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Abstract

We equip lattice systems of arbitrary spin with group structures
Harmonic analysis is used to derive low and high temperature expan-
sions of the partition function as well as duality relations among
different models.

The Asano contraction is formulated without using the Griffiths
transformation into an equivalent spin } system. A necessary and
sufficient condition is given to. obtain the partition function as
the Asano contraction of smaller systems. For a given system with
spin p > 1, the group structure is not unique. The consequences of
this fact are discussed in the case of spin 1 models for which we

give analytiecity domains.
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0. INTRODUCTION

In the following, we would like to deduce some consequences of the
group structures which can be defined on classical lattice systems of
arbitrary spin.[l,2,3,4]. For spin } systems these structures have

been extensively discussed by C. Gruber and D. Merlini.[1].

In the usual physical picture of higher spin systems or multicompo-

nent systems, there is no obvious group structure. However, general-
izing the natural group structures defined for spin 1 systems, we got
an abstract picture, called group picture, of arbitrary spin systems
in terms of abelian groups. Using harmonic analysis on these groups,
the idea is to gain as much properties as possible of arbitrary spin
lattice systems in terms of this group picture. e.g. high - and low
temperature expansions, duality relations between different systems,
equations for the correlation functions, Asano contractions for the
partition function. Having these informations in the group picture,
simple transformations immediately yield the analogue in the physical

picture. This will be done explicitly in the spin 1 case.

I. GROUP STRUCTURES ASSOCIATED WITH SYSTEMS OF ARBITRARY SPIN

Let A be a finite subset of the lattice £ We assoclate at each
site i€ A a compact abelian group g} and we label the values of the
spin variable at the site L with the elements of this group. Thus if
g = Z?’ the integers modulo 4 > we will describe either a 9 com-
ponent system, a system of spin 3—- or any other system having 9%

local configurations. Therefore the configuration space of the system

Q’A = La g"
w

w
N = {ng, ..o, May)

is identified with

The algebra of observables C)IA of the system is the set of conti-
nuous func‘tlons on %A’ A natural basis of this algebra is the dual

A
group 61\ = ; - The Hamiltonian=-f3H, € OIA for a given system admits

‘G

the Fourier decomposition

SpHA = 23X (= {dxIMx) | I eC
Xe g 9a
The potentials J{X) are the Fourier coefficients of -fH, defining

the support of the interactions 0
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o= {X; JX)toO]

The group J < C;A generated by the elements of J is called group

of interactions. Moreover, for technical reasons, we define a set

of generating bonds ® as a set B together with a mapping
T : @ — 92 such that

L ad v
i) X e I at least one be® and r integer such that X =) = X
ii) {®) is minimal
Let us remark that

a) the choice of ® is not unique;

b) dropping ii), we could choose ® = ‘3 which has been done by

Greenberg [2] , but this does not represent the best choice;

c) 1in the spin ) case there is no possible choice and ®=1

Using the bicharacter notation, the Hamiltonian writes

dy1 »
‘ﬁHA(N) '-‘EG é ]b,n <’X53N>A dgorder of X,

JKX) if X,: is associated with X
and jb r = <
O otherwise

and we have for the partition function

Z {3} = Z e*/BH,.(N) - Z T ;:Z‘;:Jb,rd:-,mA
A

NQC}A Ne%!‘beﬁ

A
and for the correlation functions, we get with X e %A

- AH,(N)

<X>, = (ZA{'J})_1 st:i<7(;N>AQ

Defining the internal symmetry group ﬂa by

2 = {S ;S<G , HASNI=H,(N) ¥NeGyl

we get
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L

Lemma @ oo = -,j R gA/.‘f = BA

From the set of bonds ® , we introduce the group of graphs C‘;Q:

9“ = bﬁﬁ %;b ? gb = Z*b
The fundamental groups in the spin systems are 9,\ s g@ and their
dual groups g,:\ s 33:‘ , respectively. Let us define two homomor-
phisms between these groups, which are related to the high tempera-

ture (low temperature) expansions of the partition function

A A
T Cj,@ —_— %A r o 91\————-’- ga
w v e, w w
L ~—»x{(L)=T <XL 5 .‘)A N 7~~~ §(N)
be B
The relation & ¥(N); L>q =<TWIL);N> between bicharacters of %'@
and those of le\ defines the homomorphism § . One easily verifies
= =1
Imx =7 , ker £ =37 = & . The kernel of X and the image

of ¥ are by definition the high temperature group K , the low tem-
bPerature group F ,» respectively. Moreover, for these groups, we

have the following isomorphisms

Ge /K = 3 3 %/fg T, gA/fz—'jJ' thus (ga/m)At-:r

and finally

Lemma | = I , [’ = K"L

2. IMPLICATIONS OF THESE GROUP STRUCTURES

2.1. The high temperature (H.T.) expansion of the partition func-

tion is obtained from the Fourier decomposition of the Boltzmann

factors .
A~ [4 dp~1
> Jee <Ko N 2
o i3 be SAhe )N eZ—:o <Xb ,N}A {:b,e'

with f\,,gn the Fourier coefficients of the Boltzmann factors. Thus

putting J"b,e= -'%5-‘ and using the group %Q we get
b,0
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Z 03} = Mofeo oo Lo Ig b <TLN,

Ne% LeGg

and with the orthogonality relations, the H.T. expansion becomes

2 ATV = Gl Tofeo Z T, ¢,

Ke K be®
2.2. The low temperature (L.T.) expansion of the partition function
is also obtained using the properties of the homomorphism X and & .
With any be® , let L€ Gg st (Lb) ,..,. Hence

<X;;N>A = ((RLY) 5Ny = < TGN = ¢ F(NY; l:h>os

Thus i r
Z 3. < E(N); L >
Z,43) =T T e™ e
. . . ng" ve@®
which implies

ot

bl Joa (< E5L0g - 1)

Z ) = BT RN T T e

fer bed

and is called the L.T. expansion of the partition function.

A
2.3. The isomorphism (9@/’(3) 2[" tells us that these two expansions

are related by means of the Poisson formulae [3]

2.4. Duality transformations among different models can be defined
by identifying the high temperature group WX with the configuration
space g/\t of the dual system. Choosing a minimal set of generators
of K and associating to each generator a site t* , the dual lattice
is defined by N ={i*} . Now we associate with the site (% the
group g;s = Z’«, q* = order of the generator on the site ¢¥. The
interactions in the dual system are computed taking into account that
the H.T. expansion can also be viewed as the mean value of the func-
tion TT 'Eh,k over the group Cj,‘n =-§u\' %.o The Fourier decomposi-
tion w1th respect to g,\. of the logarithm of this function directly
gives the interactions for the dual model as well as the coupling
constants. Since the choice of the generators of K 1is not unique, a

given model has many duals. Taking generators with many b-components
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different from zero, the dual interactions will have complicated
N-body interactions. Thus one generally chooses generators of K

with the less b-components possible.

2.5, Equations for the correlation functions

Let X € Cj: and take je A such that < X;Nj3#1{ for some N; e%i . More-
over for any Ne g, we define N=N-N; with Nje %J . Then we can
write with Cg,\/‘. - X 5}‘
it
-1 . ot .-

- ' N)<X:N Z, TorRo N2 . L Tur <X NN

o= (E I g M T e §e i< T e
] <Ky Np=1 & <K iN2#1

= = A
Restoring the trace over g,\ , we get with X*X'Xj , X € %A/j ,

A
XJ € ?j the following set of equations
, Rt

r ~r
. Jo,¢ 7(.,;N3>5'Xh

Jdu;) <Xingy T e
93 LX) u’xai'i - )

[ 4 - I, < XDk ‘A
. /MJ(N’J) ne® €

3 (XL'N3>A+1 .
The Fourier expansion of the quotient yields with Y= U<

Le® J(eA/j
v = 2. ThX) <X Sto wmdo
* ‘fe (i)e‘yci"r

e
Th(X) being the Fourier coefficients of the quotient.

<X o= <X

3. ASANO CONTRACTIONS

To define a polynomial, which is linear in each variable, associated
with the L.T. expansion, let us introduce for any be® the o, gene-
ralized activities
L% -
2 Jp lemily>a ~4)
z b,m = e ™m € Z.(b
(since Zpo=41 there are only o, -1 independent ones). Thus this

polynomial becomes

M M
- Cy Z z' = T 2
M (2@) :Z:G-gq M H be® b.'“h
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N

and Cy= 1,(0) if Me[’l(‘Mém, respectively. Let B= U @‘; be a fi-
Ty

nite covering of ® and ‘

L | g
B(Z(B;,) = Z Con, 2 ) = la. Eo 0,
e X Gu “
be B,

be a family of small polynomials

Definition : The polynomial P(zg) = 2. C;_ZL is the Asano contrac-
—_— LEGa n
tion (A.C.) of the family of polynomials G {PL(ZG;)} if ¢ =T Ci L/,

=4
where (L/B), = €, &, 4q, , doo=1 (0)if be®: (bd&).

This is a particular form of ‘the usual A.C. which is defined in more
general terms. Therefore we can apply Ruelle's theorem [5] without
modification to relate the properties of zeros of the small polyno-
mials to the ones of the contracted polynomial. The following
theorem gives a necessary and sufficient condition that the polyno-
mial associated to an expansion of the partition function is the

A.C. of small polynomials

n
Theorem Let % < %(B be any subgroup of 9@ and (B=H B; be a

finite covering of @ then

Mlza) = Z 2%  is the A.C. of M(z@;)nz‘iik‘ ; Gie Xede thoum
R€ RN .

. . 4 L) 4
if and only if g = group generated by U

where (&; ={L; G-::Bﬁw. 7 (L), = €, ¥be®, for some Le-%}

This is a straightforward generalization of a theorem by Slawny [6]
proved for the spin 3 case. In order to find the family of small

polynomials, we proceed in the same way as in the spin } casel7]
. . L e - . -
First find g , take {9; 5..‘ L2 finite family of subgroups of q
" [ yort s
which generates 9 , then the covering is given by
B, Qq*{b ; W)y %0}

Remark that due to the fact that for any bond be B we have o,-1

]

variables, we will necessarily have analyticity properties in oy~1

complex variables. e.g. for a spin 1 model we get analyticity do-
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ph

higher spin systems is complementary to the ones introduced by

mains in e and eﬂ/u simultaheously. Thus the above A.C. for
Millard and Viswanathan using Griffiths transformation into an
equivalent spin  system [8] and their generalized A.C. given in
[9] . Griffiths transformations and the resulting group structure
have been discussed by Slawny [10] . They got analyticity domains
in one complex variable, keeping the other interactions as real

parameters.

4, APPLICATIONS TO SPIN 1 MODELS

Here, we limit ourselves to discuss the application to A.C., for

other applications, we refer to [4] .

Let us consider the general spin 1 model((i,;=ls ¥YieMA)with field
and two spin nearest neighbours (n.n.) interactions. Thus the set

of bonds B satisfying i) and ii) is
2
® = { b, ;re!\} Ui bd,., ; risel rs n.n.} U ’{ b.s; rsel | ns n.n.}

and the coupling constants we have are the two fields Jb,.,1> Jb,,a. and

the four n.n. coupling constants Jb:,,1 s Jb‘rs,’-’ jb‘f,,h 3.;* 2.

rSs

4 .
Taking CJ:=,[_' we have % =K. The simplest generators of K are
defined on the n.n. sets AL'{P,S}C A and the covering sets 03,;

are

® = { b, by B.,5.}

Each bond of &é defining two generalized activities. Thus comput-

ing Ci': and putting %4 =l\=n1 s Zp= zb,-,'L 5 23=253»4 , Bu= Zhs-z >
Zg=Zg,q , Bo=~Zy, , £y =2a, , % =%y, the small polynom-
ials become for i = 1,...,n
M(zg )2 Mz, 2) = 1+ 225% + 0BTy + EalsFy + B LE g E Lpte + LTyip t Lottt ZoZyls
3 ,

Again we use A.C. to discuss the domains free of zeros of this poly
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nomial and we find that M(Z“.,. ,23) is the A.C. of 6 polynomials
each depending on two variables only. The use of the theorem of
Grace [ll] combined with Ruelle's theorem [5] yields domains free
of zeros of the small polynomials and finally of the polynomial

associated with the L.T. expansion of the partition function.

5. THE PHYSICAL AND GROUP PICTURE OF SPIN 1 MODELS

In the usual physical language, the spin variables of a spin 1
model are W Q{O,tﬂ' ¥:cel , and the most general Hamiltonian

with fields and n.n. interactions writes
2 1 K3
SBHAT = Z (€T CaWif s € G G+en@ G)+ hZ T +uZG
i Al 1
"

The local transformation C*) : G‘: - n; VEGA where n; €f0,1,'L}=Zg
maps the physical picture of any spin 1 model on the corresponding
group picture. Thus ~AH,{T} can be viewed as a function over 91\
and Fourier transforms immediately yield the coupling constants Jg,,.
in terms of the € >
rent local transformations 95 to equip the phase space of the phy-

h , m and conversely. There are 6 diffe~

sical picture with a group structure, which are exhausted by the

elements of the permutation group of 3 elements. (e.g. $(-1)=0 ,

$toar=1 , PM)=2 etc.). Thus for the same spin 1 model, we get
6 different sets of generalized activities in terms of €;x , h s M.
Note that the small polynomials do not depend on 4) but the domains
free of zeros of the partition function in terms of the "physical"
activities e’ s e , eSi% ywill depend on 4> and in general we

get for different maps different domains.

Taking as a typical spin 1 model the model of Lebowitz-Gallavotti
[12] where €,=-€y,~€ >0, h, u #0 we find .for fixed real values
of € the following analyticity regions (shaded) in h and g of

the partition function:



Similar analyticity domains are obtained for other spin 1 models.

For the dilute Ising model, Where €420 , €,,= €, =€, =0 h u#$0

we improve bounds for the tricritical point given by Sarbach and
Rys [13] .
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