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Abstract 

We equip lattice systems of arbitrary spin with group structures 

Harmonic analysis is used to derive low and high temperature expan- 

sions of the partition function as well as duality relations among 

different models. 

The Asano contraction is formulated without using the Griffiths 

transformation into an equivalent spin ½ system. A necessary and 

sufficient condition is given to obtain the partition function as 

the Asano contraction of smaller systems. For a given system with 

spin p > ½, the group structure is not unique. The consequences of 

this fact are discussed in the case of spin i models for which we 

give analyticity domains. 
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0. INTRODUCTION 

In the following, we would like to deduce some consequences of the 

group structures which can be defined on classical lattice systems of 

arbitrary spin.[l,2,3,4]. For spin ½ systems these structures have 

been extensively discussed by C. Gruber and D. Merlini.[l]. 

In the usual physical picture of higher spin systems or multicompo- 

nent systems, there is no obvious group structure. However, general- 

izing the natural group structures defined for spin ½ systems, we got 

an abstract picture, called group picture, of arbitrary spin systems 

in terms of abelian groups. Using harmonic analysis on these groups, 

the idea is to gain as much properties as possible of arbitrary spin 

lattice systems in terms of this group picture, e.g. high - and low 

temperature expansions, duality relations between different systems, 

equations for the correlation functions, Asano contractions for the 

partition function. Having these informations in the group picture, 

simple transformations immediately yield the analogue in the physical 

picture. This will be done explicitly in the spin i case. 

I. GROUP STRUCTURES ASSOCIATED WITH SYSTEMS OF ARBITRARY SPIN 

Let A be a finite subset of the lattice ~ . We associate at each 

site [~ a compact abelian group ~K and we label the values of the 

spin variable at the site L with the elements of this group. Thus if 

~L ~ Z~, the integers modulo ~ , we will describe either a ~ com- 

ponent system, a system of spin ~ or any other system having 

local configurations. Therefore the configuration space of the system 

is identified with 

The algebra of observables ~A of the system is the set of conti- 

nuous functions on CA. A natural basis of this algebra is the dual 

group = ~ ~ . The Hamiltonian-~^~ (~^for a given system admits 

the Fourier decomposition 

The potentials J(:} are the Fourier coefficients of -~H A defining 

the support of the interactions 



560 

{ z ; o ] 

The group ~ = ~; generated by the elements of ~ is called group 

of interactions. Moreover, for technical reasons, we define a set 

of ~enerating bonds ~ as a set ~ together with a mapping 

~- : ~---~ ~2 such that 

i) ~ ~ 3 at least one 5~ and r integer such that ~=(~Ib)l ~=%b 

ii) I ~I is minimal 

Let us remark that 

a) the choice of ~ is not unique; 

b) dropping ii), we could choose ~ - ~ which has been done by 

Greenberg [2] , but this does not represent the best choice; 

e) in the spin ½ case there is no possible choice and ~ = 

Using the bicharacter notation, the Hamiltonian writes 

and ~b,r 

r 
SiX) if ~ is associated with % =< 
0 otherwise 

and we have for the partition function 

,~.bot 

A 
and for the correlation functions, we get with ]( c ~A 

N~ ~A 

Defining the internal symmetry group ~ by 

we get 
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Lemma : t = ~-'- ., ~,,/~f ~ ~ "  

From the set of bonds ~ , we introduce the group of graphs ~ ° 

The fundamental groups in the spin systems are ~A , 9~ and their 

dual groups ~ , ~ , respectively. Let us define two homomor- 

phisms between these groups, which are related to the high tempera- 

ture (low temperature) expansions of the partition function : 

G 

The relation < tIN) ~ L>& =<~iL];N> A between bicharacters of q~ 

and those of IA defines the homomorphism ~ One easily verifies 

Irn 3[ -- ~ ~ ker ~ = ~= I The kernel of ~C and the image 

of ~ are by definition the high temperature group ~ , the low tem- 

perature group ~ , respectively. Moreover, for these groups, we 

have the following isomorphisms 

and finally 

2. IMPLICATIONS OF THESE GROUP STRUCTURES 

2.1. The high temperature (H.T.) expansion of the partition func- 

tion is obtained from the Fourier decomposition of the Boltzmann 

factors 

>- 3~,,<L;N>^ ~_ <Z~ ;N& {b,,, 
e ~ = 

8'= 0 

with ~b,e' the Fourier coefficients of the Boltzmann factors. 

putting ~b,¢ = .~b~ and using the group ~ we get 

Thus 
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and with the orthogonality relations, the H.T. expansion becomes 

2.2. The low temperature (L.T.) expansion of the partition function 

is also obtained using the properties of the homomorphism 7[ and ~. 

With any ~ ~ ,  let L~e ~ ~.~. ~h~]~= ~b,~,. Hence 

< Z [  ;N>^ = <(,x(Lb))";I',I>,, = < "~(< , , ] ;N>A = < ~' (N] :, L'],>~ 

Thus ~"~ 
31,,,- < 

N~ ~A 
which implies 

ri4 

and is called the L.T. expansion of the partition function. 

2.3. The isomorphism [I~/~?~ ~ tells us that these two expansions 

are related by means of the Poisson formulae [3] 

2.4. Duality transformations among different models can be defined 

by identifying the high temperature group ~ with the configuration 

space q^~ of the dual system. Choosing a minimal set of generators 

of ~ and associating to each generator a site [~ , the dual lattice 

is defined by ~, {~i} Now we associate with the site ~ the 

group I~, " ~, ~ = order of the generator on the site ~. The 

interactions in the dual system are computed taking into account that 

the H.T. expansion can also be viewed as the mean value of the func- 

tion~ ~ over the group I^, =~.x,a.gl.. The Fourier decomposi- 

tion with respect to ~;~ of the logarithm of this function directly 

gives the interactions for the dual model as well as the coupling 

constants. Since the choice of the generators of ~ is not unique, a 

given model has many duals. Taking generators with many b-components 
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different from zero, the dual interactions will have complicated 

N-body interactions. Thus one generally chooses generators of 

with the less b-components possible. 

2.5. Equations for the correlation functions : 

Let ~ ~ ~j and take ~¢A such that < ~ ) ~  for some 

over for any Ne~ we define N=~'~ with ~¢ ~ 

write with ~^¢ -~^ ~ 

Nj ¢~ . More- 

Then we can 

Restoring the trace over ~^ , we get with X=~'~j , ]( ~ C~^/~ , 

the following set of equations 

The Fourier expansion of the quotient yields with ~ : L~ U L 

~'~ (?.~:)~ 
~(~) being the Fourier coefficient~ of the quotient. 

3. ASAN0 CONTRACTIONS 

To define a polynomial, which is linear in each variable, associated 

with the L.T. expansion, let us introduce for any 6~ the 4~ gene- 

ralized activities 

= e .~ ~ 7Z4,. E. i~.m 

(since ~b,o: ~ there are only ~b-4 independent ones). Thus this 

polynomial becomes 
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and CH= ~,(0) if H~F,~H%F), respectively. 

nite covering of ~ and 

= _ Z L ;  

be a fami ly of small polynomials 

Let ~- ~ ~ be a fi- 

Definition : The polynomial P(~) ~ ~-~ CL~ L is the Asano contrac- 

tion (A.C.) of the family of polynomials {~(z~l}if CL-- ~i c;, t-l~: 

where (L/~,:;~. = e~, &~,6: , &b,~.'-- j (O)if b~: (~4~). 

This is a particular form of ~he usual A.C. which is defined in more 

general terms. Therefore we can apply Ruelle's theorem [5] without 

modification to relate the properties of zeros of the small polyno- 

mials to the ones of the contracted polynomial. The following 

theorem gives a necessary and sufficient condition that the polyno- 

mial associated to an expansion of the partition function is the 

A.C. of small polynomials : 

Theorem Let ~ = ~ be any subgroup of ~ and ~--:,~ ~L be a 

finite covering of ~ then 

~(~) " R ~ .~.R is the A.C. of ~ J =  ~ i  ' ~"~b*6~'X ~b ~'~"'~ 

if and only if ~ J" = group generated by ~ ~ 

where ~ ={L& ~ ~ ~ ; <L~)~ = e~ ~ for some ~. ~ ~ } 
bt ~: 

This is a straightforward generalization of a theorem by Slawny [6] 

proved for the spin ½ case. In order to find the family of small 

polynomials, we proceed in the same way as in the spin ½ case[7] : 

First find ~, take {~i~ subgroups ~J- ]&,~,..., a finite family of of 

which generates ~ , then the covering is given by 

Remark that due to the fact that for any bond b~ we have ~-@ 

variables, we will necessarily have analyticity properties in ~-~ 

complex variables, e.g. for a spin 1 model we get analyticity do- 
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mains in e~h and ~ m2~ simultaneously. Thus the above A.C. for 

higher spin systems is complementary to the ones introduced by 

Millard and Viswanathan using Griffiths transformation into an 

equivalent spin ½ system [8] and their generalized A.C. given in 

[9] Griffiths transformations and the resulting group structure 

have been discussed by Slawny [i0] They got analytieity domains 

in one complex variable, keeping the other interactions as real 

parameters. 

4. APPLICATIONS TO SPIN i MODELS 

Here, we limit ourselves to discuss the application to A.C., for 

other applications, we refer to [4] 

Let us consider the general spin i model(~=~s ~&¢A)with field 

and two spin nearest neighbours (n.n.) interactions. Thus the set 

of bonds ~ satisfying i) and ii) is 

and the coupling constants we have are the two fields ]~,,I, ~b,.,~ and 
the four n.n. coupling constants ]b, ,4 , ~b~s,%, Ibm,,,1 , ]~s. ~" 

Taking ~=i--' we have ~-- ~. The simplest generators of ~- are 

defined on the n.n. sets A: "{r,s} c ~ and the covering sets ~ 

are 

Each bond of ~ defining two generalized activities. Thus comput- 

ing ~ and putting ~1 ~'~.,~ , Z~ ~br,~ , ~3~;~'s ' t  ' ~-- ~ '~ '~  , 

~ = ~,4 , ~& ~ ~b, Z , 7.7 = £&~,~ , ~S ~ Z~ ~ the small polynom- 

ials become for i = l,...,n 

A g a i n  we use A .C .  t o  d i s c u s s  t h e  d o m a i n s  f r e e  o f  z e r o s  o f  t h i s  p o l y  
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nomial and we find that ~[~,... ~s) is the A.C. of 6 polynomials 

each depending on two variables only. The use of the theorem of 

Grace [ii] combined with Ruelle's theorem [5] yields domains free 

of zeros of the small polynomials and finally of the polynomial 

associated with the L.T. expansion of the partition function. 

5. THE PHYSICAL AND GROUP PICTURE OF SPIN i MODELS 

In the usual physical language, the spin variables of a spin i 

model are ~ E {O,±~} ~eA , and the most general Hamiltonian 

with fields and n.n. interactions writes 

The local transformation + : ~--~ m~ ~;,Awhere n~,{o,~,Z}=~s 

maps the physical picture of any spin 1 model on the corresponding 

group picture. Thus -~H^{~] can be viewed as a function over ~4 

and Fourier transforms immediately yield the coupling constants ~b.~ 

in terms of the E~k , h , ~ and conversely. There are 6 diffe- 

rent loeal transformations ~ to equip the phase space of the phy- 

sical picture with a group structure, which are exhausted by the 

elements of the permutation group of 3 elements. (e.g. ~(-4)=O , 

~(~ = 4 , ~(4)=Z etc.). Thus for the same spin i model, we get 

6 different sets of generalized activities in terms of ~j'K , ~ ,~ • 

Note that the small polynomials do not depend on + but the domains 

free of zeros of the partition function in terms of the "physical" 

activities e ~ , e% , e ~ will depend on + and in general we 

get for different maps different domains. 

Taking as a typical spin i model the model of Lebowitz-Gallavotti 

[12] where e,,--(t, ~ ~ >O , h /~O we find for fixed real values 

of E the following analytieity regions (shaded) in ~ and,~4 of 

the partition function: 
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Similar analytieity domains are obtained for other spin i models. 

For the dilute Ising model, where ~4>0 , ~4,= ct~=c~= O j k,~40 

we improve bounds for the tr~critical point given by Sarbach and 

Rys [13] 
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