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Abstract

In this thesis, we explore the different texture zero models of neutrino mass matrices in

presence of an additional eV-scale sterile neutrino. The presence of an additional flavor of

neutrino of eV-scale was first hinted by the LSND experiment, which is now popularly known

as the LSND anomaly. In the (3+1) scenario, that is, three active and one light sterile neutrino

the system becomes more complicated and constrained. For theoretical understanding of the

eV scale sterile neutrino and their admixture with the three active neutrinos, we consider

the Minimal Extended Seesaw (MES) mechanism. MES mechanism is an extension to the

canonical type-I seesaw mechanism with an additional gauge singlet chiral field ‘S’. The

construction of MES mechanism is such that an eV scale sterile neutrino naturally appears

without the need to include any Yukawa coupling or mass scale for sterile neutrino. Neutrino

mass matrix mν in MES is built from (3×3) form of Dirac neutrino mass matrix MD, (3×3)

form of Majorana neutrino mass matrix MR and (1×3) row matrix MS which couples the

singlet field ‘S’ with the three right-handed neutrinos.

In our work, we study the texture zeros of neutrino mass matrices within the context

of MES mechanism. We consider different zero textures of MD,MR and MS which finally

propagates as zeros of mν in MES. We explore the zero textures of both m3×3
ν and m4×4

ν in

our study. Accordingly we consider the (3×3) and (4×4) form of neutrino mass matrix

of MES mechanism. We restrict ourselves to phenomenologically predictive scenarios :
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(4+4) scheme, (5+3) scheme and (6+2) scheme where the digit within the pairs represent the

number of zeros of MD and MR respectively along with suitable zero textures of MS. There

are a large number of combinations of MD, MR and MS within the predictive scenario which

leads to the desired zero texture of m3×3
ν and m4×4

ν . However, S3 group permutation between

the different combinations of MD,MR and MS leads to only a minimum number of basic cases.

On realizing the textures we arrive at certain correlations between the neutrino mass matrix

elements. We check the viability of the textures by scanning their respective correlations

under recent neutrino oscillation data. For viability check of m4×4
ν we consider different

constrained ranges of the Dirac and Majorana CP phases and discuss the role played by the

CP phases in determining the viability of the textures. Textures which are allowed within 3σ

range of experimental data are then realized via suitable Abelian flavor symmetry group Zn by

extending the Standard Model with few scalar fields. We also find that S3 symmetric textures

follows a definite pattern of symmetry realization. We demonstrate how symmetry realization

of the S3 symmetric textures can be obtained by a simple interchange of Zn transformation of

the right-handed neutrino singlets of the basic combination.
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1
INTRODUCTION

1.1 A brief overview on neutrinos

The horizon of our knowledge for understanding of the underlying working principles of

the universe has been dramatically expanded by the theoretical and experimental efforts and

achievements for the last few decades. In the journey of such scientific endeavour in various

fields for unearthing the mysteries, new challenges pose in the way of formulation of theories

as well as experimentations. One of such interesting challenges in particle physics is massive

neutrinos. In 1930, W. Pauli first proposed a concept of 1
2 spin, zero electric charge and zero

mass particle called neutrino for understanding the continuous energy spectrum of the β
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decay process, otherwise, the finger would have pointed to the question of validity of the

celebrated principle of conservation of energy. Almost 26 years after Pauli’s proposition of

neutrino, in 1956, F. Reines and C. Cowan [1] could detect anti-neutrino in a nuclear reactor

through inverse beta decay reaction :

ν̄e + p → e++n. (1.1)

Later in 1962 the muon neutrino was discovered at Brookhaven National Laboratory [2]

whereby it was observed that neutrinos produced in association with muons behave differently

as those produced in association with electrons. The third type of neutrino - ντ was discovered

in 2001 at the DONUT ("Direct Observation of Nu Tau") experiment at Fermilab [3].

The myth of neutrinos being massless was finally broken in the late 1990’s by various

neutrino experiments [4–13] which observed that neutrinos produced with a particular flavor

eigenstate, oscillate to a different flavor after propagating a macroscopic distance. This

quantum mechanical phenomenon, known as "neutrino oscillation", gives us the insight that

neutrino flavor or weak eigenstates for interactions are different from their mass eigenstates

implying that neutrinos do mix and thus have a non zero mass. Since neutrinos are massless

in the Standard Model of electroweak theory, the strong experimental evidence of neutrino

oscillations indicating neutrinos being massive is new physics beyond Standard Model.

Although the oscillation experiments have shown neutrinos to be massive, but their masses

are in about sub-eV scale, that is, several times smaller than the mass of an electron. The

smallness of neutrino mass still remains to be an enigma and is believed to open the doors

for new and unexplored area of physics related to such small mass scales beyond Standard

Model. It is also believed that a deeper understanding of these elusive neutrinos may hold

a clue to the long standing problem of the fermion mass generation as well as some long

standing cosmological issues.
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Besides the three active neutrino species at the sub-eV scale, there could be a possibility

of the existence of additional light sterile neutrino states at the eV scale, which may be

solution for the anomalous results of the LSND experiment [14, 15]. Subsequently a number

of other experiments [16–19] have been performed, but their results could not rule out the

LSND anomaly. In such scenario, the proposition of at least one light sterile neutrino has

been gathering attentions of both theoretical and experimental physicists. The presence of

such eV scale sterile neutrinos shall be a new challenge in particle physics and shall also

have implications to other fields like astrophysics and cosmology.

The study of neutrino masses, mixing and number of species is important for enhancing

the clarity of our understanding of some phenomena or beginning of new search in unknown

terrain of physics which have been summarised with no exhaustive list in the following.

Neutrinos are a unique tool for searching various aspects of physics on scales ranging from

10−33 to 1028cm. (i) Applications in particle physics include: νN, µN, eN scattering for

existence/properties of quarks and QCD; weak decays for Fermi theory, parity violation,

mixing; neutral current, electroweak unification, field theory etc.; neutrino mass for constraint

on TeV scale physics, grand unification, superstrings, extra dimensions. (ii) Similarly

applications in astrophysics and cosmology include: core of Sun, atmospheric neutrinos,

violent events like GRBs, AGNs etc.; large scale structure (dark matter); nucleosynthesis

of small atomic number (big bang) to large atomic number (supernova) via stable atomic

number for iron (steller); baryogenesis for matter-antimatter asymmetry of the early universe.

1.2 Experimental evidences and neutrino oscillations

It is clear beyond any doubt from the solar and atmospheric observations in a number of

experiments like Homestake, Gallex, SAGE, Super-Kamiokande (SK) and SNO collabo-

rations that neutrinos change their identities (flavors) on transit from one place to another.

These gave rise to the solar and atmospheric neutrino anomalies and the LSND anomaly
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after the LSND experiment at Los Alamos National Laboratory. The first watershed proof

of neutrino oscillations was the results of the Superkamiokande experiment (SK) [9] in

1998 that observed an up-down asymmetry of high energy events generated by atmospheric

neutrinos (νµ ) and thereby providing a model independent proof of oscillation of atmospheric

neutrinos. Similarly, the Sudbury Neutrino Observatory (SNO) was the first experiment

which gave the first clear evidence for solar neutrino (νe) oscillation [7, 8]. Apart from

the natural sources there are a number of short and long base line laboratory experiments

where neutrinos are produced in accelerators and reactors. K2K (KEK to Kamioka) is the

first long baseline neutrino accelerator experiment [11] which was designed to confirm the

oscillation of atmospheric neutrinos detected at Super-K experiment. Results from K2K

were found to be consistent with the oscillation of atmospheric neutrinos reported by SK

collaboration. There are a number of other neutrino oscillation experiments like Daya Bay

[20, 21], Double CHOOZ [22], KamLAND [23], MINOS [24], NOνA [25], RENO [26],

T2K [27] and so on, which not only have given clear evidence of neutrino oscillation but

have also provided precise and solid information regarding the oscillation parameters. There

are a few completed/ongoing (or future plan) non-oscillation experiments [28–33] required

to measure the mass scale, Dirac or Majorana, hierarchy of mass orderings of the three active

neutrinos etc. of which information and measurements are not possible in the oscillation

experiments.

In the oscillation experiments, neutrinos are detected in charged-current (CC) weak

interaction processes with weak eigenstates or flavors : νe,νµ ,ντ . The neutrino mass matrix,

in general, is not diagonal which implies that neutrino flavor eigenstates (νe,νµ ,ντ ) are

different from the mass eigenstates (ν1,ν2,ν3). Therefore, the probability that a neutrino

with flavor eigenstate |να⟩ to be in the same eigenstate will oscillate with time.

A neutrino flavor eigenstate |να⟩ produced with a definite flavor at time t = 0, after

travelling some distance L evolves as:
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|να(t)⟩=
n

∑
i=1

U∗
αi |νi(t)⟩=

n

∑
i=1

U∗
αie

−iEit |νi⟩ . (1.2)

Here n represents the number of light neutrino species, U is a unitary matrix, known as the

neutrino mixing matrix which relates the neutrino flavor eigenstates with mass eigenstates.

Probability of flavor transition from flavor eigenstate να → νβ is given by

Pαβ = | ⟨νβ |να(t)⟩ |2 = ∑
i, j

U∗
αiUβ iUα jU∗

β je
−i(Ei−E j)t . (1.3)

For ultrarelativistic limit for tiny neutrino mass, we can approximate pi >> mi, pi ≈ p j and

|p⃗| ≃ E and Ei ≃ pi +
m2

i
2pi

, Ei −E j ≃
∆m2

i j
2E and t ≈ L. Using orthogonality condition of mass

eigenstates, the transition probability in Eq. (1.3) can be rewritten as

Pαβ = δαβ −4 ∑
i> j

Re(U∗
αiUβ iUα jU∗

β j)sin2
∆i j +2 ∑

i> j
Im(U∗

αiUβ iUα jU∗
β j)sin2∆i j, (1.4)

where

∆i j ≡
(m2

i −m2
j)L

4E
≡ 1.27

∆m2
i j

eV 2
L/E

m/MeV
. (1.5)

and ∆m2
i j represents the mass squared difference of two neutrino mass eigenstates νi and ν j.

Transition probability in Eq. (1.4) shows oscillatory behaviour where oscillation length losc
i j is

losc
i j =

4πE
∆m2

i j
≃ 2.48m

E(MeV )

∆m2(eV 2)
≃ 2.48km

E(GeV )

∆m2(eV 2)
. (1.6)

losc
i j is the distance between any two closest minima or maxima of the transition probability.

Eq. (1.4) depicts that, for neutrinos to undergo flavor oscillation, ∆m2
i j must be non-vanishing,

that is, neutrinos must have different masses. Thus, experimental observation from neutrino

oscillation shows that, at least one of the neutrino mass eigenstates |νi⟩ should have non-zero

mass, so that there exists at least one non-zero mass difference between any two neutrino mass
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eigenstate in accordance with the condition ∆m2
i j ̸= 0. Also UαiUβ i ̸= 0, that is, they must mix.

Furthermore, the oscillation experiment to be sensitive to a given value ∆m2
i j, the baseline

L and oscillation length losc should be of the same order L ∼ losc, that is, the experiment

should be set up with the condition E/L ≈ ∆m2
i j. For L << losc (E/L >> ∆m2), oscillation

effects are negligible because sin2
∆i j << 1. Conversely, for L >> losc, oscillation effects

are negligible, due to averaging over neutrino spectrum and the uncertainty over baseline

length, leading to the average value
〈
sin2

∆i j
〉
= 1/2.

Two-flavor case

Considering the oscillation between the two species νe and νµ , mixing matrix U is of 2×2

form as

U =

 cosθ sinθ

−sinθ cosθ

 , (1.7)

where θ is the mixing angle. Two-flavor oscillation involves only one mass squared difference

∆m2 and the transition probability takes the form

Pνe→νµ
= sin2 2θ sin2

(
1.27∆m2 L

E

)
. (1.8)

Three-flavor case

For oscillation between the three flavors νe,νµ ,ντ , the neutrino mixing matrix Uν takes a

more complicated 3×3 form, which connects the neutrino mass eigenstate (ν1,ν2,ν3) and

flavor eigenstate (νe,νµ ,ντ ) as


νe

νµ

ντ

=


U11 U12 U13

U21 U22 U23

U31 U32 U33




ν1

ν2

ν3

 . (1.9)
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In the flavor basis, the flavor eigenstate for charged lepton coincides with its mass eigenstate.

Thus, the charged lepton mixing matrix (U†
l ) is diagonal. Thus, the total lepton mixing matrix

U =U†
l Uν coincides with the neutrino mixing matrix Uν . The standard parametrization of

the lepton mixing matrix is given by

UPMNS =U.P, (1.10)

where

U =


c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 , (1.11)

and

P =


1 0 0

0 e−
iα
2 0

0 0 e−i( β

2 −δ )

 . (1.12)

The above parametrization consists of three mixing angles θ12,θ13,θ23, one Dirac CP violat-

ing phase δ and two Majorana CP phases α,β . The three rotation angles are related to the

physical observables in the first approximation as: θ23 = θatm, the atmospheric angle, which

can be measured in the atmospheric neutrino oscillation experiments; θ12 = θsol , solar angle,

determined from solar neutrino experiments and θ13 = θreactor, reactor angle from reactor

neutrino oscillation experiments. It is interesting to note that in the above parametrization,

Dirac CP phase δ is always associated with the reactor angle θ13, which implies that for

vanishing reactor angle δ remains undetermined and hence doesnot appear in the mixing

matrix U . A measure of Dirac CP violation is given by Jarlskog rephasing invariant [34] JCP

where

JCP = Im[Ue1Uµ2U∗
e2U∗

µ1]. (1.13)
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In accordance with the PDG parametrization JCP takes the following form

JCP = s12s23s13c12c23c2
13 sinδ . (1.14)

From Eq. (1.14) it is obvious that for JCP ̸= 0, CP violating phase δ as well as all the mixing

angles must be non-zero.

1.3 Seesaw mechanism

For the possibility of inter-species oscillations to occur, neutrinos must be massive and do

mix among themselves. The mass squared differences and mixing angles measured by the

experiments tell that the mass of a neutrino is about six orders of magnitude smaller than that

of an electron and two of the three mixing angles are very large. To understand such tiny

masses and large mixing angles of neutrinos, the successful neutrino models are so far based

on the seesaw mechanism which is briefly discussed below.

In the premise of the Standard Model (SM) of particle physics the neutrino is massless

due to the following aspects of the model: (i) the absence of the right-handed partner (νR) and

(ii) the exactness of B−L global symmetry. There is a possibility of constructing a model

relaxing these two assumptions of SM with inclusion of (i) one right-handed neutrinos (NR)

per generation making the SM completely quark-lepton symmetric with the gauge group

SU(2)L×SU(2)R×U(1)B−L [35, 36]. The electric charge takes the form Q= I3L+I3R+
B−L

2 .

Hence it can be concluded that below the scale vR where SU(2)R ×U(1)B−L breaks down

to SM and above the electroweak scale MW , one can have the relation ∆I3R =−∆
B−L

2 [37].

This relation has a profound consequence that neutrinos are Majorana particle exhibiting

lepton number violating phenomena in nature like ν0ββ processes. Seesaw mechanism

is based on such ideas and serves to be one of the most simple and attractive model for

generating tiny neutrino masses [38–41]. There are three forms of seesaw mechanisms which
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are generally used: type-I, type-II and type-III seesaw mechanism. The basic idea of seesaw

mechanism is to generate ultra small neutrino mass by inclusion of very heavy external fields,

thereby forming a seesaw between both the mass scales. In type-I, type-II and type-III seesaw

mechanism, the external heavy fields are the three right-handed neutrino singlets, one scalar

Higgs triplet and three SU(2)L triplet respectively, thereby going beyond the SM in their own

way. Our work mainly concentrates on type-I seesaw mechanism and its minimal extension.

We shall therefore have a brief discussion on type-I seesaw only.

Type-I seesaw

Here the SM extension is done by including three right-handed neutrinos which are singlets

under SU(2)L. Presence of such right-handed neutrinos allow Dirac mass term for neutrinos.

In addition, Majorana mass term is also possible for electrically neutral neutrinos.

The total Lagrangian for neutrinos takes the form

−L = LMD +LMR = MDν̄RνL +
1
2

ν̄
c
RMRνR +h.c.. (1.15)

Here L and R stands for left and right-handedness respectively. MD,MR are the complex

3×3 Dirac and symmetric Majorana mass matrices respectively.

Combined MD and MR gives rise to the 6×6 Majorana mass matrix M of the form:

M =

 0 MD

MT
D MR

 . (1.16)

The Dirac mass term MD is of the order of electroweak scale, owing to its origin from

vev of Higgs field Φ. On the other hand, the Majorana mass term MR, invariant under

SU(3)C × SU(2)L ×U(1)Y , remains unconstrained by gauge symmetry and therefore can

have arbitrarily large mass and can be many orders larger than the electroweak scale, that is,

MR ≫ MD. The mass matrix M in Eq. (1.16) on block diagonalization leads to the famous
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seesaw mechanism

mlight
ν =−MDM−1

R MT
D. (1.17)

The light neutrino mass matrix mν in Eq. (1.17) is inversely proportional to the large

Majorana mass MR. The mass scale for MR is often taken to be of the order of GUT scale,

in order to explain sub-eV scale neutrino masses. The smallness of neutrino mass mν is a

direct consequence of large mass scale of MR. This is the basic principle of type-I seesaw

mechanism.

1.4 Experimental hints beyond 3 light neutrino paradigm

During the last two decades, the neutrino physics has witnessed a tremendous progress in

the precision measurement of neutrino parameters like mixing angles (θ12,θ13,θ23) and

mass squared differences (∆m2
21, |∆m2

13|) of the three active neutrinos in experiments as well

as theoretical formulation of underlying theory to understand the three neutrino paradigm.

Physicists around the globe have been putting constant efforts to solve the long standing

problems of origin of such a small mass scale, CP violation and mass hierarchy to name

a few. Amidst the mysteries that still prevails in the three neutrino paradigm, there are a

number of oscillation experiments which yields some intriguing yet controversial results

which cannot be explained in the three neutrino framework. Such anomalous results have

been found in both appearance and disappearance measurement experiments, some of which

are discussed below:

LSND Experiment: Liquid Scintillation Neutrino Detector (LSND) [14, 15] at the Los

Alamos Neutron Science Centre was designed for the search of ν̄µ − ν̄e oscillation with a

baseline of L ∼ 30m. It uses high intensity proton beam (∼ 800MeV ) to produce pions which

decays to muons. µ+ that are produced decays at rest to produce ν̄µ . The experiment was

set up to search for ν̄e which if produced will undergo ν̄e p → e+n with the protons present
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in the detector. The signal that one looks for is the Cherenkov radiation produced by e+

in the detector with (20 < Ee < 60MeV ) and a 2.2MeV γ produced from neutron capture

on a free proton: np → dγ . The final LSND oscillation results taken from 1993− 1998

shows a clear excess of (87±22.4±6.0) events corresponding to an oscillation probability

of (0.264± 0.067± 0.045)% . The oscillation probability between ν̄µ and ν̄e however

corresponds to mass squared difference ∆m2 ∼ 1 eV2 which contradicts with the solar and

atmospheric mass squared differences in the three neutrino paradigm :∆m2
sol = 7.5×10−5eV2

and ∆m2
atm = 2.3×10−3eV2. This is known as the LSND anomaly which hints towards the

presence of an additional neutrino state with mass of the order of eV scale.

MiniBooNE: The Mini Booster Neutrino Experiment [16] at Fermilab has been designed

to test the LSND results. The baseline was kept at L∼ 50m but with same L/E as the LSND

experiment. Here proton beams of energy 8MeV were focussed on a Be target producing

pions and kaons which decays to νµ and ν̄µ . The experiment is capable of running in both the

modes: neutrino mode; νµ → νe oscillation search and antineutrino mode; ν̄µ → ν̄e. Their

antineutrino oscillation data are consistent for the range ∆m2 ≈ (0.01− 1.0)eV and have

some overlap with the LSND antineutrino oscillation data. At low energies, an event excess

of 162±47.8 (3.4σ ) was observed whose energy distribution was found to be marginally

compatible with simple two-neutrino oscillation scenario.

Radiochemical Experiments (Gallium radioactive source experiments): The Gallex

and SAGE solar neutrino experiments have been tested with intense radioactive sources 51Cr

and 37Ar placed in the detector [17, 18]. The νe that are produced during the radioactive

decay have been detected through the same process employed for solar neutrino detection:

νe +
71 Ga →71 Ge+ e−. (1.18)

It was found that the the ratio of expected to observed counts of 71Ge, averaged between

both the experiments was 2.7σ low. On analysing the data in terms of neutrino oscillation
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indicates the mass squared difference to be ∆m2 ≥ 0.35 eV2 at 99% C.L.. This can be

interpreted as oscillation between νe and some fourth flavor of neutrino and thereby evading

detection.

Reactor experiments: Neutrinos from reactor experiments are basically electron an-

tineutrinos emitted from subsequent β -decay of unstable fission fragments. The neutron-rich

fission fragments undergoes inverse beta decay reaction ν̄e + p → n+ e+ with the hydrogen

present in Liquid scintillator detector.Almost all the energies of the electron antineutrino is

carried away by the positron, which serves as a prompt signal. A recent re-evaluation reports

an increase in the ν̄e flux from reactors upto 3.5%. This small increase in flux although has no

effect on KamLAND’s solar parameter results, when combined with the previously observed

small deficits at smaller distances, results in a larger average deficit of 5.7%. This is known

as the reactor antineutrino anomaly. Such a deficit can be explained with an additional flavor

of neutrino with mass squared difference |∆m2| ≥ 1.5eV 2 [19].

In addition, recent cosmological data from cosmological microwave background (CMB)

and Large Scale Structure (LSS) on weakly interacting relativistic “dark radiation” prefers

additional degrees of freedom (d.o.f.) [42]. Light sterile neutrinos beyond SM serves to

be the most natural and convincing candidate corresponding to the extra d.o.f.. If this new

source of radiation is attributed to addtional neutrino species then WMAP data points towards

the bound on the number of neutrinos to be Ne f f = 3.84±0.40 [43].

The above experimental anomalies can be explained on extending the SM with one (or

more) neutrino state with mass at the eV scale. However, LEP data [44] on measurement of

Z-line shape, limits the number of light neutrinos coupling to the Z boson to be 3. Thus, the

new neutrino state must be a singlet fermion under SM which doesnot participate in weak

interactions, that is, the new neutrino state must be ‘sterile’. The sterile neutrinos donot take

part in ordinary charged and neutral current weak interactions, but mix significantly with the

three active neutrinos.
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On the other hand, the results provided by KAMREN experiment [45], MINOS exper-

iment [46], ICARUS [47], νe −Carbon scattering experiment [48] and Planck data [49]

could not support sterile neutrino state, but could not rule out also. The NEOS collaboration

[50] has set an upper limit on mixing angle θ14 with sin2 2θ14 < 0.1 for ∆m2
41 ranging from

(0.2−2.3)eV 2 at 90% C.L..

Recently in May 2018, the MiniBooNE collaboration [51] once again confirmed the

excess of events reported by the LSND experiment and the significance of the combined

LSND and MiniBooNE excesses was reported to be 6.1σ . Again the ANITA experiment

[52], in August 2018, reported that they observed two unusual upgoing air shower events,

which are consistent with the τ-lepton decay origin but contradicts the standard neutrino-

matter interaction models. Sterile neutrinos can serve as a possible explanation [53] for

the unusual upward air shower events at ANITA experiment. All these controversies have

raised one’s curiosity and posed new challenges so as to develop a particle physics model to

accommodate the light sterile neutrino and at the same time to have a consistent cosmological

model. Many new oscillation experiments are proposed/planned to testify the status of

sterile neutrinos and reach to a definitive conclusion. It has been observed that with recent

reactor flux prediction, there has been a considerable improvement in the global fits when

five neutrino framework, that is, when two sterile neutrinos are considered [54]. However,

an analysis in [55] shows that the viability of a cosmological model with two eV scale

sterile neutrinos depends significantly on the choice of the cosmological data sets used in the

analysis and the fitting procedures. Their analysis depicts that conclusive statement regarding

the viability of a cosmologically consistent model with two sterile neutrinos still cannot

be made. The authors of Ref. [56] performed an analysis on both the 3+1 and 3+2 mixing

schemes and found a preference of 3+1 framework over 3+2. They found that the parameter

goodness of fit obtained in the 3+2 scheme is mainly due to increased number of oscillation

parameters as compared to 3+1 scheme and therefore is mainly a statistical effect. Presence
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of thermalized sterile neutrinos in early Universe although is compatible with Big-Bang

Nucleosynthesis data [57], the presence of more than one sterile neutrino is disfavored [58].

Thus, the four neutrino framework is considered to be the minimal extension and a more

consistent cosmological model.

In the context of four neutrino scheme, there are three possible ways of adding a sterile

neutrino in the SM mass patterns- (i) 3+1 scheme, with three active neutrinos of sub-eV scale

and one sterile neutrino of eV scale [59, 60] (ii) 2+2 scheme, where two different neutrino

pairs differ in their mass by eV2 (iii) 1+3 scheme, where three active neutrinos are in eV scale

and one sterile neutrino lighter than the three active neutrinos. The solar and atmospheric

data [61] disfavors the 2+2 scheme. Also, the 1+3 scheme is disfavored from cosmology

[62, 63]. In our work we shall concentrate on the (3+1) scheme which is considered to be the

minimal form.

1.5 Theoretical framework for (3+1) neutrino scheme

In the four-neutrino scenario, the neutrino flavor eigenstate να (α = e,µ,τ,s) are related to

their mass eigenstate νi (i = 1,2,3,4) via

να =
4

∑
i=1

Uαiνi. (1.19)

Assuming the charged lepton mass matrix to be diagonal, the complex symmetric 4× 4

Majorana neutrino mass matrix in the flavor basis can be written as

m4×4
ν =V mdiag

ν V T =



mee meµ meτ mes

meµ mµµ mµτ mµs

meτ mµτ mττ mτs

mes mµs mτs mss


. (1.20)
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The symmetric Majorana mass matrix m4×4
ν contains ten independent mass elements unlike

six in the three neutrino scenario. Here, mdiag
ν = (m1,m2,m3,m4) is the diagonal neutrino

mass matrix in the mass basis. Diagonalizing matrix V is the 4× 4 PMNS-like leptonic

mixing matrix which can be expressed as

V =UP. (1.21)

Here U represents the mixing matrix for Dirac neutrinos. Apart from the solar (θ12), atmo-

spheric (θ23) and reactor (θ13) mixing angles, the mixing matrix U contains three active-sterile

mixing (ASM) angles θ14, θ24 and θ34 which quantifies the νs −νe , νs −νµ and νs −ντ

mixings respectively, along with three Dirac CP violating phases.

Parametrizing U explicitly as [64]

U = (R34R̃24R̃14)(R23 ˜R13)R12, (1.22)

Ri j/R̃i j are the 4×4 rotation matrix in the i j flavor space and δ13,δ14,δ24 are the Dirac CP

violating phases

R34 =



1 0 0 0

0 1 0 0

0 0 c34 s34

0 0 −s34 c34


, R̃24 =



1 0 0 0

0 c24 0 s24e−iδ24

0 0 1 0

0 −s24eiδ24 0 c24


, (1.23)

where ci j = cosθi j, si j = sinθi j.

The matrix P in Eq. (1.21) is a diagonal matrix with three Majorana phases (α,β ,γ)

which can be written as

P = diag(1,e−iα/2,e−i(β/2−δ13),e−i(γ/2−δ14)). (1.24)
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Fig. 1.1 Mass spectrum in 3+1 scheme for normal (SNH) and inverted (SIH) hierarchy.

Apart from the 5 new mixing parameters (3 ASM angles and 2 Dirac CP phases δ14,δ24)

mentioned above, the (3+1) model also involves one new mass squared difference ∆m2
LSND =

∆m2
41/43 between the eV scale sterile neutrino and the light active neutrinos. The additional

sterile neutrino along with the three active neutrinos can have two possible mass arrangements:

the sterile neutrino mass can either be higher (∆m2
41 > 0) or lower (∆m2

41 < 0) than the mass

of the three active neutrinos. In the latter case, the additional sterile state is the lightest while

the three active neutrinos are of mass ≃eV each leading to ∑m ≃ 3eV which is inconsistent

by cosmological observation [65]. Thus, considering that the sterile neutrino is heavier than

the three active neutrinos, the three mass squared difference in the 3+1 picture follows the

condition

|∆m2
21|<< |∆m2

31|<< |∆m2
41|. (1.25)

As the sign of |∆m2
31| is yet to be pinned down, two mass spectra are possible (Fig. 1.1)

(i) Normal hierarchy (SNH) with m1 << m2 << m3 << m4.

(ii) Inverted hierarchy (SIH) with m4 >> m1 ≃ m2 >> m3
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1.5.1 Minimal extended seesaw mechanism

In order to accommodate light sterile neutrinos in theory with mass ranging from eV-keV

scale, a number of new mechanisms have been proposed [66–75]. A general analysis of

the active-sterile mixing have also been studied in Ref. [76]. In the three neutrino scenario

seesaw mechanism has played a major role for the theoretical understanding of the smallness

of neutrino masses. In the (3+1) framework, the authors of Ref. [67] made a similar approach

for generating an eV scale sterile neutrino within the seesaw framework. In the context of

type-I seesaw mechanism, an eV scale sterile neutrino can be realized by bringing one of

the heavy right-handed neutrinos (∼ 1014 GeV) states down to the eV scale [67]. However,

such a scenario is quite trivial as the seesaw Lagrangian already has atleast one particle at

the desired eV scale and therefore contradicts the seesaw spirit. For accommodating an

eV scale sterile neutrino, the authors of Ref. [67] considered an extension of the canonical

type-I seesaw mechanism whereby the Standard Model is extended by an additional neutral

heavy fermion (heavier than the SM scale), apart from the three right-handed neutrinos. This

extended version of the canonical type-I seesaw mechanism is popularly known as Minimal

Extended Seesaw (MES) Mechanism. In the MES framework, an eV scale sterile neutrino

is generated without the priori presence of states with eV scale masses and is therefore more

within the seesaw spirit. We now present a details on the MES mechanism in the following

which shall be the common formalism of all the chapters thereafter.

For the theoretical understanding of the origin of an eV scale sterile neutrino as well

as its mixing with the three active neutrinos, the authors of Ref. [67] studied the minimal

extension of canonical type-I seesaw mechanism, popularly known as minimal extended

seesaw mechanism (MES). In MES mechanism, the Standard Model is extended with

an additional gauge singlet chiral field ‘S’, apart from the three right-handed neutrinos

(νeR,νµR,ντR). Within this scenario, an eV scale sterile neutrino naturally appears, without

needing to insert any small mass term for νs.



18 INTRODUCTION

Thus the Lagrangian representing Dirac and Majorana mass terms with sterile neutrino

mass term is of the following form [67]

−Lm = ν̄LMDνR + S̄cMSνR +
1
2

ν̄
c
RMRνR +h.c.. (1.26)

With only one extra gauge singlet field ‘S’, the mass matrix MS is a 1×3 row matrix which

couples the singlet field ‘S’ and the three right-handed neutrinos. In the (νL,ν
c
R,S

c) basis, the

neutrino mass matrix becomes a 7×7 matrix of the following form

m7×7
ν =


0 MD 0

MT
D MR MT

S

0 MS 0

 . (1.27)

On implementing the seesaw approximation MR ≫ MS > MD the heavy RH ν are much

heavier than the electroweak scale and hence gets decoupled at low energy scale. Block

diagonalization of Eq. (1.27) using seesaw approximation reduces the 7×7 neutrino mass

matrix in the basis (νL,Sc) to a 4×4 mass matrix of the following form:

m4×4
ν =−

 MDM−1
R MT

D MDM−1
R MT

S

MS(M−1
R )T MT

D MSM−1
R MT

S

 . (1.28)

m4×4
ν in Eq. (1.28) is a square matrix containing four light eigenstates corresponding to three

active neutrinos and one sterile neutrino [68] and their masses gets suppresed by a factor

M−1
R which is within the seesaw spirit. However, the determinant of the mass matrix m4×4

ν is
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zero.

det(m4×4
ν ) = det(MDM−1

R MT
D)det[−MSM−1

R MT
S

+MSM−1
R MT

D(MDM−1
R MT

D)
−1MDM−1

R MT
S ]

= det(MDM−1
R MT

D)det[MS(M−1
R −M−1

R )MT
S ]

= 0.

(1.29)

m4×4
ν is therefore a matrix of rank 3 which implies that at least one of the active neutrinos

is massless. Here, both MD and MR are considered to be non-singular.

There can be three possible scenarios [68] for the mass scale of MS :

1) MD ∼MS: Within this scenario, m4×4
ν is a nearly democratic matrix which implies maximal

active-sterile mixing and therefore is incompatible with experimental observations.

2) MD > MS : Under this scenario, the active neutrinos are heavier than the sterile state.

Block diagonalization of Eq. (1.28) then leads to the active-sterile neutrino mass matrix at the

leading order of the form mν =−MDM−1
R MT

D which is the same as type-I seesaw mechanism

and also a vanishing sterile neutrino mass. In view of the experimental observations on

active-sterile mass squared differences which is ∼ eV 2 would then imply that all the three

active neutrinos are located at the eV scale. This would lead to a large value of ∑mi resulting

in tensions with standard cosmological constraints. We shall therefore, concentrate on the

third and only possible scenario where MS > MD.

As MS > MD, the seesaw approximation can be applied once again to Eq. (1.28) to obtain

the modified active neutrino mass matrix to its leading term as

m3×3
ν ∼ MDM−1

R MT
S (MSM−1

R MT
S )

−1MS(M−1
R )T MT

D −MDM−1
R MT

D, (1.30)
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with the mass of the sterile neutrino as

ms ∼−MSM−1
R MT

S . (1.31)

The mass matrix MS being a 1×3 row matrix, prevents the right-hand-side of Eq. (1.30) from

vanishing. There would have been an exact cancellation between the two terms of Eq. (1.30)

if MS would have been a square matrix.

The active-sterile neutrino mixing matrix takes the form-

V ∼

(1− 1
2RR+)U R

−R+U 1− 1
2R+R

 , (1.32)

where U is the unitary matrix diagonalising the mass matrix m3×3
ν .

R3×1 = MDM−1
R MT

S (MSM−1
R MT

S )
−1 = (Ve4,Vµ4,Vτ4)

T . (1.33)

R3×1 = (Ve4,Vµ4,Vτ4)
T defines the strength of active-sterile mixing and is essentially sup-

pressed by the ratio O(MD)/O(MS).

An illustration have also been made in Ref. [67] where one arrives at ms ≈ 1.3 eV,

mν ≈ 0.05eV and R ≈ 0.2 , assuming MD ≈ 102GeV, MS ≈ 5×102 GeV and MR ≈ 2×1014

GeV.

Within the context of MES mechanism, at least three heavy right-handed neutrinos are

required so as to suppress the masses of active as well as sterile neutrinos. Two of the heavy

right-handed neutrinos generates two massive active neutrinos, while one of them gives rise

to the mass of νs.

The minimal extended seesaw mechanism is an extension to the canonical type-I seesaw

mechanism. Due to the absence of fermionic degrees of freedom, type-II seesaw does

not provide the possibility of light sterile neutrinos. Although the neutral components of
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fermionic triplets in type-III seesaw plays similar role as the right-handed neutrinos in type-

I seesaw, they are not gauge singlets and therefore cannot be accounted for light sterile

neutrinos.

1.6 Texture zeros and symmetry realization

Texture zeros

Texture zero models have been successful in explaining the masses and mixings in both

the sectors - quarks and leptons. Zeros in the mass matrix elements is the simplest and

transparent way of inducing relations among the physical quantities (masses, mixing angles

and CP phases) of the mass matrix mν and thereby reducing the number of free parameters

[77]. A complex symmetric Majorana neutrino mass matrix m3×3
ν for three active neutrinos

has nine physical quantities : three neutrino masses, three mixing angles, one Dirac CP

phase and two Majorana CP phases which leads to four correlation conditions among the

physical quantities [78, 79]. One zero in mν corresponds to one-zero texture, two zeros in

mν corresponds to two-zero texture and so on. Free parameters can be further reduced if one

considers a vanishing neutrino mass (m1 = 0 (NH) or m3 = 0 (IH)) along with zero textures

of mν . One vanishing neutrino mass along with one-zero in mν imposes only two correlation

conditions: one related to the vanishing absolute value and another to the vanishing argument

on the parameters-masses, mixing angles and CP phases [80]. More number of zeros implies

more correlation conditions, that is, more restrictions on the mass matrix mν . In that sense,

two-zero textures are more restrictive and thereby lead to more predictive models compared

to the one-zero textures. Apart from zero textures of mν , there are a number of papers in

literature where zeros of m−1
ν are also explored leading to interesting phenomenologies [81].

Zeros in the light neutrino mass matrices can be imposed directly by hand. A complex

symmetric neutrino mass matrix m3×3
ν has six independent entries. However, in the three
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neutrino scenario, the current neutrino oscillation data disfavours the neutrino mass matrices

with three or more zeros [78]. There are 6C3 = 20 possible three-zero textures of m3×3
ν , but

none of them are compatible with neutrino oscillation data. Similarly, out of 15 possible

two-zeros textures of m3×3
ν , only 7 patterns can withstand the current experimental data

[78]. And out of 6 possible one-zero textures [80], 4 textures survive the experimental

constraints with inverted mass ordering (m3 = 0), whereas in normal mass ordering (m1 = 0)

all the 6 textures are ruled out at 3σ range of experimental values. From a more deeper

theoretical front, zeros in the light neutrino mass matrices can also be imposed via type-I

seesaw mechanism which is the prime candidate for understanding the smallness of neutrino

mass. In the context of type-I seesaw mechanism, the light neutrino mass matrix mν is the

product of a more basic Dirac neutrino mass matrix MD and right-handed Majorana neutrino

mass matrix MR. It has been highlighted by many authors [82–84] that zeros of MD and MR

propagates as zeros in effective neutrino mass matrix mν via type-I seesaw mechanism. Thus,

considering zeros in MD and MR will be more natural than considering zeros in mν alone.

Apart from type-I seesaw mechanism, zero textures of mν have also been investigated in the

framework of Inverse seesaw [85–94] mechanism .

A detailed study on texture zeros have also been made in the (3+1) picture, [95–99], that

is, three active and one light sterile neutrino. In the (3+1) scenario, the neutrino mass matrix

mν takes a (4× 4) form with 10 independent entries. However, it is to be mentioned that

in m4×4
ν zeros are allowed only in the active sector of the mass matrix. Zeros in the sterile

sector, that is, in the fourth row and column are disfavored by neutrino oscillation data.

Symmetry realization

Texture zero models in general, seems to be quite arbitrary and will not lead to renormalizable

models [100]. However, zeros implemented through suitable Abelian symmetries with an

extended scalar sector can promote the texture zero schemes into renormalizable field theories
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[101]. In our work, for realization of the zero textures of the fermion mass matrices we

shall concentrate on discrete Abelian flavor symmetry group Zn. A group G is said to be

Abelian, if all the elements of the group are commutable to each other, that is , ab = ba for

any elements a,b in the group G. If an = e, where e is the identity element of the group,

then ‘n’ is said to be the order of the group and is also defined as the number of elements of

the group G. The element ‘a’, which can generate the whole group elements is called the

generator of the group. A discrete Abelian group Zn has elements (1,ω,ω2,ω3.....,ωn−1)

where ωn = 1 and ω = ei 2π

n is the generator of the group.

For a given mass matrix with zeros in arbitrary entries, it is always possible to find

suitable Abelian symmetry group Zn with an extended scalar sector such that the texture

zeros originates from these symmetries [101, 102]. Vice versa, Abelian symmetries may

also be used to impose zeros in any arbitrary entries of the mass matrix [103, 104]. Apart

from Abelian symmetry group, realization of zero textures is also possible by non-abelian

flavor symmetry approach [105]. In presence of an additional flavor symmetry (G f lavor), the

Standard Model symmetry gets extended to

G = SU(3)C ×SU(2)L ×U(1)Y ×G f lavor, (1.34)

with the condition that Lagrangian of the theory continues to remain invariant on leptonic

field transformation under the group G f lavor.

Considering the Yukawa Lagrangian

−LY =
3

∑
i, j=1

(
Yi jD̄Liφi jlR j + Ỹi jD̄Li φ̃i jνR j +

1
2

Wi jχi jν̄RiCν̄
T
R j

)
+h.c.. (1.35)

Here D̄L, lR,νR are the left-handed SU(2)L doublets, right-handed SU(2)L singlets and right-

handed neutrino singlets respectively. φi j represents the Higgs doublet with hypercharge +1

and φ̃i j = iτ2φ∗ with hypercharge -1. Yi j are the (3×3) complex Yukawa coupling matrices.
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From the Lagrangian in Eq. (1.35) it is evident that one can have a total of nine Higgs

doublet φi j(φ̃
∗
i j) and six gauge singlet scalar χi j. Their respective non-zero vaccum ex-

pectation values vi j(u∗i j) and wi j leads to the charged lepton mass matrix (Ml)i j = v∗i jYi j,

Dirac neutrino mass matrix (MD)i j = ui jỸi j and right-handed Majorana neutrino mass matrix

(MR)i j = wi jWi j.

General methods for symmetry realization of zero textures has been provided in paper

[100], whereby two methods have been propounded for enforcing zeros in fermion mass

matrices by means of Abelian symmetry group with an extended scalar sector. However,

specific guidelines for minimal symmetry realization of texture zeros are still lacking.

1.7 Present status of neutrino masses and mixings

The parameter space for three active neutrinos include two independent mass squared differ-

ences (∆m2
12, ∆m2

31), the three mixing angles (θ12,θ13,θ23), Dirac CP violating phase δ and

Majorana CP violating phases α,β .

• 3σ values of the two mass squared differences are provided below [106]:

∆m2
21 = (6.93−7.97)×10−5 eV2. (1.36)

|∆m2
31|= (2.37−2.63)×10−3 eV2 (NH),

= (2.33−2.60)×10−3 eV2 (IH).
(1.37)

From the experimental data it is evident that the two mass squared difference ∆m2
solar =

∆m2
21 and ∆m2

atmospheric = |∆m2
31| differ by two orders of magnitude and thus Rν =

∆m2
21

∆m2
31
≃

10−2. The sign of |∆m2
31| is not yet known and hence the neutrino mass ordering whether

normal or inverted still remains to be an open question. Moreover, the absolute mass scale of

m1,m2,m3 is yet to be ascertained.
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• The three mixing angles θ12, θ23, θ13 are constrained within 3σ as [106]:

sin2
θ12 = (2.50−3.54)×10−1,

sin2
θ13 = (1.85−2.46)×10−2 (NH),

= (1.86−2.48)×10−2 (IH),

sin2
θ23 = (3.79−6.16)×10−1 (NH),

= (3.83−6.37)×10−1 (IH).

(1.38)

The reactor mixing angle θ13 ̸= 0 but is comparatively smaller than the other two mixing

angles. Octant of the atmospheric mixing angle θ23 is yet to be determined and hence can lie

either in the first octant (θ23 < π/4) or second octant (θ23 > π/4).

• Dirac as well as Majorana CP phases remains unconstrained (0−2π) at 3σ range.

• With three active and one eV scale sterile neutrino, the mass squared difference

∆m2
LSND and the active-sterile mixing, represented by the fourth row and column in the 4×4

diagonalizing matrix VPMNS are constrained [107–109] within 3σ as:

|Ve4|2 = (0.012−0.047),

|Vµ4|2 = (0.005−0.03),

|Vτ4|2 < 0.16,

∆m2
LSND = (0.87−2.04)eV2.

(1.39)

Here ∆m2
LSND = (∆m2

41 or ∆m2
43) depending on whether the hierarchy is Normal (∆m2

43) or

Inverted (∆m2
41).
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1.8 Motivation for present work

Although neutrino physics has witnessed a tremendous progress in last few decades in

both theoretical and experimental fronts, neutrinos continue to enthral us with a number of

questions, some of which are listed below:

• Why are neutrino masses so tiny compared to other fermions?

• Why are the two mixing angles of neutrinos are large compared to quark mixing?

• What is the absolute mass scale of neutrinos?

• What is the nature of neutrinos: Dirac or Majorana particles?

• How many neutrino species are there?

• What is the mass hierarchy of neutrinos: Normal or Inverted?

• CP violating phases are yet to be determined?

• Are there light sterile states of neutrinos- answer to LSND anomaly?

In theoretical pursuit of understanding of neutrino masses and mixing, the seesaw mecha-

nism has been recognised as the most popular and successful approach in literature. Seesaw

models are the neutrino mass matrices constructed from the following fermion mass matrices:

the Dirac neutrino mass matrices MD and heavy right handed Majorana mass matrices MR

as basis of the models. The fermion mass matrices MD and MR are not completely known

from the point of view of experiments. Under such a scenario, phenomenological approaches

for model building have been playing a useful tool for interpreting new experimental data

on leptons as well as quarks. It is expected that these approaches will provide hints on the

underlying symmetries of the lepton flavor structure and thereby help in constructing a more

realistic model for the same.

The phenomenology of the neutrino mass matrices mν hints at negligibly small contribu-

tions of certain entries compared to others of the matrices. Thus the simplest approach is

to consider neutrino mass matrix with zeros in arbitrary entries. Such textures of neutrino

mass matrix with independent zero entries in it are popularly known as ‘texture zeros’. Zeros
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in arbitrary entries of the fermion mass matrices can also be imposed via discrete Abelian

flavor symmetry group Zn. Flavor symmetries are horizontal symmetries, that is, it unifies

fermions of different families, in contrast to GUT symmetry, where the unification takes

place vertically among the different members of each family. Flavor symmetry or family

symmetry acting on the three families of the SM might prove to be a guiding principle in

solving the long standing flavor problem.

Now the motivation of the present work is primarily and broadly based on (i) theoretical

understanding of the LSND anomaly in the framework of Minimal Extended Seesaw (MES)

as described in the preceding Section, (ii) study of texture zeros of MES neutrino mass

matrices acquired from texture zeros of fermion mass matrices involved, (iii) also origin of

zeros from flavour symmetry groups.

1.8.1 Layout of the thesis

In Chapter 2 we re-investigate the one-zero textures in m3×3
ν within the (3+1) scheme in the

context of MES mechanism. For realization of the one-zero textures of m3×3
ν in the context

of MES mechanism we consider the zero textures of 3×3 form of MD,MR and 1×3 matrix

MS for phenomenologically predictive cases having total number of zeros of MD and MR

to be eight. With this motivation, we consider the (4+4) scheme, (5+3) scheme and (6+2)

scheme, where the digits of a pair represent the number of zeros of MD and MR respectively.

We also present the S3 group transformation existing between the different combinations

of MD,MR and MS which yields similar phenomenology. The textures which are found to

be viable in our study are realized via Abelian symmetry group Z7 by extending the SM to

include few scalar fields.

In Chapter 3 we study the two-zero textures of m4×4
ν in the context of MES mechanism.

The 4×4 MES model deals with 3×3 (MD), 3×3 (MR) and 1×3 mass matrix (MS). As
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the 4×4 MES matrix is a matrix of rank three so we consider only those two-zero textures

which are of rank three which reduces the number of feasible zero textures to 12, out of 15.

We consider the (4+4) scheme, that is, 4 zeros in MD and 4 zeros in MR along with one/two

zero textures of MS for realization of the 12 two-zero textures of m4×4
ν . Similar to m3×3

ν , S3

group transformation exists among the different textures of MD,MR and MS in m4×4
ν as well,

all of which shows similar phenomenology. We also discuss the role of Dirac and Majorana

CP phases in determining the viability of the textures. Textures which are allowed within 3σ

range of experimental values are realized by discrete Abelian symmetry group Z9 with the

extension of standard model to include some scalar fields.

In Chapter 4 we present the realization of the rank 3 two-zero textures of m4×4
ν under MES

mechanism considering (5+3) and (6+2) scheme. Correlations of each textures are examined

under recent neutrino oscillation data. We also discuss the interplay of Dirac and Majorana

CP phases in determining the viability of the textures. S3 group permutations of MD, MR and

MS under (5+3) scheme is also discussed in this chapter. Viable texturesare then realized via

Z9 Abelian symmetry group.

In Chapter 5 we finally conclude our work of the thesis in this Chapter along with a broad

outlines of the scope of the thesis for extension of future research.



2
Study of texture zeros of MES m3×3

ν and Z7

symmetry realization

2.1 Introduction

This chapter is based on the work published in our paper [98]. The procedure of realization

of texture zeros of neutrino mass matrices mν , the predictive power of such models and the

origin of texture zeros from flavor group symmetry have been discussed in the section 1.6 of

Chapter 1. In the three neutrino scenario, texture zeros of mν have been extensively studied in
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literature [110–124]. A complex symmetric neutrino mass matrix m3×3
ν with six independent

entries can have six possible one-zero textures. However, with one vanishing neutrino mass

only four one-zero textures survive the experimental constraints in inverted hierarchical mass

ordering, whereas none of the textures survive with normal hierarchical mass ordering [80].

Similarly, out of 15 possible two-zero textures only 7 textures are allowed by experimental

data [78]. Zeros in mν can also be realized via type-I seesaw mechanism. In the context

of type-I seesaw mechanism, zeros of Dirac neutrino mass matrix (MD) and right-handed

Majorana neutrino mass matrix (MR) propagates [82–84] as zeros in the effective neutrino

mass matrix (mν ). Thus, the study of zero textures of MD and MR are more natural than

the study of zero textures of mν alone. Without giving any emphasis on the number and/or

position of zeros of mν , the author of Ref. [82] have studied all possible zeros of MD and MR

in the context of type-I seesaw mechanism for predictive scenario, whereby the sum of zeros

of MD and MR is eight. Following the similar approach, in this chapter, we explore the zero

textures of m3×3
ν in the (3+1) scenario, that is, with an additional eV scale sterile neutrino

apart from the three active neutrinos. In presence of the sterile species the system becomes

more constrained. In the (3+1) scenario, a number of textures previously allowed in three

neutrino scenario may be ruled out based on current neutrino data with active-sterile mixings.

Remaining allowed textures may be tested in the ongoing or future experiments.

In this chapter we realize the zero textures of m3×3
ν in the context of Minimal Extended

Seesaw (MES) mechanism for predictive scenario. MES is an extension of the canonical

type-I seesaw mechanism, whereby the Standard Model (SM) is extended by an additional

gauge singlet chiral field ‘S’ along with three right-handed neutrinos. This results into a

naturally occurring eV scale sterile neutrino without requiring to impose any tiny Yukawa

term for νs. MES mechanism deals with (3×3) MD, (3×3) MR and (1×3) row matrix MS

which couples the singlet field ‘S’ with the three right-handed neutrinos. For realization

of zero textures of mν we consider the zero textures of MD, MR and MS which will finally
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propagate as zeros in mν . Under predictive scenario there are three possible mappings of

MD and MR along with suitable zero textures of MS : (i) (4+4) scheme (ii) (5+3) scheme and

(iii) (6+2) scheme, where the numbers within a pair represents the number of zeros of MD

and MR respectively. A similar study was performed by the authors of Ref. [97] whereby

they considered the minimal scenario of 5 zeros of MD and 4 zeros as well as diagonal MR,

which happens to be a few cases of the predictive scenario. We therefore, will not consider

the diagonal form of MR with 5 zeros in MD in our study.

Interestingly we also find that fermion mass matrices in our study are related to each

other via S3 permutation group under MES mechanism. This eases our job of dealing only

with a few basic combinations of MD,MR and MS. Enforcing zeros in mν lead to a number

of constraint conditions, named as correlations, whereby different mass matrix elements of

m3×3
ν are related to each other. We check the viability of each of the textures under recent

neutrino oscillation data. We consider a texture to be viable only if it shows consistency with

experimental data. We find that out of four experimentally allowed one-zero textures of mν

only three textures meτ = 0,mµµ = 0 and mττ = 0 can be realized in the context of predictive

scenario and MES mechanism. However, recent neutrino oscillation data allows only one

texture mττ = 0. We also perform symmetry realization of those textures of MD,MR and MS

which leads to viable one-zero textures of mν . We consider the Z7 Abelian symmetry group

for realization of the viable textures with an extension of the Standard Model to include a

few scalar fields.

This chapter is organised as follows: Section 2.2 deals with a brief review on Minimal

Extended Seesaw (MES) mechanism. In Section 2.3, we present S3 transformations of the

fermion mass matrices and their invariance under MES formalism. Section 2.4 presents

all phenomenologically viable one-zero textures of m3×3
ν . Subsections 2.4.1 and 2.4.2 deal

with zero textures of MD, MR and MS under the (4+4) and (5+3) schemes along with their

respective correlations obtained in each case. In Section 2.5, we check the consistency of the
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correlations obtained by each set of the fermion mass matrices in context of current neutrino

oscillation data. In Section 2.6 ZN group symmetry realization of all the viable textures are

presented. And finally we conclude in Section 2.7.

2.2 Minimal extended seesaw (MES) mechanism

Minimal Extended Seesaw mechanism [67] is an extension of the type-I seesaw mechanism

wherein the SM is extended with four additional singlets - three right-handed neutrinos

and one gauge singlet chiral field ‘S’. In this scenario, an eV scale sterile neutrino appears

naturally, without the need of any fine tuning to mass term for νs. A detailed analysis of

MES mechanism have been presented in Chapter 1, but for ready reference, we discuss it

briefly here.

The Lagrangian representing Dirac and Majorana mass terms with sterile neutrino mass

term is of the following form

−Lm = ν̄LMDνR + S̄cMSνR +
1
2

ν̄
c
RMRνR +h.c.. (2.1)

Here MS is a (1×3) row matrix which couples the singlet field ‘S’ and the three right-handed

neutrinos. In the context of MES mechanism, the light neutrino mass matrix m3×3
ν gets

modified to the following form

m3×3
ν ⋍ MDM−1

R MT
S (MSM−1

R MT
S )

−1MS(M−1
R )T MT

D −MDM−1
R MT

D, (2.2)

with

ms ⋍−MSM−1
R MT

S . (2.3)
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Here ms is the sterile neutrino mass term. The strength of active-sterile mixing represented

by the fourth column of the mixing matrix is given by

R3×1 = MDM−1
R MT

S (MSM−1
R MT

S )
−1 = (Ve4,Vµ4,Vτ4)

T . (2.4)

In our work we try to realize the one-zero textures of m3×3
ν (Table 2.1) in the MES mechanism

(Eq. (2.2)). To proceed we consider the zero textures of MD,MR and MS for predictive scenario

: (4+4) scheme, (5+3) scheme and (6+2) scheme, where in a pair within the bracket, the

first digit represents the number of zeros of MD and the second digit represents the number

of zeros of MR. On implementation of MES mechanism, these zeros propagate as zeros to

m3×3
ν .

2.3 S3 invariance of m3×3
ν

We find that there exist a number of combinations of zero textures of MD, MR and MS which

map into the same mν of Eq. (2.2). This correspondence is due to S3 group transformations

among the different Dirac neutrino mass matrices MD, among different right-handed Ma-

jorana neutrino mass matrices MR, among different MS. Of course, the author of Ref. [82]

used this technique in his work for finding out all possible zeros of MD and MR to realize a

particular zero texture of mν .

S3 is the smallest non-Abelian discrete group. A group SN is said to be non-Abelian if

ab ̸= ba, for all elements a,b of the group. A permutation group is formed by all possible per-

mutation among N objects xi (i = 1,2,3, .....N), that is, (x1,x2, ......,xN)→ (xi1,xi2 , ......,xiN ).

Such a group with N elements is denoted by SN and is called the symmetry group with order

N!. For N = 3, the order of the permutation group S3 is 3! = 6. The six elements of S3 can

be represented by 3×3 matrices as
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E =


1 0 0

0 1 0

0 0 1

 , A =


0 1 0

1 0 0

0 0 1

 , B =


0 0 1

0 1 0

1 0 0

 ,

BA =


0 0 1

1 0 0

0 1 0

 , AB =


0 1 0

0 0 1

1 0 0

 , ABA =


1 0 0

0 0 1

0 1 0

 .

(2.5)

Denoting A = a and BA = b, we obtain a2 = b3 = E, where E is the identity element.

Also, it is to be noted that BAB = ABA. The element A and BA can generate the whole group

and hence they are the generators of the group (a = A,b = BA,ab = ABA,ba = B,aba = AB).

The following S3 transformations of MD,MR and MS keep mν invariant:

MD → MDZ, MR → ZT MRZ, MS → MSZ. (2.6)

1 with

Z ∈ S3 = (A,A2,B,AB,BA,ABA). (2.7)

2.4 One-zero textures of m3×3
ν

All experimentally viable one-zero textures of m3×3
ν for three active neutrinos are presented

in the Table 2.1. The mν having elements either mee = 0 or mµτ = 0 is not permitted by

current neutrino data. The remaining four textures meµ = 0,meτ = 0,mµµ = 0,mττ = 0 are

allowed [80]. It is interesting to note that all experimentally allowed one-zero textures of mν

1mν , MR and MT
S MS are symmetric and hence they entail permutations of both rows and columns
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have mass eigenvalues in inverted hierarchical (IH) mass ordering i.e., m1 ≃ m2 >> m3 and

no normal hierarchical one-zero texture of m3×3
ν is allowed.

Table 2.1 All possible one-zero textures in m3×3
ν

mee = 0 meµ = 0 meτ = 00 X X
X X X
X X X

 X 0 X
0 X X
X X X

 X X 0
X X X
0 X X


mµµ = 0 mµτ = 0 mττ = 0X X X
X 0 X
X X X

 X X X
X X 0
X 0 X

 X X X
X X X
X X 0



It is again point to ponder over in two-zero textures: our detailed investigation shows that

no two-zero textures are phenomenologically viable in presence of sterile neutrino i.e., (3+1)

models, although they are allowed in 3-active neutrino mass models without sterile neutrino

states. Thus m3×3
ν in MES are allowed for one-zero textures of inverted hierarchical mass

ordering only.

2.4.1 4 zeros in MD and 4 zeros in MR

There are 9C4 = 126 number of possible 4-zero textures of MD and 6C4 = 15 number of

possible 4-zero textures of MR. Current neutrino data do not permit those MD consisting of

row-zero or block-zero, because the row-zero textures are uninteresting since they yield one

massless, decoupled neutrino. Again block-zero textures may also be neglected because they

lead to scaling i.e., the neutrino mass matrix has a right eigen vector with one zero entry

corresponding to the eigenvalue zero. This implies that the PMNS matrix has one zero matrix

element which contradicts experiments [82]. Again, MES mechanism requires MD and MR

to be singular. Therefore, all row-zero, block-zero and column-zero forms of MD and MR are
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uninteresting in our study. There are 18 row-zero, 18 column-zero and 9 block-zero textures

of MD, hence the number of viable 4-zero textures of MD are 81. Again out of 15 four-zero

textures of MR, the following are non-singular which is a mandatory requirement for seesaw

mechanism:

Ma
R =


0 B 0

B 0 0

0 0 F

 , Mb
R =


0 0 C

0 D 0

C 0 0

 , Mc
R =


A 0 0

0 0 E

0 E 0

 (2.8)

S3 transformations according to Eq. (2.6) lead us to only one basic texture of MR =

Mc
R, where the other two textures can be obtained from S3 transformations of Mc

R. These

transformations connect different texture zeros of MD, MR and MS to produce zero in the

same location of the neutrino mass matrix mν . In our work, only one-zero textures of MS are

allowed as follows:

M(1)
S = (0 s2 s3), M(2)

S = (s1 0 s3) and M(3)
S = (s1 s2 0). (2.9)

Now the following cases of one-zero textures have been realized in MES formalism:

Case I: realization of mττ=0

It can be realized by the choice of three sets of MD,MR and MS for mττ = 0 in the neutrino

mass matrix resulting three correlations.
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Case I(a):

MR = Mc
R , M(2)

D =


0 b c

d e 0

0 0 i

 , M(2)
S = (s1 0 s3). (2.10)

meµ =−Ve4Vµ4ms +
mµτ(V 2

e4ms +mee)

2meτ

. (2.11)

Vµ4

Ve4
=

mµτ

meτ

+
d

Ve4s1
. (2.12)

CaseI(b):

MR = Mc
R , M(3)

D =


0 b 0

d e f

0 0 i

 , M(2)
S = (s1 0 s3), (2.13)

mee =−V 2
e4ms. (2.14)

Vµ4

Ve4
=

mµτ

meτ

+
d

Ve4s1
. (2.15)

Case I(c):

MR = Mc
R, M(1)

D =


a b 0

d e 0

0 0 i

 , M(2)
S = (s1 0 s3), (2.16)

mµµ =−V 2
µ4ms +

Ve4Vµ4ms +m2
eµ

V 2
e4ms +mee

, (2.17)

Vµ4

Ve4
=

ds1E + es3A
as1E +bs3A

. (2.18)
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Each of these three basic cases of Eq. (2.10), (2.13), (2.16) gives a number of suitable combi-

nations of MD,MR and MS via Eq. (2.6) which leading to the same mττ = 0 are presented in

Table 2.3, 2.4 and 2.5.

Case II: realization of meτ=0

meτ can be generated by following set of MR,MD and MS

MR = Mc
R , M(4)

D =


0 b c

d 0 f

g 0 0

 , M(1)
S = (0 s2 s3). (2.19)

The correlation on enforcement of zero for meτ is

mµµ =−V 2
µ4ms +

m2
µτ

mττ

, (2.20)

Ve4

Vµ4
=

e
f
− b

2Vµ4s2
. (2.21)

2.4.2 5 zeros in MD and 3 zeros in MR

There are 9C5 = 126 number of possible 5-zero textures of MD, out of which only 36 textures

are non-singular. For 3-zero textures of MR, we have 6C3 = 20 possible zero textures, out of

which, 14 are non-singular. These non-singular MR have been presented in the Table 2.2.

The S3 transformations according to the Eq. (2.6) lead to only the following four basic

3-zero textures of MR which are need to be studied and other textures are the results of S3
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Table 2.2 All possible three zero textures of MR.

M(1)
R M(2)

R M(3)
R M(4)

R M(5)
R0 B C

B 0 E
C E 0

 0 0 C
0 D E
C E 0

 0 B 0
B 0 E
0 E F

 0 0 C
0 D 0
C 0 F

 A 0 C
0 0 E
C E 0


M(6)

R M(7)
R M(8)

R M(9)
R M(10)

RA 0 0
0 0 E
0 E F

 A 0 0
0 D 0
0 0 F

 A 0 0
0 D E
0 E 0

 A B 0
B 0 E
0 E 0

 A B 0
B 0 0
0 0 F


M(11)

R M(12)
R M(13)

R M(14)
R -0 B C

B 0 0
C 0 F

 0 B C
B D 0
C 0 0

 0 B 0
B D 0
0 0 F

 A 0 C
0 D 0
C 0 0

 -

transformations keeping mν invariant:

M(1)
R =


0 B C

B 0 E

C E 0

 , M(7)
R =


A 0 0

0 D 0

0 0 F

 , M(9)
R =


A B 0

B 0 E

0 E 0

 , M(10)
R =


A B 0

B 0 0

0 0 F

 .

(2.22)

In our study, we have seen that M(1)
R can never generate zero texture of mν whatever

the choice of MD may be. Hence the rest 13 textures of MR shall be effective for our work.

Again the diagonal M(7)
R in combination with 5-zero MD has been used by the authors in the

Ref. [97] for study. Therefore, we do not present the results for this case because it shall be

mere a repetition only.

Case III : realization of mττ=0
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Case III(a):The following combination

MR = M(10)
R , M(5)

D =


0 b 0

0 e f

g 0 0

 , M(2)
S = (s1 0 s3), (2.23)

leads to mττ=0 with the correlation

meµ =−Ve4Vµ4ms +
mµτ(V 2

e4ms +mee)

meτ

, (2.24)

Vµ4

Ve4
=

mµτ

meτ

+
f

Ve4s3
. (2.25)

Again S3 transformations enable us to find another five combinations of MD, MR and MS

giving mττ=0 with the same correlations presented in Table 2.6.

Case III(b):

MR = M(9)
R , M(6)

D =


0 0 c

d 0 f

0 h 0

 , M(3)
S = (s1 s2 0), (2.26)

leads to mττ=0. Implementing S3 transformations, we have another five combinations giving

mττ=0 with the same following correlation presented in the Table 2.7.

mµµ =−V 2
µ4ms +

Ve4Vµ4ms +m2
eµ

V 2
e4ms +mee

, (2.27)

Vµ4

Ve4
=

mµτ

meτ

+
d

Ve4.s1
. (2.28)
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Case IV: realization of meτ=0

It can be generated with the following combination

MR = M(10)
R , M(7)

D =


0 b 0

d 0 f

0 0 i

 , M(3)
S = (s1 s2 0). (2.29)

It leads to the correlation

mµµ =−V 2
µ4ms +

m2
µτ

mττ

, (2.30)

Ve4

Vµ4
=

s1b
s2d

− Ab
Bd

. (2.31)

Through S3 transformations one can have another five combinations of MD, MR and MS

yielding the same correlations.

Case V: realization of mµµ=0

It can be generated with

MR = M(10)
R , M(8)

D =


0 b c

d 0 0

0 h 0

 , MS = (0 0 s3). (2.32)

S3 transformations lead to another combinations of MD, MR and MS which gives the following

correlation
mee

meµ

=
meτ

mµτ

. (2.33)
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2.5 Viability of such texture zeros of mν under current neu-

trino data

Since one-zero textures of mν are inverted hierarchical models, so the expressions for their

matrix elements in terms of neutrino parameters i.e., experimental observables with setting

approximately m3 = 0 are given by-

mee = m1c2
12c2

13 +m2e2iαs2
12c2

13

meµ = m1c12c13(−s12c23 − c12s13s23eiδ )+m2e2iαs12c13(c12c23 − s12s13s23eiδ ),

meτ = m1c12c13(s12s23 − c12s13c23eiδ )+m2e2iαs12c13(−c12s23 − s12s13c23eiδ ),

mµµ = m1(−s12c23 − c12s13s23eiδ )2 +m2e2iα(c12c23 − s12s13s23eiδ )2,

mµτ = m1(−s12c23 − c12s13s23eiδ )(s12s23 − c12s13c23eiδ )

+m2e2iα(c12c23 − s12s13s23eiδ )(−c12s23 − s12s13c23eiδ ),

mττ = m1(s12s23 − c12s13c23eiδ )2 +m2e2iα(−c12s23 − s12s13c23eiδ )2,

(2.34)

where ci j = cosθi j and si j = sinθi j

δ and α are the Dirac CP phase and Majorana phase respectively.

2.5.1 Zero textures in (4+4) scenario

We now examine the different cases presented in the preceding Section 2.4.1 under the

current neutrino data:
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Case I(a):

The set of the following matrices

M(2)
D =


0 b c

d e 0

0 0 i

 , Ms = (s1 0 s3), MR = Mc
R =


A 0 0

0 0 E

0 E 0

 , (2.35)

are put in Eq. (2.2) and we get the following low energy neutrino mass matrix, sterile neutrino

mass and the active-sterile neutrino mixing as

m3×3
ν =


b2s2

3A
E2s2

1
− 2bc

E
bds3
Es1

+
beAs2

3
E2s2

1
− ce

E −bi
E

bds3
Es1

+
beAs2

3
E2s2

1
− ce

E
e2s2

3A
s2

1E2 + 2des3
Es1

−ei
E

−bi
E −ei

E 0

 , (2.36)

with

ms =−
s2

1
A
, R =


bs3A
Es2

1

ds1E+eAs3
Es2

1

0

=


Ve4

Vµ4

0

 , (2.37)

Eq. (2.36) and (2.37) provide the following correlation

meµ =−Ve4Vµ4ms +
mµτ(V 2

e4ms +mee)

2meτ

, (2.38)

and
Vµ4

Ve4
=

mµτ

meτ

+
d

Ve4s1
. (2.39)

The above texture becomes experimentally viable if both the correlations in Eqs. (2.38)

and (2.39) are consistent with current neutrino data presented in section 1.7 of Chapter

1. Using 3σ values of the parameters and the values of α(80deg < α < 110deg) and
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δ (140deg < δ < 220deg) as already predicted for mττ = 0 in Ref. [97], we plot meµ vs ms

from Eq. (2.38), and Vµ4
Ve4

vs ms from Eq. (2.39) as shown in Fig. 2.1 and 2.2 respectively.
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Fig. 2.1 Sterile neutrino mass (ms) as predicted by Eq. (2.38) for case I(a).
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Fig. 2.2 Allowed range for the ratio ( d
s1
) as predicted by Eq. (2.39) for case I(a).

From Fig. 2.1 it is evident that for the allowed range of meµ (0.01912-0.03910)eV, ms

ranges from sub eV scale to few eV scale but favorable domain belongs to less than 1 eV

which is fairly consistent with the upper bound, that is, 1.5 eV as predicted by global analysis

of 3+1 neutrino oscillation data.

The relation in Eq. (2.39) is experimentally allowed for the choice of the parameters in

the ratio ( d
s1
) lying between (−1.5 < ( d

s1
)<−0.1) (Fig. 2.2).

Transformations under S3 give a number of cases being capable of producing mττ = 0

with the same correlations listed in the Table 2.3.

Case I(b):
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Table 2.3 Allowed zero textures of MD,MR and MS leading to mττ = 0 (Case I(a)).

Correlation

MD MR MS
Vµ4
Ve4

=
mµτ

meτ
+

MD(i j)
Ve4Ms(1 j)

meµ =−Ve4Vµ4ms +
mµτ

meτ
[1

2(V
2
e4ms +mee)]a b 0

d 0 f
0 h 0

 Ma
R M(1)

S (i = j = 3)a b 0
0 e f
g 0 0

 Ma
R M(2)

S (i = j = 3)a 0 c
d e 0
0 0 i

 Mb
R M(1)

S (i = j = 2)a 0 c
0 e f
g 0 0

 Mb
R M(3)

S (i = j = 2)0 b c
d 0 f
0 h 0

 Mc
R M(3)

S (i = j = 1)

We consider the following matrices:

M(3)
D =


0 b 0

d e f

0 0 i

 , Ms = (s1 0 s3), MR = Mc
R =


A 0 0

0 0 E

0 E 0

 . (2.40)

Employing these matrices in Eq. (2.2) we have

m3×3
ν =


b2s2

3A2

E2s2
1

bds3
Es1

+
beAs2

3
E2s2

1
− b f

E −bi
E

bds3
Es1

+
beAs2

3
E2s2

1
− b f

E
e2s2

3A
s2

1E2 + 2des3A
Es1

− 2e f
E −ei

E

−bi
E −ei

E 0

 , (2.41)
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ms =−
s2

1
A
, R =


Abs3
Es2

1

d
s1
+ Aes3

Es2
1

0

=


Ve4

Vµ4

0

 , (2.42)

with the following correlation

mee =−V 2
e4ms, (2.43)

and
Vµ4

Ve4
=

mµτ

mττ

+
d

Ve4s1
. (2.44)

As seen from Fig. 2.3, for allowed range of |mee| ≈ (0.014−0.018)eV, the above texture
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Fig. 2.3 Allowed range of ms as predicted by Eq. (2.43) for case I(b).

predicts (0.2 < ms < 1.5)eV, which is in fair agreement with the global analysis data. For

Eq. (2.44), the condition for ( d
s1
) is the same as in case I(a) (Fig. 2.2). Again S3 transforma-

tions lead to a number of cases producing mττ = 0 with the same correlations presented in

Table 2.4.

Case I(c): We consider mττ = 0
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Table 2.4 Allowed zero textures of MD,MR and MS leading to mττ = 0 (Case I(b))

Correlation

MD MR MS
Vµ4
Ve4

=
mµτ

meτ
+

MD(i j)
Ve4Ms(1 j)

mee =−V 2
e4mSa 0 0

d e f
0 h 0

 Ma
R M(1)

S (i = j = 3)0 b 0
d e f
g 0 0

 Ma
R M(2)

S (i = j = 3)0 0 c
d e f
g 0 0

 Mb
R M(3)

S (i = j = 1)0 0 c
d e f
0 h 0

 Mc
R M(3)

S (i = j = 1)a 0 0
d e f
0 0 i

 Mb
R M(1)

S (i = j = 1)

M(1)
D =


a b 0

d e 0

0 0 i

 , Ms = (s1 0 s3), MR = Mc
R =


A 0 0

0 0 E

0 E 0

 , (2.45)

and using it in Eq. (2.2) we have the light (3×3) neutrino mass matrix, sterile neutrino mass

and active-sterile mixing matrix as

m3×3
ν =


b2s2

3A
E2s2

1
+ 2abs3

Es1

(ae+bd)s3
Es1

+
beAs2

3
E2s2

1
−bi

E

(ae+bd)s3
Es1

+
beAs2

3
E2s2

1

e2s2
3A

s2
1E2 + 2des3

Es1
−ei

E

−bi
E −ei

E 0

 , (2.46)
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ms =−
s2

1
A
, R =


as1E+bs3A

Es2
1

ds1E+eAs3
Es2

1

0

=


Ve4

Vµ4

0

 ,
Ve4

Vµ4
=

as1E +bs3A
ds1E + es3A

. (2.47)

From Eq. (2.46) and (2.47) we get the following relations:-

mµµ =−V 2
µ4ms +

(Ve4Vµ4ms +meµ)
2

V 2
e4ms +mee

, (2.48)

and
Vµ4

Ve4
=

ds1E + es3A
as1E +bs3A

. (2.49)

Plotting mµµ vs ms from Eq. (2.48), it is seen from Fig 2.4, that for allowed range of
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Fig. 2.4 Range of ms as predicted by Eq. (2.48).

mµµ ≈ (.005− .03)eV , ms have its value well below the upper bound ≈ 1.5 eV. However

Eq. (2.49) has a large number of parameters involved and hence gives ample scope for

adjusting the parameters as required. S3 transformations give a number of cases which lead

to mττ = 0 with the same correlation as Eq. (2.48) and (2.49) as shown in the Table 2.5.
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Table 2.5 Allowed zero textures of MD,MR and MS leading to mττ = 0 (Case I(c))

Correlation

MD MR MS
Vµ4
Ve4

=
(MD)i j(MR) jksT

kp+(MD)il(MR)lmsT
mi

(MD)n j(MR) jksT
kp+(MD)nl(MR)lmsT

mi

mµµ =−V 2
µ4ms +

(Ve4Vµ4ms+meµ )
2

V 2
e4ms+meea b 0

d e 0
0 0 i

 Mb
R M(1)

S (i = 1, j = 1, p = 1,k = 2, l = 1,m = 3,n = 2)a 0 c
d 0 f
0 h 0

 Mc
R M(3)

S (i = 1, j = 1, p = 1,k = 2, l = 3,m = 3,n = 2)a 0 c
d 0 f
0 h 0

 Ma
R M(1)

S (i = 1, j = 1, p = 1,k = 2, l = 3,m = 3,n = 2)0 b c
0 e f
g 0 0

 Mb
R M(3)

S (i = 1, j = 3, p = 1,k = 1, l = 2,m = 2,n = 2)0 b c
0 e f
g 0 0

 Ma
R M(2)

S (i = 1, j = 3, p = 1,k = 3, l = 2,m = 1,n = 2)

Case II: We consider meτ = 0.

M(4)
D =


0 b c

d 0 f

g 0 0

 , Ms = (0 s2 s3) and MR = Mc
R =


A 0 0

0 0 E

0 E 0

 . (2.50)

The above set of matrices applied in Eq. (2.2) gives

m3×3
ν =


b2s2

3+c2s2
2

2Es2s3
− bc

E
−b f
2E + c f s2

2Es3
0

−b f
2E + c f s2

2Es3
−d2

A + f 2s2
2Es3

−dg
A

0 −dg
A −g2

A

 , (2.51)
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ms =−2s2s3

E
, R =


c

2s3
+ b

2s2

f
2s3

0

=


Ve4

Vµ4

0

 . (2.52)

From Eq. (2.51) and (2.52) we get the following correlation:

mµµ =−V 2
µ4ms +

m2
µτ

mττ

, (2.53)

and
Ve4

Vµ4
=

c
f
+

b
2Vµ4s2

. (2.54)

mµµ vs ms from Eq. (2.53) gives a plot as shown in Fig. 2.5 below. From the figure, it is
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Fig. 2.5 Predicted range of sterile mass ms from Eq. (2.53) for case II.

evident that the above texture predicts the value of ms which is not compatible with current

oscillation data. Thus this texture is ruled out.

2.5.2 Zero textures in (5+3) scenario

Case III(a): Now we consider the case for mττ = 0.

M(5)
D =


0 b 0

0 e f

g 0 0

 Ms = (s1 0 s3) and MR = M(10)
R =


A B 0

B 0 0

0 0 F

 . (2.55)
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Putting these in Eq. (2.2) gives

m3×3
ν =


Ab2

B2 +
b2Fs2

1
B2s2

3

Abe
B2 +

bes2
1F

B2s2
3
+ b f s1

Bs3
−bg

B

Abe
B2 +

bes2
1F

B2s2
3
+ b f s1

Bs3
Ae2

B2 +
e2s2

1F
B2s2

3
+ 2e f s1

Bs3
−eg

B

−bg
B −eg

B 0

 , (2.56)

ms =−
s2

3
F
, R =


bFs1
Bs2

3

eFs1
Bs2

3
+ f

s3

0

=


Ve4

Vµ4

0

 . (2.57)

Eq. (2.56) and (2.57) gives

meµ =−Ve4Vµ4ms +
mµτ

meτ

[V 2
e4ms +mee], (2.58)

and
Vµ4

Ve4
=

mµτ

meτ

+
f

Ve4s3
. (2.59)

From Fig. 2.6 it is seen that for allowed range of meµ ≈ (0.02−0.04)eV, ms as predicted by
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Fig. 2.6 Sterile neutrino mass ms from Eq. (2.58).

the above texture have a small range of value ≈ (0.00−0.06)eV which falls under the upper

bound by global analysis data but in tension. For the small range of ms this texture may be

considered as viable. Under S3 permutation it gives a number of cases leading to mττ = 0
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with the same correlation shown in the Table 2.6.

Table 2.6 Allowed zero textures of MD, MR and MS leading to mττ = 0 in the (5+3) picture
(Case III(a)).

MD MR MS Correlation0 b 0
d e 0
0 0 i

 M(6)
R M(2)

S meµ =−Ve4Vµ4ms +
mµτ

meτ
[V 2

e4ms +mee]0 0 c
d 0 f
0 h 0

 M(8)
R M(3)

S –do–0 0 c
0 e f
g 0 0

 M(14)
R M(3)

S –do–a 0 0
d e 0
0 0 i

 M(4)
R M(1)

S –do–a 0 0
d 0 f
0 h 0

 M(13)
R M(1)

S –do–

Case III(b): We consider the case for mττ = 0

M(6)
D =


0 0 c

d 0 f

0 h 0

 , Ms = (s1 s2 0) and MR = M(9)
R =


A B 0

B 0 E

0 E 0

 . (2.60)

Putting in Eq. (2.2) gives

m3×3
ν =


Ac2s2

2
E2s2

1
− 2Bc2s2

E2s1
−2Bc f s2

E2s1
+ cds2

Es1
+

Ac f s2
2

E2s2
1

−ch
E

−2Bc f s2
E2s1

+ cds2
Es1

+
Ac f s2

2
E2s2

1

2ds2 f
Es1

− 2Bs2 f 2

E2s1
+

As2
2 f 2

E2s2
1

− f h
E

−ch
E − f h

E 0

 , (2.61)
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ms =−
s2

1
A
, R =


c(As2−Bs1)

Es2
1

d
s1
+ f (As2−Bs1)

Es2
1

0

=


Ve4

Vµ4

0

 . (2.62)

From Eq. (2.61) and (2.62) we get the following relations:-

mµµ =−V 2
µ4ms +

(Ve4Vµ4ms +meµ)
2

V 2
e4ms +mee

, (2.63)

Vµ4

Ve4
=

mµτ

meτ

+
d

Ve4s1
. (2.64)

The correlation (2.63) is same as that for case I(c),whereby ms has its value well below the

predicted upper bound. Eq. (2.64) on the other hand have the same interpretation as the

above cases for Eq. (2.39). Thus this texture is allowed by neutrino oscillation data.

Table 2.7 Allowed zero textures of MD,MR and MS leading to mττ = 0 in the (5+3) picture
(Case III(b)).

Correlation

MD MR MS
Vµ4
Ve4

=
mµτ

meτ
+

MD(i j)
Ve4Ms(1 j)

mµµ =−V 2
µ4ms +

(Ve4Vµ4ms+meµ )
2

V 2
e4ms+meea 0 0

d e 0
0 0 i

 M(2)
R M(1)

S (i = j = 2)a 0 0
d 0 f
0 h 0

 M(3)
R M(1)

S (i = j = 3)0 b 0
d e 0
0 0 i

 M(5)
R M(2)

S (i = j = 3)0 b 0
0 e f
g 0 0

 M(11)
R M(2)

S (i = j = 3)0 0 c
0 e f
g 0 0

 M(12)
R M(3)

S (i = j = 2)
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Case IV: For meτ = 0, we take

M(7)
D =


0 b 0

d 0 f

0 0 i

 , Ms = (s1 s2 0), MR = M(10)
R =


A B 0

B 0 0

0 0 F

 . (2.65)

Eq. (2.2) gives

m3×3
ν =


b2s2

1
(2Bs1s2−As2

2)
bds1

As2−2Bs1
0

bds1
As2−2Bs1

− f 2

F + d2s2
2Bs1−As2

− f i
F

0 − f i
F − i2

F

 , (2.66)

ms =−
s2

1
A
, R =


b(B−A)

2s1B + b(As2−s1)

As2
2

d
2s1

− Bd
As2

0

=


Ve4

Vµ4

0

 . (2.67)

The above equations yield the following correlation-

mµµ =−V 2
µ4ms +

m2
µτ

mττ

, (2.68)

and
Ve4

Vµ4
=

s1b
s2d

− Ab
Bd

. (2.69)

Eq. (2.68) and (2.53) being the same has the same prediction for ms, which is not allowed

by current neutrino oscillation data. Thus for both the cases of (4+4) and (5+3), meτ = 0

textures are ruled out.
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Case V: For mµµ = 0, the set of matrices is

M(8)
D =


0 b c

d 0 0

0 h 0

 , Ms = (0 0 s3) and MR = M(10)
R =


A B 0

B 0 0

0 0 F

 . (2.70)

Then Eq. (2.2) gives

m3×3
ν =


Ab2

B2 −bd
B

Abh
B2

−bd
B 0 −dh

B

Abh
B2 −dh

B
Ah2

B2

 , (2.71)

which yields

ms =−
s2

3
F
, R =


c
s3

0

0

=


Ve4

0

0

 . (2.72)

The above equation gives the following correlations-

mee

meµ

=
meτ

mµτ

. (2.73)

The current neutrino data do not match with this correlation and hence this set of matrices

is ruled out. S3 invariance gives a number of cases with the same correlation as Eq. (2.73)

which are also ruled out. Thus mµµ = 0 is not a possible zero in presence of sterile neutrino.

2.6 Symmetry realization

It is observed that for every set of fermion mass matrices with texture zeros in arbitrary

entries, a scalar sector exists. Such texture zeros can be imposed by an Abelian discrete

symmetry group Zn. The procedure of implementation of zero in the entry of the neutrino

mass matrices in the method-2 of Ref. [100] is followed here to enforce zeros of our viable
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structures only. We consider a diagonal Ml which amounts to six-zeros in this matrix used in

the seesaw mechanism. There are a number of papers where zero textures are realized via an

extended scalar sector under Abelian symmetry group. In this work, we concentrate on the

smallest possible Zn cyclic group. But smaller groups like Z3, Z4 etc. are not sufficient to

arrive at our intended textures. We consider the next possible Z7 symmetry group.

Z7 = (1,ω,ω2,ω3,ω4,ω5,ω6)

where ω = ei 2π

7 is the generator of the group. For the case I(a) under Z7 we consider the

leptonic fields to transform as-

D̄eL → ω
5D̄eL , eR → ω

2eR , νeR → νeR

D̄µL → D̄µL , µR → µR , νµR → ωνµR

D̄τL → ω
3D̄τL , τR → ω

5
τR , ντR → ω

3
ντR

. (2.74)

Here D̄ jL ,lR and νkR are the SU(2)L doublets, the RH SU(2)L singlets and the RH neutrino

singlets respectively. The bilinears D̄ jL lR, D̄ jLνkR,ν
T
kR

C−1ν jR relevant for Ml ,MD and MR

respectively transforms as-

D̄kL l jR =


1 ω5 ω3

ω2 1 ω5

ω5 ω3 ω

 , D̄kLν jR =


ω5 ω6 ω

1 ω ω3

ω3 ω4 ω6

 , ν
T
kR

C−1
ν jR =


1 ω ω3

ω ω2 ω4

ω3 ω4 ω6

 .

(2.75)

We introduce three SU(2)L doublet Higgs (Φ1,Φ2,Φ3) transforming under Z7 as-

Φ1 → Φ1 , Φ2 → ωΦ2 , Φ3 → ω
6
Φ3. (2.76)
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The Z7 invariant Yukawa Lagrangian becomes

−L = Y l
11D̄eLΦ1eR +Y l

22D̄µLΦ1µR +Y l
33D̄τLΦ3τR +Y D

12D̄eLΦ̃2νµR +Y D
13D̄eLΦ̃3ντR

+Y D
21D̄µLΦ̃1νeR +Y D

22D̄µLΦ̃3νµR +Y D
33D̄τLΦ̃2ντR +h.c

. (2.77)

The Higgs field after acquiring a vacuum expectation value gives the following form of Ml

and MD-

Ml =


me 0 0

0 mµ 0

0 0 mτ

 , MD =


0 b c

d e 0

0 0 i

 . (2.78)

We also introduce a scalar singlet χ for MR transforming as-

χ → ω
3
χ1. (2.79)

To prevent mass term of the form S̄cS as demanded by MES model, we transform the singlet

field ‘S’ as -

S → ωS. (2.80)

In addition we consider two scalar singlets λ1,λ2 for MS where

λ1 → λ1 , λ2 → ω
4
λ2. (2.81)

This leads to the following form of MR and MS

MR =


A 0 0

0 0 E

0 E 0

 , MS =

(
s1 0 s3

)
, (2.82)
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which are the required zero textures for case I(a) leading to mττ = 0. Interestingly we find

that realization of all the other set of matrices as listed in Table 2.3, follows a typical pattern.

The first set of matrices of Table 2.3, follows Eq. (2.6) with the element “BA” of the S3 group,

where

BA =


0 0 1

1 0 0

0 1 0

 . (2.83)

The matrix in Eq. (2.83) refers to the interchange of the third with the first column, second

with the third and first with the second column. It is found that if we follow the similar

pattern and exchange the transformations of νeR → ντR, ντR → νµR and νµR → νeR of

the representative case(case I(a)) of Eq.(2.74), at the same time keeping the transformation of

D̄ jL ,lR,Φ,χ ,S and λ of Eq. (2.74), (2.76), (2.79), (2.80) and (2.81) respectively the same, then

this gives us the first set of matrices of Table 2.3. Similarly the second set of matrices being

generated by the the element “B” of S3, requires only the interchange in the transformation of

νeR ⇔ ντR of Eq. (2.74) and so on. Thus all the textures presented in Table 2.3, 2.4, 2.5, 2.6

and 2.7 can be realized from their respective transformations of the basic texture in each

case I(a), I(b), I(c), III(a) and III(b) by simply interchanging the transformations of the RH

neutrino singlets, keeping all other field transformations the same for each case.

Symmetry realization of all the basic texture zeros are listed in Table 2.8.

Table 2.8 Z7 Symmetry Realization of all the allowed basic cases.

Scheme MD,MR,MS D̄eL, D̄µL, D̄τL eR,µR,τR νeR,νµR,ντR χ ′s Φ′s S λ ′s

(4+4)
(1)(c)(2) 1,ω,ω4 1,ω4,ω3 1,ω,ω3 ω3 1,ω2,ω ω 1,ω4

(3)(c)(2) ω6,1,ω4 ω,ω6,ω3 1,ω,ω3 ω3 1,ω3,ω ω 1,ω4

(5+3)
(5)(10)(2) ω,ω3,1 ω4,ω,1 1,ω4,ω2 ω3 1,ω5 ω 1,ω5

(6)(9)(3) ω3,ω5,ω2 ω6,ω2,ω5 1,ω2,ω5 ω2 1,ω6 ω 1,ω2
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2.7 Conclusion

We have systematically explored the texture zeros of three active neutrino sector of neutrino

mass matrices in the minimal extended type-I seesaw (MES) mechanism with one sterile

neutrino (gauge singlet) of 1eV scale. The phenomenologically predictive cases of such

scenario in conformity with current neutrino data dictate that the sum of zeros of MD and MR

is eight irrespective of zeros in MS. With this hypothesis we have considered three schemes

like (6+2), (5+3) and (4+4) where the paired numbers represent the number of zeros in MD

and MR respectively. It has been seen that there is no viable structure of the type (6+2) at all.

The (5+3) and (4+4) schemes are productive because these can generate one-zero texture

of mν like meτ = 0, mττ = 0 and (5+3) can additionally give mµµ = 0. On enforcement of

zeros, some constraint relations termed as correlations have been obtained which are then

scanned under the current available neutrino data of 3σ range. The current neutrino data do

not support mµµ = 0 and meτ = 0 but there are some allowed cases for mττ = 0. We have

found that there are different set of MD, MR and MS corresponding to a given viable set of

such matrices under the transformations S3 in Eq. (2.6) and the results have been presented

in Table 2.3-2.7. Interestingly no two-zero texture survives in presence of sterile neutrino,

otherwise there is a number of phenomenologically viable structures studied in literature.

We have implemented Z7 Abelian symmetry to realize the viable structures of MD and

MR which require 1 scalar singlet (χ) and 3 Higgs’ doublets (Φ) in case of (4+4) scheme.

One of Higgs’ doublets is SM Higgs’ doublet which transforms trivially and the rest are

extended sector. Again in case of (5+3) scheme, we require 1 scalar singlet and 2 Higgs’

doublets one of which is SM doublet and the other belongs to extended sector. Also two

singlets are needed for zeros in sterile mass matrix MS. We presented the detail procedure of

implementing Z7 symmetry for case I(a) as a representative case only. We have also exhibited

how other set of matrices obtained by permutation with the elements of S3 can be realized

by Z7 by simply interchanging the transformations of the RH neutrino singlets from their
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respective basic cases.The symmetry realizations of the basic sets of MD, MR and MS are

shown in Table 2.8 for (4+4) and (5+3) schemes.



3
Understanding of 2-zero textures of MES

m4×4
ν and Z9 symmetry realization

3.1 Introduction

This chapter is based on our work presented in Ref. [99]. In Chapter 2, we have explored

the zero textures of 3×3 neutrino mass matrix m3×3
ν and found that no two-zero textures

of m3×3
ν survives in the context of MES mechanism under predictive scenario, that is (4+4),
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(5+3), (6+2) scheme, where digits in the pair represents the number of zeros of MD and MR

respectively.

In this chapter, we are motivated to relook into the two-zero textures of neutrino mass

matrix mν in its (4×4) form in the context of MES mechanism. For realization of the two-

zero textures of m4×4
ν via MES mechanism we shall concentrate on the predictive scenario

of (4+4) scheme, that is, equal contribution of zeros of MD and MR respectively, along with

suitable zero textures of MS.

The compatibility scenario of texture zeros with recent experimental data are quite

different in (3×3) and (4×4) form of neutrino mass matrix mν . With three active neutrinos,

out of 15 possible two-zero textures only 7 textures are allowed [78] by experimental

data. Whereas in (3+1) paradigm, all the 15 two-zero textures of m4×4
ν are found to be

compatible [96] with experiments, provided zeros are in the active sector of m4×4
ν . Zeros in

the sterile sector, that is, fourth row and fourth column of m4×4
ν is not allowed by experimental

constraints.

Again, the determinant of m4×4
ν in MES mechanism [67] vanishes and as such it can-

not be a matrix of rank 4. Out of 15 possible two-zero textures of m4×4
ν , 12 textures

(A1,A2,B3,B4,C,D1,D2,E1,E2,F1,F2,F3) are of rank 3, while the other three textures (B1,B2

and E3 ) are of rank 4. We shall therefore concentrate only on the 12 two-zero textures of

m4×4
ν which are of rank 3. In our work, we find that all the 12 two-zero textures can be

realized under the (4+4) scheme in MES mechanism. Implementation of zeros in m4×4
ν leads

to a number of correlations whereby different mass matrix elements are related to each other.

We check the viability of each of the textures by examining their respective correlations

under recent neutrino oscillation data by keeping the Dirac and Majorana CP phases with or

without restricting to certain values. We observe that there is an inter-play of the CP phases

on determining the dynamics of a texture.
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There are a large number of combinations of MD,MR and MS with diagonal charged

lepton mass matrices Ml under the (4+4) scheme which lead to the desired two-zero textures

in m4×4
ν . However, S3 group permutation between the fermion mass matrices under MES

mechanism leads us to a minimum number of basic combination which generates the desired

zero textures in the 4× 4 neutrino mass matrix. In our work, the prospective textures of

MD,MR and MS for generating two-zero textures in mν are realized with Z9 cyclic group

symmetry. For this realization we extend the SM with few scalar singlets and doublets.

The chapter is organised as follows: Section 3.2 includes a brief discussion on the MES

mechanism for convenience. In section 3.3 we review the viable two-zero textures of m4×4
ν .

Section 3.4 includes a brief review on the four-zero textures of MD and MR along with zero

textures of MS, followed by the S3 invariance of fermion mass matrices in the MES formalism.

In section 3.5, the two-zero textures are realized in the context of MES mechanism. Also we

present the correlations for each texture under the (4+4) scheme. In section 3.6, we check

the viability of each texture under recent neutrino oscillation data for both unconstrained

and constrained CP phases. In section 3.7 symmetry realization of the allowed textures are

presented. Finally we conclude in section 3.8.

3.2 Minimal extended seesaw (MES) mechanism

In MES mechanism, the Standard Model is extended with four additional singlets - three

right-handed neutrinos and one gauge singlet chiral field ‘S’. This leads to a (7×7) form

of neutrino mass matrix mν which on applying seesaw approximation MR >> MS > MD

reduces to

m4×4
ν =−

 MDM−1
R MT

D MDM−1
R MT

S

MS(M−1
R )T MT

D MSM−1
R MT

S

 (3.1)
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m4×4
ν is a square matrix of rank three and hence one of the active neutrino mass states remains

as massless. The mass matrix m4×4
ν can have at most rank 3 since

det(m4×4
ν ) = det(MDM−1

R MT
D)det[−MSM−1

R MT
S

+MSM−1
R MT

D(MDM−1
R MT

D)
−1MDM−1

R MT
S ]

= det(MDM−1
R MT

D)det[MS(M−1
R −M−1

R )MT
S ]

= 0

. (3.2)

where both MD and MR are considered to be non-singular. Thus at least one of the active

neutrino mass states remains as massless.

Block diagonalization of Eq. (3.1) leads to the mass of the sterile neutrino as

ms ∼−MSM−1
R MT

S (3.3)

3.3 Two-zero textures of m4×4
ν

Table 3.1 Viable two-zero textures [96] of rank 3. Here ‘X’ indicates the elements with
non-zero entries.

A1 A2 B3 B4
0 0 X X
0 X X X
X X X X
X X X X




0 X 0 X
X X X X
0 X X X
X X X X




X 0 X X
0 0 X X
X X X X
X X X X




X X 0 X
X X X X
0 X 0 X
X X X X


C D1 D2 E1

X X X X
X 0 X X
X X 0 X
X X X X




X X X X
X 0 0 X
X 0 X X
X X X X




X X X X
X X 0 X
X 0 0 X
X X X X




0 X X X
X 0 X X
X X X X
X X X X


E2 F1 F2 F3

0 X X X
X X X X
X X 0 X
X X X X




X 0 0 X
0 X X X
0 X X X
X X X X




X 0 X X
0 X 0 X
X 0 X X
X X X X




X X 0 X
X X 0 X
0 0 X X
X X X X


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We consider only those two-zero textures of m4×4
ν of rank 3 which are listed in Table 3.1.

There exist a Pµτ symmetry [96] between the textures A1−A2, B3−B4, D1−D2, E1−E2,

F2 −F3 of the form

A2 = PT
µτA1Pµτ , (3.4)

where

Pµτ =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


. (3.5)

However, no such symmetry exists for the texture C and F1.

In this work we consider the m4×4
ν form of MES mechanism (Eq. (3.1)) to realize the

two-zero textures of mν in Table 3.1.

3.4 (4+4) Scheme and S3 invariance

Four-zero textures of MD:

There are 9C4 = 126 possible 4 zero textures of MD. However, the requirement of non

singular MD as demanded by the condition in Eq. (3.2) rules out those textures of MD which

are either of row zero, column zero or block zero. The row-zero or block-zero structures

of MD are also not useful as they lead to one neutrino massless and decoupled from others,

and zero entry in PMNS matrix respectively [82]. Barring these forbidden textures, the rest

81 four-zero textures of MD on amalgamating with 4 zero textures of MR and one/two zero

textures of MS can produce the two zero textures of m4×4
ν .
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Four-zero textures of MR:

Similarly, out of 15 four-zero textures of MR only three remains non-singular.

Ma
R =


0 B 0

B 0 0

0 0 F

 , Mb
R =


0 0 C

0 D 0

C 0 0

 , Mc
R =


A 0 0

0 0 E

0 E 0

 (3.6)

S3 invariance according to Eq. (3.8) leads to one basic form of MR = Mc
R. The other two

forms are obtained by S3 permutation of Mc
R.

Zero textures of MS:

Since the sterile sector of m4×4
ν involves the active sterile mixing matrix MS, we consider

the zero textures of MS in such a way that non-zero terms appears in the fourth row and

column of the mass matrix. We find that under the (4+4) scheme, two-zero texture of MS

is not allowed. Only one-zero texture of MS can lead to non-vanishing entries in the sterile

sector. Possible one-zero texture of MS are given by Eq. (3.7).

M(1)
S = (0 s2 s3), M(2)

S = (s1 0 s3) and M(3)
S = (s1 s2 0). (3.7)

The non-singular textures of MR, one-zero textures of MS and all the 81 textures of MD are

mapped together in order to achieve the two-zero textures of m4×4
ν (Table 3.1). Furthermore,

different combination of MD,MR and MS produces zeros in the same location of m4×4
ν due to

their interconvertability nature according to Eq. (3.8).

S3 invariance under (4+4) scheme:

We find that under (4+4) scheme, there exists S3 permutation1 between different combinations

of MD,MR and MS which keeps m4×4
ν invariant.

1For details, refer to section 2.3, Chapter 2
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Under the S3 permutation group MD,MR and MS transform as:

MD → MDZ, MR → ZT MRZ, MS → MSZ. (3.8)

This reduces the voluminous work of exploring a large number of combinations of

MD,MR and MS and eases our job thereby making it more economic as only a few zero

textures of MD and MR are required to deal with.

3.5 Realization of two-zero textures in (4+4) scheme

Under (4+4) scheme, the viable two-zero textures of mν can be realized from some basic

combinations of MD,MR and MS along with certain correlations among the neutrino param-

eters. Corresponding to each such combination, there exist another five combinations of

MD,MR and MS obtainable via S3 transformations in Eq. (3.8) leading to the same textures

and correlations as the basic combination yields. In our study, we find a total of 24 textures of

MD (Table 3.2) which can generate the two-zero textures of m4×4
ν along with their respective

Mc
R and MS (Eq. (3.7)).

Class A

Class A consists of two textures A1 and A2 that allow only NH mass ordering. There are three

basic combinations of MD,MR and MS for each of the texture A1 and A2. Using MR = Mc
R in

Eq. (3.6), the particular four-zero textures of MD (Table 3.2) and one-zero textures of MS in

Eq. (3.7), we can construct the textures A1 and A2 with different correlations:

Texture A1: The following combination of MD and MS

(a) : MD = M(1)
D , MS = M(2)

S . (3.9)
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Table 3.2 Four-zero textures of MD.

M(1)
D M(2)

D M(3)
D M(4)

D M(5)
D M(6)

D0 b 0
d e 0
g 0 l

 0 b 0
d 0 f
g h 0

 0 b 0
d e 0
0 h l

 0 b 0
0 e f
g h 0

 0 b 0
d 0 0
g h l

 0 b 0
d e f
g 0 0


M(7)

D M(8)
D M(9)

D M(10)
D M(11)

D M(12)
Da b 0

0 e 0
g 0 l

 a b 0
d 0 f
0 h 0

 a b 0
0 e 0
0 h l

 a b 0
0 e f
0 h 0

 a 0 0
0 e 0
g h l

 a 0 0
d e f
0 h 0


M(13)

D M(14)
D M(15)

D M(16)
D M(17)

D M(18)
Da b c

0 e 0
g 0 0

 a b c
d 0 0
0 h 0

 a b 0
0 0 f
g 0 l

 a b 0
d 0 f
0 0 l

 0 b c
0 e 0
g h 0

 0 b c
d e 0
0 h 0


M(19)

D M(20)
D M(21)

D M(22)
D M(23)

D M(24)
D0 b 0

0 0 f
g h l

 0 b 0
d e f
0 0 l

 0 b c
d 0 0
0 h l

 0 b c
0 e f
g 0 0

 a b c
0 e 0
0 0 l

 a 0 0
0 e f
0 h l


in Eq. (3.1) gives the following correlations

mττmss = m2
τs, (3.10)

mµs

mτs
=

√
mµµ

mττ

+
eAs3

gEs1
. (3.11)

(b) : MD = M(3)
D , MS = M(2)

S . (3.12)

Eq. (3.1) yields
mττ

mτs
= 2

(
meτ

mes

)
, (3.13)

mµs

mes
=

mµτ

meτ

+
dEs1

bAs3
. (3.14)

(c) : MD = M(5)
D , MS = M(2)

S . (3.15)
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Eq. (3.1) yields

mµµmss = m2
µs, (3.16)

mτs

mµs
=

mµτ

mµµ

+
hAs3

dEs1
. (3.17)

Equations of the form (3.11), (3.14) and (3.17) enlighten us with the idea of the allowed

range of the parameter values of es3A
gEs1

, dEs1
bAs3

and hAs3
dEs1

respectively. A particular texture leads

to a number of such correlations which give the allowed range of the ratio of the elements of

MD,MR and MS. However, such correlations do not guarantee the viability of a texture.

Texture A2: For the texture A2 we present below the combinations of MD and MS and

their respective correlations from Eq. (3.1).

(a) : MD = M(2)
D , MS = M(2)

S . (3.18)

mµµmss = m2
µs ,

mτs

mµs
=

√
mττ

mµµ

+
hAs3

dEs1
. (3.19)

(b) : MD = M(4)
D , MS = M(2)

S . (3.20)

mµµ

mµs
= 2

(
meµ

mes

)
,

mτs

mes
=

mµτ

meµ

+
gs1E
bs3A

. (3.21)

(c) : MD = M(6)
D , MS = M(2)

S . (3.22)

mττmss = m2
τs ,

mµs

mτs
=

mµτ

mττ

+
es3A
gEs1

. (3.23)

The µ − τ exchange symmetry between the textures are evident from Eq. (3.10)-(3.19),

Eq. (3.13)-(3.21), Eq. (3.16)-(3.23).
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Class B:

Each of the textures B3 and B4 has three basic combinations of MR,MD and MS. With

MR = Mc
R the combinations and their correlations are given below:

Texture B3:

(a) : MD = M(7)
D , MS = M(1)

S . (3.24)

mss

mτs
= 2

(
mµs

mµτ

)
,

meτ

mττ

=

√
mee

mττ

+
blA
Eg2 . (3.25)

(b) : MD = M(9)
D , MS = M(1)

S . (3.26)

meτ

mes
=

mµτ

mµs
, 2

(
mτs

mss

)
− meτ

mes
=

mττmes

mssmeτ

. (3.27)

(c) : MD = M(11)
D , MS = M(2)

S . (3.28)

meemss = m2
es ,

mτs

mes
=

meτ

mee
+

hs3A
as1E

. (3.29)

Texture B4: The combinations of MD,MS which generates the texture B4 are (a) M(8)
D ,M(1)

S

(b) M(10)
D ,M(1)

S and (c) M(12)
D ,M(2)

S with correlations which are µ − τ exchange symmetric to

the correlations in Eq. (3.25), (3.27) and (3.29) respectively.

Class C:

There is only one basic combination that generates the texture C.

MR = Mc
R , MD = M(23)

D , MS = M(1)
S . (3.30)

mss

mτs
= 2

(
mµs

mµτ

)
,

mee

meµ

= 2
(

meτ

mµτ

)
+

a2E
ceA

. (3.31)
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Class D:

Texture D1 and D2 consists of three basic combination of MD,Mc
R and MS.

Texture D1:

(a) : MD = M(13)
D , MS = M(2)

S . (3.32)

mττmss = m2
τs ,

mes

mss
=

meτ

mτs
+

bAs3

Es2
1
. (3.33)

(b) : MD = M(15)
D , MS = M(1)

S . (3.34)

meµ

mes
= 2

(
mµs

mss

)
,

meτ

meµ

=
mτs

mµs
+

agE
b f A

. (3.35)

(c) : MD = M(17)
D , MS = M(2)

S . (3.36)

mee

meµ

= 2
(

mes

mµs

)
,

mτs

mµs
=

meτ

meµ

+
gs1E
es3A

. (3.37)

Texture D2: The combination (a) M(14)
D ,M(2)

S (b) M(16)
D ,M(1)

S (c) M(18)
D ,M(2)

S generate

the texture D2 with correlations which are µ − τ exchange symmetric to Eq. (3.33), (3.35)

and (3.37) respectively.

Class E:

Each of the texture E1 and E2 has one basic combination of MD,MR and MS.

Texture E1:

MR = Mc
R , MD = M(19)

D , MS = M(1)
S . (3.38)

meµ

mes
= 2

(
mµs

mss

)
, mτsmeµ −meτmµs = mµτmes. (3.39)
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Texture E2: With M(20)
D ,M(1)

S we arrive at the correlations which are µ − τ exchange

symmetric to Eq. (3.39).

Class F:

Each of the textures F1, F2 and F3 posses one basic combination of MD,MR and MS.

Texture F1:

MR = Mc
R , MD = M(24)

D , MS = M(3)
S . (3.40)

meemss = m2
es , 2

(
mµτ

mτs

)
−

mµµ

mµs
=

mµsmττ

m2
τs

. (3.41)

Texture F2:

MR = Mc
R , MD = M(21)

D , MS = M(2)
S . (3.42)

mµµmss = m2
µs , 2

(
meτ

mes

)
− mττ

mτs
=

meemτs

m2
es

. (3.43)

Texture F3: The combination Mc
R,M

(22)
D ,M(3)

S generates the texture F3 with correlations

which are µ − τ exchange symmetric to Eq. (3.43).

3.6 Experimental compatibility of the textures with cur-

rent neutrino data

We shall consider a texture to be viable if the correlations corresponding to the texture show

the consistency with the current neutrino data. The numerical procedure of consistency check

of a given correlation is as follows: we first calculate the respective ranges of values of

neutrino mass matrix elements mi j with (i, j = e,µ,τ,s) from their respective expressions

given in the Appendix A, using 3σ values of masses and mixing angles of the recent neutrino

oscillation data [Refer section 1.7, chapter 1] with and without constraining CP phases.
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Also we calculate the allowed ranges of values for the expression involving mi j in lhs and

rhs of a given correlation while plotting them against sinθ34 which is constrained from

an upper bound < 0.4 [109]. In our analysis, we have taken its lower limit as 0. Under

such condition if the two plots (lhs of the correlation vs sinθ34 and rhs of the correlation

vs sinθ34) overlap in a considerable range, then the given correlation is taken as consistent.

Again for those textures whose correlations are not significantly different in respect of their

phenomenologies, only the correlations of one of them as a representative case are plotted

against sinθ34 taking the range from (0− 0.4) for both the mass order: normal hierarchy

(NH) and inverted hierarchy (IH). As the plots are made with or without constraining the

Dirac and Majorana CP phases, for convenience, we have classified the textures into (i) CP

phase dependent textures, of which the correlations are sensitive to the variation of CP phases

and (ii) CP phase independent textures, of which, the correlations do not respond to the

variation of the CP phases. Constrained CP phases mean that we pick up smaller ranges

of values of unknown CP phases from the complete range (0−2π) at our own choice as a

representative case and plot the correlations to check the consistency.

3.6.1 Class A

CP phase dependent textures:

Texture A1 and A2 has ee = 0,eµ = 0 and ee = 0,eτ = 0 respectively in its 4× 4 form

(Table 3.1). Class A allows only normal hierarchy (NH) spectrum in the 3+1 scenario [96] .

Therefore, we present only the normal hierarchical case for class A.

Case I:

The basic combinations in Eq. (3.9) and Eq. (3.22) for texture A1 and A2 respectively lead to

the correlation of the form as in Eq. (3.10). On plotting the lhs and rhs of this correlation

mττmss and m2
τs against sinθ34 with the CP phases running unconstrained from 0 to 2π , we
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see that there is overlapping of the two graphs for sinθ34 > 0.08 in Fig. 3.1 (left plot). Thus,

the textures are experimentally allowed for sinθ34 > 0.08 that puts a lower limit on sinθ34

for these textures.

It is interesting to note that there is strong interplay of CP phases as the choice of γ = δ13 =

(0− 300),β = δ24 = (0− 450),δ14 = (1800 − 2250),α = (3150 − 3600), the overlapping

appears only for values of sinθ34 > 0.12. The allowed range with CP unconstrained are now

squeezed when CP is constrained to the ranges under consideration. Of course this particular

choice of constrained CP phases are in no way unique. The survey of constraining phases

shows that these textures are never allowed for the lower values of the mixing angles θ34.

Thus this puts a constraint on the lower limit of θ34. Fig. 3.1 shows the scatter plots of the

correlation in Eq. (3.10) under both the cases of with or without constraining CP phases.
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Fig. 3.1 Scatter plots for Eq. (3.10) where : mττmss and m2
τs. The left plot is for

unconstrained CP phases while the right plot is for constrained ranges of CP phases: γ = δ13 =
(0−300),β = δ24 = (0−450),δ14 = (1800 −2250),α = (3150 −3600) (Texture A1,A2).

These particular combinations in Eq. (3.9) and Eq. (3.22) also yield a number of corre-

lations involving the parameters of their respective MD,MR and MS. From these equations

one can determine the allowed range of the ratio of the parameter values. One such equation

for each texture is given in Eq. (3.11) and (3.19) (second correlation) for texture A1 and A2

respectively. As a representative case we plot the Eq. (3.11) in Fig. 3.2. Similar evaluation of

the values of the ratio of the parameters of MD,MR and MS can be obtained from the scatter

plots for all the textures. The values of the parameters es3A
gEs1

in Eq. (3.11) remain almost the

same for both unconstrained and constrained ranges of CP phases (Fig. 3.2). From Fig. 3.1, it
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is seen that the texture is allowed for values of sinθ34 > 0.08 without constraining CP phases,

while sinθ34 > 0.12 with constrained CP phases. Therefore, the value of es3A
gEs1

< 1.8 for

unconstrained CP phases (left plot of Fig. 3.2) and es3A
gEs1

< 1 when CP values are constrained

to γ = δ13 = (0−300),β = δ24 = (0−450),δ14 = (1800 −2250),α = (3150 −3600) (right

plot of Fig. 3.2).
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Fig. 3.2 Scatter plots for Eq. (3.11) for unconstrained (left plot) and constrained CP values
(right plot) (γ = δ13 = (0− 300),β = δ24 = (0− 450),δ14 = (1800 − 2250),α = (3150 −
3600) (Texture A1).

Case II:

The basic combinations in Eq. (3.12) and (3.20) of texture A1 and A2 respectively yields

correlation in Eq. (3.13) and Eq. (3.21) which possess µ − τ symmetry. Both the equations

behave differently under recent neutrino oscillation data. This is evident from Fig. 3.3 and

Fig. 3.4 below.
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Fig. 3.3 Scatter plots for Eq. (3.13) where : mττ

mτs
and 2

(
meτ

mes

)
. The left plot is for

unconstrained CP phases. The right plot is for constrained ranges : γ = (0− 300),δ14 =
(0−100),β = (0−300),δ13 = (1500−1800),α = (0−900),δ24 = (0−1800) (Texture A1).
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The left plot of Fig. 3.3 shows that when CP phases are not constrained, the texture is

allowed only for values of sinθ34 ≈ (0.06−0.2). For other values of sinθ34 there exists no

overlapping between lhs and rhs of Eq. (3.13) and hence the texture is disallowed for those

ranges.

A fair interplay of the CP phases has also been witnessed in the right plot of Fig. 3.3.

When CP phases are constrained to γ = (0− 300),δ14 = (0− 100),β = (0− 300),δ13 =

(1500 − 1800),α = (0− 900),δ24 = (0− 1800), the texture becomes viable in the range

sinθ34 = (0.12−0.22). However, we also find that the texture withstands for any choice of

the ranges of the CP phases.
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Fig. 3.4 Scatter plots for Eq. (3.21) where : mµµ

mµs
and 2

(
meµ

mes

)
. Left plot is for uncon-

strained CP phases and right plot for γ,β ,δ24 = (0−50) and δ14 = α = (1450−1700),δ13 =
(700 −900) (Texture A2).

On the other hand for the texture A2 we find that there exists a clear overlapping between

the lhs and rhs of the correlation (3.21) for all values of sinθ34 = (0−0.4) without restricting

CP phases to a particular range. This shows that the texture is allowed for all ranges of

sinθ34. However, the texture is not viable when CP values are constrained to small values like

γ,β ,δ24 = (0−50) and δ14 = α = (1450 −1700),δ13 = (700 −900). This becomes visible

in Fig. 3.4 as lhs and rhs are separated leading to inconsistency of the correlation.
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CP phase independent textures

There exist some combinations of MD,MR and MS leading to certain correlations which

remain consistent with the current neutrino data with or without constraining CP phases.

Such combinations are discussed below.

Case III:

The basic combination in Eq. (3.15) and (3.18) for texture A1 and A2 respectively, leads to

the correlation in Eq. (3.16). We find that there exists a fair overlapping between both sides

of Eq. (3.16) for unconstrained CP phases. Again CP phases have been restricted to different

segments of the values, still the correlation remains unaffected. Even on putting zero values

for all the CP phases, the texture continues to survive within 3σ range of oscillation data.

Fig. 3.5 shows the scatter plot of the correlation (3.16) for unconstrained CP phases while

Fig. 3.6 demonstrates its insensitivity to the variation of the CP phases.
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Fig. 3.5 Scatter plots for Eq. (3.16) for unconstrained CP phases where : mµµmss and
m2

µs (Texture A1,A2).

3.6.2 Class B

Out of four textures B1,B2,B3,B4 in class B, only two of them B3,B4 are of rank 3. B3

has zeros in its e− µ and µ − µ entries of the m4×4
ν , and B4 is having zeros in e− τ and

τ − τ entries. Class B allows all the three mass patterns: normal hierarchy (NH), inverted

hierarchy (IH) and quasi degenerate (QD). However, MES mechanism requires one of the
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Fig. 3.6 Scatter plots for Eq. (3.16) for different ranges of CP phases. The upper left plot
is for γ = α = δ24 = (0−300),δ13 = (0−900),β = (0−600). The upper right plot is for
γ = δ14 = (2250 −2700),α = (1800 −2250),δ13 = δ24 = (900 −1350),β = (0−450). The
lower left plot is for γ = (900 − 1350),α = (0− 900),δ24 = (3150 − 3600),δ13 = (2250 −
2700),β = (0−450),δ14 = (1800 −2250). The lower right plot is for γ = (300 −900),α =
δ24 = δ13 = (0−900),β = (1350 −1800),δ14 = (900 −1350) (Texture A1,A2).

active neutrinos to be massless and hence QD spectrum is ruled out. Therefore, in our

analysis we shall consider only the NH and IH patterns of the textures B3 and B4.

CP phase dependent textures

Out of the three basic combinations of MD,MR and MS for B3 and B4, two combinations

show CP phase dependence when their correlations are plotted for different ranges of CP

values.

Case I:

The combination in Eq. (3.24) of B3 and case (a) of B4 lead to the same correlation in

Eq. (3.25) due to µτ symmetry.

Scatter plots for NH spectrum in Fig. 3.7 for correlation in Eq. (3.25) shows that when

CP phases are unconstrained, the texture is allowed excluding only for a narrow range of

≈ (0− 0.02) of sinθ34. However, when CP phases are constrained to: γ = δ14 = δ13 =
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(0−450),β = (1800 −2250),δ24 = α = (0−300), the texture is allowed only for the range

≈ (0.02−0.16) of sinθ34. The overlapping of the correlation disappears beyond the above

range of sinθ34, and hence the texture is disfavoured for this range. This shows the CP phase

dependencies of the texture. Similar phenomenology has been observed for IH spectrum.
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Fig. 3.7 Scatter plots for Eq. (3.25) where : mss
mτs

and 2(mµs
mµτ

). The left plot is for

unconstrained and right plot for constrained CP phases (γ = δ14 = δ13 = (0− 450),β =
(1800 −2250),δ24 = α = (0−300)) for NH spectrum (Texture B3 and B4).

Case II:

Scatter plots for correlation in Eq. (3.27) (texture B3) and its µ − τ counterpart for case (b)

(texture B4) are plotted in Fig. 3.8 - Fig. 3.10 for NH and IH.

Texture B3:

Normal Hierarchy: From the Fig. 3.8 it is seen that the plot for Eq. (3.27)(second

correlation) disallows the range ≈ (0−0.08) when CP phases are kept unconstrained (left

plot). When CP phases are constrained to the ranges γ = β = (450 −900),α = δ14 = δ24 =

(0− 300),δ13 = (1800 − 2250), the overlapping of lhs and rhs disappears and hence the

texture is forbidden for the range under consideration. The first correlation shows similar

phenomenology whereby the texture is allowed for the range of sinθ34 > 0.02 when CP

phases are unconstrained. For similar ranges of constrained CP phases, the first correlation is

also not allowed. This shows that the texture depends on the CP phases.



80 Understanding of 2-zero textures of MES m4×4
ν and Z9 symmetry realization

0.0 0.1 0.2 0.3 0.4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

sinΘ34

2
m
Τ
s

m
s
s

-
m

e
Τ

m
e
s

�
m

e
s
m
Τ
Τ

m
e
Τ
m

s
s

0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

sinΘ34

2
m
Τ
s

m
s
s

-
m

e
Τ

m
e
s

�
m

e
s
m
Τ
Τ

m
e
Τ
m

s
s

Fig. 3.8 Scatter plots for Eq. (3.27) (second correlation) where : 2
(

mτs
mss

)
− meτ

mes
and

mττ mes
mssmeτ

. The left plot is for unconstrained CP phases and right plot for constrained ranges of
CP phases : γ = β = (450 −900),α = δ14 = δ24 = (0−300),δ13 = (1800 −2250) for NH
spectrum (Texture B3).

Inverted Hierarchy: For IH case, we find that for unconstrained CP phases both the

correlations are allowed for all ranges of sinθ34. Fig. 3.9 shows the scatter plot for the first

correlation against sinθ34. However, the overlapping vanishes for the first correlation when

phases are constrained to γ = α = δ13 = (1800 − 2250),δ14 = β = (2250 − 2700),δ24 =

(1800 −2100) and thus the texture is disallowed.
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Fig. 3.9 Scatter plots for Eq. (3.27) where : meτ

mes
and mµτ

mµs
. The left and right plot is

for unconstrained and constrained ranges (γ = α = δ13 = (1800 −2250),δ14 = β = (2250 −
2700),δ24 = (1800 −2100)) of CP phases respectively for IH spectrum (Texture B3).

Texture B4:

Normal Hierarchy: For the texture B4, when CP phases are unconstrained, the second

correlation is allowed for all ranges of the experimentally permissible range of sinθ34 (left

plot of Fig. 3.10). However, when CP phases are constrained to γ = β = (3200−3600),δ14 =

(0− 200),δ13 = α = (3400 − 3600),δ24 = (1800 − 2000), the texture is not allowed (right
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plot). For the first correlation we find that the allowed range of sinθ34 > 0.02 and sinθ34 >

0.06 respectively for unconstrained and constrained ranges of CP phases.
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Fig. 3.10 Scatter plots for correlation in case (b) for unconstrained (left plot) and con-
strained (right plot) CP phases: γ = β = (3200 − 3600),δ14 = (0 − 200),δ13 = α =

(3400 − 3600),δ24 = (1800 − 2000) for NH spectrum where : 2
(

mµs
mss

)
− meµ

mes
, mµµ mes

mssmeµ

(Texture B4).

Inverted Hierarchy: For IH it has been observed that the texture is allowed for values of

sinθ34 > 0.02 (first correlation) and all values of sinθ34 =(0−0.4) (second correlation) when

CP phases are not constrained. When CP phases are constrained to γ = (2700 −3600),δ14 =

δ24 = (0− 300),β = α = (3150 − 3600),δ13 = (1800 − 2250), overlapping disappears for

second correlation and the texture is not allowed. The phenomenology is similar to NH case,

however, with different ranges of CP phases.

CP phase independent textures

Case III:

Scatter plots of the correlation in Eq. (3.29) generated by the combination in Eq. (3.28)

(texture B3) and case (c) (texture B4) for both NH and IH are presented in Fig. 3.11. The

correlation remains consistent for unconstrained CP phases as well as when CP phases are

constrained to different ranges.
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Fig. 3.11 Scatter plots of Eq. (3.29) for unconstrained CP phases for NH(left plot) and IH
(right plot). Here meemss, m2

es (Texture B3 and B4).

3.6.3 Class C

The class C consists of only one member, the texture C itself. It doesnot exhibit Pµτ symmetry

with any other texture. The texture C has zeros in its µµ and ττ entry of the mass matrix.

In (4+4) scheme of MES mν , there are a total of 6 combinations of MD,MR and MS which

can generate the texture C. There is one basic combination of MD,MR and MS which can be

transformed to the other five combinations via S3 group symmetry in Eq. (3.8). The basic

combination is presented in Eq. (3.30) that yields the correlation in Eq. (3.31) which is similar

to the correlation in Eq. (3.25) for texture B3. Hence the scatter plots for unconstrained and

constrained CP phases are the same as shown in Fig. 3.7. The texture C, therefore, is allowed

for all values of sinθ34 > 0.02 for unconstrained CP phases. If CP phases are constrained to

γ = δ14 = δ13 = (0−450),β = (1800 −2250),δ24 = α = (0−300), the texture is allowed

only for a small range of sinθ34 ≈ (0.02−0.16). This is the same for both NH and IH cases.

3.6.4 Class D

The class D consists of two textures D1 and D2 with zeros in their respective µµ,µτ , and

µτ,ττ entries. Both NH and IH are favored by these textures. Also D1 and D2 possess Pµτ

symmetry according to Eq. (3.4). There are three basic combinations for each texture with

respective correlation which behaves differently under unconstrained as well as constrained

CP phases.
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CP phase dependent textures

Case I:

The correlation mττmss = m2
τs in Eq. (3.33) for texture D1 is similar to Eq. (3.10) and (3.23)

for texture A1 and A2 respectively. The scatter plots for NH spectrum is therefore similar to

Fig. 3.1. Similar phenomenology has been observed for IH case, the texture is not viable

for the range of sinθ34 ≈ (0−0.06), when CP phases are unconstrained. But when the CP

phases are restricted to the values of γ = δ14 = β = α = (0−300),δ13 = δ24 = (0−450),

the texture is allowed only for the range of sinθ34 ≈ (0.12−0.4).

Case II:

The basic combination in Eq. (3.34) (texture D1) leads to the correlation in Eq. (3.35) and

case (b) (texture D2) leads to correlation which is µ − τ symmetric to Eq. (3.35). Scatter

plots are presented in Fig. 3.12 and 3.13.

Texture D1:

Normal Hierarchy: The NH spectrum of the texture D1 with the correlation in Eq. (3.35)

is allowed for all ranges of sinθ34 with or without constraining the CP phases and hence is

CP phase independent texture.

Inverted Hierarchy: Fig. 3.12 shows that for unconstrained CP phases, the texture is

allowed for all values of sinθ34. However, the correlation is not consistent for small ranges

of γ = δ24 = (0−100),δ13 = δ14 = (0−300),α = (0−200) and β=unconstrained.

Texture D2:

Normal Hierarchy: In the NH case, overlapping of the lhs and rhs of the correlation

ceases for unconstrained CP phases and hence the texture is forbidden (Fig. 3.13, left plot).

Inverted Hierarchy: For IH the texture is allowed for sinθ34 ≈ (0−0.2) when CP phases

are unconstrained (Fig. 3.13, right plot). However, the texture is not allowed when CP values
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Fig. 3.12 Scatter plots for Eq. (3.35) with unconstrained (left) and constrained (right) CP
phases :(γ = δ24 = (0− 100),δ13 = δ14 = (0− 300),α = (0− 200), β=unconstrained) for
IH spectrum. Here : meµ
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, 2
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)
(Texture D1).

.

are constrained as γ = δ14 = (900 −1300),α = β = δ24 = (0−300),δ13 = (450 −900).
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Fig. 3.13 Scatter plots for correlation in case (b) with unconstrained CP phases. The left and
right plot is for NH and IH respectively. Here: meτ

mes
, 2

(
mτs
mss

)
(Texture D2).

Case III:

The basic combination in case (c) for texture D2 leads to the correlation which is µ − τ

symmetric to Eq. (3.37).

Normal Hierarchy: For NH case, the texture is not allowed as the overlapping between

the left-hand side and right-hand side vanishes even when CP phases are kept unconstrained.

Inverted Hierarchy: For IH, it has been observed that for unconstrained CP phase

the texture is allowed for sinθ34 > 0.02 in Fig. 3.14. But when constrained to different

ranges of CP values γ = β = (1350 − 1800),δ14 = (3150 − 3600),δ13 = (0 − 900),α =

(2700 −3150),δ24 = (1800 −2250) the texture is not allowed.
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Fig. 3.14 Scatter plots for case (c) with unconstrained (left) and constrained CP phases (right)
(γ = β = (1350 − 1800),δ14 = (3150 − 3600),δ13 = (0− 900),α = (2700 − 3150),δ24 =

(1800 −2250)) for IH spectrum. Here: mee
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, 2
(

mes
mτs

)
(Texture D2).

CP phase independent textures

Case IV:

The correlation mµµmss = m2
µs generated by the basic combination in case (a) for texture D2

is similar to the correlation in Eq. (3.16) and (3.19) for the texture A1,A2 respectively. The

correlation plots for NH are therefore similar to Fig. 3.5. For IH, the correlation plot shows

similar phenomenology, whereby the texture remains as an allowed texture for any ranges of

CP phases. The texture, therefore, is CP phase independent.

Case V:

The combination in Eq. (3.36) for the texture D1 gives the correlation in Eq. (3.37). In this

case also, we have seen that the texture is allowed for all ranges of CP values.

3.6.5 Class E

The first correlation in Eq. (3.39) for texture E1 being similar to Eq. (3.35) exhibits CP phase

independence. However, when the CP phases are unconstrained, the lhs and rhs of the second

correlation for texture E1 show very poor coincidence within 3σ range of experimental data

(Fig. 3.15, right plot) . Thus, texture E1 may be ruled out.



86 Understanding of 2-zero textures of MES m4×4
ν and Z9 symmetry realization

Similarly, for texture E2, the second correlation shows poor overlapping (Fig. 3.15, left

plot) and on the other hand the first correlation being similar to that of case (b) for texture D2

is not consistent for NH spectrum. Thus, texture E2 is also ruled out.
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Fig. 3.15 Scatter plots for Eq. (3.39) with unconstrained CP phases. Here: mτsmeµ −
meτmµs, mµτmes (Texture E1, left plot); mµsmeτ −meµmτs, mµτmes (Texture E2,
right plot).

3.6.6 Class F

The class F consists of three textures F1,F2 and F3 which can fit NH, IH and quasi-degenerate

(QD) spectrum. However, MES mechanism restricts only to NH and IH spectrum. Also the

textures F2 and F3 possess Pµτ symmetry between them. There exists one basic combination

of MD,MR and MS for each texture which leads to their specific correlations. The consistency

of the correlations is verified in the same procedure:

Texture F1: The correlation meemss = m2
es in Eq. (3.41) is similar to Eq. (3.29) for texture

B3 which shows no variation to CP phases (Fig. 3.11). The second correlation in Eq. (3.41)

shows variations with CP phases. This can be seen in Fig. 3.16.

Texture F2: The combination in Eq. (3.42) leads to two correlations in Eq. (3.43). Phe-

nomenology of the first correlation has already been presented in Fig. 3.5. The correlation is

CP phase independent for both NH and IH spectrum. Scatter plots for the second correlation
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are presented in Fig. 3.17.

Texture F3: The first correlation of texture F3 is similar to Eq. (3.10) which has already

been plotted in Fig. 3.1. The second correlation remains unaffected with variation in CP

phases which depicts that this texture is independent of CP phases.

For the textures F1,F2,F3 one correlation shows CP dependency while the other is CP

independent. Thus the textures shows hybrid nature of CP dependence

CP phase dependent textures

Texture F1:

For both NH and IH spectrum, the texture is allowed for the range of sinθ34 > 0.02 when

CP phases are unconstrained. However, when constrained to range γ = δ24 = (1300 −

1800),δ14 = β = δ13 = α = (0− 300) the texture is allowed for two ranges of sinθ34 ≈

(0−0.04) and ≈ (0.3−0.4) for NH case. Similarly for the constrained ranges: γ = (2100 −

2250),δ14 = (0− 300),β = (1200 − 1500),δ13 = (1400 − 1800),α = δ24 = (3400 − 3600)

the texture is allowed for two ranges of sinθ34 ≈ (0.02−0.1) and ≈ (0.35−0.4) for IH case.

Scatter plots for NH spectrum of texture F1 are presented in Fig. 3.16.
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Fig. 3.16 Scatter plots for Eq. (3.41) (second correlation) with unconstrained (left) and
constrained CP phases (right) (γ = δ24 = (1300−1800),δ14 = β = δ13 = α = (0−300)) for
NH spectrum. Here: 2

(
mµτ

mτs

)
− mµµ

mµs
, mµsmττ

m2
τs

(Texture F1).

Texture F2:

For NH spectrum with unconstrained CP phases, texture is not allowed for the range sinθ34 ≈
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(0− 0.08). When CP phases are constrained to γ = (3150 − 3600),δ14 = (0− 300),β =

(2700 − 3150),δ13 = (1200 − 1800),α = (0 − 450),δ24 =unconstrained, the overlapping

ceases and the texture is not allowed.

Similar phenomenology has been observed for IH spectrum. When CP phases are

unconstrained the texture is allowed through out the range sinθ34 = (0 − 0.4). Again

the texture is not viable when CP phases are constrained to the ranges of choice: γ =

(0−1000),δ14 = (0−300),α = (0−600),δ13 = δ24 = β =unconstrained for IH spectrum.

We present the scatter plots for NH in Fig. 3.17.
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Fig. 3.17 Scatter plots for Eq. (3.43)(second correlation) with unconstrained(left) and con-
strained CP phases(right) (γ = (3150 − 3600),δ14 = (0− 300),β = (2700 − 3150),δ13 =

(1200 −1800),α = (0−450),δ24=unconstrained) for NH spectrum. Here: 2
(

meτ

mes

)
− mττ

mτs
,

meemτs
m2

es
(Texture F2).

CP phase independent textures

The first correlation in Eq. (3.41)(Texture F1), Eq. (3.43) (Texture F2) and second correlation

of texture F3 doesnot respond to CP variations.

For convenience the results are summarized in Table 3.3 where we have presented the

allowed range of sinθ34 for each texture for both unconstrained and constrained CP phases.

The constrained CP phases mentioned here are those values of CP phases for which the

scatter plots for each textures are obtained. Texture B3 with M(9)
D ,M(1)

S ; B4 with M(10)
D ,M(1)

S ;

E1, E2, F1, F2 and F3 have 2 correlations each and thereby have two allowed ranges of sinθ34.
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Table 3.3 Results: Textures with different combinations of MD,MR,MS allowed in the range
of sinθ34 are presented. Second column represents the basic combination of MD and MS
(MR = Mc

R for all the cases). Textures not allowed by constrained CP phases are labelled as
‘NA’. Textures allowed for all values of sinθ34 are labelled as ‘All’.

Texture MD,MS No. of Range of sinθ34 when CP phases are
correlations Unconstrained Constrained

NH IH NH IH
A1 (1),(2) 1 > 0.08 - > 0.12 -

(3),(2) 1 (0.06−0.2) - (0.12−0.22) -
(5),(2) 1 All - All -

A2 (2),(2) 1 > 0.08 - > 0.12 -
(4),(2) 1 All - NA -
(6),(2) 1 All - All -

B3 (7),(1) 1 > 0.02 > 0.02 (0.02−0.16) (0.02−0.16)
(9),(1) 2 > 0.02 All NA NA

> 0.08 All NA > 0.08
(11),(2) 1 All All All All

B4 (8),(1) 1 > 0.02 > 0.02 (0.02−0.16) (0.02−0.16)
(10),(1) 2 > 0.04 > 0.02 > 0.02 > 0.04

All All NA NA
(12),(2) 1 All All All All

C (23),(1) 1 > 0.02 > 0.02 (0.02−0.16) (0.02−0.16)
D1 (13),(2) 1 > 0.08 > 0.06 > 0.12 > 0.12

(15),(1) 1 All All All NA
(17),(2) 1 All All All All

D2 (14),(2) 1 All All All All
(16),(1) 1 (0−0.06) (0−0.22) NA (0−0.02)
(18),(2) 1 All > 0.02 NA NA

E1 (19),(1) 2 All - All -
> 0.04 - NA -

E2 (20),(1) 2 (0−0.06) - NA -
> 0.04 - NA -

F1 (24),(3) 2 All All All All
> 0.02 > 0.02 (0−0.04) (0.02−0.1)

(0.3−0.4) (0.35−0.4)
F2 (21),(3) 2 All All All All

> 0.08 All NA NA
F3 (22),(3) 2 > 0.08 > 0.06 > 0.12 > 0.12

All All All All
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The second correlation for texture F1 allows two values of sinθ34 viz. (0−0.04),(0.3−0.4)

for NH and (0.02−0.1),(0.35−0.4) for IH (Constrained CP phases).

Phenomenologically allowed two-zero textures of (A1,A2,B1,B2,B3,B4 and C) in 3

active neutrino scenario [78] as well as in the 3+1 picture along with sterile sector [96]

have been realized in MES with the corresponding consistent correlations excluding the

textures B1 and B2 in the m4×4
ν not being matrices of rank 3. Again the two-zero textures

(D1,D2,E1,E2,F1,F2 and F3) which are phenomenologically allowed in (3+1) picture but

not in 3 active neutrino case, have also been realized in MES with consistent correlations.

3.7 Symmetry realization

Zeros of the fermion mass matrices which propagate as zeros of mν can be realized by an

Abelian flavor symmetry Zn with an extended scalar sector. The paper [100] employed the

Abelian symmetries in the context of type-I seesaw mechanism to generate the zeros in

the arbitrary entries of the fermion mass matrices. For symmetry realization of the viable

textures in the context of MES mechanism under consideration, we adopt the method-2 of

Ref. [100]. We are considering the charged lepton mass matrix Ml to be diagonal through

out the chapter. We have found the Z9 symmetry group suitable for realization of the textures.

The Z9 symmetry group consists of the elements (1,ω,ω2,ω3,ω4,ω5,ω6,ω7,ω8) with

ω = ei 2π

9 being the generator of the group. We present a representative case of the symmetry

realization for texture A1 case(a).

The transformations of the leptonic fields under Z9 are considered as-

D̄eL → ω
7D̄eL , eR → ω

5eR , νeR → ωνeR

D̄µL → ω
5D̄µL , µR → ω

4
µR , νµR → ω

4
νµR

D̄τL → ωD̄τL , τR → ω
6
τR , ντR → ω

5
ντR

. (3.44)
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D̄ jL , lR and νkR represent the SU(2)L doublets, the RH SU(2)L singlets and the RH neutrino

singlets respectively. The bilinears D̄ jL lR, D̄ jLνkR,ν
T
kR

C−1ν jR are respectively relevant for Ml

,MD and MR and they transform as-

D̄kL l jR =


ω3 ω2 ω4

ω 1 ω2

ω6 ω5 ω7

 , D̄kLν jR =


ω8 ω2 ω3

ω6 1 ω

ω2 ω5 ω6

 , ν
T
kR

C−1
ν jR =


ω2 ω5 ω6

ω5 ω8 1

ω6 1 ω

 .

(3.45)

We introduce three SU(2)L doublet Higgs (Φ1,Φ2,Φ3) transforming under Z9 as-

Φ1 → Φ1 , Φ2 → ω
6
Φ2 , Φ3 → ω

2
Φ3. (3.46)

The Z9 invariant Yukawa Lagrangian becomes

−L = Y l
11D̄eLΦ2eR +Y l

22D̄µLΦ1µR +Y l
33D̄τLΦ3τR +Y D

12D̄eLΦ̃3νµR

+Y D
21D̄µLΦ̃2νeR +Y D

22D̄µLΦ̃1νµR +Y D
31D̄τLΦ̃3νeR +Y D

33D̄τLΦ̃2ντR +h.c..
(3.47)

The Higgs field after acquiring a vacuum expectation value gives the following form of Ml

and MD-

Ml =


me 0 0

0 mµ 0

0 0 mτ

 , MD =


0 b 0

d e 0

g 0 l

 . (3.48)

We also introduce a scalar singlet χ for MR transforming as-

χ → ω
7
χ1, (3.49)
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which leads to the following form of MR

MR =


A 0 0

0 0 E

0 E 0

 . (3.50)

To prevent bare mass term of the form S̄cS as demanded by MES model, we transform the

singlet field ‘S’ as -

S → ωS. (3.51)

Two scalar singlets λ1,λ2 transforming as

λ1 → ω
7
λ1 , λ2 → ω

3
λ2, (3.52)

leads to the following form of MS

MS =

(
s1 0 s3

)
, (3.53)

which are the required zero textures in Eq. (3.9) for texture A1.

Symmetry realization of all the other S3 symmetric textures follows a definite pattern.

We take the element “A”of the S3 group2

A =


0 1 0

1 0 0

0 0 1

 , (3.54)

2Refer sec. 2.3 for details.
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whereby there exist an interchange of the first and second column of the matrix “A”. Following

the similar pattern if we interchange the Z9 transformation of the RH ν singlets of the basic

combination in Eq. (3.44), that is, exchanging νeR ⇔ νµR or

νeR → ω
4
νeR, νµR → ωνµR, (3.55)

meanwhile keeping the transformation of ντR as well as that of D̄ jL ,lR,Φ,χ and λ the same as

that for the basic case in Eq. (3.44), (3.46), (3.49), (3.51) and (3.52) we arrive at the following

set of matrices

MD =


a 0 0

d e 0

0 h l

 , MR = Ma
R, Ms =

(
0 s2 s3

)
. (3.56)

The above set of matrices in Eq.(3.56) are simply the transformations of the basic set of

matrices in Eq.(3.48) and Eq.(3.50) by the element “A” of the S3 group.

Similarly one can arrive at the symmetry realization of the other textures by simply

interchanging the transformations of the RH neutrino singlets according to the interchange of

the columns of the respective elements of S3 group for each set of combinations of MD,MR

and MS, meanwhile keeping all other field transformations the same as the basic texture for

each case.

Symmetry realization of all the basic combinations for each texture are listed in Table 3.4.

For all the basic combinations the right handed Majorana neutrino mass matrix is the same,

MR = Mc
R. Therefore, in our work we keep the transformation of the right handed neutrino

singlets νkR to be the same as Eq. (3.44) for each basic texture. The transformations of the left

handed SU(2)L doublets D̄ jL , right handed SU(2)L singlets lR, Higgs doublets φ ′s, singlet

field ‘S’ and scalar singlets λ ′s are presented in Table 3.4.
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Table 3.4 Z9 Symmetry realization of all the basic cases.

Texture MD,MS D̄eL, D̄µL, D̄τL eR,µR,τR Φ′s S λ ′s
A1(ii) (3)(2) ω5,ω7,ω4 ω4,1,ω6 1,ω2,ω8 ω ω7,ω3

(iii) (5)(2) ω2,1,ω5 ω,ω8,ω4 1,ω6,ω ω ω7,ω3

A2(i) (2)(2) ω7,ω,ω5 ω5,ω6,ω4 1,ω6,ω2 ω ω7,ω3

(ii) (4)(2) ω5,ω4,ω7 ω4,ω6,1 1,ω8,ω2 ω ω7,ω3

(iii) (6)(2) ω2,ω5,1 ω,ω4,ω8 1,ω6,ω ω ω7,ω3

B3(i) (7)(1) ω5,ω7,ω ω4,ω5,ω6 1,ω6,ω2 ω5 1,ω8

(ii) (9)(1) ω7,ω5,ω4 1,ω4,ω6 1,ω2,ω8 ω5 1,ω8

(iii) (11)(2) 1,ω2,ω5 ω8,ω,ω4 1,ω,ω6 ω ω7,ω3

B4(i) (8)(1) ω5,ω,ω7 ω4,ω6,ω5 1,ω3,ω7 ω5 1,ω8

(ii) (10)(1) ω7,ω4,ω5 1,ω6,ω4 1,ω2,ω8 ω5 1,ω8

(iii) (12)(2) 1,ω5,ω2 ω8,ω4,ω 1,ω,ω6 ω ω7,ω3

C (23)(1) ω5,ω6,ω4 ω7,ω2,ω5 1,ω6,ω ω5 1,ω8

D1(i) (13)(2) ω5,ω2,1 ω4,ω,ω8 1,ω6,ω ω ω7,ω3

(ii) (15)(1) ω5,ω4,ω8 ω7,ω5,ω6 1,ω6,ω4 ω5 1,ω8

(iii) (17)(2) ω4,ω5,ω8 ω6,ω4,ω7 1,ω8,ω3 ω ω7,ω3

D2(i) (14)(2) ω5,1,ω2 ω4,ω8,ω 1,ω,ω6 ω ω7,ω3

(ii) (16)(1) ω5,ω8,ω4 ω7,ω6,ω5 1,ω6,ω4 ω5 1,ω8

(iii) (18)(2) ω4,ω8,ω5 ω6,ω7,ω4 1,ω8,ω3 ω ω7,ω3

E1 (19)(1) ω6,ω4,ω5 ω2,ω5,ω7 1,ω,ω6 ω5 1,ω8

E2 (20)(1) ω6,ω5,ω4 ω2,ω7,ω5 1,ω,ω6 ω5 1,ω8

F1 (24)(3) 1,ω5,ω4 1,ω3,ω6 1,ω,ω8 ω5 1,ω3

F2 (21)(2) ω5,1,ω4 ω3,1,ω6 1,ω,ω8 ω ω7,ω3

F3 (22)(3) ω5,ω4,1 ω3,ω6,1 1,ω,ω8 ω5 1,ω3

3.8 Conclusion

In chapter 2, we explored the 3× 3 neutrino mass matrix mν and found that no two-zero

textures can be realized in the context of MES mechanism and predictive scenario. In this

chapter we have realized the two-zero textures of (4× 4) neutrino mass matrix mν in the

context of MES mechanism under (4+4) scheme. No two-zero texture of MS has been useful

for realizing the desired textures. As demanded by MES mechanism, we consider only

those two-zero textures, which are of rank 3 (A1,A2,B3,B4,C,D1,D2,E1,E2,F1,F2,F3). On

realizing the textures we have arrived at certain correlations for each texture which are then

checked under recent neutrino oscillation data. In our analysis, we have considered the values
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of sinθ34 = (0.0−0.40). The viability of a texture has been checked under two conditions:

(i) unconstrained (0− 3600) Dirac and Majorana CP phases and (ii) constraining the CP

phases to different segment of values.

In our analysis, it has been observed that when CP phases are unconstrained, recent

neutrino oscillation data disfavours both the texture E1,E2 of class E, as its correlation

remains inconsistent. Similarly, out of three combinations of MD,MR and MS for texture D2,

two combinations in case (b) and case(c) for NH are ruled out. Our results of the numerical

study of the textures have been summarised in the Table 3.3.

Under CP phase dependent textures, we have found there are a number of textures which

is allowed for some ranges of sinθ34 when CP remains unconstrained. However, when CP

phases are constrained to different ranges the texture requires different ranges of sinθ34 for its

viability. This kind of behaviour have been observed for textures A1,A2,B3,B4,C,D1,D2,F1,F3

with combinations : MD,MS =(1),(2),(3),(2); (2),(2); (7),(1); (8),(1); (23),(1); (13),(2);

(16),(1) (IH); (24),(3) (second correlation) and (22),(3) (first correlation) respectively.

These textures are sensitive to CP phases in the sense that the different ranges of CP values

demands different ranges of sinθ34 for its viability (Table. 3.3).

Again for a number of cases it has been found that the texture is allowed for all ranges of

sinθ34 when CP phases are kept unconstrained, but has failed to survive when CP phases

are constrained to certain ranges. Such behaviours are seen for texture A2, B3, B4, D1, F2

with the combination of MD,MS = (4),(2); (9),(1) (first correlation, IH); (10),(1) (second

correlation); (15)(1) (IH) and (21),(3) (second correlation, IH) respectively.

For certain textures we have seen that for unconstrained CP phases the correlations

survived for a small range of sinθ34. However, for constrained ranges of CP phases, it has

been found that the correlations remain inconsistent and the textures are not allowed. This is

evident from Table 3.3 for texture B3, D2, F2 for MD,MS = (9),(1) (NH); (16),(1)(NH) &

(18),(2) (IH) and (21),(3) (second correlation, NH) respectively.
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Interestingly we have found that there also exists certain textures where presence/absence

of CP phases doesnot affect its viability and the texture remains as an allowed texture for all

values of sinθ34. This is evident from Table 3.3 for texture A1, A2, B3, B4, D1, D2, F1, F2 and

F3 for MD,MS = (5),(2); (6),(2); (11),(2); (12),(2); (15),(1) (NH) & (17),(2); (14),(2);

(24),(3) (first correlation); (21),(3) (first correlation) and (22),(3) (second correlation)

respectively.

The viable textures in our study are finally subjected to symmetry realization, where we

have undertaken the Z9 Abelian symmetry group. On realizing the textures we required : 3

Higgs’ doublets (Φ) one of which is the SM Higgs transforming trivially under Z9, scalar

singlet χ for obtaining the four-zero texture of MR and two singlets λ to realize the one-zero

texture of MS.



4
Phenomenology and group symmetry

realization of fermion mass matrices for

texture zeros of MES m4×4
ν

4.1 Introduction

This chapter is based on our work in Ref. [125]. In this chapter, we shall explore the

(5+3) and (6+2) predictive cases for realization of two-zero textures of MES m4×4
ν along
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with one/two-zero textures of MS. We also discuss the S3 group permutation between the

fermion mass matrices under MES mechanism which leads us to a minimum number of basic

combination of MD, MR and MS. m4×4
ν being a matrix is of rank 3 demands one of the mass

eigenvalues to vanish and hence one has to consider one of the active neutrinos massless as

vanishing sterile neutrino mass becomes trivial. Out of 15 viable two-zero textures, only 12

textures are of rank 3. We find that the (5+3) and (6+2) schemes are more constrained than

the (4+4) scheme in chapter 3. Out of 12 two-zero textures of rank 3, only 9 textures can be

realized within (5+3) scheme. Textures E1,E2 which were realizable under (4+4) scheme

but ruled out by neutrino oscillation data, cannot be even realized under the (5+3) scheme.

Moreover, none of the textures can be realized within the (6+2) scheme. It is to be noted

that although there are a number of allowed three-zero [126] and four-zero [127] textures of

m4×4
ν , but they can never be realized in the MES mechanism, as MD and MR should remain

as non-singular in MES.

Enforcing zeros in m4×4
ν under (5+3) gives a number of correlations among the neutrino

mass matrix elements mi j. We check the consistency of the correlations of each of the

texture by plotting scatter plots with the current neutrino oscillation data. We also present

the interplay of Dirac and Majorana CP phases on the viability of the textures. The coveted

textures are then realized using Abelian flavor group symmetry Z8 by extending the scalar

sector of the SM.

The chapter is organized as follows: In Section 4.2 we present a brief discussion on MES

mechanism. Section 4.3 includes a brief review on five-zero textures of MD and three-zero

textures of MR along with zero textures of MS. Also, S3 permutation of fermion mass matrices

under MES mechanism is presented in Sec. 4.3. In Section 4.4 we present the realization

of the two-zero textures. In Section 4.5 we check the viability of the textures under recent

neutrino oscillation data for both unconstrained and constrained CP phases. Symmetry
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realization of the viable textures are presented in Section 4.6. Finally, we conclude in Section

4.7.

4.2 Minimal extended seesaw (MES) mechanism

In MES mechanism, Standard Model (SM) is extended with three right-handed neutrinos and

one gauge singlet chiral field ‘S’ which leads to the full neutrino mass matrix in the basis

(νL,ν
c
R,S

c) as

m7×7
ν =


0 MD 0

MT
D MR MT

S

0 MS 0

 . (4.1)

Block diagonalizing Eq. (4.1) and considering the hierarchy MR ≫ MS > MD, leads to the

effective neutrino mass matrix in the basis (νL,Sc) as

m4×4
ν =−

 MDM−1
R MT

D MDM−1
R MT

S

MS(M−1
R )T MT

D MSM−1
R MT

S

 . (4.2)

The square matrix in Eq. (4.2) contains four light eigenstates corresponding to three active

neutrinos and one sterile neutrino [68]. However, the determinant of the mass matrix m4×4
ν is

zero with the condition of MD and MR being non-singular. Thus the mass matrix m4×4
ν is a

matrix of rank 3. This implies that at least one of the active neutrino mass states remains as

massless.

In our work, we shall consider the MES neutrino mass matrix in Eq. (4.2) to realize the

two-zero textures of (4×4) neutrino mass matrix mν of rank 3. We find that only 9 out of 12

two-zero textures of rank 3 can be realized within the (5+3) scheme. Three textures C,E1,E2

under (5+3) scheme and any of the textures under (6+2) scheme cannot be realized in the
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context of MES mechanism. In the paper [96] authors found the following: (i) the textures

A1 and A2 belong to class A, which allow only the normal heirarchical mass patterns, (ii) the

textures D1,D2 of class D allow both NH and IH mass orderings, (iii) the textures B3,B4 of

class B and F1,F2,F3 of class F favors all the three mass patterns: normal hierarchy (NH),

inverted hierarchy (IH) and quasi degenerate(QD). As one of the mass eigenvalues of the

matrix m4×4
ν in MES is massless, so the NH and IH mass patterns of the textures are allowed

in MES but the QD textures are not allowed. The 9 two-zero textures of rank 3 are presented

in Table 4.1.

Also, Pµτ symmetry [96] exists between the textures A1 −A2; B3 −B4; D1 −D2 and

F2 −F3 according to Eq. (4.3). However, such a symmetry does not exist for the texture F1.

B4 = PT
µτB3Pµτ , (4.3)

where

Pµτ =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


. (4.4)

4.3 (5+3) scheme and S3 permutation group

3-zero textures of MR:

The right-handed Majorana mass matrix MR is symmetric with six independent entries

and so we have 6C3 = 20 possible 3-zero textures, out of which only 14 are non-singular

(Table 4.2). However, according to Eq. (4.8) S3 group permutations permit us to work with
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Table 4.1 Viable two-zero textures [96] of rank 3. Here ‘X’ indicates the elements with
non-zero entries.

A1 A2 B3
0 0 X X
0 X X X
X X X X
X X X X




0 X 0 X
X X X X
0 X X X
X X X X




X 0 X X
0 0 X X
X X X X
X X X X


B4 D1 D2

X X 0 X
X X X X
0 X 0 X
X X X X




X X X X
X 0 0 X
X 0 X X
X X X X




X X X X
X X 0 X
X 0 0 X
X X X X


F1 F2 F3

X 0 0 X
0 X X X
0 X X X
X X X X




X 0 X X
0 X 0 X
X 0 X X
X X X X




X X 0 X
X X 0 X
0 0 X X
X X X X



Table 4.2 All possible non-singular three-zero textures of MR

M(1)
R M(2)

R M(3)
R M(4)

R 0 B C
B 0 E
C E 0

  0 0 C
0 D E
C E 0

  0 B 0
B 0 E
0 E F

  0 0 C
0 D 0
C 0 F


M(5)

R M(6)
R M(7)

R M(8)
R A 0 C

0 0 E
C E 0

  A 0 0
0 0 E
0 E F

  A 0 0
0 D 0
0 0 F

  A 0 0
0 D E
0 E 0


M(9)

R M(10)
R M(11)

R M(12)
R A B 0

B 0 E
0 E 0

  A B 0
B 0 0
0 0 F

  0 B C
B 0 0
C 0 F

  0 B C
B D 0
C 0 0


M(13)

R M(14)
R - - 0 B 0

B D 0
0 0 F

  A 0 C
0 D 0
C 0 0

 - -
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only three basic 3-zero textures M(7)
R , M(9)

R and M(10)
R as follows:

M(7)
R =


A 0 0

0 D 0

0 0 F

 , M(9)
R =


A B 0

B 0 E

0 E 0

 , M(10)
R =


A B 0

B 0 0

0 0 F

 . (4.5)

It is noted that M(1)
R is uninteresting as its inverse matrix consists of all entries non-zero. So

zeros of mν can never be generated whatever the choice of MD may be.

5-zero textures of MD:

As the Dirac neutrino mass matrices are non-symmetric with all 9 elements being

independent, there might be 9C5 = 126 possible 5-zero textures. However, as the MES

mechanism demands MD to be non-singular, 90 such textures of MD which have either

row zero, column zero or block zero are not useful for being singular. The remaining 36

non-singular textures are viable. Again we find that 26 textures of MD (Table 4.3) out of

aforesaid 36 textures play the role in the basic combinations with MR in Eq. (4.5) and MS

(Eq. (4.6),(4.7)) to reproduce the desired two-zero textures of m4×4
ν . All other combinations

can be obtained via S3 transformations according to Eq. (4.8).

Zero textures of MS:

The 1×3 row matrix MS =

(
s1 s2 s3

)
can have two possible zero textures:

(1) One-zero textures:

M(1)
S =

(
0 s2 s3

)
, M(2)

S =

(
s1 0 s3

)
, M(3)

S =

(
s1 s2 0

)
. (4.6)
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Table 4.3 5-zero textures of MD required in basic combinations.

M(1)
D M(2)

D M(3)
D M(4)

D a 0 0
0 0 f
0 h l

  0 b 0
d 0 0
g 0 l

  0 b 0
d e 0
0 0 l

  0 b 0
d 0 0
0 h l


M(5)

D M(6)
D M(7)

D M(8)
D a 0 0

d 0 f
0 h 0

  a 0 0
0 e f
0 0 l

  a 0 0
0 e 0
g 0 h

  0 b 0
d 0 f
g 0 0


M(9)

D M(10)
D M(11)

D M(12)
D 0 b 0

0 e f
g 0 0

  0 b 0
0 0 f
g h 0

  a b 0
0 e 0
0 0 l

  a 0 c
d 0 0
0 h 0


M(13)

D M(14)
D M(15)

D M(16)
D a 0 0

0 e 0
0 h l

  0 0 c
d 0 0
0 h l

  a b 0
0 0 f
0 h 0

  a 0 c
0 e 0
g 0 0


M(17)

D M(18)
D M(19)

D M(20)
D a 0 0

0 e f
0 h 0

  0 0 c
0 e f
g 0 0

  0 b c
d 0 0
0 0 l

  0 b c
0 e 0
g 0 0


M(21)

D M(22)
D M(23)

D M(24)
D 0 0 c

0 e 0
g h 0

  0 b c
d 0 0
0 h 0

  0 b c
0 0 f
g 0 0

  0 0 c
d e 0
0 h 0


M(25)

D M(26)
D - - a b 0

d 0 0
0 0 l

  a 0 0
d e 0
0 0 l

 - -

(2) Two-zero textures:

M(4)
S =

(
s1 0 0

)
, M(5)

S =

(
0 s2 0

)
, M(6)

S =

(
0 0 s3

)
. (4.7)

S3 invariance under (5+3) scheme
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We find that there exists S3 transformations1 (Eq. 4.8) between a number of combinations

of MD, MR and MS under the (5+3) scheme which keeps m4×4
ν in Eq. (4.2) invariant.

MD → MDZ, MR → ZT MRZ, MS → MSZ. (4.8)

These transformations reduce the voluminous work of dealing with a large number of possible

combinations of MD,MR and MS under the (5+3) scheme to only a few basic combinations.

4.4 Realization of two-zero textures

We have 36 five-zero textures of MD, 13 three-zero textures of MR and 6 one and two-zero

textures of MS under (5+3) scheme mentioned in the previous section to realize the two-zero

textures of m4×4
ν in MES. There exist 210 number of possible choices for the combinations

of MD, MR and MS being effective for realization of our desired two-zero textures of m4×4
ν .

Again the complexity of the texture study of these 210 combinations can further be reduced

by S3 transformations to only 42 basic combinations for each of which there are five S3

transformations. The zeros of MD, MR and MS propagate to m4×4
ν through MES formula

in Eq.(4.2) which acquires a form of two zero texture. In this process we also obtain the

correlations among some of the matrix elements mi j with i, j = e,µ,τ,s of m4×4
ν as results

of the functional relations among the parameters of MD, MR and MS. Again the question of

viability of a two-zero texture is addressed by the consistency check of these correlations

under the current neutrino data. This analysis shall follow in the next section. Now we

present three representative cases out of 42 basic combinations for understanding of the

problem:

1For details, refer section 2.3, chapter 2
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Case I: The following basic combination of

MR = M(9)
R , MD = M(11)

D , MS = M(6)
S , (4.9)

in Eq. (4.5), Table 4.3 and Eq. (4.7) respectively used in Eq. (4.2) leads to the form of m4×4
ν

as

m(4×4)
ν =



a2

A 0 (bA−aB)l
AE

(bA−aB)s3
AE

0 0 el
E

es3
E

(bA−aB)l
AE

el
E

l2B2

AE2
ls3B2

AE2

(bA−aB)s3
AE

es3
E

ls3B2

AE2
s2

3B2

AE2


, (4.10)

This is the texture B3 in Table 4.1 and reproduces the following correlation

meτ

mes
=

mµτ

mµs
=

mττ

mτs
=

mτs

mss
=

√
mττ

mss
. (4.11)

According to Eq. (4.8) S3 transformations of the basic combination in Eq. (4.9) give a number

of cases which generate textures B3 with the same correlations as in Eq. (4.11). These are

presented in Table 4.4.

Case II: Another basic combination of

MR = M(9)
R , MD = M(21)

D , MS = M(6)
S , (4.12)

in Eq. (4.5), Table 4.3 and Eq. (4.7) respectively applied in Eq. (4.2) produces the following

mν

m(4×4)
ν =



c2B2

AE2
ce
E

(hA−gB)c
AE

cs3AE2

B2

ce
E 0 0 es3

E

(hA−gB)c
AE 0 g2

A
(hA−gB)s3

AE

cs3AE2

B2
es3
E

(hA−gB)s3
AE

s2
3B2

AE2


. (4.13)
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Table 4.4 S3 symmetric textures of the basic combination in Eq. (4.9).

Case MD MR MS

(a)

 a b 0
d 0 0
0 0 l

 M(12)
R M(6)

S

(b)

 0 b c
0 e 0
g 0 0

 M(3)
R M(4)

S

(c)

 0 b c
0 0 f
g 0 0

 M(2)
R M(5)

S

(d)

 a 0 c
d 0 0
0 h 0

 M(11)
R M(4)

S

(e)

 a 0 c
0 0 f
0 h 0

 M(5)
R M(4)

S

This is of the texture D1 in Table 4.1 that leads to the following correlation

mee

mes
=

mes

mss
=

meτ

mτs
=

meµ

mµs
=

√
mee

mss
. (4.14)

In this case also there exist another five combinations of MD,MR,MS which are S3 symmetric

to Eq. (4.12) giving the same correlation as in Eq. (4.14) (Table 4.5).

Case III: The basic combination of

M(9)
R ,M(5)

D ,M(6)
S , (4.15)

in Eq. (4.5), Table 4.3 and Eq. (4.7) respectively used in Eq. (4.2) leads to the texture B4 and

it reproduces two correlations:
meµ

mµs
=

mee

mes
, (4.16)

meemss = m2
es. (4.17)
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Table 4.5 S3 symmetric textures of the basic combination in Eq. (4.12).

Case MD MR MS

(a)

 0 0 c
d 0 0
g h 0

 M(12)
R M(6)

S

(b)

 a 0 0
0 e 0
0 h l

 M(3)
R M(4)

S

(c)

 a 0 0
0 0 f
0 h l

 M(2)
R M(5)

S

(d)

 0 b 0
d 0 0
g 0 l

 M(11)
R M(4)

S

(e)

 0 b 0
0 0 f
g 0 l

 M(5)
R M(4)

S

However, there exist another five combinations (Table 4.6) which are S3 symmetric to

Eq. (4.15) giving the same correlations as in Eq. (4.16) and (4.17).

The remaining 39 basic combinations of MD, MR and MS along with their correlations

are presented in Table 4.7 and 4.8. In our analysis we have found that some combinations are

having multiple correlations.

4.5 Analysis of the textures under current neutrino data

In our analysis we calculate the mass matrix elements mi j (Eq. (A.1)-(A.10), Appendix A)

where i, j = (e,µ,τ and s) using the current neutrino data2. We have chosen the Dirac and

the Majorana CP phases in the ranges (0−2π). To check the viability of a texture, the left

hand side (lhs) and the right hand side (rhs) of the correlation(s) of the texture are plotted

against sinθ34 which is has an upper bound < 0.4 [109]. In our analysis, we have taken its

lower limit as 0. If there happens a reasonable overlapping of the plots of lhs and rhs, then

2Refer section 1.7, Chapter 1.
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Table 4.6 S3 symmetric textures of the basic combination in Eq. (4.15).

Case MD MR MS

(a)

 0 b 0
0 e f
h 0 0

 M(12)
R M(6)

S

(b)

 0 0 c
d 0 f
0 h 0

 M(3)
R M(4)

S

(c)

 0 b 0
d e 0
0 0 l

 M(2)
R M(5)

S

(d)

 0 0 c
0 e f
g 0 0

 M(11)
R M(4)

S

(e)

 a 0 0
d e 0
0 0 h

 M(5)
R M(4)

S

the texture is considered as an allowed texture within the overlapping range of sinθ34. We

also study the viability of the textures when the CP phases are constrained to some random

ranges of values within (0−2π). In analysis, we categorise them as (i) CP phase dependent

textures and (ii) CP phase independent textures.

4.5.1 CP phase dependent textures

This category of textures is viable for unconstrained CP phases within the range (0−2π),

but there may exist some combinations of segmented ranges of CP phases δ13, δ14, δ24, α , β

and γ for which the overlapping of plots of lhs and rhs of the correlations of a texture may

partially or completely disappear. Again if there are more than one correlations of a texture

and at least one of them shows CP phase dependence, then such texture is also considered

under this category. In the analysis, we find that with constrained CP phases, some of the

textures are completely ruled out i.e., there are no overlapping of plots of lhs and rhs within

the range of sinθ34, while some of them retain their viability but in the squeezed range of
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Table 4.7 Basic combination required for realization of the allowed two-zero textures: A1,
A2, B3, B4 under (5+3) scheme and their respective correlations.

Texture MD,MR,MS Correlations
A1(i) (1),(10),(1) mes(mτsmµµ −mµτmµs) = meτ(mssmµµ −m2

µs)

(ii) (2),(9),(6) (a) mµτ

mµµ
= mτs

mµs
, (b) mµµmss = m2

µs

(iii) (3),(9),(6) meτ

mes
=

mµτ

mµs
= mττ

mτs
= mτs

mss
=
√

mττ

mss

(iv) (4),(9),(6) (a) meτ

mes
=

mµτ

mµs
, (b) mµµmss = m2

µs

(v) (5),(10),(5) meτ

mes
=

mµτ

mµs
= mττ

mτs
= mτs

mss
=
√

mττ

mss

A2(i) (6),(10),(1) mes(mµsmττ −mµτmτs) = meµ(mssmττ −m2
τs)

(ii) (8),(9),(6) (a) mµτ

mττ
=

mµs
mτs

, (b) mττmss = m2
τs

(iii) (7),(10),(5) meµ

mes
=

mµτ

mτs
=

mµµ

mµs
=

mµs
mss

=
√

mµµ

mss

(iv) (9),(9),(6) (a) meµ

mes
=

mµτ

mτs
, (b) mττmss = m2

τs

(v) (10),(9),(6) meµ

mes
=

mµτ

mτs
=

mµµ

mµs
=

mµs
mss

=
√

mµµ

mss

B3(i) (11),(9),(6) meτ

mes
=

mµτ

mµs
= mττ

mτs
= mτs

mss
=
√

mττ

mss

(ii) (12),(10),(5) meτ

mes
=

mµτ

mµs
= mττ

mτs
= mτs

mss
=
√

mττ

mss

(iii) (7),(9),(6) (a) meτ

mτs
= mee

mes
, (b) meemss = m2

es
(iv) (13),(9),(6) (a) meτ

mes
=

mµτ

mµs
, (b) meemss = m2

es

(v) (14),(10),(1) mee(mττmµs −mµτmτs) = meτ(meτmµs −mesmµτ)

B4(i) (15),(9),(6) meµ

mes
=

mµτ

mτs
=

mµµ

mµs
=

mµs
mss

=
√

mµµ

mss

(ii) (16),(10),(5) meµ

mes
=

mµτ

mτs
=

mµµ

mµs
=

mµs
mss

=
√

mµµ

mss

(iii) (5),(9),(6) (a) meµ

mµs
= mee

mes
, (b) meemss = m2

es

(iv) (17),(9),(6) (a) meµ

mes
=

mµτ

mτs
, (b) meemss = m2

es
(v) (18),(10),(1) mee(mµµmτs −mµsmµτ) = meµ(meµmτs −mesmµτ)

sinθ34. These two categories are referred to as Category (I) and Category (II) below.

Category (I): There is a class of textures which are allowed for some ranges of sinθ34

when CP phases are unconstrained. However, for some ranges of CP phases, the textures

cease to be viable within sinθ34 = (0−0.4). This is illustrated as follows:

We pick up the case of the texture B3(i) in Table 4.7. Each of 5 expressions in the

correlations for B3(i) in Eq. (4.11) separated by equality sign is plotted against sinθ34 with
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Table 4.8 Basic combination required for realization of the allowed two-zero textures: D1,
D2, F1, F2, F3 under (5+3) scheme and their respective correlations.

D1(i) (19),(10),(1) mee
meτ

− meτ

mττ
=
(

mee
mττ

− m2
eτ

m2
ττ

)
l
c

(ii) (20),(9),(6) (a) meµ

mµs
= meτ

mτs
, (b) mττmss = m2

τs

(iii) (2),(10),(5) meµ

mµs
= meτ

mτs
=
√

mee
mss

(iv) (21),(9),(6) mee
mes

= mes
mss

= meτ

mτs
=

meµ

mµs
=
√

mee
mss

(v) (16),(9),(6) (a) meτ

mτs
= mes

mss
, (b) meemss = m2

es

D2(i) (23),(10),(1) mee
meµ

− meµ

mµµ
=

(
mee
mµµ

− m2
eµ

m2
µµ

)
f
c

(ii) (22),(9),(6) (a) meτ

mτs
=

meµ

mµs
, (b) mµµmss = m2

µs

(iii) (8),(10),(5) meτ

mτs
=

meµ

mµs
=
√

mee
mss

(iv) (24),(9),(6) mee
mes

= mes
mss

= meτ

mτs
=

meµ

mµs
=
√

mee
mss

(v) (12),(9),(6) (a) meµ

mµs
= mes

mss
, (b) meemss = m2

es

F1(i) (24),(10),(2) meemss = m2
es

(ii) (21),(10),(2) meemss = m2
es

(iii) (17),(7),(3) mµτ

mττ
=

mµs
mτs

(iv) (13),(7),(3) mµµ

mµτ
=

mµs
mτs

F2(i) (15),(10),(2) mµµmss = m2
µs

(ii) (10),(10),(2) mµµmss = m2
µs

(iii) (7),(7),(3) mee
mes

= meτ

mτs
(iv) (22),(7),(3) meτ

mes
= mττ

mτs

F3(i) (11),(10),(2) mττmss = m2
τs

(ii) (3),(10),(2) mττmss = m2
τs

(iii) (25),(7),(2) mee
mes

=
meµ

mµs

(iv) (26),(7),(2) meµ

mes
=

mµµ

mµs

its range (0−0.4) and using 3σ range of the parameters of neutrino data (Section1.7, Chapter

1) and expressions for mi j, where i, j = (e,µ,τ and s) in the Appendix. The plots are done

first without constraining CP phases i.e., for the whole range (0−2π). Fig. 4.1 shows the

correlation plot of Eq. (4.11) for Normal hierarchy (NH) case of texture B3(i).

From Fig. 4.1 it is evident that the correlation in Eq. (4.11) is consistent only for

sinθ34 > 0.1. For values of sinθ34 < 0.1 the overlapping of the expressions mττ

mτs
and

√
mττ

mss
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Fig. 4.1 Scatter plot for Eq. (4.11) against sinθ34 for unconstrained CP phases (Texture B3(i),
NH). meτ

mes
, mµτ

mµs
, mττ

mτs
, mτs

mss
,

√
mττ

mss
.

ceases and the texture is not allowed within that range of sinθ34. This predicts a lower bound

on sinθ34 to be 0.1.

Interestingly we observe that when CP phases are constrained to the ranges : δ13 =

δ14 = (450 −900),δ24 = (1800 −2250),α = (1350 −1800),β = γ = (0−450), the overlap-

ping completely vanishes and the texture is not allowed for any range of sinθ34 (Fig. 4.2).

This shows the fair play of CP phases in determining the viability of a texture. The con-

strained ranges of CP phases mentioned above are those ranges for which the texture is not

allowed. However, with other choices of the ranges of CP phases, the texture shows different

phenomenology and requires some other constrained ranges of sinθ34 for its viability.

Fig. 4.1 and 4.2 for Eq. (4.11) show the correlation plots for NH pattern. The textures

A1(iii),(v); B3(i),(ii) (Table 4.7) give the same correlations as in Eq. (4.11) and therefore,

they show similar phenomenology. The textures which behave phenomenologically similarly

are listed in Table 4.9. We also report their respective constrained ranges of CP phases that

are not consistent with the allowed range of sinθ34 = (0.0−0.4).

Category (II): Under this category of textures, they are allowed for a range of values of

sinθ34 without constraining CP phases. The special features of these textures are that they
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Fig. 4.2 Scatter plot for Eq. (4.11) against sinθ34 for constrained ranges of CP phases:
δ13 = δ14 =(450−900),δ24 =(1800−2250),α =(1350−1800),β = γ =(0−450) (Texture
B3(i), NH). meτ
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Table 4.9 Constrained ranges of CP phases for textures under Category (I).

Texture Constrained CP phases
A1(iv)(a)(NH);B3(iv)(a)(NH) δ13 = (1800 −2250), δ14 = δ24 < 300, α = (0−900),

β = (3150 −3600), γ = (2700 −3150).
B3(i),(ii) (IH) δ13 = (450 −900), δ14 = (900 −1350) δ24 = (0−450),

α = (2700 −3150), β = γ = (0−300)

B3(iii)(a)(IH) δ13 = γ = (0−900), δ14 = (900 −1300),
δ24 = β = (0−1800), α = (0−300).

B3(iv)(a)(NH, IH) γ = α = δ13 = γ = (1800 −2250),
δ14 = β = (2250 −2700), δ24 = (1800 −2100).

B3(v)(IH) δ13 = γ = (0−900), α = (0−450),
δ14 = δ24 = (3250 −3600), β = (450 −900)

B4(iv)(a) (IH) δ13 = (0−900), δ14 = (900 −1800), δ24 = (450 −900)
α = (0−450),β = γ = (0−300)

D1(ii)(a) (IH); D2(ii)(a) (IH) δ13 = (0−450), δ14 = δ24 = (0−300), α = (2700 −3150),
β = (1300 −1800), γ = (2250 −2700)

D1(iii) (IH) α = (0−450), δ13 = (450 −900), δ14 = β = (0−300),
δ24 = (3150 −3600), γ = (3150 −3600)

D1(iv) (IH) δ13 = δ24 = unconstrained, δ14 = (0−2700),
α = (0−900), β = (0−900),γ = (0−300)

D2(v)(a) (IH) δ13 = (450 −900), β = (0−450), α = γ = (1800 −2250),
δ14 = δ24 = (0−450).

F3(iii) (IH) δ24 = α = (0−300), δ13 = (450 −900) , β = (900 −1350),
γ = (2700 −3150), δ14 = (3150 −3600).
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remain always viable within some ranges of sinθ34 even if CP phases are constrained for any

random segment of values.

We present the case of D1(iv) of this category. In the similar procedure of Category (I),

we have plotted the Fig. 4.3. It shows the correlation plots of Eq. (4.14) for unconstrained

(Plot (a)) and constrained (Plot (b)) CP phases (Normal Hierarchy). This figure tells that when

CP phases are unconstrained, the texture is allowed for all ranges of sinθ34 = (0.0−0.4).

However, on constraining the phases to the ranges: δ13 = (450 −900),δ14 = (2700 −3150),

δ24= unconstrained, α = (1800 −2250),β = (900 −1350),γ = (3300 −3600), the allowed

range of sinθ34 has been found as (0.06−0.40). On surveying the correlation with different

ranges of CP phases, we find that the texture is always allowed at least for some values of

sinθ34, unlike the Category (I), and this is true even when CP phases are made to vanish.
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Fig. 4.3 Scatter plot for Eq. (4.14) against sinθ34 for unconstrained (Plot (a))
and constrained (Plot (b)) ranges of CP phases: δ13 = (450 − 900),δ14 = (2700 −
3150),δ24 =unconstrained,α = (1800−2250),β = (900−1350),γ = (3300−3600) (Texture
D1(iv), NH). mee

mes
, mes

mss
, meτ

mτs
, meµ

mµs
,

√
mee
mss

.

Similar phenomenology has been observed for a number of textures. Table 4.10 shows

the allowed ranges of sinθ34 for each of those textures when CP phases are unconstrained

and constrained to certain ranges. Their respective constrained ranges of CP phases are

presented in Table 4.11.
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Table 4.10 Allowed ranges of sinθ34 for unconstrained and constrained CP phases for
textures under Category (II). Here ‘All’ represents that the texture allows all values of
sinθ34 = (0−0.4)

Texture Range of sinθ34 for
Unconstrained CP phases Constrained CP phases

A1(i) (NH) (0.04−0.4) (0.08−0.4)
A1(ii)(a) (NH) > 0.02 (0.02−0.1)
A2(ii)(a) (NH) > 0.08 > 0.1
A2(ii)(b) (NH) > 0.08 > 0.12

A2(iii),(v) (NH) > 0.04 > 0.08
A2(iv)(a) (NH) > 0.04 > 0.14
B3(iii)(a)(NH) All > 0.2

B3(v) (NH) All > 0.06
B4(iv)(a)(NH) > 0.02 < 0.06
B4(iv)(a)(IH) > 0.02 < 0.18

B4(v)(NH) All < 0.14
B4(v)(IH) All < 0.06

D1(ii)(a)(NH) > 0.02 > 0.1
D1(iii)(NH) All > 0.04
D1(iv)(NH) All > 0.06

D1(v)(a)(NH) > 0.02 > 0.06
D1(v)(a)(IH) > 0.06 > 0.24
F1(iii)(NH) > 0.04 > 0.1
F1(iii)(IH) > 0.04 > 0.32
F1(iv)(IH) > 0.04 (0.02−0.06)
F2(iv)(NH) > 0.1 > 0.14
F2(iv)(IH) > 0.04 (0.04−0.06)

4.5.2 CP phase independent textures

The textures under this category are viable for all ranges of sinθ34 = (0.0−0.4) while CP

phases are (i) unconstrained, (ii) constrained to different ranges and (iii) even when CP

phases are forced to be zero. For example the texture B4(iii) shows this type behaviour. The

Fig. 4.4 is the scatter plot for Eq. (4.16) (NH) for unconstrained CP phases and the Fig. 4.5

the scatter plots for different ranges of CP phases. It is seen that the overlapping of the plots

for the left-hand side and right-hand side of Eq. (4.16) maintains for the choice of different

ranges of CP phases, thereby showing no dependence of CP phase change. Eq. (4.17) shows
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Table 4.11 Constrained ranges of CP phases for textures under Category (II).

Texture Constrained CP phases
A1(i) (NH) δ13 = (450 −900), δ14 = (1800 −2250),

δ24 = (0−450), α = γ = (2250 −2700), β = (1350 −1800)

A1(ii)(a) (NH) δ13 = (1350 −1800), δ14 = (3250 −3600), β = (0−300)
δ24 = (900 −1350), α = (0−450), γ = (1200 −1600)

A2(ii)(a) (NH) δ13 = (1350 −1800), α = δ14 = (2250 −2700), δ24 = (2700 −3150),
β = (1800 −2250),γ = (3150 −3600)

A2(ii)(b) (NH) δ24 = (2700 −3150), δ13 = (1350 −1800), α = δ14 = (2250 −2700),
β = δ24 = (0−450),γ = δ13 = (0−300)

A2(iii),(v) (NH) α = (3150 −3600), δ13 = (450 −900),δ14 = (1800 −2250)
δ24 = (1800 −2250), β = γ = (0−300)

A2(iv)(a) (NH) γ = (3150 −3600), δ13 = (1800 −2250), α = (1350 −1800),
δ14 = δ24 = β = (0−300).

B3(iii)(a)(NH) δ13 = (1600 −2000), α = (3150 −3600),
δ24 = (1800 −2250), δ14 = γ = β = (3300 −3600)

B3(v) (NH) δ13 = δ24 < 450, δ14 = (900 −1350),
α = (1800 −2250), β = γ = (3150 −3600)

B4(iv)(a) (NH) β = γ = (3150 −3600), δ14 = (0−200),
α = δ13 = (1800 −2250), δ24 = (1800 −2000)

B4(iv)(a) (IH) β = α = (3150 −3600), δ14 = δ24 = (0−300),
γ = (2700 −3600),δ13 = (1800 −2250)

B4(v)(NH) β = (2250 −2700), δ13 < 450, δ14 < 100,
δ24 = (450 −900), α = γ = (300 −450).

B4(v) (IH) δ13 = (900 −1800), α = (0−450) δ14 = δ24 = γ = β = (0−300)

D1(ii)(a)(NH) α = (1350 −1800), δ13 < 450, δ14 < 300,
δ24 = (450 −900), γ = β = (3150 −3600).

D1(iii)(NH) β = (2700 −3150), δ13 = γ = (1350 −1800), δ14 < 300,
δ24 = (2700 −3000), α = (3150 −3600).

D1(iv)(NH) α = (1800 −2250), δ13 = (450 −900), δ14 = (2700 −3150),
γ = (3300 −3600), β = (900 −1350).

D1(v)(a)(NH) α = (1350 −1800), δ13 = (450 −900), δ14 = (3150 −3600),
δ24 = β = (0−300), γ = (2250 −3150).

D1(v)(a)(IH) α = (900 −1350), δ13 = (450 −900), δ14 = (1800 −2250),
δ24 = (2250 −2700), β = (0−300), γ = (1350 −1800).

F1(iii)(NH) δ13 = (1350 −1800),γ = (3150 −3600), β = (1800 −2250),
δ14 = δ24 = (2250 −2700), α = (2700 −3150)

F1(iii)(IH) δ13 = δ24 = (0−450), δ14 = (1800 −2250), γ = β = α = (0−300)

F1(iv)(IH) δ13 = (0−900), δ14 = γ = (0−300), δ24 = α = β = (0−450)

F2(iv)(NH) δ13 = (0−450), δ14 = δ24 = (0−300), γ = β = α = (3150 −3600)

F2(iv)(IH) δ13 = (450 −900), δ14 = β = (0−300),
δ24 = α = (1800 −2250),γ = (0−450)
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similar phenomenology whereby the correlation remains insensitive to the variations of CP

phases. We present the scatter plot for Eq. (4.17) in Fig. 4.6 for unconstrained CP phases.

Thus such texture is CP phase independent texture. Similar phenomenology can be observed

for the textures : A1(ii)(b), A1(iv)(b); A2(i); B3(iii)(b),(iv)(b); B4(iv)(b); D1(v)(b);

D2(ii)(b); D2(v)(b).
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Fig. 4.4 Scatter plot for Eq. (4.16) against sinθ34 for unconstrained CP phases (NH) (Texture
B4(iii)(a)).
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4.6 Symmetry realization

For symmetry realization of texture zeros, the author of Ref. [100] discussed two methods of

implementating Abelian symmetry group in the lepton sector with the seesaw mechanism

and now we adopt the method-2 of the paper for symmetry realization of the textures studied

here in the context of MES mechanism. We consider the charged lepton mass matrix Ml

to be diagonal. For symmetry realization of all the viable textures we consider the Abelian

symmetry group Z8 which consists of the group elements

(1,ω,ω2,ω3,ω4,ω5,ω6,ω7)

,

and ω = e
i2π

8 is the generator of the group. We present the symmetry realization for

texture B3(i) as a representative case.
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Fig. 4.5 Scatter plot for Eq. (4.16) against sinθ34 for constrained ranges of CP phases: Plot (a)
is for: δ13 = β = (450−900),γ < 300,δ14 = (900−1300),δ24 = (1800−2700),α = (2700−
3600). Plot (b) for: δ13 = γ = (1350 −1800),β = (450 −900),δ14 = (1800 −2250),δ24 =
(2700 − 3150),α = (1800 − 2700). Plot (c) for: δ13 = γ = (1350 − 1800),β = (2250 −
2700),δ14 = (1800−2250),δ24 = (0−450),α = (0−300). Plot (d) for: δ13 = (0−300),γ =
(2250−2700),β = (1350−1800),δ14 = (2250−2700),δ24 = (450−900),α = (900−1350)
(NH) (Texture B4(iii)(a)).
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We consider the leptonic fields to transform under Z8 as-

D̄eL → ω
7D̄eL , eR → ω

3eR , νeR → ωνeR

D̄µL → ωD̄µL , µR → ω
2
µR , νµR → ω

7
νµR

D̄τL → ω
2D̄τL , τR → ω

6
τR , ντR → ω

3
ντR

. (4.18)

Here, D̄ jL , lR and νkR represents the SU(2)L doublets, the RH SU(2)L singlets and the RH

neutrino singlets respectively. The bilinears D̄ jL lR, D̄ jLνkR,ν
T
kR

C−1ν jR relevant for Ml ,MD
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Fig. 4.6 Scatter plot for Eq. (4.17) against sinθ34 for unconstrained CP phases (NH) (Texture
B4(iii)(b)). meemss, m2
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and MR respectively transforms as-

D̄kL l jR =


ω2 ω ω5

ω4 ω3 ω7

ω5 ω4 1

 , D̄kLν jR =


1 ω6 ω2

ω2 1 ω4

ω3 ω ω5

 ,νT
kR

C−1
ν jR =


ω2 1 ω4

1 ω6 ω2

ω4 ω2 ω6

 .

(4.19)

We consider three SU(2)L doublet Higgs (Φ1,Φ2,Φ3) transforming under Z8 as-

Φ1 → Φ1 , Φ2 → ω
6
Φ2 , Φ3 → ω

5
Φ3. (4.20)

The Z8 invariant Yukawa Lagrangian becomes

−L = Y l
11D̄eLΦ2eR +Y l

22D̄µLΦ3µR +Y l
33D̄τLΦ1τR +Y D

11D̄eLΦ̃1νµR

+Y D
12D̄eLΦ̃2νµR +Y D

22D̄µLΦ̃1νµR +Y D
33D̄τLΦ̃3ντR +h.c..

(4.21)
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After acquiring a non-zero vacuum expectation value < φ0 ≯= 0 by the Higgs fields, Ml and

MD takes the form

Ml =


me 0 0

0 mµ 0

0 0 mτ

 , MD =


a b 0

0 e 0

0 0 l

 . (4.22)

We consider a scalar singlet χ transforming under Z8 as-

χ → ω
6
χ1, (4.23)

which leads to the following form of MR

MR =


A B 0

B 0 E

0 E 0

 . (4.24)

We also consider transformation of the singlet chiral field ‘S’, so as to prevent bare mass

term of the form S̄cS.

S → ωS. (4.25)

Scalar singlet λ1 transforming as

λ1 → ω
4
λ1, (4.26)

leads to the following form of MS

MS =

(
0 0 s3

)
, (4.27)
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which are the zero textures of the mass matrices in Eq. (4.9) for texture B3.

It has been observed that, symmetry realization of the other five S3 symmetric textures

(Table 4.4) of the basic combination in Eq. (4.9) follows an interesting pattern. For instance,

considering the textures in Case (b) of Table 4.4 obtained by tranforming the basic combina-

tion Eq. (4.9) by the element “B" of the S3 group, where

B =


0 0 1

0 1 0

1 0 0

 , (4.28)

There exist an interchange of the first and third column of the matrix “B”. Following

the similar pattern for symmetry realization of the textures of Case (b) (Table. 4.4), and

interchanging only the Z8 transformation of the right-handed neutrino singlets (νeR ⇔ ντR)

of the basic combination in Eq. (4.18), that is

νeR → ω
3
νeR , ντR → ωντR, (4.29)

meanwhile keeping the transformation of all the other fields, that is, νµR , D̄ jL ,lR,Φ,S,χ and λ

same as that of basic combination, we arrive at the following set of matrices

MD =


0 b c

0 e 0

g 0 0

 , MR = M(3)
R , M(4)

s =

(
s1 0 0

)
. (4.30)

Similarly, symmetry realization of all the other combinations (Table 4.4) can be obtained by

simply interchanging the transformation of the RH neutrino singlets of the basic combination,

according to the interchange of the columns of the elements of the S3 group via which the
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combinations are obtained.

In Table 4.12, we present the symmetry realization of all the basic combinations of

MD,MR and MS. The basic combinations for each textures involves only three basic forms of

the right-handed Majorana mass matrix MR = M(7)
R ,M(9)

R ,M(10)
R . For those textures which

are realized via M(9)
R , we keep the Z8 transformation of the RH neutrino singlets νkR to be

the same as in Eq. (4.18). The transformation for the scalar singlet χ , therefore, remains the

same as in Eq. (4.23).

For textures obtained via M(10)
R , we consider the transformation of the RH neutrino

singlets and scalar singlet χ as:

νeR → ωνeR, νµR → ω
7
νµR, ντR → ω

5
ντR , χ → ω

6
χ. (4.31)

Textures that are realized by the diagonal RH Majorana mass matrix M(7)
R , we consider

the tranformations of νkR, χ as:

νeR → νeR, νµR → ω
4
νµR, ντR → ωντR, χ → ω

6
χ. (4.32)

Z8 transformations of the left-handed SU(2)L doublets D̄ jL , right-handed SU(2)L singlets

lR, Higgs doublets φ , singlet field ‘S’ and scalar singlets λ of all the basic cases for each

texture are presented in Table 4.12.

4.7 Conclusion

In this chapter have explored with (5+3) and (6+2) schemes of zeros in MD and MR along

with required zero textures of MS to realize the two-zero textures of m4×4
ν in the context
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Table 4.12 Z8 Symmetry realization of all the basic cases.

Texture D̄eL, D̄µL, D̄τL eR,µR,τR Φ′s S λ ′s
A1(i) ω7,ω3,ω2 ω,ω4,ω7 1,ω,ω7 ω 1,ω2

(ii) ω,ω2,ω5 ω4,ω6,ω5 1,ω3,ω6 ω ω4

(iii) ω,ω2,ω5 ω7,ω5,1 1,ω3,ω ω ω4

(iv) ω4,ω7,ω 1,ω6,ω7 1,ω4,ω3 ω ω4

(v) ω7,ω2,ω ω,ω3,1 1,ω3,ω7 ω 1
A2(i) ω7,ω2,ω3 ω,ω7,ω4 1,ω,ω7 ω 1,ω2

(ii) ω,ω5,ω2 ω4,ω5,ω6 1,ω3,ω6 ω ω4

(iii) ω,ω5,ω2 ω7,1,ω5 1,ω3,ω ω ω4

(iv) ω4,ω,ω7 1,ω7,ω6 1,ω4,ω3 ω ω4

(v) ω7,ω,ω2 ω,1,ω3 1,ω3,ω7 ω 1
B3(ii) ω7,ω2,ω ω,ω2,ω4 1,ω4,ω3 ω 1

(iii) ω4,ω,ω5 ω4,ω2,ω5 1,ω5,ω6 ω ω4

(iv) ω7,ω,ω4 ω6,ω7,ω5 1,ω7,ω3 ω ω4

(v) ω3,ω7,ω2 ω4,ω,ω7 1,ω,ω7 ω 1,ω2

B4(i) ω7,ω2,ω ω3,ω6,ω2 1,ω6,ω5 ω ω4

(ii) ω7,ω,ω2 ω,ω4,ω2 1,ω4,ω3 ω 1
(iii) ω4,ω5,ω ω4,ω5,ω2 1,ω5,ω6 ω ω4

(iv) ω7,ω4,ω ω6,ω5,ω7 1,ω2,ω3 ω ω4

(v) ω3,ω2,ω7 ω4,ω7,ω 1,ω,ω7 ω 1,ω2

D1(i) ω,ω5,1 ω,ω6,1 1,ω6,ω5 ω 1,ω2

(ii) ω,1,ω7 ω7,ω4,ω2 1,ω4,ω7 ω ω4

(iii) ω,ω7,ω2 1,ω,ω3 1,ω7,ω3 ω 1
(iv) ω5,ω2,ω7 ω2,ω4,ω7 1,ω,ω2 ω ω4

(v) ω5,ω,1 ω5,ω6,1 1,ω,ω6 ω ω4

D2(i) ω,1,ω5 ω,1,ω6 1,ω5,ω6 ω 1,ω2

(ii) ω,ω7,1 ω7,ω2,ω4 1,ω4,ω7 ω ω4

(iii) ω,ω2,ω7 1,ω3,ω 1,ω7,ω3 ω 1
(iv) ω5,ω7,ω2 ω2,ω7,ω4 1,ω,ω2 ω ω4

(v) ω5,1,ω ω5,1,ω6 1,ω,ω6 ω ω4

F1(i) ω3,ω7,ω2 ω4,ω3,ω6 1,ω,ω6 ω3 1,ω4

(ii) ω3,ω2,ω7 ω4,ω6,ω3 1,ω,ω6 ω3 1,ω4

(iii) 1,ω4,ω2 ω2,ω4,ω 1,ω6,ω5 ω4 1,ω4

(iv) 1,ω4,ω2 ω2,ω4,ω3 1,ω6,ω3 ω4 1,ω4

F2(i) ω7,ω3,ω2 ω3,ω4,ω6 1,ω6,ω ω3 1,ω4

(ii) ω2,ω5,ω ω4,ω2,ω7 1,ω,ω2 ω3 1,ω4

(iii) ω,ω3,1 ω7,ω4,ω 1,ω,ω7 ω4 1,ω4

F3(i) ω7,ω2,ω3 ω3,ω6,ω4 1,ω6,ω ω3 1,ω4

(ii) ω2,ω,ω5 ω4,ω7,ω2 1,ω2,ω ω3 1,ω4

(iii) ω,1,ω3 ω7,ω,ω4 1,ω,ω7 ω4 1,ω4

(iv) ω4,ω6,ω5 ω4,ω5,ω 1,ω2,ω5 ω4 1,ω4
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of MES mechanism. We find that the (5+3) and (6+2) schemes are more constrained than

the (4+4) scheme in chapter 3. It has been found that none of the two-zero textures can

be realized within the (6+2) scheme. Out of 12 two-zero textures of rank 3, only 9 viable

textures (A1, A2, B3, B4, D1, D2, F1, F2, F3) can been realized in the (5+3) scheme. This is

in contrast to the (4+4) scheme in chapter 3, where all the 12 two-zero textures have been

realizable in the context of MES mechanism.

In realization of 9 two-zero textures under (5+3) scheme in MES mechanism we have

found certain correlations among the elements of m4×4
ν . The correlations have been scanned

under recent neutrino oscillation data and plotted against sinθ34 under two conditions (i)

keeping the Dirac and Majorana CP phases unconstrained (0−3600) and (ii) constraining

the CP phases to certain ranges. It has been observed that there are a number of textures

whose viability gets affected when CP phases are constrained to certain ranges, while for a

number of textures the phenomenology remains unchanged when CP phases are constrained

to different segemnts of values or even when CP phases are made to be zero. Accordingly

we have classified the textures under two categories (i) CP phase dependent textures and (ii)

CP phase independent textures.

In our study we have seen that all textures are viable for some ranges of sinθ34 when CP

phases are unconstrained. However, for some selective ranges of CP phases, certain textures

are not allowed within sinθ34 = (0−0.4). For example, the phenomenology of the texture

B3(i) is represented by the scatter plots for the correlations as shown in Fig. 4.1 and 4.2.

Again, in case of the textures like D1(iv) of which the scatter plots are in (Fig. 4.3), it has

been observed that for uncontrained CP phases, the texture is viable within the complete

range of sinθ34 = (0−0.4), while on constraining the CP phases, the allowed range of sinθ34

have been squeezed to (0.06− 0.4). The texture has been found to be viable at least for

some range of sinθ34 whatever choice of the ranges of the CP phases. Viability of these
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of MES m4×4
ν

textures are affected on varying the CP phases and therefore they are categorised as CP phase

dependent textures.

It has been observed that there are a number of textures which remain unaffected whether

CP phases are unconstrained or constrained to different ranges. On surveying these textures

for different segements of the six CP phases, it has been observed that the correlations are

allowed for all values of sinθ34. These textures are insensitive to variation of CP phases

and are therefore categorised as CP phase independent textures. As a representative case

realization of texture B4(iii) have been presented in section 4.5.2.

Also, it has been observed that there exist S3 transformations of a given combination of

MD,MR,MS leading to a particular two-zero textures of m4×4
ν which give the same correlations.

As a representative case Table 4.4 shows the combinations of MD,MR and MS which are

obtained via S3 transformation from the basic combination in Eq. (4.9) for texture B3(i).

The viable textures have been finally realized by means of Z8 Abelian flavor symmetry

group by extending the SM with two additional Higgs doublet (Φ2,Φ3), scalar singlets χ

and λ . We have presented the symmetry realization of texture B3(i) as a representative case.

We have also demonstrated the symmetry realization of the Case (b) (Table 4.4) to show

that all the S3 symmetric textures also follow S3 transformations of the fields of the basic

combinations.



5
Conclusions

In this present work we have attempted to understand the issue of the LSND anomaly which

has not been ruled out, but rather supported by MiniBooNE. The data indicate a fourth

state of neutrino of about eV scale. The theoretical foundation of sterile neutrino is an

important study from the point of view of physics. Again, eV scale sterile neutrinos may

have significant implications in astrophysics and cosmology. The current promising neutrino

models are built in the framework of seesaw mechanism beyond SM that can explain neutrino

masses and mixing of three light active neutrinos barring the LSND discrepancy. The seesaw

formula involves with 3× 3 Dirac neutrino mass matrix, MD of mass below electroweak

scale, 200GeV, and 3×3 heavy right handed Majorana neutrino mass matrix,MR of mass
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scale about ∼ 1014 GeV. Again as per the experimental result of Z0 decay width tells that

the number of active neutrinos can never be more than 3. In this situation, natural objective

of the work is to extend the type-I seesaw formula minimally to include an extra neutrino

state which must not interact but mix only. In this purpose one right-handed gauge singlet

chiral field ‘S’ represented by (1× 3) row matrix MS has been introduced to couple with

the right-handed neutrinos. In construction of the extended version, a 7×7 mν matrix has

been obtained which on block diagonalization with MR >> MS > MD, we obtained a 4×4

neutrino mass matrix, and further block diagonalization with MS >> MD has given us 3×3

neutrino mass matrix. So obtained mν (Eq. (1.30)) contains the type-I seesaw along with a

second term having contribution from the sterile state. The MES has the following features:

(i) MD must possess its inverse along with MR. (ii) MES neutrino mass matrices are of rank 3

which demand one of the active neutrino mass eigenvalues being zero. Hence only NH or IH

mass orderings are allowed. (iii) An eV scale sterile neutrino has been a natural consequence

without needing any tiny Yukawa coupling or mass scales.

The present study deals with the texture zeros of neutrino mass matrices in two folds:

(i) of order 3×3 and (ii) of order 4×4 resulting from the zeros of (3×3) MD, (3×3) MR

and MS via MES. Texture zero models have been extensively studied in 3 active neutrino

scenario as well as (3+1) scenario for two reasons; (i) enhancement of predictive power

of models by reducing the number of free parameters and (ii) zero entries for underlying

symmetries. In 3 neutrino scenario, there are a number of one and two-zero textures of mν

which are compatible with oscillation data. Our motivation of work has been on realizing

the zero textures of mν in presence of an additional eV-scale sterile neutrino i.e., (3+1)

scenario. In order to realize zero textures of neutrino mass matrix mν we have considered

the predictive scenario which leads to non-trivial fits for the lepton mixing (PMNS) matrix

and/or for the neutrino mass ratios, whereby the sum of zeros of MD and MR is eight. In

predictive scenario there are three possibilities: (4+4) scheme, (5+3) scheme and (6+2)
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scheme, whereby the digits within the pair represent the zeros of MD and MR respectively.

Also, we have considered suitable zero textures of MS in the process. There are a number

of possible combinations of MD, MR and MS which cross over thousands in principle, but

such complexity has been tackled with S3 transformations demanding a set of only a small

number of basic combinations. In the process we have obtained correlations among the

matrix elements of neutrino mass matrices, which have been checked for their phenomeno-

logical consistencies under the current data of neutrino parameters of 3σ values by plotting

scatter plots. Moreover, the zeros of the viable textures have been realized by the Abelian

flavor symmetry group ZN . The framework of the thesis has been elaborated in the Chapter 1.

In Chapter 2, we have systematically explored the one-zero and two-zero textures of three

active neutrino sector, m3×3
ν in MES. To realize such texture zeros we have considered zeros

of MD, MR and MS as more fundamental, which finally propagate to the effective neutrino

mass matrices m3×3
ν via MES. We explored all the three possible predictive scenarios: (4+4),

(5+3) and (6+2) schemes along with suitable zero textures of MS. In the (5+3) and (4+4)

schemes one-zero textures of mν like meτ = 0, mττ = 0 and in (5+3) one more mµµ = 0

have been generated. Interestingly the experimental compatibility allows the textures with

mττ = 0 while the rest with meτ = 0, mµµ = 0 are not allowed by recent neutrino oscillation

data. Thus the presence of sterile state is more stringent for permissible textures. We have

also observed that S3 group transformations have reduced the tedious work for dealing with

a large number of combinations to only a few basic combinations of MD,MR and MS under

each of (4+4) and (5+3) scheme.

Interestingly we have also found that in predictive scenario no two-zero textures, which

are otherwise experimentally viable, survive in MES containing one sterile neutrino. Again

all allowed one-zero textures of neutrino mass matrices represent only inverted hierarchical
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neutrino models. So this is an important observation that m3×3
ν in MES framework favours

only inverted hierarchy of mass ordering.

The viable textures in our study have been realized under Z7 Abelian symmetry group

by extending the Standard Model with 2 Higgs doublet (Φ2,Φ3) and 3 scalar singlets χ

and λ1,λ2 to realize the viable structures of MD, MR and MS respectively. We have also

considered Z7 transformations of the singlet chiral field ‘S’,in order to prevent bare mass

term of ‘S’ as demanded by MES mechanism. We have also illustrated how other set of

matrices obtained by permutation with the elements of S3 can be realized by Z7 by simply

interchanging the transformations of the RH neutrino singlets from their respective basic

cases.

In Chapter 3 and 4 the phenomenology of MES mechanism for realization of two-zero

textures in the 4×4 neutrino mass matrix has been explored. It is interesting to note that

in chapter 2, two-zero textures in m3×3
ν in the framework of MES mechanism could not be

realized under the predictive scenario. This motivated us to relook into the two-zero textures

of mν in the 4× 4 form in MES. As MES neutrino mass matrices must be of rank 3, so

we have considered only those 12 textures A1,A2,B3,B4,C,D1,D2,E1,E2,F1,F2,F3 which

are of rank 3 for our study (Table 3.1), although we had 15 phenomenologically viable two

zero textures of m4×4
ν . We have undertaken the predictive scenarios of MD and MR: (4+4),

(5+3) and (6+2) schemes for realization of two-zero textures of m4×4
ν . Under (4+4) scheme

(Chapter 3) we have found that two-zero texture of MS cannot lead to non-zero sterile sector

of m4×4
ν . However, for (5+3) scheme (Chapter 4) both one and two-zero textures of MS have

been found to be useful for realizing the desired textures. The imposition of zeros has led

us to certain correlations among the neutrino parameters for each texture. Then we have

checked whether these correlations are consistent with the recent neutrino oscillation data.
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Experimental bound on sinθ34 < 0.4. However, in our analysis, the lower limit has been

taken to be 0. Furthermore, we have also considered the contributions of Dirac (δ13,δ14,δ24)

and Majorana CP phases (α,β ,γ) for the consistency test of the correlations of each texture.

This is in contrast to the analysis of one-zero textures of m3×3
ν in chapter 2, whereby we

considered a particular range of the CP phases (δ ,α,β ) for each texture. Although the

methodology of chapter 3 and 4 are similar, the results are quite different.

In chapter 3 it has been observed that all the 12 two-zero textures can be realized under

(4+4) scheme. However, we have found that for unconstrained CP phases (0− 3600) the

textures E1,E2 favoring normal hierarchy, are disfavored by neutrino oscillation data as

its correlation remains inconsistent. Also, out of three combinations of MD,MR and MS

for texture D2, two combinations for normal hierarchy are ruled out, as their respective

correlations are inconsistent within 3σ range of oscillation data. This is an interestingly

result that m4×4
ν in MES favors inverted hierarchy of mass ordering. Thus out of 12 only 10

textures are viable under (4+4) scheme

Again, in chapter 4 we have seen that (5+3) and (6+2) scheme are more constrained

than that of the (4+4) scheme studied in chapter 3. Similar to chapter 2, here also the (6+2)

scheme have not been found to be productive as none of the two-zero textures of m4×4
ν can

be realized within MES. Again only 9 out of 12 textures are viable within the (5+3) scheme.

Textures E1,E2 which were realizable in (4+4) scheme but ruled out by oscillation data,

cannot be even realized within the (5+3) scheme. In addition we have seen that texture C

which is an allowed texture within (4+4) scheme, cannot be realized with (5+3) scheme.

Texture C has zeros in µµ and ττ entry of the mass matrix m4×4
ν . Similarly for texture E1 :

mee = 0;mµµ = 0 and texture E2: mµµ = 0;mττ = 0. Thus, it is interesting to note that (5+3)

scheme rules out those textures where both the zeros appears in the diagonal form of m4×4
ν .

We have found that S3 group transformations exist among different combinations of

MD,MR and MS which keep m4×4
ν invariant leading to same correlations and hence similar



130 Conclusions

phenomenology. We have tabulated the S3 symmetric textures of (4+4) and (5+3) schemes in

the respective chapters 3 and 4.

In both the schemes of (4+4) and (5+3) the viability of a texture have been checked by

plotting the correlations against sinθ34 under two conditions: (i) unconstrained (0−3600)

Dirac and Majorana CP phases and (ii) constraining the CP phases to different segment

of values. We have found that when CP phases are unconstrained, certain textures shows

consistency in their correlation for all values of sinθ34 = (0−0.4), while certain textures are

allowed for some constrained ranges of sinθ34.

We have found that there exist an interplay of Dirac and Majorana CP phases in deter-

mining the viability of a texture. Although experimental constraints on CP phases are yet

not known, and remains unconstrained within 3σ range, still we have attempted to study the

effect of the CP phases on the neutrino mass matrix m4×4
ν . Accordingly we have checked

the consistency of correlation(s) of each of the textures by considering smaller ranges of

values of unknown CP phases from the complete range (0−3600). On constraining the CP

phases we have observed that there are a number of textures for which (i) the allowed range

of sinθ34 gets squeezed to smaller values as compared to the values when CP phases are

unconstrained (ii) the correlation(s) becomes inconsistent and the textures are not allowed

for any range of sinθ34 = (0−0.4) within that particular choice of combination of the six

CP phases and (iii) viability of the textures remains unaffected for any choice of constrained

ranges of CP phases and this holds even when CP phases are made to be zero. Textures of

the type (i) and (ii) shows variation with the CP phases and are therefore categorised as CP

phase dependent textures. On the other hand, textures of the type (iii) remains insensitive

to the variations of CP phases and are therefore CP phase independent textures. Also, we

have observed that most of the textures are allowed for values of sinθ34 > 0, thereby giving

a lower limit on sinθ34 which is still experimentally unknown.
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Viable textures have been finally realized via Abelian flavor symmetry group Zn by ex-

tending the Standard Model with some scalar fields. For (4+4) scheme we have undertaken Z9

symmetry group while for (5+3) scheme textures are realized via the group Z8. In symmetry

realization of all the viable textures in chapter 2, 3 and 4, we have required three Higgs

doublet (Φ1,Φ2,Φ3) in which Φ1 is the SM Higgs transforming trivially under the group

Zn. In addition we have required one singlet χ to realize the desired zero texture of MR and

one singlet λ to realize the two-zero textures of MS while two scalars λ1,λ2 for realization

of one-zero textures of MS. Also we have given a transformation of the singlet chiral field

‘S’ so as to prevent bare mass term of the form S̄cS. We have also observed that symmetry

realization of the other set of matrices obtained by permutation with the elements of S3 can

be achieved by simply interchanging the Z9 field transformations of the RH neutrino singlets

from their respective basic cases, meanwhile keeping the transformation of all the other fields

unchanged.

Future scope of expansion of the present work:

It still awaits a watershed experimental proof for the existence of sterile neutrinos. Once

it is established then some theoretical challenges shall stem before the theoretical particle

physicists. The present study may be useful to understand light sterile states of neutrinos and

may also be extended to the following which are not any way exhaustive lists:

• Our study has been confined to predictive scenario only, but there is a scope for study

without restricting to predictive scenario as such study has been widely done in active neutrino

scenario in literature.

• Neutrinoless double beta decay and leptonic CP violations may be explored.
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• The MR textures as predicted in our study may be used for study of baryogenesis in

presence of sterile neutrinos as such study has been done in 3 active neutrino scenario to

explain the matter-antimatter asymmetry in the early universe.

• The origin of zero textures have been studied in ZN Abelian symmetry group but their

study in other non-Abelian group symmetry realizations like A4, SN may be significant and

useful.

• Study may be done on the scope for accommodating degenerate spectrum of active

neutrino mass eigenvalues in presence of sterile state which is not allowed in the present

form of MES as it demands one of the neutrinos being massless.

There are broader perspective of the thesis for expansion to address the following issues

regarding sterile neutrinos:

• How many light sterile states of neutrinos may exist?

• What are the scales of sterile states: sub-eV, eV or KeV?

• What are the implications in astrophysics and cosmology particularly in structure

formations?

• Are they candidates of dark matter?

Our understanding of the pertinent issues in neutrino physics is incomplete and so they

require research in both theoretical and experimental perspectives for solutions.
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A
A.1 Light neutrino mass matrix elements

mee = c2
12c2

13c2
14m1 + e−iαc2

13c2
14m2s2

12 + e−iβ c2
14m3s2

13 + e−iγm4s2
14, (A.1)

meµ = ei(δ−14−δ24−γ)c14m4s14s24 + c12c13c14m1(−c23c24s12 − eiδ13c12c24s13s23 − ei(δ14−δ24)

c12c13s14s24)+ e−iαc13c14m2s12(c12c23c24 − eiδ13c24s12s13s23 − ei(δ14−δ24)c13s12s14s24)

+ e−i(β+δ24)c14m3s13(ei(δ13+δ24)c13c24s23 − eiδ14s13s14s24)),

(A.2)
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meτ = e−
iγ
2 −

1
2 i(γ−2δ14)c14c24m4s14s34 + c12c13c14m1(−eiδ13c12c23c34s13 + c34s12s23

− eiδ14c12c13c24s14s34 + eiδ24(c23s12 + eiδ13c12s13s23)s24s34)− e−iαc13c14m2s12

(eiδ13c23c34s12s13 + c12c34s23 + eiδ14c13c24s12s14s34 + eiδ24(c12c23 − eiδ13s12s13s23)s24s34)

+ e−iβ c14m3s13(−eiδ14c24s13s14s34 + eiδ13c13(c23c34 − eiδ24s23s24s34)),

(A.3)

mes = e−
iγ
2 −

1
2 i(γ−2δ14)c14c24c34m4s14 + e−iβ c14m3s13(−eiδ14c24c34s13s14 − eiδ13c13

(eiδ24c34s23s24 + c23s34))+ c12c13c14m1(−eiδ14c12c13c24c34s14 + eiδ24c23c34s12s24

− s12s23s34 + eiδ13c12s13(eiδ24c34s23s24 + c23s34))+ e−iαc13c14m2s12(−eiδ14c13c24c34s12s14

− eiδ24c12c23c34s24 + c12s23s34 + eiδ13s12s13(eiδ24c34s23s24 + c23s34)),

(A.4)

mµµ = e−i(γ−2δ14+2δ24)c2
14m4s2

24 +m1(−c23c24s12 − eiδ13c12c24s13s23 − ei(δ14−δ24)c12c13s14s24)
2

+ e−iαm2(c12c23c24 − eiδ13c24s12s13s23 − ei(δ14−δ24)c13s12s14s24)
2

+ e−i(β+2δ24)m3(ei(δ13+δ24)c13c24s23 − eiδ14s13s14s24)
2),

(A.5)
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mµτ = e−
1
2 i(γ−2δ14)− 1

2 i(γ−2δ14+2δ24)c2
14c24m4s24s34m1(−c23c24s12 +−eiδ13c12c24s13s23

− ei(δ14−δ24)c12c13s14s24)(−eiδ13c12c23c34s13 + c34s12s23 − eiδ14c12c13c24s14s34

+ eiδ24(c23s12 + eiδ13c12s13s23)s24s34)− e−iαm2(c12c23c24 − eiδ13c24s12s13s23 − ei(δ14−δ24)

c13s12s14s24)(eiδ13c23c34s12s13 + c12c34s23 + eiδ14c13c24s12s14s34 + eiδ24(c12c23

− eiδ13s12s13s23)s24s34)+ e−
iβ
2 − 1

2 i(β+2δ24)m3(ei(δ13+δ24)c13c24s23 − eiδ14s13s14s24)

(−eiδ14c24s13s14s34 + eiδ13c13(c23c34 − eiδ24s23s24s34)),

(A.6)

mµs = e−
1
2 i(γ−2δ14)− 1

2 i(γ−2δ14+2δ24)c2
14c24c34m4s24 + e−

iβ
2 − 1

2 i(β+2δ24)m3(ei(δ13+δ24)

c13c24s23 − eiδ14s13s14s24)(−eiδ14c24c34s13s14 − eiδ13c13(eiδ24c34s23s24 + c23s34))+

m1(−c23c24s12 − eiδ13c12c24s13s23 − ei(δ14−δ24)c12c13s14s24)(−eiδ14c12c13c24c34s14

+ eiδ24c23c34s12s24 − s12s23s34 + eiδ13c12s13(eiδ24c34s23s24 + c23s34))+

e−iαm2(c12c23c24 − eiδ13c24s12s13s23 − ei(δ14−δ24)c13s12s14s24)(−eiδ14c13c24c34s12s14

− eiδ24c12c23c34s24 + c12s23s34 + eiδ13s12s13(eiδ24c34s23s24 + c23s34)),

(A.7)

mττ = e−i(γ−2δ14)c2
14c2

24m4s2
34 +m1(−eiδ13c12c23c34s13 + c34s12s23 − eiδ14c12c13c24s14s34

+ eiδ24(c23s12 + eiδ13c12s13s23)s24s34)
2 + e−iαm2(eiδ13c23c34s12s13 + c12c34s23

+ eiδ14c13c24s12s14s34 + eiδ24(c12c23 − eiδ13s12s13s23)s24s34)
2 + e−iβ m3

(−eiδ14c24s13s14s34 + eiδ13c13(c23c34 − eiδ24s23s24s34))
2,

(A.8)
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mτs = e−i(γ−2δ14)c2
14c2

24c34m4s34 +m1(−eiδ13c12c23c34s13 + c34s12s23 − eiδ14c12c13c24s14s34

+ eiδ24(c23s12 + eiδ13c12s13s23)s24s34)(−eiδ14c12c13c24c34s14 + eiδ24c23c34s12s24

− s12s23s34 + eiδ13c12s13(eiδ24c34s23s24 + c23s34))− e−iαm2(eiδ13c23c34s12s13 + c12c34s23

+ eiδ14c13c24s12s14s34 + eiδ24(c12c23 − eiδ13s12s13s23)s24s34)(−eiδ14c13c24c34s12s14

− eiδ24c12c23c34s24 + c12s23s34 + eiδ13s12s13(eiδ24c34s23s24 + c23s34))+ e−iβ m3(−eiδ14

c24c34s13s14 − eiδ13c13(eiδ24c34s23s24 + c23s34))(−eiδ14c24s13s14s34

+ eiδ13c13(c23c34 − eiδ24s23s24s34)),

(A.9)

mss = e−i(γ−2δ14)c2
14c2

24c2
34m4 + e−iβ m3(−eiδ14c24c34s13s14 − eiδ13c13(eiδ24c34s23s24 + c23s34))

2

+m1(−eiδ14c12c13c24c34s14 + eiδ24c23c34s12s24 − s12s23s34 + eiδ13c12s13(eiδ24c34s23s24

+ c23s34))
2 + e−iαm2(−eiδ14c13c24c34s12s14 − eiδ24c12c23c34s24 + c12s23s34

+ eiδ13s12s13(eiδ24c34s23s24 + c23s34))
2.

(A.10)
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5
Conclusions

In this present work we have attempted to understand the issue of the LSND anomaly which

has not been ruled out, but rather supported by MiniBooNE. The data indicate a fourth

state of neutrino of about eV scale. The theoretical foundation of sterile neutrino is an

important study from the point of view of physics. Again, eV scale sterile neutrinos may

have significant implications in astrophysics and cosmology. The current promising neutrino

models are built in the framework of seesaw mechanism beyond SM that can explain neutrino

masses and mixing of three light active neutrinos barring the LSND discrepancy. The seesaw

formula involves with 3× 3 Dirac neutrino mass matrix, MD of mass below electroweak

scale, 200GeV, and 3×3 heavy right handed Majorana neutrino mass matrix,MR of mass
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scale about ∼ 1014 GeV. Again as per the experimental result of Z0 decay width tells that

the number of active neutrinos can never be more than 3. In this situation, natural objective

of the work is to extend the type-I seesaw formula minimally to include an extra neutrino

state which must not interact but mix only. In this purpose one right-handed gauge singlet

chiral field ‘S’ represented by (1× 3) row matrix MS has been introduced to couple with

the right-handed neutrinos. In construction of the extended version, a 7×7 mν matrix has

been obtained which on block diagonalization with MR >> MS > MD, we obtained a 4×4

neutrino mass matrix, and further block diagonalization with MS >> MD has given us 3×3

neutrino mass matrix. So obtained mν (Eq. (1.30)) contains the type-I seesaw along with a

second term having contribution from the sterile state. The MES has the following features:

(i) MD must possess its inverse along with MR. (ii) MES neutrino mass matrices are of rank 3

which demand one of the active neutrino mass eigenvalues being zero. Hence only NH or IH

mass orderings are allowed. (iii) An eV scale sterile neutrino has been a natural consequence

without needing any tiny Yukawa coupling or mass scales.

The present study deals with the texture zeros of neutrino mass matrices in two folds:

(i) of order 3×3 and (ii) of order 4×4 resulting from the zeros of (3×3) MD, (3×3) MR

and MS via MES. Texture zero models have been extensively studied in 3 active neutrino

scenario as well as (3+1) scenario for two reasons; (i) enhancement of predictive power

of models by reducing the number of free parameters and (ii) zero entries for underlying

symmetries. In 3 neutrino scenario, there are a number of one and two-zero textures of mν

which are compatible with oscillation data. Our motivation of work has been on realizing

the zero textures of mν in presence of an additional eV-scale sterile neutrino i.e., (3+1)

scenario. In order to realize zero textures of neutrino mass matrix mν we have considered

the predictive scenario which leads to non-trivial fits for the lepton mixing (PMNS) matrix

and/or for the neutrino mass ratios, whereby the sum of zeros of MD and MR is eight. In

predictive scenario there are three possibilities: (4+4) scheme, (5+3) scheme and (6+2)
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scheme, whereby the digits within the pair represent the zeros of MD and MR respectively.

Also, we have considered suitable zero textures of MS in the process. There are a number

of possible combinations of MD, MR and MS which cross over thousands in principle, but

such complexity has been tackled with S3 transformations demanding a set of only a small

number of basic combinations. In the process we have obtained correlations among the

matrix elements of neutrino mass matrices, which have been checked for their phenomeno-

logical consistencies under the current data of neutrino parameters of 3σ values by plotting

scatter plots. Moreover, the zeros of the viable textures have been realized by the Abelian

flavor symmetry group ZN . The framework of the thesis has been elaborated in the Chapter 1.

In Chapter 2, we have systematically explored the one-zero and two-zero textures of three

active neutrino sector, m3×3
ν in MES. To realize such texture zeros we have considered zeros

of MD, MR and MS as more fundamental, which finally propagate to the effective neutrino

mass matrices m3×3
ν via MES. We explored all the three possible predictive scenarios: (4+4),

(5+3) and (6+2) schemes along with suitable zero textures of MS. In the (5+3) and (4+4)

schemes one-zero textures of mν like meτ = 0, mττ = 0 and in (5+3) one more mµµ = 0

have been generated. Interestingly the experimental compatibility allows the textures with

mττ = 0 while the rest with meτ = 0, mµµ = 0 are not allowed by recent neutrino oscillation

data. Thus the presence of sterile state is more stringent for permissible textures. We have

also observed that S3 group transformations have reduced the tedious work for dealing with

a large number of combinations to only a few basic combinations of MD,MR and MS under

each of (4+4) and (5+3) scheme.

Interestingly we have also found that in predictive scenario no two-zero textures, which

are otherwise experimentally viable, survive in MES containing one sterile neutrino. Again

all allowed one-zero textures of neutrino mass matrices represent only inverted hierarchical
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neutrino models. So this is an important observation that m3×3
ν in MES framework favours

only inverted hierarchy of mass ordering.

The viable textures in our study have been realized under Z7 Abelian symmetry group

by extending the Standard Model with 2 Higgs doublet (Φ2,Φ3) and 3 scalar singlets χ

and λ1,λ2 to realize the viable structures of MD, MR and MS respectively. We have also

considered Z7 transformations of the singlet chiral field ‘S’,in order to prevent bare mass

term of ‘S’ as demanded by MES mechanism. We have also illustrated how other set of

matrices obtained by permutation with the elements of S3 can be realized by Z7 by simply

interchanging the transformations of the RH neutrino singlets from their respective basic

cases.

In Chapter 3 and 4 the phenomenology of MES mechanism for realization of two-zero

textures in the 4×4 neutrino mass matrix has been explored. It is interesting to note that

in chapter 2, two-zero textures in m3×3
ν in the framework of MES mechanism could not be

realized under the predictive scenario. This motivated us to relook into the two-zero textures

of mν in the 4× 4 form in MES. As MES neutrino mass matrices must be of rank 3, so

we have considered only those 12 textures A1,A2,B3,B4,C,D1,D2,E1,E2,F1,F2,F3 which

are of rank 3 for our study (Table 3.1), although we had 15 phenomenologically viable two

zero textures of m4×4
ν . We have undertaken the predictive scenarios of MD and MR: (4+4),

(5+3) and (6+2) schemes for realization of two-zero textures of m4×4
ν . Under (4+4) scheme

(Chapter 3) we have found that two-zero texture of MS cannot lead to non-zero sterile sector

of m4×4
ν . However, for (5+3) scheme (Chapter 4) both one and two-zero textures of MS have

been found to be useful for realizing the desired textures. The imposition of zeros has led

us to certain correlations among the neutrino parameters for each texture. Then we have

checked whether these correlations are consistent with the recent neutrino oscillation data.
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Experimental bound on sinθ34 < 0.4. However, in our analysis, the lower limit has been

taken to be 0. Furthermore, we have also considered the contributions of Dirac (δ13,δ14,δ24)

and Majorana CP phases (α,β ,γ) for the consistency test of the correlations of each texture.

This is in contrast to the analysis of one-zero textures of m3×3
ν in chapter 2, whereby we

considered a particular range of the CP phases (δ ,α,β ) for each texture. Although the

methodology of chapter 3 and 4 are similar, the results are quite different.

In chapter 3 it has been observed that all the 12 two-zero textures can be realized under

(4+4) scheme. However, we have found that for unconstrained CP phases (0− 3600) the

textures E1,E2 favoring normal hierarchy, are disfavored by neutrino oscillation data as

its correlation remains inconsistent. Also, out of three combinations of MD,MR and MS

for texture D2, two combinations for normal hierarchy are ruled out, as their respective

correlations are inconsistent within 3σ range of oscillation data. This is an interestingly

result that m4×4
ν in MES favors inverted hierarchy of mass ordering. Thus out of 12 only 10

textures are viable under (4+4) scheme

Again, in chapter 4 we have seen that (5+3) and (6+2) scheme are more constrained

than that of the (4+4) scheme studied in chapter 3. Similar to chapter 2, here also the (6+2)

scheme have not been found to be productive as none of the two-zero textures of m4×4
ν can

be realized within MES. Again only 9 out of 12 textures are viable within the (5+3) scheme.

Textures E1,E2 which were realizable in (4+4) scheme but ruled out by oscillation data,

cannot be even realized within the (5+3) scheme. In addition we have seen that texture C

which is an allowed texture within (4+4) scheme, cannot be realized with (5+3) scheme.

Texture C has zeros in µµ and ττ entry of the mass matrix m4×4
ν . Similarly for texture E1 :

mee = 0;mµµ = 0 and texture E2: mµµ = 0;mττ = 0. Thus, it is interesting to note that (5+3)

scheme rules out those textures where both the zeros appears in the diagonal form of m4×4
ν .

We have found that S3 group transformations exist among different combinations of

MD,MR and MS which keep m4×4
ν invariant leading to same correlations and hence similar
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phenomenology. We have tabulated the S3 symmetric textures of (4+4) and (5+3) schemes in

the respective chapters 3 and 4.

In both the schemes of (4+4) and (5+3) the viability of a texture have been checked by

plotting the correlations against sinθ34 under two conditions: (i) unconstrained (0−3600)

Dirac and Majorana CP phases and (ii) constraining the CP phases to different segment

of values. We have found that when CP phases are unconstrained, certain textures shows

consistency in their correlation for all values of sinθ34 = (0−0.4), while certain textures are

allowed for some constrained ranges of sinθ34.

We have found that there exist an interplay of Dirac and Majorana CP phases in deter-

mining the viability of a texture. Although experimental constraints on CP phases are yet

not known, and remains unconstrained within 3σ range, still we have attempted to study the

effect of the CP phases on the neutrino mass matrix m4×4
ν . Accordingly we have checked

the consistency of correlation(s) of each of the textures by considering smaller ranges of

values of unknown CP phases from the complete range (0−3600). On constraining the CP

phases we have observed that there are a number of textures for which (i) the allowed range

of sinθ34 gets squeezed to smaller values as compared to the values when CP phases are

unconstrained (ii) the correlation(s) becomes inconsistent and the textures are not allowed

for any range of sinθ34 = (0−0.4) within that particular choice of combination of the six

CP phases and (iii) viability of the textures remains unaffected for any choice of constrained

ranges of CP phases and this holds even when CP phases are made to be zero. Textures of

the type (i) and (ii) shows variation with the CP phases and are therefore categorised as CP

phase dependent textures. On the other hand, textures of the type (iii) remains insensitive

to the variations of CP phases and are therefore CP phase independent textures. Also, we

have observed that most of the textures are allowed for values of sinθ34 > 0, thereby giving

a lower limit on sinθ34 which is still experimentally unknown.
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Viable textures have been finally realized via Abelian flavor symmetry group Zn by ex-

tending the Standard Model with some scalar fields. For (4+4) scheme we have undertaken Z9

symmetry group while for (5+3) scheme textures are realized via the group Z8. In symmetry

realization of all the viable textures in chapter 2, 3 and 4, we have required three Higgs

doublet (Φ1,Φ2,Φ3) in which Φ1 is the SM Higgs transforming trivially under the group

Zn. In addition we have required one singlet χ to realize the desired zero texture of MR and

one singlet λ to realize the two-zero textures of MS while two scalars λ1,λ2 for realization

of one-zero textures of MS. Also we have given a transformation of the singlet chiral field

‘S’ so as to prevent bare mass term of the form S̄cS. We have also observed that symmetry

realization of the other set of matrices obtained by permutation with the elements of S3 can

be achieved by simply interchanging the Z9 field transformations of the RH neutrino singlets

from their respective basic cases, meanwhile keeping the transformation of all the other fields

unchanged.

Future scope of expansion of the present work:

It still awaits a watershed experimental proof for the existence of sterile neutrinos. Once

it is established then some theoretical challenges shall stem before the theoretical particle

physicists. The present study may be useful to understand light sterile states of neutrinos and

may also be extended to the following which are not any way exhaustive lists:

• Our study has been confined to predictive scenario only, but there is a scope for study

without restricting to predictive scenario as such study has been widely done in active neutrino

scenario in literature.

• Neutrinoless double beta decay and leptonic CP violations may be explored.
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• The MR textures as predicted in our study may be used for study of baryogenesis in

presence of sterile neutrinos as such study has been done in 3 active neutrino scenario to

explain the matter-antimatter asymmetry in the early universe.

• The origin of zero textures have been studied in ZN Abelian symmetry group but their

study in other non-Abelian group symmetry realizations like A4, SN may be significant and

useful.

• Study may be done on the scope for accommodating degenerate spectrum of active

neutrino mass eigenvalues in presence of sterile state which is not allowed in the present

form of MES as it demands one of the neutrinos being massless.

There are broader perspective of the thesis for expansion to address the following issues

regarding sterile neutrinos:

• How many light sterile states of neutrinos may exist?

• What are the scales of sterile states: sub-eV, eV or KeV?

• What are the implications in astrophysics and cosmology particularly in structure

formations?

• Are they candidates of dark matter?

Our understanding of the pertinent issues in neutrino physics is incomplete and so they

require research in both theoretical and experimental perspectives for solutions.
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