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Abstract

This work concerns an array of probabilistic models in the context of lattice systems and
statistical field theory. Firstly, motivated by predictions about the Anderson transition, we
study two distinct but related models on regular tree graphs: the vertex-reinforced jump process
(VRIP), a random walk that prefers to jump to previously visited sites, and the H?>-model, a
lattice spin system whose spins take values in a supersymmetric extension of the hyperbolic
plane. Both models undergo a phase transition, and our work provides detailed information
about the supercritical phase up to the critical point.

Moreover, we consider the rigorous construction of the Schwarzian field theory, a measure
on the quotient Diff (S')/PSL(2,R) of circle diffeomorphisms, which has gained popularity
in recent theoretical physics literature. Its partition function is calculated by the rigorous
implementation of an argument by Belokurov and Shavgulidze [1]. This method exploits a
regularisation of the measure, motivated by the theory of Virasoro coadjoint orbits. We also
provide motivation for the physical origins of the Schwarzian field theory and offer background
on the theory of coadjoint orbits.

Furthermore, we consider the graphical representations of the Ising model, including the
random cluster, loop O(1), and random current model. Considering these models as percolation-
type random graph models in their own right, we are interested in their monotonicity behaviour.
We construct some tree-like graphs for which the loop O(1) and random current model exhibit
a non-unique phase transition. As a consequence there exist infinite graphs G C G’ such that
the uniform even subgraph of G’ percolates and the uniform even subgraph of G does not.

Moreover, we show that in general the percolation thresholds of the models do not agree.






Table of contents

1 Introduction 1
2 Executive summaries 3
2.1 HZ2-model and VRIPontrees [TREE] . . . . . . . . o v o v v i .. 3
2.2 Probabilistic definition of the Schwarzian field theory [SCHW] . . . . . . .. 6

2.3 Non-uniqueness of phase transitions for graphical representations of Ising [UNIQ] 11

3 H22-model and VRJP on trees [TREE] 13
3.1 Introduction and MainResults . . . . . ... ... ... ... ........ 13
3.1.1 History and Introduction . . . . . . ... ... ... ... ... ... 13

3.1.2 Model Definitions and Results . . . . . . ... ... ......... 18

3.1.3 Further Comments . . . ... ... ... .. ... .......... 25

3.1.4 Structure of this Article . . . . . . . ... ... ... ......... 26

3.2 Additional Background . . . . . .. ... Lo 27
3.2.1 Dynkin Isomorphism for the VRJP and the H*?>-Model . . . . . . . . 27

3.2.2 VRJP as Random Walk in a #-Field Environment . . . . . . ... .. 27

3.2.3 Effective Conductance . . . .. ... ... ... ... ........ 29

3.2.4 The t-Field from the H??- and STZ-Anderson Model . . . . . .. .. 30

3.2.5 Monotonicity Properties of the #-Field . . . . . . ... ... ... .. 32

32.6 Thet-FieldonT,; . . . . ... . ... ... . ... . . ... . .... 32

3.2.7 Previous Results for VRJPonTrees. . . . . . .. ... ... ..... 33

3.2.8 Background on Branching Random Walks . . . . . . . ... ... .. 34

33 VRIJPandthez-Fieldas B\ Bc - - - « o o o v i i i i 37
3.3.1 The ¢-Field as a Branching Random Walk . . . . ... ... ... .. 38

3.3.2 Effective Conductance in a Critical Environment (Proof of Theorem 3.3.2) 43

3.3.3 Near-Critical Effective Conductance (Proof of Theorem 3.3.1) . . .. 48

3.3.4  Average Escape Time of the VRJP as 8\, . (Proof of Theorem 3.1.2) 50



viii

Table of contents

3.4 Intermediate Phase of the VRIP . . . . . ... ... .. ... ... .. ... 54
3.4.1 Existence of an Intermediate Phase on T, (Proof of Theorem 3.1.3) 54
3.4.2 Multifractality of the Intermediate Phase (Proof of Theorem 3.1.4) . . 56
3.4.3  On the Intermediate Phase for Wired Boundary Conditions . . . . . . 58
3.5 Results for the H22-Model . . . ... ........... .. ........ 61
3.5.1 Asymptotics for the H2?-Model as 8\, . (Proof of Theorem 3.1.5) . 61
3.5.2 Intermediate Phase for the H2>-Model (Proof of Theorem 3.1.6) . . . 61
3.6 Appendix: Tail Bounds for the ¢-field increments. . . . . . . ... ... ... 66
3.7 Appendix: Uniform Gantert-Hu-Shi Asymptotics for Tf : Proof of Theorem 3.3.8 68
3.8 Appendix: Effective Conductance and Effective Weight . . . . . . . ... .. 72
More on the H*?>-model on trees 75
4.1 Tree-Recursion for the H?>-Model . . . . . ... ... ... ......... 75
4.1.1 A Supersymmetric Recursion Relation for the H*>-Model . . . . . . 76
4.12 Polar Coordinateson H22. . . . . . .. .. ... ... ... .. .. 77
4.1.3 Reduced Recursion Relation in Polar Coordinates . . . . . . . . . .. 79
4.1.4 Finite Volume Limit and Relation to a #-Field Martingale . . . . . . . 81
4.1.5 Addendum: Group-Theoretic Background on Polar Coordinates for H??. 83
4.2 Heuristics and H?2-Fourier analysis . . . . . . . .. ... ... ....... 84
4.2.1 Fourier analysis and Harish-Chandra functions on H2? . . . . . . . . 85
4.2.2  Characterisation of S.: instability of the symmetric solution . . . . . 87
4.2.3  Heuristic derivation of near-critical behaviour for the H?>-model . . . 88
424 Addendum: Harish-Chandra functions in radial coordinates . . . . . 89
Probabilistic definition of the Schwarzian field theory [SCHW] 91
5.1 Introduction and mainresults . . . . . . . . .. ... ... ... ..., 91
5.1.1 Introduction. . . . . . .. .. .. 91
5.1.2 Mainresults. . . . . . ... 93
5.1.3 Related probabilistic literature . . . . . . .. .. ... ... ..... 98
5.1.4 Preliminaries and notation . . . . . . .. ... ... ... .. .. .. 99
5.2 Definition of the Schwarzian measure . . . . . . ... ... ... ...... 100
5.2.1 Unnormalised Brownian Bridge measure . . ... ... ... .... 101
5.2.2 Unnormalised Malliavin—Shavgulidze measure . . . . ... ... .. 103
5.2.3 Schwarzianmeasure . . . ... .. ... ... . ... 107
5.3 [Expectation via regularisation . . . . . . . ... ... 110

5.3.1 Measureregularisation . . . . . . . ... ... 111



Table of contents ix

5.4 Partition function and proofs of main theorems . . . . . . .. ... ... .. 120
5.5 Appendix: Calculation of formal correlation functions . . . . . . . ... ... 121
5.6 Appendix: Change of variables: Proof of Proposition 5.2.6 . . . . .. .. .. 124
5.7 Appendix: Quotients of measures: Proof of Proposition 5.2.10 . . . . . . .. 130
6 More on the Schwarzian field theory 135
6.1 Origins of the Schwarziantheory . . . . . . .. .. ... ... .. ...... 135
6.1.1 Liouville fieldtheory . . . . . . .. ... ... ... L. 135

6.1.2 SYKmodel . .. ... ... .. .. 144

6.1.3 JT-gravity . . . . . . . .. 148

6.2 Additional Background . . . . .. ... 150
6.2.1 Cross-ratios and the Schwarzian derivative . . . . ... .. ... .. 150

6.2.2 Coadjointorbits. . . . . . . . ... 156

6.2.3 Loop groups and their coadjointorbits . . . . . . . . ... ... ... 158

6.2.4 Virasoro group and its coadjoint action . . . . .. .. ... ... .. 161

6.2.5 Classification of Virasoro coadjointorbits . . . . . . . ... .. ... 167

6.2.6 Mapping between Virasoro and loop group orbits . . . . . . ... .. 170

7 Non-uniqueness of phase transitions for graphical representations of Ising [UNIQ]173

7.1

7.2

7.3

7.4
7.5

Introduction . . . . . ... 173
7.1.1 Results . . .. .. 174
7.1.2 The graphical representations of Ising . . . . . . ... ... ..... 175
7.1.3  Graphical representations and uniform even subgraphs. . . . . . . . . 177
7.1.4 Percolationregimes . . . . . . . . ... ... 178
Non-uniqueness of percolation . . . . . .. ... ... ... ... ... 179
7.2.1 Corollary 7.1.2 inthe wired case. . . . . . . .. .. .. ... .... 182
7.2.2  Generalisations and non-uniqueness of random current phase transitions 183
Phase transitions of the wired models on the d-regular tree coincide . . . . . 185
7.3.1 Modificationsfor CZ. . . . . ... ... ... 187
Explicit computation of critical points . . . . . .. ... ... 188
The critical probability for Bernoulli percolation is no obstruction for the UEG 190

7.5.1 The edge-halving construction . . . . . . .. ... ... ....... 191
7.5.2 The infinite cluster of the slightly supercritical random-cluster model. 192

References 195






Chapter 1
Introduction

“Die meisten Menschen wollen nicht eher schwimmen, als bis sie es konnen.”

(engl. “Most men don’t want to swim until they can.”)

Statistical mechanics is one of the great unifying frameworks of modern theoretical physics.
Historically, it was developed to provide a probabilistic and microscopic explanation for
thermodynamics and, more specifically, phase transitions. In an interesting twist of scientific
history, it later became apparent that the very same mathematical principles are central to
our understanding of quantum field theory. The richness of the field is a treasure trove for
probabilists, and rigorous arguments are of particular importance to the subject; particularly
since finding convincing heuristics can often be a challenge, even within the physics literature.

This thesis will explore a variety of models that may initially appear disjointed, yet embody,
in essence or in spirit, the principles of statistical mechanics. It is remarkable how much depth
can hide behind an inconspicuous e ¥ and I hope the reader is reminded of some of that

wonder while exploring this text.

This thesis is organised as follows: The majority of the content consists of the publications
[TREE], [SCHW], and [UNIQ], each presented in its entirety within its dedicated chapter. In
Chapter 2, we offer "executive summaries" of these works, providing additional perspectives
that complement the introductions of the original publications. Chapters 4 and 6 present
unpublished material and further context related to the publications [TREE] and [SCHW],

respectively.






Chapter 2
Executive summaries

This chapter aims at providing short and opinionated overviews on the context and the results
of the publications that are part of this thesis. These are meant to complement the introductions

of the articles, which are included in the appropriate chapters.

2.1 H?2-model and VRJP on trees [TREE]

This works concerns the behaviour of two distinct but related models on the tree: The vertex-
reinforced jump process (VRJIP), a random walk preferring to jump to previously visited sites,
and the H*>-model, a lattice spin system whose spins take values in a supersymmetric extension

of the hyperbolic plane. Before discussing context and motivation, let’s introduce the models:

Definition (Vertex-reinforced jump process): The VRIP is a continuous-time jump process
(X7)r=0 on a locally finite graph G = (V, E). At time 7 it jumps from its current location X; = x
to a neighbour y ~ x at rate

BI1+L]] where L] := fot ds1x,=y is the time spent at y so far, (2.1.1)

and B > 0 is a fixed inverse temperature parameter.

The hyperbolic superplane H>? is can be considered as the set of coordinate vectors u =
(z,x,v,&,1m), such thatu-u = —z% +x%+y*>—2¢n = —1. Here, z, x, y are even/bosonic coordinates,
while &,7n are odd/fermionic. More details about this will be provided in Chapter 3, but for
now it is enough to think of H?/? as a manifold with a Haar measure du and a scalar product
WU = —zizj XX, +yiy +mié; — &mj. In fact, to make proper sense of the H2?-model,
we’ll need to introduce Grassmann integration, but at a purely formal level one can write the

following:



4 Executive summaries

“Definition” (H*>-model): Consider a finite graph G = (V, E). Fix an inverse temperature
B > 0 and a magnetic field h > 0. For a functional F € C*®((H*?)V) over spin configurations

u = (u);ey € (H*?)V we define the expectation of F under the H??>-model as

<F(E)>ﬁ,h — / du F (u) eijee BUiw+1) =3 ey h(Zi_l)’ (2.1.2)

(H2|2)V
with Haar measure du = [[;c, du;.

In other words, the H?? defines a prescription for calculating correlation functions. For example,
one is interested in the covariance of the x-coordinate at different lattice points, that is (x;x;)g 5.
While the H??-model itself cannot be interpreted as a probability measure, certain correlation
functions and marginals have a direct probabilistic interpretation. One remarkable such example
is the BFS-Dynkin isomorphism between the VRIP and the H??>-model [2, 3]: Suppose that
under Eg.; the process (X;);>0 denotes a VRIP started from vertex i € V at inverse temperature
B > 0. Then, forany 8,h>0and j €V

<X,‘Xj>ﬁyh = / ]Elg;i[]lxt:j]e_ht dr (2.1.3)
0

That is, the two-point function of the H2?>-model describes the expected local time of a VRIP
with exponential killing rate 2 > 0. This relationship goes much further: Introducing the
horospherical ¢-field coordinate on H?? via e’ = z+x, one can interpret the marginal of the H?/-
model onto this coordinate as a proper probability measure (in the sense that any correlation
functions of these observables can equivalently be calculated under the expectation value of an
appropriate ¢-field probability measure). This horospherical marginal turns out to be related
to be directly related to the local time of the VRJP: Think of the H??>-model on a finite graph
(V, E) with magnetic field as living on the extended graph containing the ghost vertex g, which
is connected to every other vertex with an edge of weight & > 0. Consider a VRJP on this
weighted graph, started at the ghost g. Then it holds that

i

(Th); = (tlggologz—;) g (t;);i = (10g(z,~+x,~))i 2.1.4)

The last two equalities are to be understood “under the expectation value”. However they
highlight a remarkable fact: The asymptotic local time field of the VRIP (on a finite graph) is a

random field, distributed as a marginal of the H?2-model! The above
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recurrent: E[L2 ] = oo = transient: E[L2] < oo

| L intermediate ‘multifractal’ 1 ‘ergodic’ o
I 1 T >
0 ﬂ Be + € On Ty, as n — oo: gere On Ty, as n — oo: B
CE[LO.] ~ec/vE Mmoo L9/t ~ Ty |~ c limg oo L9/t ~ [Ty |t
o0

with v =v(8) € (0,1)

Figure 2.1: Sketch of the phase diagram for the VRJP on T; with d > 2. The recur-
rence/transience transition at S is phrased in terms of E[LY ], i.e. the expected total time
the walk (on the infinite rooted (d + 1)-regular tree T;) spends at the starting vertex. We obtain
precise asymptotics for E[L2 ] as 8\, .. We show that there is an additional transition point
Bt > Be. Itis phrased in terms of the volume-scaling of the fraction of total time, lim,_,, LV /¢,
the VRIJP on the finite tree T, spends at the origin. Here, the symbol “~” is understood
loosely.

Results on the regular tree. In the publication [TREE] we focused on the models on the
rooted (d + 1)-regular tree T; with d > 2. By Basdevant and Singh [4] both the H??-model
and the VRIJP exhibit a phase transition at a critical inverse temperature 8. = B.(d) > 0. For
the H??-model the transition is between a disordered high-temperature phase (8 < 8.) and a
symmetry-broken low-temperature phase (8 > ;) exhibiting long-range order. For the VRIP
the transition is between a recurrent phase due to strong reinforcement effects and a transient
phase due to low reinforcement effects. We analysed the behaviour of the models in the
supercritical phase 8 > .: We show that their order parameter has an essential singularity
as one approaches the critical point, in contrast to algebraic divergences typically expected
for statistical mechanics models. Moreover, we identify a previously unexpected multifractal
intermediate regime in the supercritical phase. We refer to Figure 2.1 for an illustration of the
results for the VRIJP. In the following we provide condensed versions of the main results, as

discussed in more detail in Chapter 3.

Theorem (Near-critical behaviour): Consider the VRJP and the H2?>-model on the infinite
rooted regular tree T; with d > 2 and let 8. = B.(d). There exist constants ¢,C > 0, such that

for € > 0 sufficiently small we have

Ve < Bp, (L] = ()5, < eCTVE. (2.1.5)

While the phase transition and above near-critical behaviour is seen on infinite trees T, the

intermediate phase is seen in the scaling behaviour over finite trees T4, of depth n — oo.

Theorem (Intermediate Phase): For the VRIP on finite trees T, we have

0 _
lim; o Lt—’ = |Td,n| v(B)to(l) w.h.p. as n — oo,



6 Executive summaries

with 8 — v(B) € [0,1] continuous and non-decreasing. There exists 8¢ ° > B¢, such that
v(B) € (0,1) if and only if B € (B¢, 8:°).
Moreover, the intermediate phase exhibits multifractal scaling for certain observables of the
H?2-model and the VRIP:

erg

Theorem (Multifractality in the intermediate phase): For 8. < 8 < S.° and 5 € (0,1)

. LY, _ . _ - 1
Ep.r,, [ (im0 =2) 7] = limy o h(zolx0 g pety, ~ [Tan|” o) as 1= oo

o

where 17 — 75(77) is an increasing and non-linear function.

The exponents v(5) and 75(77) can me made quite explicit and we refer to Chapter 3 for the

appropriate details.

2.2 Probabilistic definition of the Schwarzian field theory
[SCHW]

In recent years, the Schwarzian field theory has received an increasing amount of attention in
the theoretical physics literature. From a mathematical perspective, it describes a measure on

the space of circle reparametrisations' ¢ € Diff(S'), defined by the formal density

dﬂaz (p) =exp

1
1 ¢ ()2, 2 p de(1)
_ﬁo/dT[(sol(T)) —47% (r)]]]:[ 70 (2.2.1)

This measure has a “hidden” PSL(2,R)-invariance induced by Mobius transformations in the
variable tan(m¢(7)) and the name Schwarzian field theory typically refers to the corresponding
quotient measure M2 = Mo-z /PSL(2,R). It is instructive to think of the Schwarzian action as
a penalty function quantifying how “non-Mobius” a certain circle reparametrisation is. The
measure (2.2.1) can be seen as a replacement for a Haar-measure on Diff (S!): As a topological
group Diff(S') is not locally compact and hence does not admit a left-invariant Radon measure.
However, (2.2.1) turns out to be a quasi-invariant Radon measure, meaning that left-translations
of the measure are absolutely continuous with respect to each other (with an explicit Radon—

Nikodym derivative). Furthermore, this model is of interest as a non-trivial field theory, for

'We consider the circle S! = R/Z = [0, 1]/~ as the unit interval with identified endpoints. Alternatively
sometimes we write T instead of S! to highlight that we’re working with a parametrisation by [0, 1], rather than
[0,27]. Implicitly Diff(S') := Diff, (S'), always refers to orientation-preserving diffeomorphisms. We represent
any ¢ € Diff(S!) as a strictly increasing function ¢: R — R, such that ¢(0) € [0,1) and (7 +1) = (1) + 1.
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which the path integral measure can be made rigorous: In [SCHW] we construct the quotient
measure and calculate its total mass (i.e. the partition function). Losev further extended the
methods to calculate a class of natural correlation functions, and to establish a large-deviation
principle [5, 6].

This work was motivated by a plethora of physics literature, in which the Schwarzian field
theory has emerged as a reference model for low-dimensional quantum gravity and holography.
Much of the attention is due to its relevance to the low-energy behaviour of the Sachdev—
Ye—Kitaev (SYK) model [7, 8] and its connections to two-dimensional gravity theories like
Jackiw—Teitelboim (JT) gravity [9-12]. In both cases, the Schwarzian theory describes the
low-energy behaviour of theories for which a one-dimensional reparametrisation symmetry
Diff(S') is broken down to PSL(2,R), and one expects it to be universal in such scenarios.
Furthermore, the Schwarzian action appears in the semi-classical limit of Liouville field theory
[13, 14], and in the context of coadjoint orbits for the Virasoro group [15-17].

Essentially all of the above mentioned physics literature is far from being rigorously under-
stood, and our work aims at bringing the Schwarzian theory and its many connections within
reach of the probabilistic community. In [SCHW] we follow an approach by Belokurov and
Shavgulidze [1, 18, 19] in order to relate the Schwarzian theory to a reweighted Brownian

bridge measure.

Schwarzian measures. In the following we introduce a one-parameter family of Schwarzian
measures. These are quasi-invariant measures on Diff' (S'), which can be motivated via so-
called coadjoint orbits of the Virasoro group, i.e. the central extension of Diff (S'). Define the

Schwarzian derivative of a function ¢(7) is defined as

_ (@) 1"
Sp(1) =S(p,7) = (¢,(T)) —5((/),(7)) : (2.2.2)

For a parameter a € R>oUiRsq, the (unquotiented) Schwarzian measure for parameter « is

formally defined as a measure over ¢ € Diff(S') given by

1
N, = exp l% / dr [S(¢,T)+2a2¢’2(7)]] [1 i‘f((:)) . (2.23)
0 T

For @ = © we recover the measure in (2.2.1). For convenience one can of the measures as
parametrised by o € R and implicitly assume that @ € Rso Ui R denotes the appropriately

chosen root. In [SCHW] these measures make a somewhat less prominent appearance as
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a “regularisation” of the Schwarzian field theory measure (@ = 7). In fact, for @ < n these
measures are finite and the Schwarzian field theory is constructed by controlling the limit
a /' n.

In the following, we provide a rigorous definition of the measure by relating it to reweighted

Brownian bridges. First, note that in terms of the variables £ (7) =log ¢’(7), the term (¢” (7)/ go’(‘r))2 =
de(1)
¢'(1)
. This motivates the following definition: For a Brownian bridge

2
&'“(7) and the “reference measure” [],
2

= [[,dé(7) give rise to a formal Wiener mea-

sure with variance o

(£7)rest € C(S!) with variance o2 > 0, started at & = 0, we define the diffeomorphism
" efs ds

@e0(T) = /01— e Diff' (s1). (2.2.4)

b eés ds

This prescription breaks the translation/rotation-invariance that one would expect from (2.2.3)
(in fact @¢0(0) = 0). Hence, let ® ~ Unif(S') denote a uniformly random angle and define
¢¢0 = @g0+ 0. For a functional F: Diff (S Y = R we define the unnormalised expectation

with respect to the Schwarzian measure (at variance o> and parameter a) as
A7 2 2(1’2 72
[F(P)]ao2 = | F(@)AN (@) =V2n0*E;2 [F (¢e.0) exp [? e (T)dr] ] (2.2.5)

where & is a Brownian bridge with variance o> under E2. The factor V2702 accounts for the
normalisation of the the formal Wiener integral.

We also define the (U(1)-)quotiented Schwarzian measures Nf;? via

2 2
/ F(p)dN?, (¢) = V2102 B2 [F(cpg,o) exp [%/ S‘DIvfz,()(T)dT]] . (2.2.6)

This defines an unnormalised measure on Diff(S)/U(1) = {¢ € Diff(S'): ¢(0) =0}. A major
result in [SCHW] is the calculation of the partition function of these measures:

Theorem: For @ < 7* the measure % is a finite Radon measure on Diff L(sh/U(1) with

total mass L,
a €2a/ [o

N (Diff' (s1)/U(1)) = (2.2.7)

sina@ v\ 72

In the case of the (unquotiented) Schwarzian field theory, M > = N (’;2, the total mass is infinite
as made evident by the divergence in (2.2.6) for @  x. In fact, this divergence is due to the
mentioned underlying PSL(2,R)-invariance of the measure (more on this below). The quotient

measure M2 = Maz /PSL(2,R) turns out to be finite with an explicit partition function
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Theorem: The Schwarzian measure M. is a finite Radon measure on Diff! (S')/PSL(2,R)
with total mass
1 27T / 27‘[’2/0'2
M, (Diff' ($') /PSL(2,R)) = ( 2) (2.2.8)
o

To prove above results we use a change-of-variables formula for the Schwarzian measures. A
special case of the latter describes the quasi-invariance of the measures, which we describe
first.

Quasi-invariance of the Schwarzian measures. After defining the formal measure (2.2.3),
we should make sure that we are indeed working with the “correct” measure. One way to see
this is by studying the transformation properties of the measure under left-composition with
some diffeomorphism. For this, we recall some transformation properties of the Schwarzian

derivative: Firstly, it satisfies the composition rule

SWop,7) =S(p., 1) +¢* (1) S, ¢(7)). (2.2.9)

Secondly, the Schwarzian derivative of any Mobius transformation vanishes:

at+b
S(cﬂdﬂ) =0  forany +(45) € PSL(2,R). (2.2.10)

As a consequence the Schwarzian derivative is invariant under Mobius transformations,
S(f(r),7) = S(%,T). Furthermore, one can check that S(tan(at),7) = 2a?, hence

the exponential in the density of the Schwarzian measures (2.2.3) can be rewritten using
S(tan(ae(1)),7) = S(p,7) + 2% (7). (2.2.11)

It is sometimes convenient to write S(é tan(ay)) = S(tan(ay)), as this emphasises the conti-
nuity in the parameter > € R. Here, we understand 7 — 1 tan(a7) =1 22;((((’1?) eRP! =RU{c0}
as a smooth map into the real projective line. The Schwarzian is in fact well-defined for any
such map, despite potential singularities.

We can now consider how the exponential density in (2.2.3) changes under left-composition

@ > i o ¢ with some fixed diffeomorphism i € Diff (S!):

S(tan(a[y o ¢]),7) = S(tan(ay),7) + [S(tan(ay), (1)) - 2a*| (7). (2.2.12)

de(r) _ il d[¢op](
T

o) = [op]’ ( ) is invariant under left-translation.

The formal reference measure [,
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Theorem: For o2 € R, 02 > 0 and any fixed ¢ € Diff*(S') define dw*ﬁo‘fz(:,o) = dﬁgz(wgﬁ).
Then l/’*ﬁgz is absolutely continuous with respect to K/gz with Radon—-Nikodym derivative
given by

dy*N@

1
1 N; (90)=exp[% /0 dT[S(tan(a:,[/),go(‘r))—2a2](p’2(‘r)]. (2.2.13)

This expression allows us to study the invariance properties of the measures K/;’z In fact it is
invariant under the subgroup of diffeomorphisms y € Diff(S!), such that S(tan(ay)) = 2a?,
or equivalently

aé tan(at)+b

1 an(ay (1)) = for some +(94) € PSL(2,R). (2.2.14)

cé tan(at)+d
Generically, the above is satisfied for the U(1)-subgroup of translations ¢(7) = 7 — 6 corre-
sponding to i((f;’isn";e _;30212;’9) € PSL(2,R). We wrote this in terms of the variable étan(aT)
to highlight that this works for the whole parameter range o> € R. We claim that this exhausts
the invariance group of the measures, apart from the exceptional values a = kx with k € N, for
which the symmetry group is enhanced to the k-fold covering group of PSL(2,R).

In fact, for @ # 7N and any other diffeomorphism ¢, without loss of generality satisfying
¥ (0) = 0 (achieved after potentially composing with a translation), the ranges including mul-
tiplicities of the two sides in (2.2.14) don’t agree for non-trivial Mobius transformations?.
However, for @ = 7N the map étan(m): S! 5 RP! 2= RU {0} is k-to-1 and (2.2.14) has k
solutions for any M = £(4 %) € PSL(2,R).

Partition functions: Sketch of the argument. The first step in our approach to evaluating
the partition functions is an extension of above quasi-invariance: One can drop the requirement
that ¢’ and ¢ are periodic, i.e. consider ¢ € Diff>[0, 1] (here we consider quasi-invariance for
the quotiented measure N'%,, for which a similar statement holds, see Proposition 5.2.6). Then
there is no reason to expect l//”‘N(‘T"2 to be absolutely continuous with respect to N, anymore.
In fact, for & € R define N(;'f;h as in (2.2.6) but with a Brownian bridge starting at 0 and ending
at level h. This measure is supported on {¢ € Diff'[0,1]: ¢’(1) = ¢"¢’(0)}. An extension of
our statement on quasi-invariance will show that for ¢ € Diff*[0, 1], the measure t,[/”‘N(;'_‘2 is

absolutely continuous with respect to Ngz’h‘” with hy =logy’(0)/y'(1).

2This can be checked easily using the Iwasawa-decomposition of PSL(2,R).
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Now, the key “trick” to calculate the partition function, is that for the “hyperbolic/parabolic
orbits” a? < 0, there exists y, € Diff>[0, 1] such that YN, = ca,UzNg’zh" for some explicit
constants ¢, 2 > 0 and h, € R. This calculates the partition function for the hyperbolic orbits
a? < 0, as the total mass of Ng’zh" is fixed by convention. We can then calculate the total
mass of NO‘f2 for all @ < 72 by analytic continuation. The case a = 7, corresponding to the

Schwarzian field theory, is then obtained by controlling the divergence in the limit @ 7.

2.3 Non-uniqueness of phase transitions for graphical repre-
sentations of Ising [UNIQ]

The summary for this publication will be rather short, as [UNIQ] is in itself already quite
compressed: In this work we consider consider several well-known random graph models
related to the Ising model. Among them are the random current, the loop O(1), and the
random-cluster model. The latter can be directly coupled to the Ising model and demonstrates
useful monotonicity properties. The other models on the other hand generally appear in
representations of the Ising partition functions and it is not at all clear if they are “well-behaved”
as probabilistic percolation-type models themselves. For example, one may wonder if their
percolation threshold (if it exist) is unique and agrees with the critical point for the Ising model,
or one may ask about monotonicity of (say) the percolation probability. In this article we follow
these line of questions and construct some elementary counterexamples: We give examples of
tree-like graphs on which the loop O(1) and random current model exhibit non-unique phase
transitions. A particular consequence of this is the existence of infinite graphs G C G/, such
that the uniform even subgraph of G’ percolates, while the uniform even subgraph of G does
not. Furthermore, we see that the percolation thresholds on regular tree-like graphs don’t agree

for free boundary conditions (while they do for wired ones).






Chapter 3

H22-model and VRJP on trees [TREE]

Abstract: We explore the supercritical phase of the vertex-reinforced jump process (VRIP)
and the H??-model on rooted regular trees. The VRIJP is a random walk, which is more
likely to jump to vertices on which it has previously spent a lot of time. The H??>-model is
a supersymmetric lattice spin model, originally introduced as a toy model for the Anderson
transition.

On infinite rooted regular trees, the VRJP undergoes a recurrence/transience transition
controlled by an inverse temperature parameter 5 > 0. Approaching the critical point from
the transient regime, 8 \, B¢, we show that the expected total time spent at the starting vertex
diverges as ~ exp(c/VB — B.). Moreover, on large finite trees we show that the VRIP exhibits
an additional intermediate regime for parameter values 8. < 8 < 5 ©. In this regime, despite
being transient in infinite volume, the VRJP on finite trees spends an unusually long time at the
starting vertex with high probability.

We provide analogous results for correlation functions of the H2?-model. Our proofs rely
on the application of branching random walk methods to a horospherical marginal of the
H212-model.

3.1 Introduction and Main Results

3.1.1 History and Introduction

Our work will focus on two distinct but related models: The H2?-model, a lattice spin model
which is related to the Anderson transition, and the vertex-reinforced jump process (VRIP), a
random walk on graphs which is more likely to jump to vertices on which it has already spent a

lot of time.
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The H??-model was initially introduced by Zirnbauer [20] as a toy model for studying
the Anderson transition. Formally, it is a lattice spin model taking values in the hyperbolic
superplane H??, a supersymmetric analogue of hyperbolic space. Independently, the VRIP was
introduced by Davis and Volkov [21] as a natural example of a reinforced (and consequently
non-Markovian) continuous-time random walk. Somewhat surprisingly, Sabot and Tarres
[22] observed that these two models are intimately related. Namely, the time the VRJP
asymptotically spends on vertices can be expressed in terms of the H?>-model. This has
been used to see the VRIP as a random walk in random environment, with the environment
being given by the H??-model. Furthermore, the two models are linked by a Dynkin-type
isomorphism theorem due to Bauerschmidt, Helmuth and Swan [2, 3], analogous to the
connection between simple random walk and the Gaussian free field [23].

Both models are parametrised by an inverse temperature S > 0 and, depending on the
background geometry of the graph under consideration, may exhibit a phase transition at
some critical parameter S, € (0, co]. For the H?>-model the expected transition is between a
disordered high-temperature phase (8 < .) and a symmetry-broken low-temperature phase
(B8 > B.) exhibiting long-range order. For the VRIJP the transition is between a recurrent phase
due to strong reinforcement effects and a transient phase due to low reinforcement effects.

On ZP a fair bit is known about the phase diagram of the two models. In dimension D < 2
both models are never delocalised (i.e. they are always disordered and recurrent, respectively)
[2, 21, 22, 24-26]. In dimensions D > 3, however, they exhibit a phase transition from a
localised to a delocalised phase at a unique 3. € (0, 00) [22, 25, 27-31].

In this article we consider both models on the geom-
etry of a rooted (d + 1)-regular tree T; with d > 2 (see
Figure 3.1). For the VRIJP this setting was previously
explored by various authors [4, 32-35]. In particu-
lar, Basdevant and Singh [4] showed that the VRJP on
Galton-Watson trees with mean offspring m > 1 has a

phase transition from recurrence to transience at some Figure 3.1: The rooted (d + 1)-regular

explicitly characterised ¢ € (0, c0). For simplicity, we tree T, for d = 2 shown up to its third
focus on the “deterministic case”, but our results should generation, with the root vertex de-
translate to Galton-Watson trees as well (up to some noted as 0.
technical restrictions on the offspring distribution).
The main goal of this work is to provide new information on the supercritical phase (8 > ;)
including the near-critical regime. Roughly speaking, we show that on the infinite rooted

(d + 1)-regular tree T, the order parameters of the VRIP and the H??-model diverge as
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recurrent: E[L2 ] = oo = transient: E[L2] < oo

| L intermediate ‘multifractal’ 1 ‘ergodic’ o

I 1 T >

0 Be + € On Ty, as n — oo: erg On Ty, as n — oo: B
Be limyoeo L9/t ~ [Tan|=%  Be®  limeseo L9/t ~ [Tan|~t

BILS) ~ eV Cith v = (8) € (0.1)

Figure 3.2: Sketch of the phase diagram for the VRJP on T,; with d > 2. The recur-
rence/transience transition at S is phrased in terms of E[LY ], i.e. the expected total time
the walk (on the infinite rooted (d + 1)-regular tree T ;) spends at the starting vertex. In this
article, we obtain precise asymptotics for E[L2 ] as 8\, Bc. Second, we show that there is
an additional transition point 8¢ > B.. It is phrased in terms of the volume-scaling of the
fraction of total time, lim;_, L? /t, the VRIJP on the finite tree T4, spends at the origin. Here,
the symbol “~”" is understood loosely, and we refer to the text for precise error terms.

exp(c/+B—B.) as one approaches the critical point from the supercritical regime, 8\, B¢
(see Theorem 3.1.2 and 3.1.5, respectively). Such behaviour has previously been predicted
by Zirnbauer for Efetov’s model [36]. This “infinite-order” behaviour towards the critical
point is rather surprising, as it conflicts with usual scaling hypotheses in statistical mechanics,
which predict algebraic singularities as one approaches the critical points. Moreover, we show
that on finite rooted (d + 1)-regular trees, the VRIP and the H?/>-model exhibit an additional
mulifractal intermediate regime for 8 € (B, 8¢ °) (see Theorem 3.1.3, 3.1.4, and 3.1.6). An
illustration of some of our results for the VRIJP is given in Figure 3.2.

Connection to the Anderson Transition and Efetov’s Model. Inspiration for our work
originates from predictions in the physics literature on Efetov’s model [36—41]. The latter is
a supersymmetric lattice sigma model that is considered to capture the Anderson transition
[42, 43]. To be more precise, Efetov’s model can be derived from a granular limit (similar to
a Griffiths-Simon construction [44]) of the random band matrix model, followed by a sigma
model approximation [45, 46]. The connection to our work is due to Zirnbauer, who introduced
the H??-model as a simplification of Efetov’s model [20]. Namely, in Efetov’s model spins take
value in the symmetric superspace U(1,1]2)/[U(1]1) @ U(1|1)]. According to Zirnbauer, the
essential features of this target space are its hyperbolic symmetry and its supersymmetry'. In
this sense, H?? is the simplest target space with these two properties. Study of the H??-model
may guide the analysis of supersymmetric field theories more closely related to the Anderson

transition.

TAlso referred to as “perfect grading”. Roughly speaking, this refers to the fact that the space has the same
number of bosonic and fermionic degrees of freedom (in this case four each), while these are also “exchangeable”
under a symmetry of the space.
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Moreover, the H?>-model and the VRIP are directly and rigorously related to an Anderson-
type model, which we refer to as the STZ-Anderson model (see Definition 3.1.8). This fact was
already hinted at by Disertori, Spencer and Zirnbauer [27], but only fully appreciated by Sabot,
Tarres and Zeng [47, 48], who exploited the relationship to gain new insights on the VRIP. It is
an interesting open problem to better understand the spectral properties of this model and how
it relates to the VRJP and the H?*-model.

Notably, the phase diagram of the H?/>-model is better understood than that of Efetov’s model
or the Anderson model on a lattice. For example, for the H2?>-model there is proven absence
of long-range order in 2D [2] as well as proven existence of a phase transition in 3D [27, 28].
For the Anderson model on ZP | the existence of a phase transition in D > 3 and the absence of
one in D =2 are arguably among the most prominent open problems in mathematical physics.
A good example of the Anderson model’s intricacies is given by the work of Aizenman and
Warzel [49, 50]. Despite many previous efforts, they were the first to gain a somewhat complete
understanding of the model’s spectral properties on the regular tree. However, many questions
are still open, in particular there are no rigorous results on the Anderson model’s (near-)critical
behaviour. In this sense one might (somewhat generously) interpret this article as a step towards
better understanding of the near-critical behaviour for a model in the “Anderson universality
class”™.

We would also like to comment on the methods used in the physics literature on Efetov’s
model. The analysis of the model on a regular tree, initiated by Efetov and Zirnbauer [36, 37],
relies on a recursion/consistency relation that is specific to the tree setting. Using this approach,
Zirnbauer predicted the divergence of the order parameter (relevant for the symmetry-breaking
transition of Efetov’s model) for 8\, S.. We should mention that Mirlin and Gruzberg [51]
argued that this analysis should essentially carry through for the H>?-model. In our case,
we take a different path, exploiting a branching random walk structure in the “horospherical
marginal” of the H*?-model (the r-field).

After completion of this work, we were made aware by Martin Zirnbauer of recent numerical
investigations for the Anderson transition on random tree-like graphs [52, 53]. The observed
scaling behaviour near the transition point might suggest the need for a field-theoretic descrip-
tion beyond the supersymmetric approach of Efetov (also see [54, 55]). At this point, there
does not seem to exist a consensus on the theoretical description of near-critical scaling for the

Anderson transition of tree-like graphs and rigorous results would be of great value.

Notation: In multi-line estimates, we occasionally use “running constants” ¢,C > 0 whose

precise value may vary from line to line. We denote by [n] = 1,...,n the range of positive
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marginal distribution in -
Efetov model SImphfy oo H?2-model horosgpherical coordinates o t-field

A target space

granular limit
& o-model
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Random Band AR Anderson -----------
Matrices conjecturally structural
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Figure 3.3: An illustration of various interconnected models, that we touch on. Solid lines
denote rigorous connections, i.e. relevant quantities in one model can be expressed in terms of
the other. Dashed lines signify conceptual/heuristic connections.

integers up to n. For a graph G = (V,E) an unoriented edge {x,y} € E will be denoted by
the juxtaposition xy, whereas an oriented edge is denoted by a tuple (x,y), which is oriented
from x to y. Write E for the set of oriented edges. For a vertex x in a rooted tree (or a particle
of a branching random walk), we denote its generation (i.e. distance from the origin) by |x|.
We use the short-hand };|,|-, ... to denote summation over all vertices/particles at generation
n. Variants of this convention will be used and the meaning should be clear from context.
When our results concern the (d + 1)-regular rooted tree T;, we assume d > 2 will typically
suppress the d-dependence of all involved constants, unless specified otherwise. Mentions of
B implicity refer to the critical parameter 5. = 5.(d) as given by Proposition 3.2.14.
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of the Anderson transition. Finally, we thank the reviewers for their thorough reading of the
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SPINRG).
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3.1.2 Model Definitions and Results

In this section, we define the VRIP, the H22-model, the z-field and the STZ-Anderson model.
We are aware that spin systems with fermionic degrees of freedom, such as the H?>-model,
might be foreign to some readers. However, understanding this model is not necessary for
the main results on the VRIJP, and the reader can feel comfortable to skip references to the
H22-model on a first reading. We also note that all models that we introduce are intimately

related (as illustrated in Figure 3.3) and Section 3.2 will illuminate some of these connections.

3.1.2.1 Vertex-Reinforced Jump Process.

Definition 3.1.1: Let G = (V, E) be a locally finite graph equipped with positive edge-weights
(Be)ecE, and a starting vertex ig € V. The VRIP (X;),;»¢ starting at X = iy is the continuous-

time jump process that at time ¢ jumps from a vertex X; = x to a neighbour y at rate

t
Bey[1+L)] with L) (1) ::/ 1x,—yds. 3.1.1)
0

We refer to L) as the local time at y up to time ¢.

Unless specified otherwise, the VRJP on a graph G refers to the case of constants weights
B = B and the dependency on the weight £ is specified by a subscript, as in Eg or Pg. By a

slight abuse of language, we refer to S as an inverse temperature.

Results for the VRJP. Note that Figure 3.2 gives a rough picture of our statements for the
VRIP. In the following we provide the exact results.

In the following, B. = B.(d) will denote the critical inverse temperature for the recur-
rence/transience transition of the VRJP on the infinite rooted (d + 1)-regular tree T; with d > 2.
By Basdevant and Singh [4] this inverse temperature is well-defined and finite: S. € (0, 0) (cf.
Proposition 3.2.14). Alternatively, 5. is characterised in terms of divergence of the expected
total local time at the origin: B, =inf{8 > 0: Eﬁ[Lgo] < oco}. The following theorem provides
information about the divergence of Eg [LY ] as we approach the critical point from the transient
regime.

Theorem 3.1.2 (Local-Time Asymptotics as 8\, . for the VRIP on T;): Consider the

VRIJP, started at the root 0 of the infinite rooted (d + 1)-regular tree T, with d > 2. Let

Be = Be(d) € (0,00) be as in Proposition 3.2.14. Let LY, = lim,_, L? denote the total time the
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VRIJP spends at the root. There are constants ¢, C > 0 such that for sufficiently small € > 0:

exp(c/Ve) < Epae[Le] < exp(C/Ve). (3.12)
The above result concerned the infinite rooted (d + 1)-regular tree T4;. On a finite rooted
(d +1)-regular tree T, the total local time at the origin always diverges, but we may consider
the fraction of time the walk spends at the starting vertex. In terms of this quantity we can
identify both the recurrence/transience transition point S as well as an additional intermediate

phase inside the transient regime.
Theorem 3.1.3 (Intermediate Phase for VRJP on Finite Trees): Consider the VRIP started at
the root of the rooted (d + 1)-regular tree of depth n, Ty, with d > 2. Let L? denote the total

time the walk spent at the root up until time . We have
0 -
L _ |Td,n| v(B)+o(1)

lim; e e

w.h.p.asn — oo (3.1.3)

with 8 — v(8) continuous and non-decreasing such that

=0 for B < B
v(B) 1€ (0,1) for B < B < B* (3.14)
=1 for B> 3.,

for some B¢ ¢ = 8o ¢(d) > B.. More precisely, we have

v() =max(0, inf ‘/’ﬁ_("))

3.1.5
ne(0,11 nlogd ( )

with 5(n) given in (3.3.7).

Moreover, in the intermediate phase the inverse fraction of time at the origin shows a multifractal

scaling behaviour:

Theorem 3.1.4: (Multifractality in the Intermediate Phase) Consider the setup of Theo-
rem 3.1.3 and suppose S € (8., B¢ t). For 7 € (0,1) we have

0
Eg [ (limy 0 25) 7] ~ [T ** Y a5 0 — oo, (3.1.6)
where
n Yp(np) f <
_Jup loga TOTTISTIB
75(17) ) (3.1.7)

Togd forn > ng,
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where g is given in (3.3.7) and ng = argmin, . o¢5(n) /n € (0, 1).

3.1.2.2 The H2?-model.

Definition of the H2>-Model. We start by writing down the formal expressions defining the
H?2-model, and then make sense out of it afterwards. Conceptually, we think of the hyperbolic

superplane H?? as the set of vectors u = (z,x,y,&,1), satisfying

—l=u-u=—-72+x2+y> 287, (3.1.8)

Here, z,x,y are even/bosonic coordinates and &,n are odd/fermionic, a notion that will be
explained shortly. For two vectors w; = (z;,x;,y;,&;,1;) and w; = (z;,x;,y;,&;,1,), we define
the inner product

W W= =2z A XX+ Yy j+1id = & (3.1.9)

In other words, this pairing is of hyperbolic type in the even variables and of symplectic type in
the odd variables.

Consider a finite graph G = (V, E) with non-negative edge weights (,).cr and magnetic field
h > 0. Morally, we think of the H?/?>-model on G as a probability measure on spin configurations
u=(u;);ey € (H??)", such that the formal expectation of a functional F € C*((H??)") is given
by

<F(E)>ﬁh — / nduiF(E) eZijeEﬂij(ui'uj"'l)_hZiev(zi_l), (3.1.10)
(Hzxz)v i€V

with du denoting the Haar measure over H22. In other words, formally everything is analogous
to the definition of spin/sigma models with “usual” target spaces, such as spheres S$" or
hyperbolic spaces H". The only subtlety is that we still need to understand what a functional

such as F € C*((H??)") means and how to interpret the integral above.

Rigorously, the space H? is not understood as a set of points, but rather is defined in a dual

sense by directly specifying its set of smooth functions to be
C™(H??) = C®(R?) @ A(R?) (3.1.11)

In other words, this is the exterior algebra in two generators with coefficients in C*°(R?) (which
is the same as C*(R2?), analogous to the fact that H?> = R? as smooth manifolds.). Note that

this set naturally carries the structure of a graded-commutative algebra. More concretely, any
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superfunction f € C*(H??) can we written as

f=0 o, y)+ fe (e, y)E+ fir(x, y)n+ fen (x,¥)én (3.1.12)

with smooth functions fo, f¢, f;, fen € C *(R?) and &, generating a Grassmann algebra, i.e.
they satisfy the algebraic relations én = —n¢ and ¢2 = %> = 0. We think of such f as a smooth
function in the variables x,y,&,n and write f = f(x,y,£,n). In particular, the coordinate
functions x,y,&,n are themselves superfunctions. In light of (3.1.8), we define the z-coordinate

to be the (even) superfunction

12 _ &n

— 5T ccomP?, 3.1.13
(14+x2+y2)1/2 (E) ( )

2= (1+x2+y2 =22 = 1 +x%+y?)
In this sense the coordinate vector u = (z,x,y,&,n) satisfies u-u = —1. By abuse of notation we
write u € H?2, but more correctly one might say that u parametrises H>. For a superfunction
f e C®(H??) we write f(u) = f(x,y,&,n) = f and in line with physics terminology we might
say that f is a function of the even/bosonic variables z,x,y and the odd/fermionic variables &, .
The definition of z in (3.1.13) shows a particular example of a more general principle: The
composition of an ordinary function (the square root in the example) with a superfunction (in
the example that is 1 +x? +y? —2¢n) is defined by formal Taylor expansion in the Grassmann
variables. Due to nilpotency of the Grassmann variables this is well-defined.
Next we would like to introduce a notion of integrating a superfunction f(u) over H??.

Expressing f as in (3.1.12), we define the derivations d¢, 8, acting via

Ocf = fe(x,y) + fen(x,y)n and 0, f = f,(x,y) = fey(x,y)E. (3.1.14)

In particular, note that these derivations are odd: they anticommute, d¢0, = —0, 0, and satisfy
a graded Leibniz rule. The H??-integral of f € C*(H??) is then defined to be the linear

functional

1
/Hmduf(u) = /dexdyanag[gf]. (3.1.15)

The factor % plays the role of a H??>-volume element in the coordinates x, y,&,7. Note that this
integral evaluates to a real number.

In a final step to formalise (3.1.10) we define multivariate superfunctions over H22

C®((H2?)) = ® C®(H22) = c® (R @ ARV, (3.1.16)
1%
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that is the Grassmann algebra in 2|V| generators {&;,7;}iey with coefficients in C*(R?V!). An
element of this algebra is considered a functional over spin configurations u = {u; };ey and

we write F = F(u). Any superfunction F € C*((H??)") can be expressed, analogously to

(3.1.12), as
Z fI,J({xi,yi}iev)n§iﬂﬂj- (3.1.17)

1,JcV iel jeJ

The integral of such F over (H*?)" is defined as

/ duF(u) = / [ ]dui Fu) = / | [dxidyi | | 000 l(Miey HF @], (3.1.18)

(B212)V (H212)V eV R2IVI 113% i€V

With this notion of integration, the definition of the H?>-model in (3.1.10) can be understood in
a rigorous sense: The “Gibbs factor” is the composition of a regular function (exponential) with

a superfunction (the exponent). As such it is defined by expansion in the Grassmann variables.

Results for the H>?>-Model. In the following we will simply rephrase above theorems in
terms of the H??>-model.

Theorem 3.1.5 (Asymptotics as 8\, B for the H22-model on T,): Consider the H22-model
on Ty ,. Suppose B. = .(d) € (0,00) is as in Proposition 3.2.14. The quantity

(X3 = Jim 1im () v (3.1.19)
is well-defined and finite for any € > (. There exist constants ¢, C > 0 such that for sufficiently

small € > 0
exp(c/Ve) < (x)f; o < exp(C/Ve). (3.1.20)
The above statement considered the infinite-volume limit, i.e. taking n — oo before removing
the magnetic field 2 \, 0. One may also consider a finite-volume limit (also referred to as
inverse-order thermodynamic limit [56]): In that case, we consider scaling limits of observable
as h ™\, 0 before taking n — co. In this limit, we also demonstrate an intermediate multifractal
regime for the H??-model.

Theorem 3.1.6 (Intermediate Phase for the H22-Model on Ta.): There exist 0 < ¢ < ,B?g <

erg

oo as in Theorem 3.1.3, such that for 8. < 8 < B.° we have forn € (0, 1)

limy, o A~ zo X0l ™) g.niTa ~ |Td,n|TB(n)+O(1) as n— oo (3.1.21)
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with 73(77) as given in (3.1.7).

At first glance, the observable in (3.1.21) might seem somewhat obscure. However, in the
physics literature on Efetov’s model and the Anderson transition, analogous quantities are
predicted to encode disorder-averaged (fractional) moments of eigenstates at a given vertex
and energy level, see for example [41, Equation (6)]. The volume-scaling of these quantities

provides information about the (de)localisation behaviour of the eigenstates.

3.1.2.3 The 7-field.

Despite the inconspicuous name, the z-field is the most relevant object for our analysis. It
is directly related to both the VRIJP, encoding the time the VRJP asymptotically spends on
each vertex, as well as the H?>-model, arising as a marginal in horospherical coordinates (see
Section 3.2 for details).

Definition 3.1.7 (¢-field Distribution): Consider a finite graph G = (V,E), a vertex ip € V and
non-negative edge-weights (8. ).cg. The law of the t-field, with weights (8, ).ck, pinned at

io, is a probability measure on configurations t = {t;},cy € RV given by

. de;
Q'l(;o) (dt) — e—ZijeEﬂij [COSh(li—tj)—l]Dﬁ(t)l/z 5(ti()) n (3122)

ieW\{io} V27 /B

with the determinantal term

Det):= >, || Bye"™, (3.1.23)

Teg o) (i.j)eT

where 7 () is the set of spanning trees in G oriented away from i.

Alternatively, one can write Dg(t) = H,-ev\{l-o}e‘z’i det;,(—Ag(t)), where det;, denotes the
principal minor with respect to ip and —Ag is the discrete Laplacian for edge-weights
B(t) = (Bije'™);;.

In general the determinantal term renders the law Qg“) highly non-local. However, in case the
underlying graph G is a tree, only a single summand contributes to (3.1.23) and the measure
factorises in terms of the oriented edge-increments {t; —¢;}; ;). This simplification is essential
for this article and gives us the possibility to analyse the ¢-field on rooted (d + 1)-regular trees

in terms of a branching random walk.
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3.1.2.4 STZ-Anderson Model.

The following introduces a random Schrodinger operator, which is related to the previously
introduced models. It will only be required for translating our results on the intermediate phase
to the H22-model (Section 3.5.2), so the reader may skip this definition on a first reading. As
Sabot, Tarres and Zeng [47, 48] were the first to study this system in detail, we refer to it as the
STZ-Anderson model.
Definition 3.1.8 (STZ-Anderson Model): Consider a locally finite graph G = (V, E), equipped
with non-negative edge-weights (8.).cx. For B = (B;)icn € R? define the Schrodinger-type
operator
Hp=-Ag+V(B) with [V(B)];=B;-2;pBi- (3.1.24)

Define a probability distribution vg over configurations B = (B;);ca by specifying the Laplace
transforms of its finite-dimensional marginals: For any vector (4;);ey € [0,00)" with only

finitely many non-zero entries, we have

/ e~ B)y (dB) = = Bi(1+204/T+22;- D). (3.1.25)

1
—exp|
HieV V1+2Ai ijeE

Subject to this distribution, we refer to B as the STZ-field and to Hp as the STZ-Anderson
model.

One may note that on finite graphs, the density of vz is explicit:

—% 2B
vdet(Hp)

where Hp > 0 means that the matrix Hp is positive definite. The definition via (3.1.25) is

vp(dB) o 1y,-0dB, (3.1.26)

convenient, since it allows us to directly consider the infinite-volume limit. We also note
that while the density (3.1.26) seems highly non-local, the Laplace transform in (3.1.25) only
involves values of A at adjacent vertices and therefore implies 1-dependency of the STZ-field.

In the original literature the STZ-field is denoted by g and referred to as the S-field. In order
to be consistent with the statistical physics literature and avoid confusion with the inverse
temperature, we introduced this slightly different notation. To be precise, we used this change of
notation to also introduce a slightly more convenient normalisation: one has B; = 23; compared
to the normalisation of the S-field {5;} used by Sabot, Tarres and Zeng.
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3.1.3 Further Comments

Comments on Related Work. As noted earlier, the VRJP on tree geometries was already
studied by various authors [4, 32-35]. One notable difference to our work is that we do
not consider the more general setting of Galton-Watson trees. While this is mostly to avoid
unnecessary notational and technical difficulties, the Galton-Watson setting might be more
subtle. This is due to an “extra” phase transition in the transient phase, observed by Chen and
Zeng [34]. This phase transition depends on the probability of the Galton Watson tree having
precisely one offspring. It is an interesting question how this would interact with our analysis.

In regard to our results, the recent work by Rapenne [35] is of particular interest. He provides
precise quantitative information on the (sub-)critical phase S < .. The results are phrased
in terms of a certain martingale, associated with the STZ-Anderson model, but they can be
formulated in terms of the H??>-model with wired boundary conditions (or analogously the
VRIP started from the boundary) on a rooted (d + 1)-regular tree of finite depth. In this sense,
Rapenne’s article can be considered as complementary to our work.

Another curious connection to our work is given by the Derrida-Retaux model [57-64]. The
latter is a toy model for a hierarchical renormalisation procedure related to the depinning
transition. It has recently been shown [64] that the free energy of this model may diverge as
~ exp(—c/+/p — pc) approaching the critical point from the supercritical phase, p ™\, p.. There
are further formal similarities between their analysis and the present article. It would be of

interest to shed further light on the universality of this type of behaviour.

Debate on Intermediate Phase We would like to highlight that the presence/absence of such
an intermediate phase for the Anderson transition® on tree-geometries has been a recent topic
of debate in the physics literature (see [56, 65] and references therein). In short, the debate
concerns the question of whether the intermediate phase only arises due to finite-volume and
boundary effects on the tree.

While the presence of a non-ergodic delocalised phase on finite regular trees has been
established in recent years [40, 41, 66], it was not clear if this behaviour persists in the absence
of a large “free” boundary. To study this, one can consider a system on a large random regular
graphs (RRGs) as a “tree without boundary” (alternatively one could consider trees with wired
boundary conditions). For the Anderson transition on RRGs, early numerical simulations
[39, 67, 68] suggested existence of an intermediate phase, in conflict with existing theoretical

predictions [38, 69—71]. Shortly afterwards, it was argued that the discrepancy was due to

This may refer to the Anderson model, Efetov’s model, or certain sparse random matrix models (such as
random band matrices), all of which are largely considered equivalent in the theoretical physics community.
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finite-size effects that vanish at very large system sizes [40, 65, 72], even though this does not
seem to be the consensus’ [56, 68].

We should note that Aizenman and Warzel [49, 73] have shown the existence of an energy-
regime of “resonant delocalisation” for the Anderson model on regular trees. It would be
interesting to understand if/how this phenomenon is related to the intermediate phase discussed
here.

In accordance with the physics literature, we refer to the intermediate phase (8. < 8 < 8¢¢)

as multifractal as opposed to the ergodic phase (8 > 82 ).

3.1.4 Structure of this Article

In Section 3.2 we provide details on the connections between the various models and recall
previously known results for the VRIJP. In particular, we recall that the VRJP can be seen as
a random walk in random conductances given in terms of a ¢-field (referred to as the ¢-field
environment). On the tree, the ¢-field can be seen as a branching random walk (BRW) and we
recall various facts from the BRW literature. In Section 3.3 we apply BRW techniques to estab-
lish a statement on effective conductances in random environments given in terms of critical
BRWs (Theorem 3.3.2). With Theorem 3.3.1 we prove a result on effective conductances in the
near-critical t-field environment. We close the section by showing how the result on effective
conductances implies Theorem 3.1.2 on expected local times for the VRJP. In Section 3.4 we
continue to use BRW techniques for the 7-field to establish Theorem 3.1.3 on the intermediate
phase for the VRJP. We also prove Theorem 3.1.4 on the multifractality in the intermediate
phase. Moreover, we argue that Rapenne’s recent work [35] implies the absence of such an
intermediate phase on trees with wired boundary conditions. In Section 3.5 we show how
to establish the results for the H?>-model. For the near-critical asymptotics (Theorem 3.1.5)
this is an easy consequence of a Dynkin isomorphism between the H??>-model and the VRIP.
For Theorem 3.1.6 on the intermediate phase, we make use of the STZ-field to connect the
observable for the H?2-model with the observable lim,_,., LY/t that we study for the VRJP.

3To our understanding, the cited sources consider an inverse-order thermodynamic limit, in which they remove
the level-broadening (resp. magnetic field) before taking the system size to infinity. This corresponds to a finite-
volume limit, as opposed to the reversed limit order considered in other treatments of the Anderson transition. In
this sense, the different statements are not directly comparable.
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3.2 Additional Background

3.2.1 Dynkin Isomorphism for the VRJP and the H>?-Model

Analogous to the connection between the Gaussian free field and the (continuous-time) simple
random walk, there is a Dynkin-type isomorphism theorem relating correlation functions of the
H22-model with the local time of a VRIP.
Theorem 3.2.1 ([3, Theorem 5.6]): Suppose G = (V, E) is a finite graph with positive edge-
weights {f;; }ijeE. Let (-)5 , denote the expectation of the H?P-model and suppose that under
E;, the process (X;);>o denotes a VRIP started from i. Suppose g: R — R is a smooth

bounded function. Then, for any i, j € V

(i g (2= D))pn = /0 B, [g(Lo) Ly _jle " dr, (3.2.1)

where L; = (L7),cy denotes the VRIP’s local time field.
This result will be key to deduce Theorem 3.1.5 from Theorem 3.1.2.

3.2.2 VRJP as Random Walk in a 7-Field Environment

As a continuous-time process, there is some freedom in the time-parametrisation of the VRJP.
While the definition in (3.1.1) (the linearly reinforced timescale) is the “usual” parametrisation,

we also make use of the exchangeable timescale VRJP ()N(,),E[O,Jroo):
Xi=Xpq) with A@D) = [[20+L)ds = ey [(1+L7)? - 1] (3.2.2)

Writing LT = fol 1{X; = x}ds, the local times in the two timescales are related by

Lf=1+L7 1. (3.2.3)

Above reparametrisation is motivated by the following result of Sabot and Tarres [22], showing
that the VRIJP in exchangeable timescale can be seen as a (Markovian) random walk in random

conductances given in terms of the ¢-field.
Theorem 3.2.2 (VRJP as Random Walk in Random Environment [22]): Consider a finite
graph G = (V,E), a starting vertex ip € V and edge-weights (8.).ce. The exchangeable

timescale VRIP, started at ip, equals in law an (annealed) continuous-time Markov jump
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process, with jump rates between from i to j given by
%,B,jeTf_T", (3.2.4)

where T = (T ),cy are random variables distributed according to the law of the z-field (3.1.22)
pinned at .

As a consequence of Theorem 3.2.2, the ¢-field can be recovered from the VRIP’s asymptotic
local time:
Corollary 3.2.3 (z-field from Asymptotic Local Time [47]): Consider the setting of The-
orem 3.2.2. Let (L")yey and (L¥),cy denote the local time field of the VRJP in linearly

reinforced and exchangeable timescale, respectively. Then

T; = lim log (L;’ /L;'O) (ieV)
o (3.2.5)
T, = %tlgglo log (L’I/L;") (i€V)

exist and follow the law Q[(;O) of the #-field in (3.1.22).

Proof. For the exchangeable timescale, Sabot, Tarres and Zeng [47, Theorem 2] provide a
proof. The statement for the usual (linearly reinforced) VRJP then follows by the time change

formula for local times (3.2.3). O

Considering the VRJP as a random walk in random environment enables us to study its local
time properties with the tools of random conductance networks. For a t-field T = (T )yey

pinned at iy, we refer to the collection of random edge weights (or conductances)
{Bije" ™ }ijer (3.2.6)

as the z-field environment. This should be thought of as a symmetrised version of the VRIP’s
random environment (3.2.4). It is easier to study a random walk with symmetric jump rates,
since its amenable to the methods of conductance networks. The following lemma relates local
times in the 7-field environment with the local times in the environment of the exchangeable
timescale VRIJP:

Lemma 3.2.4: Consider the setting of Theorem 3.2.2. Let (X;);>0 and (¥;);>o denote two
continuous-time Markov jump processes started from iy with rates given by (3.2.4) and

(3.2.6), respectively. We write LT and I for their respective local time fields. Let B € V and
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write 75 and 75 for the respective hitting times of B. Then

x law Ty 7x
L% = 2e l%, (3.2.7)

: io 1aw 5 ig
for x € V. In particular, L‘iz; = 21% .

Proof. The discrete-time processes associated to (X;);s0 and (Y;);s0 apparently agree. In
particular, they both visit a vertex x the same number of times, before hitting B. Every time

X, visits the vertex x, it spends an Exp(X, 3By ™™

)-distributed time there, before jumping
to another vertex. ¥; on the other hand will spend time distributed as Exp(2, BryelxtTy) =

%e‘ZTX Exp(2y % Byye’>~Tx). This concludes the proof. O

3.2.3 Effective Conductance

Our approach to proving Theorem 3.1.2 will rely on establishing asymptotics for the effective

conductance in the t-field environment (Theorem 3.3.1).

Definition 3.2.5: Consider a locally finite graph G = (V, E) with edge weights (or conduc-
tances) {w;; }ijce. For two disjoint sets A, B C V, the effective conductance between them is
defined as
CM(A,B):= inf wi; (UG =U(j))% 3.2.8
(4.B) i ]ZE 5 (U@ =U() (323)
The variational definition (3.2.8) makes it easy to deduce monotonicity and boundedness
properties:
Lemma 3.2.6: Consider the situation of Definition 3.2.5. Suppose S C E is a edge-cutset
separating A, B. Then
C(A,B) < )" wij. (3.2.9)
ijes

Alternatively, suppose C C V is a vertex-cutset separating A, B. Then

CM(A,B) < C*(A,C). (3.2.10)
Proof. For the first statement, consider (3.2.8) for the function U: V — R that is constant zero
(resp. one) in the component of A (resp. B) in V\S. For the second statement, note that for
any funcion U: V — R with U|4 =0 and U|¢ = 1 we can define a function U that agrees with

U on C and the connected compenent of V \ C containing A, and is constant equal to one
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on the component of Bin V\V. Then, U|4 =0 and U|z = 1 and 2ijeeWij (U (i) ~U(j))? <
Yijeewij (U (i) —U(j))?, which proves the claim. O

The monotoniciy in (3.2.10) makes it possible to define an effective conductance fo infinity.
For an increasing exhaustion V; € V, C --- of the vertex set V =, V, and a given finite set

A C 'V, we define the effective conductance from A to infinity by
C(A) = lim C*T(A,V\V,). (3.2.11)

One may check that this is independent from the choice of exhaustion. For us, the main use of

effective conductances stems from their relation to escape times:

Lemma 3.2.7: Consider a locally finite graph G = (V, E') with edge weights (or conductances)
{wij}ijee. Let C °ff (i, B) denote the effective conductance between the singleton {iy} and a
disjoint set B. Consider a continuous-time random walk (X;);>0 on G, starting at Xy =iy and
jumping from X; =i to j at rate w;;. Let Leg(io, B) denote the total time the walk spends at
io before visiting B for the first time. Then Leg. (io, B) is distributed as an Exp(1/C (io, B))-
random variable.

For an infinite graph G, the above conclusions also hold for B “at infinity”: We let Legc o0 (i0)
denote the total time spent at iy and understand CeT(ip) as in (3.2.11). Then Lesc.00(ip) ~
Exp(1/CE (i)).

Proof. According to [23, Section 2.2], the walk’s number of visits at iy before hitting B is a geo-
metric random variable N ~ Geo(pesc) With the escape probability pes. = C (io, B) /(3 jimio Wio))-
Moreover, for the continuous-time process, every time we visit ig we spend an Exp(2 ;..;, Wiy ;)-
distributed time there, before jumping to a neighbour. Hence, L.y (io, B) is distributed as the

sum of N independent Exp(2 ;..;, wi,;)-distributed random variables. By standard results for the

~ig
exponential distribution (easily checked via its moment-generating function), this implies the
claim. Note that this argument also holds true for B “at infinity”, in which case N ~ Geo(pesc)
with pese = CT(ig) /(3 j~ig Wigj) Will simply denote the total number of visits at iy (see [23,

Section 2.2] for more details). O

3.2.4 The t-Field from the H?2- and STZ-Anderson Model

t-Field as a Horospherical Marginal of the H?>-model First we introduce horospherical

coordinates on H?2. In these coordinates, u € H2? is parametrised by (z,s,,¢), witht,s € R
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and Grassmann variables i,y via

z cosh(t) +e' (3% +yy)
X sinh(t) — ' (35 +yy)

M e's . (3.2.12)
el
n e'y

A particular consequence of this is that e’ = z+x. By rewriting the Gibbs measure for the
H212-model, defined in (3.1.10), in terms of horospherical coordinates and integrating out the
fermionic variables i, ¥, one obtains a marginal density in ¢ = {f, },cy and s = {5, }xey, Which
can be interpreted probabilistically:

Lemma 3.2.8 (Horospherical Marginal of the H22-Model [2, 27, 28].): Consider a finite graph
G = (V,E), a vertex ip € V, and non-negative edge-weights (5;;);jeg. There exist random
variables T = {T; } ey € RV and § = {S, }rcv € RY, such that for any F € C°(RY xRY)

(F(t,5))p=E[F(T,S)]. (3.2.13)

The law of T is given by the ¢-field pinned at iy (see Definition 3.1.7). Moreover, conditionally
on T, the s-field follows the law of a Gaussian free field in conductances {g; jeTi+T-f VijeEs

pinned at ip, S;, = 0.
t-Field and the STZ-Anderson Model. It turns out that the (zero-energy) Green’s function

of the STZ-Anderson model is directly related to the ¢-field:
Proposition 3.2.9 ([47]): For Hp denoting the STZ-Anderson model as in Definition 3.1.8

define the Green’s function Gp(i,j) = [Hl‘gl],-,j. For a vertex ig € V, define {7;};ca via
eli .= Gylio,1)/Gglio,io). (3.2.14)
Then {T;} follows the law Q};O) of the ¢-field, pinned at iy. Moreover, with {7;} as above we

have B; = ijiﬁijeTf‘Ti foralli e V\ {ip}.

This provides a way of coupling the STZ-field with the z-field, as well as a coupling of 7-fields

pinned at different vertices.

Remark 3.2.10 (Natural Coupling): Lemma 3.2.8 and Proposition 3.2.9 give us a way to define
a natural coupling of STZ-field, t-field and s-field as follows: Fix some pinning vertex ip € V.
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Sample an STZ-Anderson model Hp with respect to edge weights {f;;};jce. Then define the
t-field {T;},;cy, pinned at ig via (3.2.14). Then, conditionally on the z-field, sample the s-field
=0.

{S;}iev as a Gaussian free field in conductances {S; jeTi+Tf }ijeE, pinned at ig, S;,

3.2.5 Monotonicity Properties of the 7-Field

A rather surprising property of the 7-field, proved by the first author, is the monotonicity of
various expectation values with respect to the edge-weights. The following is a restatement of
[25, Theorem 6] after applying Proposition 3.2.9:
Theorem 3.2.11 ([25, Theorem 6]): Consider a finite graph G = (V, E) and fix some vertex
io € V. Under Eg, we let T = {T;};cv denote a ¢-field pinned at iy with respect to non-negative
edge weights B = {B.}.cg. Then, for any convex f: [0,00) — R and non-negative {4; };cv,
the map

B Bg[f (X die™)] (3.2.15)
is decreasing.

A direct corollary of the above is that expectations of the form Eg [e">] are increasing in S for
n < [0,1] and are decreasing for n > 1. This will be the extent to which we make use of the

result.

3.2.6 The t-Field on T,

Consider the 7-field measure (3.1.22) on Ty, = (Vyn, Eqn), the rooted (d + 1)-regular tree of
depth n, pinned at the root iy = 0. Only one term contributes to the determinantal term (3.1.23),

namely the term corresponding to T, itself, oriented away from the root:

1 .
Q(O) (dt) — e_z(i'j)egd,n [’B(COSh(tj_ti)_l)+§([j_t[)]é(l'o) rl dtl (32.16)

5T n / ’
¢ i€Vy,\0 27T/ﬁ

where E d4.n 18 the set of edges in T, oriented away from the root. In other words, the increments

of the 7-field along outgoing edges are 1.1.d. and distributed according to the following:

Definition 3.2.12 (z-field Increment Measure): For 8 > 0 define the probability distribution

Q’iBnC(dZ) = Bleosh(-11-1/2__ == Gith reR. 3.2.17)
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We refer to this as the t-field increment distribution and if not specified otherwise, T will
always denote a random variable with distribution Q;“C. The dependence on S is either

implicit or denoted by a subscript, such as in Eg or Pg.

The density (3.2.17) implies that
el ~1G(1,8) and e T ~RIG(1,P), (3.2.18)

where IG (RIG) denotes the (reciprocal) inverse Gaussian distribution (cf. (3.6.4)). Note that
changing variables to ¢ — e’ and comparing to the density of the inverse Gaussian, we see that
(3.2.17) is normalised.

Definition 3.2.13 (Free Infinite Volume ¢-field on Ty): For 8 > 0, associate to every edge
e of the infinite rooted (d + 1)-regular tree T, a ¢-field increment 7,, distributed according
to (3.2.17). For every vertex x € T, let y, denote the unique self-avoiding path from 0O to
x and define T = X ¢, T,. The random field {T,}ct, is the free infinite volume t-field on
T4 at inverse temperature 8 > 0. In particular, its restriction {7} },er,, onto vertices up to

generation n follows the law Qg,)%d .

By construction, {7 }eT, can be considered a branching random walk (BRW) with a determin-
istic number of offsprings (every particle gives rise to d new particles in the next generation).

In Section 3.2.8 we will elaborate on this perspective.

3.2.7 Previous Results for VRJP on Trees.

As we have already noted in the introduction, the VRJP on tree graphs has received quite some
attention [4, 32-35]. In particular, Basdevant and Singh [4] studied the VRJP on Galton-Watson
trees with general offspring distribution, and exactly located the recurrence/transience phase
transition:
Proposition 3.2.14 (Basdevant-Singh [4]): Let 7 denote a Galton-Watson tree with mean
offspring b > 1. Consider the VRJP started from the root of 7, conditionally on non-extinction
of the tree. There exists a critical parameter 8. = 8.(b), such that the VRJP is
* recurrent for g < S,
* transient for 8 > f3..

Moreover, . is characterised as the unique positive solution to

1 IBC i —Bc(cosh(r)-1)
E: o dre " . (3.2.19)
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We also take the opportunity to highlight Rapenne’s recent results [35] concerning the (sub)critical
phase, S < .. His statements can be seen to complement our results, which focus on the
supercritical phase 8 > ..

3.2.8 Background on Branching Random Walks

Let’s quickly recall some basic results from the theory of branching random walks. For a more
comprehensive treatment we refer to Shi’s monograph [74].

A branching random walk (BRW) with offspring distribution u € Prob(Ny) and increment
distribution v is constructed as follows: We start with a “root” particle x = 0 at generation
|0] = 0 and starting position V(0) = vo. We sample its number of offsprings according to p.
They constitute the particles at generation one, {|x| = 1}. Every such particle is assigned a
position v+ 6V, with {6V, }|=1 being i.i.d. according to the increment distribution v. This
process is repeated recursively and we end up with a random collection of particles {x}, each
equipped with a position V(x) € R, a generation |x| € Ny and a history 0 = xo,X1,...,X|x| = x of
predecessors. Unless otherwise stated, we assume from now on that a BRW always starts from
the origin, vo = 0.

A particularly useful quantity for the study of BRWs is the log-Laplace transform of the
offspring process:

w(n) =logE| )" eV, (3.2.20)

x|=1
where the sum goes over all particles in the first generation. A priori, we have ¥/ (n) € [0, 0],
but we typically assume y(0) > 0 and inf,~o () < co. The first assumption corresponds to
supercriticality of the offspring distribution*, whereas the second assumption enables us to

study the average over histories of the BRW in terms of single random walk:

Proposition 3.2.15 (Many-To-One Formula): Consider a BRW with log-Laplace transform
W (n). Choose nn > 0 such that ¥ (1) < oo and define a random walk 0 = Sy, S, ... with i.i.d.

increments such that for any measurable 4: R — R
BIASD] =B [ Syt ™ Oh(V ()] [B[Zyypor e 0] (3.2.21)
Then, for all n > 1 and g: R" — [0, o) measurable we have

E[Spmn8(V(x1),....V(xn))| =E[e™ Mg (S, ..., S)] . (3.2.22)

“Here we mean supercriticality in the sense of Galton-Watson trees. In other words, with positive probability
the BRW consists of infinitely many particles. We also say that the BRW does not go extinct.
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For a proof we refer to Shi’s lecture notes [74, Theorem 1.1]. An application of the many-
to-one formula is the following statement about the velocity of extremal particles (cf. [74,
Theorem 1.3]).

Proposition 3.2.16 (Asymptotic Velocity of Extremal Particles): Suppose ¢ (0) > 0 and

ing (1) < co. Then, almost surely under the event of non-extinction, we have
n>

1

lim — inf V(x) = —infy (n)/n. (3.2.23)
n—0 N |x|=n n>0

Critical Branching Random Walks. A common assumption, under which BRWs exhibit

various universal properties, is (1) = ¢’(1) = 0. While not common terminology in the

literature, we will refer to this as criticality:
def
BRW with /() = 10gE[ Y= ¢ "V ™] is critical & y()=¢'(1)=0 (3.2.24)

This definition can be motivated by considering the many-to-one formula (Proposition 3.2.15)
applied to a critical BRW for 7 = 1: In that case, the random walk S; has mean zero increments,
E[S1] = -y’ (1) =0, and the exponential drift in (3.2.22) vanishes, ¢”¥(!) = 1. Consequently,
as far as the many-to-one formula is concerned, critical BRWs inherit some of the universality
of mean zero random walks (e.g. Donsker’s theorem, say under an additional second moment
assumption). Moreover, the notion of criticality is particularly useful, since in many cases we

can reduce a BRW to the critical case by a simple rescaling/drift transformation:

Lemma 3.2.17 (Critical Rescaling of a BRW): Consider a BRW with log-Laplace transform
Y (n) =10gE[X|y=1 e V™). Suppose there exists n* > 0 solving the equation

() =n"y'(n"). (3.2.25)

Equivalently, n* is a critical point for  — ¢/ (17) /n. Define a BRW with the same particles
{x} and rescaled positions
Vi) ="V (x) +y (n7)Ix|. (3.2.26)

The resulting BRW is critical.
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Proof. Write y*(y) =10gE X =1 e V") for the log-Laplace transform of the rescaled BRW.
We easily check

(1) =logE Z e VIV = _y(n*) +10gE Z e TV
x[=1 lx|=1 (3.2.27)

=—ym")+y(n") =0.
Equivalently, 1 =E ¥, eV~ which together with (3.2.25) yields
V(1 E X o1 0V (x) +y (7)) e V=)
W= EZ|X|:1e"7*V(X)—W(n*)

=B Z V(x)e V) - w(n) (3.2.28)
|x|=1

=n"y'(n")-w(n*) =0,

which concludes the proof. O
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3.3 VRJP and the z-Field as 8 ™\ S.

The main goal of this section is to prove Theorem 3.1.2 on the asymptotic escape time of the
VRIP as 8\, B.. The main work will be in establishing the following result on the effective
conductance in a ¢-field environment:
Theorem 3.3.1 (Near-Critical Effective Conductance): Let {7} },cT, denote the (free) ¢-field
on T, pinned at the origin. Let C& denote the effective conductance from the origin to
infinity in the network given by conductances {Be’i*7i1;. j}ijery- There exist constants
¢, C > 0 such that

exp[~(C+0(1))/ Vel < Epre[CS] < exp[—(c+0(1))/Vel, (3.3.1)

as € \, 0, where . = B.(d) > 0 is given by Proposition 3.2.19.
For establishing this result, the BRW perspective onto the z-field is essential. The lower

bound will follow from a mild modification of a result by Gantert, Hu and Shi [75] (see
Theorem 3.3.8). For the upper bound we will consider the critical rescaling of the near-critical
t-field (c¢f. Lemma 3.2.17). The bound will then follow by a perturbative argument applied to a
result on effective conductances in a critical BRW environment. The latter we prove in a more
general form, for which it is convenient to introduce some additional notions.

For a random variable V and a fixed offspring degree d we write

Yy (n) =log(dE[e"]). (3.3.2)

Analogous to Definition 3.2.13, for an increment distribution given by V, we define a random
field {V, }reT, and refer to it as the BRW with increments V. We say that V is a critical increment
if {Vy}xer, is critical, i.e. vy (1) = ¢, (1) = 0. Note that this implicitly depends on our choice
of d > 2, but we choose to suppress this dependency. For a critical increment V we write

o =yh(1) =dE[VZe™]. (3.3.3)

Note that this is the variance of the (mean-zero) increments of the random walk (S;);>0 given

by the many-to-one formula (Proposition 3.2.15 for p = 1).

Theorem 3.3.2: Fix some offspring degree d > 2 and consider a critical increment V with
0'3 < oo and Yy (1+2a) < oo for some constant a > 0. Write {V, },er, for the BRW with
increments V and define the conductances {e"’(VX*Vy)}xy. Let Cff; denote the effective

conductance between the origin 0 and the vertices in the n-th generation. Then, for y €
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(1/2,1/2+a), we have
B[CST] < exp [— [min(L,y - 1) (n202)'/ +o(1)]n1/3] as 1 — oo, (3.3.4)

Moreover, this is uniform with respect to vy, 0"% and Yy (1+2a) in the following sense:

Suppose there is a family V%), k € N, of critical increments and define C;‘fy . as above.

- 2 2
Further assume 0 < infy o7, < sup; o, < o0 and sup; 0 (1+2a) < co. Then we have

limsup sup sup (rz_1/3log]E[Ceff

n—oco nysk

]+min({,y-1) (nzcrg(k))m) <0. (3.3.5)
k l<y<l+a
We note that random walk in (critical) multiplicative environments on trees has previously been
studied, see for example [76—81]. In particular, Hu and Shi [79, Theorem 2.1] established
bounds analogous to (3.3.4) for escape probabilities, instead of effective conductances. While
the quantities are related, bounds on the expected escape probability do not directly translate
into bounds for the expected effective conductance. Moreover, their setup for the random
environment does not directly apply to our setting®. Last but not least, for our applications, we

require additional uniformity of the bounds with respect to the underlying BRW.

3.3.1 The ¢-Field as a Branching Random Walk
Considered as a BRW, the ¢-field {7} er, on the rooted (d + 1)-regular tree T, (or more

precisely the negative 7-field) has a log-Laplace transform given by

wp(n) =logE[ ) "] =log(dEge”]) (7> 0). (3.3.6)

|x[=1

where T denotes the z-field increment as introduced in Definition 3.2.12. One can check easily

that y3(0) =y 3(1) =logd. More generally, using the density for 7 we have

K
)

d~28eP
s

i —pleoshn)-11-(5-n)1
Yp(n) =log (a’/ Bleos 277 ):log
( NG

3.3.7
—c ®) 63D

where K,, denotes the modified Bessel function of second kind. An illustration of g for

different values of 8 is given in Figure 3.4. In particular, it’s a smooth function in 8,7 > 0 and

SRoughly speaking, they are working with weights {e~7V~ }(x y)eE(Ta) while we consider the “symmetrised”

—)/(Vx+Vy

variant {e )}xyeE(Td)'
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Figure 3.4: Illustration of y3(n)/log(d) for d = 2 at different values of . Its minimum is
always at 7 = 1/2, and the value of this minimum is increasing with S. It is equal to zero at

B =B

one may check that it’s strictly convex since

]E’B [TZeqT] Eﬁ [Te”T] 2
Egle™]  Egler]?

wg (n) = >0 (3.3.8)
equals the variance of a non-deterministic random variable. Moreover, by the symmetry and
monotonicity properties of the Bessel function (K, = K_, and K, < K, for 0 < a < @’), the
infimum of Y 3(n) is attained at n = 1/2:

\/_,8

infy(n) = yp(1/2) = log(dEgle’ *]) =log(

Ko(B)) (3.3.9)

The critical inverse temperature 8. = 8.(d) > 0, as given in Proposition 3.2.14, is equivalently

characterised by the vanishing of this infimum:
U (1/2) = inf g, () = 0. (3.3.10)

In particular, by Lemma 3.2.17, this implies that {—%Tx }xet, 1s a critical BRW at 8 = B.. More
generally, it will be useful to consider critical rescalings of {7} for general 8 > 0. For this we
write

and yp = }725 %0/3:7) _ lﬁﬁ;[':ﬂ). 3311

wp(n)

Np ‘= argmin,
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An illustration of these quantities is given in Figure 3.5. If 573 as above is well-defined, then it
satisfies (3.2.25) and hence by Lemma 3.2.17 the rescaled field

P = T+ (np) x| (3.3.12)

defines a critical BRW. The following lemma lends rigour to this:

Lemma 3.3.3: 7g as given in (3.3.11) is well-defined and the unique positive root of the
strictly increasing map n +— 77‘/’;3(77) —(n). Consequently, the maps 5+ 175 and S+ yg
are continuously differentiable.

Proof. Recall the Bessel function asymptotics K, (8) ~ %(2 /B)*T' (@) as @ — oo, hence by
(3.3.7) we have yg(1n) ~ nlogn for n — co. Consequently, yg(17) /5 diverges as n — oo (and
it also diverges as n \, 0). Hence it attains its infimum at some finite value. We claim that
there is a unique minimiser 173. Since ¥/3(1) /5 is continuously differentiable in 77 > 0, at any
minimum it will have vanishing derivative 8, (¥ 3(n)/n) = [W’;;(U) -yg(n)]/ n%. And in fact
the map n — 771%(77) —g(n) is strictly increasing, since its derivative equals nw;j’(n) > 0, see
(3.3.8), and as such has at most one root. This implies that g as in (3.3.11) is well-defined and
the unique root of m,//’ﬁ(n) —yg(n).

Continuous differentiability of 8 +— ng follows from the implicit function theorem applied to
f(n,B) = 77‘%('7) —yp(n), noting that 0, f (7, B) = mﬁg () > 0. This directly implies continuous
differentiability of 8+ yg =yg(13)/1p

O

Considering the graphs in Figure 3.5, one would conjecture that 174 is strictly increasing in .
One can apply the implicit function theorem to f(n,8) = 77‘/’;;(77) — (1) to obtain

dng  [0sf)(1p.B) 10 (np) — sl 5] (np) (33.13)
a8~ 10,f1(p.B) npw 5 (np) ' o

The denominator is positive by (3.3.8), but we are not aware how to show non-negativity of the
numerator for general 8. We can however make use of this for the special case 8 = ., which

will be relevant in Section 3.3.3, in order to prove Theorem 3.3.1.

Proposition 3.3.4: Let y3(77) and 53 be as in (3.3.7) and (3.3.11), for some d > 2. For
Bec = pBc(d) > 0, as given in Proposition 3.2.14, we have 7z, = 1/2 and
d

d
— >0 and — >0 3.3.14
5 5518 a5 ﬂzﬁcaﬁﬁ(ﬂﬁ) ( )
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Figure 3.5: Illustration of g, yz/logd and y3(1n)/(nlogd) for d = 2. For the figure on the left,
note that yg is positive for 8 > S, and attains its maximum at g *, at the same point at which
np = 1. The right figure illustrates the same point: The minima of y3(7) /n move to the right

with increasing 3 and attain their highest value at 8 = ¢ .

Proof. By (3.3.10) we have %g%c(%) - z//ﬁc(%) = -, (%) = 0. Lemma 3.3.3 therefore implies
ng. = 1/2. Applying (3.3.13) and recalling lﬁ}g(%) =0, we get

dng|  _ Oplp=pp(3)

= (3.3.15)
dB 1p=g. ! 4 (1p)

The denominator is positive by (3.3.8). As for the numerator, we recall (3.3.7) for n = 1/2:

wp(3) = log (d / w/2’iﬁe—ﬁ<cosh<f>—1>dz). (33.16)

To see monotonicity of the integral in £ it is convenient to apply the change of variables.

u=e'">—e "2 =2sinh(¢/2) & t = 2arsinh(u/2)
dut (3.3.17)

1
o E(et/2+e_t/2) =+1+u?/4

Note that u?/2 = %(e’ +e")—1=cosh(z) -1, hence

/ , —ﬁ(cosh(t) 1) dr = / ,

(3.3.18)
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Clearly, the integrand in the last line is strictly increasing in S, hence 851///;(%) > 0. This
implies the first statement in (3.3.14). For the second statement note that l%c (%) = 0. Hence,

lp=p. (1) = Oplp=p.Wp(3) > 0. 0

As already suggested in Figure 3.5, there is a second natural transition point 85 ¢ > 8., which is
“special” due to yp attaining its maximum there. This transition point will be relevant for the
study of the intermediate phase in Section 3.4.

Proposition 3.3.5 (Characterisation of 85 °): Let ¢/5(n) and 4 be as in (3.3.7) and (3.3.11),
for some d > 2. The map S — g%,( 1) —y(1) is strictly decreasing and there exists a unique
o8 = B(d) > 0, such that

Ypere (1) = Yriene (1). (3.3.19)

Equivalently, 8¢ > 0 is characterised by any of the following conditions:

Egere [T]=-logd = Nge=1 &= yze=supyp=logd. (3.3.20)
C C C ﬁ>0

Moreover, for 8 < B¢ * we have that 175 < 1 and that 8+ vy is increasing, while for g > B¢ °

one has g > 1 and 8 + 7 is decreasing.

Proof. By definition of /g and the 7-field increment measure we have

wy(1) — (1) =Eg[Te"] —logd = —E4[T] - logd. (3.3.21)

We claim that 8+ Eg[T] is strictly increasing. In fact, using the change of variables in (3.3.17)
and noting that e~*/2 = cosh(z/2) —sinh(¢/2) = v'1+ (1/2)2 —u/2, we have

T] :/ ﬁe—ﬁ(cosh(t)—l)e—t/tht
\ 2n

~ / \/z e_%suz2arsinh(u/2)(\/1+(u/2)2—u/2) "
= o NEYPTIE (3.3.22)

__2/\/7 8 zuarsmh(u/Z) arsinh(u/2) .
1+(u/2)?

It is easy to check that x arsinh(x)/V1+x2 is strictly increasing in |x|. Consequently, rescaling

u=s/+pB asin (3.3.18), we see that above integral is strictly increasing in 8. Moreover, one
also observes that that Eg[T] — —oo for ™\ 0, whereas Ez[T] — 0 for § — co. Hence by
(3.3.21), there exists a unique 8¢ ¢ > 0, such that lp;gerg(l) = gee(1). In particular, nger = 1.
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The first two alternative characterisations in (3.3.20) follow from (3.3.21) and our previous

considerations. Also, by Theorem 3.2.11, we have

wp(1) s yp(l) for BsBE (3.3.23)

erg

which by Lemma 3.3.3 implies that ng s 1 for § s 5. °.

To show the last characterisation in (3.3.20), we calculate the derivative of 8+ yg =

wp(np)/ng:
Yp(np)

np
= 25 19951 1) + 55 19ma0 5 () = 5 [9pma s ()

5
= # [0s¥s] (1),

where in the last line we used that Uﬂl//,ﬁ(l]ﬁ) —y(n3) =0. By Theorem 3.2.11, the last line

in (3.3.24) is non-negative if ng < 1 and non-positive for g > 1. Since ng s 1 for = Bt

Ipyp =0l |

(3.3.24)

this implies the last statement in (3.3.20) as well as the stated monotonicity behaviour of

IBI—)’)/ﬁ O

3.3.2 Effective Conductance in a Critical Environment (Proof of Theo-
rem 3.3.2)

First we recall some results on small deviation of random walks. To be precise, we use an
extension of Mogulskii’s Lemma [82], due to Gantert, Hu and Shi [75].

Lemma 3.3.6 (Triangular Mogulskii’s Lemma [75, Lemma 2.1]): For eachn > 1, let Xl.("),
1 <i < n,bei.i.d. real-valued random variables. Let g; < g> be continuous functions on [0, 1]
with g1(0) <0 < g2(0). Let (a,) be a sequence of positive numbers such that a, — oo and
a% /n — 0 as n — co. Assume that there exist constants 77 > 0 and o> > 0 such that:

ap

supE [|X1(”)|2+n] < o0, E [Xl(")] = o(

n>1

. ) Var[X("] — 2. (3.3.25)

Consider the measurable event

n

. Sgn) .
E, = {g1 (%) < a’ <g (%) Vi e [n]}, (3.3.26)
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where Sl.(n) = Xl(") +- --+Xl.(n), 1 <i < n. We have

2

a n2o? ! 1
—log (P[E, - dr. 3.3.27
Pos PIE]) - [ (3320

Lemma 3.3.7: For each k > 1, let Xl.(k) ,1 €N, be i.i.d. real-valued random variables with
E[Xl.(k)] =0 and o-,f = E[(Xl.(k))z]. Suppose that 0 < infy O'If < sup; 0',3 < 0o, Write Sf =
Xl(k) +-- +Xl.(k). For y >0 and v € (0, %) define the events

E® = {|S;| < yn”, Vi € [n]}. (3.3.28)

then we have

lim sup =0. (3.3.29)

oy )2
= peN

2y

n'=2v logP[E,(,k)] + (

Proof. We proceed by contradiction. Write b'%) == —n!'=2"10gP[E\¥] and »¥ = (%)2 and
suppose (3.3.29) does not hold. Then there exists € > 0, (k,),en, and a subsequence Ny € N

plkn) _ pplkn)

Vne Ny: > €. (3.3.30)

Since the 0'1% are bounded, we can refine to a subsequence N1 € Ny C N, such that 0'1% — >0
along NV;. But by Lemma 3.3.6 (with a, = n", g1 = —y, and g» = +y) we have b\ — —(%)2
along N, in contradiction with (3.3.30). O

Proof of Theorem 3.3.2. Recall the notation in Theorem 3.3.2. We proceed by proving the
statement for an individual increment V, but indicate at which steps care has to be taken to
establish the uniformity (3.3.5).

Write dA,, = {x € T;: |x| = n} for the vertices at distance n from the origin. Set « :=

%(nza‘%)m. Define the stopping lines of {V,},et, at level an'/3:
L = {(x,y) € E: Vy > an'®,Vz<y: V, < an'3y, (3.3.31)

where we write E for the set or edges oriented away from the origin and “a < b means that a
is an ancestor of b. Let A, denote the event that £ is a cut-set between the origin and dA,,.

By (3.2.9), conditionally on the event A,, we have the point-wise bound

Cls 3 e, (3.3.32)
xye LM
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We thus have:
E[ng ] < E[ Z e—y(vxwy)] +E[c;°f; La ] (3.3.33)
xye_C(")

Bounding the second summand. Clearly, we have

P[A;] < P[3|x| = n, such that Vy < x,|Vy| < an'] aa
+P[3|x| < n, such that V, < —an'/?]. ok

To bound the first summand on the right hand side, we apply the many-to-one formula (Propo-

sition 3.2.15) with = 1, and get a random walk (S;);>0, such that

P[3|x| = n, such that Vy < x,|V,| < an'’?]

SE| X H{Yy < x,[Vy] < ozn]/S}
(3.3.35)

A\
=E[e ]lVie[n],|Si|§a/n1/3]

< e“”l/SP[Vi € [n],1S:] < an'/?].

In the third line we used that ¢y(1) = 0. We recall that (since ¥ (1)y = ¢,(1) = 0) we have
E[Si]=0and E[S?] = 0. Applying Lemma 3.3.7 (with y = @ and v = 1/3) yields

P[Vi € [n],]S:] < an'/3] = e 2aroIn' (3.3.36)

where we used that (% 2 = 2a. Moreover, Lemma 3.3.7 states that the convergence in

(3.3.36) is uniform over a family V) k e N, of critical increments given that 0 < infy 0'5( o <

supy 0"%( i < o0. In conclusion we have

1/3

P[3|x| = n, such that Vy < x, |[Vy| < an'3] < e~laroln (3.3.37)
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Fot the second summand in (3.3.34) we have

P[3|x| < n, such that V, < —an'/?] <ZE[Z]IV< an1/3]

i=1 |x|=i
_ZZE Xe XllV <- an1/3]
i=1 |x|=i
n
Vi1 —an'/?
S;;l‘;,.E[e le (3.3.38)

— i eiwv(l)e—wnl/3
i=1
n
_ Z e_a,nl/3
i=1

_ 1/3
=ne "

Where we used that ¢V = 2lx|=i E[e~""x], which one may check inductively. In conclusion,
(3.3.34), (3.3.37) and (3.3.38) yield P(AS) < =@ e proceed by controlling the

second summand in (3.3.33) using Cauchy-Schwarz and properties of the effective conductance

(Lemma 3.2.6):
E[CST 1 4] < AJE[(CET)2] ¢ [ oD (3.3.39)

To bound the first factor on the right hand side note that C}, y < Dxl=1€ ~7Yx by Lemma 3.2.6.
By Jensen’s and Holder’s inequality

E[(Zpj=1677")] S dE[Zey-1e77Y]
=d’E[e™"]
< dzE[e_V]ZV(I‘ZZ—;I)E[e—(HZa)V] 2y Iyl (3.3.40)

2y-1 2y 2y-1
Sd2_27(1_T)[$ed/V(1+2a)]1+2a 2a

where we used 1 = e?V() = dE[e~"]. The last line in (3.3.40) is continuous in y € R, hence
uniformly bounded for y € (1/2,1/2+a). In conclusion, we have

sup  B[CST 1] < C(yy(142a)) e [EH00In", (3.3.41)
1/2<y<1/2+a ’
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for a constant C(yy(1+2a)) > 0 depending continuously on ¢y (1+2a). In particular,
this yields a uniform bound over a family of critical increments VX) with 0 < inf aé(k) <

supy a‘%(k) < oo and supy Yy (1 +2a)co.

Bounding the first summand. For a vertex x € dA\, we write (xj)r=o...., for its sequence of

.....

predecessors (xg = 0,x,, = x). For a walk X = (X;);>0, analogously to our stopping lines, we
introduce the stopping time at level an'/3:

T =inf{i 2 0: X; > an'/?) (3.3.42)
Note that on the event A,, we know for every x € dA, that the sequence (Vy,)i=o, . Crosses
level an!/3. In other words, T((",Z)') <n.
Consequently, the first summand in (3.3.33) is bounded via
n
E[ > e—7<Vx+Vy>] < E[ D ]1{T(<;ji) = kye " VartVa) || (3.3.43)
xyeL ™) k=1 |x|=k

The last line is amenable to the many-to-one formula (Theorem 3.2.15). Write (S;);>0 for the

associated random walk (choosing 7 = 1), then the last line in (3.3.43) is equal to

n n
ZE[]I{T_S(‘H) — k}eske—y(sk—l"'sk)] — ZE[]I{TS(‘H) — k}e—(zy—l)sk—l6(1—7)(5k—5k—1) . (3344)
k=1 k=1

Now, since Sy > an'/? for TS(") = k, and since y > 1/2 by assumption, we can bound the right

hand side and obtain

n
E[ Z Y VetV g An] Se—m—l)anl”xz [H{TSM):k}ea—y)(sk—sk_l)
xye L) k=1 (3.3.45)

< e~ @y-Dan'”? XnE[e(l—y)sl]

Now by using the definition of (S;) in (3.2.21) we have

E[e!"™51] = dE[e™"] < dE[e 120V |75 < d [Le/V 1729055 < C(yy(142a)), (3.3.46)
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for a constant C (v (1+2a)) > 0 that is independent of y € (1/2,1/2+a) and continuous with
respect to ¥y (1+2a). Hence,

E[ 2 e—7<vx+"y)] < ¢~ [@y=Daro(In'”) (3.347)
xye_E(”)

and this bound holds uniformly with respect to y € (1/2,1/2+a) and over family of critical
increments V%) given that supy Yy (1+2a) < co. In conclusion (3.3.32), (3.3.41) and (3.3.47)
yield

E[Cz,fg] < e—[a/2+0(1)]n1/3+e—[(27—1)a+0(1)]n1/3

~[min(4 2y-Da+o(1)]n'/3

<e (3.3.48)

1 1
_ o~ [min(G-2)(20d) Pro(D)]n!3

uniformly over y € (1/2,1/2+a) as n — co. And as noted, this bound is also uniform over a
family of critical increments V¥, given the assumptions in the theorem. This concludes the

proof. O

3.3.3 Near-Critical Effective Conductance (Proof of Theorem 3.3.1)

The upper bound in Theorem 3.3.1 will follow from Theorem 3.3.2 and a perturbative argument.
For the lower bound, we will apply a modification of a result due to Gantert, Hu and Shi [75].
In their work they give the asymptotics for the probability that some trajectory of a critical
branching random walk stays below a slope ¢|i| when ¢ \, 0. We are interested in this result
applied to the critical rescaling of 7-field {Tf }xeT, as given in (3.3.12). Comparing to Gantert,

Hu and Shi’s result, we will require additional uniformity in 3:

Theorem 3.3.8: Let {Tf }xer, be as in (3.3.12). For any a > 0 small enough, there exists a
constant C > 0 such that for all 8 € [B., 8. +a], for 6 small enough:

Pg[Japathy: 0 — cos.t. Vi €N, Tﬁ < 6i] > e—C/\/E.

This theorem will be proven in Appendix 3.7, as it closely follows the arguments of Gantert,

Hu and Shi, while taking some extra care to ensure the required uniformity.

Proof of Theorem 3.3.1. The main idea is to consider, for g = . + €, the critical rescaling of
the ¢-field (see Lemma 3.2.17, (3.3.11) and Lemma 3.3.3)

= —npTi+yp(p)lil. (3.3.49)
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We remind the reader of the definition of the rescaled field with the following near-critical

behaviour for the constants (Proposition 3.3.4):

1 2 .
+e =5+Cpe+0(e”) with ¢, >0
e 2Ty 7 (3.3.50)
Wp.+e(Npose) =cye+0(€”)  with ¢y >0.

Together with these asymptotics, application Theorem 3.3.8 and Theorem 3.3.2 to {Tiﬁ YieTys
will yield the lower and upper bound, respectively.

Lower Bound: According to Theorem 3.3.8 we have that there exist constants a,C > 0, such
that for all sufficiently small 6 > 0:

. . . B < 81> -C/V6
/SU</132£30+aPﬁ[3a pathy: 0 > cos.t. VieN, 7, <di] > e . (3.3.51)

Note that 7,, < 6i is equivalent to T, > 77[;1 [¥g(np) —6]i. Choosing 6(€) = %cwe, we have
nl‘gclﬁ[wﬁcﬂ(nﬁﬁe) -0(e)] = C¢6+0(62). Hence, for € > 0 small enough

Ppsc[Fapathy: 0 - cost. Vi e N, Ty, > Leyei] = e C/Ve, (3.3.52)

Write A¢ for the event in brackets. Conditionally on this event, we can bound cg,ff from below
by the conductance along the path y (which is given by Kirchhoff’s rule for conductors in

series):

SN P IS T
On A, : cgffz[zﬁe‘zzcw“] = B(1—ecv€). (3.3.53)
=0

Consequently, (3.3.52) and (3.3.53) yield

Epose [CET] 2 (Be+€)(1— e €v€)e™C/VE = o7 [CHoIIVE 45 ¢ 5 0, (3.3.54)
This concludes the proof of the lower bound in (3.3.1).
Upper Bound: Recalling the definition (3.3.49), we have for any i, j € T;,, € T, that

T = Uil+iD s (p) Ing o5 (T 4T))  G2nus(np)ng 5" (7)) (3.3.55)
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Hence, if we write C‘f;ﬁ for the effective conductance between the origin and dA, = {x €

—nlgl(riﬁ#r

B
Ty: |x| = n} in the electrical network with conductances {e J )},- jeE, We have

Eg[CE] < e2Vetms)/ns By CoT, (3.3.56)

For any 8 > 0, the field TlfB is the BRW for the critical increment 7# = —ngT +y5(175), with T

is distributed as a t-field increment (at inverse temperature 3). Hence, Theorem 3.3.2 implies
Ep[C:"] < exp[-[min(}.n5' = 1/2) (n*02) ' P+o(D]n'?] as n—oeo,  (33.57)

and moreover this holds uniformly as 8\, S.. Note that by (3.3.50) we have min( }1, ’7/}1 -1/2)=
}1 for g sufficiently close to S.. In the following write § = 5. +€. By (3.3.50) we have
Upe.. (Mpere) [Mpere ~ 2cy € as € N\, 0. Hence, choosing 1 = n(e) = ¢’e>/? we have

20(€) Yp... Mpore) [Mpore ~ deyc’e M and  n(e)'P =132 (3.3.58)

consequently for ¢’ > 0 sufficiently small, (3.3.56) and (3.3.57) together with Lemma 3.2.6
yield
Epore[C < Bpre[CN ] < e~ (CroM)e? ag €N\, 0, (3.3.59)

for some constant C > 0. m|

A corollary of the proof above, in particular (3.3.52), (3.3.53) is the following

Lemma 3.3.9: In the setting of Theorem 3.3.1 one has, for some constants ¢,C > 0
Pp+e[CEN > ce] > exp[—(C+o(1))/Vel, (3.3.60)

as € \, 0.

3.3.4 Average Escape Time of the VRJP as S8 X\, 5. (Proof of Theo-
rem 3.1.2)

Lemma 3.3.10 (Local Time and Effective Conductance): Let LY, denote the time the VRIP
spends at the origin. Let CST be the effective conductance between the origin and infinity in

the 7-field environment. Also suppose Z is an independent exponential random variable of

L0 J1+27/Cef — 1. (3.3.61)

unit mean. Then we have
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Proof. Write LY, for the total time the exchangeable timescale VRIP spends at the origin. By

the time change formula for the local times (3.2.3), we have:
L0 =1+L9% 1. (3.3.62)
By Theorem 3.2.2, Lemma 3.2.4, and Lemma 3.2.7, L%, is Exp(2/C&T)-distributed. O

Lemma3.3.11: Let CS be as in Theorem 3.3.1. For any a > 0, there exists a constant
¢ =c(d,a) > 0, such that for € > 0 small enough and x > ¢l Ve

Pﬁcﬁ[ég >x] <x7°. (3.3.63)

In particular, there exists a constant C > 0 such that

2

Bre| ! |<e (3.3.64)

C_gf
Proof. Recall that the ¢-field environment is given by edge-weights {;; eli*Tiy, JjeE(T,)» Where
the z-field 7; has independent increments along outgoing edges and is defined to equal O at the
origin. In particular, the environment on the subtree emanating from x (which is isomorphic
to Ty) is distributed as a z-field environment on T; multiplied by e2Tx (which is the same as
requiring that the 7-field equals T} at the “origin” x). For any n € N, and a vertex x at generation
n, write wy, for the effective conductance from x to infinity. By the above we have that
{e 2% Wn,x }|x|=n are independently distributed as Cef. Also, they are independent from the
t-field up to generation n.
In the following, we replace each of the d" subtrees emanating from the vertices x at
generation n by a single edge “to infinity” with weight w, .. The resulting network has the
same effective conductance between 0 and infinity.

Define the event
Ap={3x|=n:ew,, > 2ce}. (3.3.65)

By Lemma 3.3.9 we have Py i [¢ Tw,, > 2ce] = e 2¢/V€ and hence
Ppore[AS] = 1= Pgpc[Ay] < (1= 20NVE)d" < pd"e N (3.3.66)

which is small for appropriately chosen n.
Hence, suppose we are working under the event A,,, and let xo be a vertex at generation n,

such that e *™0w,, ,, > 2ce. The effective conductance on the tree is larger than the effective
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conductance on the subgraph where we only keep the edges between 0 and x, as well as an

edge between x( and infinity with conductance >’

02c€ < wpy,. Denote the conductance of
this reduced graph by C™. We write yg =0,...,y, = xo for the vertices along the path from 0

to xo. The series formula for conductances yields

1 1 155 (14T, ) . L o
F < Cred = ,Eze Vi Yiel +2—C€€ m, (3.3.67)
o i=0

law

We bound 7, +7Ty,,, > 2min(T,,,Ty,,,). Recall that T, =

from the z-field increment measure (3.2.17). This yields

Zk 0 T withi.i.d. samples {75} 50

)e—2m1n(Ty0 ----- Tyn)_ (3.3.68)

Cred < (ﬁ + 2ce 2ce

For fixed T > 0 we apply a union bound and Chernoff’s bound (resp. Lemma 3.6.1)

Pg[min(Ty,....Ty,) < —nt] < > P[Zi_yT® < -n1]
- (3.3.69)
< ) exp(=i¥;(41)),
i=0

where lP;(T) = Sup5o(AT = logEﬁ[e_/lT]) is the Fenchel-Legendre dual of the (negative) ¢-
field increment’s log-MGF. Convexity of ‘PZ, (and ‘I’;(O) = 0) implies ‘I‘;(?T) > ?‘P;(T).
Consequently, (3.3.69) yields

Ps[min(Ty,,...,Ty,) < —nt] < (n+1)e ™5™ for 70 (3.3.70)
which by (3.3.67) and (3.3.68) implies
Pporelgar > (3+5:0)€”"T1Au] < (n+1) exp[-n¥j, (7)], (3.3.71)

In Appendix 3.6 we obtain lower bounds on T* (Lemma 3.6.1). By (3.6.3), we have that for
fixed @ > 0 and sufficiently small € > 0, any sufﬁ01ently large 7 > 0 will satisfy ¥ | _(7) > 7ar,

uniformly as € \, 0. To conclude, we choose n > N(€) = such that P[An] <ed” In

lo (d)\/_ ’
conclusion, with above choices, (3.3.66) and (3.3.71) yield

Ppose|r > €] < e 4o (3.3.72)
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This implies the claim.

Proof of Theorem 3.1.2. We start with the lower bound: By Lemma 3.3.10 there exists an

exponential random variable Z of expectation 1 such that:

E[LY] :E[\/l +2Z/CH] -1
> E[\/l +27Z /E(C&ﬁ)] — 1 by cond. Jensen inequality

> E[VZ]/E[CT] -1
> exp(c/Ve) — 1 by Theorem 3.3.1.

For the upper bound, we start with Jensen’s inequality:

E[LY] =E[/1+2Z/CS 1]

< J1+2B[z/c] -1

< V2[E[1/CEF].

The result now follows by Lemma 3.3.11.

(3.3.73)

(3.3.74)
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3.4 Intermediate Phase of the VRJP

In this section we show that the VRIJP on large finite regular trees exhibits an intermediate phase.
We also argue that Rapenne’s recent results [35] imply the absence of such an intermediate

phase on regular trees with wired boundary conditions.

3.4.1 Existence of an Intermediate Phase on T, (Proof of Theorem 3.1.3)

The intermediate phase is characterised by the VRJP, despite being transient, spending “‘unusu-
ally much” time at the root. To be precise, on finite trees the fraction of time spent at the origin
scales with the system size as a fractional power of the inverse system volume. At the second
transition point the walk then reverts to the behaviour that one expects by comparison with
simple random walk, spending time inversely proportional to the tree’s volume at the starting
vertex.

We will see that the different scalings will be due to different regimes for the log-Laplace
transform of the 7-field increments, y5(n7) = log[d Eﬁe”T], as elaborated in Section 3.3.1.

Before starting the proof, we show how the observable in Theorem 3.1.3 can be rephrased in
terms of a 7-field. The proof will then proceed by analysing the resulting 7-field quantity via
branching random walk methods.

Lemma 3.4.1: Consider the situation of Theorem 3.1.3. Further consider a ¢-field {7} on
Ta.n, rooted at the origin 0. We then have

L lw -1

lim, e 22 12 [2|x|<n ] , (3.4.1)
Proof. Trivially one has t = 3}, Lj. Consequently,
-1
t x /70
lim & _tlggo[ > L ] . (3.4.2)
|x|<n

Hence, the claim follows from Corollary 3.2.3. O

Proof of Theorem 3.1.3. In light of Lemma 3.4.1 we consider a ¢-field {7, } on T, rooted at the

origin. In the following we analyse the asymptotic behaviour of the random variable 3’|, |<, el
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Case B. < B < Bo®: We note that it suffices to show

n>

|x|<n

since we have 0 < yg < log(d) by Proposition 3.3.5. The lower bound in (3.4.3) follows from
Theorem 3.2.16:
Z el > Z elx > eMixt=nTx = gmypton), (3.4.4)

|x|<n |x|=n

For the upper bound in (3.4.3) note that for € (0,1) and € > 0 we have

P[ Z el > en(?’ﬁ+6)] < e—nﬂ(7ﬁ+6)E[( Z eTx)TI]

|x|<n [x|<n

< e—”ﬂ(Vﬁ+€)E[ Z eTITx]

|x|<n

n
— o~ M(yp+e) Z AL
k=0

(3.4.5)

Now let 7 =13 as in Lemma 3.3.3, i.e. such that yg = ¢3(175) /18 > 0. Note that by Proposi-
tion 3.3.5, we have yg € (0,log(d)). With this choice (3.4.5) implies limsup,,_, ., % 1og >/ <n elx <
¥p + € almost surely for any € > 0. This yields the lower bound in (3.4.3).

Case B < B.: This proceeds similarly to the previous case. For the lower bound we simply
use 3| <, e’* > e’ = 1. For the lower bound we use (3.4.5) with yg > 0 and n = 1/2, which

implies that limsup,,_,, %log 2lx|<n e~ < €. almost surely for any € > 0.

Case B> B;°: First note that the quantity W,, := d™" Y}, |-, €'~ is a martingale. In the branching
random walk literature this is referred to as the additive martingale associated with the BRW
{T\}xer,. Since W, is non-negative it converges almost surely to a random variable W, =
lim,,_, . W,,. Biggin’s martingale convergence theorem [74, Theorem 3.2] implies that for 5 >
B¥ (equivalently ¥j,(1) <¢p(1), see Proposition 3.3.5), the sequence is uniformly integrable
and the limit W, is almost surely strictly positive. Consequently we also get convergence for

the weighted average

1 T, 1
|Td,n

dewk S Wa>0 as. for n— co. (3.4.6)
[x|<n |Tds”| k=0
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In other words,

e~ Tya|Weo =a™ 0D as n— o, (3.4.7)
|x|<n
which implies the claim for 8 > ¢ *. O

3.4.2 Multifractality of the Intermediate Phase (Proof of Theorem 3.1.4)

For the proof we will make use of explicit large deviation asymptotics for the maximum of the
t-field. These follow (as an easy special case) from results due to Gantert and Hofelsauer on

the large deviations of the maximum of a branching random walk [83, Theorem 3.2]:

Lemma 3.4.2: Consider the t-field {T;}cer, on Ty, pinned at the origin 0. Let yg =
inf,50¥(n)/n asin (3.3.11). For any y > yg we have

liminf, %logP[max|x|=n Ty 2 ny] = —sup,er[yn —y¥p(m] <0. (3.4.8)

Proof. As noted, this is a direct consequence of [83, Theorem 3.2]. To be precise, we consider
the special case of a deterministic offspring distribution (instead of Galton-Watson trees) and
fluctuations above the asymptotic velocity yg (corresponding to the case x > x* in [83]). In this
case, the rate function given by Gantert and Hofelsauer (denoted by x +— I(x) —log(m) in their

article) is equal to

y > sup(yn —logE[e""]) —logd = sup[yn—ys(n)]. (3.4.9)
neR neR

This concludes the proof. O

Proof of Theorem 3.1.4. By Lemma 3.4.1, we would like to understand fractional moments of

[lim £/1]"" BRI (3.4.10)

|x|<n

where {7 }1eT, denotes a t-field on the rooted (d + 1)-regular tree, pinned at the origin. Recall
the definition of 7 in (3.3.11) and Lemma 3.3.3. For 8 € (Be, Bo) we have ng € (0,1) by
Proposition 3.3.5.

Casen € (0, Uﬁ] . We recall Proposition 3.2.16, which implies that

.1
lim —maxTx :’yﬁ:g[/ﬁ(nﬁ)/f]ﬁ. (3411)

n—oon |x|:n
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By Jensen’s inequality and Fatou’s lemma we get

liminf L1ogB[( )" ¢’)"] > liminf L log B[ "™ 7]
n—o0 n—oo

|x|<n
> liminf ~E[max 7] (3:4.12)
n—oco n |x|=n
> nyp(ng)/ng-
On the other hand, since n/np < 1
Ty ] m, n/ri
EL( ) ™) SE[( Y, Py (3.4.13)
[x|<n |x|<n

For any € (0,1) and 8 > B. we can bound

n

BI( ) P SB[ Y o] <y ekvnl) < gnintnotn, (3.4.14)

|x|<n |x|<n k=0

where we used that inf, .0 5(n) =¥5(1/2) > 0 for > B (cf (3.3.10), (3.3.9) and (3.3.16)).
Applying this to the last line of (3.4.13), we obtain

|x|<n

Casen € [nﬁ, 1): The upper bound already follows from (3.4.14). For the lower bound we

start with
E[( Z eTx)n] > E[enmax\ﬂ:nTx]
bxl<n (3.4.16)
> e’myP[?llaxT >ny] forany vy >0.
X|=n
We get that for any y € R:
liminfilogE[( Z )1 > ny+liminf%logP[maxT > ny]. (3.4.17)
n—oo |x|gn n—oo |x =n

By Lemma 3.4.2, we have

liminf 1 ~logE[( Z e > sup (mf—sup[yﬁ—wﬁ(ﬁ)]). (3.4.18)

n—oo X[=n Y>Yp 7eR
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We claim that the right hand side of (3.4.18) is equal to ¢/3(n7). For the upper bound simply
choose 77 = 1. For the lower bound first note that the supremum of 7j + y7j — 417 is attained at
the unique 7, such that ‘%(ﬁ) = (uniqueness follow from convexity of n — 3(1)). Since we
assumed 7 > 15, we may choose y = 1//;3(17), satisfying y > yg = ;b’ﬁ(nﬁ). Together with previous
observation this shows that the right hand side is larger or equal to 3(n). This concludes the
proof. O

3.4.3 On the Intermediate Phase for Wired Boundary Conditions

We recall that for the Anderson transition it was debated whether an intermediate multifractal
phase persists in the infinite volume and on tree-like graphs without free boundary conditions
(see Section 3.1.3).

We conjecture that there is no intermediate phase for the VRJP on regular trees with wired
boundary conditions. In this section, we would like to provide some evidence for this claim,
based on recent work by Rapenne [35].

Let Td,n denote the rooted (d + 1)-regular tree of depth n with wired boundary, i.e. all vertices
at generation n have an outgoing edge to a single boundary ghost . We consider T, C Td,n

as a the subgraph induced by the vertices excluding the ghost. Let {Ti} denote a ¢-field

xETd,n
on the wired tree T ,, pinned at the ghost g, and at inverse temperature 5. We define

7
Yn(x)=e"~forx € Ty,, (3.4.19)

where we use the index n to make the dependence on the underlying domain T, more explicit.
This coincides with the (vector) martingale {¢,(x)}xeT ... considered by Rapenne (see [43,
Lemma 2] for a proof that these are in fact the same). By [35, Theorem 2] we have for 8 > .
and p € (1,00)

sup,»1 Eg[¥,(0)P] < co. (3.4.20)

Our statement about the absence of an intermediate phase, will be conditional on a (conjectural)

extension of this result:

1
Conjecture: sup —— Z Eg[yn(x)P] <o for p>1andpf>f.. (3.4.21)

nzl d’n|x€Td,,

We believe this statement to be true due to the following heuristic: Given that the origin of

Td,n is furthest away from the ghost g, at which the ¢-field in (3.4.19) is pinned, we expect
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the fluctuations of ¥, (x) to be largest at x = 0. Hence, we expect the moments of ¢, (x) to be
comparable with the ones of ,,(0), in which case (3.4.20) would imply (3.4.21).

Proposition 3.4.3: Consider a VRIJP started from the root of Td,n and let L? denote the time
it spent at root up until time . Assume (3.4.21) holds true. Then, for any 8 > S

LO
lim - < [T

t—oo

~lo(l) w.hp.as n— oo, (3.4.22)

This is to be contrasted with the behaviour in Theorem 3.1.3.

Proof. Let {Ty H T, denote the 7-field on Td,n, pinned at the origin 0. We stress that this is
different from T)gc, as used in (3.4.19), which is pinned at the ghost g. However, we can sample

the former from the latter: First consider an STZ-Anderson operator Hp on the infinite graph
T, as defined in Definition 3.1.8. Define G, := (HBle,n)_l and also define {¥,(x) }reT, by

(Hp¥w)l,, =0and ¢t 1, = 1. (3.4.23)

By [48, Lemma 2], the i, so defined (and restriced to T, ,) agree in law with the definition in
(3.4.19). Then define T, for x € Ty, via

= GAn(O,X)'i‘%'/’n(O)'J’n(X)
JTeo o , (3.4.24)
Gn(0,0) + 541(0)2

where y ~ Gamma(%, 1) is independent of Hp. By [48, Proposition 8], {Tx}xeqr .. has the law
of a t-field on Td,n, pinned at the origin O (and restricted to Ty ,). Note that Tg is not defined by
(3.4.24). Using the conditional law of the #-field on Td,n given its values away from the ghost,
we can however define it such that {7}
Then, as in (3.4.1), we have that

is the “full” #-field on Td,n, pinned at the origin.

x€Tgn

-1
L 7
lim — e [ > eTX] . (3.4.25)
By (3.4.24) and positivity of G we get

T T ¥, (0)
X X n(X). 3.4.26
e% e er%,ne ) 27GAn(0,0)+wn(0)2x€%n‘/’ (x) ( )
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By [48, Theorem 1], for 8 > (. the fraction on the right hand side converges a.s. to a (random)
positive number as n — co. Hence, the claim in (3.4.22) follows if we show that Y et  ¢a(x) >

|Td,n|1_0(1) a.s. as n — oo, For any s > 0 and ¢ > 1 we have
1
P, o) <sfTaall =PU( 3% im0y 0257
N xer’n

> n(x)]

| d’n| xETd,n

xer,n

<s7E[(

1 (3.4.27)

<st— > Elya(x) 7]

- |Td,n| x€Tqn

1
= D Elyax)'™],

XGTd!"
where in the last line we used the reflection property of the ¢-field (see Lemma 3.8.1). Subject
to the assumption that (3.4.21) holds true, we may choose ¢ = 1 and s =n~2 in (3.4.27). An

|1—0(1)

application of the Borel-Cantelli lemma then yields that Y ct, , ¥n(x) > |Td,n a.s. as

n — oo. Together with (3.4.25) and (3.4.26), this implies (3.4.22). O
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3.5 Results for the H2>-Model

3.5.1 Asymptotics for the H2>-Model as 3\, 8. (Proof of Theorem 3.1.5)

Proof of Theorem 3.1.5. By Theorem 3.1.2 it suffices to show that
2\+ _ 13 . 2 _ 0
(x)p = lim Tim ()i, = BplLes]: (3.5.1)

For this, we use the H?>-Dynkin isomorphism (Theorem 3.2.1):

(X0 BT = / dtEpr,, [e" 1x,20]. (3.5.2)
0

where, subject to Eg.t, ,, (X:)r>0 is a VRJP on Ty, started at 0. Coupling the VRIP on T,
with a VRJP on the infinite tree T4 up to the time they first visit the leaves of T, we get

[Epir., [Lx,-0] —Epix, [Lx, = 01| < Bgr, [T, < 1], (3.5.3)

with 7,, being the VRIJP’s hitting time of 0T, = {x € Ty, : |x| = n}. By definition of the VRIP,
the time it takes to reach 0T, is stochastically lower bounded by an exponential random
variable of rate d/n. Consequently, the right hand side of (3.5.3) converges to zero as n — co.

By this observation and the monotone convergence theorem we have

(xg);; = }11{1(1)/ dte™Bgr, [1x,20] = / dtEgr, [1x,-0] =B, [L2], (3.5.4)
0 0
which proves the claim. O

3.5.2 Intermediate Phase for the H22-Model (Proof of Theorem 3.1.6)

In this section, we want to prove Theorem 3.1.6 on the intermediate phase of the H??-model.
We will make use of the STZ-Anderson model, as defined in Definition 3.1.8, making use of its
restriction properties as discussed in [25, 84].

The proof consists of three parts: First we evaluate the quantity on the left hand side of
(3.1.21) on a graph consisting of a single vertex (and a coupling to a ghost vertex). Then we

reduce the actual quantity in (3.1.21) onto the case of a single vertex with a random effective
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magnetic field h®T. As h\, 0, the law of 4T can be expressed in terms of the ¢-field and we
can deduce Theorem 3.1.6 from Theorem 3.1.4 on the VRJP’s multifractality.

Lemma 3.5.1: Consider the H*>-model on a single vertex 0 with magnetic field / > 0. For
n € (0,1) we have

(zolxol M n;(0y = " X g5 (h) (3.5.5)
with
g, (h) = %eh(Zh)(l_”)/zl“(% ~ DK (1= /2(h). (3.5.6)
In particular
Cpi= %2"71”(% -1)?= %i\rr(l)gn(h) (3.5.7)

Proof. For convenience, lets write (-) = (-);:(0}. By €’ = zo+x0 and yo = spe, see (3.2.12),

we have

(zolxol™) = (zolyol™) = ((€" +x0)|yol ™) = (e™]yo| ™) = (e"]so| Te7™0)

= (e(l‘”)’°|s0|"7>, (3.5.8)

The last line can be interpreted in purely probabilistic terms: # follows the law of a 7-field
increment with inverse temperature 4 > 0 and conditionally on ¢y, 59 is a Gaussian random

variable with variance e~ /h. Consequently,
he'o oo 10 ¢
Ellso| lto] = o / ds 5| e 02
2n
= (he')1?— / dx |x| e (3.5.9)

= (hetoyr2 2 r v -

With (3.5.8) we obtain
2-1/2
(zobeol )y = h1? = 7 ——T(3 - DEu[e"2T], (3.5.10)

where T denotes a 7-field increment at inverse temperature 4. Expressing the exponential

moments of 7 in terms of the modified Bessel function of second kind K, as in (3.3.7), and
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using small-argument asymptotics for the latter, we obtain

B \2heh 20=m2p (L _ 1
Ej,[e1/27] = 7 K(1_p2(h) ~ B x \/2_2 2 AN\ 0.  (3.5.11)
V4
Inserting this into (3.5.10) yields the claim. O

Effective Weight. Before proceeding, we need to introduce the notion of effective weight for
the STZ-field: Consider an STZ-Anderson model Hp as in 3.1.8 and suppose the underlying
graph G = (V,E) is finite. Write Gp = (Hp)~!. Then, for io, jo € V, the effective weight
between these two vertices is defined by

ﬁeff o— GB(iO’jO)

off AUl — (3.5.12)
00" Gplio,i0)G B (jo, jo) — Gglio, jo)?

Another expression can be deduced using Schur’s complement: Write Vi = {ig, jo} and V| =

V \{io, jo} and decompose Hp as

H, H,
Hp = % o , (3.5.13)
Hyy Hp

with Hyg being the restriction of Hp to entries with indices in Vj and analogously for the other

submatrices. By Schur’s decomposition we have

-1
Galv, = Hg v,

= (Hoo — Ho1Hy | H1o)™
L (3514
Bi,— [Ho1Hy ! Hiol(i0.i0)  —Biyjo — [HotHy] Hiol (io. jo)

—Bjio — [HorHy Hiol (o.io)  Bj, — [HotHy Hiol (o jo)

Note that (3.5.12) reads as ﬁfofio = G3(io, jo)/det(Gglv,) = Gg(io, jo) det([Gplv,] ™). Hence

using the familiar formula for the inverse of a 2 X 2-matrix we get

B5t = Biojo + [Hot Hy} Hiol (io. o). (3.5.15)

which is measurable with respect to Bly,. The relevance of the effective weight stems from the

following Lemma (see [25, Section 6])



64 H22-model and VRJP on trees [TREE]

Lemma 3.5.2: For a finite graph G = (V, E) with positive edge-weights {f;;}ijcr and a

pinning vertex io, consider the natural coupling of an STZ-field (B;);cy and a ¢-field (T;);ey

(see Remark 3.2.10). For a vertex jo € V' \ {io} write Vjy = {io, jo} and V| = V'\ {ip, jo}.
Then, conditionally on Bly,, the t-field Ty, = (T;,,T;,) is distributed as a ¢-field on Vj,
pinned at iy, with edge-weight given by ﬁfoffjo = ,BZg.O(BWl).

Moreover, the notion of effective weight and effective conductance are directly related:
Lemma 3.5.3 (Effective Conductance vs. Weight): Consider the setting of Lemma 3.5.2.
For jo € V\ {ip}, let Cl.eofjf.0 denote the effective conductance between iy and jj in the ¢-field
environment {;; eli*Tiy, jee- Then

Ctjcof}fo = eTJ‘oﬁlﬁcOﬁjo, (3.5.16)

This statement is proved in Appendix 3.8. In the following, we will come back to the setting of

the regular tree.

Reduction to Two Vertices on the Tree. We denote by T, the graph obtained by adding
an additional ghost vertex g connected to every vertex of the graph Ty_,. For the H>?-model
(and consequently the 7-/s-field) we refer to the model on T, ,, with magnetic field h > 0 as the
model on Ty, pinned at the ghost g, with weights Bxq = h between the ghost and any other
vertex.
Lemma 3.5.4 (Effective Magnetic Field at the Origin): Consider the natural coupling of
t-field, s-field and STZ-field on Ty, at inverse temperature 8 > 0 and with magnetic field
h > 0, pinned at the ghost g. The random fields are denoted by T, S, and B,, respectively
(x e Td,n). Write Vjy :={0,g} and V| = Td,n \ {0, g} and define Hy; = Hply,.
Conditionally on Bly,, the ¢-/s-field at the origin (7, So) follows the law of a 7-/s-field on
{0, g} with effective magnetic field

W=t = hnp Z Hil(y,x). (3.5.17)
x,yeV:y~0
Proof. By Lemma 3.5.2, conditionally on Bly,, the ¢-field at the origin 7y has the law of a
t-field increment at inverse temperature 4. We claim that the analogous fact is true for the
joint measure of (7, Sp).
Recall that, conditionally on {7}, the law of {S,} is that of Gaussian free field, pinned at

Ti+T;} over edges in Ty, with Byg = h.

g, edge-weights given by the ¢-field environment {£;;e
Let ng denote the effective conductance between the origin 0 and the ghost g in the z-field

environment. Then, conditionally on {7}, we have that Sy is a centred normal random
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variable with variance given by the effective resistance 1/ ng (see [23, Proposition 2.24]).
By Lemma 3.5.3 we have ng = eTO,ng = eT0op® . To conclude, it suffices to note that 4°T is

measurable with respect to Bly,. m|

Lemma3.5.5 (Law of Effective Magnetic Field as 2 \, 0.): Consider the setting of
Lemma 3.5.4. Further consider a z-field {TX(O)} on Ty, pinned at the origin, at the same
inverse temperature S. Then we have that

heﬁ

law T
— Z e as h\,0. (3.5.18)

XETd,n

Proof. By (3.5.17) it suffices to show that

B Y Hil )25 as 0. (3.5.19)
yeVi: y~0

We start by decomposing the restriction of Hp to Ty ,, i.e. without the ghost vertex g, as follows

By -BT
Hglr,, =| 0], (3.5.20)
-B, Hn

where we write S = [B1y-0]yev,. By Schur’s complement we have

(Bo— By HyBo)™' (Bo—pByHylBo) ' By H;!

(Hplr,,) " = (3.5.21)
As a consequence, for any x € V;
(Hglz,,) " (0,x) _ _
- =B H)O.x) =B > Hyl(v,%). (3.5.22)

(HBle,n)_l(O’ 0) yeVi: y~0

We now note that as /2 ™\, 0 the law of B|t, , converges to that of a STZ-field on Ty, as can be
seen from (3.1.25). Consequently, by Proposition 3.2.9, the law of the left hand side in (3.5.22)

(0) . .
converges to that of e’ ', which proves the claim. O

Proof of Theorem 3.1.6. Combining Lemma 3.5.1 and 3.5.4 we have

' B ~ . heff n F
tim 7 obvol g e, = Jim Bl () (A1) (3.5.23)
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We note that by [25, Proposition 6.1.2] we have E[A°T] < h|Td,,,|. Hence, for any fixed C > 0
we have h°T < C with probability 1 —o(1) as 4\, 0. Lemma 3.5.5 therefore implies

. -7 -7 _ T)E()))n
lim 1 kol gr,, = eBal( D) €)', (3:524)

xETd,n

with ¢; > 0 given in (3.5.7). Consequently, application of Lemma 3.4.1 and Theorem 3.1.4

concludes the proof. O

3.6 Appendix: Tail Bounds for the 7-field increments.

In this section, we apply the Cramér-Chernoff method [85] to prove a doubly-exponential
lower tail-bound for sums of independent (negative) ¢-field increments. Consider the Fenchel-

Legendre dual of the ¢-field’s log-moment-generating function:

Wy (1) = sup(A7 —logEg[e™]). (3.6.1)
1>0

Lemma 3.6.1 (Lower Tail bound for sums of ¢-Field Increments): Let {7;};-1 ., denote

.....

independent random variables distributed according to the ¢-field increment measure Qlignc
(see Definition 3.2.12). For any 7 > 0 we have

Ps[X, T} < —n7] < exp [—n‘PZ,(T)], (3.6.2)

Moreover, ‘P; is bounded from below as

(1) > sup [pPa—B(1-yT=p)+1log(1-p)]
O<p<l1 (3.6.3)

> (3Be” —log[2¢777]).

To prove this, we note that for a ¢-field increment 7', the random variable e*T follows a
(reciprocal) inverse Gaussian distribution. For completeness, recall that a random variable

X > 0 is said to follow an inverse Gaussian distribution, X ~ IG(u, B), if it has density

I hGrD &

N

(3.6.4)
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over the positive real numbers. Similarly, Y > 0 follows reciprocal inverse Gaussian distribution,
Y ~ RIG(u, B), if it has density

o dy

\2n/B vy

over the positive real numbers. With this convention, we have el ~ IG(1,8) and e T ~
RIG(1, ). Also recall the moment-generating functions (MGF):

(3.6.5)

Blet] = oh (IVI228) g 4 pr(o,2),
5(1_ 1—21//-;) (3.6.6)
EleW]=——— " for 1<g/2.

With this, we have everything we need:

Proof of Lemma 3.6.1. By Markov’s inequality one easily derives the Chernoff bound
P[T < —7] <e ¥, (3.6.7)
Similarly, for independent ¢-field increments {7;} one obtains
P[YL, T < —nt] < e "5, (3.6.8)

In the following, we establish lower bounds on ‘I‘;, We start by bounding Eg [e™*], using the
elementary inequality x* < (1/e)*e* for x > 0:

E[e™] = p™El(pe™)"]

3 (pie)AE[ep"’_T], (3.6.9)

with the right hand side being finite and explicit for 0 < p < /2 by the MGF for the reciprocal
inverse Gaussian distribution (3.6.6). Consequently, for any 4,7 > 0 and 0 < p < /2 we have

At —logE[e™T] > A(t —log(1/p) + 1) —logE[er® ' ]. (3.6.10)
In A, the right hand side is maximised for A = pe”, which yields

W (1) 2 sup,.o(pe” —logBe? " ]). (3.6.11)
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After inserting (3.6.6) and rescaling p — g p, first bound in (3.6.3) follows. For the second
bound, one may simply choose p =3/4. O

3.7 Appendix: Uniform Gantert-Hu-Shi Asymptotics for Tf :
Proof of Theorem 3.3.8

We will stay close to the original proof by Gantert, Hu ans Shi [75], but get rid of some of the
technical details as we only require a lower bound not a precise limit. Also note that Gantert et
al. prove their result for general branching random walks, whereas we only show the result for
a deterministic offspring distribution. A crucial technical ingredient to Gantert et al.’s proof is

their extension of Mogulskii’s Lemma (Lemma 3.3.6), which we also make use of.

Definition 3.7.1: Let pg(6,n) be the probability that there exists |x| = n such that for all
i €[n], Ty, <3i.

Definition 3.7.2: Let 7 = 7% be a random variable distributed as the increment of {Tf bxeTy-
Let Mg be such that Pg (7 > Mg) =2/3 and let p; > 0 be the probability that a Galton-Watson
tree where the reproduction law is given by a binomial Bin(d,2/3) survives. We now define

for any 6 > 0 small enough and for any n € N the set G, 5 as follows:

1
Gy = {|x| =n such that 7, < Eéi,Vi € [(1-6/(2Mp)n] and

s (3.7.1)
for all (1 _M),H_l <k<n, 7 —7y_, < Mg}

The idea is that if G, s is not empty, it means that there is a vertex x such that |x| = n and
Vi € [n], 1y, < di. Then started at all the vertices of G, s we can see if the corresponding sets
G .5 are not empty. This allows us to create a Galton-Watson tree. The exact definition of G, s
is chosen to ensure that if it is not empty it contains many vertices. In turn this means that if
the Galton-Watson tree we construct is not empty then it is infinite with high probability. To
compute everything precisely we will use 3.3.6 but first we need a preliminary result. The
following results allows us to show that if G,, s is not empty then with high probability it has

many vertices.

Lemma 3.7.3 (Lemma 1 of [86]): Let (Z,),en be a supercritical Galton Watson tree. There
exists 7 > 1 such that:
P[Z, < n"] =P[Z is finite] + o(n™"). (3.7.2)
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Corollary 3.7.4: Let (Z,),cn be a supercritical Galton Watson tree. There exists 7 > 1 such
that:

P[1<Z, <"l =0(n™"). (3.7.3)

Proof. The Galton-Watson tree conditioned on dying is a sub-critical Galton Watson tree and

thus the probability that it survives up to time n decreases exponentially in n. This coupled

with 3.7.3 gives the desired result. O

Now the goal is to give a lower bound on the probability that G, s is not empty. First we express

this in terms of pg.

Lemma 3.7.5 ([75, Lemma 4.3]): Let 6 > 0. We have:
PglGns # 0] > papp(6/2,n). (3.7.4)

Proof. Let L := {(1 - ﬁ)nJ.

Pﬁ[Gn’(s # 0] :Plg

1
3|x| = L such that 7y, < E(Si,\ﬁ € [L]]

. xPy (3.7.5)

3|x|::n—-l,sucllthat max Ty, — Ty, < Alﬂ]
1<k<n-L

>pp(6/2,n)pq.

O

Once we have this lower bound, we need to show that with high probability if |G, s| is not

empty then it has many children with high probability.

Lemma3.7.6: Let L := {(1 - ﬁ)nJ. There exists 7 > 1 such that for n — L large enough
(this only depends on d):

1
B[l < (Gl < 7" |Gl > 1] =o(nn_L). (3.7.6)

Proof. If |Gps| > 1, it means that there exists x such that |x| = n and

Ty, <aoi,Vie [L]and max 7, -7y, <M. (3.7.7)
L+1<k<n

Now, if we restrict G, s to the descendant of xz, we get a Galton-Watson tree conditioned to
survive up to time n — L and where the reproduction law is a binomial B(n,Pg(7 < Mp)) which

does not depend on . Then, by 3.7.4, we have the desired result. m|
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What is left is to give a lower bound p. The goal of the next lemmata is to give a lower bound

of p by terms for which we can apply Lemma 3.3.6.

Lemma 3.7.7 (Lemma 4.5 of [75]): Forany n > 1 and any i € [n], let [;,, C R be a Borel set.
We have:

S Eﬁ [esn IViG[H],S[EIi,n]

Pg (3]x| = h that Vi € [n], 7y, € I n| > , 3.7.8
s |31x| = n such that Vi € [n], 7y, € I, T+ (d=D) 3" hj ( )
where h; , is defined by:
hjn = sup Bg e’ lyie(uj).speucs, ] - (3.7.9)
MEI]',”
Lemma 3.7.8: For any 8 > 5. we have:
o Byli-1<3n<Lvie ]

pp(n™=",n) > (3.7.10)

1+(d—1)nen'”

Proof. LetI; , == [# —nlh3, #] We have:

pﬁ(n_2/3,n) >Pg[3|x| = n such that 7, € I; ,Vi € [n]]

Eg 5 1vie[ny.siet; | (3.7.11)
> " °"° by lemma 3.7.7,
T+ d-DX_ hpn

where £}, is as in lemma 3.7.7. The numerator of 3.7.11 can be bounded as follows:
Eg [ lviepn s,er,, | = eV P[Vi € [n],8; € 1] (3.7.12)
As for the denominator, we have:

Sn— i
hjn= SI;P E[e ’1Vie[n— j],Sie[(i+j)/n2/3—/1n1/3—u,(i+j)/n2/3—u]]
ue j.n

< NP =j 0P n! (3.7.13)

13

<e?

From this we get the desired result.

Now we have everything we need to prove the result we want.
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Proof of Theorem 3.3.8. Given the tree T¢ and the 7-field on it we create the new tree T as
follows: we look at all the vertices x at distance n of the origin, and we only keep those that are
in G, 5. Then we look at the trees started at those vertices and we apply the same procedure
recursively. The tree we obtain is thus a Galton-Watson tree with reproduction law given by the
law of |G, s|. Furthermore, by definition of G, s, if T is infinite then there exists an infinite
path y in T¢ such that for all i € N, 7,; < 0i. Now we just need to give a lower bound on the
probability that T is infinite. By the lemmata 3.7.7 and 3.7.8, we have by taking &, := 2n~2/3:

Pyli-1<30 <ivien]

S~

Si
3

S|~

P/g[Gn,(;n * 0] > pd

1 (d—Dne?" (3.7.14)

Now we want to apply 3.3.6 but unfortunately we are not exactly in the conditions of the

theorem, we would need n‘% < £+ something. To get that, we say that there exists some

constant ¢ such that uniformly on some interval [8., 3. +a] we have:
Pﬁ[Sl €(-2,-1)] =c. (3.7.15)
Therefore for any ¢ > 0:

1/3

Pg[Vi € [6n'/3](S; = Si_1) € (=2,~1)] = el°&()on (3.7.16)

Now, we get for any € > 0 small enough:

<lievie [n—en'/?]

1
>Pg <~

Vie [en'?], (S;=Si_1) € (—2,—1)]113[;[i —1+42€e<
n

Zelog(“)snmpﬁ Lo l+42e< el <lievVie [n]].
n n'/3 " n

(3.7.17)
Finally we satisfy the condition of our lemma 3.3.6. We have by lemma 3.3.6 that for any
interval of the form [S,., 8. +a] there exists some explicit constant C, such that :

. _ Si ]
limsup sup n '3 1ogPﬁ[i —l+2e< —=< L yevien]| <G;. (3.7.18)
n—oo  Be(f.,Be+al n n / n
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Define fg by f5 := Eg[S'G"ﬁ(“) ] and let qp.n be the extinction probability. We have gg, =
f8(B,n). For any r < qg, we have:

g apnr G,
qﬂ,n:fﬂ(0)+/0 ’ fﬁ(s)ds:flg(O)+/0 ’ fﬁ(s)ds+/ ’ fﬂ(s)ds. (3.7.19)

qp.n—r

Now, using that fz is convex and therefore f‘é is non-decreasing, we get:

pn < f3(0)+(qpn—7)Ss(apn =) +1f5(qpn) < [5(0)+(1=7r) fs(1=r)+r.  (3.7.20)

Now, f3(0) = Pg[G, s, = 0] and fﬁ’(l —1) =Eg[|Gns,| (1 =r)!Cnonl=1] which is bounded from
above by lleﬂ(lGn,(gn le7"1Cmanl). Now if we take r < 1/2 we get:

1= qpn 2 PplGngs, # 0] —2E4[|G s, e 10monl] — 1. (3.7.21)
From this we get:

2e—l/r

2
1—qpn 2Pp[Gns, # 0] —r—ZPB I E _,

; r? (3.7.22)
>Ps[Gps, # 0] — r—ZPB [1 <|Gpsl < r2] —2r for r small enough.

By taking r = n
[ﬁc’ﬁc +a]:

we get that for n large enough, for some constant C > 0, for any S €

1=gpnze <", (3.7.23)

Then by noticing that n = (2/8,)3/? we get the desired result. O

3.8 Appendix: Effective Conductance and Effective Weight

Before starting with the proof of Lemma 3.5.3, we would like to remind the reader of the

definition of the effective weight (3.5.12) as well as the discussion following it.

Proof of Lemma 3.5.3. Let Dt denote the graph Laplacian on G with weights given by the
t-field environment {;; eli*Tiy, jek- The effective resistance (i.e. inverse effective conductance)

can be expressed as
1/Cf£-0 = (=Drlw\ (i) ™" Gos Jo)s (3.8.1)
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where Drl|y\,} denotes D7 with deletion of the row and column corresponding to iy. Re-
call that on V \ {io} we have B, = 3, Brye™>~"*. Defining the diagonal matrices Ly =

diag({e™}rer (iy}), One may check that

=Drly\{ioy = LT Hplv\(ip) L1- (3.8.2)
Inserting this into (3.8.1) yields
Tio Hz'(ig, j
e—TjO Cl%f;o — e B ( 0 ]0) (383)

(Hglw\ (i)~ Gos Jo) H' (io,i0) (Hglv\(io}) ™" (os jo)

Using (3.5.14) and the familiar expression for the inverse of a 2x2-matrix, we have

Hy'(io,jo) _ Biojo+ [HoiH7 ' Hiol (io, jo)

1/ - —1 LN (384)
Hy (io,io)  Bj,— [HoiHy; Hiol(jo. jo)

Note that the numerator equals ﬁﬁffjo. On the other hand, using a Schur decomposition for

Haglv\i,)» decomposing V'\ {ip} into {jo} and Vi, one may compute

(Hplv\{io)) ™" Gos Jo) = 1/(Bj, — [HotHy} Hiol (jos jo))- (3.8.5)

Inserting (3.8.4) and (3.8.5) into (3.8.3) we obtain
e TGl = Bigjo + [HotHyy Hio) (ios jo) = B (3.8.6)
which proves the claim. O

Lemma 3.8.1 (Reflection Property of the 7-Field): Consider a finite graph G = (V, E) with
positive edge weights {8;;}:jce. Let {Ty}rev denote a t-field on G with weights {g;;}, pinned

at some vertex iy. For any ¢ € R and x € V we have

E[e/] =E[e2-0T]. (3.8.7)
Proof. On a graph with two vertices, the claim follows from the density of the #-field increment
measure (Definition 3.2.12). On a larger graph, we consider the natural coupling of the
STZ-field { By }.cv and the t-field. By [25, Section 6.1] we know that conditionally on By, for
y € V\{ip,x}, the t-field on {iy, x} follows the law of a ¢-field on this reduced graph (still pinned

at ip) with edge-weights given by an effective weight g, (the latter being measurable with
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respect to the STZ-field outside {ip,x}). Consequently, the claim follows from the statement on

two vertices. O



Chapter 4

More on the H22-model on trees

4.1 Tree-Recursion for the H2?-Model

In [TREE] most of our insight into the H??-model and the VRJP came from analysis of the ¢-
field, which is simply a marginal of the H?>-model in horospherical coordinates. Alternatively,
following a technique that is more common in the physics literature, one can exploit the
recursive structure of regular trees to produce consistency equations for, say, the single-site
marginal of the H??>-model. Such an approach to “solving” the model has been successful
for other systems, such as the Ising model [87]. Zirnbauer [36] followed this path in a (non-
rigorous) treatment of Efetov’s model on the regular tree, predicting the model’s near-critical
behaviour, analogous to Theorem 3.1.5. Mirlin and Gruzberg argued that Zirnbauer’s reasoning
should translate to the H*?-model [51] and in particular imply Theorem 3.1.5. Relying on
the recursive approach, Mirlin, Tikhonov and Sonner [40, 41] have predicted an intermediate
multifractal phase for Efetov’s model on finite regular trees. Their analysis relies on a partially
heuristic study of travelling wave solutions to the recursion equations.

The goal of this section is to provide details on the recursive approach to the H>?-model. We
start by stating a recursion relation for the marginal “density” of the spin at the origin up on
Ta.n. This results in an integral equation (4.1.2) for superfunctions over H212. We show that,
after passing to polar coordinates on H?2, the problem reduces to the study of an integral for
functions of a single real variable. In the finite-volume limit (taking a scaling limitin 2 \, 0
before passing to infinite volume), the recursion equation further simplifies and we show that
its solution can be given explicitly in terms of the ¢-field (Proposition 4.1.5). Furthermore, our
results on the intermediate phase for the VRJP (Theorem 3.1.3) imply a certain travelling-wave
behaviour of the solutions. This provides rigorous evidence for behaviour analogous to such
predicted by Mirlin, Tikhonov and Sonner for Efetov’s Model [40, 41].
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Figure 4.1: Illustration of T}, for d =2 and various values of n. The topmost vertex is
considered the root and denoted by 0.

4.1.1 A Supersymmetric Recursion Relation for the H?>-Model

In this and the following sections, we consider the H22-model on T;"Ln, the rooted (d+ 1)-regular
tree of depth n > 0 with an additional “dangling edge”, as illustrated in Figure 4.1. Note that
the root 0 denotes the topmost vertex in Figure 4.1.

Consider the H?>-model on T’d"’n with magnetic field 4 > 0. We are interested in observables at
the origin 0. The expectation of some observable F(ug) for some superfunction F € C*®(H??)

can be expressed as

T*
<F(u0)>ﬁd;’l" = / rl du; F(ug) P Zij(Wivj+1)=hEi(zi=1)

(H2\2)T:l,n T “4.1.1)
= / duF(u) f,(u)e "D,
H2I2

where f, = fu.5 1s the, up to a magnetic field factor, the marginal “density” of ug after
integrating out all spins away from the origin. In the following we will typically suppress the

dependency of f,, on 8 and hA.
Propositiond.1.1: The marginal functions f, = f,.5, € C*(H?), defined by the relation

(4.1.1), satisfy the recursion relation

f,m(u')=/Hzlzd“eﬁ(“'“’*”‘“*“fnﬁu) with  fo(w) = 1. (4.1.2)

Proof. For n=0 the graph T7, is the singleton {0}. In that case, fy(u) = 1 is trivial. Forn > 1,
consider the unique neighbour 0 of the root 0. From 0 we have d outgoing copies of T, ,_, and
integrating out all spins on these (sub)trees yields d factors of f,_;(ug). There is an additional

factor e (%=1 for the magnetic field at 0. Together, this implies the claim. O

In previous work by Efetov and Zirnbauer, an analogous recursion for Efetov’s model has been

studied [36, 37, 88]. In their work, in particular for the study of the symmetry-broken phase,
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they considered fixed points of the recursion, which are formally obtained in the n — oo limit:

f(') = lim f,(u) = du ePO+D-h(z=1) pd () (4.1.3)
n—00 H212
Note that such a solution f implicitly depends on S, h. Observe that for vanishing magnetic
field h = O the constant function f =1 is always a solution, reflecting the global symmetry
under isometries of H22, i.e. the supergroup OSp(2, 1|2). However, a non-zero magnetic field
h > 0 breaks this symmetry, in particular the invariance under Lorentz boost transformations.
Spontaneous symmetry-breaking is said to occur if the solution f = 1 is unstable under the
perturbation by a magnetic field. Hence, the symmetry-broken phase is characterised by the
existence of a non-trivial fixed point as &\ 0, while in the disordered phase any fixed point
should converge to f =1 as h \, 0.

While above observations give a neat characterisation for the occurrence of a symmetry-
breaking transition, mathematical justification for the study of the fixed point equation is not
entirely clear. In particular, since the f, are superfunctions over H?, it is not obvious in which
sense to take their limit as n — oo.

In order to put above reasoning on a more rigorous footing, we would like to get rid of the
fermionic degrees of freedom in (4.1.2). In fact, in the following we will rewrite (4.1.2) in
terms of polar coordinates, which will enable us to perform the integral over the fermionic and
angular degrees of freedom, reduce the equation onto an integral equation in a single radial

variable.

4.1.2 Polar Coordinates on H2?,

Note that the integral operator in (4.1.2) is invariant under OSp(2, 1|2)-transformations which
fix z, in other words under the stabiliser Stab(ug)) = OSp(2|2) of the originu g := (1,0,0,0,0) €
H?. This motivates the use of generalised polar coordinates on H?? in order to simplify the
recursion in (4.1.2). In order to define polar coordinates most easily, we consider the following

elements of the Lie super-algebra osp(2, 1]2):
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0 1 0
10 0 1
H:= 000, X=[ -10
000 0 0
000 0 0
(4.1.4)
0 0
0001 00 -1 0
Yi=[ 0000} Y= 00 0 0
1000 00 0 0
0000 10 0 0

H and X are even elements of 0sp(2,1|2) and generate xz-boosts and xy-rotations, respectively.

Y1 and Y, are odd elements and generate supersymmetries between x and the two fermionic

coordinates &, 1.
The following result is due to Zirnbauer and yields an explicit formula for the Grassmann

integral of a superfunction over H?? in terms of polar coordinates.

Theorem 4.1.2 (Polar Coordinates on H22 [20]): Let H, X,Y;,Y> denote the elements of
0spP(2,1|2) as defined in (4.1.4). Then the mapping

(r, o, ) — e‘*’Xe‘”Y”‘ZYzerHu(o) with 7 >0,¢ € [0,27), ¢, Grassmann, (4.1.5)

gives a parametrisation of HZ/>\ {u(o)}. Forany g € C° (H?P) it holds that

) 2r
d d 7
/ dug(u) = g(u()) +/ r el 050y 8 (e""Xe‘/’Y”‘”Yze’Hu(o)) ) (4.1.6)

sinh(r) J 2n
H212 0 0

More explicitly, we have

cosh(r)

Z -
(1+y) sinh(r) cos(¢p) _
u= (x) = | (1+yy)sinh(r)sin(p) | = e"pxewYﬁszerHll(o). (4.1.7)
 sinh(r)

K W sinh(r)

For illustration, we compare this to polar coordinates for the usual hyperbolic plane H?, where

H and X generate xz-boosts and xy-rotations, respectively. In that case, one would have, for
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any g € Cg"(HZ)

00 2
d
/ dug(u) = / drsinh(r) / ﬁg(e¢xerHu(O)). 4.1.8)
2r
0 0

H2
The additional fermionic degrees of freedom in H?/> modify the radial volume factor and intro-
duce less intuitive “angular” supersymmetry generators Y1, Y>. The most important difference
however, is the appearance of the constant “boundary term” g(ug)) in (4.1.6). This singular

contribution is due to a localisation phenomenon, which is unique to the supersymmetric case.

4.1.3 Reduced Recursion Relation in Polar Coordinates

In this subsection we rewrite the recursion (4.1.2) in terms of polar coordinates for H22 and
integrate out the angular variables (including the fermionic degrees of freedom) to obtain a
recursion for a function in one real coordinate.
Proposition 4.1.3 (Reduced Recursion in Polar Coordinates): For 8,4 > 0, let f,(u) denote
the superfunctions over H2? recursively defined in (4.1.2). There exist smooth functions
rad. 1 c0) — R such that

n

f9(2) = fRY(V1+x2+y2 = 2¢n) = f,(w), (4.1.9)

as superfunctions over H??, that is as elements of the superalgebra C*(H??). For 1 > 1 we
let u = u(d) = VA2 —1. That is, in terms of polar coordinates A = cosh(r) and u = sinh(r). In

rad
n

the following, we let i implicitly depend on A. Then, the satisfy, for A’ > 1,

[y = e PN 4 / %Lﬁ(ﬂ,ﬂ')mu)(ﬁ“)du) and fR4)=1  (4.1.10)

1

with the kernel and the symmetry-breaking term given respectively by
Lp(4,A") = Bup' T (Bup)e P and - Dj(2) =7V, (4.1.11)

with 7} denoting the modified Bessel function of first kind.

Proof. We start with a crucial observation: Formally, the integral operator in (4.1.2) is invariant
with respect to the reduced symmetry group K = OSp(2|2) and moreover fy = 1 is K-invariant.
Hence, all f,, are K-invariant. In other words, at least formally the f,, should only depend on the

radial coordinate. In rigorous terms, K-invariance is defined in terms the action of its super-Lie
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algebra 0sp(2]2) on C*(H??). Namely the f, are K-invariant in the sense that
R.fp(u)=0 for Reosp(2|2),n>0, (4.1.12)

where the dot denotes the action of R as a derivation. By Coulembier-Bie-Sommen [89,
Theorem 3] a function f,, which is rotationally invariant in the sense of (4.1.12), can be
expressed as a function of the “radius” x>+ y? —2&n = z2 — 1 and in particular as a function of z.
In other words, there exist f,fad as in (4.1.9). Hence, rewriting the recursion in (4.1.2) in polar

coordinates using Theorem 4.1.2, we obtain

00 2
, dr de
d ’ —B(cosh(r")—-1 dyd
"2 (coshr’) =e B(cosh(r’) )+/ m/ I 050y (f,"")" (coshr) X+
0 0
. xexp[ﬁ( X INHIagrHy 1 T iy )]+ 1) — h(cosh(r)=1)].
(4.1.13)
By (4.1.7) the interaction term in the exponential equals
[et,oXeleﬂﬁYzerHu(o)] . [er’Hu(O)]
(g smnrooste) | [ coer
1+yy) sinh(r) cos(¢ sinh(7")
=| (11w sinh(r)sin(e) |- ““8r +[odd terms] (4.1.14)
0
0 0

= —cosh(r) cosh(r") + (1 +y)) sinh(r) sinh(7") cos(¢) + [odd terms].

We suppressed the odd terms in above calculation as they do not contribute to the integral in
(4.1.13). The nilpotent part of the exponent in (4.1.13) can be expanded

exp[ By sinh(r) sinh(7") cos(¢) + [odd terms]] = 1 + By sinh(r) sinh(7") cos(¢). (4.1.15)

Plugging (4.1.14) and (4.1.15) into the recursion relation (4.1.13), we can perform the fermionic

integral and isolate the angular average:
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f;ﬁ (coshr’)
— e—ﬁ(cosh(r')—l) +/ . dr sinh(r) Sinh(r;)e—ﬁcosh(r) COSh(r’)e—hCOSh(r) (frfad)d(COSh r) N
sinh(r)
0
2r
.. X/ d_(,D COS((,D)eﬁSinh(r) sinh(r’)cos(cp)’
2n
0

I (Bsinh(r)sinh(r’))
4.1.16)

where I; denotes the modified Bessel function of first kind. Passing to A = cosh(r) and

u = sinh(r) concludes the proof. O

4.1.4 Finite Volume Limit and Relation to a 7-Field Martingale

Recall that a symmetry-breaking phase transition for the H? is most easily characterised by
considering the limit limj\ o lim, o fy.5,, Of the marginal functions f,, = f,.s,, as defined by
the recursion relation (4.1.2) or (4.1.10). This order of the limit corresponds to the infinite
volume limit. In this section, we consider the finite volume limit, namely for fixed n we
extract a non-trivial scaling limit for f,.5, as h ™\, 0. The resulting finite-volume marginal
functions satisfy a simplified recursion relation which involves the z-field increment measure.
An analogous recursion for Efetov’s model has previously been studied in the literature [36, 40,
41].

Proposition 4.1.4 (Finite Volume Limit for the Recursion Relation): Consider the radial

marginal functions £/ = f;f"g’ , as defined in (4.1.11). Then

wn(t):llli{%frf?gh(et/h) with r€eR 4.1.17)

exists point-wise. The functions ¢, satisfy the recursion relation

w,m(t’):/Rdtlﬁ(t’—t)e‘e'w;’(t) with () =1 (4.1.18)
where
Ip(t) = \/g e Aleosh(=1) p1/2 (4.1.19)

coincides with the density of negative ¢-field increments (cf. Definition 3.2.12).
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Proof. For convenience we write f,.5, = 4 . We proceed by induction over n: For n =0 one
. B, n;B,h

has fo.gn(e’/h) =1=yo(t) for all h > 0. Now assume that ¢, (¢) as in (4.1.17) is well-defined.
We want to use the radial recursion relation (4.1.10) to obtain the scaling limit for .. For

this, we first claim that for fixed w, w’ > 0 one has

B ’ ’
Ls(w/h,o /) ~%w/ﬁ‘2";’ exp[—§(§+%)]. (4.1.20)

To see this, we use asymptotics 11(z) ~ e*/V2nz as z — co. This yields

Lp(w/he [1) ~ £ [(9)2 = 112 [(42 =112 .

, , 4.1.21)
---Xexp[—ﬁ((%)z(%)z— [(%)2_ 1]1/2 [((1)7)2_ 1]1/2_ 1)]

To obtain (4.1.20) one simply expands the square roots in the exponent. Changing variables
A e'/hin (4.1.10), we get

’ _ t/ _ r hel ’
Fustpn(e" [h) = P04 / dt | s Lp(e! e )| Dite! 1) i) (' )
—log(h)

(4.1.22)
The first summand on the right hand side converges to zero as 7 N\, 0. By (4.1.20), one
may check that the term in brackets converges point-wise to Ig(' —t) as h ™\, 0. For the

e

symmetry-breaking term we have D (e’ /h) — e~ "and by our inductive assumption we also

have f,.5n(e'/h) — ¥, (). By induction over (4.1.18) it is clear that ¢, () < 1 for all r € R.

The claim then follows by an application of the dominated convergence theorem. O

Proposition 4.1.5: Consider y,, = .5 as defined in Proposition 4.1.4. Further, consider a

t-field {7} on T%, rooted at the origin. Then, we have

Yn(t) = Eplexp(—=e' Ter, \joye’™)] (4.1.23)

for all n > 0.
Proof. Write G,(t) for the right hand side of (4.1.23). For n = 0, the sum in (4.1.23) is empty,

hence we have ¥ (¢) = 1 = Go(t). For n > 1, we claim that G,, satisfies the recursion equation

Gue1(t) =E[e™" G4(t+T)], (4.1.24)
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where 7 is a random variable with law of the 7-field increment (see Definition 3.2.12). In fact,
by (4.1.18), ¥, satisfies the same recursion relation, hence proving (4.1.24) is sufficient.

Write 0 for the unique neighbour of 0. Let {T)C(i) }XGTZ i withi=1,...,d denote d independent
copies of a 7-field on T:l,n' Then we have ’

(&)

G (1) =E[exp(=e™[1+ 2L Nier yope™ DI, (4.1.25)

d,n

where Tj is distributed as a z-field increment, independent of the {T,C(i)}. Using independence,

the claim follows. O

Remark 4.1.6 (Travelling-Wave Behaviour): By our analysis in the proof of Theorem 3.1.3, in

particular (4.2.3), we have

Z elr = en[max(yﬁ,0)+o(1)] a.s.as 71— oo. (4.1.26)
x€T} ,\{0}

Consequently ¢, () should behave like a wave-front, moving to the left with velocity max(ys,0).
To make this precise, one needs finer control of the errors in (4.1.26). Outside the intermediate
phase this is rather easy (see the proof of Theorem 3.1.3 for details). For the intermediate phase,
this would need further analysis. This does however, provide a rigorous approach to statements
found in the physics literature on Efetov’s model [40, 41].

4.1.5 Addendum: Group-Theoretic Background on Polar Coordinates
for H>12,

The main goal of this section is to justify the first statement of Theorem 4.1.2, namely that (4.1.5)
provides a parametrisation of H2?\ {0}. In order to prove formula (4.1.6) in Theorem 4.1.2,
one is only left with calculating the Berezinian (generalised Jacobian) of this parametrisation
and deal with the “boundary term” at ug), which will give rise to the singular contribution in
(4.1.6).

We follow Zirnbauer’s exposition and refer to his work for more details [20]. In the following
we will treat the supermanifold H?? and its isometry supergroup OSp(2, 1|2) as if they were
manifolds and Lie groups, respectively.

We assure the reader that details justifying this simplification are well-understood in the

superanalysis literature and refer to Berezin’s monograph for more information [90].
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Let us write G := OSp(2, 1]2) for the group of isometries on H>? and K := OSp(2|2) C G for
its maximal compact subgroup. The latter can be identified with the stabiliser of the “origin”
u() = (1,0,0,0,0) € H212, Hence, we have

G/K - H?? via gK > gu(). (4.1.27)

This is simply stating that H?? is a symmetric space with respect to the supergroup G. However,
(4.1.27) also yields a parametrisation of H>?. In order to get the polar decomposition from this,
we make use of the KAK-decomposition for G.

Write A := {e"": r € R}, for the subgroup consisting of xz-boosts. A is a maximal abelian
subgroup and we write At := {e"7: r € R,} for its “positive” part. If we write M for the
centraliser of A in K, then the quotient group K/M is generated by the super-Lie algebra
elements X,Y1,Y, € 0sp(2,1|2), as defined in (4.1.4):

K/M = {e""Xe‘/’Y”‘/_’YzM: 0 ER, Y, Grassmann} : (4.1.28)
This fact is relevant since the following map is a diffeomorphism onto its image:
K/MxA* > G/K =H*?,(kM,a) — kaK (4.1.29)

Indeed, injectivity follows from uniqueness of the K A K-decomposition and differentiability is
clear from the definition. We can think of A* as parametrising a non-compact radial coordinate,
while the compact degrees of freedom K /M are angular. The image of (4.1.29) is H?1? \ {u)}.
In conclusion, this shows what we initially claimed, namely that the mapping in (4.1.5) is a

parametrisation of H2?\ {u}

4.2 Heuristics and H>?>-Fourier analysis

In this section we introduce the basics of Fourier analysis over the hyperbolic superplane H?.
As a byproduct, we can diagonalise the integral operator that appears in the recursion (4.1.2),
and characterise the phase transition in terms of spectral linear stability. Moreover, we give a

rough heuristic for the e€(#™""* behaviour from a Fourier perspective.
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4.2.1 Fourier analysis and Harish-Chandra functions on H?

In this section we introduce a family of radially symmetric eigenfunctions of the Laplacian
on H?2. These so-called Harish-Chandra functions form a Fourier-type basis to analyse the
recursion relation (4.1.2). In particular, for vanishing magnetic field ~ = O the integral kernel
in (4.1.2) is diagonalised by these functions. The Fourier theory over H?? was developed by

Zirnbauer [20] and we refer to his work for additional details on the harmonic analysis over
H22,

Harish-Chandra spherical functions on H??. Let 7(u) denote the horospherical coordinate

of u € H??. We define the Harish-Chandra Spherical Functions as angular averages of
expl(~4 +ip) 1(w)]:

¢, (u) ::/d(p&/,d/;exp[(—%+ip)t(e‘pXe‘/’Y1+‘ZY2u)] with p eR. 4.2.1)

The motivation behind this definition is that exp[ —% +ip)t(u)] are eigenfunctions of the
H?2-Laplacian and after angular averaging, they are radial eigenfunctions [20]. In particular,

they take a more explicit expression in terms of the radial coordinate:

Proposition 4.2.1: Let r denote the radial coordinate over H22, Then, for p € R we have

¢p(u) = ¢, (r) = (-3 +ip) sinh(r) / de e +C::(S;;Ps)inh(r))3/2_ip, (4.2.2)

Moreover they satisfy the asymptotic

__1 TA-ip) Gp-ipr
2aL(1/2—ip)

We give a proof for this further below (Section 4.2.4). The Harish-Chandra functions form a

@p(r) ~ as r — oo. (4.2.3)

Fourier-type basis in which to expand radial superfunctions and to diagonalise OSp(2, 1|2)-
invariant operators over H2?. A concrete example, that we will make use of, is the diagonalisa-

tion of the integral operator with kernel e+

Proposition 4.2.2: For 8> 0,p € R we have

kg (p)¢p () = [Lpp,] (0) = /H y duef Dy (). (4.2.4)
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with eigenvalues kg(p) given by

Kg(p) = w/2% / dt e~Bleosh(t)=1) ipt (4.2.5)

In particular, they are real-valued and for any fixed 8 > 0, kg(p) is maximal at p = 0.

In order to prove above statement, we need the following addition theorem, which we will not

prove here.

Lemma 4.2.3 (Addition Theorem for Harish-Chandra Functions [20]): For g € OSp(2,1|2)
and u € H??

(Pp(g_lu)

) ] (4.2.6)
= / de 8,05 exp[ (- +ip)t (e e/ gug)) ] exp[ (1 —ip)t(e?X 1V 20)],

in the sense of superfunctions over OSp(2, 1|2) x H?2.

Proof of Proposition 4.2.2. Note, by radial symmetry of ¢,, that it suffices to check (4.2.4)
foru’ =" # u(g). We start with the right hand side of (4.2.4) for this special case and apply

boost-invariance of the integral kernel and the addition theorem (4.2.12):

/dueﬁ(u'[er H“(‘))]+1)g0p(ll)
:/dueﬂ(“'“<0)+1)¢p(e_r/Hu)

:/ due P / dg 3y 9y expl (=3 +ip)i (X /1112 M) ] x

xexpl(—} —ip)t(eX "1V o)

(4.2.7)

In the last line, we may interchange the order of integration and note that the u-integral

/due‘ﬂ(z_l)exp[(—%—ip)t(e‘pxe‘/’y“”pyzu)]
4.2.8)
= [ due D expl (-4 -ipr(u)] = xu(o)

is independent of ¢, . The remaining integral in (4.2.7) equals gop(er/H u(g)) by definition
of the Harish-Chandra functions in (4.2.1). Hence, we have

/ du eIB(lL[erIHU(O)]'Fl)gDp (u) — Kﬂ (p)‘;op(er’H) (429)
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This verifies (4.2.4) together with an explicit expression for the eigenvalues kz(p) given in

(4.2.8). The latter can be further simplified by passing to horospherical coordinates:

1 .
Kﬁ(p):/dUe_:B(Z_l)e(_j—l,O)l(u)

dr ds _ t _
— / o (91/,(9 B(cosh(r)+e (zv +y)— 1) (2 —ip)t (4.2.10)
/ / dre —B(cosh(z)—1) zpt
This expression is clearly maximal at p = 0, due to positivity of e A(cosh(t)=1) O

4.2.2 Characterisation of S.: instability of the symmetric solution

As we discussed in Section 4.1.1, one may understand a symmetry-breaking phase transition of
the H??-model on the d-ary tree in terms of the fixed points of the recursion relation (4.1.2),
i.e. solutions f = fgj to (4.1.3). In this section we show that linear stability of the trivial
solution for & = 0 indeed characterises the subcritical phase. In particular, the critical inverse

temperature agrees with the one for the VRIP/¢-field.

Theorem4.2.4: Let 5. > 0 denote the critical inverse temperature as defined in Proposi-

tion 3.2.14. The symmetric solution f = 1 to the fixed point equation

f) =[Lgf1() = /H 2|2dueﬂ(“'“'+1) f4(u). (4.2.11)

is linearly stable under radially symmetric perturbations if and only 8 < ..

Proof. Consider the linearisation of the right hand side (4.2.11) around the f = 1 for A =0:
/ duPY D (14 eg(u))? = 1+ed / duP v Dg(u) +0(€?). (4.2.12)
H2I2 H2I2
Hence, linear stability of the fixed point f = 1 is governed by the operator
g(u) —> d/ du’ P+ D g (), (4.2.13)
H2I2

for radially symmetric perturbations g(u). Recall Proposition 4.2.2: The spectrum of the
operator (4.2.13) over radial functions is given by {dkg(p)},er. Recall that the «xz(p) are
real-valued and (for fixed $) attain their maximum at p = 0. The fixed point f =1 is linearly
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dralof dralof

<Y

Figure 4.2: Illustration of the spectrum of the operator Lg in the subcritical and supercritical
phases, respectively. In the subcritical phase, § < . the spectrum is stricly below 1. Conse-
quently, iterative applications of Lg converge to zero. In the supercritical phase g > ., the
spectrum of Lg is positive for [p| < pg ~ (8- Be)'/2. In other words, iterative application of
Lg will suppress Fourier modes p > pg and amplify modes p < pg.

stable if and only if the spectrum of (4.2.13) is contained in the unit disk. Equivalently, if and

only if
— _ ﬁ —B(cosh(r)-1)
I;lealé(K,g(p) =kp(0) = ,/ = dre <1/d. (4.2.14)
This is equivalent to 8 < .. |

Note that the restriction to radially symmetric perturbations in Theorem 4.2.4 is natural. In fact,

any solution obtained by a limit of the recursion (4.1.2) will necessarily be radially symmetric.
4.2.3 Heuristic derivation of near-critical behaviour for the H*2-model
The marginal functions satisfy the recursion in (4.1.2), in other words
fro1 = Lple "V A )] with  fy(u) = 1. (4.2.15)
For fixed n as h \, 0 we have
fi=1-Lile" =D —11+0(1?). (4.2.16)

By Proposition 4.2.2, the spectrum of the operator Lg is given by dkg(p). In order to say
something about f,, we can ask for which p the modulus dkg(p) is larger or smaller than

1. In fact, the existence of values p for which the modulus is larger than 1 characterises
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the supercritical phase, and the width of the interval for which this holds is relevant for the
near-critical behaviour. The qualitative picture is given in Figure 4.2. More quantitatively, we

have

dkg(p)—1=a[B-Bc]-b(B)p*+O([B-BI*+p") as B— B (4.2.17)

with a,b > 0. In the slightly supercritical regime, O < 8. — 8 < 1 and disregarding error terms,
the right hand side of (4.2.17) is positive for |p| < (1+0(1))pp with

pg=va/b(Be) (B-Be)'?. 4.2.18)

In other words, Lg amplifies Fourier modes in that range (since dkg(p) > 1), while it sup-
presses the ones outside (since dkg(p) < 1). Hence, we expect the Fourier modes of f, to be
concentratedin 0 < p < pg ~ (B— Be)'/2. Consequently, in the conjugate variable, namely the
horospherical z-variable (see (4.2.1)), we expect f, to be delocalised on a scale ~ (8—B.) /2.
In other words, we would expect lim~ limn_,oo<62t° Yn.h to be of order ec(ﬂ_ﬁc)_l/z, which is

precisely what we show.

4.2.4 Addendum: Harish-Chandra functions in radial coordinates

Proof of Proposition 4.2.1. Recalling that ¢’ = z+x and using the explicit representation (4.1.7)

for polar coordinates, we have

e’ = cosh(r) + (1 +y) sinh(r) cos(¢). (4.2.19)
Hence,
1
u) = [ dpdyod; = —. 4.2.20
#o (1) / v [cosh(r) + (1 +y) sinh(r) cos(¢p)] /2P ( )
Expanding the integrand in the nilpontent variable ¢ one has
1
[cosh(r) + (1 +yy) sinh(r) cos(¢)] /2P 42.21)
3 1 - (1/2—ip)sinh(r)cos(y) o
~ [cosh(r) +sinh(r) cos(p)]1/2-ir [cosh(r) +sinh(r) cos(p)]3/2-ir"
Plugging (4.2.21) into (4.2.20) we can perform the fermionic integration:
¢, () = (—L +ip) sinh(r) / dg cos(¢) _ (4.2.22)
2 [cosh(r) +sinh(r) cos(¢)]3/2-ip
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which proves the claim.
In order to derive the asymptotic (4.2.3), we follow the line of thought of Zirnbauer in the

Appendix of [36]. We start by using the elementary identity
x3/2Hp — —1 /oo %zyz_"pe_“ for xeR (4.2.23)
I'(3/2-ip) Jo =z

in above expression. This yields

1 . ) 2r
27w : dz 3/2-ip — h(r)/ d(p —zsinh(r) cos(¢p)
- _ h b 0 ,—2Cos g z 1)
@p(r) TG2-ip) sin (r)/0 _ e . 2n cos(p)e
1 , “dz 3515 —zcosh -
=—————sinh(r —=73/2=ip g=zcosh(r) 1 (- ginh(r)),
o) [ \(zsinh(r))
(4.2.24)

where [, is the modified Bessel function of first kind. We may use the well-known asymptotic
I1(x) ~ e*/V2nx for x — oo, which is easily derived by Laplace’s method. Using this, for

r — oo we have

—z(cosh(r)—sinh(r))
2nzsinh(r) (4.2.25)

1 1 " OOdZ 1—i T
~— h VL 1-ip ,—ze
\/EF(l/Z—ip)\/sm (r)/O . Z e

Qop(r) ~ Sinh(r) / _ZZ3/2—I/)€
) 0o z

1
“T(1/2-ip

In fact, we had to be a bit more careful in replacing /; by its asymptotic under the integral:
This approximation is only valid for z > e™". However, the contribution from the rest of the
domain is negligible for r — oo, so above approximation is valid. To conclude, we note that by
rescaling z — e’z the integral in the last line of (4.2.25) is evaluated to ¢!~ T'(1-ip). In

conclusion ‘
1 F(l _lp) (3/2-ip)r

VR (/2-ip)¢

@p(r) ~ as 7 — oo, (4.2.26)

O



Chapter 5

Probabilistic definition of the Schwarzian
field theory [SCHW]

Abstract: We define the Schwarzian Field Theory as a finite measure on Diff' (T)/PSL(2,R)
and compute its generalised partition functions exactly using methods of stochastic analysis.
Our results rigorously implement an approach by Belokurov—Shavgulidze. The Schwarzian
Field Theory has attracted recent attention due to its role in the analysis of the Sachdev—
Ye—Kitaev model and as the proposed holographic dual to Jackiw—Teitelboim gravity. In
two companion papers by Losev, the predicted exact cross-ratio correlation functions for

non-crossing Wilson lines and the large deviations are derived from the probability measure.

5.1 Introduction and main results

5.1.1 Introduction

The Schwarzian Field Theory arose in the study of Sachdev—Ye—Kitaev (SYK) random matrix
model, see [91] and [92] for introductions, and it also appears interesting with different
motivation. In particular, it is an example of a highly nonlinear but, at least formally, exactly
solvable Euclidean field theory in 0+ 1 dimensions, with connections to Liouville Field Theory,
infinite dimensional symplectic geometry, two-dimensional Yang-Mills theory, and other
topics; references are given below. Perhaps most intriguingly, it has been proposed as the
holographic dual to Jackiw—Teitelboim (JT) gravity on the Poincaré disk, see for example
[93-95]. In [96] the partition function of the Schwarzian Field Theory was computed exactly
by a formal application of the Duistermaat—Heckman theorem on the infinite dimensional

space Diff! (T)/PSL(2,R), and in [97] the natural cross-ratio correlation functions of the
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Schwarzian Field Theory were obtained via an application of the conformal bootstrap and the
DOZZ formula to a degenerate limit of the two-dimensional Liouville Field Theory. Further
perspectives on the Schwarzian Field Theory, which are discussed in relation to our results
below, were proposed in [98] and [99].

The goal of this paper is to define a finite Borel measure on Diff! (T)/PSL(2,R) that corre-
sponds to the Schwarzian Field Theory and then compute the partition function of it and its

generalisations. This measure should formally be given by (see [96, (1.1)])

1 ! - [Treon) —i‘f((:))
dtt 2 (p) = exp{+;£ [Sy(7) +271%¢"* (1) ] dT} “BSLER) (5.1.1)
where S, (7) is the Schwarzian derivative of ¢ defined by
@\ _1({¢' @)
S (T):S(QO,T):( ) ——( , (5.1.2)
Y ¢'(t)) 2\¢(7)

and the measure ., > should be supported on the topological space Diff' (T)/PSL(2,R), where
T = [0,1]/{0 ~ 1} is the unit circle parametrised by the angle [0, 1), and Diff! (T) is the space
of C! orientation-preserving diffeomorphisms of T, see Section 5.1.4. The PSL(2,R) action on
Diff' (T) implicit in the quotient in (5.1.1) is described in the next paragraph. Heuristically, the
formal density (5.1.1) only depends on the orbit of this action and the quotient by PSL(2,R)
therefore makes sense.

The PSL(2,R) action on Diff! (T) arises from left composition by conformal diffeomorphisms
of the unit disk restricted to the boundary, which is identified with T. Explicitly, it is instructive
to map the circle to the real line and consider f(7) = tan(7¢(7) — %) instead of ¢(7), where
7 € T remains on the circle. In terms of this variable, the exponential in the formal density

(5.1.1) of the measure can be written as

1
exp{+i2/ S(tan(rp—75),7) dT}, (5.1.3)
o= Jo

again see Section 5.1.4, explaining the name Schwarzian Field Theory. The bijection ¢ €
(0,1) = f =tan(we — 7) € R is the restriction to the boundary of the standard conformal map
21 %—fi from the unit disk in C to the upper half plane, on which PSL(2,R) acts by the
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fractional linear transformation
a b
fHMof=—— M=+ € PSL(2,R). (5.1.4)
d

Even though this PSL(2,R) action is by left composition, we will call it the right action on
Diff! (T), following the discussion in [96, Section 2.1], where this action is interpreted as an

action on the inverse of ¢. The Schwarzian is invariant under this PSL(2,R) action, i.e.,
S(Mo f,7)=8(f,71) for any M € PSL(2,R), (5.1.5)

and it vanishes if and only if f itself is a fractional linear transformation. It can further be
argued that [].¢[o 1 (;Sf—((:)) in the formal expression (5.1.1) should be the non-existent Haar
measure on the group Diff! (T), and in particular be invariant under the PSL(2,R) action, see
[96, Section 2.2]. We abuse the notation throughout the paper and use the same symbol for
¢ € Diff! (T) and its conjugacy class ¢ € Diff' (T)/PSL(2,R) when only the latter is relevant.

5.1.2 Main results

We follow the plan proposed in [98, 100], and interpret the measure (5.1.1) as an appropriate
change of variables of a reweighted Brownian bridge and a Lebesgue measure quotiented by
PSL(2,R), and then verify that the obtained measure satisfies the desired properties.

Essentially, using the parametrisation

/T eé:(t) dt
P(1) =@+ ——, (5.1.6)
/ e dr
0
with &: [0,1] — R and ® € R a constant, one has
2
1 5 5 e5(0)
=S(tan(np - %),7) = 5§ (7)" = €"(7) =2n°| —/— | , (5.1.7)
2 /0 et dt

and under this change of variable, heuristically,

do(7)
]:[ 05 _d®Ud§(r). (5.1.8)
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Thus it is natural to interpret the measure with action given by (5.1.7) in terms of a reweighted
Brownian bridge, whose formal action is % / &'(1)? dr, and a constant © (the zero mode),
distributed according to the Lebesgue measure. In Section 5.2, we give a precise version
of this construction and show that it indeed leads to an PSL(2,R)-invariant infinite Borel
measure ,%z on Diff! (T) which can then be quotiented to obtain a finite measure .2 on
Diff' (T)/PSL(2,R).

We prove that the unquotiented measure /Z;z we construct satisfies a change of measure
formula that is consistent with the goal that the action functional corresponding to the measure
should be proportional to the Schwarzian derivative. Indeed, for f,g € C3, the Schwarzian

derivative satisfies the following chain rule:

S(go f,7)=S(f, 1) +S(g, f(1) f (7). (5.1.9)

It follows that S(tan(my —3),¥) = 272 and

S(tan(r(y o) —%),7) = S(tan(mp—3),7) + (S(tan(m// -2), (1)) —2712)90'(1')2, (5.1.10)

see Section 5.1.4. Thus changing variables in (5.1.1) and (5.1.3) from ¢ to ¢ o ¢ for a fixed
y € Diff(T), we expect that, if the action is given by the Schwarzian (5.1.3), then the Radon—
Nikodym derivative of the measures should be given by the exponential of the second term
on the right-hand side of (5.1.10). That this is indeed the case is the content of the following
theorem. It can be regarded as the analogue of the Girsanov formula for Brownian motion
under the change of variable from B to B+ h.
In the following statements, diffeomorphisms ¢ € Diff>(T) act on ¢ € Diff! (T) by left compo-
sition, i.e. ¥ o ¢ € Diff!(T), and w*f%vaz denotes the pullback of the measure /F%vaz under the
action of ,

UMy (A) =, M2 (A) = M2 (Y 0 A), (5.1.11)

where o A == {l// oy | pe A}. We further identify M € PSL(2,R) with its action ¢ via

af+b

fHMOf:Cf—+d’

f=tan(rg—7%), Mo f=tan(zn(yop)—7). (5.1.12)

For any such ¢ one has S(tan(my - 5),¢) =S(Mo f,¢) =S(f,¢) =S(tan(rp - 3),¢) = 272
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Theorem 5.1.1: The constructed measure %2 is supported on Diff! (T) and satisfies the

following change of variable formula: for any v € Diff*(T),

dy " My2(¢) _

1 ! /
(o) exp{;/o [S(tan(mﬁ—g),go(r))_z,ﬂ] o (T)sz}' (5.1.13)

As a consequence, /,%;2 is PSL(2,R)-invariant, where we recall that the action of M €
PSL(2,R) is identified with the action ¢ o ¢ via (5.1.12) and that then S(tan(ny - 3)) = 272,

We also confirm the exact formula for the partition function, i.e., the total mass of the quotient
measure, computed in [96] by using a formal application of the Duistermaat—Heckman theorem.

The normalisation of the partition function is explained in Remark 5.1.4 below.

Theorem 5.1.2: The measure %2 from Theorem 5.1.1 can be quotiented by PSL(2,R) and
the resulting measure d.Z,» on Diff! (T)/PSL(2,R) is finite and has total mass
Z(o?) = (2—’;)3/2 exp (2—”22) = /me—O'zE sinh(27V2E) 2dE. (5.1.14)
o g 0
The right-hand side of (5.1.14) has the form of a Laplace transform of a spectral density
p(E) = 2sinh(27V2E). Tt is expected that it approximates the thermal partition function
E[tr(e #H)] of the SYK model H (and with o corresponding to inverse temperature 3). For
further discussion, see for example [96, Section 2.4].
The above computation of the partition function also applies to generalised measures on
Diff! (T) which are similar to /,%;2 but not PSL(2,R) invariant (and thus cannot be quotiented

by PSL(2,R)), see Section 5.3 around (5.3.3). These measures correspond to other Virasoro
coadjoint orbits, discussed in [99, 101, 102].

The previous theorems can further be generalised by introduction of a non-constant metric
p?: T — R,. Similar to [96, Appendix C], the Schwarzian Field Theory with background

metric p> on T is formally given by

d
dr } Mecion 9 (5.1.15)

1
d/%p(so)=exp{ /0 Stan(re=2).0) 5 | PSLR)

where p = +/p? is the positive square root of the metric p. Thus the constant choice p(7) = 02
for all 7 € T corresponds to (5.1.1). We again define this measure precisely in Section 5.2.
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Theorem 5.1.3: For p: T — R, in C'(T), there is a PSL(2,R)-invariant positive measure
.%p on Diff!' (T) satisfying the following change of variable formula: for any y € Diff>(T),

dy* M, (p) : . 2] a2 47
Y AP {/0 |S(tan(ry - ). ¢(7) - 27%| ¢/ (7) e } (5.1.16)
and its quotient d.Z,, by PSL(2,R) has total mass
_ 1 P’(T)z 2 2
Z(p) = exp{E/ (1) dT}Z(O'p), where o —/pdr, (5.1.17)

and Z(o?) denotes the partition function (5.1.14).

Remark 5.1.4: The normalisation of measures .. and ./, uses the following convention.
Essentially, we define the partition function of the unnormalised Brownian bridge with boundary

conditions £(0) =0 and £(1) = a and metric p? : [0, 1] — R,, corresponding to the action

1 /1 , dr
> | &) , (5.1.18)
2 Jo p(7)

see Section 5.2.1 for the precise definition, by

-1/2 5

ZBB(p):(Qﬂ/lp(t) dt) expl-—2 L (5.1.19)
0 2f01p(t)dt

This normalisation implies a natural composition property for unnormalised Brownian bridges
(see Section 5.2.1) and is also proportional to the square root of the {-function regularised
determinant of the Laplacian. The latter is a standard definition of the partition function of the
free field, used for example in the context of Liouville CFT, see [103] for a review.

Since the measure of the Schwarzian Field Theory will be defined in terms of Brownian bridges,

the partition function is essentially determined uniquely with this convention.

Remark 5.1.5: The quadratic variation of (log¢’(7))-¢[0,1) does not depend on the representa-
tive of ¢ € Diff! (T)/PSL(2,R) because the action by PSL(2,R) is by left-composition with a
smooth function. It follows from the construction of the measure .#,, that, almost surely under

the normalised version of .Z,,, this quadratic variation is given by ( fOT p(t) dt)zefo,1)-
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Remark 5.1.6: In [96, Appendix C], the ‘correlation functions’ of the Schwarzian Field Theory

are formally defined by differentiation of the partition function with respect to the metric:

"
(S(11)--S(0)) 2 = Z((17'2) Oel -+ 0€

1 1
;(E],...,Gn) = ;+616ﬁ+---+en57n.

Z(p(€r,....€)),
(5.1.20)

These ‘correlation functions’ can be computed from the formula (5.1.17). For example,
(8(0)),2 =217+ 307 (5.1.21)
and
(8(0)S(1))g2 = [4n* + 100?05 + Lot - 202 [277 + 302 6 (1) — 0267 (7). (5.1.22)
See the appendix in Section 5.5. In the relation to Liouville Field Theory, these correlation

correspond to stress-energy tensor correlation functions, see [97, Appendix A].

Remark 5.1.7: Since the definition of the partition functions involves {-function regularisation
(see Remark 5.1.4), the correlation functions defined by (5.1.20) are not obviously expectations
of random variables. In fact, the Schwarzian S¢(7) of a function f: T — R is only defined if

f € C3 while the support of the Schwarzian Field Theory measure d.Z,,» only has C'-regularity.

@' ()¢’ ()
sin(n[@(t) — (s)])’

where s # ¢, provide a finite-difference-type regularisation of the Schwarzian derivative, which

Cross-ratios

O(¢;s,t) = (5.1.23)

still respects the PSL(2,R)-invariance and is well-defined for C !_functions. For C3-functions,
in the limit of infinitesimally close end-points, the cross-ratios approximate the Schwarzian
derivative.

In [104], the (probabilistically well-defined) correlation functions of cross-ratios are explicitly
computed, confirming the predictions of [97] obtained using the conformal bootstrap. It is
further shown that in the limit # — s — O these coincide with the above Schwarzian correlation
functions obtained by differentiating the partition function.

In [94, 95], these cross-ratio observables are related to Wilson lines in the gauge theory

formulation of JT gravity.

Remark 5.1.8: The change of measure formulas (5.1.13) and (5.1.16) are consistent with the

goal that the action of the measures is the desired Schwarzian action. It would be interesting to
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show that these change of measure formulas indeed characterise the measure uniquely. Our
results show that the partition functions of the measures agree with those from [96]. In [104] it
is further shown that the cross-ratio correlation functions, which agree with those of [97], in
fact characterise the measure uniquely. Finally, in [105], it is shown that the large deviations of

the measure as 0> — 0 are indeed described by the Schwarzian action as expected.

5.1.3 Related probabilistic literature

We will not survey the vast literature in physics related to the Schwarzian Field Theory and
the SYK model, but refer to [91, 92] for a starting point on the SYK model and [93-95] for a
starting point on its relation to JT gravity. Further physical perspectives on the construction
carried out in this paper can be found in [98, 100, 106, 107]. In the following, we do mention
some related more probabilistic references.

The Schwarzian Field Theory is formally related to a degenerate limit of Liouville Field Theory
[97, 108], and the conformal bootstrap and the DOZZ formula applied in this context has been
used to predict the correlation functions of the Schwarzian Field Theory [97]. While much
progress has been made on the mathematical justification of Liouville Field Theory [109, 110],
see [103] for a review, and it would be very interesting to explore this connection, this paper,
[104], and [105] only use standard stochastic analysis.

Random homeomorphisms of T have also been studied in the context of random conformal
welding [111, 112], where given a random homeomorphism of the circle one constructs
an associated random Jordan curve in the plane. The Schwarzian Field Theory provides a
different natural random diffeomorphism of the circle, and it would be interesting to explore
the associated random conformal welding. We also remark that the space Diff! (T)/PSL(2,R)
has also appeared in the study of large deviations of SLE [113].

Some motivation for the construction of quasi-invariant measures on diffeomorphism groups
(and loop groups), of which the Schwarzian Theory is an example, has been the construction of
unitary representations of those. The earliest references concerning quasi-invariant measures
on Diff! (T) appear to go back to Shavgulidze and collaborators such as [114], and we refer
to [115] for further discussion and references. The Malliavins also considered such measures
[116], and diffusion on such spaces (and quotients) and associated Wiener measures were
studied in follow-up works such as [117, 118].

Finally, we mention that the theory of path integrals for coadjoint orbits of loop group extension
of compact Lie groups is somewhat well-developed. On a formal level, these orbits again carry

a natural symplectic structure and the path integral associated to the Hamiltonian generating the
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U(1) action is of Duistermaat—-Heckman form. However, this case looks simpler as the relevant
Hamiltonian is simply the Dirichlet energy associated with a Lie algebra valued Brownian
bridge. Bismut has developed an analytical approach to the calculation of the corresponding
heat kernels via a rigorous Duistermaat—Heckman-type deformation involving hypoelliptic

Laplacians, see, e.g., [119].

5.1.4 Preliminaries and notation

We write D, = {z € C: |z| < r} for the open disk of radius r and D = D; for the open unit disk.
The unit circle is denoted by T = [0,1]/{0 ~ 1}, and Diff*(T) is the set of oriented C*-
diffeomorphisms of T, i.e. ¢ € Diff*(T) can be identified with a k-times continuously differ-
entiable function ¢: R — R satisfying ¢(7+1) = ¢(7)+ 1 and ¢’(7) > 0 for all 7 € R. Note
that Diff*(T) is not a linear space. The topology on Diff*(T) is the natural one given by
the identification of ¢ with & € C¥71[0,1] and ® € R as in (5.1.6), which makes Diff* (T) is
a Polish (separable completely metrisable) space as well as a topological group. The same
topology is induced by viewing Diff* (T) as a subspace of C¥(T).

It is also useful to consider diffeomorphisms of [0, 1] (or more generally of [0,7]) that
are not periodic, and we denote by Diff*[0,7] the set of oriented C*-diffeomorphisms of
[0,T] satisfying ¢'(t) > 0, ¢(0) =0, and ¢(T) =T. Thus the derivatives do not have to
match at the endpoints. We further set Co free [0,7] = {f € C[0,T]| f(0) =0}, and Cy[0,T] =
{f €C[0,T]]f(0) = f(T) =0}

The projective special linear group is PSL(2,R) = SL(2,R)/{+1} where SL(2,R) consists of
all matrices M = (¢ %) with real entries and determinant 1. The action of +M € PSL(2,R) on

peTis
af+b

JoMeol= 2

where f = tan(nrp - 7). (5.1.24)

We may identify PSL(2,R) with its orbit at idr € Diff! (T), equivalently parametrised by’

. 2nt _
L "5 (mod1), forzeD:={zeC:|z<1}ac[0,1). (5.1.25)

Qoz,a(t) =a-— 2n 1= zeilnt

I'This parametrisation is the restriction to the boundary of the action of PSL(2,R) as a conformal map of the
unit disk onto itself, see for example [120, Section 6.2].
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Up to normalisation, the Haar measure on PSL(2,R) then takes the form?

4pdp d6 d .
M, where z = p ¢'?", (5.1.26)
(1-p?)?
-p

dvi(@za) =
and we always assume this normalisation for the Haar measure. One may check that the
subspace topology on the {¢; 4} :ep qef0,1) inherited from Diff 1(T) agrees with the topology
on PSL(2,R). Hence, the PSL(2,R)-orbit at idy is a faithful embedding of PSL(2,R) as a
subgroup of Diff' (T). As a consequence, the right action of PSL(2,R) on Diff! (T) is a proper
group action.
Finally, we recall the definition of the Schwarzian derivative (5.1.2) and the chain rule (5.1.9).

The chain rule implies that the Schwarzian action can be written as
S(tan(rp - %),7) = S(p,7) +21%¢’ (1)* (5.1.27)
where we used that S(tan(rg - 7), ¢) = 272 In particular,

S(tan(x(y o @) - 5).7) = SW 0 9,7 + 21 (W 0 9)' ()}
= S(p. 1)+ [SW.e(r) +272 (0 (o) |¢/ (1)?

= S(tan(rg - %), 7) + (S(tan(mb — 1), (1)) - 2n2)¢'(T)2,
(5.1.28)

where we used (5.1.27) on the first and third line and the chain rule (5.1.9) on the second line.

5.2 Definition of the Schwarzian measure

In this section, we define the Schwarzian Field Theory as a finite Borel measure .Z > supported
on Diff! (T)/PSL(2,R), and its unquotiented version /,%;2 which is an infinite Borel measure
on Diff! (T).

In Section 5.2.1, we begin with the definition of the unnormalised Brownian bridge measure
Bﬁ’zT which is the starting point for the definition of the former measures. In Section 5.2.2,
we then define measures > through a change of variable of the product of an unnormalised
Brownian bridge and a Lebesgue measure. The Schwarzian Field Theory measure is finally
defined in Section 5.2.3.

2See for example [121, Lemma 9.16] which states that the Haar measure on PSL(2,R) is given as the uniform
measure on circle (corresponding to da) and the hyperbolic measure on the upper half plane H. In (5.1.26) we
have parametrised the hyperbolic measure by the Poincaré disk D instead of H.
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5.2.1 Unnormalised Brownian Bridge measure

The unnormalised version of the Brownian bridge measure is defined in Definition 5.2.1 below.
It should be a finite measure on Co gree[0,7] = {f € C[0,T]| f(0) = 0} formally represented as

4B (¢) =exp{—# /O e dt}é(f(O))é(f(T)—a) [Taemn. 621

7€(0,T)

More generally, with a metric p?: T — R, the unnormalised Brownian bridge measure should
be

1 [T dr
a,T _ __ ’2 _
dB, (f)—exp{ 2/0 & (t)—p(t)}é(f(o))é(f(T) a)Tel(O’lT)df(T) (5.2.2)

For any 71,7, > 0, a € R and any positive continuous functional F on C[0,T; +7>], we then

expect

[reesgmreo- [ [ [raveasiheasiihes. 629

where for f € Cofree[0,71] and g € Co free[0,72], we denote by f LU g € Co free[0,71 + T3] the

function
(1) if r € [0,T1],

(fug) () ={ _ (5.2.4)
f(h)+g(t-T) ifte(T,Ti+Tz].

The precise definition achieving these properties is as follows.

Definition 5.2.1: The unnormalised Brownian bridge measure with variance o> > 0 is a finite

Borel measure dB;;T on Co free [0, 7] such that

a2
V27T o2 al 2.
nTo exp{ZTO_Z}dBU2 (&) (5.2.5)

is the distribution of a Brownian bridge (£(#));e[o,7) With variance o?and £(0) =0, £(T) = a.
More generally, given p: [0,7] — Ry, let dB; T be a measure on Co.free [0, T] such that

2

T
2 / p(t) drexp| ———— FdBLT (¢) (5.2.6)
0 2y p()d

is the distribution of a Brownian bridge (&(#))efor) With quadratic variation
t
(Jy p(7) dT)ejor) and £€(0) =0, £(T) = a.
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Remark 5.2.2: A Brownian bridge on [0,7] with quadratic variation ( /Ot p(7) d7)seq0,r] can

be obtained from a Brownian bridge with quadratic variation o->¢ via the reparametrisation

t T
t o h(f) = / P (? dr,  where 0T = / o(7) dr, (5.2.7)
0 0

g

and the normalisations in (5.2.5) and (5.2.6) are also compatible. In other words,
Eoh~ByT ité~ B4 (5.2.8)

Heuristically, this corresponds to the following change of variable in the action of the Brownian

bridge:

, dt

p(1)
5.2.9)

The remaining definitions in Section 5.2 which are expressed in terms of constant o> can

1 r ’ 2 _ 1 r ’ 2717 _ 1 r ’ 2 dr _ T ’
5 [ earar=— [Cemmpn a4 [Ceon g [Ceon -

therefore be transferred in a straightforward way by reparametrisation.

The above normalisation of the normalised Brownian bridge in Definition 5.2.1 is exactly the
one that is needed to ensure that the composition property (5.2.3) holds. We note that, up to a
constant, it coincides with the {-function regularisation of the determinant, see Remark 5.2.4.

Proposition 5.2.3: The unnormalised Brownian bridge measures dB(Z’ZT satisfy the property
(5.2.3).

Proof. Notice that dB, d (¢) ®da is a probability measure and that the distribution of & under
this measure that of a Brownian motion restricted to [0,7'], see [RevuzYor, Exercise (3.16)].
Therefore, the Markov property for Brownian motion implies that the distribution of & LI &,
under dB,f Tig) @db® d8, oI (&) ® da is a Brownian motion restricted to [0,7} +7>]. On
the other hand, & under d8; Ti+T1 (£) ® da is also a Brownian motion on [0,T} +T»]. Since
(£1U&2) (T +T) = a under the first measure and &(77 +T>) = a under the second measure, the
distributions of £, L&, and ¢ under dB."" (£1) ® db ® dBS ™" (¢,) respectively dBS 11 (¢)
must be the same, i.e. (5.2.3) holds. O

Remark 5.2.4: The normalisation in (5.2.6) coincides with square root of the {-function

normalised determinant, up to an overall constant. Indeed, if A, = p‘laa—T(p_I%) is the
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Laplace-Beltrami operator on [0,7] with metric p? and Dirichlet boundary condition, then

1 T
det’ | ——A, :C/ p(t) de, (5.2.10)
2 0

where det’ is the /-regularised determinant and C is a constant independent of p. The determi-

nant is defined by (see for example [122])
(1 -¢'(0)
det _ZnAp =e , (5.2.11)

where ¢ is the spectral {-function, i.e. the analytic continuation of {(s) = >}, 4,* where 4,, are
the eigenvalues of —ﬁAp. To see the equality (5.2.10) one can adapt the argument leading to
[122, Equation (1.13)] to d = 1.

5.2.2 Unnormalised Malliavin—Shavgulidze measure

Towards defining the Schwarzian measure .Z >, we next define a finite measure y > on Diff 1(T)
that is similar to what is known as the Malliavin—Shavgulidze measure, see [115, Section 11.5].
This measure is defined as a push-forward of an unnormalised Brownian bridge on [0, 1] with

respect to a suitable change of variables, and should formally correspond to

_ 1Y () de(7)
d,uo.z(go)—exp{—zo_Z/O (90,(7)) dr} [ e (5.2.12)

7€[0,1)

To motivate the actual definition, recall the formal density (5.2.1) of the unnormalised Brow-
nian bridge measure BC(:’ZI. Thus, formally, under the measure u > the process (log¢’ (1) —

log ¢’ (0))¢[0,1) has the same density as (&;);e[0,1) under Bgo’zl. We define p > by
duya(p) =dBY% (£)®dO,  with ¢(f) =©+P(t) (modl), for® € [0,1), (5.2.13)

where dO is the Lebesgue measure on [0, 1) and with the change of variables

/Ot etMdr

P(&)(t) =Ps(t) = ———,
(€)(1) = Pe(0) e

(5.2.14)
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The variable ® corresponds to the value of ¢(0). Note that the map & — P (&) is a bijection
between Co free [0, 1] and Diff ! [0, 1] with inverse map

P~1: Diff'[0,1] = Co frec[0,1]

(5.2.15)
¢ — log¢’(-) —log¢'(0).

With p - defined as above, the following change of variables formula holds:

Proposition 5.2.5: Let f € Diff*[0, 1] be such that f(0) = f’(1) and f”(0) = f”(1), and
denote by f*u,2 = f ', the push-forward of u,. under left composition with f~1,i.e.,

[ ug2(A) = pga(foA), (5.2.16)

where foA = {fo<p|<peA}. Then

df*/,to.z((p) 1 1 ,
duga(p) T {E/O Sr(e®) ¢(1) dt} - (5.2.17)

The proposition is a consequence of the following change of variable formula for the unnor-

malised Brownian bridge. For f € Diff*[0, 1] denote by L ¢ the left composition operator on
Diff'[0,1]:

Li(¢)=fop. (5.2.18)

Proposition 5.2.6: Let f € Diff*[0,1] and set b = log f/(1) — log ’(0). Let fﬁB;’zl =

f‘lB;’zl be the push-forward of B;;I under P~ oL, 1oP = (P loLyo P)_l. Then for

#
any a € R, f#8%! is absolutely continuous with respect to 8% """ and
g ag

dfﬁBll’zl (f) 1 1 f//(O) f,,(l) | |
g ) PL(0) = 5P|+ — [ Sr(Pe()) P Zd}.
dB(Zz_b’l(f) £7(0)f(1) exp{az [f/(o) (0) (D 5(1)]+0.2/0 7(Pe(1)) Pe(1)"dr

(5.2.19)

We prove this statement in an appendix in Section 5.6. A similar statement (for the Wiener
measure instead of the unnormalised Brownian bridge) can be found in [115, Theorem 11.5.1],

for example. For now, we show how it implies Proposition 5.2.5:

Proof of Proposition 5.2.5. Let

@(1) =O+Pg(r) (modl), (5.2.20)
(fo@)(1)=®+Px() (modl). (5.2.21)
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In other words,
O=r(0), &= (P—l oLfGOP)(g), (5.2.22)

where fo(7) = f(7+0) — ©. From (5.2.13) we see that,
df e (¢) = dfEBY (£)xdf(O), (5.2.23)

with notation as in Proposition 5.2.6. Hence, Proposition 5.2.6 implies

dfgBH© I ;
ngzl(g) NN {; /T Srle®) ¢ (t)dt}, (5.2.24)

and using

df (6) = (0) (5.2.25)

the proof is finished. O

We define the measure y,, in which o2 is generalised to p: T — R, analogously to (5.2.13) by

_ Lo ()Y
du,(9) = exp{ /0 (W (T)) . (T)}dBOI(f)@)d@ (5.2.26)

again with (1) = ®+Pg(r) (mod1) and P¢(¢) given by (5.2.14), and where the term in the

exponential is interpreted as the Itd integral

£y ’ L)
./0 (90 (1) p(T) / &z )p(r) /0 o(7)? dé (7). (5.2.27)
Thus u, has formal density
1 dr dg(7)
dole) = T 5228
Mo (@) exp{/o S(p,7 p(T)} 1_0[1)90(7) ( )

Lemma5.2.7: Leth:[0,1] — [0, 1] be as in (5.2.7). Then

2
[ dupw)—exp{ /0 . ((:))3 dr} [ Feemanzo (5.2.29)
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Proof. Giranov’s theorem, using that the quadratic variation of d¢(7) is p(7)dr, gives

1 1 /( )2
eXp{—E/O Z(:ﬁ dT}/F(sO) dpp ()

1 1 1
-/ F(so)exp{ [ v@ason-3 [ w'(T)zp(T)dT}ng’l(f)cz@d@ (5.230)

i/mﬂm@%am@
where ¥ () = —1/p(7) and

o€ (M+g(1) 4 T o€(7)
e T e\ p(r)dr
¢WQ:®+@ :®+@ , (5.2.31)
/(; ef(M+2(T) dr ./0 ef(T)p(T) dr

with the following drift resulting from Girsanov’s theorem:
¢ = [ wpa= [ ogpy (0 dr=log(p(m)lp©). (232
Let & ~ 800’21 and recall that ¢ = o h ~ Bg’l. Let ® ~d® on [0, 1). Then since p(7) = o2’ (1),

t (Eoh) () g, h(t) &
foe(§ h)()h(T)dT_®+f0()e§()dT

¢ (1) = O+ =0+ =(goh)(1) (5.2.33)
/0 e&on @ p(1) dr /0 et (D dr
where ¢ ~ 2. In summary, we have
1 1 pl(T)z B _
F(p)expi—= 3 drpdup(@) = [ F(@oh)dus2(p) (5.2.34)
2Jo p(7)
which is the claim. O

Remark 5.2.8: It is instructive to verify the identity (5.2.29) in terms of the formal actions of
M2 and pp, see (5.2.12) and (5.2.28). Let y : [0,1] — [0, 1] be the inverse to h. Then, in view
of (5.2.8), the statement for the formal actions is equivalent to

L[ o)V 1 [y dr fhg(@)y dr 1)
I T S N T d — _ 1 d
52 by (eorrn) 2/0 (o) s (o) ,O(T)+2/o P’(fs)3z3;>
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To verify this, note

1/1 ((sooy)”(f))sz 1/1 ((90”Oy)(T)y’(T)2+(so’oy)(T)y”(T))2dT
0 0

2 (poy)(7) 2 (¢’ oy)(1)y'(7)
Lo @2 5.2.36
=5 ) (i) yr e (0230
Loy (1) , 11y (1))2
o G @ s [ () e

Changing variables from 7 to 2(7) and using y'(h(7)) = 1/1/(7) and y” (h(7)) I’ (t) = =h" (1) [ I (7)?,
the right-hand side equals

1 1 ()0//(7.) 2 dr 1"0//(7_) 1 , 1 lh”(‘[')z
5/0 (so’(r)) W Jo o) (h’(r)) d”i/o o 4 (5.2.37)

The claim is obtained by dividing by o> and using o2/’ (7) = p(7).

5.2.3 Schwarzian measure

In view of (5.1.1) and (5.2.12), the unquotiented Schwarzian measure is defined by

2 pl

A2 () = exp{%/o ¢ %(1) dr} dug2 (). (5.2.38)
Since p,- is supported on Diff! (T), this defines a Borel measure on Diff' (T). In Proposi-
tion 5.2.9 below, it is verified that this measure is invariant under the right action of PSL(2,R).
In particular, we remark that ,%;_z is an infinite measure since PSL(2,R) has infinite Haar
measure. The Schwarzian measure on Diff! (T)/PSL(2,R) with formal density (5.1.1) will
be defined as the quotient of /F%;z by PSL(2,R), see Proposition 5.2.10 and Definition 5.2.11
below.

The change of measure formula from Theorem 5.1.1 is a consequence of Proposition 5.2.5. We

recall the statement as the following proposition.
Proposition 5.2.9: The measure .%z satisfies the following change of variable formula for

any y € Diff>(T):

dy M, 1 ! )
Zfz((jzexp{; /0 [S(tan(ﬂw+%),(p(t))—27r2]go2(t)dt}. (5.2.39)
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In particular, ,%;z is invariant under the right action of PSL(2,R). In other words, for any
¥ € PSL(2,R) and Borel A c Diff' (T) we have

M2 (o A) =My (A), (5.2.40)
where y oA = {yop|p e A}.
Proof. By Proposition 5.2.5,
dyu 2 1 : 2
d,u(,(zr :exp{;/o Sy(p(7)) ¢’ (7)dr (5.2.41)

and

exp 2 [1(Wop) (1) dr 2 i
{ 02 1 Lexp{ziz/ (w’(w(r))2—1)¢’2(r)dr}. (5.2.42)
exp {25 [ o2 (r) dr o> Jo

Using the identity (5.1.27), i.e.,

S(tan(my — %), 9) = S(¥, 9) + 2179 % (), (5.2.43)

therefore

Ay M > 1! . ,
ZTZ(;? — exp {; /0 [S(tan(mp — 1), p(1)) - 27r2] o2 (7) dT} (5.2.44)

as claimed. O

From the PSL(2,R)-invariance of the measure, it follows that ,%z can be decomposed into a
product of the Haar measure of PSL(2,R) with its quotient by PSL(2,R). Since PSL(2,R) is
not compact, we need to choose the normalisation of the Haar measure vy, and we work with

the normalisation (5.1.26). The precise statement is as follows.

Proposition 5.2.10: There exists a unique Borel measure .# > on Diff '(T)/PSL(2,R) such
that for any continous F: Diff! (T) — [0, o],

/ AT () F(g) = / 0.t () / dvi (W) F( 0 ), (5.2.45)

Diff' (T) Diff' (T)/PSL(2,R) PSL(2,R)
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where the right hand side is well-defined since the second integral only depends on ¢ €
Diff! (T) through the conjugacy class of ¢ in Diff! (T)/PSL(2,R). (We recall the abuse of

notation to use ¢ both for an element of Diff! (T) and its conjugacy class.)

Proof. Since the space Diff! (T) is not locally compact, we could not locate a reference for
the existence of the quotient measures (which would be standard in the locally compact
situation). Therefore, in the appendix in Section 5.7, we establish a sufficiently general result
(Proposition 5.7.1) about such quotient measures. Note that the assumptions of that result are
satisfied in our context: ,%;.2 is a Radon measure on Diff' (T) (because the Brownian bridge is
a Radon measure on C[0, 1]), Diff ! (T) is a complete separable metric space, and PSL(2,R)
acts continuously and properly from the right (note the discussion after (5.1.26)). Moreover,

PSL(2,R) is unimodular and %2 is invariant under its right action. O

Definition 5.2.11: The Schwarzian measure is given by /.

Finally, we generalise the above definition to a nontrivial metric ,o2 : T — R,. First, define the

unquotiented Schwarzian measure with metric p? : T — R, analogously by

_ 1
d/%p(go):exp{Zﬂz /0 ¢"%(1) }d,up(go), (5.2.46)

dr
p(7)
where we recall that p is the positive square root of p2. The change of variable formula (5.2.29)

relating u 2> and u,, together with the identity (see (5.4.5) for the computation)

1 dr 1 1p’(?’)2
S(h, - dr, 5247
/0 ) @ 2/0 oo 6247

where £ 1s defined in terms of p by (5.2.7), then imply the following relation between ,%;z and

A, and in particular the generalisation of Proposition 5.2.9.

Proposition 5.2.12: For any bounded continuous F: Diff' (T) — R,

_ 1 d _ 1
/F(tp) da,(p) = exp{/ S(h,1) ! }/F((poh) d 2 (@), 0'3 = / p(r)dr.
0 p(7) 3 0
(5.2.48)
In particular, the change of variable formula (5.1.16) follows from (5.1.13), i.e.
* 77 1
Wlo9) _ o { / |Sttan(ry -5, (7)) - 27| gp'(‘r)zd—T} . (5.2.49)
dt,(p) 0 p(7)
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As a consequence of the change of variable formula, also ,%) is PSL(2,R) invariant and the
quotient of /FZ,; by PSL(2,R) exists as in Proposition 5.2.10. We define ., as this quotient.

Definition 5.2.13: The Schwarzian measure .#,, with metric p? is the quotient of % by
PSL(2,R).

Remark 5.2.14: The change of variable formula (5.2.48) is consistent with the chain rule for

the Schwarzian derivative, i.e. for any f,h € C3,
S(foh,t)=S(f,h(7)) (K (1))*+S(h,7). (5.2.50)

Indeed, the chain rule implies that

dr ! dr
(T) _‘A S(h’T) ma (5251)

1 1 1
= [ strernar= [ s

where y is the inverse to 4.

5.3 Expectation via regularisation

In this section we will introduce an approximation of the Schwarzian measure by finite measures

with formal density

1 1
exp —ﬁ‘/o

where we allow a2 to take real values in (—00,7r2), i.e., @ € iIRU (0, 7). For @ = & this measure

¢”(7) 2 D) de(7)
(90’(7') ) —4a“p (T)} dT} Tel[—OL) (1) (5.3.1)

would correspond to the unquotiented Schwarzian measure ,%;.2, which is infinite as remarked
below (5.2.38). Below we will see that the measure is finite for o> < 7% and then compute
its partition function (i.e. total mass) as a function of @>. The latter is accessible due to
a diagonalisation (also referred to as a bosonisation in the literature) of the measure that
is available for &> < 0: Indeed, in that case one can see that & = 2V-a? @ +logy’ satisfies
E(1)=£0)+ 2V-a? and has formal density

@ 1 ! 72
exp{—7 ; & (T)dT} l—[ dé(7). (5.3.2)

7€[0,1)
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Thus it describes the law on an unnormalised Brownian bridge (plus a uniform shift according
to the Lebesgue measure on R).

Upon quotienting by the R-translation (which corresponds to quotienting by a U(1)-symmetry
in (5.3.1)), the partition function of (5.3.2) can be evaluated in terms of that of the unnormalised
Brownian bridge and equals

2,2
a eZa/(r

sina \2752

A similar reasoning is explained in [99], see also [102] and Remark 5.3.9 below. For comparison,

(5.3.3)

we emphasise that the former reference uses a different normalisation, without the prefactor
a/sina in (5.3.2). The prefactor is important in the limit @« — 7 that we are interested in,
however, because «/sina diverges. We will show that this formal calculation indeed provides
the total mass of (5.3.1) for all & < 7%, by relying on the described bosonisation for o> < 0

and using an additional analytic extension to access the parameter range o € [0, 72).

Remark 5.3.1: The measures in (5.3.1) can be motivated in the context of Virasoro coadjoint
orbits. Any o € R corresponds to an orbit of Diff (T) acting on vit*. The action has geometrical
meaning in that its Hamiltonian flow (with respect to the natural Kirillov-Kostant-Souriau

symplectic form on the orbit) generates the U(1)-action ¢/ (-) — (- +1).

5.3.1 Measure regularisation

In order to evaluate expectations with respect to the (finite) quotient measure .# 2, it is helpful
to approximate the (infinite) unquotiented measure .%2 by finite measures. Since these
measures are finite, they necessarily break the PSL(2,R)-invariance. The following convenient

regularisation was proposed in [98]. For @ € (0,7) UiR consider the measures given by

2 2 1

A% () = exp {iz / o'2(1) dr} d8%(¢),  where p =P(¢). (5.3.4)
o° Jo

By definition, this measure is supported on functions ¢ with ¢(0) = 0. In particular, %2
differs from the limiting case @ /" 7 of ./V(;’2 only by rotation by the random angle ®, which is
chosen independently and uniformly on T. As hinted at earlier, these measures are finite and

we can explicitly determine their partition function (i.e. total mass):

Proposition 5.3.2: For any @ € (0,7) UiR we have

| a 202 /02
e (D'IT T):_— .
o (7! M SIN \2 ;02

(5.3.5)
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Note that this mass diverges as @ /* , which is expected due to the PSL(2,R)-invariance of
the limiting measure (resp. the limiting measure with an additional uniform rotation). However,
we are able to obtain precise control over the divergence of mass along PSL(2,R)-orbits (see
Lemma 5.3.5). As a consequence, we obtain the following approximation result for expectations

of non-negative functionals of the quotiented Schwarzian measure:

Proposition 5.3.3: Let F: Diff' (T)/PSL(2,R) — [0, co] be a continuous function. Then

dr(m—a)

Flp)dity>(¢) = lim 5 F(p)dA7%(p), (5.3.6)

/Diff‘ (T)/PSL(2,R) o Diff' (T)

where, by slight abuse of notation, on the right-hand side we denote the lift of F" along the
quotient map Diff! (T) —» Diff! (T)/PSL(2,R) by F as well.
5.3.1.1 Regularised measures ./VU“2 as a /" n: Proof of Proposition 5.3.3

The proposition follows from the following lemmas. Recall the parametrisation (5.1.25) of
PSL(2,R) and that in this parametrisation, the Haar measure takes the form (5.1.26).

Lemma5.3.4: For ¢, , as in (5.1.25), with p = |z| < 1,

1 2
1+p
’2 _
./0 @y a(s)ds = = (5.3.7)

1-p? . . . .
1+£ 7§ 20 are an approximate identity on T, i.e. for any

Moreover, as p /' 1 the functions

feC(D), ,

£ / soz?o(s)f(s)ds]:f(e), z=pe?®, (5.3.8)

lim
1+p2

p/1

uniformly in 6 € T.

Proof. Since

i2nt
2rp, q(t) _ Ji2na € —<
e =e 1 oin; e (5.3.9)
it suffices to consider Mobius transformations of Dy, given by
w— G (w)= =% (5.3.10)
1-wz
In order to prove (5.3.7) we then need to show that
1 1 d 2nt _ 2 1+ 2
/ K B 2 P (5.3.11)
(2m)2 Jo |dt \1—ei2nt 3 1-]zJ?
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To see this, expand

i2nt _ o
le—ZntZ = —Z+Ze’2’”"2”‘1(1 -22). (5.3.12)
—¢ < n=1
Therefore,
1 L g [ ei2nt— 7 \[? o .
(27T)2/0 E(Tﬂmz) dr= ) Iz (1= 2), (5.3.13)
n=1

The right-hand side equals

3 S N X 1+]z)?
Z(n+ 1)2|Z|2n—22n2|z|2n+2(n— D?|z)*" = 1 +4]z)? _2|Z|2+Z2|Z|2n _ |z
n=0 n=1 n=2 )

1=z’
(5.3.14)
which gives (5.3.11). The claim (5.3.8) follows similarly. Since C*°(T) is dense in C(T), it
suffices to assume that f € C*(T). Then

Fley=> ™ f, (5.3.15)

kez

with ( fi)kez € €'. Therefore

1 1 d ei27rt _
(27)2 A dr (1 _ei27rtz)

2 )
F@yde=Y" fi > Lisan(n+ k)22 (1= |2
k n=1

- kaeﬂﬂk@qk(p) (5.3.16)
k
with

4x(p) = ) Luz—kn(n+k)p™ > (1= p?)?. (5.3.17)

n=1

Analogous to (5.3.14),

4x(p) = ) Lizoiot (0 Dt 1+ K) 0™ =2 ) Lz gn(n+ k) o™

n=0 n=1

+ Z Lis—gs1 (n=1D)(n=1+k)p2* = Z L1 202 % +0(1). (5.3.18)
n=2 n=2
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Therefore as p 7 1,
(1=p")qi(p) =01, lim(1-p*)qu(p) =2. (5.3.19)
By dominated convergence, (5.3.8) follows. O

Lemma 5.3.5: For ¢ € Diff' (T), define

dr(m—a)

D%(p) = 5
o PSL(2,R)

)
exp { 2(71 ) / (o) (1) dt} dvg(y).  (5.3.20)
Then the following holds.

1. For any ¢ € Diff'(T),

2
D(p) < =X (5.3.21)
T +a
2. For any ¢ € Diff!(T),
lim D(¢) = 1. (5.3.22)
a—mn—
Proof. First, we prove (5.3.21). By (5.1.26),
4pdp d6 da
[ PO @)= eper oo T (5.3.23)
PSL(2.R) 0<6<1 (1-p2)

0<a<l

Recall the parameterisation (5.1.25). Clearly one has (¢-,a 0 ¢) = (¢z00¢)" = (¢, 0¢)¢".
Upon the reparametrisation s = ¢(7), we get

! U g2(s)
/ (¢za09)*(1)dr = / 0 ds. (53.24)
0 o (¢71)(s)
We insert this into (5.3.20) and apply Jensen’s inequality to obtain
2 /2
o 4r(m—a) 2(x*-a?) 0(s) 4pdp do
B ((’0) - o2 Os,o<1eX o2 0 ((,0'1) (s) (1_ 2)2’
0<6<1
§) ex s .
o7 gty Tap L e oz 1- pz (e ()] (1-p2)?

(5.3.25)



5.3 Expectation via regularisation 115

Then, by Tonelli’s theorem,

Da(@ﬁm(n—a)/ /lexp{_Z(ﬂz—az).lﬂoz. 1 }ds 4pdp
o? 0<p<1J0 o? 1-p% (¢71)(s) (1-p?)?

dn(r-a) (! {_ 2~ a?) }02(90-1)'(@

I /o P2y ()] 207 —a?) & (5.3.26)
4 ( _ ) 1 2( —1)/()

< dl :_2 @ '/0 S il ds
2

2(n?—-a?)

Cr+a

To find the limit of D (), recall that {%cp’zzo} " is an approximate identity. More precisely,
“p

/1 @5 (s) 1+ p2
d —
0

I
s 1_p2'( +0(1)) asp /1, (5.327)

(¢71)(0)

uniformly in 6 € T, by Lemma 5.3.4. Therefore, as @ " 7,

_2(7r2—az) ! 90;,20(3) 4pdp

/OSP<16XP{ 7 e [T
B _ 2(7‘(2—(}’2) 0'2[(90_])/(9)"'0(1)] (5.3.28)
_eXp{ 0'2[(()0_1)’(9)+0(1)]} 2(71-2_&2) +0(1)
_ a2 eT)(e)
- 2(n2-a?)

(1+0(1)).

Integration in 6 finishes the proof. O
Proof of Proposition 5.3.3. It follows from the definition of %2 that

2 2 1 _
exp{_¥ /0 ¢'2(t)dt}d/ﬂo_z(<p):d/V;z(goo)@d@, (5.3.29)

where
e()=¢o(:)+0, for® € [0,1). (5.3.30)

Therefore,

20n?-a?) ', —
/I).ﬂ.(T)F(¢)d/V§3(¢)=/D_EI(T)F(¢)eXP{—T/O ¢ (l)dl}dﬂo.z(go). (5.3.31)
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Using the definition of D® given in (5.3.20) and the factorisation of %z as stated in (5.2.45),

1
IO [ Ry exp{—LQ“Q) JREl dr}d%(w)
Diff' (T) o 0

o2

/D'ff'(T)/PSL(zR)Da((’D)F("D)dﬂ(ﬂ(s@)- (5.3.32)
1 >

If [ F(¢)d 2 (¢) is finite, then using Lemma 5.3.5 and the Dominated Convergence Theorem

we obtain the desired result. If, on the other hand, / F(¢)dA () is infinite, then we get the
desired by Fatou’s Lemma.

O
5.3.1.2  Partition function of ./"",: Proof of Proposition 5.3.2

The first step of the proof of Proposition 5.3.2 is the following application of the change of
measure formula for the unnormalised Malliavin—Shavgulidze measure.

Proposition 5.3.6: For any « € (0,7) UiR we have

8sin® &
NG (Diffl(T)) = ,a / exp 2
v sina Jpif! (T)

o2 '90’(0)} da%(¢). (5.3.33)
Remark 5.3.7: All functions of « in Proposition 5.3.6 are even. Therefore, their values are
real.

Proof. For @ =0 the statement is obvious. First we consider a € (0, 7). Take

1] 1 1
1) == t t—= 1
F® 2 [tan% an(a( 2))+
It is easy to check that

Sy(1) =2a%,

(5.3.34)

, / a 7 _ ) @

fO)=f1)=—,  —-—==——=2atan-.  (5.3.35)
S (1) 2

Thus, it follows from Proposition 5.2.6 and the definition of ./Vof’2 which was given in (5.3.4)

that for any non-negative continuous functional F on Diff! (T) we have

[ Feare
Diff' (T)
3 sina

4o a 207
[ Fep exp{__ztan_.¢<o>+_2
@  Jpiff!(T) o 2 o

sina

1
/ go'z(r)dr}d/tffz(@. (5.3.36)
0
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Now we choose F to be

8sin®¢
F(g) =exp o (OFe (5.3.37)
which guarantees that
da a ,
F(fop)=exp{—tan=-¢'(0), (5.3.38)
o 2

and the claim follows. Finally, for @ € iR the proof is exactly the same if we take

=4 [ gn(io -3

. (5.3.39)

O

Now we make sense of and prove [98, Equation (20)]. For A > 1 this is a direct change

of variable and related to the construction in [99] of global equivariant Darboux charts, see
Remark 5.3.9.

Lemma5.3.8: For any A € (—1,+400) we have

-222 1 0.1
exp : B8, (&) =
/ o2(A+1) /01 g |

o2

. _2(10g(/l+1))2
Viro T

} . (5.3.40)

Proof. We follow the argument from Appendix B in [100]. Consider g € Diffi [0,1] given by

(A+ 1)t
1) = . 5.3.41
8(1)=—— ( )
It is easy to see that
A+1 2(A+1)4
"(t) = ——, "(t) = ———, S, (1) =0. 5.3.42
CO=Gar SO SO (5:3.42)
Then, according to Proposition 5.2.6,
—2log(1+1),1
dgtg e () ~22 1 1
0T =exp 3 T 0 (5.3.43)
dB 5 (¢) o [ e€Wdr
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Therefore,
2
=21 1 1 2log(A+1)
/exp 5 (1— ) : (f) % , (5.3.44)
o A+1 /0 £ dy \/_0- 200
which finishes the proof. O

Remark 5.3.9: The construction from the proof above is related to the construction of global
equivariant Darboux charts proposed in [99] as follows: For « € iR take f as in the proof
of Proposition 5.3.6 and g as in the proof of Lemma 5.3.8 with 1 = ¢/®/ —1. Then go foP
corresponds to map g~ ! as defined in [99] under suitable normalisation. However, this map

does not generalize to the case @ > 0.

We use the following analytic continuation lemma to access A € C satisfying |4+ 1| = 1.
Lemma5.3.10: Let # be a non-negative measure on R,. Assume that there exists &€ > 0
such that the exponential moment generating function F(z) = / exp (zX)dP (X) exists for
all z € [0,&). Assume further that for some R > 0, F(z) can be analytically continued for
all z € Dg. Then f exp (zX)dP(X) converges absolutely for all z € Dg, and is equal to the

analytic continuation of F(z) to Dg.

Proof. Since P supported on R, by Tonelli’s Theorem,

F(z)= Zz

n>0

X"dP (X
f P( ) (5.3.45)

for z € [0,&). Given that F(z) is analytic in Dg, we conclude that the right-hand side converges
absolutely for z € Dg. Thus, by Tonelli’s Theorem again, Eexp (zX) converges for z € [0, R)
and is equal to F(z). We can continue the equality for the whole disc D, since |z"X"| < |z|"X",

and all expressions are absolutely convergent in Dg. O

Lemma5.3.11: For any A € C with |1+ 1| =1 we have

212 1 2(10g(/l+1))2
. = e e 5.3.46
/ exp 0t /01 . (f) ﬁa P{ = } ( )

Here log(A+ 1) is taken in [—inx,im), making the right-hand side of (5.3.46) continuous for A

in question.
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Observe that the right-hand side of (5.3.46) is not a well-defined analytic function on the whole

complex plane. Thus, the left-hand side of (5.3.46) does not converge for some values of A.

Proof. We prove that we can analytically continue the equality from Lemma 5.3.8. Consider
the function

F(2) = / exp | —————— tdB%(&). (5.3.47)
2 &() 7
o f et dt
0
We are interested in taking z = —%. Observe that since z =-2((4+1) -2+ ﬁ), we have that

A in question correspond to z € [0,8], and A € (—1, 00) corresponds to z € (—o0,0].
First, we notice that it follows from Lemma 5.6.1 that there exists € > 0 such that the integral
in (5.3.47) converges absolutely for all z € D, defining an analytic function in Dy.
Secondly, observe that from (5.3.40) for A € (—1,+c0) we obtain that for all z € (—¢,0], we

have

F(z) =

2
2 (log(_Z+4+ ‘Zz_gz)) (5.3.48)

1
expi ——
V2no o2 4
Notice that the right-hand side in (5.3.48) defines an analytic function for |z| < 8. Indeed, the
only problematic point in Dg is z = 0, but around z = 0 the expression in (5.3.48) is analytic,
since different branches of the square root give rise to the values of log which differ only by a
sign which, in turn, is cancelled by taking the square. Now we use Lemma 5.3.10 and obtain

that for z € Dg the expectation in (5.3.47) converges and

2
1 2 44+ VZZ_8
/exp —* l4g0lg = exp ——(log( <t +4Z Z)) . (5.3.49)

o2 [ledr| R W

for all z € Dg. Also note that by taking z — 8 and monotone convergence we can continue
identity for z = 8 as well. We finish the proof by using the fact that values of A with |1+ 1| =1
correspond to z € [0, 8]. |

Proof of Proposition 5.3.2. By Proposition 5.3.6 and (5.3.4) we have

8sin’ & 1
g (Diﬂ"l (T)) - 2 / expl ——52 - — d8% (¢) (5.3.50)
SINa@ Jcylo,1] o /0 e () dt T
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where we used that for ¢ = P(£), we have

1

PO —
/(; ef(t) dt

(5.3.51)

Applying Lemma 5.3.11 with A = ¢® — 1 for a € (0,7) or Lemma 5.3.8 with 1 = ¢/l - 1 for
a € iR we get

8sin” ¢ 1 1 202
2 0,1
exp . dB>, (¢) = exp{ } , (5.3.52)
/co[o,l] o? 5 Lewg | 7 \2no o?
which concludes the proof. O

5.4 Partition function and proofs of main theorems

Theorem 5.1.1 was already proved in Proposition 5.2.9, and the corresponding change of
measure formula with general metric of Theorem 5.1.3 was proved in Proposition 5.2.12. Thus
it remains to prove Theorem 5.1.2 and the corresponding statement for the partition function

with general metric in Theorem 5.1.3.

Proof of Theorem 5.1.2. Our goal is to prove

o 0.2 2
= / exp(— > )Sinh(27rk)2kdk (5.4.1)
0

= / ¢~ Esinh(27V2E) 2dE.
0

For the first line in (5.4.1) we apply Proposition 5.3.3 and Proposition 5.3.2:

|
—_

M (Diff‘ (T)/PSL(2, R)) -

. 4n(m—a) « e2a’lo?
= lim

a—=r- g2 sina\Dgg2

(5.4.2)

|
—_
[\
qm' 3
~———
A
[\S}
a
>4
;=)
—_
[\
tS ks
~————
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The second line in (5.4.1) follows from an elementary integration by parts:

) 212 ) 21,2
k 4 k
/ exp |- 22 | sinh(27k) 2k dk = = | exp [~ T2 | cosh(2rk) dk
0 2 0'2 0 2
2 00 2k2
=Z [ ewp|-Z +27rk) dk (5.4.3)
0% J-x
2 3/2 272
o ef)
(oA (oa
The third line then follows by changing variables to E = k2. O

Proof of (5.1.17) in Theorem 5.1.3. By the definition of the Schwarzian measure with metric
and the representation (5.2.48), the total mass of % is simply

1 1
d
Z((fﬁ)eXP{ / S(h.t)— } where o, = / p(t)dr. (5.4.4)
0 p(7) 0
As already remarked in (5.2.47), by integrating by parts, the term inside the exponential can be
written ,
1 1 ” ’ ”
d h 1(h d
/ S(h,1)— :/ ( (T)) __( (T)) ’
0 W) Jo \\W(@)] 2\KW(7)] | (7)
1 ” ’ ” 2
L o
0 R(r) J\w(t)] 2\ n()}
1/1 h//(T)Z
== dr,
2Jo W(1)}
which gives the claim. O

5.5 Appendix: Calculation of formal correlation functions

The truncated correlation functions are formally defined as the functional derivatives

5 oo 5
5(1/p)(m1)  6(1/p) (i) lo=o

(S(11);:8(T))o2 = ,logZ(p). (5.5.1)

In the following we make sense of this expression in a distributional sense by considering the k-
th variation of log Z(p): For hy,...,hi € C*(T) define p¢,.. ¢ Vial/pe,. e, =1/p +Zf=1 €h;.
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Then
k 0"
[D]/plogZ(p)](hl,.._,hk) = m|010g(z(/?el ..... ek))
k (5.5.2)
= [T ]anhtm--hm) (S-S,
i=1
where the last line is understood as defining (5.5.1) as a k-variate distribution.
Proposition 5.5.1: For 0c2>0,k>1and hy,--,hy € C*(T) we have
(DY, 02 Z(p)]| (1)
= (-D)*k1 2k / drhll; sl
1g;sk ’ (5.5.3)
+(=Dfe? X" o logZ] (o) [ ] (|B|!/ dr| | hb(T)) :
nmePart[ k] Ben beB
where the sum in the last line is over all partitions 7 = {Bj, ..., Bz} of {1,...,k}.
Corollary 5.5.2: For non-coinciding 71, -, 7, € T we have

(S(); 18 (102 = (- o [log 2] W (0?) =222k > * V4 (k= D)1, (5.54)

Thus the Schwarzian correlators are constant away from coinciding points and their values
(up to factors of %) are given by the cumulants of the Boltzmann-weighted spectral density
e E p(E)dE, see (5.1.14). The untruncated Schwarzian correlators for non-coinciding points
are therefore equal to the moments of the spectral measure p(E) (again up to factors of o2).
We note that this relationship has been predicted by Stanford and Witten [96, Appendix C].

More generally, by (5.5.2) and (5.5.3) we can express the truncated Schwarzian correlators
completely in terms of multivariate (derivatives of) d-functions in the variables 7;. While the

general expression is somewhat messy, we can easily derive (5.1.21) and (5.1.22):

(S8(1))g2 =—0*[log Z] (%) = 2n + 3072 (5.5.5)
and

(S(0)S(7))52 = (S(0);S(7)) g2 +(S5(0))2(S(7)) 2 (5.5.6)

= [27%c 2+ 30+ 2n+ 202 =202 [(2n + 20D)]6(7) = 2025” (7).
2 2 2
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Proof of Proposition 5.5.1. We treat the first and second summand in

1 7”2
logZ(p) = = / ’°—3+1ogZ(a§) (5.5.7)
2) p

separately. For the second term, we simply apply the multivariate version Faa di Bruno’s

formula:

— n |B|
(D), g Z()1| (k..o = 2 ozl D( (D3] UZ({hb}bEd) .
(5.5.8)

Recall that 0'[2) = f p and check that

(D3] (hs}sec) = (-D)P|B|1o 2171+ / [ |7 .

beB

This yields the second summand on the right hand side of (5.5.3). For the first summand write

1 fp? 1 (1Y
S N loe—| = ) S
2//33 2/(ng) (p) I 410

For smooth functions f,h € C*(T) and f > 0 we have for € > 0 sufficiently small

D (m)
log(f+€h) (f+eh) =(f"+€l) (logf+z (_) )

f
! (5.5.11)
f/ 1k h k-1 h ’
—reen| L v (2) ()]
f ,Z; 7lo\r
with the series converging uniformly on T. Hence, we have for sufficiently small € > O that
Z( e)k 2(k— 1)/h,2hk—2' (5.5.12)
k>2
In other words
nl 2 ke
[D’f/pF(l/p)]\pzaz(h,...,h>:(—1)’%!02“ Vs / W2RE2, (5.5.13)

The general derivative [D’lC /pF (1/p)] |p202 (hi,...,hy) follows by polarisation of this identity
and yields the first summand on the right hand side (5.5.3). O
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5.6 Appendix: Change of variables: Proof of Proposition 5.2.6

Let ‘W, denote the Wiener measure with variance o> on Co g [0, 1] = { f € C[0,1]| f(0) = 0},
and recall the definition of the unnormalised Brownian bridge Boa_él from O to a in time 1 from
Definition 5.2.1. Then by [RevuzYor, Exercise (3.16)], for any X C Cp free [0, 1],

W,2(X) = /R B8%!(X)da. (5.6.1)

Lemma5.6.1: Let # be either Bﬁ’f for some a € Rand 7 > 0, or W, > (in this case we put
T =1). Then there exists £ > 0 such that

£
exp| —— [dP (&) < oo. (5.6.2)
/ (‘/(‘)Tgf(T) d‘r)

Proof. If P = B;;T, then let & be a Brownian bridge distributed according to the probability

measure V2T o exp (27?;) dB;;T (£), and according to ‘W, otherwise. Then

1 —
————>| <P| min &) <-1|<C e, (5.6.3)
/0 e dr 1€[0,eA-1)]
for some C > 0, independent of A > 10/T. O

Recall the left-composition operator L as in (5.2.18). The following lemma is key for the

calculations. It verifies formula (7) in [98] and (2.7) in [100], which are key for the calculations.

Lemma5.6.2: Let f € Diff>[0,1], and let f¥*W » = fﬁ_l(W(,z be the push-forward of W,
under P~'o L, 10P=(PloLso P)_l. Then

dffFW,.(W) 1
dW(W) 7 (0) £/ (1)

1 144 0 124 1
Xexp{; []},((0)) Py (0) — ];,((1)) Py (1)

+$/OISf(PW(t))(P(,V(Z))2dt}. (5.6.4)
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Proof. Let B(t) = c~'W(z) be a standard Brownian motion. The transformation W +— P~ o

Ly oP(W) corresponds to the transformation of B(t) given by

/Ot "B dr

B(t) = B(t)+o ' log f'| “———
/0 e’ B() dr

)—0'1 log £ (0). (5.6.5)

The problem reduces to the calculation of Radon-Nikodym derivative of the probability measure,

corresponding to the standard Brownian motion under the transformation inverse to (5.6.5).

Denote
/ "B 47
$(1) =2, (5.6.6)
Jy 7B dr
0
and
h(x) =log f’(x) —log f'(0). (5.6.7)
Using [123, Theorem 4.1.2], the Radon-Nikodym derivative is given by
1 1
dety (1+K) exp(—é(u) -3 / u* (1) dt), (5.6.8)
0

where ¢ denotes Skorokhod integral, det, is a Hilbert-Carleman (or Carleman-Fredholm)
determinant (see, e.g. [124, Chapter X]), u(t) = u[#](¢) is given by

d
u(t) = 2o h(g(0) = H (¢(0)¢' (1), (5.6.9)
and K = K[ ¢] is the Fréchet derivative of the map

I oB(7)
foe” dr

(B()refo11 + (0 h(B(1))efoa = (U_l 10gf'(#) -0 10gf'(0))
/o 7B dr re[0,1]

(5.6.10)
with respect to the Cameron-Martin space of Brownian motion, which we associate with the

Sobolev space H! = {g Slegllg = /01 (g’(t))zdt < o00,g(0) = 0}. Direct calculation shows that

1
(Kg)(1) =/0 k(t,5)g(s)ds,  with k(2,5) = =h"($(1)) ¢(1)¢"(s) +¥s<i h' ($(1)) ¢ (s).
(5.6.11)
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Integral. First, we calculate Skorokhod integral

! a'B(‘r)d aB(1)
5(u)=a15(h’(¢(z))¢’(r)):cr15(}/(/0 ‘ T)/ il ) (5.6.12)

/01 e’ B() dr 01 e B() dr

The process is not adapted because of the term /01 eB() dr. We use [123, Theorem 3.2.9] in
order to reduce the Skorokhod integral to a It6 integral. It follows from Lemma 5.6.1 that the

random variable

1
— (5.6.13)
/ e’ B dr
0
1s Malliavin smooth and that
1 oB(1)
1 ol e dr
t| 73 = ft 5 (5.6.14)
i eB®dr (/01 ¢TB(D) dr)

Thus, since u(¢) is also Malliavin smooth, using [123, Theorem 3.2.9] we get

FooB(1) g o B(1) 1 t
e T
sl /01 le = / % (F / e‘TB“)dr)Fe‘TBU) dB(1)
/0 eTB() dr /0 eTB() dr 0 0

-1
F:(fo1 e B(7) d‘r)

1 0'/1 "B gr
+/ [h”(¢(t))¢(t)¢’(t)+h’(¢(t))¢’(t)] | dr. .6.15)
0 /0 e"B(dr
We observe that the expression in square brackets is equal to
dr,
~|wmen). (5.6.16)

and calculate the second term in the right-hand side of (5.6.15) by integrating by parts

! 0-./;1 eO’B(T) dr
/ [h"(¢(t))¢(t)¢’(t)+h’(¢(z))¢'(;)]. Zh e Ty
0 ./(') e B(T) dr
1 o B(1)
= [ W80 G617
0 ./O e B() dr
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Integrating by parts once again we obtain
oB(1)

/01 e"B() dr

1 1
- /0 W (619 (1) dt=c /0 W (B¢ (D(1) dr

1
_oh()-o /0 h((0)¢ (1) dr
1
:O'h(l)—O'/ h(s)ds. (5.6.18)
0

We calculate the first term in the right-hand side of (5.6.15) by replacing e“8(") dB(r) =

o1 de”B) — 278" dt, and using 1td integration by parts

1 t
/ n (F/ e B d‘r) Fe”B" dB(1)
0 0

h/(l)e(TB(l) ~ h/(o)

O'fol B0 dr 0'/01 eB() dr

F=(f} e df)’1

_z ! ’ ’ | ! ” 72
> [ weme -0t [ @weoa

1
:cr‘lh’(l)qﬁ’(l)—a‘lh’(0)¢’(0)—%h(l)—a_I/ B (¢(1) ¢’ (1)dt. (5.6.19)
0

Therefore,

1 1
) =0 (K& () =W O O) 4351~ [ hisds=o7 [ 4" (00 6> 1)t

° ° (5.6.20)

Determinant. To calculate the Hilbert-Carleman determinant det, (1 + K), with K given by

(5.6.11), we use [124, Chapter XIII, Corollary 1.2]. In the notations from [124, Chapter XIII]

we have

Fi(1)Gi(s), 0O0<s<t<l;
k(t.s) = (5.6.21)
—Fr(1)Ga(s), 0<t<s<l,

with
Fit)=h(¢(1)(1-9(®),  FA()=H(s®)¢1),  Gi(s)=Gas)=¢'(s). (5.6.22)

According to [124, Chapter XIII, Corollary 1.2],

1
det;(1+K) :det(N1+N2U(1))-exp{/ Fz(s)Gg(s)ds}, (5.6.23)
0
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1 0 00
Ny = , Np= , (5.6.24)
00 01

and U(r) is a 2 X 2 matrix which satisfies the differential equation

U(O):(1 O), U'(z):—(Gl(t)Fl(t) Gl(t)FZ(t))U(t). (5.6.25)
01

where

G2(0)Fi(1) Ga2(0) F2(2)

We start by solving the differential equation (5.6.25). Note that

(5.6.26)

Gi(Fi(1) Gi(t)F2(2) — 1 (6(1)6 (1) 1-¢() ¢(1) '
G2 ()Fi(1)  G2(0)F2(2) 1-¢() (1)

Therefore, by rewriting (5.6.25), we see that U(t) = V(¢(z)) with

1- 1 _
V’(s)=—h’(s)( ’ S)V(S)=—h'(5)(1)(%(l 1)+2S21(_1 1))V(s>. (5.6.27)

-5 s
v(t)=vi(t)| |+va(r) (5.6.28)
1 1

is a representation of v(z) = V(¢)v(0) in terms of the orthogonal basis, then

Observe that if

va(t) =v2(0), (5.6.29)
vi(1) = v (0)e™"® — / "D (5)(25 = 1)va(s)ds (5.6.30)
0
=v1(0)e™"® —1,(0) ((2t —1)+e "D _2e=h® / ") ds) . (5.6.31)
0

In particular,

1
va(1) =v2(0), vl(l):vl(O)e_h(1)+v2(O)(Ze_h(l)/ e_h(s)ds—e_h(l)—l). (5.6.32)
0
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V(l)(1 = eh(l)(l) (5.6.33)
1 1

_ _ 1
V(l)( 1 :( 1)+(2eh(1)/ eh<S>ds—eh<1>—1)(l) (5.6.34)
1 1 0 !

which is equivalent to

Therefore,

1+e7 "M —e‘h(l)fl e"ds -1 +e‘h(1)/l ") ds
U(l)y=Vv(1)= - 20 . (5.6.35)
e—h(l) _e—h(l)/(') eh(s) ds e—h(l)fo eh(s) ds
Thus,
1
det (N1 +N2U(1)) = / ") ds. (5.6.36)
0

Also,

1 1 1 1
‘/0 Fz(s)Gz(s)ds:/O W (&(s))e(s)e (s)dsz/o h(t)tdt:h(l)—/o h(t)dt. (5.6.37)

Combining (5.6.23), (5.6.36), and (5.6.37) we obtain

1 1
det2(1+K):exp(— / h(t)dt)- / ") ds. (5.6.38)
0 0

Final result. Bringing together (5.6.38), (5.6.20), (5.6.7), and the formula for the Radon-
Nikodym derivative (5.6.8) we get the desired result. O

Proposition 5.2.6 is a straightforward consequence of the previous lemma. For convenience,

we restate it as the following corollary.

Corollary 5.6.3: Suppose f € Diff>[0,1]. Denote b = log f’(1) —log f’(0). Let fﬁB(Z’zl =
fﬁ_lﬂg’; be the push-forward of B;;l under P~ oL 1oP=(PloLyso P)_l. Then for any
a €R, f#8%! is absolutely continuous with respect to 8! and

(o (o

df* 8 () ! L[/, (), Lo RE:
BEI(E) \/f'(o)f’(—l)exp{ﬁ [f’(O) PO =5 Pf(”]+?/o Sy (Pe(0) (Petr) dl}'
(5.6.39)
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Proof. The corollary follows immediately by combining Lemma 5.6.2, the decomposition
(5.6.1), the fact that the right-hand side in Lemma 5.6.2 is continuous in W, and

([P—1 oLgo P]g)(n = logg'(1) —logg (0) +£(1). (5.6.40)

5.7 Appendix: Quotients of measures: Proof of Proposi-
tion 5.2.10

Suppose (X, d) is a complete separable metric space (not necessarily locally compact). Suppose
a locally compact Hausdorff group G is acting properly and continuously on X from the right.
Then X /G is a Polish space’. Let v denote a left-invariant Haar measure on G and A denote
the modular function, such that v(-g) = Ag(g)v(:). Write n: X — X/G for the canonical
projection. Write Cj(X) for the space of continuous bounded functions equipped with the
compact-open topology. Denote by Cf‘inV(X ) the subspace of G-invariant functions equipped
with the subspace topology. Observe that 7*: Cp(X/G) — CbG_inV(X ),h — hom is abijection.
We say that a set A C X is G-(pre)compact it G4 ={g € G: ANAg # 0} is (pre)compact in
G. Furthermore, we say that a set A is G-tempered if it is G-precompact and moreover has a
G-precompact open neighbourhood U 2 A, such that UG 2 CI(AG). Write CbG_temp(X ) for
the space of bounded continuous functions whose support is G-tempered (note that this space

is not necessarily linear). For f € Cl?_temp (X) write

) = /G Fxg)dv(g). (5.7.1)

Note that f is G-invariant (i.e. f°(-g) = f*) and satisfies [ f(-g)]" = Ag(g)~' f*, for g € G.
The main goal of this appendix is to prove the following

3Separability is clear. Using continuity of the projection 7: X — X /G and paracompactness of X, one may
check that X/G is paracompact. Since G acts properly, it also is Hausdorff. As a consequence, it is normal
(Theorem of Jean Dieudonné). Moreover, since 7 is an open map, X/G is second countable and Urysohn’s
metrisation theorem implies that it is metrisable. Finally, complete metrisability follows from [125].
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Proposition 5.7.1: Suppose u is a Radon measure on X such that u(-g) =Ag(g)uforg e G.

Then there exists a unique Radon measure A on X /G such that
[ F@ae = [ e, (512)
X/G X

forany f € CbG_temp(X ). This extends to all non-negative f € C(X).

The modular function makes an appearance in our condition for G-covariance of u, since we are
working with a left-Haar measure v, but a right-action on X. Requiring that u(-g) = Ag(g) i,
tells us that the measure transforms like a left-Haar measure under the right action. Also,
note that in our application, the group G = PSL(2,R) is unimodular, hence Ag = 1, and the

requirement simply reduces to G-invariance of .
We follow [126, Section 2], with appropriate modifications to allow for X not locally compact.

Lemma5.7.2: For f ¢ Cf_temp(X), the function f” is well-defined as an element of
CE™(X).

Proof. Obviously, we have |f(xg)| < || fllcoLspt(grs £ (xg))- Moreover, note that spt(g — f(xg))
is contained in a G-translate of G, hence F2(x) <11 flleov(spt(g — f(xg))) < | f1leov(Gsptr)-
Consequently, f” is well-defined and uniformly bounded. G-invariance is clear from in-
variance of the Haar-measure v. Regarding continuity, suppose x, — x in X. Write X =
{x}U{x, }nen. Let U 2 spt(f) denote a G-precompact open neighbourhood of spt( f) such
that UG 2 Cl(spt(f)G). We may assume x C UG. In fact, otherwise f°(x,) =0 = f*(x) for
sufficiently large n and continuity is clear. Moreover, choosing go € G such that x € Ugo, we

can assume without loss of generality that X C Ugo. Now consider

00— £ (ea)] < / £ (x8) — £ (rag) | dv(g). (5.7.3)
G

Since f is bounded, it suffices to show that we can restrict the integral to a compact subset of
G (independently from n). Note for g € G we have |f(xg) — f(x,g)| # 0 only if UNn X g # 0.
Since Xg C Ugog, the set of such g is precompact. Consequently, the right hand side of (5.7.3)
goes to zero as n — oo by dominated convergence, proving continuity of f°. O

Lemma 5.7.3: For any x € X, there exists an open neighbourhood U > x which is G-tempered.

Proof. First we show that there exist arbitrarily small G-compact neighbourhoods: Consider a
decreasing sequence of neighbourhoods {U,, },exn;, such that (), U, = {x}. Assume that none of

the U,, is G-precompact, hence there exists a sequence x, € U, and g, € G, such that x, g, € U,,
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but with {g,} non-precompact. However, by definition of the U,,, we have x,, — x and x,,g,, — x,
and since G acts properly on X this implies that g, is precompact, leading to a contradiction.

Now suppose U is a G-compact neighbourhood of x. Then UG is a neighbourhood of xG in
X/G. Since X /G is metrisable, we may choose a sufficiently small ball 8 around [x] in X/G,
such that C1(8) C UG. Set U :=UNn~'(B). This is a G-tempered neighbourhood of x. O

Lemma 5.7.4: For any xo € X and € > 0 sufficiently small, there exists 0 < € < € and a
non-negative function v € C[f_temp(X ) with spt(v) € Be(xp), such that

0< inf V&)< sup W) <oo. (5.7.4)

x’EBe/(XQ) X'GBSI(X())

Proof. It suffices to show the following: for any xo € X and € > O sufficiently small, there
exists 0 < €’ < €, such that

0< inf (l%e(xo))(x')< sup (lge(xo))(x’)<oo, (5.7.5)

X’EBE/ (xO) xleBE/ (XO)

where we note that (l%e(xo))(x’) =v({g € G: X’'gN Bc(xp) # 0}). Indeed if above holds then
we can choose v = max (0,1 — 2f‘—edist(x,BE/z (x0))). Since %135/2 <v < 1p_, for small enough
€ > 0 the claim in (5.7.4) follows.

Now we address the claim (5.7.5). By continuity of the group action X X G — X, (x,g) — xg,
the preimage of B.(xp) under this map is an open neighbourhood of (x¢,id). In particular,
it contains a neighbourhood of the form B¢ (xo) X U, with U C G a neighbourhood of id. In
particular, for x” € B¢ (xg) we have U C {g € G: x’g N Bc(xo) # 0} and hence (I%E(X()))(x’) >
v(U) > 0. This proves the lower bound in (5.7.5). For the upper bound note that we may
assume € > 0 sufficiently small, such that B.(xg) is G-tempered. As a consequence {g €
G: x'gNBe(xp) # 0} € Gp,_(xy) for x" € Be(xp), so (1°

Be (XO))
proves the upper bound in (5.7.5). O

(x") £ v(Gp,_(x,)) < oo, which

Lemma5.7.5: Consider above setting and consider a Radon measure u on X. There exists a
countable family of non-negative functions u; € Cg_temp(X ), i € N, with bounded support,
such that u(u;) < co and such that {u*l)} is a partition of unity.
Moreover, writing X; = spt(u;) - G, the map f — f* is surjective from CE~**™P(X;) onto
CO-iv(X,).
Proof. Recall that by assumption X/G is Polish, hence Hausdorff and paracompact. This
implies that any open cover of X/G admits a subordinate partition of unity. We choose
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{xitien € X and € > 0, with {B¢, (x;) };en covering the whole space, such that B, (x;) is G-
tempered and u(Be, (x;)) < oo (which can be done by Lemma 5.7.3 and since u is Radon).
Furthermore, choose ¢; sufficiently small, such that the conclusion of Lemma 5.7.4 holds true:
There are 0 < €/ < ¢; and non-negative functions v; € CbG_temp(X ) supported in B, (x;), such
that v? is uniformly bounded away from zero and infinity on Be (x;).

The saturated balls {Be/ (x;)G} form an open cover of the quotient space X /G, hence admit
a subordinate partition of unity {&;};en, with i; € C,(X/G) and spt(it;) € Be; (x;)G. The lifts
i € CbG_i“V(X ) along 7: X — X /G form a partition of unity on X. Define the functions

V—; ﬂ*ﬁ,‘ on Be' ()C,‘)G
Vi ' (5.7.6)
0 otherwise.

Notice that u; > 0 is a well-defined bounded continuous function, is supported in B, (x;),
and satisfies ulb = *ii;. This concludes the construction of the u;. Moreover, by the same
construction as in (5.7.6), we see the surjectivity of f — f* from CE~*™P(X;) onto CE~ ™ (X;).

O

Proof of Proposition 5.7.1. In the following we write u(f) = /X fdu. We first note that the
condition u(-g) = Ag(g) u implies that u( fi fzb) = ,u(flbfz) forany fi, f> € CbG_temp(X). Indeed,

pif) = [ A [ @ i)
_ / dv(e) / du(xg)Ac(g) ™ fi(x) falxg)
G X
- [ @860 [ dutfitg™)
; p (5.7.7)
- [au)| [ av@aoter e ™| a0
X G
= [au] [ o™it o).
:,U(flbfZ),

where in second to last line we used that dv(g)Ag(g) ! =dv(g™h).
Consider {u;} as in Lemma 5.7.5 and write X; := spt(u;) - G for the saturation of the support.

For any i € N, define a linear functional /;: Cl?‘i“V(X,-) — R by

L:(h) = p(u;h) for for h e CET™(X;). (5.7.8)
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By (5.7.7) we have I;(f°) = u(u’ f) for any f € CbG_temp(Xi). Note that this characterises I; due
to the surjectivity of f > f” from CbG_temp(Xl-) onto Cg_i“V(Xi). Each /; is monotone, since
[u; s a positive measure, so ; is continuous with respect to the compact-open topology on
CZ~™(X;). Considering the push-forward along 71: X; — X;/G, we get I; :=m.1; € Cp(X;/G)*.
Continuity of /; follows from continuity of 7 and definition of the compact-open topologies.
Since uu; is a finite Radon measure, for any € > 0 there exists a compact set K. C X; such that
u(uih) < €||h||e for h € CbG‘i“"(X,-) with &|x_g = 0. Consequently, application of a variant of
the Riesz—Markov—Kakutani representation theorem [127, Theorem 7.10.6] to /; and the fact
that Cp(X;/G) = CbG_i“V(X,-) imply that there exists a unique finite Radon measure A; on X;/G,
such that

2(x)d;(xG) = / Ful(x) du(x) for f e €y ™ (X,). (5.7.9)
Xi/G Xi

In the following, also write A; for the push-forward along the inclusion X; < X. Since }; ulb =1,
we define A = }; A; and note that it satisfies (5.7.2) (using monotone convergence and positivity
of f > f°). This defines a locally finite Borel measure and since X /G is strongly Radon (as a
completely separable metric space), A is a Radon measure. Regarding uniqueness, note that for
any A satisfying (5.7.2), we have A - ui’ = A;. In particular, any other candidate for A constructed
using a different partition of unity will therefore agree, which implies that the so constructed

measure 1s unique.

The extension from f € CbG_temp(X ) to non-negative f € C(X) follows from the existence of
a partition of unity on X, consisting of functions with G-tempered supports, and monotone

convergence. O



Chapter 6
More on the Schwarzian field theory

This chapter provides additional context for the Schwarzian field theory and the mathematical
structures in relation to it. In Section 6.1 we follow discussions from the physics literature, and
argue how the Schwarzian action relates to other well-known models, namely Liouville field
theory, the SYK model, and JT-gravity. In Section 6.2 we revisit the Schwarzian derivative
and motivate it using cross-ratios and the real projective line. Then we discuss the theory of
coadjoint orbits and their classification in the context of loop groups and the Virasoro group.
In the latter case we can see how the family of Schwarzian measures appears naturally in this

geometric language.

6.1 Origins of the Schwarzian theory

In the following subsections we discuss how the Schwarzian action arises from other well-
known models in theoretical physics. Our discussion will follow a “physics style” discussion:
We explicitly do not follow rigorous arguments, but aim to provide a condensed presentation of

physics folklore.

6.1.1 Liouville field theory

From a high-level perspective, both Liouville field theory as well as the Schwarzian theory
can be constructed as a “geometric action” related to the Virasoro group [16, 128]. More
concretely, one can argue that the Schwarzian action arises in a simultaneous semiclassical and
“thin cylinder” limit of Liouville field theory [14].

Liouville theory has been extensively studied in the recent probabilistic literature. In particu-

lar, correlation functions under the Euclidean path integral measure D[¢]e~El¢] have been
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constructed, where .
S Le[9]=3(0:0)*+3(3,0)" +2¢™ = 570, 6.1.1)

To discuss the connection with the Schwarzian, we consider the action in Lorentzian signature:
1
FLLI0] = =5(0:0)"+3(0,9)" +2¢* = 34, (6.12)

The theories are connection by a formal Wick rotation 7 +— —i7. For example, one formally

expects that the partition functions agree

/ D[¢le Sl = / D[g]eStlel, (6.1.3)

Similar statements hold true for correlation functions, as elaborated by the Osterwalder—
Schrader theory. In the limit ¢ — oo, the Lorentzian theory localises on critical points of the
action. In the next paragraph we study the classical solutions in this situation.

,%]. In the limit of
large central charge ¢ — oo, the theory should be dominated by critical points (i.e. classical

We consider the Lorentzian Liouville theory on a strip (7,0) € Rx [0

solutions) of (6.1.2). Thermal correlators of the Lorentzian theory can be expressed in terms

of an Euclidean path integral on a cylinder (7,0) € [0,8] X [O, %] with periodic boundary

conditions in the time variable.
A Bar [V do L
tr(e”? ):/z)[qs]e—fo Tf o Lele] (6.1.4)

Classical solutions of Lorentzian Liouville theory on the strip. We are interested in the
classical solutions (i.e. the Euler-Lagrange equations) corresponding to the Lagrangian £y in

(6.1.2) on a strip (7,0) € Rx [0, %], equipped with boundary conditions at o =0, %:
—02¢+02p+4e*? =0. (6.1.5)

The boundary conditions of interest are Dirichlet—von Neumann in terms of the variable
V(r,o) =e @),

Vlg=0=0 and 0y|s=1/2V =2cos(a) with a€R;oUiR> (6.1.6)

These are referred to as ZZ-FZZT , boundary conditions. Note that the boundary behaviour of

¢ is singular in that ¢(7,0) — o0 as o \ 0. In order to eliminate ambiguities that arise due to
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this singularity, one can make the additional assumptions
Orlo=0V =2 and limd,0.V/V =0. (6.1.7)
™N\,0

Solutions to (6.1.5), subject to boundary conditions (6.1.6) have been extensively studied in
the physics literature and are connected to the coadjoint orbits of the Virasoro group (cf. [129]).
Following the treatment in [130], it is convenient to rephrase the Liouville equations (6.1.5)
in terms of V = ¢~% and to use light-cone coordinates x =7+ 0, X = 7 — 0. Then the Liouville

equation is equivalent to
Vo0:V—-0,VozV=1 and V>0. (6.1.8)

The light-cone coordinates highlight the conformal symmetry of Liouville’s equation: For any

smooth function ¢: R — R with £(7+1) = &(7) + 1, the reparametrisation

Ve(x,%) =& (x) 712 (2) 2V (£(x),£(%)) (6.1.9)

is also a solution. In other words, every solution comes with an associated Diff(S')-orbit of

solutions. It turns out that this is the only “degree of freedom”:

Proposition 6.1.1 ([130]): Consider 0 < @ < m or @ € i R5¢. Subject to ZZ-FZZT, boundary
conditions (6.1.6) and the regularity constraint (6.1.7), the solutions to Liouville’s equation
(6.1.8) are given by the Diff (S!)-orbit & Vé_@, where

V@ (x,%) = ésin(a[x—i]) = ésin(2a/0'). (6.1.10)

For @ > &, (6.1.10) and its associated orbits still defines a solution to the global Liouville
equation (6.1.8) with the positivity constraint for V dropped. However, these solutions don’t

correspond to regular solutions of (6.1.5).

The Hamiltonian for classical solutions. By a standard Legendre transformation, the Hamil-

tonian corresponding to (6.1.2) is given by
1
2

H[{¢()}o, {ms(0) }or | :/dO' [75+3(8s-0)° +26° =207 9], (6.1.11)
0
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where 74 is a momentum variables conjugate to ¢, hence the field space is equipped with the
canonical symplectic form w = / dod¢(o) Admg (o). We can evaluate the Hamiltonian of the

solutions given in Proposition 6.1.1:

Proposition 6.1.2: Let Vg(”) be as in Proposition 6.1.1 and write ¢éa)(r,o-) = —log(Vg(Q)).

Then we have

H[g:"] = H{pg" (1,0}, {0:0” (7,0)} o]
1 (6.1.12)
:—%/0 do[S(é(0),0) +2a%¢*(0)].

In other words, we see that the Hamiltonian of classical solutions with ZZ-FZZT, boundary
conditions is the action of the Schwarzian measure at parameter «. Also, note that the Hamilto-

nian (6.1.12) is constant in time 7, as it should for solutions to the Hamiltonian equations.

Proof. For V = e? one can use 8, = 8, — 0; and d; = 0, + Oz to show that generally

o2V 92V
TR = 1(0:0)* +1(0,¢0)* +2e*" - 329 (6.1.13)

Now, consider a solution Véa) as in Proposition 6.1.1. We have

0xVe = —310g(&) (x) Ve +& (x) (Ve (6.1.14)

And hence
0FVe = —1[log(£)" (x) = $10g(£")? (x) Ve + &% (x) (OFV )¢ (6.1.15)

Note that the term in brackets is the Schwarzian of £. Also, according to (6.1.10) we have
A2V = 0§V = —a”V. Consequently

N
e VfV(X’X) = —3[S(£(x),x) +22°¢% (%), (6.1.16)
i

and analogously for (6§V§) / Ve, with x replaced by X on the right hand side. Note that (6.1.16)
is chiral, in that it only depends on x = 7+ o and the same goes for (6§V§) / Ve, which only

depends on X =7 — 0. Since £(x+1) =&(x) + 1 is periodic with period one, we can use the
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“doubling trick”
V2 RVe 07V
H:/ do (t+0)+ (t—0)
0 Ve Ve
a2y,
:/ do =2 (o) (6.1.17)
0 Ve

1
= _%./0‘ do[S(&(0),0) +2a%E7 (o).

O
Schwarzian theory in the thin cylinder limit.
> 3
@/ dr {/ dan¢a,¢+/ dor [72+ 4 (3, 0)7 +26% - a§¢]}. (6.1.18)
0 0
At the formal path integral-level this is seen by a Hubbard-Stratonovich transform
exp[—¢ / (8:0)%/2] o / D[nrylexp[é / lingd-¢—73/2]]. (6.1.19)

In the following we make use of the above (rigorous) study of the classical Liouville equation to
given a (very much heuristic) “physics-style” explanation for the connection between Liouville
field theory and Schwarzian actions.

We have seen in Proposition 6.1.2 that the Schwarzian action (resp. more generally the family
of actions associated to coadjoint Virasoro orbits) appears as the Hamiltonian of classical
solutions (6.1.12) given appropriate boundary conditions. As such, the Schwarzian appears in
the Hamiltonian formulation of the action (6.1.18) in the semiclassical limit ¢ — oo, where the
quantum theory localises on classical solutions.

Suppose there is appropriate Hilbert-space formulation for Liouville field theory at central
charge ¢ and with ZZ-FZZT,, boundary conditions. That is, suppose there is Hamiltonian H
together with an appropriate Hilbert space and a representation of field operators ¢(c ), &4 (o).
For some (time-ordered) observable O[], typically a product of vertex operators e 19(To),

one can formally rewrite unnormalised thermal expectations as
1

B 2
r(O[F]e PPy = N / D¢ D[7410[] exp(—é / dT{ / d0'i7r¢07¢+7{[¢,7r¢]}),
0

77-F7ZIT, 0
(6.1.20)
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where the integral runs over field configurations satisfying ZZ-FZZT, boundary conditions,
and where N denotes an unspecified (potentially divergent) normalisation factor. For ¢ — oo
we expect the path integral to be dominated by field configurations ¢, 74 solving the classical
equations of motion, subject to ZZ-FZZT, boundary conditions. On the strip (7,0) € R X
[0,1/2], these are given by

¢;" (7,0 = §log(¢)) (+) + log(¢) (v~ o) ~ log[ L sin(a[¢(r+0) - £(r = 0)])]
£(r+0)-¢ (1-0)

tan(a[é(t+0)—E(t—0)])’
(6.1.21)

foré e Diff (S1). Here, we are working on the geometry of a cylinder with circumference 3. The

oy (r,0) = log(€) (t+0) + 3 log(¢) (T - o) —

claim(!) is now as follows: Taking g = ﬁ — 0 simultaneously, the dominant configurations

become time-independent and are of the form

0¢(0) = e (7,07) = $10g(¢) () + 4 log(¢') (~or) ~ log [ L sin(a [ () ~£(-o)D)]
£(0)-¢(-0) (6122
an(a[€(o) ~ (=)’

74.6(0) = Mpe(,0) = 310g(¢) (o) + 3 10g(¢) (~0) —a

For these the kinetic terms vanishes and the Hamiltonian is evaluated by Proposition 6.1.2,

which leaves us with

a2

tr(O eg2 0@ 1 1l 2402
Jim TOL0le 7 7 / DI£]0[gg]en h WISE@ D20,
C—00 tr(e—mHé,n) ZQ,O-Z B ’

(6.1.23)
for some partition function Z, ;2. More concretely, (6.1.23) relates operator insertions in

Liouville theory to such in Schwarzian field theory: From (6.1.22) one sees that

ay¢' ()¢’ (-o)

[
sn(alé@) —eop | @

el¢(T,U) > el¢§(0') — Oa(—O',O')I — [

This also holds true for @ = 0, where it is understood that ésin(a[f () =&(=0))D|a=0 =
&(0) —&(—0). In other words, vertex operator insertions e/#(™?) in Liouville theory become
cross-ratio observables on the Schwarzian side.

In (6.1.23) we suppressed details regarding the integration measure of £. In order to really
identify the right-hand side as the Schwarzian field theory, we would like to show that the
integration measure for £ agrees with the one in (2.2.1). In geometric parlance, we would like

it to be the symplectic volume measure on the appropriate Virasoro coadjoint orbit. In fact,
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recall that in the Hamiltonian path integral (6.1.20), the measure D[¢]D[n4] is interpreted
as the volume form associated to the canonical symplectic form w = /01/ *do d¢(o) Admg (o).

Inserting (6.1.22), using the “doubling trick” and dismissing total derivatives, one obtains

w= ./0 [dlog(&’ (o)) Adlog(&' (o)) —2a2dé(o) AdE' (0)], (6.1.25)

which agrees with the KKS-form on the Virasoro coadjoint orbits (6.2.38). This should reassure
us that the right-hand side of (6.1.23) really is the Schwarzian field theory. Since the latter is
invariant under rotations/translations along the circle, we can translate o — o +1/2 to ease the

comparison with out definition in (2.2.1). Consequently, we end up with

Claim 6.1.3: Consider the Hamiltonian operator A, for Lorentzian Liouville field theory
on a strip (7,0) €e Rx [0, ] with ZZ-FZZT, boundary conditions. For a finite family /; € R

and o5 € [0, 2] ieT,and o > 0, we expect

l; 25 l; 1
lim tr(H AN “) [n Oi(3-oun3+o)| | (6.1.26)

f—o0

We reiterate that all of the above is conjectural. In order to make this rigorous, one would
require a Hilbert space formulation of Lorentzian Liouville field theory on a strip. Alternatively,
one can reinterpret the left hand side in terms of the thermal (Euclidean) path integral, in which
case it reduces to a questions about Liouville field theory on the cylinder/annulus. The latter
has been studied in the recent mathematical literature [131, 132], which may serve as a starting

point for a rigorous study.

Boundary operator. Instead of imposing the ZZ-FZZT, boundary conditions as part of the
integral measure we can impose them for critical points of the action by adding a “boundary
term” to the action. We keep the Dirichlet (ZZ) boundary condition at o =0, i.e. V|y= =
e~ ?| =0 = 0, but drop the von Neumann (FZZT,,) boundary condition 9, V|- /2 =2cos(a) (or
equivalently d,¢ = —2cos(a)e? at o = 1/2), while adding a term

Sy, [#] = / dr [-2cos(a)e?™1/?)] (6.1.27)

to the action. we can impose the boundary condition as part of the variational equations. We

) (a)
refer to e[S [9] 55 4 “boundary operator insertion” for Liouville field theory: In the
semiclassical limit, this insertion “shifts” the boundary condition at o~ = 1/2 from FZZT, to

FZ7ZT,. According to (6.1.24), we can interpret the boundary operator in the Schwarzian limit.
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In that case, using using (6.1.24) with @ =0 and é(o+ 1) =&(0) + 1, we have

o, YEDED)

£(1)=£(0)

Consequently, using 1 —cos(a) =2 sinz(%), the boundary operator insertion becomes
oSoan 1S 01 |, 4sin®(5)€(0)

Claim 6.1.4: In other words, for observables O((f) =0, (s;,t;), we expect

=¢'(0).

[Hioc(yi)](gych [HiOéi)e4sin2(%)§’(0)]gch

[1]¢SyCh - [e4sin2(%)§'(0)](5)ch

(6.1.28)

(6.1.29)

(6.1.30)

In fact, a very similar statement is the “key lemma” used by Losev in [6] in order to calculate

Schwarzian correlation functions. There is it proved using a change-of-variables formula for

the Schwarzian field theory. It is satisfying to see that it has a somewhat clear interpretation

from the Liouville perspective.

Heuristic for the solution of the Schwarzian Let (-), and [-], denote the normalised and

unnormalised expectations of Schwarzian field theory at parameter @ € R>oUiR >, respectively.

Here we’d like to present a heuristic calculation of the partition function of Schwarzian theory,

using the “boundary operator” representation in (6.1.30).

Proposition 6.1.5: Suppose (6.1.30) holds for @ < 7. Then we have

a

[1a

- sin(a)

e” [1]o

(6.1.31)

The partition function [1] is usually fixed by convention (in our case we impose it to be equal

to the {-regularised determinant of Dirichlet Laplacian).
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Proof. First step:

[¢'(0) e4sin2(a/2)<p’(0)] 0

9. loa[e4s°(@/2¢" (01 _ 9 cin(y
o log[ Jo @ [e4sin”(@/2¢' (0)]

[0 (0. et /2¢O

=2sin(a@) —

[e4sm (a/2)¢,o'(0)]0
PNCICIE
i) £ Ol

sin(a)  [1a

=2«

Consequently

[e4sin2(a/2)<p/(0)]0 — eaz [1]0

By translational invariance, application of (6.1.30) and (6.1.33) we get

[¢”(0)]a
Oy log[1]y =2a0———
[1]e
5 sinz(a) [90/2(0)e4sin2(a/2)t,0’(0)]0
=2«
a? [e4sin(@/2)¢'(0)],
)
sin“(a) 1 1 1 2
= — Op (== g e
a? e 2sin(a) (2s1n(a) ")
@ 2
= 0,1 “1.
¢ Og[sin(oz)e |
Consequently
a 2
[1]e = ———¢“ [1]o.
sin(a)

This determined the partition function.

(6.1.32)

(6.1.33)

(6.1.34)

(6.1.35)

O

Channel duality and boundary states. In the context boundary conformal field theory, there

is a relatively well-established principle of channel duality (or open/closed string duality),

which relates thermal expectations in a theory with spatial boundary conditions (such as the left

hand side of (6.1.20)) to quantum transition amplitudes between appropriate boundary states

(or branes). Roughly speaking, this amounts to swapping the role of space- and time-variables.

In the context of Liouville theory with ZZ-FZZT, boundary conditions, the statement for the
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partition function would be

'y _ 40 gyclo
tr(e PHea)y = (77| e B e

FZZTq.), (6.1.36)

where ag > 0 is some universal constant, Hg10 is a Hamiltonian for field configurations on a
circle, and the bra/ket-states are certain “boundary states”. We mention this, since it provides
an alternative starting point to studying the Schwarzian limit from the Liouville field theory,

which is perhaps closer to currently available methods in constructive field theory.

6.1.2 SYK model

The Sachdev—-Ye—Kitaev (SYK) model resembles a family of fermions with mean-field spin-
glass-type interactions. The typical setup consists of 2N Majorana fermions {y;}i=1.. 2~

interacting via a quartic action with i.i.d. Gaussian couplings J;;, where 1 <i < j <k <[ <2N:

H== > Jyu XiXiXexi. (6.1.37)
1<i<j<k<I<2N

Algebraically, referring to x; as Majorana fermions means that we impose the *-algebra x; = x;
and {x;, x;} = 20,j, i.e. the real Clifford algebra over 2N generators. Using a matrix realisation

of this algebra, we can consider H as a 2N _dimensional random matrix.

An explicit representation in terms of Pauli matrices on the Hilbert space (C?)®" is given,

up to normalisation, by generators of the form O'g’k QU ® 0'3® (N=k=1) " Another explicit
representation can be given in terms of fermionic creation/annihilation operators ay,...,ay:
1 k i k
lax+a,] and x2x1 = —=[ar—a;]. (6.1.38)

XZkZ@ \5

The canonical anticommutation relations ({a;,a;} =0, {a;, a;‘.} = 0;;) imply the Clifford algebra.
A Hilbert-space representation is given by the fermionic Fock space spanned by the basis
1o jn) = (@) (ajy) Y 10) with ji € {0,1}.

Physical observables. The physically relevant quantities (in terms of linear response theory)
are the retarded real-time Green’s functions at some inverse temperature 8 > 0:

Gl (t,1') = ~i®(t - t/)%tr(e_’m Lxi (i1). x; GiE)]), (6.1.39)
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where we define y;(7) = e™ y;e~™. After Fourier transformation in the time/frequency domain
and analytic continuation, it turns out that one may equivalently focus on the thermal Green’s

function (also: imaginary-time time-ordered Green’s function):

Gij(7.7) = (Txa(m)x; (7)) = —tr(e‘ﬁHTXz(T)XJ (™) (6.1.40)

with T denoting a formal time-ordering operator defined via

(T () = | KR ED =T (6.1.41)
() i<

The thermal Green’s function is antiperiodic with period 5. All above quantities are understood
in terms of finite-dimensional matrices and as such well-defined. Above definitions were with
respect to fixed/quenched disorder. In the following we denote the disorder-averaging by an
expectation E. In relation to the Schwarzian theory we are interested in disorder-averaged

Green’s functions
G(r,7) =6 (,7) =E[GM(z,7)], (6.1.42)

in the limit of n — co. More generally, we are interested in disorder-averages of products of

Green’s functions, which form the relevant family of “correlation functions”.

Coherent state path integral for observables. Thermal (imaginary-time) correlators can be
rewritten using the (Euclidean) coherent state path integral over the Grassmannian fields y;(7),
i=1,...,N:

B
£ [ Dlem1F Ll espl- / dr 3 S+ Y k(O (s (Do)
ijkl
: (6.1.43)

where F|[y] stands for some field insertions, such as y;(7) y;(7’) in the case of the thermal

Green’s function (6.1.42). One can formally perform the average over the disorder variables
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Jijki:

B

ECXP[_ZJijkl / dT[XinXle](T)]

ijkl

B

= exp| dr [ 4’ Lix ool (0 Dex i (7) |

ijkl g (6.1.44)
,3
—exp Z—Z [a / ar’ (——Zx,mxl(?)) |
| 24

N B
=exp —i/ / drdc’G (7,7) ]

where we defined G (7,7) = % > xi(t) xi(t") and set E[J?] = 3! 92/N? for 2 > 0 in order

to obtain a non-trivial N — oo limit.

G-Z field theory for SYK. In the spirit of mean-field theory, we would now like to treat
G, (7,7") as a “self-sufficient” bilocal field. Following the presentation in [7, 133], we proceed
as follows: we introduce a new field G (7, 7’), whichis setto G , (7, 7’) via a Lagrange multiplier

2(7,7’). That is, we would like to insert the following into our integral:
1= / DIZ(1,7)]D[G(1,7)] &7 [ drdr > n )G (m7)-Gy (r.7)] (6.1.45)

Formally, for every 7,7’ € [0, 3]? the variable X(7,7’) is integrated along the real axis (or a
contour parallel to it). It is typically assumed that one can “rotate” this integration contour onto
the imaginary axis, in effect dropping the imaginary unit in the exponential. To justify this, one
would need to insert (6.1.45) into the path integral, integrate out the fermionic variables and
then consider a careful analysis of the integrand’s singularities with respect to the X-field. In
the following, we just assume that this works and drop the imaginary unit, ;2 +— X. Frankly,
(6.1.45) contains another subtlety that is much more fundamental: For any fixed number N

of Majorana fermions, the quantity G, is nilpotent: G, (7, 7")V*!

= (. This is problematic as
we think of G(7,7’) as a real variable (even and non-nilpotent in the context of Grassmann
integrals). Consequently, integrating over X cannot really set G = G, but this might still be
true “under the integral” in that for example all correlation functions involving G¥*! vanish.
We refer to the appendix in [12] for a more detailed discussion of a toy model including the

mentioned subtleties.
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Now we proceed with the evaluation of (6.1.43). For this assume that the observable F[y] =
F[G,] is actually a function of G,. Inserting (6.1.45) and setting G, = G in the disorder-

averaged interaction term (6.1.44) we get

/ DIS(r, T)|DIG (7, )] FIG]eN/2] v Xra )Gl e 6n)
» / Dy (1)]e=d i [ x(D6(—)o 42 (r) i (1)

_ / D[E.G] F[G]eN/Z[logdet((?T+E)+/ drde' [2(r,7) G (,7)+ 5 G (r,7)*] ]
(6.1.46)

In the N — oo limit this integral should be dominated by the maxima of the action in the

exponential. In fact, the saddle point equations are
G=(0:+2)" and Z(r,7)=9%G(1,7)>, (6.1.47)

where we understand G and X as integral operators, defined by their kernels G (7,7”) and
>(7,7’), respectively. In [7, 133] it is argued that for 8 > 1 the d.-term in (6.1.47) becomes

negligible. It is claimed that solutions of this time-independent equation are of the form

1/2

sgn(ri—m) | @' (11/B)¢’ (12/B)

Go(T1:T2) < =T | Sinrle(r1 /) o (oD |

(6.1.48)

for any ¢ € Diff(S') and some universal constant of proportionality. Defining o=G, I'we
have ,(7,7') = J°G,(7,7')°.

To reiterate, the above is an infinite-dimensional family of saddle points (with the same action)
in the limit N — oo and 5.9 — oo. One expects that for finite but large values of N and 8., the
path integral in (6.1.46) is still dominated by the integral over the functions G, but the error in
neglecting the d;-term may give these terms a finite ¢-dependent action. In fact, on the level
of the action, the approximation error is 5 Ntrlog(o; +Xy) —trlog(Z,)] = y > trlog(1+8:G,),
where we assumed (6.1.47). Note that here 9;G, is a composition of operators. This can

formally be expanded in powers of d:G, with the first non-vanishing term being

3
e D (™)
0:G ,0; .
tl0:Ge0: Gl ﬁJ// drd [ (nle () - so(r'm} (©149
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Note that this expression is inherently non-local. In a further approximation step it is conjec-
tured that the theory defined by such an action is dominated by the singular diagonal 7 ~ 7’

contribution

' (T)¢' (1)

sin(7lo(r) — (™)) | Jr-7T

+9|7 - 7'|S(tan(ng(7)), 1) + O (It =7'|*).  (6.1.50)

The divergent contribution is independent of ¢, and can be absorbed into a normalisation
constant. Consequently, the claim is, that the leading-order action for the low-energy excitation
G, 1s

N
MG ,] i drS(tan(rg(1)),7), (6.1.51)

which is precisely the Schwarzian action. Furthermore, disorder-averaged Green’s function

correlators should correspond to correlators of Schwarzian cross-ratio observables.

6.1.3 JT-gravity

Jackiw-Teitelboim (JT) gravity is defined over a surface X with boundary d%. We will consider
the case where X is the upper half-plane H?> = {z =t +iy: t € R,y > 0}. The formal action is

given for a metric g and a scalar “dilaton field” ¢:

1
I[g,d] =~16:G [/Z(Rg+2)¢\/§dx+2/azl(g¢\/?du], (6.1.52)

where /g denotes the square root determinant of the metric tensor g, R, is its Ricci scalar
curvature, y is the induced metric on the boundary and K, the extrinsic curvature.

Ideally, one would like to make sense of the formal path integral measure DgD e /1891 As
there are various issues' with this, one may resort to making sense of a “regularised on-shell
action”. Here, on-shell refers to the fact that we derive an action for configurations that satisfy

the classical equations of motion. The latter are given by

0=Rg,+2
0=V, V,¢p+g, (-A+1)¢.

(6.1.53)

IFor real-valued ¢ the integration is unbounded and generally the integration space for metrics is not clear. In
the physics literature one typically assumes that we can deform the contour onto the imaginary axis, in which case
the integral “localises” on solutions to R, +2 = 0, which is essentially equivalent to the on-shell action.
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In particular, all “on-shell geometries” are of constant negative curvature. Ideally, one would
now like to parametrise all such solutions and insert them into the action. The bulk term
vanishes, but the boundary term might yield a non-trivial quantity. In this case the solution
space includes unbounded geometries, for which the boundary term doesn’t make sense, and
one imposes an additional form of regularisation: We restrict onto a subset of geometries for
which the boundary term can be evaluated, namely finite volume and boundary-length subsets
of the hyperbolic plane enscribed by a particular boundary curve:

Recall that the geodesic boundary of the hyperbolic plane H? can be identified with the real
projective line RP! = RU {co}. For any orientation-preserving diffeomorphism f: RP! — RP!
of the boundary?, given in affine coordinates 7 = f (1) with 7,u € RU {0}, and any fixed € > 0

we define the curve in the upper half-plane

Pre(u) = f(u)+ief’(u). (6.1.54)

The area above this curve defines a (simply-connected) finite-volume portion of the hyperbolic
plane with smooth boundary. By the Riemann mapping theorem, we can map this back onto
H? and consider the induced metric as a metric on the upper half-plane. To be precise, this
mapping is up to a global PSL(2,R)-transformation, which acts via Mobius transformations on
f. In other words, every € > 0 and f € Diff(RP')/PSL(2,R) determines a metric on H. Given
a boundary condition ¢|sx, we can evaluate the boundary term in (6.1.52). For (n*) denoting

the normal vector to the curve p ., the extrinsic/geodesic curvature is
K, =V, n* =0,n" +Fﬁvn". (6.1.55)

For the upper half-plane model, the Christoffel symbols are given by I'’ fy = F;t = Fzy =-T; = %

and hence -
~ y(t’y”—y’t")+l’(y’ +7 )
- (t/2 +y/2)3/2

f/// 3 f//Z
EZF - EEZF +0(64)

= 1+€*Sch(f,u) +O(e"

K,

1. (6.1.56)

. . v
The induced metric y,, = g W%% can be evaluated to

1 f//2

yMM:Z+f/2

2Any such diffeomorphism or the real projective line can be related to a circle diffeomorphism ¢ € Diff(S')
via f(tan(n7)) = tan(me(1)).

(6.1.57)
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To evaluate the boundary term we have to impose some boundary conditions for the dilaton
field:

B(pel) = <01 (6.1.58)

for some fixed function ¢,. Inserting (6.1.56), (6.1.57), (6.1.58) into (6.1.52), we get

ood 1 . 28 0 4 1 f//2
G | a1+ €S0 +0( 5+ 15
1 1

© 1 6.1.59
= %G dugbr(u)—%/du¢r(u)3(f,u)+0(€) ( )
L
831G J_o

I(glprel) =

= du ¢ (u)S(f,u) + Scounter,e + O (€),

where we absorbed the divergent part into a “counter-term” that is discarded as part of the
regularisation. In other words we find that the Schwarzian action appears as the leading f-
dependent contribution for the on-shell JT-action for a specific set of geometries. The boundary
datum ¢, can be chosen freely and for ¢, (u) = [7(1+u*)]~! we can reparametrise via u =
tan(nt): S' — RP! to obtain the usual Schwarzian measure (writing f(tan(77)) = tan(7¢(7))

for a circle diffeomorphism ¢ € Diff(S!)).

6.2 Additional Background

This section provides a kaleidoscopic view over various objects which are directly or indirectly
related to the Schwarzian field theory. We mention the real projective line and how the
Schwarzian derivative arises as an infinitesimal cross-ratio. Furthermore, we mention the
Schwarzian’s relevance in the context of Sturm-Liouville (/Hill’s) operators. Then, we discuss
coadjoint orbits and their classification in the context of two infinite-dimensional cases, the loop
group and the Virasoro group. The path integral of Schwarzian measures can be seen to appear
naturally in this context. In particular, this point of view provides a way to “guess” the partition
function by formally applying an infinite-dimensional analogue of the Duistermaat-Heckman
theorem [17].

6.2.1 Cross-ratios and the Schwarzian derivative

In the following we recall some basic facts about the geometry of the real projective line,
including the notion of cross-ratios and how the Schwarzian derivative appears naturally in this

context.
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Projective line, cross-ratios and PSL(2,R). Recall the definition of the real projective line
RP! as equivalence classes [x : y] of points in R?\{0} under rescaling: [x : y] = [tx : ty]
for t # 0. Topologically, RP! is just the circle, with S' 3 7+ [sin(n7): cos(x7)] providing
a homeomorphism. We typically refer to a point [x : y] = [x/y : 1] € RP! via the affine
coordinate x/y € RU{co}, with the understanding that this is equal to oo if y = 0. Consequently,
we typically understand RP! = R U {co}. In these coordinates, the identification with the circle
is given by tan(7-): S' = RP! = RU {0},
The action of M = (¢ %) € GL(2,R) on R? induces an action on RP':

ax/y+d . 1]. 6.2.1)

M[x:y] =[ax+by:cx+dy] = [cx/y+d :

In particular, on the affine coordinate this acts via fractional linear (i.e. Mobius) transformations
and it descends to a faithful transitive action of PSL(2,R) = SL(2,R)/{£1} = GL(2,R)/R* on
the real projective line RP'.

Consider four points a,b,c,d € RP'. We write a = [ag : a1], b = [bo : b;] et cetera. For two
vectors in x = (xg,x1) and y = (yg, y1) we define the “cross product” x X y = xoy; —x1yo. The

cross-ratio 18 defined as
[a,b;c,d] =[(axc)(bxd): (axd)(bxc)] e RP. (6.2.2)

Note that the cross product of two vectors in R? is invariant under SL(2,R) transformations
(as it measures the area of the parallelogram spanned by those vectors). Consequently, the
cross-ratio is manifestly invariant under the PSL(2,R)-action on RP!. Using affine coordinates,

we can rewrite (6.2.2) into the more familiar form

[a,b;c,d] = [(apc1 —aico) (bodi — bidy) : (aodi —aido)(boc1 —bico)]

_|{ao co)(bo do\ [ao do)[bo co
X
_(a-c)(b-d)

“(a-d)(b-¢)’

where we identify points in RP! with their affine coordinate.
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Schwarzian as an infinitesimal cross-ratio. Consider a map f: R — RP! = RU {c0}.

Expanding the infinitesimal cross-ratio in € > 0 one finds

[f(),f(t+e€); f(t+2€), f(t+3€)] = 1+%28(f,l)+0(62). (6.2.4)

As a consequence of this, the PSL(2,R)-invariance of the Schwarzian is clear. In the context of

the Schwarzian we are also interested in observables

_(fa+e) - f)(f(s+€) = f(5))

PO SERI T = T N - G e)

I GO RN (623
(f (1) f(5))? '
Consequently, for ¢t — s, we see
ORI ! 6]t =52 S(f,7) +o(lt—sP). (6.2.6)

FO-F)2 Jr—s|

Cross-ratios, hyperbolic distances and JT-observables. Consider the upper half plane-
model for the hyperbolic plane H? = {z =t+iy: t € R,y > 0} with the metric g = y—12 [d? +dy?].
Its geodesic boundary is R U {co} and can be identified with the real projective plane RP'. In

fact, the hyperbolic distance is directly related to the cross-ratio:

Lemma 6.2.1 ([134]): Consider two points z;,z> € H2. Suppose the unique geodesic through
these points hits the boundary at ¢1,7, € RU {oo} = RP!. Then we have

dist(z1,22) = [log[t1,12;21, 221, (6.2.7)

where we understand the cross-ratio as in the last line of (6.2.3), extended to complex (affine)
coordinates.
This is of particular interest in view of the relationship between JT-gravity and the Schwarzian
theory (Section 6.1.3): Consider an orientation-preserving diffeomorphism f: RP! — RP!
and the associated curve pr(u) = f(u)+ief’'(u) asin (6.1.45). Lemma 6.2.1 gives us a way
of calculating distances between different points on the curve p s . as € ™\, 0: For sufficiently

small €, the geodesic through p ¢ .(¢) and p ¢ (s) will be a circular arc hitting the boundary at
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points f(¢) +0(e?) and f(s)+O(e?). Hence, we calculating the cross-ratio

[F(0), F(5);Dre()spre(s)] = [ (1), F(5); f(2) +ief (1), f(s) +ief (s)]
_ —€e2f(1) f(s)
(F() - F(s)—ief' GO (f(s) - fF() —ief'(r))  (6:2.8)
_2 SOFG) 53
ROETCEANA

we obtain that for € \, 0

1+o(1)) 1g( /(@) f (s) )
|f() = f(s)?)

In other words, exponential of the renormalised distance (removing the universal divergence

dist(p,e(1), p1.<(5)) = log (6.2.9)

as € — 0) between boundary points in JT-gravity (or, more honestly, the “approximation”

constructed in Section 6.1.3) are expressed in terms of Schwarzian cross-ratio observables.

Hill’s operators and the Schwarzian. The Schwarzian derivative makes an appearance in the,
seemingly, entirely separate context of Sturm-Liouville/Hill’s operators. This perspective is of

particular interest for the classification of coadjoint orbits of the Virasoro group (Section 6.2.5).

Proposition 6.2.2: Consider a smooth potential »: R — R and two linearly independent
solutions f,g: R — R to Hill’s equation

0=[02+1b(0)]f(r)=[82+1b(1)]g(7) (6.2.10)

Then the Wronskian W = det( ) is constant. Without loss of generality, after potential
rescaling, it can be chosen to be constant equal to one, W = 1. In particular f,g don’t have

coinciding zeros and we can define the projective solution

8(1)

o) :R— RP!' 2 RU{0}. (6.2.11)

n(r) =
Then, 7’ = 1/ f? > 0 is monotone and satisfies

S(n,7)=b(7). (6.2.12)
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Proof. The Wronskian is constant since Hill’s equation has no first-order term. To be more

explicit, one can check that
0 1
oc(} 5)=(csvm o) (1 5): (6.2.13)

Note that tr ( . 2(7) (1)) =0, hence the flow (6.2.13) leaves the determinant constant. Moreover,
rescaling and/or interchanging the role of f and g we can make sure the Wronskian is constant

equal to 1. To calculate S(n) =log(n)” — %log(n)’z, we first note that

o = (%) - % - % (6.2.14)
Consequently,
S(n) = -2log(f)” - [-2log(f)]”
— 2" f 6.2.15)
=b(7).
O

[l

The Schwarzian of the tangent is special. The tangent function tan = sinf/cos6 € RP!
R U {0} is conveniently considered to take values in the real projective line. We think of it as a
“uniform rotation” in RP! = S, It turns out that its Schwarzian derivative is remarkably simple,
a fact that will be relevant in the classification of Virasoro coadjoint orbits (Section 6.2.4 and
Section 6.2.5):

Lemma 6.2.3: For any o € R, that is @ € RsoUiRso, we have

S(tan(at),7) =S(Ltan(ar),7) = 207 (6.2.16)
Proof. We demonstrate two separate derivations. The first, fast and indirect, is a consequence
of Proposition 6.2.2: Consider the Sturm-Liouville operator 42 +a?. Both f = cos(a) and
g= ésin(on') are (real-valued) solutions, such that fg’— f’g = cos?(a7) +sin’(e7) = 1. Hence,
by (6.2.11), we have S(tan(@)) = S(g/f) = 2a?, which proves the claim. The second one is
by direct calculation. Recall that tan(at)’ = &r/cos?(at). Hence

log (1 tan(at)’)" = log(tan(et)’)’ = —2log(cos(at))’ = 2atan(ar). (6.2.17)
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Consequently, for @ € R we have (recall tan’ = 1 +tan?)

S(tan(aT),7) =log(tan(at)’)” — %log(tan(ar)')'z

= 2atan(at)’ - 2a* tan’(a1) (6.2.18)

=2a’.

Schwarzian as a 1-cocycle. A central property of the Schwarzian is its composition rule

S(fog)=8(g)+Ig'I*S(f)og (6.2.19)

This can be stated in more flamboyant terms: Suppose a group G acts an a vector space V. A

map p: G — Vis a l-cocycle (or crossed homomorphism) if

p(gh)=p(g)+g-p(h) forg,heG. (6.2.20)

In our case, the group is G = Diff (§') and V = 7 (S') = {F(7)(d7)?: F: S' — R} is the space
of 2-tensor densities on S!, i.e. functions F(7) that transform via (g - F)(7) :=|g’|?F(g(7)) un-
der the action of a reparametrisation g € Diff(S'). In other words, (6.2.19) says that the
Schwarzian is a 1-cocycle on Diff(S!) with coefficients in 7>(S'). For this reason, the
Schwarzian derivative is relevant for the central extension of Diff(S'), namely the Virasoro

group (see Section 6.2.4).
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6.2.2 Coadjoint orbits

Consider a Lie group G with Lie algebra g. G acts on g via the adjoint representation Ad,
which (for matrix groups) we can write as Ad, (X) = gX g~ !, with g € G and X € g. By duality,
there is a coadjoint representation Ad* = Hom(g,R) on the vector-space dual g* of the Lie
algebra, such that (£, X) = (AdZ,f,Ang> for any g € G,¢ € g, X € g and where (:,-) denotes
the canonical pairing. For an element £ € g* we write O; = Adgé = G /Stab(¢) for the orbit
of & under this action. These spaces are referred to as coadjoint orbits. Mathematically these
spaces are of particular interest as they carry a natural symplectic structure: On O we can
define the Kirillov—Kostant—Souriau (KKS) 2-form w € Qz(()g):

wy(adyv,adyv) = (v,[X,Y]) with v € Oy and X,Y € g. (6.2.21)

This defines a closed, non-degenerate and G-invariant 2-form, hence an invariant symplectic
form. Moreover, the canonical embedding u: Of < g* defines a moment map, i.e. for any Lie
algebra element X € g the gradient flow generated by the Hamiltonian (u, X): Of — R agrees
with the G-action generated by X.

What is this good for? From a mathematical point of view, the above construction opens the
door to Kirillov’s orbit method, relating geometric properties of the coadjoint orbits with the
irreducible unitary representations of G. For example, Kirillov’s character formula expresses

the characters of irreducible representations in terms orbital integrals

/ "X dvolo, where dvolo, = w"/n!, (6.2.22)
O¢ ’ ’

for dim O, = 2n is the volume form induced by the KKS-form w.

From a physical point of view, the orbit method produces a wealth of examples for geometric
quantisation: As a symplectic manifold, a coadjoint orbit can be considered as the phase space
(i.e. the space of positions and momenta) of a classical mechanical system, with a family
of potential Hamiltonian functions provided by the moment map. Geometric quantisation
then constructs a Hilbert space of quantum states, where classical observables (such as the
Hamiltonian) are promoted to operators, and which is equipped with a unitary G-representation.

Alternatively, the orbital integrals (6.2.22) provide natural candidates for the construction
of path integrals. This is particularly true for the case of infinite-dimensional groups and

orbits, in which case one may try to give probabilistic meaning to formal measures such as
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e BX) dvolg ¢~ A central point of the following chapters is to discuss this perspective for the

Schwarzian theory.

Orbital integrals and the Duistermaat-Heckman theorem. Without further knowledge,
one might expect orbital integrals (6.2.22) to be rather hard to evaluate. However, if X € g
generates a U(1)-action, a somewhat magical statement in symplectic geometry states that the
integral “localises” on critical points of the action (u, X): Suppose G is finite-dimensional and
Hx had finitely many non-degenerate critical points. Then Write Hx (v) = (u, X)(v) € R for
v €O

i AHx (v0)

vo: DiTx(vo)=0 Vdet(2mAD2Hy (vo))

In other words, the saddle point approximation for the orbital integral is exact! Witten and

(6.2.23)

/ eMHX(V)dVOlOS(V) =
O ‘

Stanford suggested that the equivalent statement holds true in the infinite-dimensional setting
[17], which allowed them to “guess” the partition function of the Schwarzian field theory, by

interpreting it as a orbital integral.

A note on the infinite-dimensional setting. In this section we are mostly interested in the
coadjoint orbits of the Virasoro group and so-called loop groups, both of which are infinite-
dimensional and understood as Fréchet manifolds. In this scenario, various functional-analytic
and geometric subtleties come into play. For example, the exponential map from the Virasoro
algebra to its group is not even locally surjective. We will mostly ignore such issues, as our
interest in the coadjoint orbits is mostly for “guessing” interesting action functionals. We refer
to the monograph [135] for a more careful treatment.

Moreover, in the context of an infinite-dimensional group G, we will typically consider the
coadjoint orbits of its central extension G, assuming it is unique. It’s Lie algebra g is a central
extension of the Lie algebra g, with dual space g*. However, since central elements acts trivially
via the (co)adjoint representation, the coadjoint orbits of G simply correspond to the G-orbits
in g*. As a consequence, if we refer to the coadjoint orbits of G, we usually refer to this

generalisation®.

3Nita that this modification is typically irrelevant in the finite-dimensional case, as semi-simple finite-
dimensional Lie algebras don’t have any central extensions. On the other hand, for our infinite-dimensional groups,
the coadjoint actions of their central extensions tend to be more “regular” and offer a richer structure.
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6.2.3 Loop groups and their coadjoint orbits

Consider a finite-dimensional Lie group G with Lie algebra g. We define the loop group
LG = C*=(S',G) as the smooth maps from to circle into G with pointwise multiplication, as
well as the loop algebra Lg = C*(S',g) as smooth maps with pointwise Lie brackets*. In
the following we recall the theory of coadjoint orbits for these groups, roughly following the
monograph [135].

Mathematically, loop groups are of interest as one of the easiest and best-understood examples
of infinite-dimensional Lie groups, with a well-understood Lie algebra theory (Kac-Moody
algebras), and natural connections to topology and homotopy theory. From a physical perspec-
tive, they find use in the context of string theory (e.g. strings propagating in a group manifold)
and in certain integrable systems, such as the Korteweg—de Vries (KdV) equations of shallow
water waves>.

To ease the notation, we will treat G as a matrix group, identifying g as a space of matrices
as well. We quickly state the main result of this chapter, before going into more details: We
will see that the (smooth) dual of the centrally extended loop algebra fg* can be identified
with “covariant derivatives” —cd; + A(t), where c € R and A € C*(S!,g). The coadjoint action
of g(7) € LG leaves c invariant and maps A — gAg~! +cd.gg~!, where multiplication is

understood pointwise.

Theorem 6.2.4 ([135-137]): Let G denote a compact connected Lie group. There is a one-to-
one correspondence between the coadjoint orbits of (the central extension of) LG at ¢ =1 and
the conjugacy classes of G. In particular, every orbit contains a constant element (A(7), 1),
with A(7) = X € g, and is of the form LG /H for H = Stabag(X) C G.

Central extension of the loop algebra. Given an Ad-invariant inner product on g (denoted
by tr), we define the central extension ZE;: Elements of Ijﬁ are of the form (X (7), k), where

X (7) is a g-valued function of S' and k € R is central. The Lie bracket on Lg is defined by

ad(x.o (v, 1) = [(X(1).k), (Y (1), )] = ([X(T),Y(T)]g, /S T (Y(T)X'(T))dr). (6.2.24)

4 Lg naturally carries a Fréchet-space structure, and the pointwise exponential map exp: Lg — LG is locally
surjective onto a neighbourhood of the identity. Via left-translation, this endows LG with the structure of a Fréchet
Lie group with Lie algebra Lg.

3Generally, the geodesic/Hamiltonian flows on natural infinite-dimensional groups and coadjoint orbits give
rise to well-known partial differential equations. A notable example are the Euler equations, which can be seen as
the geodesic flow on the group of volume-preserving diffeomorphisms [135].
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One may check that this bracket still defines the Jacobi identity®. Note that the scalar term
on the right hand side does not depend on k,[/. Consequently, the added element is central:
[(0,1),(Y,1)] =0 forall (Y,l) € Lg.

Adjoint and coadjoint action. The infinitesimal adjoint action (6.2.24) “integrates” to the

following adjoint action of g € LG on Lg:
Adg(Y,1) = (g(T)Y(T)g(T)—l, - / thr[g_l(')TgY]). (6.2.25)
S1

From this we would like to derive the coadjoint action: The (smooth subspace’ of the) dual Lie
algebra ZE;* can be described as tuples (A(7),c) € C*(S!,g) xR with the paring

((A(1),¢),(X(1),k)) = tr/sl A(T)X(7)dr —ck. (6.2.26)

From (6.2.25) and (6.2.26), one can see that the coadjoint action of g(7) € LG on ZE;* is given
by

A’ (A(1).0) = (Age(1).0) = (g(DAMg (1) Hedrg(Mg(m)e) | (62.27)
In other words, ¢! A(7), transforms like a G-connection (i.e. a gauge field):
g(T)[—c- +A(1)]g (1) = = + Ago(7). (6.2.28)

Monodromy and classification of coadjoint orbits. The interpretation of the elements of the
coadjoint orbit as connections(/gauge fields) suggests to consider their monodromy: Consider

the parallel transport
[-co+A(D)|y(r)=0 fory:R— G withy(0)=1. (6.2.29)

Define the monodromy M ) = My = w(0) 'y (1) eG.

Lemma 6.2.5: Suppose (A,c) € fg* for ¢ # 0. The conjugacy class AdgM 4 ) of its mon-

odromy is invariant under the coadjoint action.

®This is equivalent to the statement that : Lgx Lg — R,7(X,Y) = f tr[Y(7)X’(7)] is a Lie algebra 2-cocycle:
n([X.Y],Z2)+n([Z,X].Y) +w([Y,Z],X) = 0.

"The topological dual consists of g-valued Schwartz distributions. For our purposes, we implicitly restrict to
the regular dense subspace spanned by smooth functions.
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Proof. We consider ¥(7) as in (6.2.29). Dropping the condition ¥ (0) = 1, any other so-
lution to (6.2.29) is of the form (1) = ¥ (7)h for h € G. The monodromy (0)~'J (1) =
=Yy (0)"'y (1)h is conjugate to M 4,). Hence, for determining the conjugacy class of the
monodromy, it doesn’t matter which solution to the parallel transport equations we con-
sider. Now, recall the transformation behaviour (6.2.28) of the covariant derivative. For any
g € LG, we have that Y, (7) = g(7)y¥(7) is a solution to [—cd; + Ag ], = 0 with monodromy
Y (0)7'g(0) lg (1w (1) =y (0) 'y (1). Hence Ma,..c) and M4 ) are conjugate (with respect
t0 4(0) = g(0)). .

In short, the conjugacy class of the monodromy is an invariant of the coadjoint orbits. On the
other hand, suppose that two elements (A, c), (B,c) € I/Z;* give rise to the same conjugacy class.

In other words, there exist solutions ¢/, ¢
[-co:+Aly =0 and [-cd.+B]e=0, (6.2.30)

and without loss of generality My, = M, (otherwise just translate by a constant element). Then
g(7) = () (1)~ is periodic and smooth. Hence it is an element of LG such that Ve = and
A, = B. We arrive at the following:

Lemma 6.2.6: Fix ¢ # 0, then the map O4 () = AdgM 4, is an injective map from the set

of coadjoint orbits of LG into the conjugacy classes of G.

Proof of Theorem 6.2.4. By Lemma 6.2.6, it suffices to ask the ‘“classical” question which
group elements g can be obtained as monodromies of (6.2.29). For G compact and connected,
the exponential map is surjective, and consequently for every g € G there exists X € g, such

that A(7) = X has monodromy g. This completes the proof. O

Remark 6.2.7: One often assumes that G is simply connected as well. While this is not essen-
tial for the classification, one should note that otherwise LG is disconnected and consequently

the orbits consists of several connected components.

Remark 6.2.8: In Theorem 6.2.4, compactness of G was only required for the surjectivity of
the exponential map. In special cases, such as G =R, this is clear despite lack of compactness.

Hence, the same classification result holds true.
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Symplectic structure. Recall that coadjoint orbits are naturally equipped with a symplectic
form, see (6.2.21). On the coadjoint orbits of the loop group, the KKS-form is defined by

W (.0 (ad{y o) (A, ),ad(y ) (A, )

¢ 6.2.31)
:/tr(A(T)[X(T),Y(T)]g)+§/tr(X(T)Y’(T)—X’(T)Y(T)).

Still thinking of G as a matrix group, we can formally consider the collection (g(7)),cg! as
a family of coordinates for LG (and therefore for a given orbit). Associated to the matrix
coordinate g(7), there is a differential form dg(7). In these coordinates, the Maurer-Cartan

form is given by g(7)"!dg (7). The KKS-form can be written as

W(Ae) = %/ drtr(A(T) s dg(). 5 ()" dg(T)]) (6.2.32)

+%/d‘rtr(g(‘r)_ldg(‘r)/\(g(‘r)_ldg(‘l'))’),

where the bracket in the first line is understood as the bracket between Lie-algebra valued

one-forms.

The example of LR. We write £(7) € LR for an element of the loop group. The Lie algebra
is Lie(LR) = LR. The coadjoint action of £(7) on (A(7),c) € LR* is

Ad*¢(7)(A(T),¢) = (A(T) +c€'(7),0). (6.2.33)

Consequently, all coadjoint orbits are simply of the form O,, = {(ap+cé’(7),c): £ € LR} for
a constant ag. For the KKS-form, the first term in (6.2.32) vanishes (as R is abelian). And
g(t)"'dg(r) = dé(t). Consequently

c

2

w

/ dr dé(r) Ad€' (7). (6.2.34)

6.2.4 Virasoro group and its coadjoint action

In the following consider the group Diff(S!) of (orientation-preserving) smooth reparametrisa-
tions of the circle. The (unique) central extension of this group is the so-called Virasoro group
Vir, whose Lie algebra is the Virasoro algebra vir. We are interested in the coadjoint action of
Diff(S') on the (smooth) dual of the Virasoro algebra vit*. Before giving more details, we give

a short overview of the main result: The smooth dual vit™ of the Virasoro algebra will be iden-
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tified with Hill’s operators cd2 + 3b(t), with ¢ € R and b € C*(S',R). The coadjoint action
of ¢~! € Diff (S!) leaves c invariant and acts on the potential via b > b, = ¢”>b +cS(¢p). Note
the structural similarity with the case of loop groups. In fact, perhaps somewhat surprisingly,
the classification of coadjoint orbits of the Virasoro group closely resembles that of loop groups
(Theorem 6.2.4) for the case G = PSL(2,R). To be precise, we need to consider the universal
covering group §I:(2,R) of PSL(2,R), which will be discussed in Section 6.2.5.

Theorem 6.2.9 ([135, 137]): For ¢ = 1, there is a one-to-one correspondence between
the coadjoint orbits of the Virasoro-Bott group and the GL(2,R)-conjugacy classes of
S~L(2, R)\{id}. Any orbit ¢ = (b, c) is of the form b, (1) = cS(no ¢, 7) for some smooth
1n: R — RP! with 7’ > 0. Moreover, (7 + 1) = Mn(7) for some monodromy M € PSL(2,R)
acting via Mobius transformations, and this monodromy is a representative of the (projection

onto PSL(2,R) of the) conjugacy class.

By GL(2,R)-conjugacy class we mean there exists an action of GL(2,R) on SL(2,R), induced
by conjugation on SL(2,R), and the conjugacy classes are the orbits of this action. Note that
these are “almost” PSL(2,R)-conjugacy classes: Conjugation with GL(2,R) factors through
PGL(2,R) = GL(2,R)/R* = PSL(2,R) x Z2. In fact, any element from PGL(2,R) is a product
of an element from PSL(2,R) and {1, (? )} = Z,.

Remark 6.2.10 (Orbits of constant potentials): Of particular interest for the Schwarzian mea-
sures are the orbits of constant potential b(®) = 2a% for @ € R UiRs( (we usually write &’ € R).
In this case the orbit O, := O, is given by (see Proposition 6.2.2 and use the composition
rule (6.2.19))

b\ (1) = eS(tan(ag), 7) = c[S(p,7) + 2220 (7)]. (6.2.35)

The corresponding monodromy (1 = étan(atp)) is

M, :( cos(a) %sin(a)). (6.2.36)

—asin(a) cos(a)

Following the classification of GL(2,R)-conjugacy classes of PSL(2,R) (see Proposition 6.2.16),

we refer to elliptic, hyperbolic and parabolic orbits/monodromies respectively:

— [ cos(e) ésin(a) [ cosh(ar) Lsinh(A1) (11
M. = (—asin(a) cos(a) ) Miy = (/lsinh(/l-r) “cosh(ar) ) Mo= (1) (6.2.37)

where @ € R,\7N, 4 € R,. For @ € 7N we have My, = (}9), which are referred to as

exceptional orbits/monodromies.
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Remark 6.2.11 (Schwarzian measures as orbital integrals of O,): In the beginning of Sec-
tion 6.2.2 we discussed how coadjoint orbits are naturally equipped with a symplectic structure
and an associated moment map. In the infinite-dimensional setup, these things are more sub-
tle®. In the following, we ignore any such details and hope that the finite-dimensional setting

generalises appropriately. In (6.2.49) we will see that O,, formally carries a symplectic structure

Wy = c/dr[%dlog(go’(f)) Adlog(¢' (1)) —2a%de(t) Ade' (1) ] | (6.2.38)

Here one understands ¢(7) € R and log(¢’ (7)) € R as coordinates on the orbit, with do(7) and
dlog(¢’ (7)) as corresponding 1-forms. With respect to the symplectic structure, (b((pa) ;) Og
vec(S")* is the moment map for the Diff(S')-action. In particular, pairing with the con-

stant vector field v(7) = 1 € vec(S'), we obtain the Hamiltonian generating the U(1)-action

¢ = @(-+10)

H(”)(tp) = /dTb‘(;')(T) = —c/dTS(tan(a/ga),T) . (6.2.39)

This is the action of the Schwarzian measure (2.2.3). For a? < 72, the action has a unique
minimiser ¢ = idgi with value H® (idgi) = —2ca?. A formal application of the Duistermaat-

Heckman formula (see [17] for more details) yields

/e‘H(a)(‘*’)dvoloa(go) oo (27_[6,)%dimStab(b("))e2caz, (6.2.40)
Oa

where dimStab(h®) is equal to 3 for @ = 7 and 1 for a? < 7> and where the constant of

proportionality may depend on « but not c.

Virasoro algebra and (co)adjoint action. The Lie algebra of Diff(S') is identified with the
Witt algebra diff (S') = vec(S'), the space of vector fields v(7)d; on the circle, equipped with
the Lie bracket [v1,v2]pec = v1V) — v v2. The Witt algebra has a unique central extension, the
Virasoro algebra vir = vec(S') @ R with Lie bracket defined by

[(v,a),(w,b)] = ([v,w]nec, %/d‘r[v"'w—vw’"]). (6.2.41)

8In certain cases, in particular for the exceptional orbit O, which is relevant to the Schwarzian field theory,
one can understand the orbits (resp. a completion thereof) as a proper infinite-dimensional Hilbert-manifold. In
that case, the symplectic form can be understood in a “classical” sense as a 2-form over this manifold, see [138,
139] for details.
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This “integrates” to the following adjoint action of Diff (S') on vir:

v(p(1) V(1)
o (7) "”/ T

Ad,-1(v(7),a) = ( S((p,T)) for ¢ € Diff(S!),  (6.2.42)
with the Schwarzian derivative S(p, ) =log(¢’)” — %log(t,o’)’2 For reasons of notational con-
venience we expressed the action in terms of the inverse element go_l. To obtain (6.2.41) from
(6.2.42), one may note S(7—ew(7),7) = —ew” (1) + O(€?). Note that (6.2.42) has a clear
geometric meaning in that v simply transforms like a vector field under reparametrisation. The
regular subspace of the dual vit* can be identified with pairs (b(7),c) € C*(S') xR, together
with the pairing

((b,c),(v,a)) = —ca+/ drb(r)v(t). (6.2.43)

The minus sign above is chosen purely for notational convenience. By (6.2.42) and (6.2.43)

one deduces the coadjoint action

Ad;_, (b,c) =(by,c) with by(1)=by (1) = O (1)b(1) +¢S(¢,7) (6.2.44)

We will often drop the c-dependence in our notation, as it is left invariant under the coadjoint
action. For ¢ = 0 the formula (6.2.44) has a geometric interpretation in that b transforms like
a 2-tensor density b(7)(dr)?. For general ¢ € R, this transformation behaviour is that of a
stress-energy tensor in a (chiral two-dimensional) CFT with central charge 12¢ (for notational
convenience we departed from physics conventions for the normalisation of the central charge).
We see that for different values of ¢ # 0, the orbits of (6.2.44) can be related by rescaling.
Consequently, to classify the coadjoint orbits it is sufficient to consider ¢ =0 and ¢ = 1. The

former case is not particularly relevant to us, however, and we refer to [15] for a short treatment.

Symplectic structure. The action of an infinitesimal diffeomorphism ¢(7) = 7+€v (1) +
O(€?), respectively its inverse ¢! (1) = 7 — ev(7) + O(€?) follows from (6.2.44):

[ad”, D](7) =v(7)b'(7) +2V'(1)b(T) — V" (7). (6.2.45)
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By (6.2.21) and (6.2.41) the KKS form is given by

w(b,c)(adiv(b,c),adiw(b,c)) = ((,0), ([v. W]vecs % / dr[v”w—vw”]))

= / dr [b(T)(vw' —v'w)+ %(v”’w —vw"” ] (6.2.46)

/d‘r[b(r)(vw -y w)+;(v' i v”w’)]

We can also write it more globally: Formally consider the collection (¢(7)),cg1 as a family
of coordinates for ¢ € Diff(S!) (and therefore for the orbit). Associated to these coordinates,
there are 1-forms dy(7). Then de(7)/¢’(7) acts as (a coordinate of) the Maurer-Cartan
form for the Diff(S!)-action: The action of v(7) € vec(S!) on ¢ is via the infinitesimal flow
(Lpsv)(7) = Ocle=0p(T + €v(7)) = ¢’ (7)v(7), where L,:  — ¢ oy denotes left-translation.
Consequently, ﬁ(dgo(r) , Ly«v) =v(7), which is the defining property of the Maurer-Cartan
form. Consequently, by (6.2.46), we can write

oo [ E GG G| e

We can further simplify this for the orbits of constant potentials, bfp”) (1) =—cS(tan(ayp), 1) =
—c[S(¢,7) —2a%¢?(1)] for &> € R. In that case, using that (de(7))’ = d¢’(7) and de(7) A
de(7) =0 we expand (and drop total derivatives) to obtain

Jelsirsar

:/dT —28(2¢’T)d90(‘r)/\d90’(7)+
| (1)

——d¢’(7) Adyp” (7) (6.2.48)

/2( )

:/ o %dw)Adgo'(r>+dlog<<,o'<f>>Adlog@'(”)/]

b(a’)

Consequently, the S(¢p)-contributions from b, " and (6.2.48) cancel and we obtain

Wy = ¢ / dr[dlog(go’(r)) Adlog(¢' (1)) = 2a%de(T) A dcp'(T)] . (6.2.49)

Hill’s operators and monodromy. In the orbit theory of loop groups, we considered the

first order operators —cd; + A(7), as the coadjoint action on A had a convenient interpretation
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in terms of the (adjoint) transformation behaviour of this operator and its solutions. Perhaps
somewhat surprisingly, it turns out that a similar picture exists in the context of the Virasoro
group. For (b(7),c) € vir™ we define the Hill’s operator

Hpe=cdl+1b(7). (6.2.50)

We consider this as an operator acting on functions over R, with b extended periodically.

Proposition 6.2.12: Suppose f: R — R solves Hill’s equation for some potential b: Hp . f =
0. For ¢ € Diff(S') we define

fo(0) = ¢' ()72 f (). (6.2.51)
Then f, solves Hill’s equation for the potential b:

Hp, o fp=1c07+3byc) fo =0. (6.2.52)

Proof. To start off, we note that
02 (1) = -1S(p. 1) ¢ (1) V2, (6.2.53)
We find that

02f,(7) = 32[¢ (1) 2 f(p(1))] = =4S (0, 7) f, (1) +¢ ()32 7 (9(7)). (6.2.54)

Consequently, using by . — cS(¢,7) = ¢'(1)?b (¢ (7))

[cOZ+bgclfp=¢ (1) 2cf"(0(1) + [3bgc = £S(0,T)] fiolT)
= ¢ (1)*([c0} + b1 £) (¢(7)) (6.2.55)
=0

O

In other words, the coadjoint action on the potential agrees with the transformation behaviour

of Hill’s operators considered as maps from —1/2-densities into 3/2-densities’.

Proposition 6.2.13: For (b, c) € vir™ consider the Hill’s operator cd; + %b(r). Letn: R —
RP! = RU {0} denote the projective solution, see Proposition 6.2.2. Under the coadjoint

If £(7)(dr)~"/? transforms as a —1/2-tensor density, then d2f (1) (d7)3/2 transforms as a 3/2-tensor density.
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action of ¢~! € Diff(S'), it transforms as 17 — no¢. To be precise, no ¢ is a projective

solution for the Hill’s equation corresponding to (b, ¢, c), meaning that S(no¢) = b, . /c.

Proof. Consider two f, g to Hill’s equation with = g/ f. By Proposition 6.2.12 these transform
as —1/2-tensor densities. Consequently n = g/ f transforms as a O-tensor density, in other words

asn—nog. O

6.2.5 Classification of Virasoro coadjoint orbits

Topologically, PSL(2,R) is a solid torus and as such homotopic to S'. The appearance of the
universal covering can be explained by the difference between Diff (S') and LS'. The latter
contains maps g(7) € S! that wind around S! arbitrarily often. Thinking about the parallel
transport in (6.2.29), the map (1) naturally lifts to a path in the universal covering of G = S'.
Conjugation with g(7) won’t change the (conjugation class of the) monodromy, but it changes
the lift. Now Diff(S') does not contain “multiply winding” maps and consequently cannot
change the lift of the monodromy, which is why we need to control the full covering group.
Also, as opposed to the case of loop groups LG with compact G, we don’t have that any
orbits contains a constant element. For LG this was a consequence of the fact that any element
in G is a Lie algebra exponential, in other words lies in a 1-parameter subgroup. Segal claims
[137] that the same is true for Virasoro coadjoint orbits: Orbits contains a constant element if

and only if their conjugacy class lies in a 1-parameter subgroup of SI(Z,R).

On the universal covering group §I(2, R). We provide some intuition for the universal
covering group of SL(2,R). This is somewhat difficult, since it has no matrix representation.
We can first understand it topologically and then algebraically. According to the Iwasawa

decomposition, we can parametrise A € SL(2,R) via

cosf —sinf|\[r I x )
A(O,r,x) = with 6€[0,27n),r>0,xeR. (6.2.56)
sinf cosf 1/r 1

In other words SL(2,R) is diffeomorphic to S' x H? and has fundamental group 77; (SL(2,R)) =
n1(S") = Z. The universal covering group SI(Z,R) will be obtained by “unwinding” the S'-
variable into a real line R. Formally, this will be obtained via a central extension by Z. In
the following we are following the construction by Rawnsley [140]. Suppose ¢: SL(2,R) —
S! is a smooth function with ¢(1) =1 and ¢(A™") = ¢(A)~!, inducing an isomorphism of
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fundamental groups. Then the relation ¢(A;A2) = @(A1)@(A2)e™A1:42) defines a 2-cocycle
n: SL(2,R) xSL(2,R) — R. In other words, we can define the set

G ={(A,c) € SL(2,R): p(A) = €} (6.2.57)

and equip it with the operation
(A1,c1)-(Az,c2) = (A1Az,c1+ca+1(A1,Az)). (6.2.58)

In fact, G turns out to be a Lie group with identity element (1,0), inverse (4,c)~! = (A7!,—¢)
and a surjective homomorphisms (A,c¢) — A onto SL(2,R) with kernel (1,27Z). In other
words G = §i(2, R). This group carries a natural Z?-action given by (A,c) — ((A™)T,¢).
This is the “outer automorphism” on SL(2,R) induced by conjugation with (9 }) ¢ SL(2,R).
To complete above construction, one needs to give concrete examples for ¢ and 7, for which
(6.2.58) is manageable. We refer to [140] for details.

Monodromy of Hill’s operators and classification of orbits. In Section 6.2.4 we discussed
how the coadjoint action can be seen as acting on Hill’s operators. In the following we
introduce the notion of monodromy for those operators, and show that a picture similar to that
for coadjoint orbits of loop groups in Section 6.2.3

Consider a potential b with corresponding Hill’s operator Hp, . = H = 02 + %b(r) (by rescaling
we can focus on the case ¢ = 1). For any two solutions Hj, f =0 = H,g we can define M (1) =

( J{ 5, ) Then, M (7) satisfies the following parallel transport equation

8. M(7) = aT(J{’, 5) - (_%2(,) 3)(; 5,) — A(D)M(7). (6.2.59)

Note that A(7) € sI(2,R), namely trA(7) = 0. Choosing, say, M (0) = 1, this defines a path
M(7) € SL(2,R). We can lift this path M(7) to the universal covering SL(2,R). Define
My, = M(1) (and M, = M(1)) as the monodromy (resp. lifted monodromy) of the Hill’s operator
H,.

By periodicity of the potential b(7), we have that M(t+1) = M(t)M (1) = M(t)Mj. In
particular (f(7+1),g(t+1)) = (f(7),g(r))M},. For the projective solution = g/ f € RP!
we similarly have (7 + 1) = n(7) M}, with the right action via Mobius transformations. Note
that due to sharp 3-transitivity of PSL(2,R) acting on RP! this uniquely characterises +M,, €
PSL(2,R).
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Note that given 77 and an assumption on the Wronksian (which we set to 1), we can reconstruct
f,g: We have n’ = 1/ f%. Consequently, (0),7°(0),7”(0) and the Wronskian determine the
initial conditions for f,g. If M(0) = 1, then we call f,g the fundamental solutions . The

associated n 1s a fundamental projective solution.

Lemma 6.2.14: For a diffeomorphism ¢ € Diff(S'), the monodromies M, and My, are
conjugate in PSL(2,R).
Proof. Letn = g/ f denote the fundamental projective solution associated to Hj;. By Proposi-
tion 6.2.13 we have that o ¢ is a projective solution of Hj,. Then n(¢(7+1)) =n(e(7)+1) =
n(e(1))M;, However, n o ¢ does not yet satisfy the initial conditions of a fundamental pro-
jective solution. By (sharp) 3-transitivity, there exists a unique N, € PSL(2,R), such that

n4(7) =n(¢(7))N, is a fundamental projective solution at 7 = 0. Consequently
Mo (7+1) =7(9(1) MpNy = 1, ()N MpNy, = 1, (1) My, (6.2.60)

In other words, Mj, = N;leNsp as elements in PSL(2,R). O

Lemma 6.2.15: Suppose we have two Hill’s operators cd2 + b;(7) with i = 0,1, such that
the associated lifted monodromies M;(1) in §I:(2, R) are the same. Then there exists a
diffeomorphism ¢ € Diff(S'), such that (b1,c) = Ad:;_, (bo,c).

Proof-sketch. In the following, we sketch the argument following Ovsienko [141]. We refer
to [135, 137] for different approaches. Since Moy(1) = M;(1), the paths M;(7) in PSL(2,R)
are homotopic. In a first step one shows that there exists a smooth homotopy of Hill’s oper-
ators (02 + %bs(‘l’))se[o’l] with associated monodromies M(7), such that (M;(7))sc[o,1] is a
homotopy between M, and M.

In a second step one shows that this homotopy can be generated by the Diff(S!)-action on
Hill’s operators. In fact, consider (6.2.45) for the infinitesimal coadjoint action, and solve
the ODE b, = adivsbs. We can find a smoothly parametrised family of vector fields v(7),
such that the the flow 9, f;(7) = v,(7)d, f; () integrates to a diffeomorphism ¢ € Diff(S'),
i.e. fi = foo . In particular, the infinitesimal coadjoint action (6.2.45) integrates to (by,c) =
Ad;_1 (bo,c). O

Conjugacy classes of PSL(2,R). For convenience we recall the classification of PSL(2,R)-

conjugacy classes:
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Proposition 6.2.16: The GL(2,R)-conjugacy classes of +M € PSL(2,R)\{+1} are charac-
terised by |tr(M)|. The same is true for PGL(2,R)-conjugacy classes.

Elements with |tr(M)| < 2 are called elliptic, while ones with |tr(M)| > 2 are hyperbolic.
The case |tr(M)| = 2 is referred to as parabolic. We will use the convention to explicitly

exclude the case M = +1, which we refer to as exceptional.

Proof. Note that for M € SL(2,R), its conjugacy class in GL(2,C) is uniquely determined
by its Jordan normal form. In fact, this is even true for conjugacy with respect to GL(2,R)
since for any complex eigenvector, its real and complex parts are real eigenvectors. Moreover,
conjugation with GL(2,R) factorises through PGL(2,R) = GL(2,R)/R* Finally, note that the
characteristic polynomial of M € SL(2,R) is given by 1> —tr(M)A+ 1. In other words, the
trace fully characterises the eigenvalues. If |[tr(M)| # 2, these are non-degenerate and hence
M is diagonalisable and its Jordan normal form is determined. If |tr(M)| = 2, then the Jordan
normal form is ( 1 ’1‘) for x € {0, 1}, however we explicitly excluded the identity, so the Jordan

normal form is also fixed. This completes the classification of conjugacy classes. O

6.2.6 Mapping between Virasoro and loop group orbits

In the previous sections we considered the orbit theory for loop groups and the Virasoro group.
Here we would like to show that hyperbolic orbits of the Virasoro group are “isomorphic”
(as symplectic manifolds with an S'-flow generating Hamiltonian) to coadjoint orbits of LR.
Orbital integrals for the latter can be identified with the Wiener measure. Consequently,
hyperbolic Virasoro group orbits (resp. the associated orbital path integral) are “just Brownian
bridges”. This is referred to as “bosonisation” of these orbits and was first demonstrates by
Alekseev and Shatashvili [142].

We consider the coadjoint orbits of the (central extension of the) loop group LR. We denote
the centrally extended loop algebra by Lt , wheret = Lie(R) = R. For simplicity we restrict
to ¢ = 1. For simplicity, we fix the central charge ¢ = 1 and drop it from our notation. The

coadjoint orbits are parameterised by a real parameter ag € R:
Ouy = {As = ag+£(1): £ € C¥(S',R)}. (6.2.61)

According to (6.2.34), the symplectic form is formally expressed as

WA, = %/drdf(‘r) AdE (). (6.2.62)
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Moreover, the S!-action & > £’(-+ 1) is generated by the Hamiltonian
H(Ag) =1 / Azdr=1} / (aj+&7)dr. (6.2.63)

Indeed, let Xy denote the vector field generating the S'-action, that is Xy F[£] = O¢|e=oF [€ +
€&’ (1)]. In particular (dé(7), Xg) = ¢’(7). Then we have that

dH(Ag) = / dré'dée’ = wa, (X1, (6.2.64)

meaning that the Hamiltonian flow generated by H agrees with the S'-action.
However, identifying diff(S') = Lt , there is a natural action of Diff(S') on Lt with orbits
given by

Ouy = {dy = aog’ (1) + (log¢’' (1)) : ¢ € Diff(S")}. (6.2.65)

In fact, we have O,, = O,,, in fact this is just another parametrisation of the same loop group

orbit. The symplectic structure on these Virasoro orbits is
Da, = % / [a(z)égo ANSQ +6loge’ Adlog(¢’) ]dT, (6.2.66)

which agrees with the Virasoro KKS-form (6.2.49) for 2a = iag. Moreover, the S I_action is
generated by

H(ay) =1 / [age™” + (log¢’)?]dT, (6.2.67)

which is the moment map (6.2.39) for 2a = iay.






Chapter 7

Non-uniqueness of phase transitions for

graphical representations of Ising [UNIQ]

Abstract: We consider the graphical representations of the Ising model on tree-like graphs.
We construct a class of graphs on which the loop O(1) model and the single random current
exhibit a non-unique phase transition with respect to the inverse temperature, highlighting the
non-monotonicity of both models. It follows from the construction that there exist infinite
graphs G C G’ such that the uniform even subgraph of G’ percolates and the uniform even
subgraph of G does not. We also show that on the wired d-regular tree, the phase transitions of
the loop O(1), the single random current, and the random-cluster models are all unique and

coincide.

7.1 Introduction

The Ising model needs no introduction as one of the cornerstones of statistical mechanics, and
over the past 50 years its so-called graphical representations have become one of the main tools
for its rigorous study [143—145]. Consequently, they are increasingly regarded as objects of
independent study [146—151]. The most prominent of these is the random-cluster model' .,
introduced in [152] as an interpolation between Potts models. The loop O(1)model ¢\, was
introduced by Van der Waerden [153] as the high-temperature expansion of the Ising model. On
finite graphs, £, can be defined as Bernoulli percolation P, at parameter p = 7~ conditioned on

being even (that is every vertex has even degree). The random current representation P, was

first introduced in [154] and given a useful probabilistic interpretation in [143]. While usually

'We only consider the case of cluster weight ¢ =2 in which case it is also referred to as the FK-Ising model.
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considered as a multigraph, we will be concerned with its traced version (i.e. the induced simple
graph), which can be defined as P, = £, U Pl_ Visa where 1 U uy is the distribution of w Uw;
under u @ uy (w; ~ w;). We also refer to P, UP, as the double random current.

Similarly, we note that the random-cluster can be defined as ¢, = {x UP,. As all models are
obtained from the loop O(1) model via "sprinkling" with Bernoulli percolation, much of our
analysis will focus on the former.

In this paper, we investigate a number of natural questions regarding the interplay between the
graphical representations which, while by no means ground-breaking, offer some conceptual

clarification which is at present not well-represented in the literature.

7.1.1 Results

In this paper, we prove non-uniqueness of the percolative phase transition of the (free) loop
O(1) model é’)? - Here, the index G denotes the underlying graph and the superscript 0 denotes

free boundary conditions. We also let C, denote the event that there exists an infinite cluster.
Theorem 7.1.1: There exists a graph M where x +— KQM [Cs] is not monotone.

In Theorem 7.2.8 we prove the same result for the (traced, sourceless) single random current
model PY. Next, consider the uniform even subgraph UEGg, defined to be the uniform measure
on even subgraphs of G. This model is intimately related to the Ising model [150, 155, 156]
and can be understood as a special case of f)?’ ¢ forx =1. Using Theorem 7.1.1, we prove that

percolation of the uniform even subgraph is not monotone in the graph.

Corollary 7.1.2: There exist graphs G’ C G such that UEGg[Cw] =0 and UEGg [Cw] = 1.

In [150], it was proven that on the hypercubic lattice Z¢, the regime of exponential decay for
the loop O(1) and random current model coincides with the high temperature phase of the
Ising model. Here we establish the phase diagrams for the d-regular tree T¢ as well as the
graph obtained from the d-regular tree by replacing every edge with a cycle of length 2n (and
glued through opposite points of the cycle), henceforth denoted C¢. For a boundary condition
¢ €0, 1}, corresponding respectively to free and wired boundaries, we define the critical point
of the loop O (1) model via xc(fé) =infye[o,1] {{’f,G[Coo] > 0}. Analogous definitions are used
for the other models.
Theorem 7.1.3: For any d > 2 and n > 1, it holds that

Xe (fq%‘d) = xC(P%[‘d) =Xc (qupd UP%[‘d) = xc(‘pqlpd)

xc({’%d) > xC(P%d) > Xc(P%d Uqufd) > xC(QD%d)'
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x=0  expdecay percolation x=1

0 oo o expdecay  x.(¢%)  x(P%)  x(£%)
Coar Poas g - ° ® ®

Figure 7.1: The phase diagrams of the loop O(1), single random current, and random-cluster
measures on the d-regular wired tree T¢ coincide. The free measures on CZ, the d-regular
tree where every edge is substituted by a cycle, have different phase transitions. Finally, the
free loop O(1) model on the monster M (constructed in the proof of Theorem 7.1.1) has a
non-unique phase transition. This is to be contrasted with the corresponding table for the
hypercubic and hexagonal lattices in [150, Figure 1].

The same statements are true for the graph Cg. In both cases, all phase transitions are unique.

This theorem is the most basic illustration of the mechanism first investigated in [157]: While it
is surprising that the single random current, double random current and random-cluster model
should share a single phase transition?, this phenomenon ultimately boils down to the existence
of long loops in the ambient graph. In the absence of loops (as in the free tree), the phase
transitions should be distinct, and if there are only long loops (as in the wired tree), we expect
them to be one and the same. This carries over to the situation where all loops are of uniformly
bounded length (as for the free loops on C%).

In Figure 7.1, we provide a graphical overview of the results. Finally, we prove that the phase

transitions of the uniform even subgraph and Bernoulli percolation are not in any way related:

Theorem 7.1.4: For any & > 0, there exists a graph G* with p.(P,g=) € (1 -¢&,1) and
UEGg:[Cs] = 1.

7.1.2 The graphical representations of Ising

We define the random-cluster and random current model as in [158, 159] through the couplings
to the loop O(1) model. Given a finite graph G = (V,E), an even subgraph (V,F) of G is
a spanning subgraph where each v € V is incident to an even number of edges in . We let

Q¢ (G) denote the set of even subgraphs of G. The loop O(1) model ¢ ; is a natural probability

2See the introduction in [150] for further explication.
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measure on Qy(G):

beglnl = ix"ﬂ, for each 7 € Qy(G) (7.1.1)
with Zg = ZUEQ@(G))C'”'. Here || denotes the number of (open) edges in 7 and x = tanh(f) €
(0,1) as in [160], where S is the inverse temperature. For G a graph with boundary, we denote
f;G = {y G/~ Where ~ identifies the boundary vertices of G. We refer to Q,G as the wired loop
O(1) model.

We denote Bernoulli edge percolation with parameter x € [0, 1] by P, and define the (traced,

sourceless) single random current at parameter x and boundary condition & € {0,1} as

& _ o8Pt
P;=¢; UPl—\/—_xZ’ (7.1.2)
where €0 = ¢,. This definition of the model is equivalent to the standard definition due to a
result by Lupu and Werner [161].
Similarly, we define the random-cluster model via

o5 = £ UP, (7.1.3)

which is equivalent to the standard definition of the model by a result due to Grimmet and
Janson [156].

The random-cluster model satisfies several useful monotonicity properties which are not enjoyed
by the loop O(1) and random current models [158]. We endow {0, 1}£ with the pointwise
partial order <, and say that an event A is increasing if w € A and w < «’ implies that w’ € A.

The following monotonicity properties will be of use in this paper (see [145, Theorem 1.6]):
1. The FKG inequality: ¢, g[ANB] > ¢x.c[Al¢x.c[B] for A and B increasing.
2. Monotonicity in boundary conditions: go)lc clA] = (,02 ¢ [A] for A increasing.

3. Stochastic monotonicity: ¢y, g[A] > ¢y, c[A], whenever x| < x; and A is increasing.

We write ¢y, 6 2 ¢x,.G-

The last property is equivalent to the existence of an increasing coupling - that is, a probability
measure u with marginals w; ~ ¢y, and wy ~ ¢, such that w; < w; almost surely (i.e. wy is a
subgraph of wy).

We refer to the lecture notes of Duminil-Copin [145] for an overall introduction to the Ising

model and its graphical representations. Furthermore, we stick with the parametrisation in
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terms of the loop O(1) parameter x € [0, 1] throughout this paper and refer to [150, Table 1] for

an overview of the standard parametrisations.

7.1.3 Graphical representations and uniform even subgraphs.

In the following, we will consider the uniform even subgraph UEG, which not only serves
as the limiting case of the loop O (1) model ¢, for x = 1, but also yields (perhaps surprising)
connections between the different graphical representations. For a finite graph G, the uniform
even subgraph UEGg; is a uniform element of Qg (G), the set of even subgraphs of G. In [150],
an abstract view of the uniform even subgraph was taken as the Haar measure on the group
of even graphs®, and its percolative properties were studied. Before that, the uniform even
subgraph and its infinite volume measures were studied in detail by Angel, Ray and Spinka in
[155], where the free UEG? and wired uniform even subgraphs UEG! were introduced and it
was shown that they coincide on one-ended graphs [155, Lemma 3.9]. In this article, we are
concerned with tree-like graphs (as opposed to, say, Z%), which in general have infinitely many
ends. Hence, the distinction between the free and wired measures, UEG® and UEG!, plays a
bigger role than in [150, 155].
For an infinite graph G the wired uniform even subgraph UEGéqu can be defined as the Haar
measure (normalised to probability) on Qg, the group of all even subgraphs of G. In particular,
it pushes forward to Haar measures under group homomorphisms and as a consequence, its
marginals are also Haar measures on their supports.
The set of all finite even graphs Q5% (G) = {n € Q¢(G) | |57] < oo} is a subgroup of Q. Its
closure

Q%(@) = 5™(G)

is a (compact) subgroup of Qy(G), and the free uniform even subgraph UEG% is the Haar
measure on that group. For more details on the construction of the free and wired uniform even
subgraphs for infinite graphs see [150, Section 3.2].

In [156, Theorem 3.5] it was realised that the loop O(1) model arises as the uniform even
subgraph of the random-cluster model and in [158, Theorem 4.1], that it is also the uniform
even subgraph of the double random current.

Thus, on any graph, the loop O (1) measure can be written as follows:

E1] :goé[UEGf,[-]], (7.1.4)

3With the group operation given by pointwise addition mod 2 in the space {0, 1}¥ — or, equivalently, taking
symmetric differences of edge sets.
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where & = 0 in the free case and & = 1 in the wired case*, and go'é is defined as a thermodynamic
limit (see e.g. [150, Sec. 2.1.3.]) when G is infinite. In infinite volume, this may be taken as
the definition of the loop O(1) model (cf. [150, (4)]). This can then be used to define the single

and double random current,

P=(;UP,_— and P{UP{=(UfUP,. (7.1.5)

7.1.4 Percolation regimes

Since the graphs we will work on are not vertex-transitive, we will use the following definition
of percolation: We say that a percolation measure p, g on an infinite graph G percolates it
.G [Cs] > 0 (recall that C,, denotes the event that there exists an infinite cluster) and we

define the percolation regime

P(,Ux,G) ={x€(0,1) | Hx,G [Ceo] > 0} (7.1.6)

We say that the phase transition on G is unique if both P (u,g) and (0,1) \ P(urc) are
connected. In that case, we define the critical parameter x. (i, ) = inf P (uy.g). By stochastic

monotonicity, the phase transition of the random-cluster model ¢ is unique on any graph.

7.1.4.1 Bernoulli percolation on a tree.

We denote by T¢ the d-regular tree and by T¢ the ball of size n for the graph distance on T¢.
Observing that the cluster of the origin can be described in terms of a Galton-Watson process
(and with the observation that vertex-transitivity implies that P, 1a [0 <> oo] > 0 if and only if
P, 1a[C] = 1), one sees that the critical parameter for Bernoulli percolation on the d-regular
tree is

pe(Pra) = (7.1.7)

1
d-1
7.1.4.2 Percolation versus long-range order

For readers more familiar with models on lattices, a brief word of caution might be in order:
One might wonder why models that essentially share correlation functions nonetheless have

different critical parameters for percolation.

“For finite graphs we write £, omitting the boundary condition.
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In particular, we have the following agreement of two-point functions (see e.g. [145, Corollary
1.4, Lemma 4.3]):

0yl oWl =(0vo)g 5 =Pl UPY o [v o w] (7.1.8)

for all finite graphs G and vertices v,w (here {(o,0,)G g is the Ising correlation function and
8 = arctanh(x)). However, this is not an obstruction to percolation setting in at different values
of x because percolation does not, in general, imply anything for the two-point function. One is
tempted to write that the bound ¢°[v & w] > ¢%[v < 00]¢?[w < o] follows from the FKG
inequality, but this only holds if the infinite cluster is unique, which, as may be checked, is

never true for trees.

7.2 Non-uniqueness of percolation

In this section we tackle the following question.

Question7.2.1: Let G C G’ be two infinite graphs and suppose that the uniform even subgraph

of G’ almost surely percolates. Does the uniform even subgraph of G almost surely percolate?

The following counterexample answers the question negatively and at the same time constructs
a class of graphs for which #({y) has multiple connected components.
We use that the loop O (1) model factorises on graphs lacking certain cycles: A cycle denotes
a path of vertices vi,v2,...,v, such that vi = v,. We say that a cycle is simple if v; # v for
distinct 1 < j,k <n.
Definition 7.2.2: For a graph G and two subgraphs G,G, C G, we say that (G1,G>) is a
cut-point factorisation of G if E(G) = E(G1)UE(G>,) and it holds that there is no simple
cycle in G which contains edges from both E(G) and E(G3).
Definition 7.2.3: We say that a graph-indexed family of percolation measures v cut-point

factorises if vg = v, ® v, whenever (G, G>) is a cut-point factorisation of G.

The following lemma will be useful.
Lemma 7.2.4 (Cut point factorisation): Each of the measures ¢y, ¢,, Py, P, UP, cut-point
factorises.

Proof. We first prove the statement for the loop O(1) model. For any even subgraph n of G,
its restrictions 71,7, to the subgraphs G| and G, are even graphs since (G, G>) is a cut-point
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factorisation of G. Thus, writing Q; = {0, 1}£i, one may simply rewrite

|71 71151721
X X X
fx,G [77]

= o= — 7 = tai Mt [m2]-
Ziyea lon=ox!"! Lipjee 16n1=013n;=@9€|’71 el

For the other models, the statement follows from the couplings of P,P UP and ¢ to the loop

O(1) model (which we used to define said models in Section 7.1.2). Indeed, note that for any

two product measures, iy, G = tx,G, ® Ux,G, and Vi G =V G, ® Vx G, that

Hx,GUVyG = (/Jx,Gl U Vx,Gl) ® (/Jx,Gz U Vx,Gz),
and Bernoulli percolation clearly cut-point factorises. O

In Theorem 7.2.4 we proved the cut-point factorisation property for finite graphs. The infinite
volume measures also have the cut-point factorisation property as they are either limits or

(sprinkled) uniform even subgraphs of a cut-point factorising measure.

Lemma 7.2.5 (Non-monotonicity of loop O(1) two-point function): There exist parameter

values 0 < x| < x; < 1, and a finite graph G° with vertices a, b such that

1
gxz,G° [a < b] < Z < [xl,Go [a Ad b]

Proof. Consider the graph G°, described in the right-most column of Figure 7.2 (which was
previously used as an example in [158]). In this graph, the probability that the two marked

vertices are connected is

x2m + x2m+2n

1 4+ x21 4 x2m 4 4xn+m 4 y2m+2n ’

fx,G‘> [a < b] =

Setting n = 12,m = 2,x; = 0.85, and x, = 0.965 yields

1 1
lgela © b] <0.245 < 2 and £ go[a & b] 2027 > 7.

We have also plotted the graph of x +— ¢, G- [a <> b] in Figure 7.3. O

With this in hand, we can construct our counterexample for Theorem 7.1.1: We note that the

proof of the theorem also implies that the percolation regime 73(5)? o) € [0,1] is not connected.

Proof. We construct M from the d-regular tree T with root 0 for an appropriate choice of d.

Consider the natural orientation of the tree where edges are oriented away from the root and
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Figure 7.2: The graph G° (pictured to the right) along with its eight even subgraphs (including
G° itself). We let the outer paths be n edges long and the inner paths be m edges long. The
nodes a and b are marked with dots. We list the number of edges of each subgraph, the
corresponding weights and whether a and b are connected in the subgraph. (Sketch and text
partially revised from [158].)
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Wei ght 1 x2n x2m yx+m yHm xm xm x2m+2n
{a b} | X X v X X X X v
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Figure 7.3: Graph of the connection probability for the loop O(1) model on the graph G°,
described in Figure 7.2, for n = 12 and m = 2. See also [158, Figure 2.3] for similar figures.
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replace every such oriented edge e = (v,w) by a copy of the graph G°® where a is identified
with v and b is identified with w. More formally, let M = (][ cg(re) G¢)/~, where ~ is the
equivalence relation such that a, ~ b, whenever the source of e is equal to the sink of e’.
See Figure 7.4 for an illustration. Now, since the macroscopic structure of M is that of a tree,
Lemma 7.2.4 applies, and it holds that

O = Becr by o (7.2.1)

X

As a consequence, analysing percolation of £, 3 just boils down to Bernoulli percolation on T¢:
For given n € Q) (M) and e € E(T?), we define m, =1 if a & b in G2 and m, = 0 otherwise.
In other words, m = (m,),eg(r«) maps a percolation configuration in M onto one in T such
that OM oo if and only if 0 co. Furthermore, by (7.2.1), the image measure of £,y 1S
Bernoulli percolation: m({’g’M) =Py (y) e Where f(x) =l g-[a & b].

As a consequence, it holds that fg’M [Coo] =P (x)1¢[Cx]. By (7.1.7), we know that P ¢, e [Coo] >
0 if and only if f(x) > -=. Now, by Lemma 7.2.5 there exist x| < x, and d such that

d+1°
f(xp) < ﬁ < f(x1), which proves the desired. O

As aresult, we obtain a negative answer to Question 7.2.1, that is a proof of Corollary 7.1.2:

Proof of Corollary 7.1.2 (in the free case). First, recall that the loop O(1) model can be ob-
tained by sampling a uniform even subgraph from a random-cluster configuration, see (7.1.4).
For the random-cluster model gog’M we consider the increasing coupling in x. For x| < x; as
above, the uniform even subgraph of gogl’M almost surely percolates and the uniform even
subgraph of gogzM almost surely does not. Since the coupling is increasing, there must exist
at least one pair w; =< wy where the uniform even subgraph of w; percolates while that of w,

does not. O

7.2.1 Corollary 7.1.2 in the wired case.

In this section, we will construct a supergraph® of Z for which the wired UEG does not
percolate.

Define G = (Z,E), where (n,m) € E if either [n—m| =1 or n = —m. Let By := E\ E(Z) and
Gare = (Z: Eurc).

>One may note that our trick is basically to pick a one-ended supergraph of a two-ended graph. One may
check that the wired UEG of a graph with multiple ends percolates (see also [150, Eq. (14)]). Therefore, our
construction does not have the flavour of an optimal solution to the problem.
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Figure 7.4: An example of the graph M built from the graphs G° (see Figure 7.2) when d = 2.
To the left with the d-regular tree overlaid. To the right, the geometry of M at a single vertex of
the initial tree.

Lemma 7.2.6: The marginal UEG}Cir g, =P 1 G

Proof. This follows from the fact that the restriction group homomorphism Qy(G) — {0, 1}EarC
is surjective. To see that the map is surjective, it suffices that all single-edge configurations lie
in the image. For a given e = (—n,n) € B, we see that 11, is the image of the loop containing
[-n,n] NZ and e. O

Proof of Corollary 7.1.2 (for the wired case). Let G be as above. Let v € Z and note that on
the event that there is an open edge in B outside of [—|v|,|v|], the cluster of v has to be
finite. By Lemma 7.2.6, with probability 1, infinitely many edges in F,. are open in UEGg.
By the previous comment, on this event, all clusters are finite. Hence UEGg does not percolate.

However, Z has exactly two even subgraphs,n =0 andnp =1, so UEG% does percolate. O

7.2.2 Generalisations and non-uniqueness of random current phase tran-
sitions

We can adapt the earlier construction of a disconnected percolation regime from the loop O (1)

model to more general cut-point factorising measures:

Proposition 7.2.7: Let F be a finite graph and that v, w are two vertices. Let {1 r}re0,1] be
a family of cut point factorising percolation measures. Suppose that there exists a finite graph
F such that x — p, r[v & w] is not monotone. Then, there exists an infinite graph M such

that P (u, ) is disconnected.

Proof. By assumption, there exist x| < xp < x3 such that

max{py r[v & Wl oy p[v & wlt < o plv o wl.
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For p € (0,1) let G, ~ P, ra. Notice that almost surely, x.(Pyg,) = m. By tuning the

parameters p and d appropriately, we can make sure that

1

< m < ,lez,F[V g W]

max{iy, [V & Wl i r[v < wl}

Now, construct M by sampling G, and substituting each edge of G, by a copy of F, gluing in

the same way as in our construction in the proof of Theorem 7.1.1. O

The proposition shows that we do not need to "fine-tune" the parameters for the transition
points to fit the phase transition of the d-regular tree.

As a consequence, we can see that the single random current also admits a disconnected
percolation regime: Recall that [158, Figure 2.3] gives an example of a graph for which
connection probabilities are not monotone, hence, by the above proposition, it follows that we

get:
Corollary 7.2.8: There exists an infinite graph G such that (P ) is not connected.

Remark 7.2.9: We note that since single site connection probabilities are monotone for ¢, and

P, UP,, the counterexamples do not work for these models.

Another model of statistical mechanics which cut-point factorises is the arboreal gas model.
The simplest definition of this model in finite volume is as Bernoulli percolation conditioned to

be a forest (i.e. conditioned not to contain any cycles):
__ L iy
vpelw] = 7 B Qo (w)={0}>
G.B

where 0 denotes the empty graph, which is even. It is immediate that if (G,G>,) is a cut-
point factorisation of G and F1, F; are subforests of G| and G, respectively, then F| U F; is
a subforest of G. Thus, vg ¢ cut-point factorises. At present, the connection probabilities of
the model are conjectured to be monotone in S on all finite graphs G [162, p.2], but supposing
that they are not, our construction would go through for this model as well, yielding a graph on

which the percolation phase transition of the model is not unique.
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7.3 Phase transitions of the wired models on the d-regular

tree coincide

In this section, we prove the first part of Theorem 7.1.3 on trees. The main tool in the proof is
the observation that all wired cycles in T¢ are infinite. In particular, £ ;,T , 1s empty if it does not
percolate.

First, we will need a small bookkeeping result. Let T¢ denote the rooted d-regular tree. Cycles
of T¢ containing an open edge e will consist of two infinite paths in isomorphic copies of T¢.
It will therefore be important (and easily demonstrated) that changing the degree of a single

vertex does not change the phase transition.
Lemma 7.3.1: For any d > 2, we have that xc(go%rd) = xc(cp%d).

Proof. Fix one edge e of T and note that for any x € (0, 1),

Sp,lc,v]pd [Coo] = SOJIC,Td [Cool we =1] ‘P}C,Td [we =1] + SDJIC,Td [Coo| we =0] ‘P;’Td [we =0].

By tail-triviality (see [149, Theorem 10.67]), (pi Td [Cw] € {0,1} and since go)lc T [w, =0] €
(0,1), we conclude that

@1 7a[Coo e = 0] = ¢} 4 [Coc].

Furthermore, (V(T%),E(T9) \ {e}) has two connected components, both of which are isomor-
phic to T¢. Permitting ourselves a natural abuse of notation, remark that by the Domain Markov

Property [145, p.8], (p)‘c’Td [|we=0]= <p;jd ® "D)lc,Td' Thus,

Sai,qu [C] = ‘P;’Td [Cool we =0] = ()D)lcjw ® Qo)lcjfd [Co]l =1-(1- Qoijrd [COO])Z’

which finishes the proof. O
Theorem 7.3.2: For x > xc(go,]lr ), there exists ¢ > 0 such that for any vertex v,
fi,Td [v e o] >c.

In particular, x, (f,[lrd) =X (‘qurd )

Proof. Consider two neighbouring vertices v, w and define the event A, = {v «— co in T¢
{v,w}} and analogously A,,. Define the event L, ,, := A, N A,, N {(v,w) open}. In words, this

is the event that that there is a loop which contains the edge (v,w) goes through the wired
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boundary at infinity. Now, suppose x > xc(go,}l., .- In this case, by the FKG inequality, we obtain
a lower bound that a random-cluster configuration w satisfies L, ,,:

2

@ypalLow] 2 @ 7a[AV]@ 1 [AW]@; 7l (v.w) open] > ¢ 5, [0 & 0]k > ¢ >0,

where, in the second inequality, we have used monotonicity in boundary conditions, the fact
that the probability of a given edge being open is at least x (which follows from (7.1.3)), as
well as Lemma 7.3.1.

Conditionally on L,,,, there exist two disjoint infinite paths in w starting from v and w respec-
tively. Let us argue that, for such a configuration w, UEG,[(v,w) open,v <> o] = % This
boils down to two observations: First, because all components of an even subgraph of T¢ are

either trivial or infinite,
UEG}U[(V,W) open,v <> oco| = UEG}U[(V,W) open]. (7.3.1)

Second, the probability of a given edge, which is part of a loop in w, being open in UEG,, is %
(see the much more general statement [150, Lemma 3.5]).

In conclusion, for x > xc(tpqlrd),
€l alv & 0] 2 ¢! 1, [UEG, [v & o0]] > ¢/2 > 0.
O

To finish the proof of the first statement in Theorem 7.1.3, we make a short aside to discuss the
subcritical regime of the random-cluster and random current models on the tree. It is classical
that, for x < xc(tpqlr .)» we have that go)lc,Td =P, 1a (see [149, Theorem 10.67]). A similar result
holds for the double random current:
Lemma7.3.3: For x <x.(¢,), then P}C’T LU P}C’T o = P2 ra. Moreover, x.(¢y,) < xc(PL, U
PL,).
Proof. Since x < xc(go,l]rd) and K;,Td = (pde, we get that fi,Td [C] < So,lc,qu [Cw] = 0. Therefore,
since all trivial components of an even subgraph of T¢ are infinite, we have that

£ 5aln = 01 Qo(T)\ Co] = 1.

By (7.1.5), this implies that P;’T LU P}C’T o+ =P ra. For the second statement, note that P2 ra <

|
Px,Td = ‘px,Td' O
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We can now put (7.1.5), Theorem 7.3.2 and Lemma 7.3.3 together to obtain
1 1 1 1 1y _ 1
Xc(de) 2 X (PTd) 2 Xe (PTd U PTd) 2 xC(‘PTd) - xc(&]rd)'

Hence, we arrive at the following corollary:

Corollary 7.3.4: For d > 2, then

xc(fqlpd) = xC(lefd) = xC(lerd U lerd)'

7.3.1 Modifications for C¢.

In the following, we comment on how to adapt the previous proof strategy to yield the analogue

of Corollary 7.3.4 (resp./ the first part of Theorem 7.1.3) on C%. This requires two ingredients:

a) For x < xc(goé 2), all models reduce to explicitly comparable independent models. In

X (P):Cd ~ P):Cd) >—'( ("zl d)'
¢ ~n ~n ¢ X,Cn

b) Forx > xc(tpég), the loop O(1) model Q,cg percolates.

For a) if x < xc(go(': g), rather than K;’c a being deterministically empty, it includes each simple
cycle of C¢ independently since the free loops cut-point factorise. Accordingly, Pi’c a U P}C’C "
is a union of two independent cycle measures and a Bernoulli percolation and therefore, it
percolates only if it has better connection probabilities in finite volume than gp)lc’c a- But the
finite-volume two-point function of go)lc,c y is always larger than that of Pi,c sV P)lc’C y by (7.1.8).
, does not percolate.

an
Now, for b), if x > x.(¢ é ,), we want to make an observation that infinite paths can be deduced

Since x < xc(goéd), we conclude that P)lc e P)lc

in ¢! o from a local configuration. On a tree, it is true that any open edge is part of an infinite
clusée; (this is what we used in the proof for T, see (7.3.1)). On C;f, instead, it is true that if
e, e’ are edges belonging to the same simple cycle, and 1 € Qy(C%) with 5, = 1 and 5., = 0,
then e lies on an infinite cluster in 77 (in which case ¢’ and e are on opposite paths between the
glued vertices). By the same argument as previously, conditionally on e being cyclic and lying
in an infinite component of w ~ "D)lc,c & the probability that , = 1 and n.» = 0 is at least }‘ for

1 ~ UEG], which concludes the argument.
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7.4 Explicit computation of critical points

In this section we explicitly compute the critical points for the free models on C¢, the d-regular
tree where every edge is replaced by a cycle of length 2n (and glued through opposite point of
the cycle).

Proposition 7.4.1: For any n > 1 and d > 2, it holds that
1
Xe(Lgg) = (d=2)72
%ol = V(d=1) Va1 1
xe (PO, UPY,) = 2{1/(251—5) —J(@2d-5)2-1.

In particular, the three different models have three different phase transitions.

A graphical presentation of the functions is given in Figure 7.5.

Proof. Let Cy, denote cycle graph of length 2n and let a and b be two antipodal points. As in
the proof Theorem 7.1.1, we use cut-point factorisation (Lemma 7.2.4) to reduce everything to
Bernoulli percolation on T¢ with parameter v, ¢, [a <> b] (with v denoting one of the models
under consideration). The rest follows by direct computation:

Loop O(1) model: Tt holds that £, ¢, [a < b] = = Thus,

T 142

1 x21
d=1" 14x2

can be solved to obtain x, (fgd) =(d- 2)_ﬁ.

Random-cluster model: Now, for (,w) ~ €y c,, ® P, c,,, We see that

1
0.

0o, ®Pp 0y, [MUw € (a & b)| 1] = )
P

n 2n

n
-p n

Since the cycle graph has exactly two even subgraphs (the full and the empty graph) we get that

x2n +2pn _p2n

(fx,CZn U P[),CZ}'L) [a « b] = 1 +x2n

(7.4.1)



7.4 Explicit computation of critical points 189

Thus, for the random-cluster model (where we choose p = x) we obtain

1 X2 4 2xt — x2n 2x"
= SOXC,CQH [a o b] = s CZ : = 62 ’
d-1 1+x" 1+x"

which can be solved with the substitution z = xI! and we obtain that

v (¢ = (d=1) ~Vi@-1D-1.

Double random current: Analogously to (7.4.1) we obtain

2x2n +x4n +2pn _p2n
(1 +x2m)2

(KX,C2n U €X,C2n ) PP’CZn) [a > b] =

Hence, choosing p = x? for the double random current we obtain the following equation

1 4™
d—1  (1+x2n)2

which can be solved with the substitution z = x*", giving rise to

xc(ng Ung) = 2{’/(2d—5) —vV (2d-52-1.

O

The same argument for the single current does not lead to a closed formula, but the following

separate argument allows us to conclude Theorem 7.1.3.

Proof of Theorem 7.1.3. The first part of the theorem is given by combining Theorem 7.3.2 and
Theorem 7.3.4. We focus on the single random current: From (7.4.1) we sprinkle with p(x) =
1-V1—x2 to obtain the single current. One may check that for any increasing (differentiable)
function p(x) taking values in [0, 1], the function x — (£, UP,(y)) [a <> b] is increasing. Hence,

there exists a unique solution x. to the equation

1 _ x%n +2p(xc)" _p(xc)zn
d-1 1 +x2 '

Thus, if p and ¢ are increasing differentiable functions that take values in [0, 1] such that

p(x) < q(x) forall x € [0,1] then xc (€] .y U, () 1) > Xe(£] (g VP ca)-
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Figure 7.5: The critical x. on the graph C;, as a function of d for the loop O(1), and double
random current.

Using this for the functions r(x) =0, p(x) = 1 = V1 —x2, and ¢(x) = x? together with stochastic

domination yields

0 0 0 0 0
. . . > X,
Xe(E ca) > Xe(C 0 B, 08) > Xe (6 pa VB (1 c0) 2 Xe(€ 0q UE 1a VB (1) ca)-
—_—
0 0 0
Px,Cg PX’CgUPXng o

7.5 The critical probability for Bernoulli percolation is no
obstruction for the UEG

In the previous section, we considered graphs where the free uniform even subgraph is intimately
tied to the behaviour of ordinary Bernoulli percolation on another graph. One might wonder
about general links between the behaviour of Bernoulli percolation and that of the UEG. For
instance, one might have a suspicion that if a graph G is easily disconnected in the sense that
the percolation threshold p.(Pg) is very close to 1, this lack of connectivity might also impact
the UEG. This turns out to be false even for one-ended graphs.

We are going to give two counterexamples:

* The first is a construction that can be applied to just about any graph and which admits

an easy proof. However, the graphs thus produced are not of inherent interest otherwise.
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* The second is the infinite cluster of ¢, .. 72 as & — 07, which is a more natural object,

but for which the proof is more involved.

The UEG of the latter model always percolates by [157, Theorem 1.3], and it is reasonable
to believe that continuity of the phase transition implies that breaking even a small fraction
0 = 6 (&) of the edges breaks the infinite cluster. However, the proof we give relies on [163], the
results of which are (conjecturally) not valid for all planar percolation models with a continuous
phase transition (see discussion after [163, Theorem 7.5]). Therefore, the matter is much more
subtle than one might expect and restating all necessary prerequisites is beyond the scope of the
present paper. As such, we shall settle for referring to suitable places in the literature. However,
we find the example to be important in the sense that the graph produced is, in some sense, a

much more natural negative resolution to the question.

7.5.1 The edge-halving construction

For a graph G = (V,E), define G'/? with V(G'/?) = VUE and E(G!/?) consisting of pairs
(v,e) with v € V and e an edge in G with v as its one end-point. One may note that G!/? is
bipartite with bi-partition V UE. In pictures, G'/2 is obtained from G by dividing each edge in
two. The point is that doing so does not change the behaviour of the uniform even subgraph at
all, while it makes it strictly harder for Bernoulli percolation to percolate.

We note that since G'/? is bipartite, a subgraph thereof will have an infinite component if and

only if it has a connected component containing infinitely many vertices from V.

Lemma 7.5.1: For any graph G = (V, E) there is a group isomorphism ¢ : Q¢ (G'/2) — Q¢ (G)
such that

v<—n>w if and only if VM)W,

1

for every n € Qy(G) and v,w € V. In particular, UEG%B percolates if and only if UEG, ,

does.

Remark 7.5.2: We note that the lemma also holds for UEG, but omit it from the statement

for notational ease. The same proof carries through.

Proof. Any e = (v,w) € E has degree two in G'/2. Therefore, for any 1 € Qy(G'/?), (v,e) €
if and only if (w, e) € . Accordingly,

(1) ={e € E| deg, (e) =2}
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defines an even subgraph of G with the desired connectivity property. One checks that ¢ is a

group homomorphism and, furthermore, that its inverse is given by

v () ={(v,e)| e €m}.

Since ¢ is a group homomorphism and UEGérl ;, 1s the Haar measure on Qo(G'/2), it pushes

forward to Haar measure on its image under , which is UEGL, since i is surjective. O

Lemma7.5.3: For any graph G = (V,E), it holds that p.(Pgi2) = Vp.(Pg).

Proof. The proof proceeds by coupling w), ~ P2 g and w172 ~ P, g2 for every p € [0,1] in
such a way that w, € {v < w} if and only if w, 12 € {v <> w} for every pair v,w € V. The
coupling itself declares that e = (v,w) € w), if and only if (v,e) € w, 1/ and (w,e) € W, 1/>.
The process w,, thus defined is i.i.d. since w, 1,7 is, and its marginals may be checked to
be Bernoulli variables of parameter p?. The desired connectivity property also follows by

construction. ]

This allows us to prove Theorem 7.1.4:

Proof. Let &€ > 0 and let Go = Z?, the uniform even subgraph of which percolates by [157]
and for which p.(Pz) = % by Kesten’s Theorem [164]. Inductively, define G, = G_}/ 2 By
Lemma 7.5.1, we have that UEGg;, [0 <> o] > O for every j and by Lemma 7.5.3, we have that
pc(Gj) = 2727, Picking j sufficiently large proves the desired. O

7.5.2 The infinite cluster of the slightly supercritical random-cluster
model.
For our second example, for x > x. we let G* denote the infinite cluster of ¢, 72. By [157, The-

orem 3.1], we have that the uniform even subgraph of G* percolates almost surely. Therefore,

we obtain a second proof of Theorem 7.1.4 if we can prove the following:

Proposition 7.5.4: Almost surely, under the increasing coupling of ¢, 72, we have

limp,.(Pgx) = 1.
WCP(G)

Proof. We start by fixing parameters and notation. Fix § € (0, 1) and let p > 0 be small enough.
For finite G C Z?, let (wg,é6,5) ~ @)  ®P1-5c. Furthermore, let Ry = [—k, k] x [-3k,3k] N
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Z?, Ay = [—k,k]>NZ? and let € denote the event that there is a crossing in Ry between its
left and right faces.
We claim that if k = k(6, p) is large enough, then

Or ke OP1-.R [0, NEsR, € BL] < p. (7.5.1)

Before we indicate how to prove (7.5.1), let us see how it finishes the proof. As any crossing
between Ay and Az, must cross at least one rotated translate of Ry, monotonicity in boundary

conditions and a union bound implies that

01 ny OP1os. Ay [WAy NEsny € {Ak & Asi}] < 4p. (7.5.2)

It is well-known that if p is sufficiently small, an estimate of the form (7.5.2) for some £ is
enough to imply non-percolation by techniques that go back to [165] (see e.g. the proof of [150,
Proposition 2.11]). However, by continuity of the finite volume measures, (7.5.2) remains true

if wa,, 18 replaced by @p,, ~ for & sufficiently small. Upon inspection, this is the

(pjlcc+s,/\3k
same as saying that p.(Pgx) > 1 — ¢ almost surely for x € (x.,x.+&), which is what we wanted,
since, under the increasing coupling, x — p.(Pg~) is almost surely decreasing.

Now, to see that (7.5.1) holds provided £ is large enough, we refer to [166, Lemma 5.2]. This
lemma is stated in the context of Boolean percolation, but as is remarked on in that paper,
its proof only relies on the techniques of [163, Theorem 7.5]. Thus, it is also valid for the
random-cluster model. Combining [166, Lemma 5.2] with the fact that the four-arm exponent

of the random-cluster model is smaller than 2 [167, Page 11] yields (7.5.1). O
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