists certain textures where presence/absence
of CP phases doesnot affect its viability and the texture remains as an allowed texture for all
values of sin 034. This is evident from Table 3.3 for texture Ay, Ay, B3, B4, D1, Dy, F}, F, and
F3 for Mp,Ms = (5),(2); (6),(2); (11),(2); (12),(2); (15), (1) (NH) & (17),(2); (14),(2);
(24),(3) (first correlation); (21),(3) (first correlation) and (22),(3) (second correlation)
respectively.

The viable textures in our study are finally subjected to symmetry realization, where we
have undertaken the Zg Abelian symmetry group. On realizing the textures we required : 3
Higgs’ doublets (®) one of which is the SM Higgs transforming trivially under Zy, scalar
singlet y for obtaining the four-zero texture of My and two singlets A to realize the one-zero

texture of M.



Phenomenology and group symmetry

realization of fermion mass matrices for

texture zeros of MES m’**

4.1 Introduction

This chapter is based on our work in Ref. [125]. In this chapter, we shall explore the

(5+3) and (6+2) predictive cases for realization of two-zero textures of MES m“‘,“ along
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with one/two-zero textures of Mg. We also discuss the S3 group permutation between the
fermion mass matrices under MES mechanism which leads us to a minimum number of basic
combination of Mp, Mg and M. mix“ being a matrix is of rank 3 demands one of the mass
eigenvalues to vanish and hence one has to consider one of the active neutrinos massless as
vanishing sterile neutrino mass becomes trivial. Out of 15 viable two-zero textures, only 12
textures are of rank 3. We find that the (5+3) and (6+2) schemes are more constrained than
the (4+4) scheme in chapter 3. Out of 12 two-zero textures of rank 3, only 9 textures can be
realized within (5+3) scheme. Textures E;, E, which were realizable under (4+4) scheme
but ruled out by neutrino oscillation data, cannot be even realized under the (5+3) scheme.
Moreover, none of the textures can be realized within the (6+2) scheme. It is to be noted
that although there are a number of allowed three-zero [126] and four-zero [127] textures of
m‘\‘,x“, but they can never be realized in the MES mechanism, as Mp and Mg should remain
as non-singular in MES.

Enforcing zeros in m‘\‘,X4 under (5+43) gives a number of correlations among the neutrino
mass matrix elements m;;. We check the consistency of the correlations of each of the
texture by plotting scatter plots with the current neutrino oscillation data. We also present
the interplay of Dirac and Majorana CP phases on the viability of the textures. The coveted
textures are then realized using Abelian flavor group symmetry Zg by extending the scalar
sector of the SM.

The chapter is organized as follows: In Section 4.2 we present a brief discussion on MES
mechanism. Section 4.3 includes a brief review on five-zero textures of Mp and three-zero
textures of Mg along with zero textures of Ms. Also, S3 permutation of fermion mass matrices
under MES mechanism is presented in Sec. 4.3. In Section 4.4 we present the realization
of the two-zero textures. In Section 4.5 we check the viability of the textures under recent

neutrino oscillation data for both unconstrained and constrained CP phases. Symmetry
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realization of the viable textures are presented in Section 4.6. Finally, we conclude in Section

4.7.

4.2 Minimal extended seesaw (MES) mechanism

In MES mechanism, Standard Model (SM) is extended with three right-handed neutrinos and
one gauge singlet chiral field ‘S” which leads to the full neutrino mass matrix in the basis

(VL. V§,5°) as

0 Mp O
my T = ML My MI |- (4.1)
0 Mg O

Block diagonalizing Eq. (4.1) and considering the hierarchy Mg > Mg > Mp, leads to the
effective neutrino mass matrix in the basis (vz,S5) as
MpMz'MT  MpM;'MT
mi* = — kD RSN (4.2)
M(Mz )T ME Mg M]
The square matrix in Eq. (4.2) contains four light eigenstates corresponding to three active

4x4 .
v 18

neutrinos and one sterile neutrino [68]. However, the determinant of the mass matrix m
zero with the condition of Mp and Mg being non-singular. Thus the mass matrix m§** is a
matrix of rank 3. This implies that at least one of the active neutrino mass states remains as
massless.

In our work, we shall consider the MES neutrino mass matrix in Eq. (4.2) to realize the
two-zero textures of (4 x 4) neutrino mass matrix m, of rank 3. We find that only 9 out of 12

two-zero textures of rank 3 can be realized within the (5+3) scheme. Three textures C, E1, E»

under (5+3) scheme and any of the textures under (6+2) scheme cannot be realized in the
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context of MES mechanism. In the paper [96] authors found the following: (i) the textures
Aj and A; belong to class A, which allow only the normal heirarchical mass patterns, (ii) the
textures D, D; of class D allow both NH and IH mass orderings, (iii) the textures B3, B4 of
class B and F1, F>, F3 of class F favors all the three mass patterns: normal hierarchy (NH),
inverted hierarchy (IH) and quasi degenerate(QD). As one of the mass eigenvalues of the
matrix mﬁx“ in MES is massless, so the NH and IH mass patterns of the textures are allowed
in MES but the QD textures are not allowed. The 9 two-zero textures of rank 3 are presented
in Table 4.1.

Also, Py ; symmetry [96] exists between the textures Aj —Ay; B3 — By, D1 — D, and

F, — F3 according to Eq. (4.3). However, such a symmetry does not exist for the texture Fj.

By = P B3Py, (4.3)
where
1000
0010
Py = (4.4)
0100
0001

4.3 (5+43) scheme and S; permutation group

3-zero textures of Mg:

The right-handed Majorana mass matrix Mg is symmetric with six independent entries
and so we have %C3 = 20 possible 3-zero textures, out of which only 14 are non-singular

(Table 4.2). However, according to Eq. (4.8) S3 group permutations permit us to work with
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4.3 (5+3) scheme and S3 permutation group

Table 4.1 Viable two-zero textures [96] of rank 3. Here ‘X’ indicates the elements with

non-zero entries.
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Table 4.2 All possible non-singular three-zero textures of Mg
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only three basic 3-zero textures M (7), M 129) and M Iglo) as follows:

A0 0 A B O A B O
M= opol| MP=|BoE]| MP=|Bo0o0 ]| @5
00 F 0 E 0 00 F

It is noted that M I(J) is uninteresting as its inverse matrix consists of all entries non-zero. So

zeros of my can never be generated whatever the choice of Mp may be.

5-zero textures of Mp:

As the Dirac neutrino mass matrices are non-symmetric with all 9 elements being
independent, there might be °Cs = 126 possible 5-zero textures. However, as the MES
mechanism demands Mp to be non-singular, 90 such textures of Mp which have either
row zero, column zero or block zero are not useful for being singular. The remaining 36
non-singular textures are viable. Again we find that 26 textures of Mp (Table 4.3) out of
aforesaid 36 textures play the role in the basic combinations with My in Eq. (4.5) and My
(Eq. (4.6),(4.7)) to reproduce the desired two-zero textures of mﬁx“. All other combinations

can be obtained via S3 transformations according to Eq. (4.8).

Zero textures of Mg:

The 1 X 3 row matrix Mg = ( S| S s3) can have two possible zero textures:

(1) One-zero textures:

Mél) = (0 kY] S3>7 Mé‘z) = (Sl 0 S3) ) M§3) = (Sl $2 0) (4.6)
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4.3 (5+3) scheme and S3 permutation group

Table 4.3 5-zero textures of Mp required in basic combinations.
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(2) Two-zero textures:

S3 invariance under (5+3) scheme
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We find that there exists S3 transformations! (Eq. 4.8) between a number of combinations

of Mp, Mg and Mg under the (5+3) scheme which keeps mi‘,x“ in Eq. (4.2) invariant.

Mp — MpZ, Mg —Z'MrZ, Ms— MsZ. (4.8)

These transformations reduce the voluminous work of dealing with a large number of possible

combinations of Mp, Mg and Mg under the (5+3) scheme to only a few basic combinations.

4.4 Realization of two-zero textures

We have 36 five-zero textures of Mp, 13 three-zero textures of Mz and 6 one and two-zero
textures of Mg under (5+3) scheme mentioned in the previous section to realize the two-zero

textures of m$** in MES. There exist 210 number of possible choices for the combinations

of Mp, Mg and My being effective for realization of our desired two-zero textures of mﬁ”.
Again the complexity of the texture study of these 210 combinations can further be reduced
by S3 transformations to only 42 basic combinations for each of which there are five S3
transformations. The zeros of Mp, Mg and Mg propagate to mﬁx“ through MES formula
in Eq.(4.2) which acquires a form of two zero texture. In this process we also obtain the
correlations among some of the matrix elements m;; with i, j = e, it,T,s of m‘tx“ as results
of the functional relations among the parameters of Mp, Mg and Mg. Again the question of
viability of a two-zero texture is addressed by the consistency check of these correlations
under the current neutrino data. This analysis shall follow in the next section. Now we

present three representative cases out of 42 basic combinations for understanding of the

problem:

IFor details, refer section 2.3, chapter 2
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Case I: The following basic combination of
11) 6)

Mp=MY,  Mp=m)",  Mg=m" (4.9)

in Eq. (4.5), Table 4.3 and Eq. (4.7) respectively used in Eq. (4.2) leads to the form of m‘\‘,X4

as
a2 0 (bA—aB)l  (bA—aB)s;3
A AE AE
0 0 d &
4x4 E E
) _ : (4.10)
(bA—aB)l o PR Is3B>
AE E AE? AE?
(bA—aB)s3  es3 ls3 B2 538>
AE E AE? AE?

This is the texture Bz in Table 4.1 and reproduces the following correlation

Mer  Mpyr  Mgg Mgy

m
= = = =4/ Ly “4.11)
Meg mys Mzg N Mg

According to Eq. (4.8) S3 transformations of the basic combination in Eq. (4.9) give a number

of cases which generate textures B3 with the same correlations as in Eq. (4.11). These are

presented in Table 4.4.

Case II: Another basic combination of

(21)

Mp=MY,  Mp=mZ",  Mg=m" 4.12)

in Eq. (4.5), Table 4.3 and Eq. (4.7) respectively applied in Eq. (4.2) produces the following

nty
2B? ce (hA—gB)c cs3AE?
AE? E AE B2
ce 0 0 es3
4x4 E E
m{Pd — (4.13)
(hA—gB)c 0 i (hA—gB)s3
AE A AE
ciAE? es;  (hA—gB)sy  s3B

B2 E AE AE2
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Table 4.4 §3 symmetric textures of the basic combination in Eq. (4.9).

Case MD MR MS
a b 0

@ [a00] M? MO
00 I
0 b c

(b) 0eo0| M) MY
g 00
0 b ¢

() 00 f| MP M
g 00
a 0 ¢

@ (200 MV MY
0 h O
a 0 ¢

@ (00 ] MY MY
0K 0

This is of the texture D in Table 4.1 that leads to the following correlation

Mee  Mes  Meg  Mepy [Mee (4.14)

Mg M Mz mys Mg

In this case also there exist another five combinations of Mp, Mg, Mg which are S3 symmetric

to Eq. (4.12) giving the same correlation as in Eq. (4.14) (Table 4.5).

Case IlII: The basic combination of

MO u u®

) (4.15)

in Eq. (4.5), Table 4.3 and Eq. (4.7) respectively used in Eq. (4.2) leads to the texture B4 and
it reproduces two correlations:

Mep _ Mee (4.16)

MgeMss = M2, (4.17)
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Table 4.5 S5 symmetric textures of the basic combination in Eq. (4.12).

Case MD MR MS
0 0 ¢

@ [a00] M? MO
g h O
a 00

(b) 0eo0| M) MY
0 h I
a 0 0

() 00 s | MP M
0 h I
0 b 0

@ [a00] M MY
g 0 I
0 b 0

@ (00 ] MY MY
g 0 [

However, there exist another five combinations (Table 4.6) which are S3 symmetric to
Eq. (4.15) giving the same correlations as in Eq. (4.16) and (4.17).

The remaining 39 basic combinations of Mp, Mg and Mg along with their correlations
are presented in Table 4.7 and 4.8. In our analysis we have found that some combinations are

having multiple correlations.

4.5 Analysis of the textures under current neutrino data

In our analysis we calculate the mass matrix elements m;; (Eq. (A.1)-(A.10), Appendix A)
where i, j = (e, 4, T and s) using the current neutrino data?. We have chosen the Dirac and
the Majorana CP phases in the ranges (0 — 27). To check the viability of a texture, the left
hand side (lhs) and the right hand side (rhs) of the correlation(s) of the texture are plotted
against sin 634 which is has an upper bound < 0.4 [109]. In our analysis, we have taken its

lower limit as 0. If there happens a reasonable overlapping of the plots of lhs and rhs, then

Refer section 1.7, Chapter 1.
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Table 4.6 S3 symmetric textures of the basic combination in Eq. (4.15).

Case MD MR MS
0 b 0

@ [(0ef ] M MY
ho o
0 0 ¢

(b) dof| My M
0h o0
0 b 0

© deo| MP? M
00 I
0 0 ¢

) 0e f| M MY
g 00
a 00

© [deo0] MY MY
00 h

the texture is considered as an allowed texture within the overlapping range of sin 834. We
also study the viability of the textures when the CP phases are constrained to some random
ranges of values within (0 —27). In analysis, we categorise them as (i) CP phase dependent

textures and (i1) CP phase independent textures.

4.5.1 CP phase dependent textures

This category of textures is viable for unconstrained CP phases within the range (0 — 27),
but there may exist some combinations of segmented ranges of CP phases 0;3, 014, 024, &, 3
and 7y for which the overlapping of plots of lhs and rhs of the correlations of a texture may
partially or completely disappear. Again if there are more than one correlations of a texture
and at least one of them shows CP phase dependence, then such texture is also considered
under this category. In the analysis, we find that with constrained CP phases, some of the
textures are completely ruled out i.e., there are no overlapping of plots of lhs and rhs within

the range of sin 634, while some of them retain their viability but in the squeezed range of
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Table 4.7 Basic combination required for realization of the allowed two-zero textures: Ay,
Ay, B3, B4 under (5+3) scheme and their respective correlations.

Texture Mp,Mg,Ms Correlations

Ar(@) - (D,0)(D) mes(mfsm#u — My cys) = Mg (Mgghyy — mis)
(@) (.96 (a) m_ﬁ; = Z—g . (B) myumg =mj
(iii)  (3).(9).(6) e = 'r’;—’;: = Mo M [
(v)  (.9.0) (@) T&= ’,Z—K . (b)) myumg = mis
(v)  (5),(10),(5) M Mt e

Az(l) (6),(10),(1) Mes (mlism” - mIJTst) = Mep (mssmrr - m%s)
@ &OE (@) == (b) e, =,
(iii)  (7),(10),(5) e — Tt Tni’j = T [
(v)  9),09).6) (a) "’;—i‘; = ':1_!;; (b)) meemgs = m2,
(V) (10),09),(6) R T

B3(i)  (11),09).(6) = 'r';—‘;: = Mo Mo | fris
(ll) (12)’(10)’(5) ;n’l_j: = :;—l:: — ’}Z‘;‘: — ;”1_‘: — :71_‘:
(”l) (7)’(9)’(6) (a) Z_i-z - ’:n1_Z’ (b) MeeMlgy = mgs
() ADOWO (0 FE=GE () mens =,
(v)  (14),(10).(1)  mee(meemus — myieg) = Mer(Merhiys — MesiMyz)

Mey — Myg _ Myy  Mysg muy

Bi(i)  (15),09),(6) ke Ve
(”) (16)’(10)5(5) mLe’l:m: mirf = mL,u’: e m—";: — mL:
(i) O (@) 7= (B) ey =,

<lv> (17)’(9)’(6) (Cl) :nn—e:: = nr:t_i;:’ (b) MeeMsg = mgs

(V> (18),(10),(1)  me, (muumrs - musmur) = Mey (me,umrs - mesmur)

sin B34. These two categories are referred to as Category (I) and Category (II) below.

Category (I): There is a class of textures which are allowed for some ranges of sin 034
when CP phases are unconstrained. However, for some ranges of CP phases, the textures

cease to be viable within sin 634 = (0 — 0.4). This is illustrated as follows:

We pick up the case of the texture Bsz(i) in Table 4.7. Each of 5 expressions in the

correlations for B3(i) in Eq. (4.11) separated by equality sign is plotted against sin 834 with
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Table 4.8 Basic combination required for realization of the allowed two-zero textures: Dy,
D», Fi, F», F3 under (5+3) scheme and their respective correlations.

Di(i)  (19),10)(1) M tnee — (e M) |
(i) 200.96) (a) =7 (b) meomg =g
(i) (2),(10),(5) s = e = A\ e
(iv)  (2D,09).(6) e =fe=le =t o [l
(v)  (16),9.6) (a) meE=1"e, (b)) meems = mg
. Mee Mepy Mee mé% [
Dy (i)  (23),(10),(1) Moy m_;:l = \mgy — mT#’;) -
(i) (22),9.6) (a) p== Z—: (b)  myymgs = mi,
(i) (8),(10),(5) e = e = A
(iv)  (24).(9).6) e =le = fe ot o [T
(v)  (A2.0.6) (a) pE=7e (b) meemss =
F (l) (24)’(10)’(2) MeelMgs = mgs
(i) (21),(10),(2) Mgehss = M2
(i) (A3 Th T
() (13),(7)(3) T = e
B(i)  (15),(10),(2) Mypmgs = My
(i) (10),(10),(2) My Mg = Mg
(iii) — (D(D.,(3) =
(iv)  (22),(D.(3) — =T
F(i)  (11),(10),2) Meeimgs = m%
(i) (3),(10),(2) Myrmygs = m3
(iii)  (25),(D(2) e =
(v)  (26),(D,(2) =

its range (0 —0.4) and using 30 range of the parameters of neutrino data (Section1.7, Chapter

1) and expressions for m;;, where i, j = (e, it, T and s) in the Appendix. The plots are done

first without constraining CP phases i.e., for the whole range (0 — 27). Fig. 4.1 shows the

correlation plot of Eq. (4.11) for Normal hierarchy (NH) case of texture B3(i).

From Fig. 4.1 it is evident that the correlation in Eq. (4.11) is consistent only for

sin B34 > 0.1. For values of sin 834 < 0.1 the overlapping of the expressions 'Z—EZ and

mee
Mgy
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Fig. 4.1 Scatter plot for Eq. (4.11) against sin 634 for unconstrained CP phases (Texture B3 (i),

NH) - Met My meg Mgy - meg
Mes mys’ My’ My’ Mg

ceases and the texture is not allowed within that range of sin 634. This predicts a lower bound

on sin 034 to be 0.1.

Interestingly we observe that when CP phases are constrained to the ranges : 813 =
814 = (459 —90), 8,4 = (180° —225%), &r = (135° — 180°), B = y = (0 — 45°), the overlap-
ping completely vanishes and the texture is not allowed for any range of sin 834 (Fig. 4.2).
This shows the fair play of CP phases in determining the viability of a texture. The con-
strained ranges of CP phases mentioned above are those ranges for which the texture is not
allowed. However, with other choices of the ranges of CP phases, the texture shows different
phenomenology and requires some other constrained ranges of sin 834 for its viability.

Fig. 4.1 and 4.2 for Eq. (4.11) show the correlation plots for NH pattern. The textures
Ay (iii), (v); B3(i), (i) (Table 4.7) give the same correlations as in Eq. (4.11) and therefore,
they show similar phenomenology. The textures which behave phenomenologically similarly
are listed in Table 4.9. We also report their respective constrained ranges of CP phases that

are not consistent with the allowed range of sin 634 = (0.0 — 0.4).

Category (II): Under this category of textures, they are allowed for a range of values of

sin 634 without constraining CP phases. The special features of these textures are that they
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Fig. 4.2 Scatter plot for Eq. (4.11) against sin 634 for constrained ranges of CP phases:
813 =814 = (45°—90°), 854 = (180° —225%), o = (135° — 180°), B = y = (0 —45%) (Texture

. m myzt m Mmrg m
B3(i), NH).m 7<=, m —E5, LG Mos ' mo, /B,
Meg mys Mrg Mg Mg

Table 4.9 Constrained ranges of CP phases for textures under Category (I).

Texture Constrained CP phases

A1 (v)(a)(NH);B3(iv) (a)(NH) 813 = (1800 —2250), 814 = 84 < 30°, & = (0—900),
B = (315°-360°), y = (270° — 3159).

B;(i), (ii) (IH) 813 = (459 —900), 814 = (90° — 135%) 54 = (0—457),
a = (270°-315%), B = y=(0—30°)
B;(iii)(a)(IH) 813 =7 =(0-90%), 84 = (90° — 130°),
84 =B =(0—180°), o = (0—30°).
B3(iv)(a)(NH, TH) y=a =33 =7y= (1800 —-2259),
814 = B = (2259 —270°), 8,4 = (180° —210°).
B3(v)(IH) 813 =7=(0—90%), a = (0 —459),
814 = &4 = (325 —360°), B = (45° —90%)
B4(iv)(a) (TH) 813 = (0—90°), 84 = (900 — 180°), 824 = (45° —900)

a=(0-45%.8=y=(0-30"

Dy (ii)(a) (IH); Dy (ii)(a) IH) 813 = (0—45°), 814 = &4 = (0—30Y), a = (270° — 315°),
B = (130° —180°), y = (225° — 270°)

D (iii) (TH) a = (0—45%), §;3 = (45 —90°), ;4 = B = (0—30Y),
84 = (315° —360%), ¥ = (315% — 360°)

D (iv) (IH) 813 = 624 = unconstrained, 814 = (0 —270°),
a=(0-90%, B =(0-90°),y=(0—30°)

D, (v)(a) (TH) 513 = (459 —90%), B = (0—45Y), a = y = (180° —225Y),
814 = &4 = (0—45°).

F3(iii) (TH) 84 = a = (0—30°), §;3 = (459 —90°) , B = (90° — 1359),

y = (270° —3159), 814 = (315° —360Y).
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remain always viable within some ranges of sin 634 even if CP phases are constrained for any
random segment of values.

We present the case of Dy (iv) of this category. In the similar procedure of Category (1),
we have plotted the Fig. 4.3. It shows the correlation plots of Eq. (4.14) for unconstrained
(Plot (a)) and constrained (Plot (b)) CP phases (Normal Hierarchy). This figure tells that when
CP phases are unconstrained, the texture is allowed for all ranges of sin34 = (0.0 — 0.4).
However, on constraining the phases to the ranges: 8;3 = (45 —90°),6;4 = (270° —315°),
84= unconstrained, o = (180° —225%), B = (90" — 135%),y = (330° — 360"), the allowed
range of sin 034 has been found as (0.06 — 0.40). On surveying the correlation with different
ranges of CP phases, we find that the texture is always allowed at least for some values of

sin B34, unlike the Category (I), and this is true even when CP phases are made to vanish.
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Fig. 4.3 Scatter plot for Eq. (4.14) against sin6s4 for unconstrained (Plot (a))
and constrained (Plot (b)) ranges of CP phases: &3 = (45° —90°),8;4 = (270° —
315%), 84 =unconstrained, ot = (180° —225%), B = (90° —135%), y = (330° —360°) (Texture

Di(iv),NH). m Zee = Mo =g Mo g Dot e
es s§ Ts My Mgy
Similar phenomenology has been observed for a number of textures. Table 4.10 shows
the allowed ranges of sin 834 for each of those textures when CP phases are unconstrained
and constrained to certain ranges. Their respective constrained ranges of CP phases are

presented in Table 4.11.
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Table 4.10 Allowed ranges of sin 834 for unconstrained and constrained CP phases for
textures under Category (II). Here ‘All’ represents that the texture allows all values of
sin 934 = (O - 0.4)

Texture Range of sin 634 for
Unconstrained CP phases Constrained CP phases

A1 (i) (NH) (0.04 —0.4) (0.08—0.4)

A1 (ii)(a) (NH) > 0.02 (0.02—-0.1)
Ay (ii)(a) (NH) > 0.08 >0.1
A, (ii) (D) (NH) > 0.08 >0.12
A, (iii), (v) (NH) > 0.04 >0.08
Az(zv) (a) (NH) > 0.04 >0.14
(l i) (a)(NH) All >0.2
B3(v) (NH) All > 0.06
By (iv)(a)(NH) > 0.02 < 0.06
By(iv)(a)(IH) > 0.02 <0.18
B4(v)(NH) All <0.14
By (v)(IH) All < 0.06
D (ii)(a)(NH) > 0.02 > 0.1
D (iii)(NH) All > 0.04
D (iv)(NH) All > 0.06
D;(v)(a)(NH) > 0.02 > 0.06
D;(v)(a)(IH) > 0.06 >0.24
Fy (iii)(NH) > 0.04 > 0.1
Fy (i) (IH) > 0.04 >0.32

Fy(iv)(IH) > 0.04 (0.02—0.06)
F>(iv)(NH) >0.1 >0.14

F>(iv)(IH) > 0.04 (0.04—0.06)

4.5.2 CP phase independent textures

The textures under this category are viable for all ranges of sin 834 = (0.0 — 0.4) while CP
phases are (i) unconstrained, (ii) constrained to different ranges and (iii) even when CP
phases are forced to be zero. For example the texture B4 (iii) shows this type behaviour. The
Fig. 4.4 is the scatter plot for Eq. (4.16) (NH) for unconstrained CP phases and the Fig. 4.5
the scatter plots for different ranges of CP phases. It is seen that the overlapping of the plots
for the left-hand side and right-hand side of Eq. (4.16) maintains for the choice of different

ranges of CP phases, thereby showing no dependence of CP phase change. Eq. (4.17) shows
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Table 4.11 Constrained ranges of CP phases for textures under Category (II).

Texture

Constrained CP phases

A1(i) (NH)

813 = (459 —90°), 814 = (180" —2259),
84 = (0—45%), a = y=(225° —270%), B = (135" — 180°)

Ay (ii)(a) (NH)

(
613 (1359 — 180Y), 814 = (325° —360°), B = (0 —307)
= (90° —135%), o = (0 —45°), y = (120° — 160)

Az (ii)(a) (NH)

613 = (135Y —180Y), a = 814 = (225° —270°), &4 = (270° — 315Y),
B = (180° —225%), y = (315° — 360°)

A, (ii)(b) (NH)

84 = (270Y —3159), &3 = (1359 — 180°), o = 814 = (2259 —270Y),
B =84 = (0—45%),y= 83 =(0-30%)

Ay}, (v) (NH)

a = (3159 —360°), §;3 = (45° —90°),8,4 = (180° — 225Y)
& = (180° —225%), B = y= (0-30)

Aa(iv)(a) (NH)

y = (315° —360), 813 = (1807 —2257), o = (135° — 180°),
814 =64 = B = (0-30°).

Bj(iii)(a)(NH)

813 = (160° —200°), @ = (315 —360Y),
84 = (1800 —2259), 814 = y = B = (330° — 360°)

B3 (v) (NH)

813 = 624 < 45°, 814 = (907 — 1359),
o = (1800 —225%), B = y = (315° — 360°)

By(iv)(a) (NH)

B =7v=(315"-360°), §;4 = (0—20Y),
a = 83 = (1800 —2259%), &4 = (180° —200°)

By(iv)(a) (IH)

B =a = (315" -360°), 514 = &4 = (0—30°),
y = (270° —360),8;3 = (180° —225°)

B, (v)(NH) B = (2259 —270°), 813 < 459, 814 < 10°,

8 = (459 —90%), o = y = (300 — 459).
B,(v) (IH) 813 = (90° — 180°), ¢ = (0—45%) 814 = Spa = y= B = (0—30Y)
Di(ii)(a)(NH) = (1359 —180°), &;5 < 45°, 814 < 30°,

84 = (459 —90%), y = B = (315° —360Y).

D (iii)(NH)

B = (270° —3159), §;3 = y = (135° — 180°), &14 < 307,
84 = (270° —300°), a = (315 —360Y).

D (iv)(NH) a = (1807 —2259), ;3 = (459 —90°), &4 = (270° — 315Y),
y = (330° —360%), B = (90° — 135°).
Di(v)(a@)(NH) o = (1357 —-180°), §;5 = (45Y —90), 84 = (3157 — 360°),
84 =B = (0-30"), y=(225° - 3159).
D (v)(a)(TH) a = (907 — 1359), &§;3 = (45 —90°), &;4 = (180° —2259),
&4 = (2259 —270%), B = (0—30°), y = (135" — 180Y).
Fy (iii)(NH) 813 = (1357 — 180%),y = (315° — 360°), B = (180° —2259),
814 = 84 = (2259 —270Y), a0 = (270° — 3159)
Fy (iii)(IH) 813 = 624 = (0—45°), 514 = (1800 —225°), y = B = a = (0 —30Y)
F 813 =(0—-90°), 814 = y= (0—30°), 64 = «x B:(O 459)

813 = (0—45%), 814 = 624 = (0-30°), y= B = a = (315" —360)

(

1 (iv)(IH)
F>(iv)(NH)
F>(iv)(IH)

813 = (459 —90°), 814 = B = (0 —30Y),
84 = a = (180° —225%),y = (0 —45%)

115
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similar phenomenology whereby the correlation remains insensitive to the variations of CP
phases. We present the scatter plot for Eq. (4.17) in Fig. 4.6 for unconstrained CP phases.
Thus such texture is CP phase independent texture. Similar phenomenology can be observed
for the textures : A (ii)(b), A1 (iv)(b); A2 (i); B3(iii)(D), (iv)(b); B4(iv)(b); D1(v)(D);

Da(id) (b); D>(v) (b).

0.40r
035"
40.30; )
=025t 5 ‘ %_’ |
0.20 \z s s,é as‘ ]
£0.15 éé\” x"‘:\y o:»*é{‘ M"
0.10:*
0.05% ‘ ‘ 4
00 01 02 03 04

sin 934

Eﬂ)
Il

&
£

Fig. 4.4 Scatter plot for Eq. (4.16) against sin 034 for unconstrained CP phases (NH) (Texture
By(iii)(a)). m ’j;—; m e

4.6 Symmetry realization

For symmetry realization of texture zeros, the author of Ref. [100] discussed two methods of
implementating Abelian symmetry group in the lepton sector with the seesaw mechanism
and now we adopt the method-2 of the paper for symmetry realization of the textures studied
here in the context of MES mechanism. We consider the charged lepton mass matrix M;
to be diagonal. For symmetry realization of all the viable textures we consider the Abelian

symmetry group Zg which consists of the group elements

(1,0,0%, 0, 0", 0, 0°, o)

2r . . .
and @ = ¢'s is the generator of the group. We present the symmetry realization for

texture B3(i) as a representative case.
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Fig. 4.5 Scatter plot for Eq. (4.16) against sin 834 for constrained ranges of CP phases: Plot (a)
is for: 813 = 8 = (459 —90°), 7 < 30°, 814 = (90° — 130°), 524 = (180° —270%), ox = (270° —
360°). Plot (b) for: &;3 =y = (135° — 180%), B = (45° —90°), 814 = (180° —225°), 84 =
(270 — 315%), ¢ = (180" —270%). Plot (c) for: &3 = y = (135° — 180°), 8 = (225° —
270%), 814 = (1800 —225%), 854 = (0—45°), o = (0—30°). Plot (d) for: 83 = (0—30°),y=
(225° —270%), B = (135° —180°), 814 = (225° —270°), 84 = (45° —90°), & = (90° — 1359)
(NH) (Texture By (iii)(a)). m =, m Me

mys’ Meg

We consider the leptonic fields to transform under Zg as-

D, — @'Dy,, er— @er, Vg = OV,
. 5 2 7
Dy, — @Dy, ,  Ur— O UR, Vg — O Vy- (4.18)
5 275 6 3
Dy, — 0Dy, , TR — O TR, Vi, — O Vg,

Here, Dj,, g and vy, represents the SU(2), doublets, the RH SU(2),, singlets and the RH

neutrino singlets respectively. The bilinears Dj,Ig,Dj, Vi, vaR c! Vj, relevant for M; ,Mp
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Fig. 4.6 Scatter plot for Eq. (4.17) against sin 834 for unconstrained CP phases (NH) (Texture
By(iii)(b)). W mgemgs, ®W m2

and Mp respectively transforms as-

0 o0 o 1 0 o? 0 1 o
DkLljR = ot 0 o ) DkL Vir = 0w 1 o =VIZI;C_1VJ'R = 1 o o?
o ot 1 0 0 o ot 0 o
(4.19)
We consider three SU(2);, doublet Higgs (P, D, P3) transforming under Zg as-
d, - by, D, — 0P, D3 = @ Ds. (4.20)

The Zg invariant Yukawa Lagrangian becomes

- %= Y1I1DeL‘132€R + YZIZD”L(I)3[,LR + Y3I3DTL(I)1 TR + YHDeLCTDIVuR
+ YII%DEL(NPZV‘LLR + YZDZDHL&)IVIJR + Y;%DTL(§3VTR + hC.

4.21)
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After acquiring a non-zero vacuum expectation value < ¢o > 0 by the Higgs fields, M; and

Mp takes the form

me 0 O a b 0
Mi=10 my 0 |, Mp=|[0=eO|[: (4.22)
0 0 ms 00 I

We consider a scalar singlet ) transforming under Zg as-
x— 0°1, (4.23)

which leads to the following form of Mg

A B O
Mgr=1\| B 0 E |. (4.24)

0 E O

We also consider transformation of the singlet chiral field ‘S’, so as to prevent bare mass
term of the form S¢S.

S — wS. 4.25)

Scalar singlet A; transforming as

A — @*A, (4.26)

leads to the following form of Mg

My = ( 0 0 s3 >, (4.27)
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which are the zero textures of the mass matrices in Eq. (4.9) for texture B3.

It has been observed that, symmetry realization of the other five S3 symmetric textures
(Table 4.4) of the basic combination in Eq. (4.9) follows an interesting pattern. For instance,
considering the textures in Case (b) of Table 4.4 obtained by tranforming the basic combina-

tion Eq. (4.9) by the element “B" of the S3 group, where

0 01
B=1010 |, (4.28)

1 00

There exist an interchange of the first and third column of the matrix “B”. Following
the similar pattern for symmetry realization of the textures of Case (b) (Table. 4.4), and
interchanging only the Zg transformation of the right-handed neutrino singlets (Ve, < Vi)

of the basic combination in Eq. (4.18), that is
Veg = 0 Vey, Vip — OV, (4.29)

meanwhile keeping the transformation of all the other fields, that is, v, D i lr.®P,S,x and A

same as that of basic combination, we arrive at the following set of matrices

( s 00 ) (4.30)

Similarly, symmetry realization of all the other combinations (Table 4.4) can be obtained by

0 b c

Mp=|0 e o | Mi=mM{, MY

g 00

simply interchanging the transformation of the RH neutrino singlets of the basic combination,

according to the interchange of the columns of the elements of the S3 group via which the
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combinations are obtained.

In Table 4.12, we present the symmetry realization of all the basic combinations of
Mp, Mg and Mg. The basic combinations for each textures involves only three basic forms of
the right-handed Majorana mass matrix Mg = M 1(37) M I@,M ,(elo). For those textures which
are realized via M I(Qg), we keep the Zg transformation of the RH neutrino singlets v, to be
the same as in Eq. (4.18). The transformation for the scalar singlet y, therefore, remains the
same as in Eq. (4.23).

For textures obtained via MI(;O) , we consider the transformation of the RH neutrino

singlets and scalar singlet y as:

7 5 6
Verp = OVep, Vyp —> @'V, Vg > @O Vg, X — @Y. 4.31)

(7)

Textures that are realized by the diagonal RH Majorana mass matrix M, ', we consider

the tranformations of vig, x as:
4 6
Ver = Very,  Vup —> O Vyg,  Vig = OV, X — O°X. (4.32)

Zg transformations of the left-handed SU (2), doublets D, , right-handed SU (2),, singlets
Ig, Higgs doublets ¢, singlet field ‘S’ and scalar singlets A of all the basic cases for each

texture are presented in Table 4.12.

4.7 Conclusion

In this chapter have explored with (5+3) and (6+2) schemes of zeros in Mp and My along

with required zero textures of M to realize the two-zero textures of mj** in the context
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Table 4.12 Zg Symmetry realization of all the basic cases.

Texture De,,Dy,Dryy  em,Mr,Tn  &'s S Als
A() oo 0ote lLoo o 1,0°
(i) o,0% 0 o't e 1,00 o o
(iii) o,0%,0° o, ,0,1 lLo'eo o ot
(v) o*o,o 1,000 lLo*'e® o o
v) o 0o ool Lo’ 0 o 1
A o 0he o0 0" loo o 1,0°
(i) 0,00 0"’ 0 1,00 o o
(iii) 0,0, 0> o100 Lo’ o ot
(iv) o*oo 10,00 lLo'e® o o
v) o, 00 ol Lol 0! o 1

Bi(ii) o000 0,0%°,0* l,0*0° o 1
(iii) o* 00 o'’ e 1,0,0° o o
(v) o oot o000 Lo, o o o
v) 0o 0 o0teo lLoo o 1,0

Bs(i) o,0%,0 o’ 0%0® 1L,0%0 o o
(i) o, 0,0 o000 lL,ohel o 1
(iii) o* 0’0 o0'o’ 0 1,00 o o
(v) o oo o000 Lol o o
v) @)ereo ote,o lLoo o 1,0

Di(i) o,0°,1 o, 0% 1 Lo 0 o 1,0°
(i)  o,1,0’ o, 0t 1,0',0 o ot
(iti) w,0",0* 10,0 Lo, o> o 1
(v) o,0%0 o0*oto lo,0° o ot
v) @, 60,1 o, 001 lowo® o o

Dy(i) o1, o,1,0° Lo ,0® o 1,0°
(i)  o,0’1 o 0ot 1,0'0 o ot
(iti) o,0*,0" 1,00 Lo',o® o 1
(v) 0,0, 0 0’0o 0" lL,o0,0° o o
v) @, 1,0 o, 1,00 lwo® o o

Al) oo 0 oo’ o lLoo o 1,0
(i) @) 0’0o o't e Lo o o 1o
(iii) 1,0% o o’toto 1,000 o 1,0°
(v) 1,0% o? o’ 0t 0 1,000 o 1,0°

(i) o, 0,0 o’ 00 Lo o 1,0
(i) 0’0’0 o'’ o 1,00 o 1,0
(iii) o, 1 o oto loo o 1o

(i) o, 0% 0 o 00" Lo o 1,0
(i) 0% 00 o0'o o lL,0X,o o 1,0
(iii)  o,1,0° o, 00" loo o 1o
(v) o*,0 e’ o'eo 10,0 oo 1o
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of MES mechanism. We find that the (5+3) and (6+2) schemes are more constrained than
the (4+4) scheme in chapter 3. It has been found that none of the two-zero textures can
be realized within the (6+2) scheme. Out of 12 two-zero textures of rank 3, only 9 viable
textures (A1, Ao, B3, B4, D1, Dy, F1, F>, F3) can been realized in the (5+3) scheme. This is
in contrast to the (4+4) scheme in chapter 3, where all the 12 two-zero textures have been
realizable in the context of MES mechanism.

In realization of 9 two-zero textures under (5+3) scheme in MES mechanism we have
found certain correlations among the elements of m$**. The correlations have been scanned
under recent neutrino oscillation data and plotted against sin 634 under two conditions (i)
keeping the Dirac and Majorana CP phases unconstrained (0 — 360°) and (ii) constraining
the CP phases to certain ranges. It has been observed that there are a number of textures
whose viability gets affected when CP phases are constrained to certain ranges, while for a
number of textures the phenomenology remains unchanged when CP phases are constrained
to different segemnts of values or even when CP phases are made to be zero. Accordingly
we have classified the textures under two categories (i) CP phase dependent textures and (ii)
CP phase independent textures.

In our study we have seen that all textures are viable for some ranges of sin 6834 when CP
phases are unconstrained. However, for some selective ranges of CP phases, certain textures
are not allowed within sin 634 = (0 — 0.4). For example, the phenomenology of the texture
B3 (i) is represented by the scatter plots for the correlations as shown in Fig. 4.1 and 4.2.
Again, in case of the textures like D (iv) of which the scatter plots are in (Fig. 4.3), it has
been observed that for uncontrained CP phases, the texture is viable within the complete
range of sin 634 = (0 — 0.4), while on constraining the CP phases, the allowed range of sin 634
have been squeezed to (0.06 —0.4). The texture has been found to be viable at least for

some range of sin O34 whatever choice of the ranges of the CP phases. Viability of these
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textures are affected on varying the CP phases and therefore they are categorised as CP phase
dependent textures.

It has been observed that there are a number of textures which remain unaffected whether
CP phases are unconstrained or constrained to different ranges. On surveying these textures
for different segements of the six CP phases, it has been observed that the correlations are
allowed for all values of sin 034. These textures are insensitive to variation of CP phases
and are therefore categorised as CP phase independent textures. As a representative case
realization of texture B4 (iii) have been presented in section 4.5.2.

Also, it has been observed that there exist S3 transformations of a given combination of
Mp, Mg, Mg leading to a particular two-zero textures of m5,<* which give the same correlations.
As a representative case Table 4.4 shows the combinations of Mp, Mg and Mg which are
obtained via S3 transformation from the basic combination in Eq. (4.9) for texture B3(i).

The viable textures have been finally realized by means of Zg Abelian flavor symmetry
group by extending the SM with two additional Higgs doublet (P, P3), scalar singlets )
and A. We have presented the symmetry realization of texture B3 (i) as a representative case.
We have also demonstrated the symmetry realization of the Case (b) (Table 4.4) to show
that all the S3 symmetric textures also follow S3 transformations of the fields of the basic

combinations.



Conclusions

In this present work we have attempted to understand the issue of the LSND anomaly which
has not been ruled out, but rather supported by MiniBooNE. The data indicate a fourth
state of neutrino of about eV scale. The theoretical foundation of sterile neutrino is an
important study from the point of view of physics. Again, eV scale sterile neutrinos may
have significant implications in astrophysics and cosmology. The current promising neutrino
models are built in the framework of seesaw mechanism beyond SM that can explain neutrino
masses and mixing of three light active neutrinos barring the LSND discrepancy. The seesaw
formula involves with 3 x 3 Dirac neutrino mass matrix, Mp of mass below electroweak

scale, 200GeV, and 3 x 3 heavy right handed Majorana neutrino mass matrix,Mg of mass
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scale about ~ 10'* GeV. Again as per the experimental result of Z° decay width tells that
the number of active neutrinos can never be more than 3. In this situation, natural objective
of the work is to extend the type-I seesaw formula minimally to include an extra neutrino
state which must not interact but mix only. In this purpose one right-handed gauge singlet
chiral field ‘S’ represented by (1 x 3) row matrix Mg has been introduced to couple with
the right-handed neutrinos. In construction of the extended version, a 7 X 7 my matrix has
been obtained which on block diagonalization with Mg >> Mg > Mp, we obtained a 4 x 4
neutrino mass matrix, and further block diagonalization with Mg >> Mp has given us 3 x 3
neutrino mass matrix. So obtained my (Eq. (1.30)) contains the type-I seesaw along with a
second term having contribution from the sterile state. The MES has the following features:
(i) Mp must possess its inverse along with Mg. (i1)) MES neutrino mass matrices are of rank 3
which demand one of the active neutrino mass eigenvalues being zero. Hence only NH or I[H
mass orderings are allowed. (iii) An eV scale sterile neutrino has been a natural consequence
without needing any tiny Yukawa coupling or mass scales.

The present study deals with the texture zeros of neutrino mass matrices in two folds:
(1) of order 3 x 3 and (ii) of order 4 x 4 resulting from the zeros of (3 x 3) Mp, (3 x 3) Mg
and Mg via MES. Texture zero models have been extensively studied in 3 active neutrino
scenario as well as (3+1) scenario for two reasons; (i) enhancement of predictive power
of models by reducing the number of free parameters and (ii) zero entries for underlying
symmetries. In 3 neutrino scenario, there are a number of one and two-zero textures of m,
which are compatible with oscillation data. Our motivation of work has been on realizing
the zero textures of my in presence of an additional eV-scale sterile neutrino i.e., (3+1)
scenario. In order to realize zero textures of neutrino mass matrix m, we have considered
the predictive scenario which leads to non-trivial fits for the lepton mixing (PMNS) matrix
and/or for the neutrino mass ratios, whereby the sum of zeros of Mp and Mg is eight. In

predictive scenario there are three possibilities: (4+4) scheme, (5+3) scheme and (6+2)
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scheme, whereby the digits within the pair represent the zeros of Mp and My respectively.
Also, we have considered suitable zero textures of M in the process. There are a number
of possible combinations of Mp, Mg and Mg which cross over thousands in principle, but
such complexity has been tackled with S3 transformations demanding a set of only a small
number of basic combinations. In the process we have obtained correlations among the
matrix elements of neutrino mass matrices, which have been checked for their phenomeno-
logical consistencies under the current data of neutrino parameters of 30 values by plotting
scatter plots. Moreover, the zeros of the viable textures have been realized by the Abelian

flavor symmetry group Zy. The framework of the thesis has been elaborated in the Chapter 1.

In Chapter 2, we have systematically explored the one-zero and two-zero textures of three
active neutrino sector, m{’,ﬁ in MES. To realize such texture zeros we have considered zeros
of Mp, Mr and Mg as more fundamental, which finally propagate to the effective neutrino
mass matrices m%,“ via MES. We explored all the three possible predictive scenarios: (4+4),
(5+3) and (6+2) schemes along with suitable zero textures of Ms. In the (5+3) and (4+4)
schemes one-zero textures of my like me; = 0, m;z = 0 and in (5+3) one more my, = 0
have been generated. Interestingly the experimental compatibility allows the textures with
mzz = 0 while the rest with m.; = 0, my, = 0 are not allowed by recent neutrino oscillation
data. Thus the presence of sterile state is more stringent for permissible textures. We have
also observed that S3 group transformations have reduced the tedious work for dealing with
a large number of combinations to only a few basic combinations of Mp, Mg and Mg under
each of (4+4) and (5+3) scheme.

Interestingly we have also found that in predictive scenario no two-zero textures, which

are otherwise experimentally viable, survive in MES containing one sterile neutrino. Again

all allowed one-zero textures of neutrino mass matrices represent only inverted hierarchical
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neutrino models. So this is an important observation that m3*3 in MES framework favours

only inverted hierarchy of mass ordering.

The viable textures in our study have been realized under Z; Abelian symmetry group
by extending the Standard Model with 2 Higgs doublet (®,,P3) and 3 scalar singlets x
and A, A to realize the viable structures of Mp, Mg and Mg respectively. We have also
considered Z; transformations of the singlet chiral field ‘S’,in order to prevent bare mass
term of ‘S’ as demanded by MES mechanism. We have also illustrated how other set of
matrices obtained by permutation with the elements of S3 can be realized by Z7 by simply
interchanging the transformations of the RH neutrino singlets from their respective basic

casces.

In Chapter 3 and 4 the phenomenology of MES mechanism for realization of two-zero
textures in the 4 x 4 neutrino mass matrix has been explored. It is interesting to note that
in chapter 2, two-zero textures in m%,“ in the framework of MES mechanism could not be
realized under the predictive scenario. This motivated us to relook into the two-zero textures
of my in the 4 x 4 form in MES. As MES neutrino mass matrices must be of rank 3, so
we have considered only those 12 textures A|,A3,B3,B4,C,D1,D,,E |, E>, F1, F;,F3 which
are of rank 3 for our study (Table 3.1), although we had 15 phenomenologically viable two
zero textures of m‘\‘,x“. We have undertaken the predictive scenarios of Mp and Mg: (4+4),
(5+3) and (6+2) schemes for realization of two-zero textures of m“‘,x“. Under (4+4) scheme
(Chapter 3) we have found that two-zero texture of Mg cannot lead to non-zero sterile sector
of m‘\‘,x“. However, for (5+3) scheme (Chapter 4) both one and two-zero textures of Mg have
been found to be useful for realizing the desired textures. The imposition of zeros has led

us to certain correlations among the neutrino parameters for each texture. Then we have

checked whether these correlations are consistent with the recent neutrino oscillation data.
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Experimental bound on sin 834 < 0.4. However, in our analysis, the lower limit has been
taken to be 0. Furthermore, we have also considered the contributions of Dirac (6;3, 814, d24)
and Majorana CP phases (a, 3,7) for the consistency test of the correlations of each texture.
This is in contrast to the analysis of one-zero textures of m%,“ in chapter 2, whereby we
considered a particular range of the CP phases (0, a, 3) for each texture. Although the
methodology of chapter 3 and 4 are similar, the results are quite different.

In chapter 3 it has been observed that all the 12 two-zero textures can be realized under
(4+4) scheme. However, we have found that for unconstrained CP phases (0 — 360°) the
textures E1,E; favoring normal hierarchy, are disfavored by neutrino oscillation data as
its correlation remains inconsistent. Also, out of three combinations of Mp, Mg and Mg
for texture D;, two combinations for normal hierarchy are ruled out, as their respective
correlations are inconsistent within 3¢ range of oscillation data. This is an interestingly
result that m$** in MES favors inverted hierarchy of mass ordering. Thus out of 12 only 10
textures are viable under (4+4) scheme

Again, in chapter 4 we have seen that (5+3) and (6+2) scheme are more constrained

than that of the (4+4) scheme studied in chapter 3. Similar to chapter 2, here also the (6+2)

4x4
v can

scheme have not been found to be productive as none of the two-zero textures of m
be realized within MES. Again only 9 out of 12 textures are viable within the (5+3) scheme.
Textures E1,E,; which were realizable in (4+4) scheme but ruled out by oscillation data,
cannot be even realized within the (5+3) scheme. In addition we have seen that texture C
which is an allowed texture within (4+4) scheme, cannot be realized with (5+3) scheme.
Texture C has zeros in gy and 77 entry of the mass matrix mi‘,x“. Similarly for texture Ej :
Mee = 0;my, = 0 and texture Ey: my = 0;me; = 0. Thus, it is interesting to note that (5+3)
scheme rules out those textures where both the zeros appears in the diagonal form of m@x“.

We have found that S3 group transformations exist among different combinations of

Mp, Mg and Mg which keep m?** invariant leading to same correlations and hence similar
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phenomenology. We have tabulated the S3 symmetric textures of (4+4) and (5+3) schemes in
the respective chapters 3 and 4.

In both the schemes of (4+4) and (5+3) the viability of a texture have been checked by
plotting the correlations against sin 834 under two conditions: (i) unconstrained (0 — 360%)
Dirac and Majorana CP phases and (ii) constraining the CP phases to different segment
of values. We have found that when CP phases are unconstrained, certain textures shows
consistency in their correlation for all values of sin 634 = (0 —0.4), while certain textures are
allowed for some constrained ranges of sin 634.

We have found that there exist an interplay of Dirac and Majorana CP phases in deter-
mining the viability of a texture. Although experimental constraints on CP phases are yet
not known, and remains unconstrained within 30 range, still we have attempted to study the
effect of the CP phases on the neutrino mass matrix m$**. Accordingly we have checked
the consistency of correlation(s) of each of the textures by considering smaller ranges of
values of unknown CP phases from the complete range (0 —360°). On constraining the CP
phases we have observed that there are a number of textures for which (i) the allowed range
of sin B34 gets squeezed to smaller values as compared to the values when CP phases are
unconstrained (ii) the correlation(s) becomes inconsistent and the textures are not allowed
for any range of sin 634 = (0 — 0.4) within that particular choice of combination of the six
CP phases and (ii1) viability of the textures remains unaffected for any choice of constrained
ranges of CP phases and this holds even when CP phases are made to be zero. Textures of
the type (i) and (ii) shows variation with the CP phases and are therefore categorised as CP
phase dependent textures. On the other hand, textures of the type (ii1) remains insensitive
to the variations of CP phases and are therefore CP phase independent textures. Also, we
have observed that most of the textures are allowed for values of sin 634 > 0, thereby giving

a lower limit on sin 634 which is still experimentally unknown.
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Viable textures have been finally realized via Abelian flavor symmetry group Z, by ex-
tending the Standard Model with some scalar fields. For (4+4) scheme we have undertaken Zg
symmetry group while for (5+3) scheme textures are realized via the group Zg. In symmetry
realization of all the viable textures in chapter 2, 3 and 4, we have required three Higgs
doublet (P, P,, P3) in which P is the SM Higgs transforming trivially under the group
Z,. In addition we have required one singlet } to realize the desired zero texture of Mg and
one singlet A to realize the two-zero textures of Mg while two scalars A;, A, for realization
of one-zero textures of Mg. Also we have given a transformation of the singlet chiral field
‘S’ so as to prevent bare mass term of the form S¢S. We have also observed that symmetry
realization of the other set of matrices obtained by permutation with the elements of S3 can
be achieved by simply interchanging the Zy field transformations of the RH neutrino singlets
from their respective basic cases, meanwhile keeping the transformation of all the other fields

unchanged.

Future scope of expansion of the present work:

It still awaits a watershed experimental proof for the existence of sterile neutrinos. Once
it is established then some theoretical challenges shall stem before the theoretical particle
physicists. The present study may be useful to understand light sterile states of neutrinos and
may also be extended to the following which are not any way exhaustive lists:

e Our study has been confined to predictive scenario only, but there is a scope for study
without restricting to predictive scenario as such study has been widely done in active neutrino
scenario in literature.

e Neutrinoless double beta decay and leptonic CP violations may be explored.
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e The Mp textures as predicted in our study may be used for study of baryogenesis in
presence of sterile neutrinos as such study has been done in 3 active neutrino scenario to
explain the matter-antimatter asymmetry in the early universe.

e The origin of zero textures have been studied in Zy Abelian symmetry group but their
study in other non-Abelian group symmetry realizations like A4, Sy may be significant and
useful.

e Study may be done on the scope for accommodating degenerate spectrum of active
neutrino mass eigenvalues in presence of sterile state which is not allowed in the present
form of MES as it demands one of the neutrinos being massless.

There are broader perspective of the thesis for expansion to address the following issues
regarding sterile neutrinos:

e How many light sterile states of neutrinos may exist?

e What are the scales of sterile states: sub-eV, eV or KeV?

e What are the implications in astrophysics and cosmology particularly in structure
formations?

e Are they candidates of dark matter?

Our understanding of the pertinent issues in neutrino physics is incomplete and so they

require research in both theoretical and experimental perspectives for solutions.
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Conclusions

In this present work we have attempted to understand the issue of the LSND anomaly which
has not been ruled out, but rather supported by MiniBooNE. The data indicate a fourth
state of neutrino of about eV scale. The theoretical foundation of sterile neutrino is an
important study from the point of view of physics. Again, eV scale sterile neutrinos may
have significant implications in astrophysics and cosmology. The current promising neutrino
models are built in the framework of seesaw mechanism beyond SM that can explain neutrino
masses and mixing of three light active neutrinos barring the LSND discrepancy. The seesaw
formula involves with 3 x 3 Dirac neutrino mass matrix, Mp of mass below electroweak

scale, 200GeV, and 3 x 3 heavy right handed Majorana neutrino mass matrix,Mg of mass
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scale about ~ 10'* GeV. Again as per the experimental result of Z° decay width tells that
the number of active neutrinos can never be more than 3. In this situation, natural objective
of the work is to extend the type-I seesaw formula minimally to include an extra neutrino
state which must not interact but mix only. In this purpose one right-handed gauge singlet
chiral field ‘S’ represented by (1 x 3) row matrix Mg has been introduced to couple with
the right-handed neutrinos. In construction of the extended version, a 7 X 7 my matrix has
been obtained which on block diagonalization with Mg >> Mg > Mp, we obtained a 4 x 4
neutrino mass matrix, and further block diagonalization with Mg >> Mp has given us 3 x 3
neutrino mass matrix. So obtained my (Eq. (1.30)) contains the type-I seesaw along with a
second term having contribution from the sterile state. The MES has the following features:
(i) Mp must possess its inverse along with Mg. (i1)) MES neutrino mass matrices are of rank 3
which demand one of the active neutrino mass eigenvalues being zero. Hence only NH or I[H
mass orderings are allowed. (iii) An eV scale sterile neutrino has been a natural consequence
without needing any tiny Yukawa coupling or mass scales.

The present study deals with the texture zeros of neutrino mass matrices in two folds:
(1) of order 3 x 3 and (ii) of order 4 x 4 resulting from the zeros of (3 x 3) Mp, (3 x 3) Mg
and Mg via MES. Texture zero models have been extensively studied in 3 active neutrino
scenario as well as (3+1) scenario for two reasons; (i) enhancement of predictive power
of models by reducing the number of free parameters and (ii) zero entries for underlying
symmetries. In 3 neutrino scenario, there are a number of one and two-zero textures of m,
which are compatible with oscillation data. Our motivation of work has been on realizing
the zero textures of my in presence of an additional eV-scale sterile neutrino i.e., (3+1)
scenario. In order to realize zero textures of neutrino mass matrix m, we have considered
the predictive scenario which leads to non-trivial fits for the lepton mixing (PMNS) matrix
and/or for the neutrino mass ratios, whereby the sum of zeros of Mp and Mg is eight. In

predictive scenario there are three possibilities: (4+4) scheme, (5+3) scheme and (6+2)
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scheme, whereby the digits within the pair represent the zeros of Mp and My respectively.
Also, we have considered suitable zero textures of M in the process. There are a number
of possible combinations of Mp, Mg and Mg which cross over thousands in principle, but
such complexity has been tackled with S3 transformations demanding a set of only a small
number of basic combinations. In the process we have obtained correlations among the
matrix elements of neutrino mass matrices, which have been checked for their phenomeno-
logical consistencies under the current data of neutrino parameters of 30 values by plotting
scatter plots. Moreover, the zeros of the viable textures have been realized by the Abelian

flavor symmetry group Zy. The framework of the thesis has been elaborated in the Chapter 1.

In Chapter 2, we have systematically explored the one-zero and two-zero textures of three
active neutrino sector, m{’,ﬁ in MES. To realize such texture zeros we have considered zeros
of Mp, Mr and Mg as more fundamental, which finally propagate to the effective neutrino
mass matrices m%,“ via MES. We explored all the three possible predictive scenarios: (4+4),
(5+3) and (6+2) schemes along with suitable zero textures of Ms. In the (5+3) and (4+4)
schemes one-zero textures of my like me; = 0, m;z = 0 and in (5+3) one more my, = 0
have been generated. Interestingly the experimental compatibility allows the textures with
mzz = 0 while the rest with m.; = 0, my, = 0 are not allowed by recent neutrino oscillation
data. Thus the presence of sterile state is more stringent for permissible textures. We have
also observed that S3 group transformations have reduced the tedious work for dealing with
a large number of combinations to only a few basic combinations of Mp, Mg and Mg under
each of (4+4) and (5+3) scheme.

Interestingly we have also found that in predictive scenario no two-zero textures, which

are otherwise experimentally viable, survive in MES containing one sterile neutrino. Again

all allowed one-zero textures of neutrino mass matrices represent only inverted hierarchical
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neutrino models. So this is an important observation that m3*3 in MES framework favours

only inverted hierarchy of mass ordering.

The viable textures in our study have been realized under Z; Abelian symmetry group
by extending the Standard Model with 2 Higgs doublet (®,,P3) and 3 scalar singlets x
and A, A to realize the viable structures of Mp, Mg and Mg respectively. We have also
considered Z; transformations of the singlet chiral field ‘S’,in order to prevent bare mass
term of ‘S’ as demanded by MES mechanism. We have also illustrated how other set of
matrices obtained by permutation with the elements of S3 can be realized by Z7 by simply
interchanging the transformations of the RH neutrino singlets from their respective basic

casces.

In Chapter 3 and 4 the phenomenology of MES mechanism for realization of two-zero
textures in the 4 x 4 neutrino mass matrix has been explored. It is interesting to note that
in chapter 2, two-zero textures in m%,“ in the framework of MES mechanism could not be
realized under the predictive scenario. This motivated us to relook into the two-zero textures
of my in the 4 x 4 form in MES. As MES neutrino mass matrices must be of rank 3, so
we have considered only those 12 textures A|,A3,B3,B4,C,D1,D,,E |, E>, F1, F;,F3 which
are of rank 3 for our study (Table 3.1), although we had 15 phenomenologically viable two
zero textures of m‘\‘,x“. We have undertaken the predictive scenarios of Mp and Mg: (4+4),
(5+3) and (6+2) schemes for realization of two-zero textures of m“‘,x“. Under (4+4) scheme
(Chapter 3) we have found that two-zero texture of Mg cannot lead to non-zero sterile sector
of m‘\‘,x“. However, for (5+3) scheme (Chapter 4) both one and two-zero textures of Mg have
been found to be useful for realizing the desired textures. The imposition of zeros has led

us to certain correlations among the neutrino parameters for each texture. Then we have

checked whether these correlations are consistent with the recent neutrino oscillation data.
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Experimental bound on sin 834 < 0.4. However, in our analysis, the lower limit has been
taken to be 0. Furthermore, we have also considered the contributions of Dirac (6;3, 814, d24)
and Majorana CP phases (a, 3,7) for the consistency test of the correlations of each texture.
This is in contrast to the analysis of one-zero textures of m%,“ in chapter 2, whereby we
considered a particular range of the CP phases (0, a, 3) for each texture. Although the
methodology of chapter 3 and 4 are similar, the results are quite different.

In chapter 3 it has been observed that all the 12 two-zero textures can be realized under
(4+4) scheme. However, we have found that for unconstrained CP phases (0 — 360°) the
textures E1,E; favoring normal hierarchy, are disfavored by neutrino oscillation data as
its correlation remains inconsistent. Also, out of three combinations of Mp, Mg and Mg
for texture D;, two combinations for normal hierarchy are ruled out, as their respective
correlations are inconsistent within 3¢ range of oscillation data. This is an interestingly
result that m$** in MES favors inverted hierarchy of mass ordering. Thus out of 12 only 10
textures are viable under (4+4) scheme

Again, in chapter 4 we have seen that (5+3) and (6+2) scheme are more constrained

than that of the (4+4) scheme studied in chapter 3. Similar to chapter 2, here also the (6+2)

4x4
v can

scheme have not been found to be productive as none of the two-zero textures of m
be realized within MES. Again only 9 out of 12 textures are viable within the (5+3) scheme.
Textures E1,E,; which were realizable in (4+4) scheme but ruled out by oscillation data,
cannot be even realized within the (5+3) scheme. In addition we have seen that texture C
which is an allowed texture within (4+4) scheme, cannot be realized with (5+3) scheme.
Texture C has zeros in gy and 77 entry of the mass matrix mi‘,x“. Similarly for texture Ej :
Mee = 0;my, = 0 and texture Ey: my = 0;me; = 0. Thus, it is interesting to note that (5+3)
scheme rules out those textures where both the zeros appears in the diagonal form of m@x“.

We have found that S3 group transformations exist among different combinations of

Mp, Mg and Mg which keep m?** invariant leading to same correlations and hence similar
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phenomenology. We have tabulated the S3 symmetric textures of (4+4) and (5+3) schemes in
the respective chapters 3 and 4.

In both the schemes of (4+4) and (5+3) the viability of a texture have been checked by
plotting the correlations against sin 834 under two conditions: (i) unconstrained (0 — 360%)
Dirac and Majorana CP phases and (ii) constraining the CP phases to different segment
of values. We have found that when CP phases are unconstrained, certain textures shows
consistency in their correlation for all values of sin 634 = (0 —0.4), while certain textures are
allowed for some constrained ranges of sin 634.

We have found that there exist an interplay of Dirac and Majorana CP phases in deter-
mining the viability of a texture. Although experimental constraints on CP phases are yet
not known, and remains unconstrained within 30 range, still we have attempted to study the
effect of the CP phases on the neutrino mass matrix m$**. Accordingly we have checked
the consistency of correlation(s) of each of the textures by considering smaller ranges of
values of unknown CP phases from the complete range (0 —360°). On constraining the CP
phases we have observed that there are a number of textures for which (i) the allowed range
of sin B34 gets squeezed to smaller values as compared to the values when CP phases are
unconstrained (ii) the correlation(s) becomes inconsistent and the textures are not allowed
for any range of sin 634 = (0 — 0.4) within that particular choice of combination of the six
CP phases and (ii1) viability of the textures remains unaffected for any choice of constrained
ranges of CP phases and this holds even when CP phases are made to be zero. Textures of
the type (i) and (ii) shows variation with the CP phases and are therefore categorised as CP
phase dependent textures. On the other hand, textures of the type (ii1) remains insensitive
to the variations of CP phases and are therefore CP phase independent textures. Also, we
have observed that most of the textures are allowed for values of sin 634 > 0, thereby giving

a lower limit on sin 634 which is still experimentally unknown.
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Viable textures have been finally realized via Abelian flavor symmetry group Z, by ex-
tending the Standard Model with some scalar fields. For (4+4) scheme we have undertaken Zg
symmetry group while for (5+3) scheme textures are realized via the group Zg. In symmetry
realization of all the viable textures in chapter 2, 3 and 4, we have required three Higgs
doublet (P, P,, P3) in which P is the SM Higgs transforming trivially under the group
Z,. In addition we have required one singlet } to realize the desired zero texture of Mg and
one singlet A to realize the two-zero textures of Mg while two scalars A;, A, for realization
of one-zero textures of Mg. Also we have given a transformation of the singlet chiral field
‘S’ so as to prevent bare mass term of the form S¢S. We have also observed that symmetry
realization of the other set of matrices obtained by permutation with the elements of S3 can
be achieved by simply interchanging the Zy field transformations of the RH neutrino singlets
from their respective basic cases, meanwhile keeping the transformation of all the other fields

unchanged.

Future scope of expansion of the present work:

It still awaits a watershed experimental proof for the existence of sterile neutrinos. Once
it is established then some theoretical challenges shall stem before the theoretical particle
physicists. The present study may be useful to understand light sterile states of neutrinos and
may also be extended to the following which are not any way exhaustive lists:

e Our study has been confined to predictive scenario only, but there is a scope for study
without restricting to predictive scenario as such study has been widely done in active neutrino
scenario in literature.

e Neutrinoless double beta decay and leptonic CP violations may be explored.
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e The Mp textures as predicted in our study may be used for study of baryogenesis in
presence of sterile neutrinos as such study has been done in 3 active neutrino scenario to
explain the matter-antimatter asymmetry in the early universe.

e The origin of zero textures have been studied in Zy Abelian symmetry group but their
study in other non-Abelian group symmetry realizations like A4, Sy may be significant and
useful.

e Study may be done on the scope for accommodating degenerate spectrum of active
neutrino mass eigenvalues in presence of sterile state which is not allowed in the present
form of MES as it demands one of the neutrinos being massless.

There are broader perspective of the thesis for expansion to address the following issues
regarding sterile neutrinos:

e How many light sterile states of neutrinos may exist?

e What are the scales of sterile states: sub-eV, eV or KeV?

e What are the implications in astrophysics and cosmology particularly in structure
formations?

e Are they candidates of dark matter?

Our understanding of the pertinent issues in neutrino physics is incomplete and so they

require research in both theoretical and experimental perspectives for solutions.
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