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Zusammenfassung

Wir verwenden den vollständigen Ausdruck für die O(1/m2) Korrekturen, wobei m
die Quarkmasse bezeichnet, zum Quark-Antiquark-Potenzial, welcher sich durch Er-
wartungswerte von Wilson-Loops aus der QCD ableiten lässt, sowie eine Abbildung,
welche diese Wilson-Loop-Erwartungswerte für große Abstände zu Korrelatoren in der
Effektiven String Theorie (EST) in Beziehung setzt, um alle O(1/m2) Potenziale bei
großen Abständen zu berechnen. Insbesondere präsentieren wir zuvor unbekannte Ergeb-
nisse für den spin- und impulsunabhängigen Teil des Potenzials und bestätigen die bereits
bekannten Ergebnisse für die Anteile des Potenzials, die von Spin und Impuls abhängen.
Wir berechnen die Korrekturen zum String-Spektrum, welche durch die neuen Potenziale
induziert werden.
Indem wir die EST Beiträge für große Distanzen zur Vervollständigung im Infraroten
verwenden, konstruieren wir das Quark-Antiquark-Potenzial auf dem ganzen Bereich.
Wir bestimmen die freien Parameter durch Abgleich mit Experimenten und Gitter-QCD.
Das Power-Counting und die numerische Größe der einzelnen Beiträge werden analysiert.
Wir berechnen die Korrekturen zur Wellen-Funktion von schwerem Quarkonium, welche
durch das Potenzial auf dem ganzen Bereich induziert werden. Schließlich ermitteln wir
die elektrischen Dipol-Übergagnsraten (E1) von schwerem Quarkonium unter Berücksich-
tigung dieser Korrekturen bis zu O(v2) in der nicht-relativistischen Entwicklung. Unsere
Ergebnisse sind in Übereinstimmung mit Experimenten und liefern Vorhersagen für die
Raten, für die noch keine experimentellen Werten vorliegen.

Abstract

We use the complete expression for the O(1/m2) corrections to the quark-antiquark po-
tential, wherem is the quark mass, derived from QCD in terms of Wilson loop expectation
values, and a mapping, valid at large distances, between those Wilson loop expectation
values and correlators evaluated in the Effective String Theory (EST), to compute all
O(1/m2) potentials at large distances. In particular, we present previously unknown
results for the spin and momentum independent part of the potential and confirm known
results for the spin and momentum dependent parts. We calculate the relativistic cor-
rections induced by the newly calculated potentials to the string spectrum.
Using the EST long-distance contributions as the infrared completion, we construct the
full-range quark-antiquark potential. We fix the free parameters of this potential using
input from the experiment and lattice QCD. The power counting and numerical size of
the different contributions are analysed. We calculate the corrections induced by the
full-range potential to the heavy quarkonium wavefunction. Finally, considering these
corrections, we evaluate the heavy quarkonium electric dipole (E1) transition rates at
O(v2) in the non-relativistic expansion. Our results compare favorably with the ex-
periment and provide predictions for the rates for which no experimental data is yet
available.
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Chapter 1

Introduction

The existence of phenomena at different energy scales is an intrinsic property of Na-
ture. Our perception of these phenomena has driven the development of modern science
and through it our understanding of Nature. At first, our understanding was limited to
explain phenomena perceptible only at human scales. Due to the development of the
experimental sciences we were often in presence of phenomena that could not be under-
stood in terms of the, by that time, accepted theories. This cycle of empirical discovery
and later theoretical understanding has been essential for the development of Physics.
A classical example of this cycle is how our understanding of Gravity has changed since
the times of Newton to the present day. In the Principia [1] Newton was able to explain
Kepler’s empirical laws for the movement of celestial bodies with the same simple for-
mula that explained the effect of Gravity on the surface of Earth. Centuries had to pass
until Einstein came up with a more universal theory of Gravity [2] that explained, among
other phenomena, the precession of the orbit of Mercury, something that Newton’s theory
had failed to explain. The universality of Einstein’s theory implied that when studying
phenomena at the scales in which Newton’s theory was applicable both theories yielded
the same results. In a modern language we may think of Newton’s theory as an effective
theory of Einstein’s General Relativity1.
Another example where the concept of effective theory arises comes from the relation
between Quantum Mechanics and Chemistry. We know that the interactions between
the atomic nucleus and electrons are explained by the laws and principles of Quantum
Mechanics, however, the study of the composition and change of matter at the molecular
level are better studied by means of the effective rules of Chemistry.
In a more speculative way we could think that the theory that explains three of the four
known fundamental interactions, the Standard Model [3–5], is an effective theory of a
yet-unknown fundamental theory.
In Particle Physics the modern realisation of the idea that physical processes or phenom-
ena can be better studied with a set of effective rules valid only for a given energy scale
is through the construction of effective field theories (EFTs).

1This terminology is usually avoided because of the historical importance of Newton and the fact
that Newton’s theory precedes Einstein’s work by more than two hundred years.
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In contrast to the examples of Gravity and Atomic Physics, in which the development
of what we might call effective theories was done mostly independently from what is un-
derstood as their respective fundamental theories, we will focus on theories constructed
with a top-to-bottom approach, i.e., effective theories constructed starting from a known
fundamental theory.
Our object of study will be quarkonium, a bound state formed by a quark and its anti-
quark2. Since the discovery of the first quarkonium state, the J/Ψ meson in November
of 1974, the so-called November revolution [6], quarkonia have played an important role
in the development of QCD.
There are two main properties of quarkonium that have driven our theoretical under-
standing of it. The first one is that, since the relative velocity between the quark and the
antiquark, v, is small compared to the speed of light, c, the system appears to be suitable
for a non-relativistic description. This observation has motivated the modeling of the
quark-antiquark interaction inside the bound system by means of non-relativistic poten-
tials. This effective approach, that we will call potential models, proved to be successful
at reproducing the values of the quarkonium masses, for a review of these approaches see
[7, 8].
The other important property of quarkonium is a consequence of the non-relativistic na-
ture of the system. If v is such that v � c, then quarkonium is a multi-scale system with
the following hierarchy among the quark mass m (hard), relative momentum p (soft),
and energy E (ultrasoft) scales,

m� p ∼ mv � E ∼ mv2.

This separation of energy scales is used to construct EFTs in which the degrees of free-
dom with energies that are not relevant for studying some phenomena are integrated out.
In particular the EFT that is obtained after integrating out from QCD the degrees of
freedom with energies of order m is called non-relativistic QCD (NRQCD) [9, 10]. If we
go further and now from NRQCD we integrate out the degrees of freedom with energies
that scale like mv, we obtain the EFT called potential non-relativistic QCD (pNRQCD)
[11, 12]. This last theory is closer to a quantum-mechanical description of the bound
state with some similarities to the potential models, however, in contrast to these models
in which the shape of the potential was a matter of guessing, pNRQCD is by construction
fully equivalent to QCD when studying the same energy region.
Depending on how the energy scale of hadronic physics, ΛQCD, compares to the other
scales of the system, the construction of the EFT may or may not be done using per-
turbative methods. In the latter case, some input from experiment or lattice QCD (in
which Green functions are computed numerically) is needed in order to fully determine
the effective theory. One of the advantageous features of the EFTs of QCD is that they
allow us to separate the perturbative and non-perturbative physics in a systematic way.

2From here on we will understand quarkonium only as the bound state formed by heavy quarks:
charmonium and bottomonium. A possible bound state formed by top and antitop, toponium, does not
exist since, due to its large mass, the top quark decays through electroweak interactions before forming
a bound state.
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These effective theories, NRQCD and pNRQCD, are currently one of the most important
theoretical tools for the study of quarkonium, more details about them are given in the
next chapter.
Among the present-day experiments involved in the study of quarkonium and quarkonium-
like systems we can mention BES at IHEP in Beijing, BELLE at KEK in Japan, BaBar at
SLAC in California and the quarkonium physics programs of the LHC experiments: AT-
LAS, CMS, ALICE and LHCb3. The amount and the increasing quality of the experimen-
tal data coming from these and other experiments, make quarkonium physics an exciting
research field. Some of the topics that currently garner attention from the quarkonium
community are the study of the so-called exotic states, the properties of quarkonia in
media and quarkonium decays. The first topic refers to the study of quarkonium-like
states with masses larger than the threshold where other mesons may appear. The in-
terpretation of these states in terms of mesonic molecules, quarkonium hybrids or other
configurations is a matter of intensive debate among the community. A notable example
of such debates is the interpretation of the charmonium-like resonance with a mass of
4.45 GeV, whose Pentaquark interpretation claimed by LHCb [15] has been challenged
by some theoreticians [16].
The interest in the study of quarkonium in media is in part motivated by the proposal
that the melting of quarkonium states within a hot medium could be used to probe the
formation of quark-gluon plasma (QGP) [17], a state of matter formed by free quarks and
gluons believed to have been present in the early universe. This plasma can be produced
in heavy ion collision experiments at RHIC at Brookhaven and the LHC at CERN. The
study of QGP through different experimental probes is a very active research field not
only among the quarkonium community but also among the QCD community at large.
Regarding quarkonium decays we have that, depending on the final state, these can be
grossly divided into hadronic and radiative. Many of these decays have been observed
for the first time only in recent years. Also the precision of measurements has improved
considerably in modern experiments, posing a challenge to the theory.
The aim of this thesis is to apply the results of the EFTs of QCD to the evaluation of the
quarkonium electromagnetic dipole (E1) transition rates. This transition is characterised
by the decay of quarkonium into a photon and a lighter quarkonium state that has an
angular momentum quantum number that differs by one with respect to the initial state.
This and other radiative transitions have been studied in the past using potential models,
we intend to give a fresh look to these decays using the modern approach of the EFTs of
QCD.
One of the fundamental objects in our evaluation will be the quark-antiquark poten-
tial including O(1/m2) relativistic corrections that has been obtained using pNRQCD
[18, 19]. In contrast to the potential models, the expression obtained from pNRQCD
is fully equivalent to QCD in the non-relativistic limit. The relativistic corrections are
organized as an expansion in powers of 1/m where the coefficients of the expansion corre-
spond to expectation values of the rectangular Wilson loop with gluonic field insertions.

3For a review on the experimental findings relevant for quarkonium physics of these and other exper-
iments see the relevant sections of Refs. [13] and [14].
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The way these correlators are evaluated will depend on the distance regime that is be-
ing considered. At short distances the correlators can be evaluated using perturbative
methods. In the long-distance regime they must be computed on the lattice, however, a
lattice determination of all relevant correlators is still missing. In order to evaluate the
long-distance limit of the potential we will assume the hypothesis that at long distances
the quark-antiquark interaction may be modeled as a string with fixed ends [20]. The
string hypothesis will allow us to get a compact expression for the long-range potential.
The other key piece we will need are the expressions for the E1 decay rates up to O(v2)
relativistic corrections [21]. These formulas are completely model-independent, however,
we will see that in order to evaluate them we need the quark-antiquark potential in the
whole distance regime as an input. The construction of this potential will occupy a large
portion of this thesis.
The rest of the text is organized as follows; in Chapter 2 we give an introduction to the
EFTs for the study of heavy quarkonium. In Chapter 3 we present the expressions of
the O(1/m2) relativistic corrections to the quark-antiquark potential obtained within the
framework of pNRQCD. We give details of the derivation of the 1/m-suppressed correc-
tion. In Chapter 4 we compute the long-range potential assuming the string hypothesis
to evaluate the correlators of Chapter 3. We also evaluate the effect of the relativistic
corrections to the string spectrum. In Chapter 5 we construct the potential that we
will use in the evaluation of the decay rates. Once the potential is fixed, it determines
the explicit formulas that need to be evaluated in order to compute the E1 rates, these
formulas are derived in Chapter 6. In Chapter 7 we give details about the numerical
evaluation of the formulas of Chapter 6 and some of the numerical aspects regarding the
construction of the potential. In Chapter 8 we present the partial results of the evalu-
ation of the E1 decay rates. Based on these results in Chapter 9 we present our final
results for the rates. Using these results together with experimental input we estimate
some branching fractions and total widths. In this chapter we also compare our results
with the available experimental data. Finally Chapter 10 presents our conclusions and
outlook to related future research. Many of the technical details and intermediate nu-
merical results emerging along the thesis have been left for the Appendix that is included
after Chapter 10.
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Chapter 2

Effective field theories for heavy
quarkonium

In this chapter we present a brief introduction to the effective theories that are relevant
for the study of heavy quarkonium. We start giving a gross description of the most
relevant aspects of QCD, to later proceed to give the recipe to construct EFTs starting
from a fundamental theory. Following this recipe we show how NRQCD is obtained from
QCD once the hard scale is integrated out. We close the chapter describing the physical
picture of pNRQCD, the effective theory that results from integrating out the soft scale
from NRQCD. This theory will be the central subject of the next chapter. We will follow
closely [22], to which we refer for a more comprehensive introduction to NRQCD and
pNRQCD.1

2.1 Quantum Chromodynamics

It is our current understanding that Quantum Chromodynamics (QCD) [24, 25] is the
quantum field theory describing the strong interaction. It corresponds to a non-Abelian
SU(3) gauge theory coupled to fermions called quarks which carry a color charge. The
QCD Lagrangian reads

LQCD =

Nf∑
i=1

q̄i(i /D −mi)qi −
1

4
Gµν aGaµν , (2.1)

where Nf = 6 is the number of quark flavors (up, down, charm, strange, top, bottom),
Dµ = ∂µ + igAµ, igGµν = [Dµ, Dν ], qi are the quark fields, mi their (bare) masses,
Aµ are the gauge fields, called gluons, mediating the color interactions and g is the
bare coupling. We have used the definition Aµ ≡ T aAaµ, where T a, with a = 1, ..., 8,
are the generators of the SU(3) gauge group in the fundamental representation. These

1For an introduction to EFTs of QCD relevant to other contexts see [23].
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correspond to Hermitian, traceless 3× 3 matrices that fulfill

[T a, T b] = ifabcT c, (2.2)
Tr{T aT b} = TF δ

ab, (2.3)

where fabc are the structure constants of the gauge group; an explicit representation
of these matrices can be found in [26]. Together with the SU(3) gauge symmetry and
Poincaré invariance, in QCD each of the discrete charge conjugation, parity and time
reversal (CPT) symmetries is realized. These are the five symmetries that, in principle,
must be realized in any EFT derived from QCD.
For the SU(Nc) gauge group the following identities for the quadratic Casimir operators
of the fundamental, CF , and adjoint, CA, representations hold

CF =
TF
Nc

(N2
c − 1), (2.4)

CA = 2TFNc. (2.5)

For the fundamental representation of the matrices T a we will use the convention that
fixes TF = 1/2. Using this convention and the fact that in QCD Nc = 3 (the number of
colors) we have CF = 4/3 and CA = 3. A derivation of these identities can be found in
[26].
After quantizing QCD, divergences appear in the computation of loop integrals. The
procedure to absorb these divergences introduces an energy scale, µ, called the renor-
malization scale. The bare parameters (coupling and masses) of the Lagrangian must
be replaced with the renormalized parameters measured at the scale µ. The condition
that observables must be independent of the renormalization scale ultimately settles how
these parameters depend on µ. The explicit dependence on the energy scale is given
through the renormalization group equations (RGE). In the case of the coupling, defining
αs ≡ g2/4π, its RGE is given by

Q2 ∂

∂Q2
αs(Q

2) = β(αs(Q
2)), (2.6)

where we assume that the coupling is known at a given energy scale Q2. The function
β(αs(Q

2)) is called the Beta function and it is implicitly defined by the previous equation,
it can be organized as an expansion in the coupling

β(αs) = −αs

(
αs

4π
β0 +

α2
s

(4π)2
β1 + ...

)
, (2.7)

where the coefficients of the expansion, βi, are obtained calculating relevant Green func-
tions. Currently these coefficients are known up to i = 4 [27–30]. In general the βi
coefficients depend on the gauge and the scheme that is chosen to regularize the diver-
gences. It can be proven that in mass-independent schemes like MS or MS, however, the

6



Beta function is gauge-independent. Moreover, it turns out that the first two coefficients
β0 and β1 are scheme-independent. The first coefficient is given by [31, 32]

β0 =

(
11

3
CA −

2

3
nf

)
, (2.8)

where nf is the number of active quark flavors that is being considered at some given
scale2. If we consider just this first coefficient in the Beta function, Eq. (2.7) can be
solved exactly and one obtains

αs(Q
2) =

αs(µ
2)

1 + β0
αs(µ2)

4π ln Q2

µ2

. (2.9)

Defining ΛQCD as the scale in which αs(Q
2) diverges, we can write

αs(µ) =
2π

β0 ln(µ/ΛQCD)
. (2.10)

From Eq. (2.10) we can infer one of the characteristics of QCD calculations: to compute
the amplitude of a QCD process that occurs at a given energy scale E, the QCD coupling
αs can be used as the expansion parameter of the perturbative series only if E � ΛQCD

[31, 32]. To compute amplitudes of processes that occur at a scale E ∼ ΛQCD we must
rely on so-called non-perturbative approaches to QCD. The scale ΛQCD ≈ 200 MeV [34] is
the typical scale of hadronic physics, which implies that some phenomena in quarkonium
physics cannot be studied purely with perturbative methods.
One of the non-perturbative approaches to QCD is lattice QCD. In this approach the
functional integrals of the Green functions are calculated numerically over a lattice of
points in space-time. The precision of the calculation is constrained by the size of the
lattice and the separation among its nodes, called the lattice spacing. The larger the
lattice and smaller the lattice spacing is, the more precise but also more expensive the
calculation gets. The development of more efficient algorithms and dropping computing
costs have improved the precision of lattice calculations in recent years, for a review of
the current status of lattice QCD studies in quarkonium see the chapters dedicated to
the topic in Ref. [14].
One of the advantages of using EFTs to study quarkonium is that they allow us to
factorize the contributions of physics coming from different energy scales. In particular,
they allow us to factorize the non-perturbative contributions that can later be computed
on the lattice or extracted from experimental data. In the next section we review the
general recipe for constructing EFTs.

2.2 A very brief introduction to Effective Field Theories

Let us assume that we are interested in studying physics at an energy scale E that is
much smaller than another energy scale Λ. Let us assume also that there exists a funda-

2Usually αs is evaluated at a scale where the active quarks can be treated as massless. See also the
decoupling theorem [33].
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mental theory that is valid for both, the scale E and the scale Λ.
The first step to construct the EFT is to identify the symmetries of the fundamental
theory that are preserved at the scale E. The Lagrangian of the EFT is then con-
structed including all the allowed operators consistent with this subset of symmetries.
The Lagrangian can be conveniently organized as an expansion of operators of increasing
dimensionality, in four spacetime dimensions we have

LEFT =
∑
i

ci

(µ
Λ

) Oi
Λdi−4

(2.11)

where di is the mass dimension of the operator Oi and µ is the renormalization scale.
The (undetermined) coefficients ci(µ/Λ) are called the Wilson (or matching) coefficients,
they encode the physics of the degrees of freedom with energy Λ that have being inte-
grated out, that is, that are not present in the theory anymore.
In order to reduce the (infinite) number of terms in LEFT we must define the power
counting that will determine the relative importance of the terms in the Lagrangian.
This power counting is based on the hierarchy among the relevant energy scales, for
instance, derivatives will count as the momentum of the degrees of freedom that are
present in the effective theory. How the momentum compares to E will then define the
relative size of operators containing derivatives. In the next section, in which we will
review NRQCD, we will see an explicit example of a power counting.
Once we have specified the power counting and the size of the operators Oi in terms of E
is known, we must define the accuracy of the theory. Usually the accuracy, A, is defined
as A ≡ (E/Λ)n where n > 0. To reach a given accuracy A, one has to include in the
Lagrangian all possible terms whose size is equal to or smaller than A.
The number of independent Wilson coefficients can be reduced by imposing the con-
straints coming from Poincaré invariance. These constraints originate from the fact that,
although the Lagrangian of the EFT is not explicitly Poincaré invariant, we can impose
the Poincaré algebra on the Poincaré generators of the EFT. This procedure provides
relations among the coefficients [35, 36] effectively reducing the number of independent
ones.
The remaining set of Wilson coefficients now needs to be calculated. The method to
compute these coefficients is called matching; it consists in determining the coefficients
ci by comparing the results, usually Green functions, obtained from the fundamental
theory and the EFT at a certain scale ν that fulfills E ∼ ν < Λ. In EFTs derived from
QCD the nature of the matching procedure is defined by how the scales E, ν,Λ compare
to ΛQCD. If ν � ΛQCD, the matching procedure is carried out perturbatively leading
to Wilson coefficients that are organized as an expansion in powers of αs. In the case
when ν ∼ ΛQCD the matching is done using non-perturbative methods. We will give
some details about the matching procedure in the next two sections, when we review the
main features of NRQCD and pNRQCD, and in Chapter 3, where an overview of the
calculation of the 1/m-suppressed relativistic correction to the quark-antiquark potential
will be given.
From Eq. (2.11) we see that the effective theory is in principle not renormalizable be-
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cause the Lagrangian may contain operators of dimension di > 4. This is not a problem
since the EFT can be made finite order by order in the expansion in powers of 1/Λ;
actually, much of the physical information of the theory is contained in terms that are
proportional to these operators. For more details about the renormalizability of EFTs
we refer the reader to the discussion presented in [23].
With the accuracy of the theory defined and the independent Wilson coefficients calcu-
lated, we are left with an EFT that fulfills the following properties:

• It has the same infra-red (IR) behavior as the fundamental theory but a different
ultra-violet (UV) one.

• Its Lagrangian has only the degrees of freedom relevant to study the phenomena
at the scale E or lower.

• Its predictability can be improved systematically according to the power counting
by increasing the power n of the accuracy.

• For EFTs derived from QCD, if the Wilson coefficients have been obtained from a
perturbative matching, the precision in the predictability of the theory can also be
improved by increasing the order in perturbation theory at which the coefficients
are calculated.

Before concluding this section, let us consider a physical system that has the following
energy scale hierarchy

E � Λ2 � Λ1, (2.12)

which is described in all energy regions by what we will call the full theory. Integrating
out the scale Λ1 from this theory, we may obtain an EFT that describes the physics
of scales E and Λ2; let us call this theory EFT1. Then we may consider EFT1 as the
fundamental theory to integrate out from it degrees of freedom that scale like Λ2 and
construct another theory, EFT2. This last EFT will be suitable to study the physics of
the scale E. Since by construction each EFT is equivalent to its parent (fundamental)
theory when describing the same energy region, EFT1 and EFT2 will be equivalent to the
full theory when describing their respective energy regions. This equivalence is manifest
in the Wilson coefficients of each theory; in particular, the Wilson coefficients of EFT2

will depend on the Wilson coefficients of EFT1 that in turn encode the dynamics of the
degrees of freedom of energy Λ1 described by the full theory.
As we mentioned in Chapter 1, an energy scale hierarchy like the one of Eq. (2.12) is
present in quarkonium, where naturally, the full theory corresponds to QCD. The scale Λ1

is identified as the heavy quark mass and Λ2 as the relative momentum. After integrating
out the mass scale one obtains NRQCD, integrating out from NRQCD the momentum we
obtain pNRQCD. In the following sections we present an overview of these two theories.
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2.3 Non-relativistic QCD

For convenience let us start by recalling one more time the hierarchy of energy scales
present in quarkonium

m� mv � mv2, (2.13)

where m is the heavy quark mass and v is the relative velocity between quark and
antiquark. Following the method described in the previous section, the Lagrangian of
NRQCD is organized as an expansion in powers of 1/m, multiplying operators of increas-
ing dimensionality that fulfill the symmetries of QCD. The resulting O(1/m) Lagrangian
of the heavy quark-antiquark sector that fulfills all these conditions except Poincaré
invariance (see below) is rather simple, it reads3

L(1/m)

QQ̄
= ψ†

(
iD0 +

ck
2m

D2
)
ψ + χ†

(
iD0 −

ck
2m

D2
)
χ, (2.14)

where ψ(x) is a Pauli spinor field that annihilates a quark and χ(x) is the spinor that
creates an antiquark. Both spinors transform in the fundamental representation of SU(3).
In Eq. (2.14) in order to write the same Wilson coefficient, ck, for both quark and
antiquark fields, we have used the fact that the NRQCD Lagrangian, as the QCD one,
must be invariant under charge conjugation. By design NRQCD describes the physics of
heavy quarks at energy scales much smaller than m, so heavy quark-antiquark pairs can
no more be created; apart from this feature the light degrees of freedom are the same
ones as in QCD, however, we must introduce a UV cutoff νNR that satisfies

E, |p|,ΛQCD � νNR � m, (2.15)

when evaluating Green functions that contain these lighter degrees of freedom.4

The presence of three dynamical scales (E, |p|,ΛQCD) in the theory implies that further
assumptions on how these scales organize are necessary. The original power counting
adopted in [10] reads

ΛQCD ∼ E ∼ mv2,

|p| ∼ mv, (2.16)
v ∼ αs(mv),

which implies that the bound state can be described by a Coulombic potential. This
assumption may work well for low lying quarkonia, however, for excited states non-
perturbative effects have to be included in the potential. Assuming this power counting
we have that D acting on a heavy (anti)quark field scales asmv. Similarly D0 acting on a
heavy (anti)quark field will count asmv2. With these two scaling rules it is trivial to check

3NRQCD can describe heavy quarks of different flavor, however, for simplicity in the present discussion
we will consider the heavy quark-antiquark pair to be of the same flavor, which is the relevant case for
quarkonium.

4In general νNR correspond to the set of two cutoffs νs and νp for the energy and momentum of the
light degrees of freedom respectively. For simplicity we will use the same cutoff for both quantities.
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that the O(1/m) Lagrangian in Eq. (2.14) scales homogeneously as mv2. The scaling
implies that the accuracy of the calculations performed with the O(1/m) Lagrangian is
mv2×αns where n = 0, 1, 2, . . . indicates the precision at which the matching coefficients
are calculated. The scaling rules for the rest of the operators of the NRQCD Lagrangian
(see below) based on this power counting can be found in [10]. For the time being let us
proceed to describe the NRQCD Lagrangian beyond the leading order.
Up to O(1/m2) the heavy quark sector of the NRQCD Lagrangian reads [9, 10, 37, 38]

LQQ̄ = ψ†
{
iD0 +

ck
2m

D2 +
cF
2m

σ · gB +
cD

8m2
(D · gE− gE ·D)

+ i
cS

8m2
σ · (D× gE− gE×D)

}
ψ

+ χ†
{
iD0 −

ck
2m

D2 − cF
2m

σ · gB +
cD

8m2
(D · gE− gE ·D)

+ i
cS

8m2
σ · (D× gE− gE×D)

}
χ, (2.17)

where ck, cF , cD, cS are Wilson coefficients, σ are the Pauli matrices, E = Ei = Gi0, Bi =
−εijkGjk/2 with εijk being the three-dimensional antisymmetric tensor. The gluonic part
of the Lagrangian at the same order is given by

Lg = −1

4
GµνaGaµν +

cg1
4m2

gfabcG
a
µνG

µb
α G

ναc. (2.18)

Another part of the Lagrangian relevant for the following discussion contains the four
fermion operators, explicitly at O(1/m2) they read [10]

Lψχ =
f1(1S0)

m2
O1(1S0) +

f1(3S1)

m2
O1(3S1) +

f8(1S0)

m2
O8(1S0) +

f8(3S1)

m2
O8(3S1), (2.19)

where

O1(1S0) = ψ†χχ†ψ,

O1(3S1) = ψ†σχ · χ†σψ,
O8(1S0) = ψ†T aχχ†T aψ,

O8(3S1) = ψ†T aσχ · χ†T aσψ, (2.20)

and the coefficients f1,8 are (singlet or octet) Wilson coefficients. The NRQCD La-
grangian is then given by

LNRQCD = LQQ̄ + Lg + Lψχ + ∆Llight, (2.21)

where ∆Llight accounts for light quark operators and light-heavy quark interactions; for
an explicit expression of this term we refer the reader to [22]. Many other possible oper-
ators that may appear at order 1/m2 have been neglected since they can be eliminated
through field redefinitions, for details see [22].
In the case when the theory is coupled to electromagnetism we must add the photon field
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to the covariant derivatives, i.e., Dµ = ∂µ + igAµ + ieeQA
em
µ , add Lem

γ = (−1/4)FµνFµν
to the light sector and augment the heavy quark sector Lagrangian by

∆Lem
QQ̄ = ψ†

{
cem
F

2m
σ · eeQBem +

cem
D

8m2
(D · eeQEem − eeQEem ·D)

+ i
cem
S

8m2
σ · (D× eeQEem − eeQEem ×D)

}
ψ

+ χ†
{
−
cem
F

2m
σ · eeQBem +

cem
D

8m2
(D · eeQEem − eeQEem ·D)

+ i
cem
S

8m2
σ · (D× eeQEem − eeQEem ×D)

}
χ, (2.22)

where e is the electron charge, eQ is the quark electric charge (eb = −1/3, ec = 2/3),
Ei em = F i0, Bi em = −εijkF jk/2 and Fµν = ∂µA

em
ν − ∂νAem

µ is the electromagnetic field
tensor. In this case the coefficients cem

i must be obtained matching NRQCD to QCD
coupled to electromagnetism.
As we pointed out in the previous section, the number of independent Wilson coefficients
of the theory can be reduced by imposing the Poincaré algebra on the generators of the
theory; for instance, the coefficients ck, cF and cS are constrained through [36]

ck = 1,

2cF − cS − 1 = 0.

An alternative derivation of these relations has been obtained also in [37, 39] using
the method called reparametrization invariance of the Heavy Quark Effective Theory
(HQET), which coincides with NRQCD in the heavy quark sector of the Lagrangian.
Recent developments on this approach for reducing the number of matching coefficients
of EFTs can be found in [40] and [41].

The details of an NRQCD matching calculation are beyond the scope of this thesis,
however, we can grossly summarize the method in the following steps

• The matching is carried out by requiring suitable renormalized Green functions of
QCD and NRQCD to be equal at an energy scale below νNR at the desired order
in αs and 1/m. The same renormalization scheme should be used in both theories.
This procedure leads to Wilson coefficients that are valid for this specific scheme.

• IR divergences may arise in the QCD and NRQCD Green functions. Since the
theories share the same IR behavior, the same regulator must be used to regularize
these divergences in both theories.

• In dimensional regularization, NRQCD loop integrals are scaleless so they may be
set to zero, for details see the discussion in [22] and [37].

• NRQCD and QCD are gauge-invariant, so the calculations can be made in any
gauge, however, it may be required to match gauge-dependent Green functions, in
such a case the same gauge must be used in both theories.
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(a) (b) (c)
Figure 2.1: Leading QCD diagrams contributing to the Wilson coefficients of the four-
fermion sector of the NRQCD Lagrangian. In the case of unequal heavy quark masses
only diagrams (b) and (c) contribute. The energy of the gluon fields in these diagrams
scales like m, therefore they are not present as a degree of freedom of NRQCD, yet
their physics is encoded in the Wilson coefficients. Loop corrections to the annihilation
diagram (a) lead to the appearance of imaginary contributions in the Wilson coefficients
of Lψχ. These contributions are relevant for the calculation of quarkonium inclusive
decay rates, for a review on the calculations of these coefficients see [43].

The most common choice in the matching calculations of NRQCD is to use dimensional
regularization and the MS (or MS) scheme. In the background Feynman gauge, at leading
order, the Wilson coefficients of the heavy quark sector of the Lagrangian are found to
be

cF = cD = cS = 1. (2.23)

The expressions at order αs can be found in [37]. In the case of the coefficients of the four-
fermion sector the matching comes from calculating QCD diagrams like the ones shown
in Fig. 2.1; the complete set of diagrams and expressions for the Wilson coefficients can
be found in [42].
NRQCD has been successfully applied to the study of heavy quarkonium decay and
production, where it allows the factorization of the contributions of the hard and soft
scales. The physics of the hard scale is encoded in the Wilson coefficients (see Fig. 2.1)
while the contribution of the lower scales appears as the so-called long distance matrix
elements (LDME), which may be extracted from experiment or lattice calculations. These
matrix elements are in principle universal, i.e., they are independent from the physical
observable from where they are extracted. The proof of the universality of the NRQCD
LDME is currently a topic of active research; for a recent review on the status of the
verification of the universality of the LDME we refer to the Section 4.5 of [14]. Another
successful application of NRQCD is the study of bottomonium on the lattice; for a review
on the progress of these studies see [13, 44, 45] and the relevant sections of [14].

2.4 Potential non-relativistic QCD

Quarkonium phenomena like the binding and the radiative transitions occur at the ul-
trasoft scale E ∼ mv2. As we have mentioned in this chapter, the EFT suitable for the
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study of the physics at this scale is potential non-relativistic QCD (pNRQCD) [11, 12].
We also mentioned that this theory is obtained from NRQCD by integrating out the
soft scale, p ≡ |p| ∼ mv. We are integrating out light degrees of freedom with energies
∼ p � E and heavy quarks with energy fluctuations of the same order. Depending on
how ΛQCD scales with respect to p we will distinguish two cases:

• If p� ΛQCD the integration of the soft scale can be done using perturbation theory.
If also p� E & ΛQCD one obtains what is called weakly-coupled pNRQCD.

• If p,ΛQCD � E, in order to obtain pNRQCD we need to integrate out ΛQCD
non-perturbatively after integrating out the scale p. This theory is called strongly-
coupled pNRQCD.

Let us discuss first weakly-coupled pNRQCD. In this case the degrees of freedom are
quark-antiquark pairs and gluons with the cutoffs νp and νus. The cutoff νp is the cutoff
of the relative three momentum of the heavy quarks and νus is the cutoff of the energy
of the heavy quark-antiquark pair and of the four momentum of the light degrees of
freedom (gluons and light quarks). These cutoffs satisfy p� νp � m, p2

m � νus � p. In
principle the degrees of freedom of pNRQCD can be represented by the same fields as in
NRQCD, the difference lies in that the Wilson coefficients in the pNRQCD Lagrangian
now depend on p, hence, non-local terms in space are generated.
Explicitly the pNRQCD Lagrangian in the weakly-coupled regime can be written as

LpNRQCD = LUS
NRQCD + Lpot. (2.24)

with

Lpot = −
∫
d3x1d

3x2ψ
†(t,x1)χ(t,x2)V (r,p1,p2,S1,S2)× (US gluons)χ†(t,x2)ψ(t,x1),

(2.25)
where pj = −i∇xj and Sj = σ/2 where j = 1, 2 means action on the fermion or
antifermion respectively, and LUS

NRQCD should be understood as the NRQCD Lagrangian
with only ultrasoft gluons.
If we write the heavy quark-antiquark bilinear as a single field

Ψ(x1,x2, t)αβ ∼ ψα(x1, t)χ
†
β(x2, t)

∼ 1

Nc
δαβψσ(x1, t)χ

†
σ(x2, t) +

1

TF
T aαβT

a
ρσψσ(x1, t)χ

†
ρ(x2, t), (2.26)

we can decompose this field into color singlet and octet field components with homo-
geneous ultrasoft gauge transformations with respect to the center-of-mass coordinate;
explicitly

Ψ(x1,x2, t) = P
[
e
ig

∫ x1
x2

A·dx
]
S(r,R, t) + P

[
eig

∫ x1
R A·dx

]
O(r,R, t)P

[
e
ig

∫R
x2

A·dx
]
,

(2.27)
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where P stands for path ordered. The fields S and O transform under ultrasoft color
transformations, g(R, t), as

S(r,R) → S(r,R),

O(r,R) → g(R, t)O(r,R, t)g−1(R, t). (2.28)

Using the decomposition of Eq. (2.27), the pNRQCD Lagrangian can be written in a
more convenient way. First the pNRQCD Hamiltonian derived from the Lagrangian of
Eq. (2.24) is projected onto the Fock subspace spanned by∫

d3x1d
3x2Ψ(x1,x2)ψ†(x1)χ(x2)|US〉, (2.29)

where |US〉 is a Fock subspace that contains no quarks or antiquarks but an arbitrary
number of ultrasoft gluons. Additionally one needs to enforce that the gluon fields are
ultrasoft by multipole expanding them with respect to r. Using the decomposition of
Eq. (2.27) and the following normalization with respect to color

S = SIc/
√
Nc,

O = OaT a/
√
TF , (2.30)

one eventually arrives to

LpNRQCD =

∫
d3rTr{S†[i∂0 − hS(r,p,PR,S1,S2)]S

+ O†[iD0 − hO(r,p,PR,S1,S2)]O}+ VA(r)Tr{O†r · gES + S†r · gEO}

+
VB(r)

2
Tr{O†r · gEO +O†Or · gE} − 1

4
GaµνG

µνa +

nf∑
i=1

q̄i /Dq + . . . ,

(2.31)

where the dots account for operators of order r2 or higher, iD0O ≡ i∂0O−g[A0(R, t), O],
DRO ≡ [DR, O], PR = −iDR, p = −i∇r and nf should be understood as the number
of light flavors only. In Eq. (2.30) it should be understood that the S on the RHS is a
scalar function and the S on the LHS is a matrix field. In the equal mass case hS and
hO are given by

hS(r,p,PR,S1,S2) =

{
c

(1,−2)
S (r),

p2

2m

}
+ c

(1,0)
S (r)

P2
R

4m
+ VS(r,p,PR,S1,S2)

hO(r,p,PR,S1,S2) =

{
c

(1,−2)
O (r),

p2

2m

}
+ c

(1,0)
O (r)

P2
R

4m
+ VO(r,p,PR,S1,S2)

VS = V
(0)
S +

V
(1)
S

m
+ . . . ,

VO = V
(0)
O +

V
(1)
O

m
+ . . . , (2.32)
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where [22]
c

(1,−2)
S = c

(1,−2)
O = c

(1,0)
S = c

(1,0)
O = 1. (2.33)

The other Wilson coefficients, VS and VO are identified as the singlet and octet quark-
antiquark potential respectively; their leading contributions in the weakly-coupled regime
are

V
(0)
S = −CF

αs

r
, (2.34)

V
(0)
O =

T

Nc

αs

r
. (2.35)

Higher order (relativistic) corrections to VS and VO are organized in powers of 1/m. The
calculation of the V (1)

S potential is shown in Chapter 3 where also explicit expressions of
the 1/m2-suppressed corrections are presented.
Equation (2.31) provides the pNRQCD Lagrangian up to order p3/m2 considering the
following power counting

∇r,
1

r
∼ p,

∂0,∇R ∼ E. (2.36)

We shall complement the counting above with the expected size of αs, which should be
evaluated at the hard scale, i.e., αs = αs(m) when it appears in terms inherited from
the matching between NRQCD and QCD. When the coupling originates from matching
calculations between pNRQCD and NRQCD it should be evaluated at the soft scale,
thus αs = αs(1/r). Finally if αs is associated with light degrees of freedom like ultrasoft
gluons, it must be evaluated at the corresponding ultrasoft scale, i.e. αs = αs(E). No-
tice that the scaling of p with respect to ΛQCD determines the size of αs, and therefore,
its usability as an expansion parameter. In weakly-coupled pNRQCD p � ΛQCD, then
αs(1/r) � 1, so the matching between pNRQCD and NRQCD can be performed per-
turbatively. In the case of strongly-coupled pNRQCD p & ΛQCD so αs(1/r) ∼ 1, thus
perturbation theory is not applicable in the matching procedure.
We have skipped the details of the derivation of Eq. (2.31), however, Chapter 3 deals
with some of the steps we have left aside in this section. For a detailed derivation we
refer the reader to the original papers where pNRQCD was presented and to [22].
One of the advantages of writing the pNRQCD Lagrangian as in Eq. (2.31) is that it
permits us to have a clear visualization of the degrees of freedom of the theory: quark-
antiquark pairs in singlet or octet configurations and ultrasoft gluons. The precision of
the Lagrangian can be systematically improved by including operators proportional to
higher powers of r that must be invariant under charge conjugation, time reversal and
parity transformations. For instance, notice that the charge conjugation of the term∫
d3rTr{O†r · gEO} is

∫
d3rTr{O†Or · gE} so the sum of the two must appear. The

explicit symmetry transformations of fields of the Lagrangian can be found in [22].

Let us close this section by discussing briefly strongly-coupled pNRQCD. In this regime
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ΛQCD � E so at the scale E it is natural to expect only hadronic degrees of freedom.
Consequently, in the strong coupling regime of pNRQCD only the singlet field remains
as an explicit degree of freedom of the theory5; thus the Lagrangian reduces to

LpNRQCD =

∫
d3rS†[i∂0 − hS(r,p,PR,S1,S2)]S, (2.37)

where hS has the same shape as in weakly-coupled pNRQCD, however, in this case the
potential VS has a non-perturbative nature. We left the details of the quark-antiquark
potential for Chapters 3 and 5, where it is discussed with more detail. It will be useful
for later reference to give explicitly the canonical equal-time commutation relation for
the singlet field, it reads[

Sij(r,R), S†kl(r
′,R′)

]
= δilδjkδ

(3)(r− r′)δ(3)(R−R′), (2.38)

where (i, j), (k, l) correspond to the spin indices. This relation is also valid for the singlet
field in weakly-coupled pNRQCD where it should be complemented with an analogous
relation for the octet.
We will adopt the strongly-coupled regime for the computation of the quark-antiquark
potential in the Effective String Theory (EST) in Chapter 4. Moreover, since most of
the E1 transitions involve excited initial states, we will adopt the strong-coupling regime
also in the evaluation of the decay rates. This implies that no contributions from octet
fields will appear in our evaluations; nevertheless, the implications of our adoption of
strongly-coupled pNRQCD for the evaluation of transitions among low-lying quarkonia
are discussed in Chapter 6.
Neglecting the contribution of light quark fields, which would lead to the emergence
of pseudo-Goldstone bosons in strongly-coupled pNRQCD (see footnote below); from
the pNRQCD Lagrangians in Eqs. (2.31) and (2.37) we see that apart from the quark-
antiquark pairs in singlet or octet configurations, in the case of weakly-coupled pNRQCD,
the ultrasoft gluons, no other degrees of freedom are present in the theory. This implies
that the two versions of pNRQCD that we presented are valid only to study physics below
the charm and bottom open thresholds, where no other than these degrees of freedom
are expected. This is a restriction that we will consider for the rest of the thesis: in the
evaluation of the radiative decays we will only consider transitions in which the initial
quarkonium state lies below its respective open flavor threshold.
As in the case of NRQCD, pNRQCD can be coupled to electromagnetism. In this case
the pNRQCD Lagrangian is augmented by operators that couple quark-antiquark pairs
to ultrasoft photon fields expressed through electric or magnetic operators. The Wilson
coefficients accompanying these operators must be obtained by matching the theory to
NRQCD coupled to electromagnetism. The relevant pNRQCD operators for the E1
transition will be explicitly given in Chapter 6.

5Also pseudo-Goldstone bosons whose masses are smaller than ΛQCD are allowed. Here and in the
rest of the thesis we will assume that their final contribution to observables, e.g. decay rates and masses,
is small enough to be absorbed within other sources of uncertainty, so they will not be included in the
pNRQCD Lagrangian.
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2.5 Final remarks

We presented the two main EFTs used to study quarkonium. We skipped most of the
technical details since they are not relevant for what follows in the thesis and can be
found in other sources. For what concerns the current status of research in quarkonium
our overview is far from complete. Notably we have left out two of the current topics of
quarkonium research mentioned in the Introduction: quarkonium in a hot medium and
the spectroscopy of exotic states. The construction of EFTs for quarkonium at finite
temperature can be carried out systematically as in the case of zero temperature, the
key difference is that now the temperature scales must be included in the hierarchy of
scales present in the system. The way the temperature compares to the other scales of
quarkonium and to ΛQCD will determine the way the theory is constructed. Efforts to
understand the physics of quarkonium in media in the framework of EFTs have been
carried out, for instance, in [46–49]. A complete introduction to the topic can be found
in [50].
One would expect that an EFT suitable for the study of quarkonium and quarkonium-
like states above threshold should account for other possible bound states at the level of
the Lagrangian. An example of such an approach can be found in [51], where an EFT of
QCD for the study of quarkonium hybrids6 has been constructed. Their results are still
not conclusive in explaining the nature of the exotic states that are hybrid candidates,
however, it represents a first attempt to study one of the interpretations of exotic states
in the framework of the EFTs.

6Quarkonium hybrids are states formed by a quark-antiquark pair in an octet configuration and a
gluon excitation.
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Chapter 3

The quark-antiquark potential in
pNRQCD

In this chapter we present the complete singlet quark-antiquark potential up to order
1/m2, which has been obtained within the framework of pNRQCD in [18] and [19]. Since
these expressions will be important for the evaluation of the E1 decay rates, we show
the derivation of the 1/m-suppressed correction with some detail. The 1/m2-suppressed
corrections follow from a similar calculation; for these we only give their final expressions.

3.1 The structure of the potential

We consider a heavy quark of mass m1 located at x1 and a heavy antiquark of mass m2

located at x2. The spin and momentum operators of the two particles are respectively
S1 ≡ σ1/2 and p1 ≡ −i∇x1 , and S2 ≡ σ2/2 and p2 ≡ −i∇x2 . The distance between
the quark and the antiquark is r ≡ x1 − x2. In the center-of-mass frame up to order
1/m2 the singlet quark-antiquark potential can be written as the sum of three terms,

VQQ̄ = V (0) + V (1/m) + V (1/m2) , (3.1)

where V (0)(r) is the static potential,

V (1/m)(r) =
V (1,0)(r)

m1
+
V (0,1)(r)

m2
, (3.2)

the 1/m potential and

V (1/m2) =
V (2,0)

m2
1

+
V (0,2)

m2
2

+
V (1,1)

m1m2
, (3.3)

the 1/m2 potential. Invariance under charge conjugation and particle interchange implies
V (1,0)(r) = V (0,1)(r). It is useful to separate the 1/m2 potential into a spin-dependent
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(SD) and a spin-independent (SI) part:

V (2,0) = V
(2,0)
SD + V

(2,0)
SI , (3.4)

V (0,2) = V
(0,2)
SD + V

(0,2)
SI , (3.5)

where

V
(2,0)
SI =

1

2

{
p2

1, V
(2,0)
p2 (r)

}
+
V

(2,0)
L2 (r)

r2
L2

1 + V (2,0)
r (r) , (3.6)

V
(0,2)
SI =

1

2

{
p2

2, V
(0,2)
p2 (r)

}
+
V

(0,2)
L2 (r)

r2
L2

2 + V (0,2)
r (r) , (3.7)

and Li = r×pi with i = 1, 2. Also in this case invariance under charge conjugation and
particle interchange yields

V
(2,0)
p2 (r) = V

(0,2)
p2 (r) , (3.8)

V
(2,0)
L2 (r) = V

(0,2)
L2 (r) , (3.9)

V (2,0)
r (r) = V (0,2)

r (r) . (3.10)

For the spin-dependent part we have

V
(2,0)
SD = V

(2,0)
LS (r)L1 · S1 , (3.11)

V
(0,2)
SD = −V (0,2)

LS (r)L2 · S2 . (3.12)

Charge conjugation and particle interchange invariance imply V (2,0)
LS (r) = V

(0,2)
LS (r;m2 ↔

m1). One proceeds similarly for the V (1,1) potential:

V (1,1) = V
(1,1)
SD + V

(1,1)
SI , (3.13)

where

V
(1,1)
SI = −1

2

{
p1 · p2, V

(1,1)
p2 (r)

}
−
V

(1,1)
L2 (r)

2r2
(L1 · L2 + L2 · L1) + V (1,1)

r (r) , (3.14)

and

V
(1,1)
SD = V

(1,1)
L1S2

(r)L1 · S2 − V (1,1)
L2S1

(r)L2 · S1 + V
(1,1)
S2 (r)S1 · S2 + V

(1,1)
S12

(r)S12(r̂), (3.15)

with
S12(r̂) ≡ 3 r̂ · σ1 r̂ · σ2 − σ1 · σ2 , (3.16)

and V (1,1)
L1S2

(r) = V
(1,1)
L2S1

(r;m1 ↔ m2).
This structure of the potential is dictated by the dimensional analysis of possible terms,
constraints from discrete symmetries and ultimately by the matching between NRQCD
and pNRQCD. The structure given here will be adopted for the rest of the thesis, however,
we recall that it is not unique since it can be reshuffled by a unitary redefinition of the
singlet field in the pNRQCD Lagrangian, for a discussion about the implications of such
a transformation see [35] and [52].
In the next two sections we will present the explicit expressions of the V (i,j)(r) potentials
obtained with pNRQCD.
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3.2 Derivation of the 1/m-suppressed relativistic correction

3.2.1 Set-up

In this section we sketch the derivation of the 1/m correction to the heavy quark-
antiquark (QQ̄) potential obtained within the framework of pNRQCD. The original
derivation has been carried out in [18], to which we will refer for details that we will
omit.
The strategy is to match a relevant Green function in NRQCD and pNRQCD at order
1/m. We do not consider any specific counting of the NRQCD operators other than their
suppression in powers of 1/m. On the pNRQCD side we will work in the strong-coupling
regime, so the only degree of freedom of the Lagrangian is the singlet field. We are not
considering other light degrees of freedom, their inclusion will not change the results of
this section but may change some intermediate steps [18]. The derivation also assumes
that we are away enough from the open flavor threshold to neglect any possible effects
associated with it.
Let us start recalling the NRQCD Lagrangian1 at order 1/m

LNRQCD = ψ†
(
iD0 +

D2

2m1
+ gc

(1)
F

σ ·B
2m1

)
ψ + χ†

(
iD0 −

D2

2m2
− gc(2)

F

σ ·B
2m2

)
χ

− 1

4
GaµνG

µν a. (3.17)

We differentiate between the Wilson coefficients c(i)
F = 1 + O(αs) for the quark and

antiquark. The Hamiltonian corresponding to Eq. (3.17) can be organized as

H = H(0) +
1

m1
H(1,0) +

1

m2
H(0,1). (3.18)

For our calculation we will need to consider only eigenfunctions and eigenvalues of the
leading order (static) Hamiltonian H(0) given by

H(0) =

∫
d3x

1

2
(Ea ·Ea + Ba ·Ba) (3.19)

The eigenfunctions and eigenvalues of this operator fulfill the following relations

H(0)|n;x1,x2〉(0) = E(0)
n (x1,x2)|n;x1,x2〉(0) (3.20)

(0)〈m;x1,x2|n;x′1,x
′
2〉(0) = δmnδ

(3)(x1 − x′1)δ(3)(x2 − x′2). (3.21)

Since we are interested in the one-quark one-antiquark sector of the Fock space, it will
be convenient to decompose |n;x1,x2〉(0) as

|n;x1,x2〉(0) ≡ ψ†(x1)χ(x2)|n;x1,x2〉(0) (3.22)

1As in the previous section, we will consider the general case in which m1 6= m2.
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where the |n;x1,x2〉(0) state encodes the gluonic content of the state; it fulfills

(0)〈m;x1,x2|n;x1,x2〉(0) = δmn. (3.23)

Since H(0) does not contain heavy quark fields, |n;x1,x2〉 is also an eigenstate of H(0)

with energy E(0)
n (x1,x2). In Eq. (3.20) it is explicit that x1 and x2 are good quantum

numbers of the state |n;x1,x2〉(0).
The static NRQCD energy E(0)

0 (x1,x2) is associated with the static QQ̄ potential. Away
from threshold, in the strong coupling regime of pNRQCD, only the state associated
with this energy, namely |n = 0;x1,x2〉(0), is kept as degree of freedom, while states with
n 6= 0 (gluonic excitations) are integrated out. This assumes that states with n > 0 have
energies much larger than mv2.
The strongly-coupled pNRQCD Lagrangian was presented in the previous chapter for
the equal mass case, in the case where m1 6= m2 it reads

LpNRQCD =

∫
d3x1d

3x2 S
†[i∂0 − hS(x1,x2,p1,p2, . . .)]S, (3.24)

where at order 1/m in the center-of-mass frame

hs(x1,x2,p1,p2) =
p1

2m1
+

p2

2m2
+ VS . (3.25)

with
VS = V (0) +

(
1

m1
+

1

m2

)
V (1). (3.26)

We used invariance under charge conjugation and particle interchange to define V (1) ≡
V (1,0) = V (0,1). In the language of EFTs, V (0) and V (1) are the Wilson coefficients of
pNRQCD. In the next two subsections we proceed to match NRQCD and pNRQCD in
order to obtain a set of equations that will fix the expressions of these two potentials.

3.2.2 Wilson loop matching

We start by writing a state that has a non-zero overlap with |0〉(0),

ψ†(x1)φ(x1,x2)χ(x2)|vac〉, (3.27)

where φ is responsible for the overlap with the ground state, for which we adopt the
following ansatz

φ(x1,x2; t) ≡ P exp

[
ig

∫ 1

0
ds(x1 − x2) ·A(x2 − s(x2 − x1), t)

]
. (3.28)

For the calculation in pNRQCD we will also need the following decomposition

ψ†(x1)φ(x1,x2)χ(x2)|vac〉 =
∑
n

an(x1,x2)|n;x1,x2〉(0), (3.29)
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where the coefficients an(x1,x2) are fixed in such a way that they are real.
The key identification for the matching is that since the field in Eq. (3.27) overlaps with
the only degree of freedom in pNRQCD, the singlet S, there should be a non-zero Wilson
coefficient Z (a normalization constant) such that

χ†(x2, t)φ(x2,x1; t)ψ(x1, t) = Z1/2(x1,x2,p1,p2)S(x1,x2, t). (3.30)

As with the potentials, Z(x1,x2,p1,p2) can be expanded in powers of 1/m; up to order
1/m the expansion reads

Z(x1,x2,p1,p2) = Z0(r) +

(
1

m1
+

1

m2

)
Z1(r) + iZ1p(r)r ·

(
p1

m1
− p2

m2

)
, (3.31)

where constraints coming from CP and mass exchange invariances of the NRQCD and
pNRQCD Lagrangians reduce the number of independent coefficients in the expansion.
We will consider the following NRQCD Green function for the matching

GNRQCD = 〈vac|χ†(x2, T/2)φ(x2,x1;T/2)ψ(x1, T/2)

× ψ†(y1,−T/2)φ(y1,y2;−T/2)χ(y2,−T/2)|vac〉. (3.32)

In order to construct the equivalent pNRQCD Green function let us first consider that
in the Heisenberg picture the time evolution of the singlet field is given by

S(x1,x2; t) = e+iHstS(x1,x2; t = 0)e−iHst, (3.33)

where

Hs =

∫
d3x1d

3x2 Tr{S†hsS}. (3.34)

Using Eqs. (3.30), (3.33) and the equal-time commutation relations of the singlet fields
given in Eq. (2.38) of the previous chapter one obtains

GpNRQCD = Z1/2e−iThsZ† 1/2δ(3)(x1 − y1)δ(3)(x2 − y2). (3.35)

What follows is to expand Eqs. (3.32) and (3.35) in powers of 1/m and then compare
them order by order. Our aim with this procedure is to obtain a set of equations to fix
V (0) and V (1) in terms of expectation values involving NRQCD operators.
In the case of the pNRQCD Green function, using (3.25), (3.31) and expanding the
exponential operator, the expansion up to 1/m order reads [18]

GpNRQCD = G
(0)
pNRQCD +

1

m1
G

(1,0)
pNRQCD +

1

m2
G

(0,1)
pNRQCD (3.36)
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with

G
(0)
pNRQCD = Z0e

−iV (0)T δ(3)(x1 − y1)δ(3)(x2 − y2), (3.37)

G
(1,0)
pNRQCD = Z0e

−iV (0)T

{
Re[Z1]

Z0
− 1

2

(
∇ · rZ1p

Z0

)
− i

2
T (∇V (0)) · rZ1p

Z0

+ iT
∇2

x1

2
− iTV (1) +

iT

8

(
4

(∇Z0

Z0
·∇x1 + 2

∇2Z0

Z0
− ∇Z0)2

Z0

)
+

T 2

4

(
2(∇V (0)) ·∇x1 +

∇Z0

Z0
· (∇V (0)) + ∇2V (0)

)
− iT 3

6
(∇V (0))2

}
δ(3)(x1 − y1)δ(3)(x2 − y2), (3.38)

where ∇ = ∇r with r being the quark-antiquark separation vector r = x1 − x2. We
skipped the analogous expression for G(0,1)

pNRQCD.
The computation of the NRQCD Green functions is a bit more elaborate. First let us
expand the NRQCD Green function as we did for the pNRQCD one

GNRQCD = G
(0)
NRQCD +

1

m1
G

(1,0)
NRQCD +

1

m2
G

(0,1)
NRQCD. (3.39)

After integrating out the heavy quark fields one obtains [18]

G
(0)
NRQCD = 〈W�〉δ(3)(x1 − y1)δ(3)(x2 − y2), (3.40)

G
(1,0)
NRQCD =

i

2

∫ T/2

−T/2
dt〈D2(x1, t)〉�δ(3)(x1 − y1)δ(3)(x2 − y2), (3.41)

where the average is over the pure Yang-Mills action and

W� ≡ P exp

{
−ig

∮
r×T

dzµAµ(z)

}
, (3.42)

is the rectangular Wilson loop. We have introduced the notation 〈...〉� ≡ 〈...W�〉. Using
identities of the covariant derivatives acting on Schwinger lines and symmetry arguments
(see [18] and [53]) Eq. (3.41) can be rewritten as

G
(1,0)
NRQCD =

i

2

{
T

2
∇2

x1
〈W�〉+

T

2
〈W�〉∇2

x1
+ T 〈O2(T/2) ·O1(−T/2)〉�

+ ig

∫ T/2

−T/2
dt

(
T

2
− t
)
〈O2(T/2) ·E(x1, t)〉�

− ig

∫ T/2

T/2
dt

(
T

2
+ t

)
〈E(x1, t) ·O1(−T/2)〉�

+

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′|t− t′|〈E(x1, t) ·E(x1, t

′)〉�

}
δ(3)(x1 − y1)δ(3)(x2 − y2),

(3.43)

24



where

O1(t) = igr×
∫ 1

0
ds sφ(x1,x

′(s); t)B(x′(s), t)φ(x′(s),x2; t), (3.44)

O2(t) = igr×
∫ 1

0
ds(1− s)φ(x2,x

′′(s); t)B(x′′(s), t)φ(x′′(s),x1; t), (3.45)

with

x′(s) = x2 + sr, (3.46)
x′′(s) = x1 − sr. (3.47)

(3.48)

Now we can proceed to match order by order in 1/m. Comparing Eq. (3.37) with (3.40)
and taking the T →∞ limit, we get the familiar expression of the LO potential in terms
of the expectation value of the Wilson loop:

V (0) = lim
T→∞

i

T
ln〈W�〉. (3.49)

At order 1/m comparing Eq. (3.38) with Eq. (3.43) we obtain

V (1) +
1

2
(∇V (0)) · rZ1p

Z0
= lim

T→∞

(
−1

8

(
(∇Z0)

Z0

)2

+ i
T

4

(∇Z0)

Z0
· (∇V (0)) +

T 2

12
(∇V (0))2

− g

4

∫ T/2

−T/2
dt

{(
1− 2t

T

)
〈〈O2(T/2) ·E(x1, t)〉〉

−
(

1 +
2t

T

)
〈〈E(x1, t) ·O1(−T/2)〉〉

}
− 1

2
〈〈O2(T/2) ·O1(−T/2)〉〉

− g2

4T

∫ T/2

−T/2
dt′|t− t′|〈〈E(x1, t) ·E(x1, t

′)〉〉

)
.

(3.50)

In the equation above we have defined the notation 〈〈. . .〉〉 ≡ 〈. . .〉�/〈W�〉. The matching
conditions (3.49) and (3.50) can be further simplified by writing the Wilson loop average
as

〈W�〉 =
∑
n

e−iE
(0)
n Ta2

n. (3.51)

Using this decomposition at leading order one gets

V (0) = E
(0)
0 , (3.52)

and for the 1/m matching condition the result yields

V (1) +
1

2
(∇V (0)) ·rZ1p

Z0
=

1

2

∑
n6=0

∣∣∣∣∣ (0)〈n|gE(x1)|0〉(0)

E
(0)
0 − E(0)

n

∣∣∣∣∣
2

+(∇E
(0)
0 )

∑
n6=0

an
a0

(0)〈n|gE(x1)|0〉(0)

(E
(0)
0 − E(0)

n )2
.

(3.53)
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The last two equations have been obtained after taking the limit for large T ; more
details about their derivation are found in Appendix A. Notice that Eq. (3.52) verifies
our identification of the ground state energy with the leading order potential V (0). Our
final goal is to obtain an expression analogous to the one obtained for V (0) in Eq. (3.49)
also for the V (1) potential, that is, we want to find an expression for V (1) written in
terms of the expectation value of the rectangular Wilson loop that does not depend on
the coefficients of the expansion of the normalization constant. For this purpose we need
to find new equations in order to eliminate the coefficients from Eqs. (3.50) and (3.53).
In the next section we take another approach for the matching that will provide us with
these equations.

3.2.3 Quantum mechanical matching

Instead of comparing Green functions, in this approach we will compare states and ma-
trix elements in a calculation that has some similarities to perturbative calculations in
Quantum Mechanics.
Let us consider the eigenstates |n;x1,x2〉 of the full O(1/m) NRQCD Hamiltonian H,
they fulfill

〈m;x1,x2|H|n;x′1,x
′
2〉 = δmnEn(x1,x2,p1,p2)δ(3)(x1 − x′1)δ(3)(x2 − x′2), (3.54)

〈m;x1,x2|n;x′1,x
′
2〉 = δmnδ

(3)(x1 − x′1)δ(3)(x2 − x′2). (3.55)

The equations above imply that

H|n;y1,y2〉 =

∫
d3x1d

3x2|n;x1,x2〉En(x1,x2,p1,p2)δ(3)(x1−y1)δ(3)(x2−y2). (3.56)

In analogy to quantum mechanical perturbation theory, we can expand the states and
energies in powers of 1/m, thus

|n〉 = |n〉(0) +
1

m1
|n〉(1,0) +

1

m2
|n〉(0,1) + . . . , (3.57)

En = E(0)
n +

1

m1
E(1,0)
n +

1

m2
E(0,1)
n + . . . , (3.58)

for the state and energy n = 0 we have [18]

|0〉(1,0) =
1

E
(0)
0 −H(0)

∑
n6=0

∫
d3x′1d

3x′2|n;x′1,x
′
2〉(0) (0)〈n;x′1,x

′
2|H(1,0)|0〉(0)

= − 1

E
(0)
0 −H(0)

∑
n6=0

{
(0)〈n|gE(x1)|0〉(0)

E
(0)
0 − E(0)

n

·∇x1 +
1

2

(
∇x1 ·

(0)〈n|gE(x1)|0〉(0)

E
(0)
0 − E(0)

n

)

−1

2

∑
j 6=0,n

(0)〈n|gE(x1)|j〉(0) (0)〈j|gE(x1)|0〉(0)

(E
(0)
j − E

(0)
n )(E

(0)
j − E

(0)
0 )

 |n〉(0),

(3.59)

26



E
(1,0)
0 δ(3)(x1 − y1)δ(3)(x2 − y2) =(0) 〈0|H(1,0)|0〉(0)

=

−∇2
x1

2
+

1

2

∑
n6=0

∣∣∣∣∣ (0)〈n|gE(x1)|0〉(0)

E(0) − E(0)
m

∣∣∣∣∣
2
 δ(3)(x1 − y1)δ(3)(x2 − y2).

(3.60)

Since the only degree of freedom of pNRQCD is identified as |0〉 the matching conditions
in this approach read

|0〉 = S†|vac〉, (3.61)
E0(x1,x2,p1,p2) = hs(x1,x2,p1,p2). (3.62)

Using this last equation together Eq. (3.30) we obtain a matching condition for the
normalization constant

Z1/2(x1,x2,p1,p2)δ(3)(x1 − y1)δ(3)(x2 − y2) = 〈vac|χ†(x2)φ(x2,x1)ψ(x1)|0;y1,y2〉.
(3.63)

Notice that this matching condition is valid at any order in 1/m.
Combining Eqs. (3.59) and (3.63) together with the expansions (3.31) and (3.29) we get
at order 1/m

Z
1/2
0 = a0, (3.64)

Z1

Z
1/2
0

=
∑
n 6=0

an

E
(0)
0 − E(0)

n

{(
∇x1 ·

(0)〈n|gE(x1)|0〉(0)

E
(0)
0 − E(0)

n

)

− 2

(
(0)〈n|gE(x1)|0〉(0)

(E
(0)
0 − E(0)

n )2

)
· (∇x1E

(0)
0 )

+
∑
j 6=0,n

(0)〈n|gE(x1)|j〉(0) (0)〈j|gE(x1)|0〉(0)

(E
(0)
j − E

(0)
n )(E

(0)
j − E

(0)
0 )

 ,

(3.65)
Z1pr

Z
1/2
0

= 2
∑
n6=0

an
(0)〈n|gE(x1)|0〉(0)

(E
(0)
0 − E(0)

n )2
. (3.66)

Replacing Eqs. (3.52) and (3.66) into (3.53) one obtains

V (1) =
1

2

∑
n6=0

∣∣∣∣∣ (0)〈n|gE(x1)|0〉(0)

E
(0)
0 − E(0)

n

∣∣∣∣∣
2

. (3.67)

The previous equation fully determines the O(1/m) correction. Applying the same pro-
cedure used in going from Eq. (3.50) to Eq. (3.53) it can be shown that

V (1) = lim
T→∞

g2

4T

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′|t− t′|

[
〈〈E(x1, t) ·E(x1, t

′)〉〉

− 〈〈E(x1, t)〉〉 · 〈〈E(x1, t
′)〉〉
] (3.68)
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is equivalent to Eq. (3.67). The steps of the method to obtain (3.67) from Eq. (3.68) are
listed in Appendix A.
The potential V (1) can be written in a more compact way [19]

V (1) = −1

2
lim
T→∞

∫ T

0
dt t 〈〈gE1(t) · gE1(0)〉〉c, (3.69)

with

〈〈O1(t1)O2(t2)〉〉c = 〈〈O1(t1)O2(t2)〉〉 − 〈〈O1(t1)〉〉〈〈O2(t2)〉〉. (3.70)

The index i in Ei indicates that the operator is evaluated at xi. The V (0) and V (1)

potentials written as in Eqs. (3.49) and (3.69) respectively are the main results of this
section. The expression of V (1) in terms of field insertions in the Wilson loop expectation
value was, by the time Ref. [18] was published, a novel result obtained for the first
time within the framework of pNRQCD. For our purposes it is important to recall that
Eq. (3.69) holds for the whole distance regime of the potential. In [18] it was shown that
at short distances, where perturbation theory can be used, V (1) reduces to

V
(1)

pert = −CFCA
α2

s
4r2

, (3.71)

which coincides with previously known perturbative calculations [54, 55]. In the next sec-
tion we list the expressions of all 1/m2 corrections to the potential obtained by following
a similar matching procedure as the one we have described here.

3.3 The 1/m2-suppressed corrections

Going to order 1/m2 in the matching between NRQCD and pNRQCD, the 1/m2-suppressed
relativistic corrections to the potential can be obtained. The matching has been per-
formed in [19], to which refer for the details of the calculation. Using the same notation
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as in the previous section, the potentials obtained in [19] read

V
(2,0)
p2 (r) =

i

2
r̂ir̂j

∫ ∞
0

dt t2〈〈gEi1(t)gEj1(0)〉〉c , (3.72)

V
(2,0)
L2 (r) =

i

4

(
δij − 3r̂ir̂j

) ∫ ∞
0

dt t2〈〈gEi1(t)gEj1(0)〉〉c , (3.73)

V
(2,0)
LS (r) = −

c
(1)
F

r2
ir ·
∫ ∞

0
dt t 〈〈gB1(t)× gE1(0)〉〉+

c
(1)
S

2r2
r ·
(
∇rV

(0)
)
, (3.74)

V
(1,1)
p2 (r) = ir̂ir̂j

∫ ∞
0

dt t2〈〈gEi1(t)gEj2(0)〉〉c , (3.75)

V
(1,1)
L2 (r) =

i

2

(
δij − 3r̂ir̂j

) ∫ ∞
0

dt t2〈〈gEi1(t)gEj2(0)〉〉c , (3.76)

V
(1,1)
L2S1

(r) = −
c

(1)
F

r2
ir ·
∫ ∞

0
dt t 〈〈gB1(t)× gE2(0)〉〉 , (3.77)

V
(1,1)
S2 (r) =

2c
(1)
F c

(2)
F

3
i

∫ ∞
0

dt 〈〈gB1(t) · gB2(0)〉〉 − 4(dsv + dvvCF ) δ(3)(r) , (3.78)

V
(1,1)
S12

(r) =
c

(1)
F c

(2)
F

4
ir̂ir̂j

∫ ∞
0

dt

[
〈〈gBi

1(t)gBj
2(0)〉〉 − δij

3
〈〈gB1(t) · gB2(0)〉〉

]
(3.79)

V (2,0)
r (r) =

πCFαsc
(1)′
D

2
δ(3)(x1 − x2) (3.80)

−
ic

(1) 2
F

4

∫ ∞
0

dt〈〈gB1(t) · gB1(0)〉〉c +
1

2
(∇2

rV
(2,0)
p2 )

− i
2

∫ ∞
0

dt1

∫ t1

0
dt2

∫ t2

0
dt3 (t2 − t3)2〈〈gE1(t1) · gE1(t2)gE1(t3) · gE1(0)〉〉c

+
1

2

(
∇i
r

∫ ∞
0

dt1

∫ t1

0
dt2 (t1 − t2)2〈〈gEi1(t1)gE1(t2) · gE1(0)〉〉c

)
− i

2

(
∇i
rV

(0)
)∫ ∞

0
dt1

∫ t1

0
dt2 (t1 − t2)3〈〈gEi1(t1)gE1(t2) · gE1(0)〉〉c

+
1

4

(
∇i
r

∫ ∞
0

dt t3〈〈gEi1(t)gEj1(0)〉〉c(∇j
rV

(0))

)
− i

12

∫ ∞
0

dt t4〈〈gEi1(t)gEj1(0)〉〉c(∇i
rV

(0))(∇j
rV

(0))

−d(1)′
3 fabc

∫
d3x lim

T→∞
g〈〈Gaµν(x)Gbµα(x)Gcνα(x)〉〉 ,
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V (1,1)
r (r) = −1

2
(∇2

rV
(1,1)
p2 ) (3.81)

−i
∫ ∞

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 (t2 − t3)2〈〈gE1(t1) · gE1(t2)gE2(t3) · gE2(0)〉〉c

+
1

2

(
∇i
r

∫ ∞
0

dt1

∫ t1

0
dt2(t1 − t2)2〈〈gEi1(t1)gE2(t2) · gE2(0)〉〉c

)
+

1

2

(
∇i
r

∫ ∞
0

dt1

∫ t1

0
dt2(t1 − t2)2〈〈gEi2(t1)gE1(t2) · gE1(0)〉〉c

)
− i

2

(
∇i
rV

(0)
)∫ ∞

0
dt1

∫ t1

0
dt2(t1 − t2)3〈〈gEi1(t1)gE2(t2) · gE2(0)〉〉c

− i
2

(
∇i
rV

(0)
)∫ ∞

0
dt1

∫ t1

0
dt2(t1 − t2)3〈〈gEi2(t1)gE1(t2) · gE1(0)〉〉c

+
1

4

(
∇i
r

∫ ∞
0

dt t3
{
〈〈gEi1(t)gEj2(0)〉〉c + 〈〈gEi2(t)gEj1(0)〉〉c

}
(∇j

rV
(0))

)
− i

6

∫ ∞
0

dt t4〈〈gEi1(t)gEj2(0)〉〉c(∇i
rV

(0))(∇j
rV

(0)) + (dss + dvsCF ) δ(3)(x1 − x2).

In the above expressions where the average over the Wilson loop is not connected, it
means that it is the same as connected. The coefficients c(i)

F = 1 +O(αs), c
(i)
S = 2c

(i)
F −1,

c
(i)′
D = 1 +O(αs), d

(1)′
3 = αs/(720π) +O(α2

s ) [37], and dsv, dvv, dss, dvs, which are such
that (dsv + dvvCF ) = O(α2

s ) and (dss + dvsCF ) = O(α2
s ) [42], are Wilson coefficients of

NRQCD. The natural scale of αs in these coefficients is of the order of the heavy-quark
mass, hence we may expect αs to be a fairly small number.

3.4 Final remarks

As in the case of the 1/m correction, the expressions for the 1/m2-suppressed potentials
obtained from pNRQCD are valid in the whole distance regime. The short-distance limit
can be computed using perturbation theory whereas the long-distance limit must be
studied with non-perturbative methods. In particular, the fact that the potentials are
expressed in terms of correlators of the rectangular Wilson loop makes them suitable for
an evaluation on the lattice, however, such an evaluation is missing for most of them. In
the next chapter we will adopt the Effective String Theory hypothesis to compute the
Wilson loop correlators in the large r limit. These results will be used later to construct
the full-range potential (Chapter 5), which we will use in the evaluation of the E1 decay
rates.
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Chapter 4

The quark-antiquark potential in
the Effective String Theory

Here we derive the Effective String Theory (EST) expressions of the QCD correlators
presented in Chapter 3. We use a mapping that relates the QCD operator insertions
into the rectangular Wilson loop with the EST degrees of freedom. This mapping has
been proposed in [56] and [57] assuming that the QQ̄ system has the same symmetry
properties in both theories. Using the EST expressions for the correlators we construct
the string potential. Using this potential, in the last part of the chapter we compute the
string spectrum at O(1/m2). The findings of this chapter have also been published in
[58].

4.1 The Effective String Theory

In the previous chapter we obtained the following expression for the static potential in
terms of the rectangular Wilson loop

V (0)(r) = lim
T→∞

i

T
ln〈W�〉 , (4.1)

where
W� ≡ P exp

{
−ig

∮
r×T

dzµAµ(z)

}
. (4.2)

In the strong coupling limit, which is the expected coupling regime for large quark-
antiquark separation, this relation leads to a potential with a linear dependence on r

V (0)(r →∞) ∝ r.

Another example of a system with a constant force along the interaction line, as the
one described by Eq. (4.1), is a string with fixed ends. Moreover, it has been proposed1

that the gluonic interaction between a quark and an antiquark at long distances form a
1See Ref. [59] for new developments based on this hypothesis.
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flux tube (Fig. 4.1). Considering the picture of this flux tube we can get a qualitative
motivation for the string hypothesis: if the separation between the quarks is large enough
compared to the width of the tube, it may be expected that the QQ̄ interaction behaves
like a string with fixed ends. This observation was quantified already in [20], where it

was shown that the Wilson line U = P exp

{
−ig

∫
Σ
dzµAµ(z)

}
fulfills the equation of

a quantized string. In our evaluation of the long-range QQ̄ potential we will adopt the
EST hypothesis, which states that in pure gluodynamics and in the long-distance regime,
rΛQCD � 1, the expectation value of the rectangular Wilson loop can be expressed in
terms of a string action:

lim
T→∞

〈W�〉 = Z

∫
Dξ1Dξ2 eiSstring(ξ1,ξ2) , (4.3)

where Z is a constant. For rΛQCD � 1 the string action, Sstring, can be expanded in a
series whose terms involve an increasing number of derivatives acting on the transverse
string coordinates ξl = ξl(t, z) (l = 1, 2) [60]. The coordinates ξl count like 1/ΛQCD,
whereas derivatives in t and z acting on them count like 1/r. Hence, terms in Sstring

are suppressed in the long range by powers of 1/(rΛQCD). Up to terms with only two
derivatives, the string action reads

Sstring = −κ
∫
dt dz

(
1− 1

2
∂µξ

l∂µξl
)
. (4.4)

This effective action corresponds to the leading order of the long wavelength limit of
the Nambu-Goto action, which in turn corresponds to the surface spanned by a string
propagating in spacetime [61]. Studies constraining the form of the higher-order terms,
also by Lorentz invariance, are found in [62–66]. The next terms in the expansion turn
out to involve at least four derivatives, so they are suppressed by 1/(rΛQCD)2 with respect
to the kinetic term in (4.4). Such terms and subleading ones do not affect the results
presented here and will be neglected in the rest of this chapter. Since the string has
fixed ends at z = −r/2 and z = r/2, the transverse coordinates ξl satisfy the boundary
conditions ξl(t,−r/2) = ξl(t, r/2) = 0. The constant κ, which is of order Λ2

QCD, is the
string tension; its numerical value is known from lattice QCD determinations [67]2

κlattice ≈ 0.21 [GeV2]. (4.5)

From (4.1), (4.3) and (4.4) it follows that [60, 69]

V (0)(r) = κr + µ− π

12r
≈ κr , (4.6)

where µ is an unknown regularization-dependent constant and the term −π/(12r) is a
universal quantum correction known as the Lüscher term.3 The last approximation holds
in the large distance limit when the Lüscher term may be neglected.

2This value corresponds to a quenched lattice determination in which loop of fermions are neglected.
Unquenched studies of the QCD flux tube can be found, for instance, in [68].

3 The Lüscher term does depend on the dimension of spacetime. In d dimensions it reads −π(d −
2)/(24 r). Equation (4.6) holds for d = 4.
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Figure 4.1: The flux tube hypothesis provides us with a graphic motivation to introduce
the EST: if the separation between the quark and the antiquark, r, is much larger than
the width of the flux tube, d, the gluonic exchange among the quarks in the long distance
limit may behave as a string with fixed ends.

The mapping between QCD and EST correlators that we will present in the next sec-
tion was constructed assuming the same symmetry transformations of the correlators in
both theories. Explicitly for the string coordinates ξi(t, z) (with ξ3 = z) the symmetry
transformations are [57]

• rotations with respect to the z axis:

ξi(t, z)→ Rijξj(t, z), (4.7)

• reflection with respect to the zx plane:

ξi(t, z)→ ρijξj(t, z), (4.8)

• charge conjugation and parity (CP ):

ξi(t, z)→ −ξi(t,−z), (4.9)

• time-reversal (T ):
ξi(t, z)→ ξi(−t, z) (4.10)

where Rij is the rotation matrix and ρij = diag(1,−1, 1).
Later we will need the explicit expression of the correlator of two string coordinates.
Considering (4.4) and the string boundary conditions, the two-field correlator of the
EST in euclidean time is given by [57]

〈ξl(it, z)ξm(it′, z′)〉 =
δlm

4πκ
ln

(
cosh[(t− t′)π/r] + cos[(z + z′)π/r]

cosh[(t− t′)π/r]− cos[(z − z′)π/r]

)
. (4.11)
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A derivation of this expression is available in Appendix B.

Figure 4.2: Reference frame set-up for the string in the EST. The vibration of the string
implies a variation of its transverse coordinates, here x and y, which correspond to the
degrees of freedom of the theory. In the figure we show the value of the coordinates
ξ1(t0, z = 0) = x0 and ξ2(t0, z = 0) = y0 for a given time t0.

4.2 The long-range potential in the EST

4.2.1 Mapping

In [56] it was proposed that the equivalence (4.3) could be extended to relate Wilson
loops with field strength tensor insertions, like the ones appearing in the relativistic
corrections, to correlators of the string fields ξl. This would allow one to compute in the
EST the potentials listed in Chapter 3 in the long-distance regime.
Requiring the same symmetry properties for the transverse string coordinates and the
operators inserted in the Wilson loop, a program to expand the mapping of Eq. (4.3)
was first started in [56] and then extended in [57]; we follow the method specified in
the latter to show the construction of the mapping. The transformations with respect
to the generators of the symmetry group of the string transverse coordinates were listed
in Eqs. (4.7)-(4.10); for the field insertions in the Wilson loop the same transformations
read

• rotations with respect to the z axis:

Ei(t, z) → RijEj(t, z),

Bi(t, z) → RijBj(t, z), (4.12)

• reflection with respect to the zx plane:
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Ei(t, z) → ρijEj(t, z),

Bi(t, z) → −ρijBj(t, z), (4.13)

• charge conjugation and parity (CP ):

Ei(t, z) → (Ei)T (t,−z),

Bi(t, z) → −(Bi)T (t,−z), (4.14)

• time-reversal (T ):

Ei(t, z) → Ei(−t, z),

Bi(t, z) → −Bi(−t, z), (4.15)

The superscript T stands for transpose, z = (0, 0, z) and as before Rij is the rotation
matrix and ρij = diag(1,−1, 1).
In [56, 57] a mapping that satisfies the transformation properties (4.7)-(4.10) and (4.12)-
(4.15) was found to be

〈〈. . .El1(t) . . .〉〉 = 〈. . .Λ2∂zξ
l(t, r/2) . . . 〉 ,

〈〈. . .El2(t) . . .〉〉 = 〈. . .Λ2∂zξ
l(t,−r/2) . . . 〉 ,

〈〈. . .Bl
1(t) . . .〉〉 = 〈. . .Λ′εlm∂t∂zξm(t, r/2) . . . 〉 ,

〈〈. . .Bl
2(t) . . .〉〉 = 〈. . .− Λ′εlm∂t∂zξ

m(t,−r/2) . . . 〉 ,
〈〈. . .E3

1(t) . . .〉〉 = 〈. . .Λ′′ 2 . . . 〉 , (4.16)

〈〈. . .E3
2(t) . . .〉〉 = 〈. . .Λ′′ 2 . . . 〉 ,

〈〈. . .B3
1(t) . . .〉〉 = 〈. . .Λ′′′εlm∂t∂zξl(t, r/2)∂zξ

m(t, r/2) . . . 〉 ,
〈〈. . .B3

2(t) . . .〉〉 = 〈. . .− Λ′′′εlm∂t∂zξ
l(t,−r/2)∂zξ

m(t,−r/2) . . . 〉 ,

where the indices l and m label the transverse coordinates: l,m = 1, 2. The tensor εlm

is such that ε12 = 1 and εlm = −εml. In the Wilson-loop part of the mapping the heavy
quark is located at x1 = (0, 0, r/2) and the heavy antiquark at x2 = (0, 0,−r/2), which
implies r = (0, 0, r), see Fig. 4.2. The constants Λ, Λ′, Λ′′ and Λ′′′ are unknown constants
of mass dimension one and of order ΛQCD.
The mapping (4.16) is valid up to corrections that are subleading in the long range in
the EST counting. For the calculation of the long-range potential in the EST we will
assume the mapping (4.16) to be exact. The impact of subleading corrections will be
discussed in section 4.2.5.
The right-hand side of (4.16) consists of correlators of string coordinates ξl. The func-
tional integral over the string coordinates is Gaussian (see the string action (4.4)). So we
have that correlators of more than two string fields ξl break up into products of two-field
correlators and derivatives of them, and that two-field correlators are given by Eq. (4.11).
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4.2.2 String representation of the QCD correlators

Provided with the mapping (4.16) we can evaluate in the long-range the Wilson loop
expectation values that were given in Chapter 3. Correlators involving more than two
string fields, which come from mapping Wilson loops with B3 fields or more than two
chromoelectric field insertions, decompose into the product of two string field correlators
due to the Gaussian string action. Gaussianity also implies that correlators with an odd
number of string fields vanish. The Wilson loop expectation values appearing in the 1/m
suppressed corrections for rΛQCD � 1 map into the following expressions:

〈〈Ei1(it)Ej1(0)〉〉c = δ̃ij
πΛ4

4κr2
sinh−2

(
πt

2r

)
, (4.17)

〈〈Ei1(it)Ej2(0)〉〉c = −δ̃ij πΛ4

4κr2
cosh−2

(
πt

2r

)
, (4.18)

r · 〈〈B1(it)×E1(0)〉〉 =
iπ2Λ2Λ′

2κr2
cosh

(
πt

2r

)
sinh−3

(
πt

2r

)
, (4.19)

r · 〈〈B1(it)×E2(0)〉〉 = − iπ
2Λ2Λ′

2κr2
sinh

(
πt

2r

)
cosh−3

(
πt

2r

)
, (4.20)

2∑
l=1

〈〈Bl
1(it)Bl

1(0)〉〉c =
π3Λ′ 2

4κr4
sinh−4

(
πt

2r

)[
2 + cosh

(
πt

r

)]
, (4.21)

2∑
l=1

〈〈Bl
1(it)Bl

2(0)〉〉c = −π
3Λ′ 2

4κr4
cosh−4

(
πt

2r

)[
2− cosh

(
πt

r

)]
, (4.22)

〈〈B3
1(it)B3

1(0)〉〉c =
π4Λ′′′ 2

16κ2r6
sinh−6

(
πt

2r

)
, (4.23)

〈〈B3
1(it)B3

2(0)〉〉c =
π4Λ′′′ 2

16κ2r6
cosh−6

(
πt

2r

)
, (4.24)

〈〈E1(it1) ·E1(it2)E1(it3) ·E1(0)〉〉c =
π2Λ8

8κ2r4

[
sinh−2

(
πt2
2r

)
sinh−2

(
π(t1 − t3)

2r

)
+ sinh−2

(
πt1
2r

)
sinh−2

(
π(t2 − t3)

2r

)]
,

(4.25)

〈〈E1(it1) ·E1(it2)E2(it3) ·E2(0)〉〉c =
π2Λ8

8κ2r4

[
cosh−2

(
πt2
2r

)
cosh−2

(
π(t1 − t3)

2r

)
+ cosh−2

(
πt1
2r

)
cosh−2

(
π(t2 − t3)

2r

)]
,

(4.26)

where δ̃ij = 0 for i or j = 3 and δ̃ij = δij for i, j = 1, 2. Terms of the type 〈〈Ei(t1)E(t2) ·
E(0)〉〉c vanish after (4.16) regardless of the quark line where the chromoelectric fields
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are located. This is due to Gaussianity and to the subtraction of the disconnected parts.
It is also a specific feature of 〈〈Ei(t1)E(t2) · E(0)〉〉c, which is the only type of three-
field correlator appearing in the heavy quark-antiquark potential up to order 1/m2.
For example, a term like 〈〈Ej(t1)E3(t2)Ej(0)〉〉c would not vanish after (4.16). Finally
terms involving four chromoelectric fields contribute in the EST through two two-field
correlators that are connected.

4.2.3 The relativistic corrections to the QQ̄ potential in the EST

Once we are provided with the mapping of the correlators into the EST the calculation
of the long-range relativistic corrections to the QQ̄ potential follows straightforwardly.
Substituting (4.17)-(4.26) in the expressions of the potentials, we obtain

V (1,0)(r) =
g2Λ4

2πκ
ln
(
κr2
)

+ µ1 , (4.27)

V
(2,0)
p2 (r) = 0 , (4.28)

V
(2,0)
L2 (r) = −g

2Λ4 r

6κ
, (4.29)

V
(2,0)
LS (r) = −µ2

r
−
c

(1)
F g2Λ2Λ

′

κ r2
, (4.30)

V
(1,1)
p2 (r) = 0 , (4.31)

V
(1,1)
L2 (r) =

g2Λ4 r

6κ
, (4.32)

V
(1,1)
L2 S1

(r) = −
c

(1)
F g2Λ2Λ

′

κ r2
, (4.33)

V
(1,1)
S2 (r) =

2π3c
(1)
F c

(2)
F g2Λ′′′ 2

45κ2 r5
− 4(dsv + dvvCF )δ(3)(r) , (4.34)

V
(1,1)
S12

(r) =
π3c

(1)
F c

(2)
F g2Λ′′′ 2

90κ2 r5
, (4.35)

V (2,0)
r (r) = −2 ζ3 g

4Λ8r

π3κ2
+ µ3 +

µ4

r2
+
µ5

r4
+
π3c

(1) 2
F g2Λ′′′ 2

60κ2r5

+
πCFαsc

(1)′
D

2
δ(3)(r)− d(1)′

3 fabc

∫
d3x lim

T→∞
g〈〈Gaµν(x)Gbµα(x)Gcνα(x)〉〉 ,

(4.36)

V (1,1)
r (r) = −ζ3 g

4Λ8r

2π3κ2
+ (dss + dvsCF ) δ(3)(r) , (4.37)

where ζ3 = 1.2020569... is the Riemann zeta function of argument three and µi are
renormalization constants that appear after introducing a UV cutoff for small times in
the integrals of the correlators. The expressions for the potentials (4.27)-(4.33) agree
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with those in [57]. The spin-spin potentials (4.34) and (4.35) are of order 1/r5. The
1/r5 behaviour comes from the subleading correlator (4.24), for the long-range leading
contribution coming from the correlator (4.22), which would be of order 1/r3, vanishes
in the integrals of (3.78) and (3.79) (the result is independent of the specific form of
the string action). This contrasts with the result of [56], where the correlator (4.24)
is not taken into account and the leading spin-spin potentials shows up only at order
1/m4. The explicit expressions of the potentials in Eqs. (4.34), (4.35), (4.36) and (4.37)
are new (first reported in [58]). We observe that correlators of two chromoelectric fields
contracted with r = (0, 0, r) vanish because of riδ̃ij = 0, and that we do not have a map-
ping prescription into the EST for the matrix element 〈〈Gaµν(x)Gbµα(x)Gcνα(x)〉〉 involving
three gluon fields located at an arbitrary point x of spacetime.

4.2.4 Constraints from Poincaré invariance

As pointed out in [57], Poincaré invariance fixes some of the renormalization constants
µi and field normalization constants, Λ, Λ′, ..., because it requires some equations to be
exactly fulfilled by the potentials (see [35, 36]). One of these equations is the Gromes
relation that relates the spin-orbit potentials with the static potential [70]:

1

2r

dV (0)

dr
+ V

(2,0)
LS − V (1,1)

L2S1
= 0 . (4.38)

This equation is fulfilled in the EST only if

µ2 =
κ

2
. (4.39)

Another equation relates the momentum-dependent potentials with the static poten-
tial [71]:

r

2

dV (0)

dr
+ 2V

(2,0)
L2 − V (1,1)

L2 = 0 . (4.40)

This equation is fulfilled in the EST only if

gΛ2 = κ . (4.41)

In [35, 71] also the exact relation

−4V
(2,0)
p2 + 2V

(1,1)
p2 − V (0) + r

dV (0)

dr
= 0 ,

was derived. This relation is automatically fulfilled by the potentials (4.6), (4.28) and
(4.31) in the long range, i.e., neglecting µ and the Lüscher term in V (0), and does not
provide further constraints.
A similar relation holds for Λ′′ and follows from the equation −∇1V

(0) = 〈〈gE1〉〉 valid
for T →∞ derived in [18]. The equation is fulfilled in the EST only if

gΛ′′ 2 = −κ . (4.42)
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Equations (4.41) and (4.42) are remarkable, for they completely determine the long-range
mapping of the chromoelectric field in the EST. Finally, we note that the equations
induced by Poincaré invariance would require the inclusion of subleading corrections to
the action (4.4) and the mapping (4.16) in order to be fulfilled beyond leading order in
the long-range limit.
Taking the potentials (4.27)-(4.37) at leading order in the long-range limit, using the
constraints (4.39) and (4.41), and dropping terms suppressed by powers of αs, like the
term proportional to 〈〈Gaµν(x)Gbµα(x)Gcνα(x)〉〉, we obtain

V (1,0)(r) =
κ

2π
ln
(
κr2
)

+ µ1 , (4.43)

V
(2,0)
p2 (r) = 0 , (4.44)

V
(2,0)
L2 (r) = −κ r

6
, (4.45)

V
(2,0)
LS (r) = − κ

2 r
−
c

(1)
F gΛ

′

r2
, (4.46)

V
(1,1)
p2 (r) = 0 , (4.47)

V
(1,1)
L2 (r) =

κ r

6
, (4.48)

V
(1,1)
L2 S1

(r) = −
c

(1)
F gΛ

′

r2
, (4.49)

V
(1,1)
S2 (r) =

2π3c
(1)
F c

(2)
F g2Λ′′′ 2

45κ2 r5
, (4.50)

V
(1,1)
S12

(r) =
π3c

(1)
F c

(2)
F g2Λ′′′ 2

90κ2 r5
, (4.51)

V (2,0)
r (r) = −2 ζ3 κ

2r

π3
, (4.52)

V (1,1)
r (r) = −ζ3 κ

2r

2π3
. (4.53)

We have kept the subleading term proportional to 1/r2 in (4.46), because (4.6) and (4.49)
together with (4.38) guarantee that there cannot be any other term proportional to 1/r2

contributing to V (2,0)
LS .

4.2.5 On the subleading contributions to the mapping

Equations (4.43)-(4.53) provide the EST expressions for the heavy quark-antiquark po-
tential in the long range following from the exact mapping (4.16). Subleading corrections
to the mapping will not change the functional dependence of the potential but may affect
some of the numerical coefficients. For instance, in the case of the V (2,0)

r (r) and V (1,1)
r (r)

potentials, which at order r may be affected by subleading contributions to the mapping
of E3 given by

〈〈. . .E3(t) . . .〉〉 = 〈. . .Λ′′ 2 + (∂zξ)
2 . . . 〉 ,
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all possible terms proportional to Λ′′ 8r5, Λ′′ 6r3 and Λ′′ 4 (Λ4/κ) r3 vanish after subtrac-
tion of the disconnected parts of the correlators, so altering the coefficient of the term
proportional to r is the largest contribution of the subleading mapping. A similar sit-
uation can be checked in the case of spin-spin potentials at order 1/r5, which may be
affected by subleading contributions proportional to two string fields in the mapping of
Bl, however, no terms larger than 1/r5 will contribute to the potential. In all other cases,
subleading contributions to the mapping and action will lead to subleading contributions
to the potentials.

4.3 Spectrum of the LO EST potential

In order to illustrate the impact on the spectrum of the new long-range potentials derived
in the previous section, we consider the following model: a quark-antiquark pair both of
mass m bound by the potential given in (4.43)-(4.53). In the center-of-mass frame, the
Hamiltonian of the system is H = p2/m+ V . The potential, V , reads

V (r) = V (0)(r) +
2

m
V (1,0)(r) +

1

m2

{[
2
V

(2,0)
L2 (r)

r2
+
V

(1,1)
L2 (r)

r2

]
L2

+
[
V

(2,0)
LS (r) + V

(1,1)
L2 S1

(r)
]
L · S + V

(1,1)
S2 (r)

(
S2

2
− 3

4

)
+ V

(1,1)
S12

(r)S12(r̂)

+2V (2,0)
r (r) + V (1,1)

r (r)

}

≈ κr +
1

m

κ

π
ln
(
κr2
)

+
1

m2

(
− κ

6r
L2 − κ

2r
L · S− 9 ζ3 κ

2r

2π3

)
, (4.54)

where L = r× p and S is the total spin of the system. In the last line we have dropped
contributions to the static and spin-orbit potentials that are subleading in the long range,
and the spin-spin potentials, which fall off sharply like 1/r5. The constants in the static
and 1/m potentials do not contribute to the energy level splittings; hence we do not
display them. The model has the advantage of depending only on two parameters: the
massm and the string tension κ. We compute the energy levels by including contributions
from the potential that are first order in 1/m2 and up to second order in 1/m. We call
E

(0)
nl the eigenvalues of the zeroth-order Hamiltonian p2/m+ κr. The eigenstates of the

zeroth-order Hamiltonian, |nljs〉, may be chosen to be simultaneously eigenstates of the
angular momenta and spin. They are labeled by n, l, j and s, which are the principal,
orbital angular momentum, total angular momentum and spin quantum numbers. The
state |nl〉 stands for |nljs〉 when acting on an operator that does not depend on spin.
The energy levels read

Enljs = E
(0)
nl +〈nl|V (1/m)|nl〉+

∑
(n′,l′)6=(n,l)

|〈nl|V (1/m)|n′l′〉|2

E
(0)
nl − E

(0)
n′l′

+〈nljs|V (1/m2)|nljs〉 . (4.55)
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The results for the spectrum are summarized in the Tables 4.1 and 4.2, which refer to the
cases m = 3

√
κ and m = 10

√
κ respectively. We choose these values because if κ = 0.21

GeV2, then m = 3
√
κ corresponds approximately to the charm mass and m = 10

√
κ to

the bottom mass.
The tables show all levels up to n = 3 and all S-wave levels up to n = 6. S-wave levels are
degenerate in spin because the last line of (4.54) does not contain a spin-spin interaction.
For some states, the 1/m potential turns out to give a smaller contribution than the 1/m2

potentials. It happens when
√
κ 〈nl|r|nl〉 is close to 1, and the logarithm in the 1/m

potential vanishes. This is the case for the 1S state whenm = 3
√
κ:
√
κ 〈1S|r|1S〉 ≈ 1.08,

and for the 1P states when m = 10
√
κ:
√
κ 〈1P |r|1P 〉 ≈ 1.04. For the other states,

and in particular for higher states, the contributions of the different potentials scale
naturally. All 1/m2 corrections are of similar size. This holds also for the newly calculated
corrections, which are listed in the column labeled Vr, showing the relevance of the spin
and momentum-independent potentials.
In Fig. 4.3 we show graphically the effects of the relativistic corrections to the energy
levels for the 1S, 13PJ and 23PJ states in the cases m = 3

√
κ and m = 10

√
κ. In Fig. 4.4

we summarize in one plot the effect of these corrections on the whole spectrum for the
case m = 3

√
κ.
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Levels E(0) V (1/m) V
(1/m)

2nd order VL2 VLS Vr E

1S 1.621 -0.007 -0.007 0 0 -0.021 1.586
11P1 2.331 0.080 -0.005 -0.027 0 -0.030 2.349
13P0 2.331 0.080 -0.005 -0.027 0.082 -0.030 2.431
13P1 2.331 0.080 -0.005 -0.027 0.041 -0.030 2.390
13P2 2.331 0.080 -0.005 -0.027 -0.041 -0.030 2.308
2S 2.834 0.100 -0.004 0 0 -0.037 2.893

11D2 2.946 0.134 -0.004 -0.062 0 -0.038 2.976
13D1 2.946 0.134 -0.004 -0.062 0.093 -0.038 3.069
13D2 2.946 0.134 -0.004 -0.062 0.031 -0.038 3.007
13D3 2.946 0.134 -0.004 -0.062 -0.062 -0.038 2.914
21P1 3.387 0.147 -0.003 -0.022 0 -0.044 3.465
23P0 3.387 0.147 -0.003 -0.022 0.066 -0.044 3.531
23P1 3.387 0.147 -0.003 -0.022 0.033 -0.044 3.498
23P2 3.387 0.147 -0.003 -0.022 -0.033 -0.044 3.432
3S 3.828 0.161 -0.003 0 0 -0.049 3.937
4S 4.706 0.203 -0.002 0 0 -0.061 4.846
5S 5.508 0.235 -0.002 0 0 -0.071 5.670
6S 6.256 0.262 -0.002 0 0 -0.081 6.435

Table 4.1: Spectrum in the case m = 3
√
κ. All energies are expressed in units of

√
κ.

The column E(0) lists the zeroth-order energy levels, which for S waves are related
to the zeros of the Airy function [7]. The column V (1/m) lists the matrix element of
κ ln

(
κr2
)
/(πm). The columns V (1/m)

2nd order, VL2 , VLS and Vr list the matrix elements of the
second-order contribution of the 1/m potential and the matrix elements of −κL2/(6m2r),
−κL·S/(2m2r) and −9 ζ3 κ

2r/(2π3m2) respectively. The column E gives the total energy
levels according to (4.55).
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Levels E(0) V (1/m) V
(1/m)

2nd order VL2 VLS Vr E

1S 1.085 -0.028 -0.001 0 0 -0.001 1.055
11P1 1.560 -0.0015 -0.0007 -0.004 0 -0.002 1.552
13P0 1.560 -0.0015 -0.0007 -0.004 0.011 -0.002 1.563
13P1 1.560 -0.0015 -0.0007 -0.004 0.006 -0.002 1.558
13P2 1.560 -0.0015 -0.0007 -0.004 -0.006 -0.002 1.546
2S 1.897 0.004 -0.0005 0 0 -0.002 1.899

11D2 1.972 0.015 -0.0005 -0.008 0 -0.002 1.977
13D1 1.972 0.015 -0.0005 -0.008 0.013 -0.002 1.990
13D2 1.972 0.015 -0.0005 -0.008 0.004 -0.002 1.981
13D3 1.972 0.015 -0.0005 -0.008 -0.008 -0.002 1.969
21P1 2.267 0.019 -0.0005 -0.003 0 -0.003 2.280
23P0 2.267 0.019 -0.0005 -0.003 0.009 -0.003 2.289
23P1 2.267 0.019 -0.0005 -0.003 0.004 -0.003 2.284
23P2 2.267 0.019 -0.0005 -0.003 -0.004 -0.003 2.276
3S 2.562 0.023 -0.0004 0 0 -0.003 2.582
4S 3.150 0.035 -0.0003 0 0 -0.004 3.181
5S 3.687 0.045 -0.0002 0 0 -0.004 3.728
6S 4.188 0.053 -0.0002 0 0 -0.005 4.236

Table 4.2: Spectrum in the case m = 10
√
κ, columns are like those in Table 4.1.
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Figure 4.3: Energy levels for the states 1S, 13PJ and 23PJ normalized with respect to
E

(0)
1S , E

(0)
1P and E(0)

2P respectively. The left plots refer to the case m = 3
√
κ, the right ones

to the case m = 10
√
κ. The leading order (LO) levels correspond to E(0)

nl , the next-to-
leading-order (NLO) corrections to 〈nl|V (1/m)|nl〉 and the next-to-next-to-leading-order
(NNLO) ones to the remaining two terms shown in the right-hand side of Eq. (4.55).
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Figure 4.4: Spectrum of all states up to n = 3 and of all S-wave states up to n = 6 in
the case m = 3

√
κ. Energies are expressed in units of

√
κ.

4.4 Summary

In this chapter we have computed all 1/m2 EST potentials, in particular we found novel
expressions for the momentum and spin-independent 1/m2 potentials. These expressions
show a linearly rising behaviour with the distance and may be interpreted as a sort of
relativistic correction to the static potential. This is a sharp prediction of the EST that
can be checked against data from lattice, once calculations of Wilson loop expectation
values with four chromoelectric field insertions are performed.
Under the assumption that the mapping (4.16) is exact, the expressions of the potentials
are given in (4.52) and (4.53). The net effect of these potentials in the equal mass case
is to reduce the string tension by an amount 9 ζ3 κ

2/(2π3m2).
We will give more general conclusions about the findings of this chapter in Chapter 10.
What will be immediately important for the construction of the potential in the next
chapter is Eq. (4.54) since that is the expression we will use to parametrize the long-range
(non-perturbative) part of the full QQ̄ potential.
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Chapter 5

The full-range QQ̄ potential

As we will see in Chapter 6, the evaluation of the E1 decay rates requires as input the
QQ̄ potential for the whole distance regime. In the present chapter, we construct such
a potential using the results of the perturbative evaluation of the QCD correlators of
Chapter 3 for the short distance limit and the EST evaluation of these correlators for
the long distance limit. To fit its free parameters we use state-of-the-art input from
experiment and lattice QCD.

5.1 Construction of the potential

Here and for the rest of the thesis we will assume the string hypothesis as valid, namely,
that the evaluation of the QCD correlators of Chapter 3 in the EST leads to the right
dependence of the QQ̄ potential on r for rΛQCD � 1. In the limit r → 0, the potential is
determined by the perturbative evaluation of these QCD correlators (see below). Even
if both limits are known, the problem of the transition zone between the perturbative
and non-perturbative regimes remains. To construct the full-range potential we will
adopt the simplest approach of adding the expressions for the short and long distance
limits. In this way, the full QQ̄ potential will have the right dependence on r in both
limits and a smooth transition between the perturbative and non-perturbative regimes.
The main inconvenience of this approach is that in both regimes the potential will still
receive artificial contributions from either short or long range potentials1. This problem
is especially critical for the perturbative contributions going into the non-perturbative
regime, where, due to their dependence on αs, they will present a singularity at r = Λ−1

QCD.
In order to avoid this issue, in the perturbative expressions we will replace the running
coupling by a free parameter a that needs to be fixed. We do the same with the mass
m, that we will treat as a free parameter of the potential.
For the long-distance contribution, we consider the LO EST potential given in Eq. (4.54)

1By the right dependence on r in the limit we mean that artificial contributions will vanish faster
in the limit. For instance, we may have a non-perturbative contribution ∼ 1/r and a perturbative
contribution proportional to the same operator that scales as ∼ 1/r3, but in the limit rΛQCD � 1 the
non-perturbative contribution will be dominant compared to the perturbative one.
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that for convenience we recall here introducing notation that we will use later on

V long−range(r) = κr + V EST
(1/m)(r) + V EST

L2 (r)L2 + V EST
LS (r)L · S + V EST

(1/m2)(r) , (5.1)

where

V EST
(1/m)(r) =

κ ln
(
κr2
)

mπ
, (5.2)

V EST
L2 (r) = − κ

6m2r
, (5.3)

V EST
LS (r) = − κ

2m2r
, (5.4)

V EST
(1/m2)(r) = −9 ζ3 κ

2r

2m2π3
. (5.5)

In the case of the perturbative potential, its structure is given by the expressions of
Sec. 3.1 in the equal mass case, explicitly

V pert.(r) = VCoul.(r) + V pert.
(1/m)(r) + V pert.

L2 (r)L2 + V pert.
LS (r)L · S + VS2(r)S2

+ VS12(r)S12 + Vδ(r)(r), (5.6)

where S12 is given in Eq. (3.16). Following this notation, the perturbative expressions of
the short distance potentials are given by [72–76]

VCoul.(r) = −CF
αs(r)

r
, (5.7)

V pert.
(1/m)(r) = −CFCAαs(r)

2

2mr2
, (5.8)

Vp2(r) = −CFαs(r)

m2r
, (5.9)

V pert.
L2 (r) =

CFαs(r)

2m2r3
, (5.10)

Vδ(r)(r) = πCF
αs(r)δ

(3)(r)

m2
, (5.11)

VS2(r) =
4πCFαs(r)

3m2
δ(3)(r), (5.12)

V pert.
LS (r) =

3CFαs(r)

2m2r3
, (5.13)

VS12(r) =
CFαs(r)

4m2r3
. (5.14)

These expressions can be re-obtained by computing the correlators of Chapter 3 in the
short-distance limit.
Replacing αs(r) by the parameter a in Eqs.(5.7)-(5.14) and adding the long-range poten-
tial we get

VQQ̄ = V (0) + V (1/m) + V (1/m2) − p4

4m3
(5.15)
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where

V (0)(r) = −CF
a

r
+ κr, (5.16)

V (1/m)(r) =
2κ

mπ
log(
√
κr)− CFCAa

2

2mr2
, (5.17)

V (1/m2)(r,p,L,S) =
1

m2

{
1

2

{
p2,−CFa

r

}
+

(
CFa

2r3
− κ

6r

)
L2 +

(
3CFa

2r3
− κ

2r

)
L · S

+
4πCFa

3
δ(3)(r)S2 +

CFa

4r3
S12(r̂) + πCFaδ

(3)(r)− 9 ζ3 κ
2r

2π3

}
.

(5.18)

We have also included the kinematic correction proportional to 1/m3 since, as we will see
in the next section, it will be of the same parametric size as some of the 1/m2 corrections
after setting the power counting.
Notice that the V (0) (static) potential corresponds to the Coulomb plus linear potential
known as the Cornell potential [77]. The potential defined by Eqs. (5.16)-(5.18) depends
on the same three parameters as the Cornell potential does, namely, the quark mass m,
the string tension κ and the coupling a. From Eqs. (5.16)-(5.18) we can check our argu-
ment about the limiting behavior of the potential, for instance, in the static potential we
see that in the non-perturbative limit the Coulomb potential is sub-dominant compared
to the linear part; the same can be checked for the 1/m and 1/m2-suppressed potentials.
We will consider a, κ and m as free parameters; in order to fix them we will need to ac-
count for the relativistic corrections to the potential in the expression of the quarkonium
mass M(n2S+1LJ). Using quantum mechanical perturbation theory to include these
corrections we have

M(n2S+1LJ) = 2mc,b + E
(0)
nl + 〈nl|V NLO(r)|nl〉+

∞∑
m6=n

|〈nl|V NLO(r)|ml〉|2

E
(0)
nl − E

(0)
ml

+ 〈nljs|V NNLO(r)|nljs〉, (5.19)

where the explicit shape of V LO, V NLO and V NNLO will be given in terms of the ex-
pressions in Eqs. (5.16)-(5.18) according to the counting we will specify for a, κ and m.
Notice that in Eq. (5.19) we assume that the second order perturbative correction due
to the V NLO potential scales as V NNLO.

5.2 Power countings

With the power counting adopted in [21] the relativistic NLO corrections to the E1 decay
rates are of relative size v2 (see next chapter). This dictates the size of the relativistic
corrections that need to be included in the potential, which in turn will depend on the
power counting imposed on its parameters, in our case m, a and κ. For what concerns
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the potential, the counting adopted in [21] reads

|p| ∼ mv,

r ∼ 1/mv. (5.20)

For fitting the potential parameters and later evaluating the rates, we will consider the
following three different possibilities for the counting of the potential.

Counting 1

In this counting we assume

a ∼ v,

κ ∼ m2v3,

|p| ∼ mv,

r ∼ 1/mv,

which implies that, to evaluate Eq. (5.19), we must organize the potential as follows

V LO = −CF
a

r
+ κr, (5.21)

V NLO =
2κ

mπ
log(
√
κr), (5.22)

V NNLO = − p4

4m3
+

1

m2

{
1

2

{
p2,−CFa

r

}
+

(
CFa

2r3
− κ
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L2 +
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3CFa

2r3
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2r

)
L · S

+
4πCFa

3
δ(3)(r)S2 +

CFa

4r3
S12(r̂) + πCFaδ

(3)(r)

}
− CFCAa

2

2mr2
. (5.23)

This counting also implies that the parametric size of the potential is such that V LO ∼
mv2, V NLO ∼ v ln(v)V LO and V NNLO ∼ v2V LO. The scaling a ∼ v is the natural scaling
of the QCD running coupling in the perturbative regime [10]. With the scaling imposed
on κ, V LO corresponds to the static potential and it scales homogeneously. The counting
of |p| and r is inherited from Eq. (5.20).

Counting 2

In this case, instead of imposing a counting on the parameters we will just order the
potentials according to their size in powers of 1/m, so in order to evaluate Eq. (5.19) we
set

V LO = V (0)(r) (5.24)
V NLO = V (1/m)(r) (5.25)

V NNLO = − p4

4m3
+ V (1/m2)(r,p,L,S). (5.26)

We have kept the kinematic correction proportional to 1/m3 since it does not originate
from a specific regime of the potential. Later we will use the results obtained with this
counting to measure the impact of adopting different orderings in the potential.
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Counting 3

In this counting for charmonium states we will assume

a ∼ v2,

κ ∼ m2v3,

|p| ∼ mv,

r ∼ 1/mv,

which implies that for charmonium the potential is organized as follows

V LO = κr, (5.27)

V NLO = −CF
a

r
+

2κ

mπ
log(
√
κr), (5.28)

V NNLO = − p4

4m3
+

1

m2

{
− κ

6r
L2 − κ

2r
L · S

}
(5.29)

With this ordering V LO ∼ mv2, V NLO ∼ vV LO and V NNLO ∼ v2V LO. The motivation
for adding an extra v-suppression to a will be clear later in this chapter: it turns out that
considering a ∼ v2 for charmonium is more consistent than naively adopting Counting
1 for bottomonium and charmonium simultaneously. The extra suppression implies that
for charmonium states the perturbative contributions to the potential will be less relevant
than long-distance contributions. In this approach, when evaluating bottomoniummasses
and transitions, we will adopt the expressions of Counting 1.

5.3 Inputs

We will use two different input sources to fix the potential parameters. The first input
comes from the charmonium and bottomonium spectra as retrieved from the Particle
Data Group (PDG) report [78]; we call this approach phenomenology input. The second
input source comes from the lattice determination of the QQ̄ static energy done by the
HotQCD collaboration reported in [79]; we will refer to this approach as the lattice input.
In both cases there is more data than parameters so our objective will be to find average
values for each parameter based on these redundant data sets; we do this for each of the
countings specified earlier. Now we go ahead explaining the details of both procedures.

Phenomenology input

In this approach, in order to get a set of parameters [a, κ, mc, mb], we solve a system of
four equations of the type

Mtheo(n2S+1LJ ; a, κ,m)−Mexp(n2S+1LJ) = 0, (5.30)

for four different quarkonium states, where Mtheo is given by Eq. (5.19) and Mexp corre-
sponds to the central value of the mass of the n2S+1LJ state quoted in the PDG report
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[78]; explicit values are given in Appendix C.
We proceed by choosing sixteen different combinations of quarkonium states in order to
obtain the corresponding sixteen sets of parameters. Three of these sets are obtained by
choosing three bottomonium states to fit a, κ and mb and then solving a fourth equation
to fit mc keeping a and κ fixed. Three more sets are obtained doing the reversed process,
fitting a, κ and mc using three charmonium states and then fitting mb with a and κ held
fixed. The remaining ten sets are obtained solving the equations for two charmonium and
two bottomonium states simultaneously. All states used in this approach are below the
respective open flavor thresholds, except for the bottomonium Υ(4S), which is slightly
above. Details about the method used to solve Eq. (5.30) are given in Chapter 7. The
detailed results of the fitting with this input are given in Appendix D, the final averages
for each parameter in each of the countings are given in the next section.

Lattice input

In this approach we fit the parameters a and κ of the V (0) potential in Eq. (5.16) using
the results of the lattice determination of the QQ̄ static energy reported by the HotQCD
collaboration [79]. This procedure gives us twelve pairs (alatt, κlatt) corresponding to
each of the twelve data sets for different lattice spacings. Two of the data sets used for
the fit are displayed in Fig. 5.1. The full results of the fitting are shown in Table 5.1.
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Figure 5.1: Two of the data sets used to fit a and κ in the lattice approach. They are
labeled using the gauge parameter β: the larger β is the smaller the lattice spacing is.
In the case of β = 7.825 (left) the lattice spacing is around 0.2 [GeV−1], for β = 7.596
(right) it is approximately 0.25 [GeV−1]. Both plots are presented in dimensionless units,
we have used r1 ≈ 1.58 [GeV−1] [79] in order to convert the data to physical units.

The procedure for fitting the masses is the following:

• For each quarkonium state, n2S+1LJ , we find twelve m′ values solving

Mtheo(n2S+1LJ ; a = alatt, κ = κlatt,m
′)−Mexp(n2S+1LJ) = 0, (5.31)

52



where Mtheo is given by Eq. (5.19) assuming one the countings specified in the
previous section and the values of alatt and κlatt given in Table 5.1. We take the
average of these twelve m′ values to extract the quark mass corresponding to each
quarkonium state: mc(n

2S+1LJ) and mb(n
2S+1LJ).

• Our final values for the quark masses are obtained by averaging the eight values
we get for mc(n

2S+1LJ) and the fourteen values we get for mb(n
2S+1LJ).

The partial results for the fitting of the masses are given in Appendix D. Further technical
details about the fitting with lattice input are given in Chapter 7.

Data Set Spacing (β) a σa κ [GeV 2] σκ [GeV 2]

1 6.66 0.320 0.009 0.214 0.003
2 6.74 0.346 0.004 0.210 0.001
3 6.8 0.296 0.005 0.227 0.002
4 6.88 0.297 0.004 0.222 0.002
5 6.95 0.296 0.004 0.223 0.002
6 7.03 0.293 0.004 0.220 0.002
7 7.15 0.285 0.003 0.227 0.002
8 7.28 0.278 0.003 0.230 0.002
9 7.37 0.276 0.003 0.233 0.002
10 7.5 0.292 0.005 0.177 0.003
11 7.6 0.263 0.002 0.245 0.002
12 7.83 0.253 0.002 0.246 0.002

Averages - 0.297 0.015 0.220 0.008

Table 5.1: Results for the fitting of a and κ with lattice input, σa and σκ are the standard
deviations of a and κ respectively. The values are obtained by fitting the dataset of each
lattice spacing to a function with the shape of Eq. (5.16). In the case of a and κ the
averages are calculated using σa and σκ as weights. We treat the values of σa and σκ as
the uncertainties in the determination of each parameter, so the quoted average of these
quantities is calculated using quadratures.

5.4 Results of the fitting

The final results of the fitting are given in Tables 5.2 and 5.3 for the phenomenology
and lattice input respectively. In both inputs we will use these values to generate sixteen
new values that distribute normally around their respective mean; in Chapter 8 we will
evaluate the decay rates using these randomly generated sets. In this way we expect to
cancel possible correlations between the states used to fit the parameters and the states
involved in the decays.
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Counting a (σa) κ (σκ) [GeV2] mc (σmc) [GeV] mb (σmb) [GeV]

1 0.222 (0.070) 0.182 (0.026) 1.345 (0.070) 4.736 (0.061)
2 0.213 (0.073) 0.184 (0.027) 1.346 (0.074) 4.730 (0.065)
3 0.246 (0.074) 0.210 (0.041) 1.123 (0.074) 4.704 (0.086)

Table 5.2: Summary of the fitting with phenomenology input, the standard deviation of
each parameter is quoted in brackets.

Counting mc (σmc) [GeV] mb (σmb) [GeV]

1 1.321 (0.115) 4.719 (0.132)
2 1.338 (0.114) 4.725 (0.137)
3 1.130 (0.086) -

Table 5.3: Summary of the fitting of the masses with lattice input. The values of a =
0.297 with σa = 0.015 and κ = 0.220 [GeV2] with σκ = 0.008 [GeV2] are the same for all
the countings. Notice that we do not quote a value for mb adopting Counting 3 because
the procedure to obtain this value in this counting is equivalent to the one of adopting
Counting 1, thus yielding the same result for the three parameters.

5.5 Consistency of Countings 1 and 3

In Tables 5.4 - 5.10 we compare the values obtained for the parameters against their
expected size according to Countings 1 and 3. The computation of the expected sizes
depends on the quantum numbers of the quarkonium state that is being considered, the
comparisons shown in Tables 5.4 - 5.10 are done for all the initial states of the decays
that will be evaluated later.
An alternative consistency test is to check if the hierarchy among the LO, NLO and
NNLO potentials as dictated by the counting is realized once the parameters have been
fixed. The results of this test are shown in Tables D.9 - D.15 of Appendix D for the same
initial bottomonium and charmonium states.
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State a(σa) v κ(σκ) m2v3 〈1/r〉−1

[GeV2] [GeV2] [GeV−1]

11PJ 0.22 (0.07) 0.24 0.18 (0.03) 0.31 1.79
21PJ 0.22 (0.07) 0.27 0.18 (0.03) 0.46 2.36
23SJ 0.22 (0.07) 0.26 0.18 (0.03) 0.41 1.56
33SJ 0.22 (0.07) 0.29 0.18 (0.03) 0.56 2.04
33PJ 0.22 (0.07) 0.30 0.18 (0.03) 0.62 2.81

Table 5.4: Consistency check in the bottomonium states of the results for the parameter
fitting using Counting 1 with phenomenology input. In order to compute the expectation
values, the Schrödinger equation is solved numerically using the LO potential with the
corresponding values of a,mb and κ taken from Table 5.2, also quoted here. For more
details about the method used to solve the Schrödinger equation see Chapter 7.

State a(σa) v κ(σκ) m2v3 〈1/r〉−1

[GeV2] [GeV2] [GeV−1]

11PJ 0.22 (0.07) 0.52 0.18 (0.03) 0.25 2.95
23SJ 0.22 (0.07) 0.57 0.18 (0.03) 0.33 2.57

Table 5.5: Consistency check in the charmonium states of the results for the parameter
fitting using Counting 1 with phenomenology input. The values are computed as in
Table 5.4.

State a(σa) v κ(σκ) m2v3 〈1/r〉−1

[GeV2] [GeV2] [GeV−1]

11PJ 0.30 (0.02) 0.26 0.22 (0.01) 0.41 1.63
21PJ 0.30 (0.02) 0.30 0.22 (0.01) 0.59 2.17
23SJ 0.30 (0.02) 0.29 0.22 (0.01) 0.54 1.43
33SJ 0.30 (0.02) 0.32 0.22 (0.01) 0.71 1.89
33PJ 0.30 (0.02) 0.33 0.22 (0.01) 0.77 2.60

Table 5.6: Consistency check in the bottomonium states of the results for the parameter
fitting using Counting 1 with lattice input. The values are computed as in Table 5.4.
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State a(σa) v κ(σκ) m2v3 〈1/r〉−1

[GeV2] [GeV2] [GeV−1]

11PJ 0.30 (0.02) 0.56 0.22 (0.01) 0.31 2.75
23SJ 0.30 (0.02) 0.62 0.22 (0.01) 0.42 2.40

Table 5.7: Consistency check in the charmonium states of the results for the parameter
fitting using Counting 1 with lattice input. The values are computed as in Table 5.4.

State a(σa) v κ(σκ) m2v3 〈1/r〉−1

[GeV2] [GeV2] [GeV−1]

11PJ 0.25 (0.07) 0.25 0.21 (0.04) 0.37 1.70
21PJ 0.25 (0.07) 0.29 0.21 (0.04) 0.54 2.24
23SJ 0.25 (0.07) 0.28 0.21 (0.04) 0.48 1.49
33SJ 0.25 (0.07) 0.31 0.21 (0.04) 0.65 1.94
33PJ 0.25 (0.07) 0.32 0.21 (0.04) 0.72 2.68

Table 5.8: Consistency check in the bottomonium states of the results for the parameter
fitting using Counting 3 with phenomenology input. The values are computed as in
Table 5.4.

State a(σa) v2 κ(σκ) m2v3 〈1/r〉−1

[GeV2] [GeV2] [GeV−1]

11PJ 0.25 (0.07) 0.34 0.21 (0.04) 0.25 3.16
23SJ 0.25 (0.07) 0.41 0.21 (0.04) 0.33 2.78

Table 5.9: Consistency check in the charmonium states of the results for the parameter
fitting using Counting 3 with phenomenology input. The values are computed as in
Table 5.4.

State a(σa) v2 κ(σκ) m2v3 〈1/r〉−1

[GeV2] [GeV2] [GeV−1]

11PJ 0.30 (0.02) 0.35 0.22 (0.01) 0.26 3.11
23SJ 0.30 (0.02) 0.42 0.22 (0.01) 0.35 2.73

Table 5.10: Consistency check in the charmonium states of the results for the parameter
fitting using Counting 3 with lattice input. The values are computed as in Table 5.4.
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Analysis

In the case of bottomonium states we see that the scaling a ∼ v, imposed on the coupling
parameter is fairly fulfilled with both countings in all states. In the case of the string
tension parameter, it can be read from the previous tables that the scaling κ ∼ m2v3

appears to be an overestimation of the size of κ, especially in excited states.
Regarding charmonium states, the scaling a ∼ v2 of Counting 3 appears to be better
realized than a ∼ v. Also considering Counting 3, we see that the scaling of κ is quanti-
tatively better realized than in Counting 1, especially in the 1P states.
In the case of the parametric size of r, notice that the scaling r ∼ 1/mv omits any
dependence on the quantum numbers, however, such a dependence may be substantial.
In the case of a pure Coulombic LO potential, the following exact relation holds

〈1/r〉−1 =
n′

m〈v〉
, (5.32)

with n′ being the principal quantum number, i.e. n′ = n+ l. Surprisingly, Eq. (5.32) is
the scaling that governs the expectation value of 1/r also in our evaluations, regardless
of whether the LO potential is given by V (0) like in Counting 1 or just a pure linear term
like in the Counting 3 for charmonium states. For instance, considering the evaluation
of (m〈v〉)−1 in 1P bottomonium states adopting Counting 1 with phenomenology input,
Table 5.4, the RHS of Eq. (5.32) gives 1.76 [GeV−1], which agrees within 2% with the
value of 〈1/r〉−1 for 1P states quoted in that table. Similar results can be verified for all
states regardless of the flavor or the adopted counting.
As mentioned, a complementary test of the realization of the power counting is to check
if the expectation values of each term in the QQ̄ potential respect the ordering inherited
from the adopted counting. For the sake of clarity we have left the tables of this analysis
in Appendix D.
Considering first the bottomonium states, the main conclusion that can be drawn from
those tables is that, regardless of the counting (1 or 3) or the input, the potential fulfils

|〈V LO
i 〉| > |〈V NLO〉|, |〈V NNLO

j 〉|, (5.33)

where V LO
i is either of the terms of the LO potential, Coulombic or linear, and V NNLO

j

is any of the NNLO potentials. The distinction between the NLO and NNLO potentials
is more dubious; the general situation is that in both countings we have

|〈V NLO〉| ∼ |〈V NNLO
> 〉|. (5.34)

where 〈V NNLO
> 〉 is the largest of the expectation values of the NNLO potentials. Ac-

tually, for many states the numerical value of the expectation value of the logarithmic
NLO potential, although of the same order, is smaller than the one of the 1/m-suppressed
NNLO potential. Nevertheless, it can be verified that in most of the cases this is due to
numerical factors of the potentials that are independent of the adopted counting.
For charmonium states, when adopting Counting 1 we have a similar scaling as in bot-
tomonium, in the case of the Counting 3 the potential fulfils

|〈V LO〉| > |〈V NLO
> 〉| > |〈V NNLO〉|, (5.35)
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where 〈V NLO
> 〉 is the largest of the expectation values of the NLO potentials, which for all

states turns out to be the one of the Coulombic potential, and 〈V NNLO〉 is the expectation
value of the full NNLO potential. As in the Counting 1, the expectation value of the
logarithmic potential appears to be extra-suppressed.

5.6 Summary

The establishment of a power counting is a useful way of ordering the relativistic correc-
tions to a given physical observable. Constructing the QQ̄ potential by adding short and
long distance contributions, in this chapter we have studied the numerical impact on the
potential parameters from ordering the contributions to the potential in three different
ways. In two of them (Countings 1 and 3) the ordering derives from the scaling imposed
on the parameters themselves.
Since the analysis of the previous section shows that the counting of the coupling pa-
rameter as v is better realized in bottomonium states, and that for the same states
the scaling of κ is missed, our consistency test appears to indicate that short-distance
physics is dominant in bottomonium. On the other hand, the extra-suppression in v of
the coupling parameter, together with the better realization of the scaling of κ, indicate
that non-perturbative effects are more relevant in charmonium. This is what one would
expect knowing that charmonium is a larger system than bottomonium.
For what concerns the numerical impact of the extra suppression of the logarithmic po-
tential in the evaluation of the decay rates, we consider two possibilities. The first one is
that we have underestimated the size of some of the NNLO corrections, so they should be
counted as NLO; in such a case, the contribution coming from the second order correction
due to the NLO potential in Eq. (5.19) may have been underestimated. It turns out that
the leading NNLO correction in Counting 1 comes from the 1/m-suppressed potential.
The counting of this potential as NLO has been considered in Counting 2, which we will
use to measure the effect of considering both 1/m potentials as NLO in the evaluation
of the decay rates.
The second possibility is that, instead of separating the logarithmic potential from the
other corrections, one should count all the relativistic corrections homogeneously, in
which case there would be no contribution to the decay rates from a second order correc-
tion. Since what we get is an extra-suppression of this potential, we expect these second
order corrections to be small enough not to alter the qualitative features of our results
for the evaluation of the E1 rates.

This chapter ends our construction of the QQ̄ potential, which for the rest of the thesis
will be considered, in each of its counting/input combinations, as fixed. The explicit
expressions of the relativistic corrections to the E1 decay rates derived from it and their
numerical evaluation are the subject of the following chapters.
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Chapter 6

The radiative E1 transition

In the first part of this chapter, we give an overview of some of the relevant aspects arising
in the study of quarkonium radiative decays in pNRQCD. Then we present the specific
formulas necessary for the evaluation of the E1 decay rates. We close this chapter with
an overview of the available experimental data that we will use to compare our results
in Chapter 9.

6.1 The radiative decays in pNRQCD

By radiative decays we will refer mainly to the electric dipole (E1) and magnetic dipole
(M1) decays. The M1 decay differs from the E1 in that the final quarkonium state has
the same angular momentum quantum number but the spin has been changed by one.
An example of such a decay in charmonium is J/ψ decaying into a photon and an ηc
state. The development of EFTs for heavy quarkonium helped to establish a model-
independent framework for the study of these radiative transitions. A study of the M1
transitions within the framework of pNRQCD can be found in [80]. Using this framework,
a perturbative evaluation of the decay rates has been performed in [81]. In this thesis,
we are focusing on the study of the E1 decays, however, at the end of this section we
briefly discuss the status of M1 decays in pNRQCD.

6.1.1 The physical landscape

Before giving concrete formulas, let us discuss the physics of the radiative decays and
where they locate within the landscape of quarkonium physics at large. In Fig. 6.1
we show part of the charmonium and bottomonium spectrum (mainly below threshold)
together with some of the most significant E1 decays that have been observed. The
basic kinematics of the decay are displayed in Fig. 6.2. We argued in Chapter 2 that the
weakly-coupled regime of pNRQCD is suitable for the study of quarkonium states that
lie in the lower half of Fig. 6.1. In this regime the Lagrangian of pNRQCD relevant for
radiative transitions can be written as

LpNRQCD = LQQ̄(S,O) + ∆LE1,M1(S,O,Eem,Bem), (6.1)

59



9500

10000

10500

M
e
V

11S0

13S1

11P1
13PJ

21S0
23S1

21P1 23PJ

33S1

33P1

43S1BB̄

Bottomonium E1 decays (PDG)

3000

3200

3400

3600

3800

M
e
V

11S0

13S1

11P1
13PJ

21S0
23S1

DD̄

Charmonium E1 decays (PDG)

Figure 6.1: Part of the bottomonium and charmonium spectra showing some charac-
teristic E1 decays. The decays in black are those with a large branching fraction, the
decays in red have a status of seen in the PDG. Explicit values of the masses are given
in Appendix C, the values of the available branching fractions of the E1 decays from
different experimental sources are given in Sec. 6.2.

where we have separated the part of the Lagrangian that depends only on the quark and
antiquark fields and the part that includes the pNRQCD operators responsible for the
coupling of the theory to electromagnetism (EM). S andO are the quark-antiquark singlet
and octet fields respectively, which were described in Chapter 2. The index of δL indicates
if its operators are responsible for the E1 or M1 transitions. In the weakly-coupled regime,
the Wilson coefficients of the theory (potentials) are purely perturbative quantities. In
the case of the singlet potential its explicit expressions are listed in Eqs. (5.7)-(5.14)
of Chapter 5. If we are interested in the physics of states that lie in the upper half of
Fig. 6.1, strongly-coupled states, the Lagrangian of pNRQCD reduces to

LpNRQCD = LQQ̄(S) + ∆LE1,M1(S,Eem,Bem), (6.2)

i.e., it includes the singlet field and the EM operators corresponding to ultrasoft photons,
Eem and Bem. The potentials are now non-perturbative quantities, whose expressions
in the EST we calculated in Chapter 4. In our evaluation of the E1 decay rates, we
will assume that all initial states are strongly-coupled. From Fig. 6.1 we see that the
lowest E1 decay is characterized in terms of quantum numbers as 1P → 1Sγ in char-
monium or bottomonium. Our assumption about the nature of the initial state implies
that we are considering 1P to be a strongly-coupled state, that is, we assume that the
QQ̄ potential for the 1P bottomonium state receives seizable non-perturbative contribu-
tions1. An alternative approach would be to consider the state 1P as weakly-coupled;
in this case the relevant Lagrangian is given by Eq. (6.1) with a purely perturbative
QQ̄ potential. It turns out that if one follows the later approach, the O(v2) relativistic
corrections to the leading E1 decay rate develop non-perturbative contributions originat-

1The typical radius of the 1P charmonium state is large enough to be considered strongly-coupled.
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Figure 6.2: Kinematics of the H → H ′γ decay. Momenta given in the center-of-mass
frame. In the language of pNRQCD, the states H and H ′ correspond to singlet fields
and γ corresponds to an ultrasoft photon.

ing from the presence of the octet field in the Lagrangian [21]. An evaluation of these
contributions requires some assumption about the non-perturbative regime of QCD. In
our evaluation, we will assume that all non-perturbative contributions to the decay rates
are parametrized by the long-range potential that we calculated in the EST, and that
the Lagrangian required to describe the decay is given by Eq. (6.2).
Considering now the upper part of Fig. 6.1, wee see that an equivalent scenario arises
in the non-perturbative regime, namely, a transition among strongly-coupled states, like
3P → 3S, may be studied considering a purely non-perturbative potential. Here we
are taking a hybrid approach, in which the potential receives contributions from both
regimes. We assume that lower and higher states are eigenstates of the same Hamil-
tonian whose potential we have constructed in Chapter 5. One could think of a more
elaborate approach, in which higher states are eigenstates of a purely non-perturbative
potential and lower states eigenstates of a purely perturbative one. Such an approach
would change the explicit formulas for the relativistic corrections to the rates that we
will present in the following sections and, very likely, complicate the calculation of decay
rates of transitions such as 3P → 1S. Nevertheless, it would be interesting to see the
results of such a study.
In the following we will assume that the Lagrangian describing all the E1 transitions is
given by Eq. (6.2) and that the sum of the EST and perturbative potentials, Eqs. (5.1)
and (5.6) respectively, with each of the power countings of Chapter 5, describe the physics
of all the quarkonium states involved in the transitions.
Let us conclude this section with some words about threshold effects. We have said al-
ready that we will only evaluate transitions among states that lie below their respective
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open-flavor thresholds. If one wants to evaluate decay rates in which the initial state lies
above threshold, the coupling of quarkonium states to B mesons for bottomonium and
to D mesons for charmonium should be incorporated in the Lagrangian. For transitions
in which the initial state is below but close to threshold, for instance, transitions with an
initial state 3P in bottomonium, the contributions of these mesons in loops may become
important. These effects have been left out of the study performed in [21] and they will
not be considered here. We can think of these effects as an additional source of uncer-
tainty that we will assume is small enough to be absorbed in the uncertainty coming
from other sources that we will do consider.

6.1.2 The relativistic O(v2) corrections to the E1 decay rate

The results we present in this section profit from two of the main features of pNRQCD.
The first one is that the theory allows a quantum-mechanical description of quarkonium
physics that is fully equivalent to QCD when studying the same energy scale. The
second one is that the relativistic corrections to some observable can be incorporated
systematically as an expansion in powers of the quark-antiquark relative velocity v once
the power counting of the relevant Lagrangian operators has been established. In the
case of the E1 transitions, the relativistic O(v2) corrections to the decay rates have been
calculated using pNRQCD explicitly in [21]; in this section we present the main results
of that paper, whose notation we follow closely.
The general formula for the decay rates is given by

ΓH→H′γ =

∫
d3PH′

(2π)3

d3k

(2π)3

1

2k

1

Nλ

∑
λ,λ′σ

|AH→H′γ |2(2π)4δ4(PH − k − PH′)

=
1

8π2

(
1− kγ

MH

)∫
dkk

∫
dΩ(k̂)δ(k − kγ)

1

Nλ

∑
λλ′σ

|AH→H′γ |2, (6.3)

where PH , PH′ , k are the 4-momenta of the initial state, final state and photon respec-
tively, λ and λ′ are the polarization of initial and final state, σ is the photon polarization,
MH is the initial quarkonium state mass and kγ is the photon energy that, following the
kinematics of Fig. 6.2, is given by

kγ = |k| =
M2
H −M2

H′

2MH
. (6.4)

The amplitude AH→H′γ is defined through

AH→H′γ = −〈H ′(P′, λ′)γ(k, σ)|
∫
d3R{L(0)

E1 + δLE1}|H(P, λ)〉, (6.5)

where L(0)
E1 is the leading operator relevant for the E1 decays in the pNRQCD Lagrangian

and δLE1 accounts for higher order operators. The quarkonium state |H〉 may include
corrections due to relativistic corrections to the QQ̄ potential, explicitly

|H〉 = |H〉(0) + |H〉(1) + . . . , (6.6)
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where |H〉(0) is the LO quarkonium state given by

|H(P, λ)〉(0) =

∫
d3R

∫
d3r eiP·RTr

{
φ

(0)
H(λ)S

†(r,R)|US〉
}
, (6.7)

with S being the singlet operator and |US〉 the vacuum that only contains ultrasoft
gluons and photons. The wavefunctions φ(0)

H are obtained from solving the Schrödinger
equation using the leading order QQ̄ potential, i.e.,(

p2

m
+ V LO

)
φ

(0)
H = EHφ

(0)
H , (6.8)

The LO decay rate ΓLO
H→H′γ is obtained considering just the LO state |H〉(0) and the LO

operator L(0)
E1 given by2

L(0)
E1

= eeQ

∫
d3rTr

{
S†r ·EemS

}
. (6.9)

where e is the electron charge, eQ is the fractional quark electric charge, r is the quark-
antiquark separation vector and Eem is the electric field operator.
In order to get the LO decay rate we recall the canonical equal-time commutation relation
for the singlet field given in Chapter 2[

Sij(r,R), S†kl(r
′,R′)

]
= δilδjkδ

(3)(r− r′)δ(3)(R−R′), (6.10)

where (i, j), (k, l) are the spin indices, R is the coordinate of the center of mass of the
quark-antiquark system, together with the following relations

〈γ(k, σ)|Eem(R)|0〉 = −ikε∗(σ)e−ik·R, (6.11)
〈H(P′, λ′)|H(P, λ)〉 = (2π)3δ(3)(P−P′)δλλ′ , (6.12)

where ε(σ) is the photon polarization vector. The first relation is obtained from the
usual Lorenz-invariant normalization of the photon field and the second one is the non-
relativistic normalization of the quarkonium states. In this last relation also the nor-
malization of φ(0)

H(λ) is implicit. The angular parts of φ(0)
H(λ) for L = 0, 1, 2 have been

calculated in Refs. [21, 80, 82, 83], to which we refer for explicit expressions. Using
Eqs. (6.3)-(6.12) the LO decay rates of the transitions we will evaluate read [21]

ΓLO
n 3PJ→n′ 3S1γ

= ΓLO
n 1P1→n′ 1S0γ

= Γ
(0)
nn′ , (6.13)

ΓLO
n 3S1→n′ 3PJγ =

2J + 1

3
Γ

(0)
nn′ , (6.14)

ΓLO
n 1S0→n′ 1P1γ

= 3Γ
(0)
nn′ , (6.15)

2Here we use the fact that the Wilson coefficient associated with this operator is found to be equal
to 1, for details see [21].
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where

Γ
(0)
nn′ ≡

4

9
αeme

2
Qk

3
γI3(n1, n′0)2, (6.16)

αem is the fine structure constant and the integrals IN are defined as

I
(k)
N (nL, n′L′) ≡

∫ ∞
0

drrNRn′0(r)
dk

drk
Rn1(r), (6.17)

where Rnl corresponds to the radial part of the wavefunction φH(r).
The relativistic corrections to the LO decay rate come from considering higher order
operators in the pNRQCD Lagrangian, i.e., the term δLE1 in Eq. (6.5), and from the
inclusion of the relativistic corrections to the QQ̄ potential, i.e., from considering the
state corrections |H〉(i) in Eq. (6.6). For convenience, let us separate these corrections
as3

ΓNLO
H→H′γ = ΓLO

H→H′γ(1 +RH→H′γ + δΓH→H′γ), (6.18)

where RH→H′γ accounts for the higher order corrections to the quarkonium state and
δΓH→H′γ accounts for the contributions due to higher order pNRQCD operators. The
explicit expression of RH→H′γ is given in the next section. The corrections δΓH→H′γ
have been calculated in [21] considering the following operators in δLE1

δLE1 =

∫
d3r Tr

{
1

24
V (r∇)2r·ES†r · [(r ·∇)2eeQE

em]S

+
i

4m
V ∇·(r×B)S†{∇·, r× eeQBem}S

+
i

12m
V ∇r·(r×(r∇)B)S†{∇r·, r× [(r ·∇)eeQB

em]}S

+
1

4m
V (r∇)σ·B[S†,σ] · [(r ·∇)eeQB

em]S

− i

4m2
V σ·(E×∇r)[S†,σ] · (eeQEem ×∇r)S

}
(6.19)

where V (r∇)2r·E , V ∇·(r×B), V ∇r·(r×(r∇)B), V (r∇)σ·B, V σ·(E×∇r) are the Wilson coeffi-
cients associated with their respective operators, ∇ acts on the center of mass coordinate

3Although, due to the presence of potential corrections that may scale as v in the velocity counting,
Eq. (6.18) may correspond to a LO+NLO+NNLO decay rate, in order to keep the notation simple we
will refer to the decay rate that includes the full RH→H′γ and δΓH→H′γ corrections simply as ΓNLO

H→H′γ .
We will never consider decay rates that scale just as v, so it shall be clear that when we refer to the NLO
rates we are referring to the expression of Eq. (6.18), and that when we refer to NLO amplitudes (see
below) or NLO potential corrections we are referring to terms that scale as v in the case of Counting 1
and 3, or as 1/m in the case of Counting 2. It was established in [21] that the first corrections to the
decay rates due to higher order operators in the pNRQCD Lagrangian, δΓH→H′γ , are of order v2, so
Eq. (6.18) accounts for the NLO corrections to the LO decay rate before establishing what is the size
(or the shape) of the term RH→H′γ , hence the motivation for our notation.
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R and ∇r acts on r. These terms are all the v2-suppressed operators with respect to
L(0)
E1 if one considers the following power counting

kγ ∼ mv2,

r ∼ 1/mv,

∇r ∼ mv,

∇ ∼ mv2,

Eem,Bem ∼ k2
γ . (6.20)

The Wilson coefficients were calculated matching pNRQCD with NRQCD in [21], they
read

V (r∇)2r·E = V ∇·(r×B) = V ∇r·(r×(r∇)B) = 1 , (6.21)
V (r∇)σ·B = cem

F , (6.22)
V σ·(E×∇r) = cem

S , (6.23)

where cem
F and cem

S are Wilson coefficients of NRQCD (see Eq. (2.22)), their explicit
expressions at order αs read [37, 39]

cem
F = 1 + CF

αs

2π
, (6.24)

cem
S = 2cem

F − 1. (6.25)

The values of the Wilson coefficients in Eqs. (6.21)-(6.23) are found to be valid at all
orders in αs.
Once we are provided with the Wilson coefficients, the corrections δΓH→H′γ can be
computed by first inserting δLE1 in Eq. (6.5), setting |H〉 = |H〉(0) and then putting
the resulting amplitudes into the formula of the decay rates in Eq. (6.3). The final
expressions for these corrections are [21]

δΓn 3PJ→n′ 3S1γ = −
k2
γ

60

I5(n1, n′0)

I3(n1, n′0)
− kγ

6m

+

(
J(J + 1)

2
− 2

)(
1

m2

I
(1)
2 (n1, n′0) + 2I1(n1, n′0)

I3(n1, n′0)
− kγ

2m

)
,

(6.26)

δΓn 1P1→n′ 1S0γ = − kγ
6m
−
k2
γ

60

I5(n1, n′0)

I3(n1, n′0)
, (6.27)

δΓn 3S1→n′ 3PJγ = δΓn 3PJ→n′ 3S1
(kγ → −kγ , n→ n′, n′ → n), (6.28)

δΓn 1S0→n′ 1P1γ = δΓn 1P1→n′ 1S0
(kγ → −kγ , n→ n′, n′ → n). (6.29)

Notice that so far the formula of the decay rates and its relativistic corrections is com-
pletely model-independent, it only depends on the power counting assumed for the
pNRQCD operators, however, in order to evaluate the rates, a definite expression of
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the QQ̄ potential becomes necessary. The choice of the potential defines the explicit
shape of RH→H′γ and the numerical values of ΓLO

H→H′γ and δΓH→H′γ . Here we will
adopt the full-range potential presented in the previous chapter, yet, it is important to
recall that this choice is far from unique. We will discuss a little more about alternative
evaluations of the decay rates in Chapter 10.

About the M1 transitions

In the case of the radiative M1 transitions, in Ref. [80] all the Wilson coefficients of the
relevant pNRQCD operators have been obtained up to order 1/m2. When considering
weakly-coupled quarkonia, these operators fully determine the O(v2) relativistic correc-
tions to the M1 decay rates. Moreover, it turns out that for weakly-coupled quarkonia,
there are no non-perturbative contributions to the decay rates. As a consequence of this,
in contrast to the E1 case, the evaluation of M1 transitions among lower states (e.g.
J/ψ → ηcγ) can be performed in a fully perturbative manner. Such an analysis has been
performed in [81], their results agree with the available experimental data.
For strongly-coupled quarkonia one should also consider the contribution of an 1/m3 op-
erator in order to obtain the full O(v2) corrections to the rate. The value of the Wilson
coefficient associated with this operator is still missing.
For more details about the study of M1 transitions within a pNRQCD framework we
refer the reader to [80] and [81]; for the rest of this section we will focus only on the E1
transitions.

6.1.3 Relativistic corrections to the quarkonium state

In this section we give the explicit expression of RH→H′γ in Eq. (6.18) that follows from
adopting the potential of Chapter 5. Before we start, it will be convenient to introduce
some notation; for a given amplitude or sum of amplitudes A we define Ā as

Ā ≡ A

A
(0)
H→H′γ

, (6.30)

where A(0)
H→H′γ is the LO amplitude defined as

A
(0)
H→H′γ ≡ −

(0)〈H ′γ|
∫
d3RL(0)

E1
|H〉(0), (6.31)

with the LO quarkonium states as in Eq. (6.7). Considering the factorization of Eq. (6.18),
up to second order corrections to the initial and final quarkonium states, RH→H′γ is given
by

RH→H′γ = 2ĀRc + B̄2
Rc , (6.32)
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where ARc is given by

ARc ≡ −(0)〈H ′γ|
∫
d3RL(0)

E1
|H〉(1) −(1)〈H ′γ|

∫
d3RL(0)

E1
|H〉(0)

− (0)〈H ′γ|
∫
d3RL(0)

E1
|H〉(2) −(2)〈H ′γ|

∫
d3RL(0)

E1
|H〉(0)

− (1)〈H ′γ|
∫
d3RL(0)

E1
|H〉(1). (6.33)

The terms |H〉(1), |H〉(2) and their final state equivalents are the relativistic corrections
to the quarkonium state defined through Eq. (6.6). Notice that since RH→H′γ depends
on these corrections and, therefore, on the shape of the NLO and NNLO corrections
to the leading QQ̄ potential, RH→H′γ is a counting-depending quantity. This is made
explicit by the inclusion of the index c in ARc and BRc ; later we will label c = 1, 2 or 3
to distinguish between the three power countings we considered in Chapter 5. The term
BRc includes the terms of ARc that scale as the NLO potential, i.e., terms that have only
one state correction of first order calculated from V NLO. This term would cancel in the
case when the relativistic corrections to the potential have a homogeneous size, i.e. there
is no distinction between NLO and NNLO contributions.
The first order correction to the state, |H〉(1), is given by

|H(P)〉(1) =
∑
H′ 6=H

(0)〈H ′(P)|
∫
d3R

∫
d3rTr{S†δhS}|H(P)〉(0) |H ′(P)〉(0)

E
(0)
H − E

(0)
H′

, (6.34)

where
δh = V NLO + V NNLO. (6.35)

The second order correction, |H〉(2), is given by

|H(P)〉(2) =∑
Ȟ 6=H

∑
H̃ 6=H

|Ȟ〉(0)
(0)〈Ȟ|

∫
d3Rd3rTr{S†V NLOS}|H̃〉(0) (0)〈H̃|

∫
d3Rd3rTr{S†V NLOS}|H〉(0)

(E
(0)
H − E

(0)

Ȟ
)(E

(0)
H − E

(0)

H̃
)

−
∑
Ȟ 6=H

|Ȟ〉(0)
(0)〈H|

∫
d3Rd3rTr{S†V NLOS}|H〉(0) (0)〈Ȟ|

∫
d3Rd3rTr{S†V NLOS}|H〉(0)

(E
(0)
H − E

(0)

Ȟ
)2

− 1

2
|H〉(0)

∑
Ȟ 6=H

(0)〈H|
∫
d3Rd3rTr{S†V NLOS}|Ȟ〉(0) (0)〈Ȟ|

∫
d3Rd3rTr{S†V NLOS}|H〉(0)

(E
(0)
H − E

(0)

Ȟ
)2

.

(6.36)

The expressions for |H〉(1) and |H〉(2) are obtained using quantum mechanical perturba-
tion theory to account for the relativistic corrections to the LO potential.
Explicitly, the term BRc is then given by

BRc =(0) 〈H ′γ|
∫
d3RL(0)

E1
|H〉(1)

nlo +
(1)
nlo〈H

′γ|
∫
d3RL(0)

E1
|H〉(0), (6.37)
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where |H〉(1)
nlo is the first order state correction originated from the V NLO potential, that

is, it is obtained by replacing δh just with V NLO in Eq. (6.34).
With the previous definitions, the nominal size of RH→H′γ is the same as the NNLO
corrections to the potential, which in the case of the Counting 1 and 3 implies that
RH→H′γ nominally scales as v2; the numerical realization of this scaling is studied in
Chapter 8.
The calculation of the explicit expressions for ARc and BRc , and therefore RH→H′γ , is
lengthy but straightforward. For a given counting, one starts by solving the Schrödinger
equation (Eq. (6.8)) for the LO potential for the initial and final states, this calculation
determines the energy eigenvalues E(0)

H and E
(0)
H′ and the expressions for |H〉(0) and

|H ′〉(0). Using these results and the expressions for the NLO and NNLO potentials in
the considered counting, the expressions for |H〉(1) (Eq. (6.34)), |H〉(2) (Eq. (6.36)) and
the corresponding final state equivalents can be determined in terms of a perturbative
sum. What follows is to insert these expressions together with L(0)

E1
(Eq. (6.9)) into the

formulas for ARc (Eq. (6.33)) and BRc (Eq. (6.37)). Then using the canonical equal-time
commutation relation given in Eq. (6.10) together with Eqs. (6.11) and (6.12), one is left
with the final expressions for ARc and BRc in terms of a sum of amplitudes, each of them
written as an infinite perturbative sum, which in turn originates from one of the terms
of the NLO and NNLO potentials.
Before giving ARc and BRc in each counting, it is convenient to introduce some notation.
Let us label the amplitudes on which ARc and BRc depend as ASP , where the index P
(potential) labels the term of the NLO or NNLO potential from which the amplitude
originates4 and the index S (sequence) denotes if the amplitude corresponds to an initial
(S = i), final (S = f) or initial and final (S = i f) state correction. In the case of second
order corrections, we use the notation P ≡ (2), c where (2) denotes that the amplitude
originates from a second order correction and c = 1, 2, 3 indicates which counting is being
adopted. The exact expressions for all the ASP amplitudes will follow shortly, first we list
the expressions for ARc and BRc in each of the countings.
Adopting Counting 1 for bottomonium and charmonium decays, we get

ĀR1 = Āip4 + Āf
p4

+ Āi
V EST
(1/m)

+ Āf
V EST
(1/m)

+ Āi
V pert.
(1/m)

+ Āf
V pert.
(1/m)

+ ĀiVp2
+ ĀfVp2

+ Āi
V pert.

L2
+ Āi

V EST
L2

+ ĀfVL2
+ Āi

V pert.
LS

+ Āi
V EST
LS

+ ĀfVLS + ĀiVS2
+ ĀfVS2

+ ĀiVS12
+ ĀfVS12

+ ĀiVδ(r) + ĀfVδ(r) + Āi(2),1 + Āf(2),1 + Āif(2),1, (6.38)

B̄R1 = Āi
V EST
(1/m)

+ Āf
V EST
(1/m)

. (6.39)

4In the case of amplitudes originating from the kinetic correction proportional to p4, we use P = p4.
For the other amplitudes, we follow the notation introduced in Sec. 5.1, except in the case when P = VL2

and P = VLS , in which case it should be understood that the amplitude is coming from the sum of the
perturbative and EST potentials, i.e., from VL2 = V pert.

L2 + V EST
L2 and VLS = V pert.

LS + V EST
LS respectively.
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Adopting Counting 2 also for both flavors, we have

ĀR2 = Āip4 + Āf
p4

+ Āi
V EST
(1/m)

+ Āf
V EST
(1/m)

+ Āi
V pert.
(1/m)

+ Āf
V pert.
(1/m)

+ ĀiVp2
+ ĀfVp2

+ Āi
V pert.

L2
+ Āi

V EST
L2

+ ĀfVL2
+ Āi

V pert.
LS

+ Āi
V EST
LS

+ ĀfVLS + ĀiVS2
+ ĀfVS2

+ ĀiVS12
+ ĀfVS12

+ ĀiVδ(r) + ĀfVδ(r) + Āi(2),2 + Āf(2),2 + Āif(2),2

+ Āi
V EST
(1/m2)

+ Āf
V EST
(1/m2)

, (6.40)

B̄R2 = Āi
V EST
(1/m)

+ Āf
V EST
(1/m)

+ Āi
V pert.
(1/m)

+ Āf
V pert.
(1/m)

. (6.41)

For Counting 3 in the case of bottomonium decays ĀR and B̄R are given by Eqs. (6.38)
and (6.39) respectively. For charmonium decays, we have

Ācharm
R3

= Āip4 + Āf
p4

+ ĀiVCoul.
+ ĀfVCoul.

+ Āi
V EST
(1/m)

+ Āf
V EST
(1/m)

+ Āi
V EST
L2

+ ĀfVL2

+ Āi
V EST
LS

+ ĀfVLS + Āi(2),3 + Āf(2),3 + Āif(2),3, (6.42)

B̄charm
R3

= Āi
V EST
(1/m)

+ Āf
V EST
(1/m)

+ ĀiVCoul.
+ ĀfVCoul.

. (6.43)

The explicit expression of each ASP amplitude will be given in terms of the integrals IN
defined in Eq. (6.17) together with the following definitions:

ILog(nL, n
′L′) ≡

∫ ∞
0

dr yn′L′(r)ynL(r) ln(
√
κr), (6.44)

INV (nL, n′L′) ≡
∫ ∞

0
dr yn′L′(r)ynL(r) [V LO(r)]N , (6.45)

where ynL are the reduced radial wavefunctions obtained after solving the Schrödinger
equation for the LO potential, i.e., RnL(r) = ynL(r)/r. In the following we will drop the
index (0) of the LO eigenvalues; it should be understood that in each counting the eigen-
values EnL are obtained after solving the Schödinger equation with the corresponding
LO potential.
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Considering n 2S+1PJ → n′ 2S+1S1 decays for the momentum-dependent amplitudes, we
get

Āip4 = − 1

4m

∑
m6=n

−(En1 + Em1)I1
V (n1,m1) + I2

V (n1,m1)

En1 − Em1

I3(m1, n′0)

I3(n1, n′0)
, (6.46)

Āf
p4

= − 1

4m

∑
m6=n′

−(Em0 + En′0)I1
V (m0, n′0) + I2

V (m0, n′0)

En′0 − Em0

I3(n1,m0)

I3(n1, n′0)
, (6.47)

ĀiVp2
= −CFa

2m

∑
m 6=n

(En1 + Em1)I1(n1,m1) + 2CFaI0(n1,m1)

En1 − Em1

I3(m1, n′0)

I3(n1, n′0)
, (6.48)

ĀfVp2
= −CFa

2m

∑
m 6=n′

(En0 + Em0)I1(m0, n′0) + 2CFaI0(m0, n′0)

En′0 − Em0

I3(n1,m0)

I3(n1, n′0)
.

(6.49)

For S = 0 all the spin-dependent amplitudes cancel. For S = 1, we get

Āi
V pert.
LS

=
3CFa

2m2

[
J(J + 1)

2
− 2

] ∑
m 6=n

I−1(n1,m1)

En1 − Em1

I3(m1, n′0)

I3(n1, n′0)
, (6.50)

Āi
V EST
LS

= − κ

2m2

[
J(J + 1)

2
− 2

] ∑
m 6=n

I1(n1,m1)

En1 − Em1

I3(m1, n′0)

I3(n1, n′0)
, (6.51)

ĀfVLS = 0, (6.52)

ĀiVS2
= 0, (6.53)

ĀfVS2
=

2CFa

3m2

∑
m 6=n′

Rn′0(0)Rm0(0)

En′0 − Em0

I3(n1,m0)

I3(n1, n′0)
, (6.54)

ĀiVS12
= −CFa

2m2
FS12(J)

∑
m 6=n

I−1(n1,m1)

En1 − Em1

I3(m1, n′0)

I3(n1, n′0)
, (6.55)

ĀfVS12
= −CFa

2m2
FS12(J)

∑
m 6=n′−2

I−1(m2, n′0)

En′0 − Em2

I3(n1,m2)

I3(n1, n′0)
, (6.56)

where FS12(0) = 2, FS12(1) = −1, FS12(2) = 1/5.
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For the momentum-independent, spin-independent, amplitudes we obtain

ĀiVCoul.
= −CFa

∑
m6=n

I1(n1,m1)

En1 − Em1

I3(m1, n′0)

I3(n1, n′0)
, (6.57)

ĀfVCoul.
= −CFa

∑
m6=n′

I1(m0, n′0)

En′0 − Em0

I3(n1,m0)

I3(n1, n′0)
, (6.58)

Āi
V EST
(1/m)

=
2κ

πm

∑
m 6=n

ILog(n1,m1)

En1 − Em1

I3(m1, n′0)

I3(n1, n′0)
, (6.59)

Āi
V pert.
(1/m)

= −CFCAa
2

2m

∑
m6=n

I0(n1,m1)

En1 − Em1

I3(m1, n′0)

I3(n1, n′0)
, (6.60)

Āf
V EST
(1/m)

=
2κ

πm

∑
m 6=n′

ILog(m0, n′0)

En′0 − Em0

I3(n1,m0)

I3(n1, n′0)
, (6.61)

Āf
V pert.
(1/m)

= −CFCAa
2

2m

∑
m6=n′

I0(m0, n′0)

En′0 − Em0

I3(n1,m0)

I3(n1, n′0)
, (6.62)

Āi
V EST
(1/m2)

= − 9ζ3κ
2

2π3m2

∑
m 6=n

I3(n1,m1)

En1 − Em1

I3(m1, n′0)

I3(n1, n′0)
, (6.63)

ĀiVδ(r) = 0, (6.64)

ĀfVδ(r) =
CFa

4m2

∑
m 6=n′

Rn′0(0)Rm0(0)

En′0 − Em0

I3(n1,m0)

I3(n1, n′0)
, (6.65)

Āf
V EST
(1/m2)

= − 9ζ3κ
2

2π3m2

∑
m 6=n′

I3(m0, n′0)

En′0 − Em0

I3(n1,m0)

I3(n1, n′0)
, (6.66)

Āi
V pert.

L2
=
CFa

m2

∑
m 6=n

I−1(n1,m1)

En1 − Em1

I3(m1, n′0)

I3(n1, n′0)
, (6.67)

Āi
V EST
L2

= − κ

3m2

∑
m 6=n

I1(n1,m1)

En1 − Em1

I3(m1, n′0)

I3(n1, n′0)
, (6.68)

ĀfVL2
= 0. (6.69)
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For the second order corrections due to the NLO potential, we obtain

Āi(2),c =
∑
m̌ 6=n

∑
m̃6=n

INLO
c (m̌1, m̃1)INLO

c (m̃1, n1)

(En1 − Em̌1)(En1 − Em̃1)

I3(m̌1, n′0)

I3(n1, n′0)

−
∑
m̌ 6=n

INLO
c (n1, n1)INLO

c (m̌1, n1)

(En1 − Em̌1)2

I3(m̌1, n′0)

I3(n1, n′0)

− 1

2

∑
m̌ 6=n

INLO
c (n1, m̌1)INLO

c (m̌1, n1)

(En1 − Em̌1)2
,

(6.70)

Āf(2),c =
∑
m̌ 6=n

∑
m̃ 6=n

INLO
c (m̌0, m̃0)INLO

c (m̃0, n′0)

(En′0 − Em̌0)(En′0 − Em̃0)

I3(n1, m̌0)

I3(n1, n′0)

−
∑
m̌ 6=n

INLO
c (n′0, n′0)INLO

c (m̌0, n′0)

(En′0 − Em̌0)2

I3(n1, m̌0)

I3(n1, n′0)

− 1

2

∑
m̌6=n

INLO
c (n′0, m̌0)INLO

c (m̌0, n′0)

(En′0 − Em̌0)2
,

(6.71)

Āif(2),c =
∑
m̌ 6=n

∑
m̃ 6=n

INLO
c (n′0, m̌0)INLO

c (m̃1, n1)

(En′0 − Em̌0)(En1 − Em̃0)

I3(m̃1, m̌0)

I3(n1, n′0)
, (6.72)

where, for Counting c, the integrals INLO
c are given by

INLO
1 (nL, n′L′) =

2κ

πm
ILog(nL, n

′L′), (6.73)

INLO
2 (nL, n′L′) =

2κ

πm
ILog(nL, n

′L′)− CFCAa
2

2m
I0(nL, n′L′), (6.74)

INLO
3 (nL, n′L′) =

2κ

πm
ILog(nL, n

′L′)− CFaI1(nL, n′L′). (6.75)

In the case of the n 2S+1S1 → n′ 2S+1P ′J transitions (n > n′) the amplitudes correspond
to Eqs. (6.46)-(6.72) with n↔ n′, which is equivalent to exchanging Ai ↔ Af .
The results of the evaluation of δΓH→H′γ and RH→H′γ , and therefore the decay rates, are
presented in Chapter 8. Details about the numerical evaluation of the relevant formulas
are given in Chapter 7.

6.2 Experimental results overview

The experimental landscape of the quarkonium radiative decays has changed dramatically
in recent years and it has the prospect to experience further change in the near future.
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Experiments like BES, BELLE, BaBar and CLEO have improved the available data in
many of the radiative decays, measuring some of them for the first time. Regarding the
E1 decays, among the most important results we have:

• The first observation of the hc(1P ) → ηc(1S)γ decay reported by the BESIII ex-
periment in [84].

• The first observation of the equivalent bottomonium decay, hb(1P ) → ηb(1S)γ,
reported by the BaBar and BELLE collaborations in [85] and [86] respectively.

• The improved measurements of some of the χbJ(nP ) → Υγ(mS) decays reported
by the BaBar collaboration in [87].

• The first observation of the χbJ(3P )→ Υ(3S)γ decay reported by LHCb in [88].

• The measurement of the charmonium J/ψ, ψ(2S) → χc(1S)γ decay branching
ratios reported by BELLE in [89].

• A recent improvement in the measurement of the hb(1P ) → ηb(1S)γ branching
ratio reported by BELLE in [90].

Also we can add to this list the recent estimation of the upper limit for the total width
of the χb0(1P ) state reported by BELLE in [91]. This result is not strictly related to the
E1 decay, however, combining our result for the χb0(1P ) → Υ(1S)γ decay rate and the
experimental value of the corresponding branching fraction (see next section), we will
be able to estimate the total width of the initial state; the results of this evaluation are
given in Chapter 9.
Regarding the M1 decays, the list may be extended by:

• The first observation of the Υ(2S)→ ηb(1S)γ decay made by BaBar [92]

• The first observation of the Υ(3S)→ ηb(1S)γ decay made by CLEO [93].

• The measurement of the upper limits of the ψ(3770)→ ηc(1S, 2S) branching ratio,
which has been reported by BESIII in [94].

Other radiative decays of charmonium have been recently reported by BESIII in [95].
To these experimental results we may add lattice studies of the M1 J/ψ → ηc(1S)γ,
ηc(2S)→ J/ψγ and E1 hc(1P )→ ηc(1S)γ decays carried out in [96] and [97] and of the
M1 Υ(2S) → ηb(1S)γ decay performed in [98]. New developments in the evaluation of
charmonium radiative transitions on the lattice have been recently reported in [99].
In what is left of this section, we proceed to give the relevant experimental values of the
E1 decays that we will use to compare our final results later in Chapter 9.
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6.2.1 E1 decays in the PDG

Since many of the experimental results for the radiative transitions have been incorpo-
rated into the PDG averages [78], we will use the PDG as our main source of experimental
data. In Tables 6.1 and 6.2, we show values quoted in the (by the time of writing) latest
PDG report for the E1 branching ratios of bottomonium and charmonium decays respec-
tively. When available, we also quote the PDG value for the total width of the initial
state.
In Table 6.3, we display the PDG averages of the total width of the ηb(2S) and ηc(2S)
states. In Chapter 9 we will use these values to estimate the branching ratios of the
ηb(2S)→ hb(1P ) and ηc(2S)→ hc(1P ) decays.

Transition ΓH ΓH→H′γ/ΓH
hb(1P )→ ηb(1S)γ NA 0.49+0.08

−0.07

hb(2P )→ ηb(1S)γ NA 0.22± 0.05

hb(2P )→ ηb(2S)γ NA 0.48± 0.13

χb0(1P )→ Υ(1S)γ NA (1.76± 0.35)%

χb1(1P )→ Υ(1S)γ NA 0.339± 0.022

χb2(1P )→ Υ(1S)γ NA 0.191± 0.012

χb0(2P )→ Υ(1S)γ NA (9± 6)× 10−3

χb1(2P )→ Υ(1S)γ NA (9.2± 0.8)%

χb2(2P )→ Υ(1S)γ NA (7.0± 0.7)%

χb0(2P )→ Υ(2S)γ NA (4.6± 2.1)%

χb1(2P )→ Υ(2S)γ NA 0.199± 0.019

χb2(2P )→ Υ(2S)γ NA 0.106± 0.026

Υ(2S)→ χb0(1P )γ 31.98± 2.63 [keV] (3.8± 0.4)%

Υ(2S)→ χb1(1P )γ 31.98± 2.63 [keV] (6.9± 0.4)%

Υ(2S)→ χb2(1P )γ 31.98± 2.63 [keV] (7.15± 0.35)%

Υ(3S)→ χb0(1P )γ 20.32± 1.85 [keV] (2.7± 0.4)× 10−3

Υ(3S)→ χb1(1P )γ 20.32± 1.85 [keV] (9± 5)× 10−4

Υ(3S)→ χb2(1P )γ 20.32± 1.85 [keV] (9.9± 1.3)× 10−3

Υ(3S)→ χb0(2P )γ 20.32± 1.85 [keV] (5.9± 0.6)%

Υ(3S)→ χb1(2P )γ 20.32± 1.85 [keV] 0.126± 0.012

Υ(3S)→ χb2(2P )γ 20.32± 1.85 [keV] 0.131± 0.016

Table 6.1: Experimental data of bottomonium E1 decays available in the PDG [78]. The
total width of the initial state and the branching fraction of the corresponding decay are
labeled as ΓH and ΓH→H′γ/ΓH respectively.
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Transition ΓH ΓH→H′γ/ΓH
hc(1P )→ ηc(1S)γ 0.7 + 0.4 [MeV] 0.51± 0.06

χc0(1P )→ J/ψγ 10.5± 0.6 [MeV] (1.27± 0.06)× 10−2

χc1(1P )→ J/ψγ 0.84± 0.04 [MeV] 0.339± 0.012

χc2(1P )→ J/ψγ 1.93± 0.11 [MeV] 0.192± 0.007

ψ(2S)→ χc0(1P )γ 298± 8 [keV] (9.99± 0.27)× 10−2

ψ(2S)→ χc1(1P )γ 298± 8 [keV] (9.55± 0.31)× 10−2

ψ(2S)→ χc2(1P )γ 298± 8 [keV] (9.11± 0.31)× 10−2

Table 6.2: Experimental data of charmonium E1 decays available in the PDG [78], values
as in Table 6.1.

State ΓH [MeV] (exp.)
ηb(2S) < 24

ηc(2S) 11.3+3.2
−2.9

Table 6.3: PDG values for the total width of the bottomonium and charmonium 2S spin
singlets.

6.2.2 Other E1 experimental results

We close this chapter by presenting some of the experimental measurements of E1 decays
that have not been incorporated (by the time of writing) to the PDG. The BaBar E1
results reported in [87] are presented in Tables 6.4 - 6.6 as they were presented in that
paper, that is, separating the values of the branching fractions obtained from the study
of different decay chains. In Table 6.7 we show the result for the hc → ηcγ branching
fraction recently reported by the BELLE experiment [90].

Transition ΓH→H′γ/ΓH (exp.)
χb0(1P )→ Υ(1S)γ 0.0206± 0.0032

χb1(1P )→ Υ(1S)γ 0.367± 0.024

χb2(1P )→ Υ(1S)γ 0.187± 0.011

Υ(2S)→ χb0(1P )γ 0.046± 0.010

Υ(2S)→ χb1(1P )γ 0.075± 0.0054

Υ(2S)→ χb2(1P )γ 0.0706± 0.0051

Table 6.4: Branching fractions of E1 bottomonium decays obtained by BaBar from the
analysis of the 2S → 1P → 1S decay chain, for details see [87].
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Transition ΓH→H′γ/ΓH (exp.)
χb0(2P )→ Υ(2S)γ 0.0131± 0.003

χb1(2P )→ Υ(2S)γ 0.211± 0.025

χb2(2P )→ Υ(2S)γ 0.09± 0.017

Υ(3S)→ χb0(2P )γ 0.046± 0.017

Υ(3S)→ χb1(2P )γ 0.145± 0.022

Υ(3S)→ χb2(2P )γ 0.12± 0.02

Table 6.5: Branching fractions of E1 bottomonium decays obtained by BaBar from the
analysis of the 3S → 2P → 2S decay chain, for details see [87].

Transition ΓH→H′γ/ΓH (exp.)
χb0(2P )→ Υ(1S)γ 0.0037± 0.0017

χb1(2P )→ Υ(1S)γ 0.1078± 0.0094

χb2(2P )→ Υ(1S)γ 0.061± 0.0069

Υ(3S)→ χb0(2P )γ 0.022± 0.016

Υ(3S)→ χb1(2P )γ 0.141± 0.014

Υ(3S)→ χb2(2P )γ 0.119± 0.014

Table 6.6: Branching fractions of E1 bottomonium decays obtained by BaBar from the
analysis of the 3S → 2P → 1S decay chain, for details see [87].

Transition ΓH→H′γ/ΓH (exp.)
11P1 → 11S0γ 0.56± 0.09

Table 6.7: Branching fraction of the hb → ηbγ decay reported by BELLE in [90].
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Chapter 7

Tools and methods for numerical
analysis

In this chapter we briefly review the tools and methods used in the numerical evaluations
presented in this thesis. We separate the tools between primary and custom. The first
ones are libraries with a focus on general applications, while the custom tools are the
collection of functions developed specifically for the fitting of theQQ̄ potential parameters
(Chapter 5) and the evaluation of the E1 decay rates. We close the chapter giving details
about the methods used to carry out the numerical evaluations.

7.1 Primary Tools

Python and IPython

Python [100] is a general purpose high-level programing language, its design emphasizes
code readability meaning that, generally, code written to perform a given task can be
understood easier when written in Python than when written in other languages. Usually
this also means that one needs to write fewer lines of code to implement an equivalent
function. Since it is a high-level language, CPU-intensive tasks like numerical calculations
under-perform in Python when compared to lower-level languages like C or Fortran.
There are various approaches to overcome this problem, one of them is to use wrappers
to embed lower-level functions within Python code1.
One of the popular applications of Python is as a scripting language, that is, for writing
files (scripts) that contain a set of function definitions and a list of commands that can
be executed later in a Python interpreter. Python can also be used within an interactive
environment called console, in which variables and functions can be defined and executed
on-the-fly, however, these definitions are lost once the console session is closed.
The interactive environment of the console is useful for quick evaluations or to test new
functions, whereas scripts are useful to store functions and instructions that need to be

1A popular alternative to the use of wrappers is Cython in which, as in lower-level languages, one
needs to define variable types, for more information about Cython see [101].
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called several times. An environment that mixes features of these two frameworks is the
notebook. The specific notebook environment we have used is called IPython2 [102, 103];
it allows the execution of blocks of code in an interactive way as in the console, but
additionally, as the scripts, the notebook file can be stored for later execution.
In recent years Python has become one of the most popular scientific scripting languages;
the integration of IPython with libraries like NumPy and SciPy (see below) provides a
powerful and flexible alternative to commercial software like Mathematica, Matlab or
Maple.

NumPy

NumPy [104] is an extension to the Python language that adds support for the manipulation
of large multi-dimensional arrays and matrices, together with a large library of high-level
mathematical functions that can operate on these arrays. In our calculations we have
used NumPy extensively to compute and store the wavefunctions that result from solving
the Schrödinger equation numerically. For more info about NumPy, see [105].

SciPy and Matplotlib

SciPy [106] is an open source Python library that contains, among others, modules for
optimization, linear algebra, integration, interpolation, special functions and differential
equation solvers. The library is extensive, here we will just review the three functions to
which we will refer later:

• scipy.integrate.simps: this function takes as input an array of the type
[f(xi), · · · , f(xf )] and returns the value of the integral

∫ xf
xi
f(x)dx calculated using

the Simpson rule for numerical integration [107].

• scipy.optimize.fsolve: it returns the roots of the set of (non-linear) equations
defined by Fi(x) = 0 given a starting estimate. It corresponds to a wrapper of the
Fortran MINPACK hybrd [108] and hybrj [109] routines, which are based on the
Powell method for the solution of non-linear systems [110].

• scipy.optimize.curve_fit: it uses non-linear least squares to fit a function to
data. Internally it corresponds to an implementation of the Levenberg-Marquardt
algorithm [111]. From its output the standard deviation of the fitted parameters
can be calculated.

The source code of the implementation of these functions can be directly checked from
the SciPy website [106]. Together with these functions we have Matplotlib [112], that
is the plotting library of SciPy. It integrates seamlessly with NumPy and SciPy and it
can be integrated in IPython to generate and display plots within notebooks. All the
plots of this thesis have been generated using Matplotlib.

2Now known as the Jupyter notebook.
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SClib

As we mentioned, embedding code written in other languages is a common approach to
boost the speed of Python applications. Several alternatives exist to achieve this, such
as, CFFI [113], SWIG [114], weave [115], and the aforementioned Cython, among others.
In our evaluations we used SClib [116], a wrapper originally developed for engineering
applications [117] but later extended to more general purposes. The aim of SClib is to
integrate C code into a Python environment minimizing the intervention of the code. It
works mapping Python data to C compatible data and provides a way to call functions
in shared libraries; a schematic explanation of the SClib workflow is shown in Fig. 7.3.
More details and examples of the usage of SClib can be found in [116], the source code
is available for download from [118] and [119].

7.2 Custom tools

SChroe.py

There are plenty of scripts/programs that can numerically solve the Schrödinger equation
in different contexts. In the context of bound states, the Mathematica script presented in
[120] has been a popular choice for some time because it can be easily integrated with the
built-in Mathematica functions to manipulate the wavefunctions, however, for numeric-
intensive calculations this purely high-level approach presents a very poor performance.
In order to perform the calculations in which we need to numerically solve the Schrödinger
equation, we have ported the algorithm3 of [120] to a Python script to which we will refer
as SChroe.py. The first approach we tried was to write a pure Python implementation
of the algorithm used in [120]; this results in an almost one-to-one correspondence with
SChroe.py with the main difference being that, while in [120] the resulting wavefunctions
are Mathematica interpolating functions, in SChroe.py these are discrete NumPy arrays,
so we can profit from the NumPy and SciPy libraries to manipulate them. Even though
Python is also a high-level language like Mathematica, this simpler approach results in a
4X speed-up. The reason is that Mathematica loops, on which the solution algorithm re-
lies, have a very poor performance. A better Mathematica implementation would require
to be written using the built-in Mathematica differential equation solvers, however, in
that case we would lose full control over the method, since we are unable to see how these
solvers are implemented. These short-comings, poor performance and loses of control,
motivate us to abandon the use of Mathematica altogether.

3This algorithm is known as the shooting method, we have outlined it in Appendix E.
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n schroe.nb SChroe.py SChroe.py
[120] (Python) (SClib)

1 98.88 25.46 0.66
2 124.14 30.95 0.75
3 135.68 35.32 0.84
21 370.0 88.04 1.99

Table 7.1: Time in seconds taken to compute the eigenvalues and reduced wavefunctions
for the potential of Eq. (5.16). The column Python corresponds to the implementation
of the algorithm in Python without SClib. All the scripts were tested using the same
parameters in the same machine, a notebook with a 2.4 Ghz core i5 processor (dual core)
and 8 GB of RAM.

For the fitting of the parameters of the QQ̄ potential presented in Chapter 5, it was nec-
essary to get even higher boosts in speed. We achieved this using SClib for porting our
Python implementation of the script specified in [120] to low-level C code but keeping the
Python interface. As in the pure Python implementation, in the C flavor of the script the
resulting wavefunctions are also NumPy arrays, so we can still profit from the functions of
the NumPy and SciPy libraries to manipulate them. The net speed-boost of the C version
of SChroe.py compared to its Mathematica counterpart is of more than two orders of
magnitude. A basic benchmark comparing the script of [120] with the two versions of
SChroe.py is shown in Table 7.1.
As a form of summary, Fig. 7.1 presents the full framework in which we have performed
the numerical analysis. It shows an example of the usage of the C flavor of SChroe.py
together with NumPy, SciPy and Matplotlib functions embedded within an IPython note-
book.

7.3 Methods

7.3.1 Parameter fitting

We already stated in Chapter 5 that the parameters obtained from considering the phe-
nomenology input come from solving four equations of the form

Mtheo(n 2S+1LJ ; a, κ,m)−Mexp(n 2S+1LJ) = 0, (7.1)

for four different quarkonium states n 2S+1LJ , where Mtheo corresponds to

M(n 2S+1LJ) = 2mc,b + E
(0)
nl + 〈nl|V NLO(r)|nl〉+

∞∑
m 6=n

|〈nl|V NLO(r)|ml〉|2

E
(0)
nl − E

(0)
ml

+ 〈nljs|V NNLO(r)|nljs〉, (7.2)
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Figure 7.1: The IPython notebook (now called Jupyter) running the SChroe.py script.

for each of the countings, and Mexp is a fixed value taken from the PDG report. From
a programing point of view, we see that for each probe set of parameters we need to
solve the Schrödinger equation for the V LO potential and then evaluate Eq. (7.2) with
the resulting eigenvalues and eigenfunctions.
In our implementation, in each call to Mtheo we use the functions of SChroe.py and
SClib to solve the Schrödinger equation and the other integrations in Eq. (7.2). In order
to speed up this evaluation, the sum of the second order correction is evaluated in parallel
at the C level using POSIX threads [121]. The system of equations (7.1) is defined at
the Python level; this allows us to use the SciPy function fsolve to solve it. The initial
guesses for the parameters required by fsolve are a ∼ 0.2, κ ∼ 0.2, mb ∼ 4.5 GeV, mc ∼
1.2 GeV. These values are motivated by the known values of their physical equivalents
determined by experiment, lattice and perturbative calculations. We do not impose a
special constraint on the parameters other than the coupling parameter a must satisfy
0 < a < 1. A simplified diagram of the workflow of a call to fsolve and the subsequent
call to Mtheo is shown in Fig. 7.3.
For speed and simplicity, we have fixed the number of terms of the sum in Mtheo to 20.
We have checked that the inclusion of further terms (up to 100) does not affect our final
results for the decay rates, although it may alter the value of the parameters beyond the
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Figure 7.2: Fitted curves from the data of the two lattice spacings showed in Fig. 5.1.
We impose a cut-off on the data at r/r1 = 2.5 which is equivalent to rmax. ≈ 4 [GeV−1]
in physical units. The value of rmax. is around 1 [GeV−1] larger than the 1P charmonium
state, which is the larger system we are considering in the evaluation of the decay rates.

precision we have quoted in the tables of Chapter 5 and Appendix D.

For the lattice input we use the curve_fit function of SciPy to fix the parameters
a and κ of the V (0) potential in Eq. (5.16). For the two data sets displayed in Fig. 5.1
the fitted curves are displayed in Fig. 7.2. The method to fix the masses was outlined
in Chapter 5. From the point of view of the numerical methods, it basically consists in
several calls to the fsolve function to solve Eq. (7.1) in order to find the mass parameter.
For this purpose we have used a simplified version of the same method used in the fitting
with phenomenology input.

7.3.2 Evaluation of the amplitudes

The evaluation of the amplitudes in Eqs. (6.46)-(6.72) together with the other NLO
corrections in Eqs. (6.26)-(6.29) and the LO decay rates given in Eqs. (6.13)-(6.15) has
been performed entirely in Python. The numerical integrations are carried out using
the aforementioned integrate.simps function. The evaluation of the sums can easily
be parallelized, so we can considerably speed up the calculation. Due to memory con-
straints we restrict the number of terms in the sums of all the amplitudes to 20. In the
case of the first order corrections, Eqs. (6.46)-(6.56), the effect of adding terms beyond
the twentieth leads to a variation of, at most, order 10−4 in the value of each amplitude.
As we will see in the next chapter, this variation is at least two orders of magnitude
smaller than the other relativistic uncertainties we will consider in the decay rates.
In the case of the evaluation of the second order corrections in Eqs. (6.70)-(6.72), except
for two cases, they show mostly the same convergence behavior as the first order correc-
tions. The first exception is the evaluation of the Āf(2),3 amplitude, Eq. (6.71), for which
the uncertainty originated from cutting the series (for m̃ and m̌) at the twentieth term
is at most of order 10−3. The other exception is the evaluation of the same correction
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adopting Counting 2, Āf(2),2, where the effect of adding further terms may have an im-
pact of, at most, order 10−2 in the value of the correction. These slower convergences
originate from the presence of terms proportional to 1/r and 1/r2 in the NLO potential
of Countings 3 and 2 respectively. Although these effects are larger than in the evalua-
tion of the first order corrections, we will see in the next chapter that they still may be
absorbed within other uncertainties.

[SClib]
call C

functions

python
function

C
function(s)

[SClib]
read from
memory

Memory

CPU

#0 #1 #2 #...

1

2

3

4

Figure 7.3: Simplified workflow of the execution of a Python script using SClib to call C
functions: (1) C functions available in a .so file are called within a Python environment;
(2) the computing-intensive task is performed using low level C code; (3) the results
are stored in memory; (4) SClib allows these results to be read back into the Python
environment. In the case of the parameter fitting, the SciPy function fsolve calls a
definition of the system of equations (7.1), also implemented in Python, with some probe
parameters; in the first call these correspond to the initial guesses of the values. Then,
within the Python script, we call the C-defined M theo function (Eq. (7.2)), which inter-
nally incorporates the Schrödinger equation solver (see Appendix E). The perturbative
sum in M theo can be parallelized, so on a machine with many cores the computation is
performed faster. The resulting values of M theo corresponding to the probe parameters
are written to memory, where they can be accessed by the fsolve function controlling
the solution algorithm.
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Chapter 8

Evaluation of the E1 decay I:
Method and partial results

Having spent most of the previous chapters introducing the framework of our evaluations,
in this chapter we present the numerical results of the computation of the E1 decay rates.
We also present the error assignment and a discussion of our results.

8.1 Evaluation method and error

Considering both fitting inputs, we evaluate the O(v2) E1 decay rates (Eq. (6.18)) using
the randomly-generated set of parameters described in Sec. 5.4; the central value of each
decay rate corresponds to the mean of these values. We will also present results for the
leading order decay rates given in Eqs. (6.13)-(6.15).
To compute the photon energy, we evaluate Eq. (6.4) using the central values of the PDG
masses (given in Appendix C) except in the case of transitions involving the bottomonium
3 3P1 state (χb1(3P )), in which case we use the value reported by the LHCb experiment
[88]1

Mχb1(3P ) = 10511.3± 1.7± 2.5 [MeV]. (8.1)

For the error we consider a combination of the sensitivity to the change of parameters with
an estimation of the size of the neglected relativistic corrections (see below). Explicitly,
the uncertainty ε assigned to each decay rate is given by

ε ≡
√
ε2par + ε2rel, (8.2)

where in the case of the LO rates εpar is given by the standard deviation of the sixteen
values obtained after the evaluation of Eqs. (6.13)-(6.15) and εrel is given by the mean

1While writing this thesis, the PDG online tables were updated including a value for the mass of the
χb1(3P ) state. The current value quoted in the PDG is 10512.3 ± 2.3 [MeV], which is calculated using
the values reported by the LHCb experiment in Refs. [88] and [122]. The difference of order 10−3 [GeV]
between the value of Eq. (8.1) and the current PDG average is negligible in the evaluation of the E1
decay rates.
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of the values obtained after computing

Γ′ = ΓLOH→H′γ ×KLO × v(a, κ,m), (8.3)

where v(a, κ,m) is the quark-antiquark relative velocity given by

v(a, κ,m) =

[
1

m

(
E

(0)
nl − 〈nl|V

LO|nl〉
)]1/2

. (8.4)

The dependence on a, κ and m must be understood as implicit in the eigenvalues E(0)
nl

and eigenfunctions |nl〉 = φ
(0)
H (r) that result from solving the Schrödinger equation (6.8).

The constant KLO accounts for the non-parametric (no counting-dependent) coefficients
of the next relativistic correction; we expect this factor to scale naturally in order not
to break the counting of the relativistic expansion. The estimation of the relativistic
error comes from the fact that we know the parametric size of the leading amplitude
in RH→H′γ , which in the case of Countings 1 and 3 includes corrections that are v-
suppressed with respect to the LO. We proceed similarly for Counting 2, although in this
case the ordering of the potential is in powers of 1/m.
For what we call the NLO rates, εpar is given by the standard deviation of the values
obtained after evaluating Eq. (6.18). In analogy to the LO case, εrel is the mean of the
values obtained after computing

Γ′′ = ΓLOH→H′γ ×KNLO × v(a, κ,m)3 (8.5)

for each random set.
The shape of Γ′′ comes from considering the size of the next relativistic correction when
the relativistic expansion of the rates is factorized as in Eq. (6.18). From [21] we know
that the next relativistic correction to Eq. (6.18) will be at least v3-suppressed with
respect to the leading order2. For all the following evaluations we set KLO = KNLO = 1.
Now we can check the justification given at the end of the previous chapter for truncating
the perturbative series of the amplitudes at twenty terms. The minimum value of v3 in
charmonium and bottomonium scale as3

v3
c ∼ 0.1,

v3
b ∼ 0.01,

so a deviation of order 10−3 in the amplitudes that contribute to RH→H′γ is still negligible
compared to the error coming from neglecting the O(v3) relativistic correction to the
decay rates. In the case of the (Counting 2) Āf(2),2 amplitude (Eq. (6.71)), where such
effects may reach order 10−2, they are comparable to the relativistic uncertainty in the

2In [21] it was noticed that some of the (neglected) extra-suppressed operators of the pNRQCD
Lagrangian responsible for the E1 transitions were of relative order v3.

3These values depend on the counting/input combination; we have taken the minimum value for both
charmonium and bottomonium 1P states.
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case of bottomonium decays. For the evaluations using the phenomenology input, they
still may be neglected in the total uncertainty calculation, since in these evaluations the
relativistic uncertainty εrel is always at least one order of magnitude smaller than the
uncertainty due to the change of the parameters εpar. This scaling between εrel and εpar

is not replicated in the evaluations performed using Counting 2 with lattice input, where
both uncertainties are comparable. In this case it may be necessary to either evaluate
the series for the Āf(2),2 correction until it reaches the desired convergence or re-estimate
the relativistic error to account for the effect of the neglected terms, i.e. to consider a
value of KNLO larger than one. Later we will see that these changes will no be necessary,
since the evaluations using Counting 2 with lattice input will not contribute to our final
results for the decay rates.

8.2 Results

Restricted to transitions in which the initial state lies below threshold, we evaluate all the
decay rates for which we have experimental input for the initial and final state masses.
In Tables 8.1 and 8.3 we show the results for decay rates using the phenomenology input
for charmonium and bottomonium decays respectively, the analogous results using the
lattice input are shown in Tables 8.2 and 8.4. An expanded version of these tables,
where the energy of the photon and the individual contributions of εpar and εrel are also
displayed, can be found in Appendix F.

Counting 1 Counting 2 Counting 3
Decay ΓLO [keV] R δΓ ΓNLO [keV] ΓLO [keV] R δΓ ΓNLO [keV] ΓLO [keV] R δΓ ΓNLO [keV]

1 1P1 → 1 1S0γ 1066± 564 -0.56 -0.112 363± 283 1071± 568 -0.53 -0.112 393± 254 1346± 793 -0.41 -0.131 620± 278

2 1S0 → 1 1P1γ 0.13± 0.08 -0.16 0.0003 0.11± 0.04 0.13± 0.08 -0.17 0.0003 0.11± 0.04 0.05± 0.03 -0.33 0.014 0.03± 0.01

1 3P0 → 1 3S1γ 237± 126 -0.31 -0.273 100± 50 238± 126 -0.29 -0.275 106± 46 299± 176 -0.41 -0.314 84± 67

1 3P1 → 1 3S1γ 503± 266 -0.39 -0.155 235± 111 505± 268 -0.36 -0.156 247± 101 635± 374 -0.41 -0.178 264± 136

1 3P2 → 1 3S1γ 676± 358 -0.38 -0.028 408± 136 679± 360 -0.35 -0.028 426± 126 853± 503 -0.41 -0.037 473± 175

2 3S1 → 1 3P0γ 61± 35 -0.57 -0.057 23± 14 61± 35 -0.57 -0.056 23± 14 60± 39 -0.23 -0.013 45± 17

2 3S1 → 1 3P1γ 51± 29 -0.31 0.012 36± 10 51± 30 -0.31 0.013 36± 10 50± 33 -0.28 0.042 38± 14

2 3S1 → 1 3P2γ 35± 20 -0.27 -0.011 26± 7 35± 20 -0.27 -0.011 25± 7 35± 23 -0.38 -0.039 20± 10

Table 8.1: Summary of the evaluation of the charmonium decays using the phenomenol-
ogy input. The central values and their respective uncertainties were calculated as ex-
plained in Sec. 8.1. For later reference we have included the average values of the RH→H′γ
and δΓH→H′γ corrections; these values are calculated as the mean of the values obtained
with each of the sixteen random sets of parameters of each counting.
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Counting 1 Counting 2 Counting 3
Decay ΓLO [keV] R δΓ ΓNLO [keV] ΓLO [keV] R δΓ ΓNLO [keV] ΓLO [keV] R δΓ ΓNLO [keV]

1 1P1 → 1 1S0γ 904± 524 -0.86 -0.108 30± 183 881± 496 -0.82 -0.105 65± 162 1323± 784 -0.43 -0.13 581± 273

2 1S0 → 1 1P1γ 0.14± 0.09 -0.14 -0.004 0.12± 0.04 0.14± 0.09 -0.14 -0.004 0.12± 0.03 0.05± 0.03 -0.34 0.014 0.03± 0.01

1 3P0 → 1 3S1γ 201± 117 -0.43 -0.37 38± 40 196± 110 -0.4 -0.356 47± 35 294± 174 -0.43 -0.315 73± 62

1 3P1 → 1 3S1γ 427± 247 -0.56 -0.201 102± 84 416± 234 -0.52 -0.194 118± 75 624± 370 -0.43 -0.179 242± 129

1 3P2 → 1 3S1γ 573± 332 -0.54 0.021 278± 111 559± 314 -0.5 0.019 288± 101 839± 497 -0.43 -0.036 450± 175

2 3S1 → 1 3P0γ 56± 35 -0.8 -0.043 9± 15 55± 34 -0.79 -0.045 9± 13 59± 38 -0.24 -0.011 44± 16

2 3S1 → 1 3P1γ 47± 30 -0.4 0.02 29± 12 46± 29 -0.4 0.018 29± 11 50± 32 -0.29 0.042 37± 14

2 3S1 → 1 3P2γ 33± 21 -0.29 -0.015 22± 8 32± 20 -0.29 -0.014 22± 8 34± 22 -0.39 -0.039 19± 9

Table 8.2: Summary of the evaluation of the charmonium decays using the lattice input,
values computed as in Table 8.1.

Counting 1 Counting 2 Counting 3
Decay ΓLO [keV] R δΓ ΓNLO [keV] ΓLO [keV] R δΓ ΓNLO [keV] ΓLO [keV] R δΓ ΓNLO [keV]

1 1P1 → 1 1S0γ 78± 26 -0.46 -0.034 44± 29 79± 24 -0.42 -0.035 46± 25 64± 20 -0.65 -0.032 24± 24

2 1P1 → 1 1S0γ 10± 4 0.5 0.132 17± 6 10± 4 0.68 0.131 19± 7 11± 4 0.64 0.082 18± 6

2 1P1 → 2 1S0γ 28± 9 -0.45 -0.024 16± 9 29± 9 -0.41 -0.025 17± 8 24± 8 -0.63 -0.023 9± 8

2 1S0 → 1 1P1γ 0.07± 0.03 0.02 -0.001 0.07± 0.02 0.07± 0.03 0.01 -0.001 0.07± 0.02 0.07± 0.03 0.04 -0.002 0.08± 0.03

1 3P0 → 1 3S1γ 40± 13 -0.24 -0.051 30± 12 41± 13 -0.21 -0.05 31± 10 33± 10 -0.33 -0.07 21± 9

1 3P1 → 1 3S1γ 51± 17 -0.28 -0.037 36± 16 51± 16 -0.26 -0.037 37± 13 42± 13 -0.39 -0.046 25± 12

1 3P2 → 1 3S1γ 58± 19 -0.28 -0.022 42± 17 58± 18 -0.26 -0.022 43± 15 47± 15 -0.4 -0.01 30± 13

2 3P0 → 1 3S1γ 7± 3 -0.21 -0.046 6± 1 7± 3 -0.04 -0.049 7± 3 8± 3 -0.23 -0.122 5± 2

2 3P1 → 1 3S1γ 8± 3 0.04 0.038 9± 2 8± 3 0.22 0.036 10± 4 8± 3 0.07 -0.022 9± 3

2 3P2 → 1 3S1γ 9± 3 0.28 0.186 13± 4 9± 3 0.46 0.186 14± 5 9± 4 0.37 0.161 14± 4

2 3P0 → 2 3S1γ 15± 5 -0.17 -0.031 12± 3 15± 5 -0.14 -0.031 12± 3 13± 4 -0.23 -0.038 9± 2

2 3P1 → 2 3S1γ 20± 7 -0.24 -0.025 15± 5 20± 6 -0.21 -0.025 16± 4 17± 5 -0.33 -0.028 11± 4

2 3P2 → 2 3S1γ 24± 8 -0.29 -0.019 17± 6 24± 7 -0.26 -0.019 18± 5 20± 6 -0.4 -0.013 12± 5

3 3P1 → 1 3S1γ 3± 2 0.18 -0.041 4± 2 3± 2 0.04 -0.044 3± 2 4± 2 0.28 -0.103 5± 3

3 3P1 → 2 3S1γ 3± 1 -0.002 0.095 3.3± 1.0 3± 1 -0.13 0.093 2.8± 0.7 3± 1 0.04 0.047 3± 1

3 3P1 → 3 3S1γ 11± 4 -0.22 -0.021 8± 2 11± 4 -0.21 -0.021 8± 2 9± 3 -0.3 -0.023 6± 2

2 3S1 → 1 3P0γ 1.6± 0.4 -0.2 -0.013 1.3± 0.1 1.6± 0.4 -0.21 -0.013 1.2± 0.1 1.5± 0.4 -0.25 -0.012 1.1± 0.1

2 3S1 → 1 3P1γ 2.4± 0.7 -0.09 -0.002 2.2± 0.2 2.4± 0.7 -0.1 -0.002 2.2± 0.2 2.2± 0.7 -0.1 -0.001 2.0± 0.2

2 3S1 → 1 3P2γ 2.5± 0.7 -0.04 0.004 2.4± 0.2 2.5± 0.7 -0.05 0.004 2.4± 0.2 2.3± 0.7 -0.03 0.004 2.2± 0.3

3 3S1 → 2 3P0γ 1.6± 0.5 -0.2 -0.007 1.3± 0.1 1.6± 0.5 -0.21 -0.007 1.3± 0.1 1.5± 0.5 -0.23 -0.005 1.1± 0.2

3 3S1 → 2 3P1γ 2.6± 0.8 -0.07 -0.0005 2.4± 0.2 2.6± 0.8 -0.09 -0.0003 2.4± 0.2 2.4± 0.8 -0.08 0.0006 2.2± 0.3

3 3S1 → 2 3P2γ 2.8± 0.8 -0.02 -0.0001 2.8± 0.3 2.8± 0.9 -0.04 -0.0002 2.7± 0.3 2.6± 0.9 -0.01 -0.0004 2.6± 0.4

Table 8.3: Summary of the evaluation of the bottomonium decays using the phenomenol-
ogy input, values computed as in Table 8.1.
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Counting 1 Counting 2
Decay ΓLO [keV] R δΓ ΓNLO [keV] ΓLO [keV] R δΓ ΓNLO [keV]

1 1P1 → 1 1S0γ 56± 15 -0.8 -0.031 10± 5 57± 15 -0.77 -0.031 11± 5

2 1P1 → 1 1S0γ 12± 3 0.8 0.051 22± 1 12± 4 1.24 0.052 27± 2

2 1P1 → 2 1S0γ 22± 7 -0.77 -0.022 5± 2 22± 7 -0.72 -0.023 6± 2

2 1S0 → 1 1P1γ 0.08± 0.02 0.07 -0.002 0.087± 0.004 0.08± 0.02 0.05 -0.002 0.085± 0.005

1 3P0 → 1 3S1γ 29± 8 -0.4 -0.081 15± 2 29± 8 -0.37 -0.082 16± 2

1 3P1 → 1 3S1γ 36± 10 -0.48 -0.051 17± 3 37± 10 -0.45 -0.051 18± 3

1 3P2 → 1 3S1γ 41± 11 -0.48 -0.003 21± 3 42± 11 -0.46 -0.003 23± 3

2 3P0 → 1 3S1γ 9± 3 -0.2 -0.149 5.6± 0.3 9± 3 0.23 -0.151 9.2± 1.0

2 3P1 → 1 3S1γ 9± 3 0.14 -0.05 10.1± 0.5 9± 3 0.57 -0.051 14± 1

2 3P2 → 1 3S1γ 10± 3 0.48 0.134 15.7± 0.8 10± 3 0.92 0.136 20± 2

2 3P0 → 2 3S1γ 11± 3 -0.27 -0.041 7.9± 0.7 12± 3 -0.22 -0.042 8.5± 0.6

2 3P1 → 2 3S1γ 16± 5 -0.39 -0.029 9± 1 16± 5 -0.35 -0.029 9.7± 0.9

2 3P2 → 2 3S1γ 18± 6 -0.48 -0.011 9± 1 18± 6 -0.44 -0.011 10± 1

3 3P1 → 1 3S1γ 4± 1 0.41 -0.116 5.4± 0.5 4± 1 0.14 -0.118 4.3± 0.4

3 3P1 → 2 3S1γ 3± 1 0.11 0.026 3.8± 0.2 3± 1 -0.2 0.026 2.7± 0.2

3 3P1 → 3 3S1γ 9± 3 -0.36 -0.024 5.3± 0.5 9± 3 -0.35 -0.024 5.5± 0.5

2 3S1 → 1 3P0γ 1.4± 0.4 -0.27 -0.013 1.03± 0.05 1.4± 0.4 -0.3 -0.013 0.99± 0.05

2 3S1 → 1 3P1γ 2.2± 0.6 -0.11 -0.002 1.95± 0.08 2.2± 0.6 -0.13 -0.002 1.91± 0.08

2 3S1 → 1 3P2γ 2.3± 0.7 -0.02 0.005 2.22± 0.09 2.3± 0.7 -0.04 0.005 2.18± 0.08

3 3S1 → 2 3P0γ 1.5± 0.5 -0.25 -0.006 1.08± 0.06 1.5± 0.5 -0.29 -0.006 1.03± 0.06

3 3S1 → 2 3P1γ 2.4± 0.7 -0.07 0.0001 2.2± 0.1 2.4± 0.8 -0.11 0.0002 2.12± 0.1

3 3S1 → 2 3P2γ 2.6± 0.8 0.01 0.0003 2.6± 0.1 2.6± 0.8 -0.03 0.0003 2.5± 0.1

Table 8.4: Summary of the evaluation of the bottomonium decays using the lattice input,
values computed as in Table 8.1.

8.3 Analysis

8.3.1 Bottomonium

The first conclusion that can be drawn from Tables 8.3 and 8.4 is that, as it may be ex-
pected, RH→H′γ is the dominant correction to the decay rates. More than because it con-
tains the contribution coming from the NLO potential, the dominance of RH→H′γ comes
from the fact that the amplitudes, although some of them are extra suppressed, may
add up to make a sizeable contribution. In general, the largest contributions to RH→H′γ
are the ones coming from the 1/m potentials and some of the momentum-dependent
potentials. In most of the evaluations, the largest momentum-dependent contribution to
RH→H′γ comes from the potential containing the p2 operator, which we have labeled as
ĀSVp2

in Eqs. (6.48) and (6.49) for initial and final state wavefunction corrections respec-
tively. Each of these contributions corresponds actually to two separate series, each of
them of parametric order v2 if we adopt Countings 1 or 3. Moreover, one of these series
corresponds to 2CF /CA ≈ 0.9 times the series of the ĀS

V
(1/m)
2

amplitude, which in turn

is one of the largest contributions to RH→H′γ .
In Chapter 5 it was noticed that the distinction between NLO and NNLO contributions
to the potential appears not to be realized numerically when comparing the expectation
values of the NLO and NNLO potentials. A similar situation can be observed in the
scaling of the contributions to RH→H′γ . In Table 8.5 we show the average of the NLO
and other leading amplitudes that contribute to RH→H′γ in the 1P → 1S and 2P → 1S
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decays. From the values of that table we see that some of the NNLO amplitudes, for
instance Āf

V pert.
(1/m)

, are of the same order or even larger than the NLO ones. This result and

the scaling of the potentials discussed in Chapter 5 suggest that, rather than separating
between NLO and NNLO contributions, one may count them homogeneously. Never-
theless, it can be verified that the numerical impact of the second order contributions
coming from the NLO potential is in any case small enough (∼ 10−3) not to alter the
value of the decay rates calculated with Countings 1 and 3 significantly.
The non-realization of the distinction between NLO and NNLO potentials is also repli-
cated in the results obtained by adopting Counting 2, where to consider the 1/m potential
as NLO appears to be arbitrary if one compares the values of the amplitudes originated
from this and some of the NNLO potentials (e.g. see the values of the NLO and ĀVp2
amplitudes in Table 8.5). Notice that in this counting, however, the second order cor-
rections coming from the NLO potentials are larger than the equivalent contributions in
Countings 1 or 3.
We conclude that in our evaluations we cannot distinguish a hierarchy among the cor-
rections to the quark-antiquark potential. However, notice that in the results obtained
by adopting Countings 1 and 3, the extra-suppression of the second order corrections
makes them numerically closer to an evaluation in which all corrections are considered
of the same parametric size, i.e., the second order corrections due to the NLO potential
in these countings are negligible.
Even if the ordering inherited from the counting (1 or 3) is not fully realized in the
corrections to the decay rates, it is convenient to measure the size of the corrections in
terms of their effective scaling with respect to the relative velocity v. Let us factorize the
contributions as

Ā> ≡ αv,

δΓ ≡ βv2, (8.6)

where Ā> is the amplitude with the largest contribution to RH→H′γ in each transition
regardless from which potential it originates. The values of α for the three relevant
counting/input combinations are shown in Table 8.6. From these values it can be seen
that, apart from the 3P → 1S decay, the amplitudes contributing to RH→H′γ scale as
some value in the interval [v2

b , vb]. This is in accordance with the ideal realization of
the counting, where the contributions to RH→H′γ would scale at most as the relative
velocity. Moreover, these values appear to support our claim that in our evaluations
all corrections to the potential should be considered as scaling homogeneously. For the
3P → 1S transition α ∼ 2, which still may be considered as a factor that does not break
the scaling dictated by the non-relativistic expansion.

In the case of the scaling of the δΓH→H′γ corrections, we have that for most of the
decays the scaling δΓH→H′γ ∼ v2 appears to be an overestimation of its size, specially
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Decay Counting 1 Counting 2 Counting 3
ĀfNLO = −0.03(4%) ĀfNLO = −0.12(49%) ĀfNLO = −0.03(8%)

1P → 1S ĀfVp2
= −0.12(64%) ĀfVp2

= −0.11(54%) ĀfVp2
= −0.17(59%)

Āf
V pert.
(1/m)

= −0.1(79%) Āf
V pert.
(1/m)

= −0.15(74%)

ĀfNLO = 0.15(48%) ĀfNLO = −0.37(11%) ĀiNLO = 0.15(48%)

2P → 1S ĀfVp2
= 0.31(23%) ĀfVp2

= 0.31(22%) ĀfVp2
= 0.31(23%)

Āf
V pert.
(1/m)

= 0.22(42%) Āf
V pert.
(1/m)

= 0.22(42%)

Table 8.5: Mean values of the parametric NLO and other leading amplitudes that con-
tribute to the RH→H′γ corrections in the 1P → 1S and 2P → 1S bottomonium decays
using phenomenology input. In Countings 1 and 3 ĀfNLO = Āf

V EST
(1/m)

, in Counting 2 ĀfNLO

is the sum of the two 1/m final wave correction amplitudes, i.e., ĀfNLO = Āf
V EST
(1/m)

+Āf
V pert.
(1/m)

.

In brackets we show the relative (to the mean) value of the standard deviation of each
mean amplitude.

in decays among excited states. A feature of these corrections is that in many of the
evaluations, they result in a contribution that is smaller than the uncertainty associated
with neglecting the O(v3) relativistic corrections (8.5). This may also be the case for
some of the amplitudes that contribute to RH→H′γ , which may scale in the same way
as δΓH→H′γ does. For clarity, we have left the tables displaying the β factors in the
Appendix F.2.

Decay Count. 1 Count. 1 Count. 3
(phen.) (latt.) (phen.)

1P → 1S 0.4 0.7 0.6
2S → 1P 0.2 0.3 0.2
2P → 1S 0.8 1.2 1.0
2P → 2S 0.4 0.6 0.5
3S → 2P 0.2 0.3 0.2
3P → 1S 1.2 1.8 1.9
3P → 2S 0.7 1.1 1.5
3P → 3S 0.3 0.5 0.6

Table 8.6: Values of the scaling factor α in bottomonium decays. Any value in this
table that is less than one means that, in the corresponding decay, the largest amplitude
that contribute to RH→H′γ has a value that is less than a power of the relative velocity.
In each counting/input combination the relative velocity has been calculated using the
relevant mean values of the parameters (Tables 5.2 and 5.3).
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Regarding the uncertainties, in the evaluations with phenomenology input we see that
for most of the decays the relative (to ΓNLO) value of εNLO is smaller than the relative (to
ΓLO) value of εLO. For decays in which this does not occur4, the origin of this behaviour
can be traced down to the large dispersion among the values obtained after evaluating
RH→H′γ . The source of these large dispersions are the accidental cancellations among
the amplitudes that contribute to RH→H′γ , which occur in the evaluation with some of
the parameter sets. Since the dispersion among the parameters in the lattice approach
is smaller, we have that in the evaluations with lattice input only the singlet 1P → 1S
and 2P → 2S decays present this issue. We recognize these accidental cancellations
as one of the limitations of the method we have adopted for the evaluation of the rates,
however, we recall that for most of the decays the total NLO uncertainty is less than 40%.
Remarkable are the results for the 3S → 2P transitions, where the total uncertainty is
around 10%.
Although we cannot control accidental cancellations, we made sure to keep the series of
the amplitudes that contribute to RH→H′γ under control. Explicitly, we have required
that all the amplitudes ĀSP in Eqs. (6.46)-(6.72) of Chapter 6 fulfill |ĀSP | < 1. Considering
this condition, we left out a preliminary evaluation of the 3S → 1P decays in which
the series of some amplitudes diverges; the origin of these divergences is studied in
Appendix G. Nevertheless, as it can be seen from the results for the 2 1P1 → 1 1S0γ
bottomonium decay adopting Counting 2 with lattice input (displayed in Table 8.4), the
condition that |ĀSP | < 1 alone does not guarantee that the absolute value of RH→H′γ is
less than one. In this case, although all amplitudes fulfill |ĀSP | < 1, they add up to make
|RH→H′γ | > 1. We have left the value of this rate in the tables as an illustration of the
limitations of our method, however, this decay will not be considered in further analyses.
The incompatibility among the results for the fitting of the coupling parameter with
different input and, to a lesser extent, the stress among the analogous results for the
string tension (see tables in Sec. 5.4) indicate that we cannot expect agreement among
the results of the evaluation of the rates with different inputs.
If we now consider the same input source, an inspection of the results with phenomenology
input with Countings 1 and 3 shows that the values of the NLO decay rates are compatible
within the quoted uncertainty. We recall that in the case of evaluations using the lattice
input, the evaluations with Countings 1 and 3 are equivalent.

8.3.2 Charmonium

In contrast to bottomonium, in some charmonium decays5 the relative value of the un-
certainty due to the neglected relativistic corrections is larger for the NLO rates than for
the LO ones. This occurs when the LO and NLO rates are such that ΓLO � ΓNLO due to
large relativistic corrections, that is, large values of RH→H′γ and δΓH→H′γ . Considering

4Five transitions in Countings 1 and 2 and eight in Counting 3. The specific transitions can be read
from the tables of Appendix F.

5See for instance the results for the 1 3P0 → 1 3S1γ decay in Table F.10 of Appendix F.
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Eqs. (8.3) and (8.5), we note that in these cases it may occur that ΓLO × v3 ∼ ΓNLO,
making the value of εrel comparable to ΓNLO.
As in bottomonium, in charmonium there are also decays in which the relative value of
εNLO is larger than the relative value of εLO, but in contrast to the bottomonium case,
where the larger error is always due to the sensitivity to parameters, in charmonium the
dominant error may also come from neglecting the O(v3) relativistic corrections.
In general, the poor realization of the separation of scales in charmonium makes its study
with non-relativistic EFTs challenging. For instance, in the case of 1P states adopting
Counting 3, we have the following values for the scaling of increasing powers of the
relative velocity

vc ∼ 0.6,

v2
c ∼ 0.3,

v3
c ∼ 0.2,

v4
c ∼ 0.1. (8.7)

So if we expect that the largest amplitudes that contribute to RH→H′γ scale like v, we
have to consider that just a factor 1/3 in front of the of sum will make it effectively
scale as v3, even if the expected scaling is fully realized in the counting-dependent coef-
ficients, and the size of the amplitude without the factor 1/3 is indeed v. The value v3

is the scale we have assigned to the neglected relativistic corrections, and therefore, one
of the uncertainty sources of our evaluations. Then it should not come as a surprise that
many of the contributions we have computed are absorbed within the uncertainty, since
its effective scaling is v3 or smaller. Notice that from Table 8.6 it can be seen that in
bottomonium the largest suppression on the leading amplitude occurs in the 3S → 2P
and 2S → 1P decays in which the leading amplitude contributing to RH→H′γ scales as
0.2 × v ∼ v2, so even in this case RH→H′γ contains significant corrections to the decay
rate.
In Table 8.7 we display the NLO and other leading contributions to RH→H′γ of the eval-
uation of the 1P → 1S and 2S → 1P decays with phenomenology input. The effective
scaling of the largest amplitude in terms of v is shown in Table 8.8 for phenomenol-
ogy and lattice input. From Table 8.7 it appears as we may have left out a sizeable
contribution from the p2-dependent potential in evaluations with Counting 3, since this
amplitude is the dominant one in the evaluations with the other countings. An estima-
tion of the size of ĀfVp2 using the parameters of this counting shows that its effective size

is v4, therefore its contribution may be considered as absorbed in the uncertainty6. The
same contribution is also useful to illustrate the problem with the prefactors: the global
factor CF /2 ≈ 0.67 in front of the sum in ĀfVp2 (Eq. (6.49)) counts as an effective extra

6This estimation of the size of ĀfV
p2

should be handled with care: since the values of the parameters

in Counting 3 are obtained neglecting the contribution of the p2-dependent potential, it is not entirely
consistent to evaluate this amplitude with these parameters. Our estimation of the value ĀfV

p2
assumes

that the values of the parameters are not largely affected if we consider the p2-dependent potential in
the parameter fitting.
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suppression of order v, so the value of the series without this factor is actually v3, which
is precisely the scaling dictated by Counting 3. This apparent extra suppression occurs
in other contributions to RH→H′γ in charmonium and bottomonium, but because the
separation of scales is badly realized, the effect of these factors in the effective scaling
is more dramatic in charmonium. Moreover, the values of the effective scaling factor
α displayed in Table 8.8 show that, regardless of the counting/input combination, the
leading amplitude contributing to RH→H′γ scales at most as v3, hence the significance
of our evaluation of charmonium decays is drastically reduced.
In the case of the δΓH→H′γ corrections, using the same factorization as in the bottomo-
nium case, Eq. (8.6), we see that the scaling factor β is such that |β| ∈ [0.001, 1.1]. In this
case, these corrections are significant only for |β| > v; this criterion is only fulfilled in the
1 3PJ=0,1 → 1 3S1γ decays. Explicit values of β for each decay are given in Appendix F.2.

Decay Counting 1 Counting 2 Counting 3
ĀfNLO = −0.07(5%) ĀfNLO = −0.13(29%) ĀfNLO = −0.19(17%)

1P → 1S ĀfVp2
= −0.13(49%) ĀfVp2

= −0.13(43%) Āf
p4

= −0.07(17%)

Āf
p4

= −0.09(20%) Āf
p4

= −0.09(18%) Āif(2),3 = 0.04(32%)

ĀfNLO = −0.09(7%) ĀiNLO = 0.11(21%) ĀfNLO = −0.21(13%)

2S → 1P Āf
p4

= −0.14(10%) Āf
p4

= −0.14(8%) Āf
p4

= −0.18(17%)

ĀfVp2
= −0.09(36%) ĀfNLO = −0.10(7%) ĀiNLO = 0.21(17%)

Table 8.7: Mean values of the parametric NLO and other leading amplitudes that con-
tribute to the RH→H′γ corrections in the 1P → 1S and 2S → 1P charmonium decays
using phenomenology input. In Counting 3 ĀSNLO = ĀSVCoul.

+ ĀS
V EST
(1/m)

, the other values

as in Table 8.5.

Decay Count. 1 Count. 1 Count. 3 Count. 3
(phen.) (latt.) (phen.) (latt.)

1P → 1S 0.2 0.3 0.3 0.3
2S → 1P 0.1 0.2 0.3 0.4

Table 8.8: Values of the scaling factor α in charmonium decays. The values here illustrate
the problem with the poorly realization of the separation of scales in charmonium. For
instance, considering the powers of the velocity in Eq. (8.7), we see that for the 1P → 1S
decay, the effective scaling of the leading amplitude in RH→H′γ is v3, which is the size
of the relativistic uncertainty. In each counting/input combination, the relative velocity
has been calculated using the relevant mean values of the parameters (Tables 5.2 and
5.3).
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With regard to the impact of the adopted power counting on the value of the decay rate,
we see that when considering the same input source, the results for Countings 1 and 2
are compatible with each other within just a fraction of their respective uncertainties.
This does not occur if we compare the results of Counting 1 (or 2) with the results of
Counting 3. This difference can be explained by the different shape of the series for
RH→H′γ (Eqs. (6.38)-(6.43)), in fact, the variation of the values of δΓH→H′γ across all
countings is small, which means that for the evaluation of the rate, the values of the
parameters are less relevant than the shape of RH→H′γ .

8.4 Summary

It would be natural to expect the QQ̄ potential to have a different counting for different
states, lower or excited, or at least a different counting for bottomonium and charmo-
nium, since the nature of their physics may be different due to the different sizes of the
systems. Originally, we introduced Counting 3 as a way to overcome the apparent incon-
sistency in the numerical results of the parameter fitting when considering the scaling
of Counting 1 for the QQ̄ potential in bottomonium and charmonium states. However,
since charmonium is larger than bottomonium, the extra v suppression in the coupling
parameter for charmonium can be understood as a way to give less weight to the short
distance physics within a larger system. Since the ordering of the potential for bottomo-
nium states is the same in Countings 1 and 3, the numerical impact of changing the
counting on the decay rates is small. In the case of charmonium, we have seen that
the different ordering implies also a big variation in the values of the contributions to
RH→H′γ , thus the variation in the final value of the rate is more pronounced.
In order to select the results for our final evaluation we make two observations. First,
we have that the realization of the counting in the parameters is better accomplished in
Counting 3, so, as it may be expected, it appears that to have different countings for
bottomonium and charmonium systems represents a more realistic picture of the physics
of the QQ̄ bound states. The second observation is that, as we have mentioned previ-
ously in this chapter, the distinction between NLO and NNLO contributions to RH→H′γ
appears to not be realized, so the inclusion of a second order perturbative correction
coming to the NLO potential is not well justified. Nevertheless, in Counting 1 and
Counting 3, the contribution of this second order correction is negligible, so the results
with these countings are closer to effectively count homogeneously all the corrections to
the potential. Based on these observations, in order to compute our final results in the
next chapter, we will select the results corresponding to evaluations with phenomenology
input adopting Counting 3 for bottomonium and charmonium decays and the results of
the evaluation with lattice input using Counting 1 for bottomonium and Counting 3 for
charmonium decays.
It may look like we have done some unnecessary work in evaluating the decay rates with
Counting 2. However, notice that in evaluations of decays in which the second order
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correction of the 1/m potential is small, for instance the 2S → 1P decays, the main
difference between Countings 1 and 2 is that in Counting 2 we are also incorporating the
1/m2 momentum and spin independent long-range corrections to the potential computed
in Chapter 4. Our results for the parameter fitting and the evaluation of the decay rates
show that the numerical impact of incorporating this contribution is small. Looking at
the long-range spectrum in Figs. 4.3 and 4.4, it is not immediately obvious that the
long-range 1/m2 corrections are negligible, moreover, these plots show that they are not
negligible at all, if we just consider long-range contributions. What we have shown with
the results of Counting 2 is that, using a full-range QQ̄ potential like the one constructed
in Chapter 5 for the evaluation of the rates, the contribution of this long-range relativis-
tic correction is negligible. Nevertheless, one could think of an alternative construction
of the potential in which the long-range and short-range contributions are separated by
a cut-off; in such a case, one may expect all the 1/m2 long-range corrections to have a
sizeable numerical impact in the evaluation of the E1 decay rates.

96



Chapter 9

Evaluation of the E1 decay II: Final
results and comparison with
experiments

Based on the outcome of the previous chapter, we present here the final results of the
evaluation of the E1 decay rates. We call these our primary results, since they come
purely from the theoretical framework we have presented along the thesis.
Additionally we also estimate the total width of all the initial states for which the exper-
imental value of the E1 decay branching fraction is available. We also give predictions
for the branching fractions of some transitions for which only the data for the width of
the initial state is available. We call these evaluations our secondary results since they
depend on our theoretical predictions and experimental input. When the available data
allows it, we compare our results with the experimental results from the PDG and other
sources.

9.1 Primary results

9.1.1 Decay rates

As stated at the end of the previous chapter, in the case of bottomonium decays we
will consider the results of adopting Counting 1 with lattice input and Counting 3 with
phenomenology input. For charmonium transitions we will consider the results with
phenomenology and lattice input adopting Counting 3. The central value of each rate
corresponds to the average of the central values for each input. The error assigned
to each decay rate corresponds to Max(εphen., εlatt.) where εphen. and εlatt. are the full
uncertainties (Eq. (8.2)) obtained with each approach. The final results for the decay
rates are shown in Tables 9.1 and 9.2 for charmonium and bottomonium respectively.
Since the aim of this chapter is also to compare our results with the ones of experiments,
we switch to the notation for quarkonia usually found in the experimental literature, a
full translation between the spectroscopy notation we have used so far and the one used
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here can be found in the tables of Appendix C.

Decay LO [keV] NLO [keV]
hc(1P )→ ηc(1S)γ 1334± 793 601± 278

ηc(2S)→ hc(1P )γ 0.05± 0.03 0.03± 0.01

χc0(1P )→ J/ψγ 297± 176 79± 67

χc1(1P )→ J/ψγ 630± 374 253± 136

χc2(1P )→ J/ψγ 846± 503 461± 175

ψ(2S)→ χc0(1P )γ 59± 39 44± 17

ψ(2S)→ χc1(1P )γ 50± 33 38± 14

ψ(2S)→ χc2(1P )γ 34± 23 20± 10

Table 9.1: Final results for the charmonium decays.

Decay LO [keV] NLO [keV]
hb(1P )→ ηb(1S)γ 60± 20 17+24

−17

hb(2P )→ ηb(1S)γ 11± 4 20± 6

hb(2P )→ ηb(2S)γ 23± 8 7+8
−7

ηb(2S)→ hb(1P )γ 0.08± 0.03 0.08± 0.03

χb0(1P )→ Υ(1S)γ 31± 10 18± 9

χb1(1P )→ Υ(1S)γ 39± 13 21± 12

χb2(1P )→ Υ(1S)γ 44± 15 25± 13

χb0(2P )→ Υ(1S)γ 8± 3 5± 2

χb1(2P )→ Υ(1S)γ 9± 3 9± 3

χb2(2P )→ Υ(1S)γ 9± 4 15± 4

χb0(2P )→ Υ(2S)γ 12± 4 9± 2

χb1(2P )→ Υ(2S)γ 16± 5 10± 4

χb2(2P )→ Υ(2S)γ 19± 6 11± 5

χb1(3P )→ Υ(1S)γ 4± 2 5± 3

χb1(3P )→ Υ(2S)γ 3± 1 4± 1

χb1(3P )→ Υ(3S)γ 9± 3 6± 2

Υ(2S)→ χb0(1P )γ 1.4± 0.4 1.1± 0.1

Υ(2S)→ χb1(1P )γ 2.2± 0.7 2.0± 0.2

Υ(2S)→ χb2(1P )γ 2.3± 0.7 2.2± 0.3

Υ(3S)→ χb0(2P )γ 1.5± 0.5 1.1± 0.2

Υ(3S)→ χb1(2P )γ 2.4± 0.8 2.2± 0.3

Υ(3S)→ χb2(2P )γ 2.6± 0.9 2.6± 0.4

Table 9.2: Final results for the bottomonium decays.
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9.1.2 Comparison with experiments

In Figs. 9.1 - 9.5 we compare our results with experimental data available from the PDG
[78]. In Fig. 9.5 we also include a lattice determination of the charmonium singlet 1P →
1S decay. The experimental values of the rates are calculated using the values of the
branching fraction and the total width given in Sec. 6.2 assuming that the uncertainties of
both quantities are not correlated. In Figs. 9.6 - 9.8 we use the branching fraction of the
Υ(2S)→ χbJ(1P )γ and Υ(3S)→ χbJ(2P )γ decays reported by the BaBar collaboration
[87] to calculate the experimental values of the decay rates. At the time of writing, these
values have not been included in the PDG averages.
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Figure 9.1: Comparison of our results for the bottomonium Υ(2S)→ χbJ(1P )γ transition
with the experiment. The experimental data (total width and branching fractions) have
been taken from the PDG report [78].
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Figure 9.2: Comparison of our results for bottomonium Υ(3S) → χbJ(2P )γ transition
with the experiment. The experimental data (total width and branching fractions) have
been taken from the PDG report [78].
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Figure 9.3: Comparison of our results for charmonium χcJ(1P )→ J/ψγ transition with
the experiment. The experimental data have been taken from the PDG report [78].
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Figure 9.4: Comparison of our results for charmonium ψ(2S) → χcJ(1P )γ transition
with the experiment. The experimental data have been taken from the PDG report [78].
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Figure 9.5: Comparison of our results for the charmonium 1P → 1S singlet transition
with PDG data [78] and a lattice evaluation reported in [96].

101



J= 0 J= 1 J= 2
0

1

2

3

4

5

Γ
 [k

eV
]

LO
NLO
exp. J=0 (PDG+BABAR-a)
exp. J=1 (PDG+BABAR-a)
exp. J=2 (PDG+BABAR-a)

Υ(3S)→χbJ(2P)γ

Figure 9.6: Comparison of our results for the bottomonium Υ(2S)→ χbJ(1P )γ transition
with experiment. The experimental data for the width have been taken from the PDG
report [78] and the branching fractions obtained from [87] considering the decay chain
3S → 2P → 2S; explicit values of both quantities are given in Sec. 6.2.
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Figure 9.7: Comparison of our results for the bottomonium Υ(2S)→ χbJ(1P )γ transition
with experiment. The experimental data for the width have been taken from the PDG
report [78] and the branching fractions obtained from [87] considering the decay chain
3S → 2P → 1S; explicit values of both quantities are given in Sec. 6.2.
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Figure 9.8: Comparison of our results for the bottomonium Υ(2S)→ χbJ(1P )γ transition
with experiment. The experimental value of the width has been taken from the PDG
report [78] and the branching fractions from [87], explicit values of both quantities are
given in Sec. 6.2.

9.2 Secondary results

9.2.1 Total width and branching fractions

Using experimental input of the branching fractions and our results for the decay rates we
can estimate the total width of the initial states. The results for the widths using input
from the PDG are presented in Tables 9.3 and 9.4 for bottomonium and charmonium
states respectively. In Tables 9.5, 9.6 and 9.7 we use input from BaBar [87] to estimate the
widths. In Table 9.8 we compute the total width of the hb(1P ) state using the branching
fraction of the hb(1P )→ ηb(1S)γ transition reported by the BELLE experiment [90].
Using the values of the widths from the PDG, in Table 9.9 we estimate the branching
fraction of the singlet 2S → 1P transition in bottomonium and charmonium.
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State Decay ΓH [keV] ΓH [keV]
(theo. + exp.) (PDG)

hb(1P ) hb(1P )→ ηb(1S)γ 35± 35 NA
hb(2P ) hb(2P )→ ηb(1S)γ 91± 34 NA
hb(2P ) hb(2P )→ ηb(2S)γ 15± 15 NA
χb0(1P ) χb0(1P )→ Υ(1S)γ 1023± 550 NA
χb1(1P ) χb1(1P )→ Υ(1S)γ 62± 36 NA
χb2(1P ) χb2(1P )→ Υ(1S)γ 131± 69 NA
χb0(2P ) χb0(2P )→ Υ(1S)γ 556± 432 NA
χb1(2P ) χb1(2P )→ Υ(1S)γ 98± 34 NA
χb2(2P ) χb2(2P )→ Υ(1S)γ 214± 61 NA
χb0(2P ) χb0(2P )→ Υ(2S)γ 196± 99 NA
χb1(2P ) χb1(2P )→ Υ(2S)γ 50± 21 NA
χb2(2P ) χb2(2P )→ Υ(2S)γ 104± 54 NA
Υ(2S) Υ(2S)→ χb0(1P )γ 29± 4 31.98± 2.63

Υ(2S) Υ(2S)→ χb1(1P )γ 29± 3 31.98± 2.63

Υ(2S) Υ(2S)→ χb2(1P )γ 31± 4 31.98± 2.63

Υ(3S) Υ(3S)→ χb0(2P )γ 19± 4 20.32± 1.85

Υ(3S) Υ(3S)→ χb1(2P )γ 17± 3 20.32± 1.85

Υ(3S) Υ(3S)→ χb2(2P )γ 20± 4 20.32± 1.85

Table 9.3: Estimation of the total widths of bottomonium states using PDG input for
the branching fractions.

State Decay ΓH [keV] ΓH [keV]
(theo. + exp.) (PDG)

hc(1P ) hc(1P )→ ηc(1S)γ 1178± 562 700± 400

χc0(1P ) χc0(1P )→ J/ψγ 6220± 5284 10500± 600

χc1(1P ) χc1(1P )→ J/ψγ 746± 402 840± 40

χc2(1P ) χc2(1P )→ J/ψγ 2401± 916 1930± 110

ψ(2S) ψ(2S)→ χc0(1P )γ 444± 172 298± 8

ψ(2S) ψ(2S)→ χc1(1P )γ 398± 147 298± 8

ψ(2S) ψ(2S)→ χc2(1P )γ 220± 110 298± 8

Table 9.4: Estimation of the total widths of charmonium states using PDG input for the
branching fractions.
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State Decay ΓH [keV] ΓH [keV]
(theo. + exp.) (PDG)

χb0(1P ) χb0(1P )→ Υ(1S)γ 874± 457 NA
χb1(1P ) χb1(1P )→ Υ(1S)γ 57± 33 NA
χb2(1P ) χb2(1P )→ Υ(1S)γ 134± 70 NA
Υ(2S) Υ(2S)→ χb0(1P )γ 24± 6 NA
Υ(2S) Υ(2S)→ χb1(1P )γ 27± 3 NA
Υ(2S) Υ(2S)→ χb2(1P )γ 31± 5 NA

Table 9.5: Estimation of the total widths of bottomonium states using input from the
BaBar experiment for the branching fractions. The branching fractions used to compute
the values in this table were obtained by BaBar analysing the 2S → 1P → 1S decay
process, for more details see [87].

State Decay ΓH [keV] ΓH [keV]
(theo. + exp.) (PDG)

χb0(2P ) χb0(2P )→ Υ(2S)γ 687± 219 NA
χb1(2P ) χb1(2P )→ Υ(2S)γ 47± 20 NA
χb2(2P ) χb2(2P )→ Υ(2S)γ 122± 60 NA
Υ(3S) Υ(3S)→ χb0(2P )γ 24± 10 20.32± 1.85

Υ(3S) Υ(3S)→ χb1(2P )γ 15± 3 20.32± 1.85

Υ(3S) Υ(3S)→ χb2(2P )γ 22± 5 20.32± 1.85

Table 9.6: Estimation of the widths of bottomonium states using input from the BaBar
experiment for the branching fractions. The branching fractions used to compute the
values in this table were obtained by BaBar analysing the 3S → 2P → 2S decay process,
for more details see [87].
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State Decay ΓH [keV] ΓH [keV]
(theo. + exp.) (PDG)

χb0(2P ) χb0(2P )→ Υ(1S)γ 1351± 823 NA
χb1(2P ) χb1(2P )→ Υ(1S)γ 83± 29 NA
χb2(2P ) χb2(2P )→ Υ(1S)γ 246± 71 NA
Υ(3S) Υ(3S)→ χb0(2P )γ 50± 37 20.32± 1.85

Υ(3S) Υ(3S)→ χb1(2P )γ 16± 3 20.32± 1.85

Υ(3S) Υ(3S)→ χb2(2P )γ 22± 4 20.32± 1.85

Table 9.7: Estimation of the total widths of bottomonium states using input from the
BaBar experiment for the branching fractions. The branching fractions used to compute
the values in this table were obtained by BaBar analysing the 3S → 2P → 1S decay
process, for more details see [87].

State Decay ΓH [keV] ΓH [keV]
(theo. + exp.) (PDG)

hb(1P ) hb(1P )→ ηb(1S)γ 30± 30 NA

Table 9.8: Estimation of the total width of the bottomonium hb(1P ) state using input
from the BELLE experiment [90] for the branching fraction.

Decay ΓH→H′γ/ΓH
(theo. + exp.)

ηb(2S)→ hb(1P )γ > 2× 10−6

ηc(2S)→ hc(1P )γ (3± 1)× 10−6

Table 9.9: Predictions for the branching fraction of the singlet 2S → 1P transition in
bottomonium and charmonium. The data of the width has been retrieved from the PDG.

9.3 Summary

The large uncertainty of the hb(1P ) → ηb(1S)γ and hb(2P ) → ηb(2S)γ bottomonium
decays comes from the accidental cancellation of the contributions to RH→H′γ discussed
in Chapter 8; for the other bottomonium evaluations we get an error that is typically less
than 40% the central value. In general, our results agree with the experiments within the
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assigned uncertainties. Since there are no more free parameters to fit after the parameters
of the potential have been determined, our agreement with experiment is not a trivial
result, especially in the case of the bottomonium decays where the theoretical uncertainty
is small. Especially remarkable are our results for the bottomonium 2S → 1P and the
3S → 2P decays, where the theoretical uncertainty is competitive with the experimental
one.
The only decay for which we do not have agreement with the experiment is the Υ(3S)→
χb1(2P )γ decay when compared to the BaBar result obtained from the analysis of the
3S → 2P → 1S decay chain (Fig. 9.7). In the case of the BaBar result for the same decay
obtained from the analysis of the 3S → 2P → 2S chain (Fig. 9.6), we see that there is
no such disagreement, moreover, there seems to be tension among the two BaBar results.
For transparency reasons, we have kept the BaBar results as they were reported in [87],
however, one may expect that a consistent determination of the Υ(3S) → χbJ(2P )γ
branching fractions from BaBar would correspond to the average of the values obtained
from the analysis of the two decay chains. In this case, our results would agree with
BaBar, as they do with the PDG value for the same decay.
Due to the poor convergence of the non-relativistic expansion, the uncertainties of our
results for charmonium decays are in general larger than the experimental uncertainties,
except in the case of the singlet 1P → 1S transition (Fig. 9.5), where theoretical and
experimental uncertainties are comparable.
From our results for the total width of the bottomonium states hb(2P ), χb1(2P ) and
χb2(2P ), we see that there is some tension among the predictions coming from different
transitions. The source of this tension may be attributed to our results for the decay
rates or to the experimental values of the branching fractions. One may expect that
further experimental measurements will move the values of their respective branching
fractions. For instance, in the case of the hb(2P ) state, we have that the branching
fractions of the 2P → 1S and 2P → 2S transitions quoted in the PDG come from
only one experiment [86]; it would be interesting to see if the current PDG values for
these transitions will be altered by further measurements. The values of the branching
fractions of the χb(2P ) → Υ(1S),Υ(2S)γ decays appear to be better established with
three experiments quoted in the computation of the PDG average [123–125], however,
for these transitions our estimations of the width of the initial state show some tension
but are still compatible within errors. Finally let us point out that the upper limit of our
estimation for the width of the χb0(1P ) bottomonium state, ∼ 1.5 [MeV], is compatible
with the upper limit of ∼ 2.4 [MeV] recently reported by the BELLE experiment in [91].
It would be interesting to see if further analysis by BELLE or other experiment can
narrow the experimental uncertainty and provide a more rigorous test of our prediction.
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Chapter 10

Conclusions and outlook

10.1 Regarding the EST potential

We have seen that the unambiguous expression for the QQ̄ potential up to O(1/m2) is
provided by the EFTs for heavy quarkonium, in particular pNRQCD, in terms of QCD
correlators that are independent of the distance between the quark and antiquark, but
whose evaluation is constrained by the distance regime that is being considered. In the
first part of the thesis, we have evaluated these correlators using a mapping between the
QCD and EST degrees of freedom. This mapping has been constructed under the as-
sumption that the symmetry properties of the QQ̄ system are the same in both theories.
Our main results regarding the EST are the expressions for the relativistic corrections
to the QQ̄ string potential given in Eqs. (4.27)-(4.37). In particular, we have obtained
a new 1/m2-suppressed, momentum- and spin-independent contribution that may be in-
terpreted as a relativistic correction to the string tension.
We have shown that if only the leading terms are considered, the EST potential depends
only on two parameters: the string tension and the quark mass. Evaluating the EST QQ̄
spectrum from this potential, we have seen that in some circumstances the contribution
of the 1/m2-suppressed corrections are as significant as the 1/m-suppressed one.
The relativistic corrections to the EST potential have been obtained assuming the LO
string action (Eq. (4.4)) and the LO mapping between the EST and QCD (Eq. (4.16)).
We argued that the expressions listed in Eqs. (4.27)-(4.37) correspond to the leading cor-
rections to the potential even if NLO terms in the mapping are taken into account. The
incorporation of these terms in the calculation may lead to new subleading contributions
or to a change in the coefficients of the leading potentials, but they will not alter their
dependence on r. A study of the EST potential beyond the LO, in the action and the
mapping, can be found in [126].
The most relevant aspect of our results has to do with the quark-antiquark interaction
at long distances. Since the computation of the correlators in the QQ̄ potential derived
from EFTs cannot be performed perturbatively, the EST provides an analytical alter-
native for their evaluation. The results of this evaluation can be compared to lattice
determinations of the correlators and, eventually, be used to parametrize the results
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of these lattice computations. So far, the available lattice evidence is compatible with
the EST hypothesis for large distances. We have found that the momentum and spin-
independent 1/m2 potential shows a behavior rising linearly with the distance; this is a
prediction that can be tested once lattice determinations of the relevant correlators are
performed. Existing lattice data for the spin-spin potentials are so far consistent with
zero in the long range [127]. It would be interesting to produce more accurate data able
to detect a long-distance signal since the EST predicts a sharp fall off proportional to
1/r5.
Another relevant aspect is the application of our results to other topics of quarkonium
phenomenology. Possible applications of the EST potential may include spectroscopy or
other decays different from the E1.

10.2 Regarding the E1 transitions

In the general case, the E1 heavy quarkonium transitions involve at least one excited
state, therefore, the evaluation of the E1 decay rates at order v2 in the relative quark-
qntiquark velocity expansion, which have been obtained in the framework of pNRQCD,
requires input for the quark-antiquark potential in the whole distance regime. In our
approach for the evaluation of these rates, we have developed a framework in which the
long-range of the potential is given by the LO results of our the evaluation of the rele-
vant QCD correlators in the EST, which, as we stated before, only depend on the string
tension and on the quark mass.
For the evaluation of the short-distance contribution, we have used the expressions that
result from the perturbative evaluation of these correlators. In order to have a smooth
transition between both distance regimes without the addition of a cut-off parameter,
the potential is constructed by adding the expressions of both regimes. One of the trade-
offs of this approach is that the QCD running coupling, appearing in the perturbative
expressions, must be converted into a fixed parameter, since now the evaluation of the
potential goes into the non-perturbative regime, where the value of the coupling diverges.
The resulting QQ̄ potential has three free parameters, namely, the quark mass, the fixed
coupling, and the string tension. We considered three possible orderings of the potential
based on three different power countings that can be imposed on its parameters. We took
a statistical approach to fit these parameters: using input from redundant experimental
data for the bottomonium and charmonium spectrums and redundant lattice data for
the static energy, we found a range of values for each parameter.
The evaluation of the E1 rates is carried out using points that distribute normally in
the range of each parameter, thus leading to a set of values for each of the considered
decay rates in each of the input and counting combinations. The mean and standard
deviation of these sets is what we consider the central value and associated uncertainty
of our evaluations respectively.
Our intermediate results show how the ordering of the potential affects the evaluation of
the rates. Also, they provide results for the two different data inputs we have used to fit
the parameters.
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Our final results for the E1 decay rates are obtained by combining the results from both
inputs, adopting the countings we considered to be closer to representing the differences
between charmonium and bottomonium states. These evaluations are summarized in
Tables 9.1 and 9.2 of Chapter 9; they compare favorably with the available experimental
data. In particular for the triplet 3S → 2P and 2S → 1P transitions in bottomonium
and the singlet 1P → 1S transition in charmonium, we get errors that are comparable
to the experimental ones.
Using our results for the decays and experimental input in Tables 9.3 - 9.8, we com-
puted predictions for the total width of some quarkonium states. Our prediction for the
χb0(1P ) is compatible with the latest experimental limits.
In Table 9.9, we use our results together with experimental input for the total width
to estimate the branching fraction of the singlet 2S → 1P transition in bottomonium
and charmonium. There is some tension among our predictions for the total width when
these are computed from different transitions. We expect that further experimental data
can conciliate this tension.
The results reported here may be seen as a first evaluation of the O(v2) E1 decay rates
within an EFT framework. A possible next step may be to include the full perturbative
expressions of the potential in the short-distance regime. Provided an estimation of the
non-perturbative effects that still appear (octet effects) and ignoring contributions from
the long-range regime of the potential, this approach may be sufficient for transitions
among lower states. In this approach, the mass and coupling may be evaluated in a
specific renormalization scheme rather than the fixed parameters of our approach. Such
a study has been carried out in the case of the M1 transitions in [81] and a preliminary
evaluation of some E1 transitions can be found in [128].
For transitions involving excited states, still some parametrization of the long-range po-
tential will be necessary as well as a cut-off to separate both distance regimes. It would
be interesting to see if a more sophisticated evaluation can account for the 3S → 1P
bottomonium transition, since in our approach this transition suffers from a large in-
stability. The origin of this instability (see Appendix G) seems to indicate that precise
fine-tuned values of the potential parameters are necessary for getting stable relativistic
corrections.
The results presented here may be relevant for current and future experiments like
BELLE II, BESIII and quarkonium-related LHC experiments.

10.3 Concluding remarks

We have presented an evaluation of the quarkonium electromagnetic dipole transitions
that uses some of the accumulated results from the EFTs for quarkonium, in particular
from pNRQCD. This represents a novel approach to the study of a process that in the
past has been treated using models that did not have a solid justification in terms of
QCD. Although in the construction of the potential we had to give some rigor away, we
believe that our evaluation is a step forward with respect to these older approaches.
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To conduct this evaluation, it was required to complete the calculation of the relativis-
tic corrections to the EST potential at O(1/m2), a calculation that by itself is impor-
tant, since it provides some predictions for the quark-antiquark interaction that may be
testable in future lattice studies. These results together with some of the tools developed
for the numerical analysis may be relevant for applications other than those presented in
this thesis.

The research we have detailed here has also been reported in [129], [58], [130], [131],
and [116].
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Appendix A

Further details on the calculation of
the pNRQCD 1/m potential

In this section we give some details on the calculation of the 1/m potential in Sec. 3.2
based on [18].

The spin-dependent term in Eq. (3.41) has been eliminated using time reversal:

〈B(t)〉� = −〈B(−t)〉�. (A.1)

In order to expand G(1,0)
NRQCD in Eq. (3.41) and obtain the expression of (3.43), the fol-

lowing identities are necessary

D(x, t)φ(t,x, t′,x) = φ(t,x, t′,x)D(x, t′)

+ ig

∫ t

t′
dt′′φ(t,x, t′′,x)E(x, t′′)φ(t′′,x, t′,x), (A.2)

D(x1, t)φ(x1,x2; t) = igr×
∫ 1

0
ds s φ(x1,x

′(s); t)B(x′(s), t)φ(x′(s),x2; t)

+ φ(x1,x2; t)∇x1 , (A.3)

where

φ(t,x, t′,x) ≡ P exp

{
−ig

∫ t

t′
dt′′A0(x, t′′)

}
, (A.4)

x′(s) = sx1 + (1− s)x2, (A.5)

and φ(x1,x2; t) was defined in Eq. (3.28) as

φ(x1,x2; t) ≡ P exp

[
ig

∫ 1

0
ds(x1 − x2) ·A(x2 − s(x2 − x1), t)

]
. (A.6)

From identities (A.2) and (A.3) the following relation can be obtained

∇x1〈W�〉 = ig

∫ T/2

−T/2
dt〈E(t)〉� + 〈O1(−T/2)〉� − 〈O2(T/2)〉�, (A.7)
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where O1 and O2 are given in Eqs. (3.44) and (3.45) respectively.

The method for going from Eq. (3.50) to (3.53) and from (3.68) to (3.67) was outlined
in Ref. [18]; it reads:

1. Inserting the identity operator I =
∑
|n〉(0) (0)〈n| into the Wilson loop averages

one obtains Eq. (3.51).

2. Doing the same for 〈E(t)〉� one gets

〈E(t)〉� =∑
n

e−iE
(0)
n Ta2

n
(0)〈n|E|n〉(0) +

∑
n 6=m

e−i(E
(0)
n +E

(0)
m )T

2
+i(E

(0)
n −E

(0)
m )tanam

(0)〈n|E|m〉(0).

(A.8)

3. End-point strings containing O2 and O1 select intermediate states with quantum
numbers different from the ones of the singlet. As a consequence of this, correlators
containing O2 and O1 vanish when taking the limit T →∞.

4. Consider the following two results

−(∇V0) = (0)〈0|gE|0〉(0), (A.9)

(∇Z0) = 2
∑
n 6=0

a0an
(0)〈0|gE|n〉(0)

En − E0
, (A.10)

which can be proven using Eq. (A.7) together with time-inversion invariance of the
chromoelectric field.

5. Inserting the identity operator in the correlator 〈E(t) · E(t′)〉�, one obtains for
t > t′:

〈E(t)·E(t′)〉� =∑
n,m,s

anam
(0)〈n|E|s〉(0) (0)〈s|E|m〉(0)e−i(E

(0)
n +E

(0)
m )T

2 ei(E
(0)
n −E

(0)
s )tei(E

(0)
s −E

(0)
m )t.

(A.11)

This method also provides the steps to prove that the expressions involving the correlators
(Eqs. (3.50) and (3.68)) are finite when taking the limit T →∞.
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Appendix B

The EST two-field correlator

For the sake of completeness, in this section we show the explicit derivation of Eq. (4.11).
The following derivation has been presented previously in [132].

Let the position of the quark and antiquark be ±r/2 ≡ (0, 0,±r/2) meaning that the
QQ̄ system is located along the z-axis and symmetric with respect to the x-y plane. We
want to calculate the correlator given by

GlmF (t, z; t′, z′) = 〈ξl(t, z)ξm(t′, z′)〉 ≡ 1

Z

∫
Dξ1Dξ2 ξlξmeiSstring(ξ1,ξ2), (B.1)

with Z being the normalization, and GlmF (t, z; t′, z′) the Feynman propagator that can
be obtained from the equations of motion

∂L
∂ξl
− ∂µ

∂L
∂(∂µξl)

= ∂µ∂
µξl = 0. (B.2)

Because ξ only depends on z and t, the equations of motion simplify to

∂2ξl

∂t2
− ∂2ξl

∂z2
= 0. (B.3)

It is much more convenient to work in Euclidean space-time; performing a Wick rotation
t→ it, the equations of motion reduce to a Laplacian in two dimensions

∂2ξl

∂t2
+
∂2ξl

∂z2
= 0 and ξl(it,±r/2) = ξl(±i∞, z) = 0. (B.4)

Now we can compute the Green function defined by(
∂2

∂t2
+

∂2

∂z2

)
GlmF (it, z; it′, z′) = −δlm

κ
δ(z − z′)δ(t− t′). (B.5)

Dropping the Kroenecker delta in (B.5), we get(
∂2

∂t2
+

∂2

∂z2

)
G̃(t, z; t′, z′) = −1

κ
δ(z − z′)δ(t− t′). (B.6)
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Note that the Green function introduced in (B.6) also has to satisfy the boundary con-
ditions of (B.4). Hence it is useful to translate the coordinate system in the z direction:

z → z + r/2 , z′ → z′ + r/2,

G̃(t, r; t′, z′) = G̃(t, 0; t′, z′) = G̃(±∞, r; t′, z′) = 0.

To handle Eq. (B.6), the first step is to express the Green function as a Fourier transfor-
mation g̃(η, z; t′, z′) namely

g̃(η, z; t′, z′) =
1√
2π

∫
dt eiηtG̃(t, z; t′, z′) (B.7)

and
G̃(t, z; t′, z′) =

1√
2π

∫
dη e−iηtg̃(η, z; t′, z′). (B.8)

Multiplying Eq. (B.6) with eiηt and performing an integration over the whole time axis
yields ∫

dt eiηt
∂2G̃

∂t2
+

∫
dt eiηt

∂2G̃

∂z2
= −1

κ

∫
dt eiηtδ(z − z′)δ(t− t′).

Assuming that the Green function and its first derivative vanishes when t → ±∞, one
obtains after two integrations by parts∫

dt eiηt
∂2G̃

∂t2
= −η2

√
2π g̃.

Moreover the second integral reads∫
dt eiηt

∂2G̃

∂z2
=

d2

dz2

∫
dt eiηtG̃ =

√
2π

d2g̃

dz2
.

Altogether the remaining equation which has to be solved is given by

d2g̃

dz2
− η2g̃ = − 1√

2πκ
eiηt

′
δ(z − z′) and g̃(η, 0) = g̃(η, r) = 0. (B.9)

The solution of Eq. (B.9) can be expanded in terms of a complete system of orthonormal
functions which fulfill the boundary conditions. This expansion gets simpler if one uses
eigenfunctions defined by

(
d2

dz2
+ λ2

n

)
ψn(z) = 0 and ψn(0) = ψn(r) = 0. A complete

system (
∑

n ψn(z)ψ∗n(z′) = δ(z − z′)) respecting also the boundary conditions is ψn(z) =√
2
r sin(λnz) and λn = nπ

r and
∫ r

0 dz ψn(z)ψ∗m(z) = δmn.

The expansion then becomes

g̃(η, z; t′, z′) =
eiηt

′

√
2πκ

2

r

∞∑
n=1

sin(λnz) sin(λnz
′)

η2 + λ2
n

. (B.10)
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To get the sought Green function combine Eq. (B.10) and (B.8):

G̃(t, z; t′, z′) =
1

πκr

∞∑
n=1

sin(λnz) sin(λnz
′)

∫
dη e−iη(t−t′) 1

η2 + λ2
n

. (B.11)

Computing the integral with the residue theorem, the correlator reads

G̃(t, z; t′, z′) =
1

πκ

∞∑
n=1

1

n
sin(λnz) sin(λnz

′) e−λn|t−t
′|. (B.12)

This relation may be written as the real part of a complex function:

G̃(t, z; t′, z′) =
1

2πκ
<

[ ∞∑
n=1

1

n
eiλn((z′−z)+i|t−t′|) −

∞∑
n=1

1

n
eiλn((z′+z)+i|t−t′|)

]
.

With
∑∞

n=1
Zn

n = − ln(1 − Z) and ln(Z) = ln |Z| + i arg(Z), the sum can be rewritten
as a logarithm with a complex argument

G̃(t, z; t′, z′) =
1

2πκ
< ln

(
1− ei

π
r

((z′+z)+i|t−t′|)

1− ei
π
r

((z′−z)+i|t−t′|)

)

=
1

4πκ
ln

(
cosh(πr (t− t′))− cos(πr (z + z′))

cosh(πr (t− t′))− cos(πr (z − z′))

)
. (B.13)

Coming back to the original coordinates, we have

z → z − r/2 , z′ → z′ − r/2

cos
(π
r

(z + z′)
)
→ − cos

(π
r

(z + z′)
)
.

Putting back the Kroenecker delta, we get

GlmF (it, z; it′, z′) =
δlm
4πκ

ln

(
cosh(πr (t− t′)) + cos(πr (z + z′))

cosh(πr (t− t′))− cos(πr (z − z′))

)
, (B.14)

which is the desired result.
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Appendix C

Quarkonium spectrum from the
PDG

In Tables C.1 and C.2 we display the values of the masses used for the parameter fitting
and the calculation of the photon energy as they were retrieved from [78]. These values
may change in future PDG reports.

State ( 2S+1LJ) Mass [MeV]
ηc(1S) (1 1S0) 2983.7± 0.7

J/ψ (1 3S1) 3096.916± 0.011

hc(1P ) (1 1P1) 3525.38± 0.11

χc0(1P ) (1 3P0) 3414.75± 0.31

χc1(1P ) (1 3P1) 3510.66± 0.07

χc2(1P ) (1 3P2) 3556.2± 0.09

ηc(2S) (2 1S0) 3639.4± 1.3

ψ(3686) (2 3S1) 3686.109± 0.013

Table C.1: Experimental values of the charmonium masses retrieved from the PDG report
[78].

121



State ( 2S+1LJ) Mass [MeV]
ηb(1S) (1 1S0) 9398.0± 3.2

Υ(1S) (1 3S1) 9460.30± 0.26

hb(1P ) (1 1P1) 9899.3± 1.0

χb0(1P ) (1 3P0) 9859.44± 0.73

χb1(1P ) (1 3P1) 9892.78± 0.57

χb2(1P ) (1 3P2) 9912.21± 0.57

ηb(2S) (2 1S0) 9999± 4

Υ(2S) (2 3S1) 10023.26± 0.31

hb(2P ) (2 1P1) 10259.8± 1.2

χb0(2P ) (2 3P0) 10232.5± 0.9

χb1(2P ) (2 3P1) 10255.46± 0.77

χb2(2P ) (2 3P2) 10268.65± 0.77

Υ(3S) (3 3S1) 10355.2± 0.5

Υ(4S) (4 3S1) 10579.4± 1.2

Table C.2: Experimental values of the bottomonium masses retrieved from the PDG
report [78].
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Appendix D

Detailed results of the parameter
fitting

In the first part of this section we show the detailed partial results of the parameter fitting
that lead to the values of Tables 5.2 and 5.3. In the second part we present further details
of the analysis of the scaling of the potential with Countings 1 and 3.

D.1 Partial results of the fitting

The results of the fitting with phenomenology input are summarized in Tables D.1 - D.3.
The fitting of mb and mc with lattice input is shown in Tables D.4 - D.8. We only quote
up to three decimals in each parameter although the precision of the experimental input
requires that the parameters must be fitted at a precision of at least six decimals.
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Set Bottomonium Charmonium a κ [GeV2] mc [GeV] mb [GeV]

1 1 3S1, 2
3S1, 3

3S1 2 1S0 0.309 0.172 1.435 4.803
2 1 3S1 1 3S1, 2

3S1, 1
1P1 0.251 0.186 1.357 4.714

3 1 1S0, 2
1S0, 4

3S1 1 3P0 0.328 0.14 1.428 4.864
4 2 1P1 1 3S1, 1

3P1, 2
1S0 0.209 0.191 1.318 4.717

5 1 3S1, 2
3P1, 4

3S1 1 3S1 0.301 0.165 1.421 4.794
6 1 3S1 1 3S1, 1

1P1, 2
1S0 0.243 0.19 1.346 4.702

7 2 1P1, 3
3S1 1 1S0, 2

1S0 0.242 0.215 1.297 4.693
8 2 1P1, 3

3S1 1 3S1, 2
1S0 0.206 0.191 1.316 4.716

9 2 1S0, 3
3S1 1 3S1, 2

1S0 0.238 0.19 1.341 4.733
10 2 1S0, 3

3S1 1 3S1, 2
3S1 0.246 0.187 1.352 4.744

11 2 3P1, 3
3S1 1 3S1, 2

3S1 0.201 0.194 1.309 4.708
12 2 3P1, 3

3S1 1 1S0, 2
3S1 0.233 0.212 1.29 4.693

13 2 1S0, 3
3S1 1 1S0, 2

1S0 0.117 0.234 1.157 4.597
14 3 3S1, 4

3S1 1 3P1, 2
3S1 0.039 0.159 1.313 4.708

15 3 3S1, 4
3S1 1 1P1, 2

3S1 0.154 0.149 1.386 4.771
16 3 3S1, 4

3S1 1 3P2, 2
3S1 0.238 0.14 1.449 4.826

mean - - 0.222 0.182 1.345 4.736
σ - - 0.07 0.026 0.07 0.061

Table D.1: Parameter fitting using Counting 1 with phenomenology input. We quote
the states used to fit each parameter set, the experimental values for their masses can be
found in Appendix C.

124



Set Bottomonium Charmonium a κ [GeV2] mc [GeV] mb [GeV]

1 1 3S1, 2
3S1, 3

3S1 2 1S0 0.293 0.175 1.428 4.792
2 1 3S1 1 3S1, 2

3S1, 1
1P1 0.236 0.188 1.353 4.701

3 1 1S0, 2
1S0, 4

3S1 1 3P0 0.313 0.143 1.42 4.851
4 2 1P1 1 3S1, 1

3P1, 2
1S0 0.2 0.193 1.318 4.712

5 1 3S1, 2
3P1, 4

3S1 1 3S1 0.29 0.165 1.427 4.79
6 1 3S1 1 3S1, 1

1P1, 2
1S0 0.233 0.19 1.349 4.696

7 2 1P1, 3
3S1 1 1S0, 2

1S0 0.238 0.216 1.306 4.69
8 2 1P1, 3

3S1 1 3S1, 2
1S0 0.205 0.192 1.323 4.714

9 2 1S0, 3
3S1 1 3S1, 2

1S0 0.237 0.19 1.353 4.735
10 2 1S0, 3

3S1 1 3S1, 2
3S1 0.247 0.186 1.366 4.747

11 2 3P1, 3
3S1 1 3S1, 2

3S1 0.201 0.196 1.316 4.706
12 2 3P1, 3

3S1 1 1S0, 2
3S1 0.231 0.214 1.299 4.69

13 2 1S0, 3
3S1 1 1S0, 2

1S0 0.08 0.244 1.127 4.563
14 3 3S1, 4

3S1 1 3P1, 2
3S1 0.021 0.161 1.31 4.699

15 3 3S1, 4
3S1 1 1P1, 2

3S1 0.145 0.15 1.386 4.766
16 3 3S1, 4

3S1 1 3P2, 2
3S1 0.229 0.141 1.448 4.82

mean - - 0.213 0.184 1.346 4.73
σ - - 0.073 0.027 0.074 0.065

Table D.2: Parameter fitting using Counting 2 with phenomenology input.

Set Bottomonium Charmonium a κ [GeV2] mc [GeV] mb [GeV]

1 1 3S1, 2
3S1, 3

3S1 2 1S0 0.309 0.172 1.204 4.803
2 1 1S0, 2

1S0, 4
3S1 1 3P0 0.328 0.14 1.251 4.864

3 1 3S1, 2
3P1, 4

3S1 1 3S1 0.301 0.165 1.164 4.794
4 2 1P1, 3

3S1 1 1S0, 2
1S0 0.283 0.254 1.024 4.654

5 2 1P1, 3
3S1 1 3S1, 2

1S0 0.225 0.203 1.141 4.705
6 2 1S0, 3

3S1 1 3S1, 2
1S0 0.209 0.202 1.145 4.698

7 2 1S0, 3
3S1 1 3S1, 2

3S1 0.159 0.22 1.133 4.641
8 2 3P1, 3

3S1 1 3S1, 2
3S1 0.254 0.226 1.116 4.68

9 2 3P1, 3
3S1 1 1S0, 2

3S1 0.309 0.278 1.0 4.633
10 2 1S0, 3

3S1 1 1S0, 2
1S0 0.084 0.243 1.053 4.567

mean - - 0.246 0.21 1.123 4.704
σ - - 0.074 0.041 0.074 0.086

Table D.3: Parameter fitting using Counting 3 with phenomenology input. In this case
only 10 sets fulfill the condition 0 < a < 1.
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State mb(n
2S+1LJ) [GeV ] σmb [GeV ]

1 1S0 4.767 0.051
1 3S1 4.757 0.042
1 1P1 4.715 0.026
1 3P0 4.709 0.027
1 3P1 4.715 0.026
1 3P2 4.718 0.025
2 1S0 4.744 0.036
2 3S1 4.734 0.033
2 1P1 4.702 0.033
2 3P0 4.701 0.033
2 3P1 4.703 0.033
2 3P2 4.703 0.032
3 3S1 4.709 0.039
4 3S1 4.664 0.045

Average 4.719 0.132

Table D.4: Results for the fitting of the bottom mass parameter mb with the lattice
input adopting Counting 1; σmb corresponds to the standard deviation of the twelve
values obtained after solving Eq. (5.31). The average is calculated using the values σmb
as weights. The average of the σmb values is calculated using quadratures.

State mc(n
2S+1LJ) [GeV ] σmc [GeV ]

1 1S0 1.354 0.041
2 1S0 1.329 0.048
1 3S1 1.361 0.036
2 3S1 1.310 0.047
1 3P0 1.271 0.041
1 3P1 1.303 0.039
1 1P1 1.314 0.037
1 3P2 1.328 0.035

Average 1.321 0.115

Table D.5: Results for mc with Counting 1 and lattice input. The values are computed
as in Table D.4.
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State mb(n
2S+1LJ) [GeV ] σmb [GeV ]

1 1S0 4.783 0.058
1 3S1 4.773 0.049
1 1P1 4.716 0.026
1 3P0 4.710 0.027
1 3P1 4.716 0.026
1 3P2 4.719 0.025
2 1S0 4.748 0.037
2 3S1 4.738 0.034
2 1P1 4.703 0.033
2 3P0 4.702 0.033
2 3P1 4.703 0.033
2 3P2 4.704 0.032
3 3S1 4.711 0.039
4 3S1 4.666 0.045

Average 4.725 0.137

Table D.6: Results for mb with Counting 2 and lattice input. The values are computed
as in Table D.4.

State mc(n
2S+1LJ) [GeV ] σmc [GeV ]

1 1S0 1.376 0.044
2 1S0 1.347 0.047
1 3S1 1.384 0.039
2 3S1 1.328 0.046
1 3P0 1.282 0.039
1 3P1 1.315 0.037
1 1P1 1.324 0.035
1 3P2 1.338 0.033

Average 1.338 0.114

Table D.7: Results for mc with Counting 2 and lattice input. The values are computed
as in Table D.4.
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State mc(n
2S+1LJ) [GeV ] σmc [GeV ]

1 1S0 1.053 0.015
2 1S0 1.094 0.038
1 3S1 1.115 0.014
2 3S1 1.122 0.038
1 3P0 1.083 0.037
1 3P1 1.159 0.033
1 1P1 1.183 0.03
1 3P2 1.215 0.028

Average 1.130 0.086

Table D.8: Results for mc with Counting 3 and lattice input. The values are computed
as in Table D.4.

D.2 Consistency of the potential

D.2.1 Counting 1

For reading convenience, let us recall the definition of the potential adopting Counting
1 with the following notation

V LO = V LO
1 + V LO

2 ∼ mv2, (D.1)

V NLO =
2κ

mπ
log(
√
κr) ∼ mv3, (D.2)

V NNLO = V
(1/m)

2 + V NNLO′ ∼ mv4, (D.3)

where

V LO
1 ≡ −CF

a

r
, (D.4)

V LO
2 ≡ κr, (D.5)

V
(1/m)

2 ≡ −CFCAa
2

2mr2
, (D.6)

V NNLO′ ≡ − p4

4m3
+

1

m2

{
1

2

{
p2,−CFa

r

}
+

(
CFa

2r3
− κ

6r

)
L2 +

(
3CFa

2r3
− κ

2r

)
L · S

+
4πCFa

3
δ(3)(r)S2 +

CFa

4r3
S12(r̂) + πCFaδ

(3)(r)

}
. (D.7)

In this counting the potential has the same shape for both bottomonium and charmonium
states. Using the values of a, κ, mb and mc obtained from for the parameter fitting,
in Tables D.9 - D.12 we compare the expectation values of V LO, V NLO and V NNLO

calculated in all initial states of the E1 decays we are evaluating.
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State |〈V LO
1 〉| |〈V LO

2 〉| |〈V NLO〉|(|
√
κ〈r〉|) |〈V (1/m)

2 〉| |〈V NNLO′〉|
1 1P1 0.17 0.38 0.005 (0.89) 0.008 0.02
2 1P1 0.13 0.58 0.005 (1.37) 0.006 0.02
1 3P0 0.17 0.38 0.005 (0.89) 0.008 0.03
1 3P1 0.17 0.38 0.005 (0.89) 0.008 0.02
1 3P2 0.17 0.38 0.005 (0.89) 0.008 0.01
2 3P0 0.13 0.58 0.005 (1.37) 0.006 0.04
2 3P1 0.13 0.58 0.005 (1.37) 0.006 0.03
2 3P2 0.13 0.58 0.005 (1.37) 0.006 0.02
2 3S1 0.19 0.47 0.002 (1.09) 0.025 0.02
3 3S1 0.15 0.66 0.006 (1.55) 0.019 0.03
3 3P1 0.11 0.76 0.011 (1.78) 0.005 0.04

Table D.9: Consistency test of the ordering of the potential in the initial bottomonium
states adopting Counting 1 with phenomenology input. We show the expectation value of
the NLO potential together with the expectation value of the argument of the logarithm.
The suppression of the NLO potential was noticed also in Chapter 4, where considering
just the long-distance potential, for some states the NLO logarithmic potential turned
out to be more suppressed than some of the NNLO contributions. We also display the
expectation values of the NNLO 1/m-suppressed corrections, which turn out to be larger
than the NLO ones. All energy values in GeV.

State |〈V LO
1 〉| |〈V LO

2 〉| |〈V NLO〉|(|
√
κ〈r〉|) |〈V (1/m)

2 〉| |〈V NNLO′〉|
1 1P1 0.24 0.42 0.005 (0.89) 0.017 0.03
2 1P1 0.18 0.65 0.006 (1.39) 0.013 0.04
1 3P0 0.24 0.42 0.005 (0.89) 0.017 0.05
1 3P1 0.24 0.42 0.005 (0.89) 0.017 0.03
1 3P2 0.24 0.42 0.005 (0.89) 0.017 0.02
2 3P0 0.18 0.65 0.006 (1.39) 0.013 0.06
2 3P1 0.18 0.65 0.006 (1.39) 0.013 0.04
2 3P2 0.18 0.65 0.006 (1.39) 0.013 0.03
2 3S1 0.28 0.51 0.002 (1.1) 0.056 0.03
3 3S1 0.21 0.74 0.008 (1.57) 0.042 0.04
3 3P1 0.15 0.85 0.013 (1.82) 0.011 0.05

Table D.10: Consistency test of the potential in the initial bottomonium states adopting
Counting 1 with lattice input. Values as in Table D.9.
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State |〈V LO
1 〉| |〈V LO

2 〉| |〈V NLO〉|(|
√
κ〈r〉|) |〈V (1/m)

2 〉| |〈V NNLO′〉|
1 1P1 0.1 0.62 0.027 (1.45) 0.01 0.07
1 3P0 0.1 0.62 0.027 (1.45) 0.01 0.09
1 3P1 0.1 0.62 0.027 (1.45) 0.01 0.07
1 3P2 0.1 0.62 0.027 (1.45) 0.01 0.07
2 3S1 0.12 0.76 0.035 (1.77) 0.029 0.09

Table D.11: Consistency test of the potential in the initial charmonium states adopting
Counting 1 with phenomenology input. Values as in Table D.9.

State |〈V LO
1 〉| |〈V LO

2 〉| |〈V NLO〉|(|
√
κ〈r〉|) |〈V (1/m)

2 〉| |〈V NNLO′〉|
1 1P1 0.14 0.7 0.035 (1.49) 0.021 0.1
1 3P0 0.14 0.7 0.035 (1.49) 0.021 0.14
1 3P1 0.14 0.7 0.035 (1.49) 0.021 0.1
1 3P2 0.14 0.7 0.035 (1.49) 0.021 0.1
2 3S1 0.17 0.85 0.046 (1.82) 0.063 0.13

Table D.12: Consistency test of the potential evaluated in the initial charmonium states
adopting Counting 1 with lattice input. Values as in Table D.9.

D.2.2 Counting 3

We repeat the analysis of the previous section now for Counting 3. For the evaluations of
the expectation values of the bottomonium states, the potential has the same shape as in
Counting 1, so we adopt the same notation. In the case of the evaluations in charmonium
states, the potential is given by

V LO = κr ∼ mv2, (D.8)
V NLO = V NLO

1 + V NLO
2 ∼ mv3, (D.9)

V NNLO = − p4

4m3
+

1

m2

{
− κ

6r
L2 − κ

2r
L · S

}
∼ mv4, (D.10)

where

V NLO
1 ≡ 2κ

mπ
log(
√
κr). (D.11)

V NLO
2 ≡ −CF

a

r
. (D.12)

The results of the study of the realization of this ordering in the potential are shown in
Tables D.13 - D.15.
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State |〈V LO
1 〉| |〈V LO

2 〉| |〈V NLO〉|(|
√
κ〈r〉|) |〈V (1/m)

2 〉| |〈V NNLO′〉|
1 1P1 0.19 0.42 0.005 (0.91) 0.011 0.02
2 1P1 0.15 0.64 0.006 (1.4) 0.008 0.03
1 3P0 0.19 0.42 0.005 (0.91) 0.011 0.04
1 3P1 0.19 0.42 0.005 (0.91) 0.011 0.02
1 3P2 0.19 0.42 0.005 (0.91) 0.011 0.01
2 3P0 0.15 0.64 0.006 (1.4) 0.008 0.05
2 3P1 0.15 0.64 0.006 (1.4) 0.008 0.03
2 3P2 0.15 0.64 0.006 (1.4) 0.008 0.03
2 3S1 0.22 0.51 0.001 (1.12) 0.035 0.02
3 3S1 0.17 0.72 0.008 (1.58) 0.026 0.04
3 3P1 0.12 0.83 0.013 (1.82) 0.007 0.05

Table D.13: The same as Table D.9, but using the results of the fitting adopting the
Counting 3 with phenomenology input.

State |〈V LO〉| |〈V NLO
1 〉|(|

√
κ〈r〉|) |〈V NLO

2 〉| |〈V NNLO〉|
1 1P1 0.76 0.05 (1.66) 0.1 0.07
1 3P0 0.76 0.05 (1.66) 0.1 0.01
1 3P1 0.76 0.05 (1.66) 0.1 0.04
1 3P2 0.76 0.05 (1.66) 0.1 0.09
2 3S1 0.93 0.06 (2.02) 0.12 0.09

Table D.14: Consistency test of the potential for initial charmonium states using Count-
ing 3 with phenomenology input. All energy values in GeV.

State |〈V LO〉| |〈V NLO
1 〉|(|

√
κ〈r〉|) |〈V NLO

2 〉| |〈V NNLO〉|
1 1P1 0.78 0.06 (1.67) 0.13 0.07
1 3P0 0.78 0.06 (1.67) 0.13 0.01
1 3P1 0.78 0.06 (1.67) 0.13 0.04
1 3P2 0.78 0.06 (1.67) 0.13 0.1
2 3S1 0.95 0.07 (2.03) 0.14 0.09

Table D.15: The same as Table D.14, now with lattice input.
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Appendix E

The SChroe.py script

In this section we describe the method used to solve the Schrödinger equation together
with a basic example of the usage of the script where this method has been implemented.

Problem set-up and solution method

The time-independent Schrödinger equation for two particles interacting through a po-
tential V (r) is given by (

−∇
2
r

2µ
+ V (r)

)
ψ(r) = Eψ(r), (E.1)

where ψ(r) is the wavefunction, E is the eigenvalue and µ is the reduced mass given by

µ =
m1m2

m1 +m2
, (E.2)

with mi being the masses of the particles. If we consider the equal mass case with a
spherically symmetric potential V (r), the equation reduces to[

− 1

m

d2

dr2
+
l(l + 1)

mr2
+ V (r)

]
yn,l(r) = En,lyn,l(r), (E.3)

where yn,l is the reduced radial wavefunction defined through

ψ(r)n,l ≡
yn,l(r)

r
Y(θ, φ), (E.4)

where the pair (n, l) are the radial and angular momentum quantum numbers respectively
and Y(θ, φ) are the spherical harmonics.
The fundamental computational problem related to Eq. (E.3) is to find En,l for a given
n and l. The standard method to solve this problem is called the shooting method, which
consists of applying two known constraints to the reduced wavefunction yn,l:

• The number of nodes (number of times the wavefunction crosses the x axis) of
yn,l(r) must be equal to n− 1. This result is called the nodal theorem.
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• yn,l(r) has to be normalizable: ∫ ∞
0

dr[yn,l(r)]
2 = 1. (E.5)

In general yn,l(r) will diverge except when En,l corresponds to an eigenvalue. The pro-
cedure to find the eigenvalues consists in performing a scan of values of En,l until yn,l(r)
has n − 1 nodes and converges for a large enough value of r, see Fig. E.1. This implies
that for each test value of En,l Eq. (E.3) must be solved.
The algorithm to solve (E.3) for a given pair n = N, l = L can be summarized as follows:

• A lower and an upper bound Elow and Eup of the interval in which the eigenvalue
is expected to lie must be specified in the input. Also the precision P of the
calculation must be specified.

• There will be two loops running: the solver loop, that computes the eigenfunction
for a given probe eigenvalue and the global loop in which the eigenvalue that the
solver loop receives is modified.

• In our implementation we solve Eq. (E.3) with En,l ≡ ε = (Elow + Eup)/2 using
the Runge-Kutta (RK) method. In each step of the RK loop, the solver loop,
we compare the sign of yn,l with respect to its sign in the previous step; if it is
different, we have that yn,l has crossed the x axis, so we increase the node counter
that initially has been set to zero.

• In each step of the solver loop the following conditionals are analysed:

– If the number of nodes is larger than N − 1, the solver loop stops and then
we call again the global loop, now with Eup = ε while Elow remains the same.

– If yn,l starts to diverge, the solver loop stops and for the next step in the
global loop Elow = ε while Eup remains the same.

– The asymptotic behavior of yn,l can be determined by looking at its derivative,
which is calculated in each step of the solver loop: if the derivative and the
function have the same sign, then the function diverges [120].

• The global loop stops when Eup − Elow < P ; then ε corresponds to the eigenvalue
EN,L at the given precision P .

In our implementation, the wavefunctions (arrays) that result from this method have the
following structure:

y = [[(x0, y(x0)], [x1, y(x1)], . . . , [xmax, y(xmax)]]. (E.6)

In general, the smaller the value of P , the larger the value of xmax and the smaller the
value of y(xmax). For different wavefunctions, the value of xmax will be in general also
different. We must account for this difference when computing the integrals of the matrix
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elements, which will be defined up to the smaller of the two xmax values.
For more details about the solution method we refer the reader to [120] and to [133],
where the code of SChroe.py is available.
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Figure E.1: SChroe.py algorithm: (a) if the probe value is not an eigenvalue of the
Hamiltonian the wavefunction will not converge for large r; (b) the eigenvalue is found
when the wavefunction has the right number of nodes and converges for large r.

Usage

Before running the script, the potential must be specified in the potential.h file for the
C solver, or in the SChroe.py file if one wants to use the pure Python solver. In the case
of the potential of Eq. (5.16), the definition in C reads

long double V(long double r, long double k, long double sig){
return -4.*k/(3.*r)+sig*r;

}

The user must take care that the inputs of the potential are accounted for in the Python
code when calling the C functions, see the accompanying example in [133]. Once the
potential is defined, the operation of SChroe.py is very simple:

>> run SChroe.py
>> E = eigenvalueC(ELOW,EUP,n,l,a,t,m)
>> Y = eigenfunctionC(E,l,a,t,m)

In the above block of code, E stores the eigenvalue of the potential with quantum numbers
n and l, which must lie in the interval spanned between ELOW and EUP. In this specific
example, we should also specify the parameters of the potential a,t,m as an additional
input, the shape of the input depends on the definition of the potential. In the next
line, using the value E, the array corresponding to the reduced radial wavefunction is
calculated and stored in the variable Y.
Together with these basic functions, the script provides some useful aliases of SciPy
functions in order to manipulate the wavefunctions. For instance, assuming the user has
calculated two wavefunctions Y and Yp, some of the provided functions are
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>> def F(r):
>> return r**2
>> I = wfpro(F,Y,Yp)
>> K = wfint(I)

In this example, the function F (r) = r2 is first defined, then the variable K stores the
result of

∫∞
0 drYp(r)r

2Y (r) calculated with the SChroe.py function wfint. The interme-
diate step defines the integrand I through the SChroe.py function wfpro, which returns
the array that corresponds to the product of two arrays and one function. The integral
is computed using the SciPy function integrate.simps described in Chapter 7. The
script also provides plotting functions that can easily be integrated within a notebook
environment; an example is displayed in Fig. 7.1.
SChroe.py is useful in cases where the functional shape of the potential is fixed, like in
the case of Eq. (5.16), however, for applications in which one needs to change the poten-
tial the script is not so useful, since for each potential the code needs to be modified.
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Appendix F

Detailed partial results for the
decay rates

F.1 Further details of the evaluation of the decay rates

The following tables provide further details of the partial results of the numerical evalu-
ation of the E1 decay rates.

kγ ΓLO εLO
par (%) εLO

rel (%) R δΓ ΓNLO εNLO
par (%) εNLO

rel (%)

Decay [GeV] [keV] [keV] [keV] [keV] [keV] [keV]
11P1 → 11S0γ 0.5 1065.52 124.34(11.7) 550.55(51.7) -0.56 -0.112 363.04 241.38(66.5) 148.17(40.8)
21S0 → 11P1γ 0.11 0.13 0.03(24.2) 0.07(57.0) -0.16 0.0003 0.11 0.03(29.9) 0.02(22.0)
13P0 → 13S1γ 0.3 237.13 27.67(11.7) 122.53(51.7) -0.31 -0.273 100.34 37.29(37.2) 32.98(32.9)
13P1 → 13S1γ 0.39 502.98 58.7(11.7) 259.89(51.7) -0.39 -0.155 234.7 85.88(36.6) 69.94(29.8)
13P2 → 13S1γ 0.43 675.7 78.85(11.7) 349.13(51.7) -0.38 -0.028 407.95 98.51(24.1) 93.96(23.0)
23S1 → 13P0γ 0.26 60.69 4.39(7.2) 34.53(56.9) -0.57 -0.057 22.65 8.34(36.8) 11.27(49.7)
23S1 → 13P1γ 0.17 51.23 3.71(7.2) 29.15(56.9) -0.31 0.012 36.04 3.53(9.8) 9.51(26.4)
23S1 → 13P2γ 0.13 35.32 2.56(7.2) 20.1(56.9) -0.27 -0.011 25.56 2.55(10.0) 6.56(25.7)

Table F.1: Summary of the results obtained from the evaluation of the charmonium decay
rates using Counting 1 with phenomenology input. The photon energy kγ is computed
using Eq. (6.4), the values of ΓLO and ΓNLO and the uncertainties are computed as
explained in Sec. 8.1. For further reference, we include also the mean value of the two
kinds of relativistic corrections: R and δΓ. For each uncertainty, in brackets we display
its percent value relative to ΓLO or ΓNLO.
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kγ ΓLO εLO
par (%) εLO

rel (%) R δΓ ΓNLO εNLO
par (%) εNLO

rel (%)

Decay [GeV] [keV] [keV] [keV] [keV] [keV] [keV]
11P1 → 11S0γ 0.49 78.43 18.6(23.7) 18.58(23.7) -0.46 -0.034 44.08 29.03(65.8) 1.05(2.4)
21P1 → 11S0γ 0.83 10.28 2.82(27.4) 2.82(27.5) 0.5 0.132 17.14 5.63(32.8) 0.21(1.2)
21P1 → 21S0γ 0.26 28.48 4.95(17.4) 7.75(27.2) -0.45 -0.024 16.04 9.21(57.4) 0.58(3.6)
21S0 → 11P1γ 0.1 0.07 0.02(27.4) 0.02(26.5) 0.02 -0.001 0.07 0.02(30.8) 0.001(1.8)
13P0 → 13S1γ 0.39 40.21 9.53(23.7) 9.53(23.7) -0.24 -0.051 29.89 12.22(40.9) 0.54(1.8)
13P1 → 13S1γ 0.42 50.9 12.07(23.7) 12.06(23.7) -0.28 -0.037 36.24 15.78(43.5) 0.68(1.9)
13P2 → 13S1γ 0.44 57.91 13.73(23.7) 13.72(23.7) -0.28 -0.022 41.88 17.16(41.0) 0.78(1.9)
23P0 → 13S1γ 0.74 7.5 2.06(27.4) 2.06(27.5) -0.21 -0.046 5.51 1.36(24.7) 0.16(2.8)
23P1 → 13S1γ 0.76 8.16 2.24(27.4) 2.24(27.5) 0.04 0.038 8.84 2.47(27.9) 0.17(1.9)
23P2 → 13S1γ 0.78 8.56 2.35(27.4) 2.35(27.5) 0.28 0.186 12.72 3.94(31.0) 0.18(1.4)
23P0 → 23S1γ 0.21 14.82 2.58(17.4) 4.03(27.2) -0.17 -0.031 12.06 3.15(26.1) 0.3(2.5)
23P1 → 23S1γ 0.23 20.19 3.51(17.4) 5.5(27.2) -0.24 -0.025 15.22 4.83(31.7) 0.41(2.7)
23P2 → 23S1γ 0.24 23.78 4.13(17.4) 6.47(27.2) -0.29 -0.019 16.93 6.04(35.7) 0.48(2.8)
33P1 → 13S1γ 1.0 3.29 1.37(41.5) 1.0(30.3) 0.18 -0.041 3.94 2.03(51.7) 0.09(2.3)
33P1 → 23S1γ 0.48 2.95 0.77(26.2) 0.89(30.3) -0.002 0.095 3.26 0.97(29.7) 0.08(2.5)
33P1 → 33S1γ 0.15 10.82 1.58(14.6) 3.26(30.1) -0.22 -0.021 8.34 2.21(26.6) 0.3(3.6)
23S1 → 13P0γ 0.16 1.6 0.12(7.2) 0.42(26.2) -0.2 -0.013 1.26 0.13(10.7) 0.03(2.3)
23S1 → 13P1γ 0.13 2.43 0.18(7.2) 0.64(26.2) -0.09 -0.002 2.21 0.17(7.7) 0.04(2.0)
23S1 → 13P2γ 0.11 2.51 0.18(7.2) 0.66(26.2) -0.04 0.004 2.42 0.18(7.6) 0.05(1.9)
33S1 → 23P0γ 0.12 1.6 0.12(7.3) 0.47(29.1) -0.2 -0.007 1.27 0.11(8.8) 0.04(3.1)
33S1 → 23P1γ 0.1 2.59 0.19(7.3) 0.75(29.1) -0.07 -0.0005 2.4 0.19(7.7) 0.06(2.7)
33S1 → 23P2γ 0.09 2.82 0.2(7.3) 0.82(29.1) -0.02 -0.0001 2.75 0.24(8.8) 0.07(2.5)

Table F.2: Summary of the results obtained from the evaluation of the bottomonium
decay rates using Counting 1 with phenomenology input. Values as in Table F.1.
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kγ ΓLO εLO
par (%) εLO

rel (%) R δΓ ΓNLO εNLO
par (%) εNLO

rel (%)

Decay [GeV] [keV] [keV] [keV] [keV] [keV] [keV]
11P1 → 11S0γ 0.49 55.88 3.49(6.2) 14.78(26.4) -0.8 -0.031 9.65 4.94(51.2) 1.03(10.7)
21P1 → 11S0γ 0.83 11.7 0.45(3.9) 3.47(29.7) 0.8 0.051 21.69 1.03(4.8) 0.31(1.4)
21P1 → 21S0γ 0.26 21.9 1.11(5.1) 6.5(29.7) -0.77 -0.022 4.65 1.71(36.9) 0.57(12.3)
21S0 → 11P1γ 0.1 0.08 0.003(3.9) 0.02(28.9) 0.07 -0.002 0.09 0.004(4.5) 0.002(2.3)
13P0 → 13S1γ 0.39 28.65 1.79(6.2) 7.58(26.4) -0.4 -0.081 15.01 2.06(13.8) 0.53(3.5)
13P1 → 13S1γ 0.42 36.27 2.27(6.2) 9.59(26.4) -0.48 -0.051 17.16 2.65(15.4) 0.67(3.9)
13P2 → 13S1γ 0.44 41.26 2.58(6.2) 10.91(26.4) -0.48 -0.003 21.27 3.01(14.2) 0.76(3.6)
23P0 → 13S1γ 0.74 8.53 0.33(3.9) 2.53(29.7) -0.2 -0.149 5.57 0.26(4.7) 0.22(4.0)
23P1 → 13S1γ 0.76 9.28 0.36(3.9) 2.75(29.7) 0.14 -0.05 10.12 0.44(4.3) 0.24(2.4)
23P2 → 13S1γ 0.78 9.73 0.38(3.9) 2.89(29.7) 0.48 0.134 15.74 0.71(4.5) 0.25(1.6)
23P0 → 23S1γ 0.21 11.4 0.58(5.1) 3.38(29.7) -0.27 -0.041 7.89 0.64(8.1) 0.3(3.8)
23P1 → 23S1γ 0.23 15.52 0.79(5.1) 4.6(29.7) -0.39 -0.029 8.96 0.93(10.4) 0.41(4.5)
23P2 → 23S1γ 0.24 18.29 0.93(5.1) 5.42(29.7) -0.48 -0.011 9.26 1.15(12.4) 0.48(5.2)
33P1 → 13S1γ 1.0 4.2 0.25(6.0) 1.37(32.5) 0.41 -0.116 5.44 0.45(8.3) 0.14(2.7)
33P1 → 23S1γ 0.48 3.32 0.13(3.9) 1.08(32.5) 0.11 0.026 3.77 0.19(5.0) 0.11(3.0)
33P1 → 33S1γ 0.15 8.61 0.4(4.6) 2.8(32.5) -0.36 -0.024 5.34 0.46(8.6) 0.3(5.5)
23S1 → 13P0γ 0.16 1.44 0.05(3.4) 0.41(28.9) -0.27 -0.013 1.03 0.04(3.7) 0.03(3.4)
23S1 → 13P1γ 0.13 2.19 0.07(3.4) 0.63(28.9) -0.11 -0.002 1.95 0.06(3.3) 0.05(2.7)
23S1 → 13P2γ 0.11 2.25 0.08(3.4) 0.65(28.9) -0.02 0.005 2.22 0.07(3.2) 0.05(2.4)
33S1 → 23P0γ 0.12 1.46 0.05(3.2) 0.46(31.6) -0.25 -0.006 1.08 0.03(3.2) 0.05(4.3)
33S1 → 23P1γ 0.1 2.36 0.08(3.2) 0.75(31.6) -0.07 0.0 2.2 0.07(3.1) 0.07(3.4)
33S1 → 23P2γ 0.09 2.58 0.08(3.2) 0.81(31.6) 0.01 0.0 2.61 0.08(3.1) 0.08(3.1)

Table F.3: Summary of the results obtained from the evaluation of the bottomonium
decay rates using Counting 1 with lattice input. Values as in Table F.1.

kγ ΓLO εLO
par (%) εLO

rel (%) R δΓ ΓNLO εNLO
par (%) εNLO

rel (%)

Decay [GeV] [keV] [keV] [keV] [keV] [keV] [keV]
11P1 → 11S0γ 0.5 904.33 82.34(9.1) 517.01(57.2) -0.86 -0.108 29.95 65.12(217.4) 171.14(571.5)
21S0 → 11P1γ 0.11 0.14 0.01(4.9) 0.09(62.6) -0.14 -0.004 0.12 0.01(5.3) 0.04(28.9)
13P0 → 13S1γ 0.3 201.26 18.33(9.1) 115.06(57.2) -0.43 -0.37 38.37 13.7(35.7) 38.09(99.3)
13P1 → 13S1γ 0.39 426.89 38.87(9.1) 244.05(57.2) -0.56 -0.201 102.22 22.81(22.3) 80.79(79.0)
13P2 → 13S1γ 0.43 573.48 52.22(9.1) 327.86(57.2) -0.54 0.021 277.54 22.74(8.2) 108.53(39.1)
23S1 → 13P0γ 0.26 56.03 4.06(7.2) 35.17(62.8) -0.8 -0.043 8.7 3.87(44.5) 14.04(161.4)
23S1 → 13P1γ 0.17 47.3 3.43(7.2) 29.69(62.8) -0.4 0.02 29.42 1.01(3.4) 11.85(40.3)
23S1 → 13P2γ 0.13 32.61 2.36(7.2) 20.47(62.8) -0.29 -0.015 22.39 0.83(3.7) 8.17(36.5)

Table F.4: Summary of the results obtained from the evaluation of the charmonium
decay rates using Counting 1 with lattice input. Values as in Table F.1.
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kγ ΓLO εLO
par (%) εLO

rel (%) R δΓ ΓNLO εNLO
par (%) εNLO

rel (%)

Decay [GeV] [keV] [keV] [keV] [keV] [keV] [keV]
11P1 → 11S0γ 0.49 79.07 15.6(19.7) 18.87(23.9) -0.42 -0.035 45.92 25.15(54.8) 1.08(2.4)
21P1 → 11S0γ 0.83 10.23 2.98(29.1) 2.82(27.5) 0.68 0.131 19.16 7.47(39.0) 0.22(1.1)
21P1 → 21S0γ 0.26 28.68 4.09(14.2) 7.86(27.4) -0.41 -0.025 16.87 7.66(45.4) 0.59(3.5)
21S0 → 11P1γ 0.1 0.07 0.02(29.1) 0.02(26.5) 0.01 -0.001 0.07 0.02(31.7) 0.001(1.8)
13P0 → 13S1γ 0.39 40.54 8.0(19.7) 9.67(23.9) -0.21 -0.05 30.7 10.33(33.6) 0.55(1.8)
13P1 → 13S1γ 0.42 51.31 10.12(19.7) 12.24(23.9) -0.26 -0.037 37.29 13.42(36.0) 0.7(1.9)
13P2 → 13S1γ 0.44 58.38 11.52(19.7) 13.93(23.9) -0.26 -0.022 43.12 14.62(33.9) 0.8(1.9)
23P0 → 13S1γ 0.74 7.46 2.17(29.1) 2.06(27.5) -0.04 -0.049 7.02 2.75(39.2) 0.16(2.2)
23P1 → 13S1γ 0.76 8.12 2.36(29.1) 2.24(27.5) 0.22 0.036 10.48 3.96(37.8) 0.17(1.6)
23P2 → 13S1γ 0.78 8.51 2.48(29.1) 2.35(27.5) 0.46 0.186 14.41 5.41(37.6) 0.18(1.2)
23P0 → 23S1γ 0.21 14.92 2.13(14.2) 4.09(27.4) -0.14 -0.031 12.42 2.5(20.1) 0.31(2.5)
23P1 → 23S1γ 0.23 20.32 2.9(14.2) 5.57(27.4) -0.21 -0.025 15.73 3.9(24.8) 0.42(2.7)
23P2 → 23S1γ 0.24 23.94 3.41(14.2) 6.56(27.4) -0.26 -0.019 17.56 4.92(28.0) 0.5(2.8)
33P1 → 13S1γ 1.0 3.24 1.38(42.6) 0.98(30.4) 0.04 -0.044 3.32 1.6(48.3) 0.09(2.7)
33P1 → 23S1γ 0.48 2.93 0.81(27.6) 0.89(30.4) -0.13 0.093 2.8 0.71(25.4) 0.08(2.9)
33P1 → 33S1γ 0.15 10.89 1.3(12.0) 3.3(30.3) -0.21 -0.021 8.47 1.83(21.6) 0.3(3.6)
23S1 → 13P0γ 0.16 1.6 0.13(8.1) 0.42(26.3) -0.21 -0.013 1.25 0.13(10.5) 0.03(2.4)
23S1 → 13P1γ 0.13 2.44 0.2(8.1) 0.64(26.3) -0.1 -0.002 2.19 0.19(8.4) 0.04(2.0)
23S1 → 13P2γ 0.11 2.52 0.2(8.1) 0.66(26.3) -0.05 0.004 2.4 0.21(8.8) 0.05(1.9)
33S1 → 23P0γ 0.12 1.6 0.14(8.6) 0.47(29.2) -0.21 -0.007 1.25 0.13(10.0) 0.04(3.2)
33S1 → 23P1γ 0.1 2.59 0.22(8.6) 0.76(29.2) -0.09 -0.0003 2.37 0.21(9.1) 0.07(2.7)
33S1 → 23P2γ 0.09 2.83 0.24(8.6) 0.83(29.2) -0.04 -0.0002 2.71 0.27(10.0) 0.07(2.6)

Table F.5: Summary of the results obtained from the evaluation of the bottomonium
decay rates using Counting 2 with phenomenology input. Values as in Table F.1.

kγ ΓLO εLO
par (%) εLO

rel (%) R δΓ ΓNLO εNLO
par (%) εNLO

rel (%)

Decay [GeV] [keV] [keV] [keV] [keV] [keV] [keV]
11P1 → 11S0γ 0.5 1070.74 113.85(10.6) 556.04(51.9) -0.53 -0.112 393.04 204.22(52.0) 150.78(38.4)
21S0 → 11P1γ 0.11 0.13 0.03(25.4) 0.07(57.2) -0.17 0.0003 0.11 0.03(29.5) 0.02(22.4)
13P0 → 13S1γ 0.3 238.29 25.34(10.6) 123.75(51.9) -0.29 -0.275 105.59 30.77(29.1) 33.56(31.8)
13P1 → 13S1γ 0.39 505.44 53.74(10.6) 262.48(51.9) -0.36 -0.156 246.85 71.71(29.0) 71.18(28.8)
13P2 → 13S1γ 0.43 679.01 72.2(10.6) 352.61(51.9) -0.35 -0.028 425.88 82.41(19.4) 95.62(22.5)
23S1 → 13P0γ 0.26 60.8 5.46(9.0) 34.75(57.2) -0.57 -0.056 22.56 7.68(34.0) 11.41(50.6)
23S1 → 13P1γ 0.17 51.32 4.61(9.0) 29.33(57.2) -0.31 0.013 35.93 3.94(11.0) 9.63(26.8)
23S1 → 13P2γ 0.13 35.39 3.18(9.0) 20.22(57.2) -0.27 -0.011 25.37 3.05(12.0) 6.64(26.2)

Table F.6: Summary of the results obtained from the evaluation of the charmonium
decay rates using Counting 2 with phenomenology input. Values as in Table F.1.
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kγ ΓLO εLO
par (%) εLO

rel (%) R δΓ ΓNLO εNLO
par (%) εNLO

rel (%)

Decay [GeV] [keV] [keV] [keV] [keV] [keV] [keV]
11P1 → 11S0γ 0.49 56.56 3.31(5.9) 15.05(26.6) -0.77 -0.031 11.26 4.97(44.2) 1.07(9.5)
21P1 → 11S0γ 0.83 11.74 0.56(4.8) 3.5(29.8) 1.24 0.052 26.95 1.98(7.3) 0.31(1.2)
21P1 → 21S0γ 0.26 22.13 0.98(4.4) 6.61(29.9) -0.72 -0.023 5.64 1.6(28.4) 0.59(10.5)
21S0 → 11P1γ 0.1 0.08 0.004(4.8) 0.02(29.1) 0.05 -0.002 0.09 0.004(5.3) 0.002(2.4)
13P0 → 13S1γ 0.39 29.0 1.7(5.9) 7.72(26.6) -0.37 -0.082 15.95 1.95(12.3) 0.55(3.4)
13P1 → 13S1γ 0.42 36.7 2.15(5.9) 9.77(26.6) -0.45 -0.051 18.34 2.54(13.9) 0.69(3.8)
13P2 → 13S1γ 0.44 41.75 2.45(5.9) 11.11(26.6) -0.46 -0.003 22.67 2.93(12.9) 0.79(3.5)
23P0 → 13S1γ 0.74 8.56 0.41(4.8) 2.55(29.8) 0.23 -0.151 9.25 0.94(10.1) 0.23(2.5)
23P1 → 13S1γ 0.76 9.32 0.44(4.8) 2.78(29.8) 0.57 -0.051 14.19 1.17(8.2) 0.25(1.7)
23P2 → 13S1γ 0.78 9.77 0.47(4.8) 2.92(29.8) 0.92 0.136 20.09 1.48(7.4) 0.26(1.3)
23P0 → 23S1γ 0.21 11.52 0.51(4.4) 3.44(29.9) -0.22 -0.042 8.48 0.52(6.1) 0.31(3.6)
23P1 → 23S1γ 0.23 15.69 0.69(4.4) 4.69(29.9) -0.35 -0.029 9.74 0.79(8.1) 0.42(4.3)
23P2 → 23S1γ 0.24 18.48 0.81(4.4) 5.52(29.9) -0.44 -0.011 10.16 1.01(9.9) 0.49(4.9)
33P1 → 13S1γ 1.0 4.21 0.32(7.7) 1.38(32.7) 0.14 -0.118 4.28 0.37(8.7) 0.15(3.4)
33P1 → 23S1γ 0.48 3.33 0.16(4.9) 1.09(32.7) -0.2 0.026 2.75 0.11(3.9) 0.12(4.3)
33P1 → 33S1γ 0.15 8.69 0.33(3.8) 2.85(32.7) -0.35 -0.024 5.46 0.4(7.3) 0.31(5.6)
23S1 → 13P0γ 0.16 1.45 0.04(2.6) 0.42(29.1) -0.3 -0.013 0.99 0.03(3.4) 0.04(3.6)
23S1 → 13P1γ 0.13 2.2 0.06(2.6) 0.64(29.1) -0.13 -0.002 1.91 0.05(2.8) 0.05(2.9)
23S1 → 13P2γ 0.11 2.27 0.06(2.6) 0.66(29.1) -0.04 0.005 2.18 0.06(2.6) 0.06(2.6)
33S1 → 23P0γ 0.12 1.47 0.04(2.6) 0.47(31.8) -0.29 -0.006 1.03 0.03(3.2) 0.05(4.6)
33S1 → 23P1γ 0.1 2.38 0.06(2.6) 0.76(31.8) -0.11 0.0 2.12 0.06(2.7) 0.08(3.6)
33S1 → 23P2γ 0.09 2.6 0.07(2.6) 0.82(31.8) -0.03 0.0 2.53 0.07(2.8) 0.08(3.3)

Table F.7: Summary of the results obtained from the evaluation of the bottomonium
decay rates using Counting 2 with lattice input. Values as in Table F.1.

kγ ΓLO εLO
par (%) εLO

rel (%) R δΓ ΓNLO εNLO
par (%) εNLO

rel (%)

Decay [GeV] [keV] [keV] [keV] [keV] [keV] [keV]
11P1 → 11S0γ 0.5 881.08 53.05(6.0) 492.93(55.9) -0.82 -0.105 64.87 47.73(73.6) 154.99(238.9)
21S0 → 11P1γ 0.11 0.14 0.01(5.4) 0.09(61.4) -0.14 -0.004 0.12 0.01(7.1) 0.03(27.0)
13P0 → 13S1γ 0.3 196.09 11.81(6.0) 109.7(55.9) -0.4 -0.356 47.23 7.41(15.7) 34.49(73.0)
13P1 → 13S1γ 0.39 415.91 25.04(6.0) 232.69(55.9) -0.52 -0.194 117.99 15.48(13.1) 73.16(62.0)
13P2 → 13S1γ 0.43 558.73 33.64(6.0) 312.59(55.9) -0.5 0.019 288.07 24.04(8.3) 98.29(34.1)
23S1 → 13P0γ 0.26 55.0 2.55(4.6) 33.8(61.5) -0.79 -0.045 9.11 2.12(23.3) 12.83(140.8)
23S1 → 13P1γ 0.17 46.43 2.15(4.6) 28.53(61.5) -0.4 0.018 28.85 1.04(3.6) 10.83(37.5)
23S1 → 13P2γ 0.13 32.01 1.48(4.6) 19.67(61.5) -0.29 -0.014 22.12 0.92(4.2) 7.47(33.8)

Table F.8: Summary of the results obtained from the evaluation of the charmonium
decay rates using Counting 2 with lattice input. Values as in Table F.1.
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kγ ΓLO εLO
par (%) εLO

rel (%) R δΓ ΓNLO εNLO
par (%) εNLO

rel (%)

Decay [GeV] [keV] [keV] [keV] [keV] [keV] [keV]
0211P1 → 11S0γ 0.49 63.96 11.48(17.9) 16.43(25.7) -0.65 -0.032 24.12 24.11(99.9) 1.09(4.5)
21P1 → 11S0γ 0.83 10.57 3.0(28.4) 3.07(29.0) 0.64 0.082 18.44 5.7(30.9) 0.26(1.4)
21P1 → 21S0γ 0.26 24.05 3.06(12.7) 7.01(29.2) -0.63 -0.023 9.22 8.16(88.6) 0.6(6.5)
21S0 → 11P1γ 0.1 0.07 0.02(28.4) 0.02(28.2) 0.04 -0.002 0.08 0.03(32.4) 0.002(2.1)
13P0 → 13S1γ 0.39 32.79 5.88(17.9) 8.42(25.7) -0.33 -0.07 20.79 9.02(43.4) 0.56(2.7)
13P1 → 13S1γ 0.42 41.51 7.45(17.9) 10.66(25.7) -0.39 -0.046 24.71 11.9(48.1) 0.71(2.9)
13P2 → 13S1γ 0.44 47.22 8.47(17.9) 12.13(25.7) -0.4 -0.01 29.59 13.37(45.2) 0.81(2.7)
23P0 → 13S1γ 0.74 7.71 2.18(28.4) 2.24(29.0) -0.23 -0.122 5.02 1.72(34.3) 0.19(3.8)
23P1 → 13S1γ 0.76 8.39 2.38(28.4) 2.44(29.0) 0.07 -0.022 8.88 2.69(30.3) 0.21(2.3)
23P2 → 13S1γ 0.78 8.79 2.49(28.4) 2.55(29.0) 0.37 0.161 13.58 4.05(29.8) 0.22(1.6)
23P0 → 23S1γ 0.21 12.51 1.59(12.7) 3.65(29.2) -0.23 -0.038 9.35 2.36(25.2) 0.31(3.3)
23P1 → 23S1γ 0.23 17.04 2.17(12.7) 4.97(29.2) -0.33 -0.028 11.27 3.8(33.7) 0.43(3.8)
23P2 → 23S1γ 0.24 20.08 2.56(12.7) 5.86(29.2) -0.4 -0.013 12.19 4.93(40.4) 0.5(4.1)
33P1 → 13S1γ 1.0 3.65 1.61(44.2) 1.16(31.8) 0.28 -0.103 4.53 2.6(57.3) 0.12(2.6)
33P1 → 23S1γ 0.48 3.03 0.88(29.1) 0.97(31.9) 0.04 0.047 3.35 1.18(35.2) 0.1(3.0)
33P1 → 33S1γ 0.15 9.28 1.01(10.8) 2.98(32.1) -0.3 -0.023 6.39 1.76(27.5) 0.31(4.8)
23S1 → 13P0γ 0.16 1.46 0.16(10.7) 0.41(28.2) -0.25 -0.012 1.08 0.13(11.9) 0.03(3.0)
23S1 → 13P1γ 0.13 2.22 0.24(10.7) 0.62(28.2) -0.1 -0.001 1.98 0.22(11.0) 0.05(2.5)
23S1 → 13P2γ 0.11 2.29 0.25(10.7) 0.64(28.2) -0.03 0.004 2.22 0.28(12.5) 0.05(2.3)
33S1 → 23P0γ 0.12 1.47 0.18(12.0) 0.46(31.0) -0.23 -0.005 1.12 0.15(13.1) 0.04(3.9)
33S1 → 23P1γ 0.1 2.38 0.29(12.0) 0.74(31.0) -0.08 0.001 2.21 0.3(13.6) 0.07(3.2)
33S1 → 23P2γ 0.09 2.6 0.31(12.0) 0.8(31.0) -0.01 -0.0004 2.57 0.4(15.6) 0.08(3.0)

Table F.9: Summary of the results obtained from the evaluation of the bottomonium
decay rates using Counting 3 with phenomenology input. Values as in Table F.1.

kγ ΓLO εLO
par (%) εLO

rel (%) R δΓ ΓNLO εNLO
par (%) εNLO

rel (%)

Decay [GeV] [keV] [keV] [keV] [keV] [keV] [keV]
11P1 → 11S0γ 0.5 1345.67 135.94(10.1) 781.24(58.1) -0.41 -0.131 620.35 69.87(11.3) 269.31(43.4)
21S0 → 11P1γ 0.11 0.05 0.005(10.1) 0.03(64.0) -0.33 0.014 0.03 0.01(15.4) 0.01(39.2)
13P0 → 13S1γ 0.3 299.48 30.25(10.1) 173.87(58.1) -0.41 -0.314 83.95 30.11(35.9) 59.93(71.4)
13P1 → 13S1γ 0.39 635.22 64.17(10.1) 368.78(58.1) -0.41 -0.178 263.58 48.65(18.5) 127.12(48.2)
13P2 → 13S1γ 0.43 853.36 86.21(10.1) 495.42(58.1) -0.41 -0.037 472.9 39.02(8.3) 170.78(36.1)
23S1 → 13P0γ 0.26 59.71 6.03(10.1) 38.23(64.0) -0.23 -0.013 44.86 4.04(9.0) 16.03(35.7)
23S1 → 13P1γ 0.17 50.4 5.09(10.1) 32.27(64.0) -0.28 0.042 38.24 4.41(11.5) 13.53(35.4)
23S1 → 13P2γ 0.13 34.75 3.51(10.1) 22.25(64.0) -0.38 -0.039 20.27 3.92(19.3) 9.33(46.0)

Table F.10: Summary of the results obtained from the evaluation of the charmonium
decay rates using Counting 3 with phenomenology input. Values as in Table F.1.
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kγ ΓLO εLO
par (%) εLO

rel (%) R δΓ ΓNLO εNLO
par (%) εNLO

rel (%)

Decay [GeV] [keV] [keV] [keV] [keV] [keV] [keV]
11P1 → 11S0γ 0.5 1322.88 92.38(7.0) 778.24(58.8) -0.43 -0.13 581.05 20.71(3.6) 272.05(46.8)
21S0 → 11P1γ 0.11 0.05 0.003(7.0) 0.03(64.9) -0.34 0.014 0.03 0.001(3.6) 0.01(41.1)
13P0 → 13S1γ 0.3 294.41 20.56(7.0) 173.2(58.8) -0.43 -0.315 73.13 12.09(16.5) 60.54(82.8)
13P1 → 13S1γ 0.39 624.46 43.61(7.0) 367.37(58.8) -0.43 -0.179 242.47 11.57(4.8) 128.42(53.0)
13P2 → 13S1γ 0.43 838.9 58.58(7.0) 493.52(58.8) -0.43 -0.036 450.07 26.62(5.9) 172.52(38.3)
23S1 → 13P0γ 0.26 58.7 4.1(7.0) 38.08(64.9) -0.24 -0.011 43.75 2.11(4.8) 16.19(37.0)
23S1 → 13P1γ 0.17 49.55 3.46(7.0) 32.15(64.9) -0.29 0.042 37.15 1.71(4.6) 13.67(36.8)
23S1 → 13P2γ 0.13 34.16 2.39(7.0) 22.17(64.9) -0.39 -0.039 19.41 0.79(4.1) 9.42(48.5)

Table F.11: Summary of the results obtained from the evaluation of the charmonium
decay rates using Counting 3 with lattice input. Values as in Table F.1.

F.2 β scaling factors

In the following tables, we show the average values of the effective scaling factor β defined
through δΓH→H′ ≡ βv2.

Decay Count. 1 Count. 3 Count. 1 Count. 3
(phen.) (phen.) (latt.) (latt.)

1 1P1 → 1 1S0γ 0.4 0.4 0.3 0.4
2 1S0 → 1 1P1γ 0.002 0.04 0.01 0.03
1 3P0 → 1 3S1γ 1.0 0.9 1.1 0.9
1 3P1 → 1 3S1γ 0.6 0.5 0.6 0.5
1 3P2 → 1 3S1γ 0.1 0.1 0.06 0.1
2 3S1 → 1 3P0γ 0.2 0.04 0.1 0.03
2 3S1 → 1 3P1γ 0.04 0.1 0.05 0.1
2 3S1 → 1 3P2γ 0.03 0.1 0.04 0.1

Table F.12: Average value of the scaling factor |β| for charmonium decays. In analogy
to how the averages of the δΓH→H′γ corrections are calculated in Tables 8.1 - 8.4, in
each decay the values correspond to the mean of the sixteen values obtained in each
counting/input combination.
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Decay Count. 1 Count. 3 Count. 1
(phen.) (phen.) (latt.)

1 1P1 → 1 1S0γ 0.6 0.5 0.4
2 1P1 → 1 1S0γ 1.8 1.0 0.6
2 1P1 → 2 1S0γ 0.3 0.3 0.3
2 1S0 → 1 1P1γ 0.015 0.024 0.028
1 3P0 → 1 3S1γ 0.9 1.0 1.2
1 3P1 → 1 3S1γ 0.6 0.7 0.7
1 3P2 → 1 3S1γ 0.4 0.2 0.04
2 3P0 → 1 3S1γ 0.5 1.4 1.7
2 3P1 → 1 3S1γ 0.6 0.25 0.6
2 3P2 → 1 3S1γ 2.5 1.9 1.5
2 3P0 → 2 3S1γ 0.4 0.4 0.5
2 3P1 → 2 3S1γ 0.3 0.3 0.3
2 3P2 → 2 3S1γ 0.26 0.16 0.13
3 3P1 → 1 3S1γ 0.42 0.97 1.1
3 3P1 → 2 3S1γ 1.1 0.5 0.2
3 3P1 → 3 3S1γ 0.2 0.2 0.2
2 3S1 → 1 3P0γ 0.2 0.1 0.2
2 3S1 → 1 3P1γ 0.03 0.01 0.02
2 3S1 → 1 3P2γ 0.05 0.05 0.06
3 3S1 → 2 3P0γ 0.1 0.05 0.06
3 3S1 → 2 3P1γ 0.006 0.005 0.001
3 3S1 → 2 3P2γ 0.001 0.003 0.003

Table F.13: Average value of the scaling factor |β| for bottomonium decays. Values as
in Table F.12.
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Appendix G

The 3S → 1P bottomonium decay

In this section we will discuss the unstable behavior of our results for the evaluation of
the 3 3S1 → 1 3PJγ bottomonium decay.

In Table G.1 we show the values obtained for the 3 3S1 → 1 3PJγ bottomonium decay
using Counting 1 with lattice input and Counting 3 with phenomenology input1. Apart
from the case J = 0 in the lattice input evaluation, in all other evaluations we have that
RH→H′γ > 1. The values for δΓ are also large compared to the same corrections in the
other decays reported in Chapter 8, although still below one.

Counting 1 (Lattice) Counting 3 (Phenomenology)
Decay ΓLO [keV] R δΓ ΓLO [keV] R δΓ

3 3S1 → 1 3P0γ 0.03± 0.01 0.24 -0.48 0.03± 0.04 6.25 -0.85
3 3S1 → 1 3P1γ 0.08± 0.03 2.93 -0.44 0.07± 0.09 9.32 -0.77
3 3S1 → 1 3P2γ 0.12± 0.04 4.65 -0.49 0.1± 0.1 11.19 -0.82

Table G.1: Summary of the evaluation of the relativistic corrections to the bottomonium
3S → 1P decay rate; values computed as in Table 8.1. Notice that R has the same shape
in both countings. In each of these evaluations, there are amplitudes that contribute to
R that are larger than one. In the case of the evaluation of the 3 3S1 → 1 3P0γ decay with
lattice input, the small value of R results from the cancellation of large (> 1) amplitudes.

In order to track down the source of this behavior, let us compare the values we get from
evaluating RH→H′γ for the 3S → 2P decay, which is stable, with the values of RH→H′γ
obtained for the 3S → 1P decay. For this purpose, let us consider the mean values of
the parameters of the phenomenology input2 given in Table 5.2.

1Evaluations considering the other counting and input combinations show the same unstable results.
2A similar analysis with the lattice input yields the same conclusions.
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First, it is convenient to recall the formula for RH→H′γ given in Eq. (6.32), which here
we rewrite as

R(nS → n′P ) = 2ĀR(nS → n′P ) + B̄2
R(nS → n′P ). (G.1)

In order to give concrete numbers, let us focus on the 3 3S1 → 1 3PJ=2 decay, although, as
it will become clear, our conclusions apply for any value of J . For this specific transition,
we get

R(3S → 1P ) = 7.82. (G.2)

This large value comes from the large values of ĀR and B̄R

ĀR(3S → 1P ) =
0.08

I3(3S, 1P )
= 2.32, (G.3)

B̄R(3S → 1P ) =
0.06

I3(3S, 1P )
= 1.79. (G.4)

Comparing them with the equivalent quantities in the case of the 3 3S1 → 2 3PJ=2 decay
given by

R(3S → 2P ) = −0.02, (G.5)

ĀR(3S → 2P ) =
0.03

I3(3S, 2P )
= −0.01, (G.6)

B̄R(3S → 2P ) =
−0.08

I3(3S, 2P )
= 0.03, (G.7)

we see that the large value of the amplitudes in the 3S → 1P transition comes from the
small value of the I3(3S, 1P ) integral

I3(3S, 1P ) =

∫ ∞
0

dr r y3S(r)y1P (r) = 0.03 [GeV−1], (G.8)

compared to the equivalent integral in the 3S → 2P case

I3(3S, 2P ) =

∫ ∞
0

dr r y3S(r)y2P (r) = −2.61 [GeV−1]. (G.9)

Plotting the integrands of both integrals in Fig. (G.1), it is clear that there is a large
cancellation in the integrand of I3(3S, 1P ) that does not occur in I3(3S, 2P ).
We conclude that in the case of the 3S → 1P decay the unstable values of the contri-
butions to RH→H′γ and the δΓH→H′γ correction come from the large cancellation in the
integrand of I3(3S, 1P ). Moreover, an inspection of the values obtained for the ampli-
tudes that contribute to RH→H′γ with some of the random parameter sets, shows that
a small variation of the parameters leads to a large difference among the values for the
same amplitudes; this suggests that a convergent evaluation of the relativistic corrections
to the 3S → 1P decay rate may require fine tuned values of the parameters rather than
the statistical approach we have taken.
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Figure G.1: Left: The integrand of I3(3S, 1P ) (continuous red); the dashed blue and
green lines correspond to the y1P (r) and y3S(r) reduced radial wavefunctions. Right:
The integrand of I3(3S, 2P ) (continuous red); the dashed blue and green lines correspond
to the y2P (r) and y3S(r) reduced radial wavefunctions.
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