
Studies in Statistical Mechanics and
Supersymmetric Lattice Models

Peter Wildemann

Supervisor: Prof. Roland Bauerschmidt

Department of Pure Mathematics and Mathematical Statistics

University of Cambridge

This dissertation is submitted for the degree of

Doctor of Philosophy

St John’s College December 2024





Declaration

This thesis is the result of my own work and includes nothing which is the outcome of work
done in collaboration except as declared in the preface and specified in the text. It is not
substantially the same as any work that has already been submitted, or, is being concurrently
submitted, for any degree, diploma or other qualification at the University of Cambridge or any
other University or similar institution except as declared in the preface and specified in the text.
It does not exceed the prescribed word limit for the relevant Degree Committee.

Chapter 3 is based on joint work with Rémy Poudevigne–Auboiron, and is published as

Rémy Poudevigne–Auboiron and Peter Wildemann. “H2 |2-model and Vertex-Reinforced
Jump Process on Regular Trees: Infinite-Order Transition and an Intermediate Phase”. In:
Communications in Mathematical Physics 405.8 (2024), p. 196.

Chapter 5 is based on joint work with Roland Bauerschmidt and Ilya Losev, and is published as

Roland Bauerschmidt, Ilya Losev, and Peter Wildemann. “Probabilistic Definition of the
Schwarzian Field Theory”. In: arXiv:2406.17068 (2024).

Chapter 7 is based on joint work with Ulrik Thinggaard Hansen and Frederik Ravn Klausen,
and is published as

Ulrik Thinggaard Hansen, Frederik Ravn Klausen, and Peter Wildemann. “Non-uniqueness
of phase transitions for graphical representations of the Ising model on tree-like graphs”.
In: arXiv:2410.22061 (2024).

Peter Wildemann
December 2024





Abstract

This work concerns an array of probabilistic models in the context of lattice systems and
statistical field theory. Firstly, motivated by predictions about the Anderson transition, we
study two distinct but related models on regular tree graphs: the vertex-reinforced jump process
(VRJP), a random walk that prefers to jump to previously visited sites, and the H2|2-model, a
lattice spin system whose spins take values in a supersymmetric extension of the hyperbolic
plane. Both models undergo a phase transition, and our work provides detailed information
about the supercritical phase up to the critical point.

Moreover, we consider the rigorous construction of the Schwarzian field theory, a measure
on the quotient Diff (𝑆1)/PSL(2,R) of circle diffeomorphisms, which has gained popularity
in recent theoretical physics literature. Its partition function is calculated by the rigorous
implementation of an argument by Belokurov and Shavgulidze [1]. This method exploits a
regularisation of the measure, motivated by the theory of Virasoro coadjoint orbits. We also
provide motivation for the physical origins of the Schwarzian field theory and offer background
on the theory of coadjoint orbits.

Furthermore, we consider the graphical representations of the Ising model, including the
random cluster, loop O(1), and random current model. Considering these models as percolation-
type random graph models in their own right, we are interested in their monotonicity behaviour.
We construct some tree-like graphs for which the loop O(1) and random current model exhibit
a non-unique phase transition. As a consequence there exist infinite graphs G ⊆ G′ such that
the uniform even subgraph of G′ percolates and the uniform even subgraph of G does not.
Moreover, we show that in general the percolation thresholds of the models do not agree.
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Chapter 1

Introduction

“Die meisten Menschen wollen nicht eher schwimmen, als bis sie es können.”

(engl. “Most men don’t want to swim until they can.”)

Statistical mechanics is one of the great unifying frameworks of modern theoretical physics.
Historically, it was developed to provide a probabilistic and microscopic explanation for
thermodynamics and, more specifically, phase transitions. In an interesting twist of scientific
history, it later became apparent that the very same mathematical principles are central to
our understanding of quantum field theory. The richness of the field is a treasure trove for
probabilists, and rigorous arguments are of particular importance to the subject; particularly
since finding convincing heuristics can often be a challenge, even within the physics literature.

This thesis will explore a variety of models that may initially appear disjointed, yet embody,
in essence or in spirit, the principles of statistical mechanics. It is remarkable how much depth
can hide behind an inconspicuous 𝑒−𝛽𝐻 , and I hope the reader is reminded of some of that
wonder while exploring this text.

This thesis is organised as follows: The majority of the content consists of the publications
[TREE], [SCHW], and [UNIQ], each presented in its entirety within its dedicated chapter. In
Chapter 2, we offer "executive summaries" of these works, providing additional perspectives
that complement the introductions of the original publications. Chapters 4 and 6 present
unpublished material and further context related to the publications [TREE] and [SCHW],
respectively.





Chapter 2

Executive summaries

This chapter aims at providing short and opinionated overviews on the context and the results
of the publications that are part of this thesis. These are meant to complement the introductions
of the articles, which are included in the appropriate chapters.

2.1 H2|2-model and VRJP on trees [TREE]

This works concerns the behaviour of two distinct but related models on the tree: The vertex-
reinforced jump process (VRJP), a random walk preferring to jump to previously visited sites,
and the H2|2-model, a lattice spin system whose spins take values in a supersymmetric extension
of the hyperbolic plane. Before discussing context and motivation, let’s introduce the models:

Definition (Vertex-reinforced jump process): The VRJP is a continuous-time jump process
(𝑋𝑡)𝑡≥0 on a locally finite graph 𝐺 = (𝑉,𝐸). At time 𝑡 it jumps from its current location 𝑋𝑡 = 𝑥
to a neighbour 𝑦 ∼ 𝑥 at rate

𝛽[1+ 𝐿𝑦𝑡 ] where 𝐿𝑦𝑡 :=
∫ 𝑡

0 d𝑠1𝑋𝑠=𝑦 is the time spent at 𝑦 so far, (2.1.1)

and 𝛽 > 0 is a fixed inverse temperature parameter.

The hyperbolic superplane H2|2 is can be considered as the set of coordinate vectors u =

(𝑧, 𝑥, 𝑦, 𝜉, 𝜂), such that u ·u =−𝑧2+𝑥2+ 𝑦2−2𝜉𝜂 =−1. Here, 𝑧, 𝑥, 𝑦 are even/bosonic coordinates,
while 𝜉,𝜂 are odd/fermionic. More details about this will be provided in Chapter 3, but for
now it is enough to think of H2|2 as a manifold with a Haar measure du and a scalar product
u𝑖 · u 𝑗 = −𝑧𝑖𝑧 𝑗 + 𝑥𝑖𝑥 𝑗 + 𝑦𝑖𝑦 𝑗 + 𝜂𝑖𝜉 𝑗 − 𝜉𝑖𝜂 𝑗 . In fact, to make proper sense of the H2|2-model,
we’ll need to introduce Grassmann integration, but at a purely formal level one can write the
following:
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“Definition” (H2|2-model): Consider a finite graph 𝐺 = (𝑉,𝐸). Fix an inverse temperature

𝛽 > 0 and a magnetic field ℎ > 0. For a functional 𝐹 ∈ 𝐶∞((H2|2)𝑉 ) over spin configurations

u = (u𝑖)𝑖∈𝑉 ∈ (H2|2)𝑉 we define the expectation of 𝐹 under the H2|2-model as〈
𝐹 (u)

〉
𝛽,ℎ

:=
∫

(H2 |2)𝑉

du𝐹 (u) 𝑒
∑

𝑖 𝑗∈𝐸 𝛽(u𝑖 ·u 𝑗+1)−
∑

𝑖∈𝑉 ℎ(𝑧𝑖−1) , (2.1.2)

with Haar measure du =
∏
𝑖∈𝑉 du𝑖.

In other words, the H2|2 defines a prescription for calculating correlation functions. For example,
one is interested in the covariance of the 𝑥-coordinate at different lattice points, that is ⟨𝑥𝑖𝑥 𝑗 ⟩𝛽,ℎ.
While the H2|2-model itself cannot be interpreted as a probability measure, certain correlation
functions and marginals have a direct probabilistic interpretation. One remarkable such example
is the BFS-Dynkin isomorphism between the VRJP and the H2|2-model [2, 3]: Suppose that
under E𝛽;𝑖 the process (𝑋𝑡)𝑡≥0 denotes a VRJP started from vertex 𝑖 ∈ 𝑉 at inverse temperature
𝛽 > 0. Then, for any 𝛽, ℎ > 0 and 𝑗 ∈ 𝑉

⟨𝑥𝑖𝑥 𝑗 ⟩𝛽,ℎ =
∫ ∞

0
E𝛽;𝑖 [1𝑋𝑡= 𝑗 ]𝑒−ℎ𝑡 d𝑡 (2.1.3)

That is, the two-point function of the H2|2-model describes the expected local time of a VRJP
with exponential killing rate ℎ > 0. This relationship goes much further: Introducing the
horospherical 𝑡-field coordinate on H2|2 via 𝑒𝑡 = 𝑧+𝑥, one can interpret the marginal of the H2|2-
model onto this coordinate as a proper probability measure (in the sense that any correlation
functions of these observables can equivalently be calculated under the expectation value of an
appropriate 𝑡-field probability measure). This horospherical marginal turns out to be related
to be directly related to the local time of the VRJP: Think of the H2|2-model on a finite graph
(𝑉,𝐸) with magnetic field as living on the extended graph containing the ghost vertex 𝔤, which
is connected to every other vertex with an edge of weight ℎ > 0. Consider a VRJP on this
weighted graph, started at the ghost 𝔤. Then it holds that

(𝑇𝑖)𝑖 :=
(

lim
𝑡→∞

log
𝐿𝑖𝑡

𝐿
𝔤
𝑡

)
d
= (𝑡𝑖)𝑖 =

(
log(𝑧𝑖 + 𝑥𝑖)

)
𝑖

(2.1.4)

The last two equalities are to be understood “under the expectation value”. However they
highlight a remarkable fact: The asymptotic local time field of the VRJP (on a finite graph) is a
random field, distributed as a marginal of the H2|2-model! The above
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β
0 βc βerg

c

recurrent: E[L0
∞] = ∞

‘ergodic’

transient: E[L0
∞] < ∞

intermediate ‘multifractal’

βc + ϵ

E[L0
∞] ∼ ec/

√
ϵ

On Td,n as n → ∞:
limt→∞ L0

t /t ∼ |Td,n|−ν

with ν = ν(β) ∈ (0, 1)

On Td,n as n → ∞:
limt→∞ L0

t /t ∼ |Td,n|−1

Figure 2.1: Sketch of the phase diagram for the VRJP on T𝑑 with 𝑑 ≥ 2. The recur-
rence/transience transition at 𝛽c is phrased in terms of E[𝐿0

∞], i.e. the expected total time
the walk (on the infinite rooted (𝑑 +1)-regular tree T𝑑) spends at the starting vertex. We obtain
precise asymptotics for E[𝐿0

∞] as 𝛽↘ 𝛽c. We show that there is an additional transition point
𝛽

erg
c > 𝛽c. It is phrased in terms of the volume-scaling of the fraction of total time, lim𝑡→∞ 𝐿0

𝑡 /𝑡,
the VRJP on the finite tree T𝑑,𝑛 spends at the origin. Here, the symbol “∼” is understood
loosely.

Results on the regular tree. In the publication [TREE] we focused on the models on the
rooted (𝑑 + 1)-regular tree T𝑑 with 𝑑 ≥ 2. By Basdevant and Singh [4] both the H2|2-model
and the VRJP exhibit a phase transition at a critical inverse temperature 𝛽c = 𝛽c(𝑑) > 0. For
the H2|2-model the transition is between a disordered high-temperature phase (𝛽 < 𝛽c) and a
symmetry-broken low-temperature phase (𝛽 > 𝛽c) exhibiting long-range order. For the VRJP
the transition is between a recurrent phase due to strong reinforcement effects and a transient
phase due to low reinforcement effects. We analysed the behaviour of the models in the
supercritical phase 𝛽 > 𝛽c: We show that their order parameter has an essential singularity
as one approaches the critical point, in contrast to algebraic divergences typically expected
for statistical mechanics models. Moreover, we identify a previously unexpected multifractal
intermediate regime in the supercritical phase. We refer to Figure 2.1 for an illustration of the
results for the VRJP. In the following we provide condensed versions of the main results, as
discussed in more detail in Chapter 3.

Theorem (Near-critical behaviour): Consider the VRJP and the H2|2-model on the infinite
rooted regular tree T𝑑 with 𝑑 ≥ 2 and let 𝛽c = 𝛽c(𝑑). There exist constants 𝑐,𝐶 > 0, such that
for 𝜖 > 0 sufficiently small we have

𝑒𝑐/
√
𝜖 ≤ E𝛽c+𝜖 [𝐿0

∞] = ⟨𝑥2
0⟩
+
𝛽c+𝜖 ≤ 𝑒

𝐶/
√
𝜖 . (2.1.5)

While the phase transition and above near-critical behaviour is seen on infinite trees T𝑑 , the
intermediate phase is seen in the scaling behaviour over finite trees T𝑑,𝑛 of depth 𝑛→∞.

Theorem (Intermediate Phase): For the VRJP on finite trees T𝑑,𝑛 we have

lim𝑡→∞
𝐿0
𝑡

𝑡
=

��T𝑑,𝑛��−𝜈(𝛽)+𝑜(1) w.h.p. as 𝑛→∞,
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with 𝛽 ↦→ 𝜈(𝛽) ∈ [0,1] continuous and non-decreasing. There exists 𝛽erg
c > 𝛽c, such that

𝜈(𝛽) ∈ (0,1) if and only if 𝛽 ∈ (𝛽c, 𝛽
erg
c ).

Moreover, the intermediate phase exhibits multifractal scaling for certain observables of the
H2|2-model and the VRJP:

Theorem (Multifractality in the intermediate phase): For 𝛽c < 𝛽 < 𝛽
erg
c and 𝜂 ∈ (0,1)

E𝛽,T𝑑,𝑛
[(lim𝑡→∞

𝐿0
𝑡

𝑡
)−𝜂] = limℎ↘0 ℎ

−𝜂⟨𝑧0 |𝑥0 |−𝜂⟩𝛽,ℎ;T𝑑,𝑛
∼

��T𝑑,𝑛��𝜏𝛽 (𝜂)+𝑜(1) as 𝑛→∞,

where 𝜂 ↦→ 𝜏𝛽 (𝜂) is an increasing and non-linear function.

The exponents 𝜈(𝛽) and 𝜏𝛽 (𝜂) can me made quite explicit and we refer to Chapter 3 for the
appropriate details.

2.2 Probabilistic definition of the Schwarzian field theory
[SCHW]

In recent years, the Schwarzian field theory has received an increasing amount of attention in
the theoretical physics literature. From a mathematical perspective, it describes a measure on
the space of circle reparametrisations1 𝜑 ∈ Diff (𝑆1), defined by the formal density

dM̃𝜎2 (𝜑) = exp

[
− 1

2𝜎2

1∫
0

d𝜏
[ (𝜑′′(𝜏)
𝜑′(𝜏)

)2−4𝜋2𝜑′2(𝜏)
] ] ∏

𝜏

d𝜑(𝜏)
𝜑′(𝜏) . (2.2.1)

This measure has a “hidden” PSL(2,R)-invariance induced by Möbius transformations in the
variable tan(𝜋𝜑(𝜏)) and the name Schwarzian field theory typically refers to the corresponding
quotient measureM𝜎2 := M̃𝜎2/PSL(2,R). It is instructive to think of the Schwarzian action as
a penalty function quantifying how “non-Möbius” a certain circle reparametrisation is. The
measure (2.2.1) can be seen as a replacement for a Haar-measure on Diff (𝑆1): As a topological
group Diff (𝑆1) is not locally compact and hence does not admit a left-invariant Radon measure.
However, (2.2.1) turns out to be a quasi-invariant Radon measure, meaning that left-translations
of the measure are absolutely continuous with respect to each other (with an explicit Radon–
Nikodym derivative). Furthermore, this model is of interest as a non-trivial field theory, for

1We consider the circle 𝑆1 � R/Z � [0,1]/∼ as the unit interval with identified endpoints. Alternatively
sometimes we write T instead of 𝑆1 to highlight that we’re working with a parametrisation by [0,1], rather than
[0,2𝜋]. Implicitly Diff (𝑆1) := Diff+ (𝑆1), always refers to orientation-preserving diffeomorphisms. We represent
any 𝜑 ∈ Diff (𝑆1) as a strictly increasing function 𝜑 : R→ R, such that 𝜑(0) ∈ [0,1) and 𝜑(𝜏 +1) = 𝜑(𝜏) +1.
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which the path integral measure can be made rigorous: In [SCHW] we construct the quotient
measure and calculate its total mass (i.e. the partition function). Losev further extended the
methods to calculate a class of natural correlation functions, and to establish a large-deviation
principle [5, 6].

This work was motivated by a plethora of physics literature, in which the Schwarzian field
theory has emerged as a reference model for low-dimensional quantum gravity and holography.
Much of the attention is due to its relevance to the low-energy behaviour of the Sachdev–
Ye–Kitaev (SYK) model [7, 8] and its connections to two-dimensional gravity theories like
Jackiw–Teitelboim (JT) gravity [9–12]. In both cases, the Schwarzian theory describes the
low-energy behaviour of theories for which a one-dimensional reparametrisation symmetry
Diff (𝑆1) is broken down to PSL(2,R), and one expects it to be universal in such scenarios.
Furthermore, the Schwarzian action appears in the semi-classical limit of Liouville field theory
[13, 14], and in the context of coadjoint orbits for the Virasoro group [15–17].

Essentially all of the above mentioned physics literature is far from being rigorously under-
stood, and our work aims at bringing the Schwarzian theory and its many connections within
reach of the probabilistic community. In [SCHW] we follow an approach by Belokurov and
Shavgulidze [1, 18, 19] in order to relate the Schwarzian theory to a reweighted Brownian
bridge measure.

Schwarzian measures. In the following we introduce a one-parameter family of Schwarzian

measures. These are quasi-invariant measures on Diff1(𝑆1), which can be motivated via so-
called coadjoint orbits of the Virasoro group, i.e. the central extension of Diff (𝑆1). Define the
Schwarzian derivative of a function 𝜑(𝜏) is defined as

S𝜑 (𝜏) = S(𝜑, 𝜏) =
(
𝜑′′(𝜏)
𝜑′(𝜏)

)′
− 1

2

(
𝜑′′(𝜏)
𝜑′(𝜏)

)2
. (2.2.2)

For a parameter 𝛼 ∈ R≥0∪ 𝑖R≥0, the (unquotiented) Schwarzian measure for parameter 𝛼 is
formally defined as a measure over 𝜑 ∈ Diff (𝑆1) given by

dÑ𝛼

𝜎2 = exp

[
1
𝜎2

1∫
0

d𝜏
[
S(𝜑, 𝜏) +2𝛼2𝜑′2(𝜏)

] ] ∏
𝜏

d𝜑(𝜏)
𝜑′(𝜏) . (2.2.3)

For 𝛼 = 𝜋 we recover the measure in (2.2.1). For convenience one can of the measures as
parametrised by 𝛼2 ∈ R and implicitly assume that 𝛼 ∈ R≥0∪ 𝑖R≥0 denotes the appropriately
chosen root. In [SCHW] these measures make a somewhat less prominent appearance as
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a “regularisation” of the Schwarzian field theory measure (𝛼 = 𝜋). In fact, for 𝛼 < 𝜋 these
measures are finite and the Schwarzian field theory is constructed by controlling the limit
𝛼↗ 𝜋.

In the following, we provide a rigorous definition of the measure by relating it to reweighted
Brownian bridges. First, note that in terms of the variables 𝜉 (𝜏) = log𝜑′(𝜏), the term (𝜑′′(𝜏)/𝜑′(𝜏))2 =
𝜉′2(𝜏) and the “reference measure”

∏
𝜏

d𝜑(𝜏)
𝜑′ (𝜏) =

∏
𝜏 d𝜉 (𝜏) give rise to a formal Wiener mea-

sure with variance 𝜎2. This motivates the following definition: For a Brownian bridge
(𝜉𝜏)𝜏∈𝑆1 ∈ 𝐶 (𝑆1) with variance 𝜎2 > 0, started at 𝜉0 = 0, we define the diffeomorphism

𝜑𝜉,0(𝜏) :=

∫ 𝜏

0 𝑒𝜉𝑠 d𝑠∫ 1
0 𝑒

𝜉𝑠 d𝑠
∈ Diff1(𝑆1). (2.2.4)

This prescription breaks the translation/rotation-invariance that one would expect from (2.2.3)
(in fact 𝜑𝜉,0(0) = 0). Hence, let Θ ∼ Unif(𝑆1) denote a uniformly random angle and define
𝜑𝜉,Θ := 𝜑𝜉,0 +Θ. For a functional 𝐹 : Diff (𝑆1) → R we define the unnormalised expectation
with respect to the Schwarzian measure (at variance 𝜎2 and parameter 𝛼) as

[𝐹 (𝜑)]𝛼,𝜎2 :=
∫
𝐹 (𝜑)dÑ𝛼

𝜎2 (𝜑) :=
√︁

2𝜋𝜎2 E𝜎2

[
𝐹 (𝜑𝜉,Θ) exp

[2𝛼2

𝜎2

∫
𝜑′2𝜉,Θ(𝜏)d𝜏

] ]
, (2.2.5)

where 𝜉 is a Brownian bridge with variance 𝜎2 under E𝜎2 . The factor
√

2𝜋𝜎2 accounts for the
normalisation of the the formal Wiener integral.

We also define the (𝑈 (1)-)quotiented Schwarzian measures N𝛼

𝜎2 via∫
𝐹 (𝜑) dN𝛼

𝜎2 (𝜑) :=
√︁

2𝜋𝜎2 E𝜎2

[
𝐹 (𝜑𝜉,0) exp

[2𝛼2

𝜎2

∫
𝜑′2𝜉,0(𝜏)d𝜏

] ]
. (2.2.6)

This defines an unnormalised measure on Diff (𝑆1)/𝑈 (1) � {𝜑 ∈ Diff (𝑆1) : 𝜑(0) = 0}. A major
result in [SCHW] is the calculation of the partition function of these measures:

Theorem: For 𝛼2 < 𝜋2 the measure N𝛼

𝜎2 is a finite Radon measure on Diff1(𝑆1)/𝑈 (1) with
total mass

N𝛼

𝜎2

(
Diff1(𝑆1)/𝑈 (1)

)
=

𝛼

sin𝛼
𝑒2𝛼2/𝜎2

√
2𝜋𝜎2

(2.2.7)

In the case of the (unquotiented) Schwarzian field theory, M̃𝜎2 := Ñ 𝜋

𝜎2 , the total mass is infinite
as made evident by the divergence in (2.2.6) for 𝛼↗ 𝜋. In fact, this divergence is due to the
mentioned underlying PSL(2,R)-invariance of the measure (more on this below). The quotient
measureM𝜎2 = M̃𝜎2/PSL(2,R) turns out to be finite with an explicit partition function
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Theorem: The Schwarzian measureM𝜎2 is a finite Radon measure on Diff1(𝑆1)/PSL(2,R)
with total mass

M𝜎2
(
Diff1(𝑆1)/PSL(2,R)

)
=

(2𝜋
𝜎2

)3/2
𝑒2𝜋2/𝜎2

(2.2.8)

To prove above results we use a change-of-variables formula for the Schwarzian measures. A
special case of the latter describes the quasi-invariance of the measures, which we describe
first.

Quasi-invariance of the Schwarzian measures. After defining the formal measure (2.2.3),
we should make sure that we are indeed working with the “correct” measure. One way to see
this is by studying the transformation properties of the measure under left-composition with
some diffeomorphism. For this, we recall some transformation properties of the Schwarzian
derivative: Firstly, it satisfies the composition rule

S(𝜓 ◦𝜑, 𝜏) = S(𝜑, 𝜏) +𝜑′2(𝜏) S(𝜓,𝜑(𝜏)). (2.2.9)

Secondly, the Schwarzian derivative of any Möbius transformation vanishes:

S
(𝑎𝜏 + 𝑏
𝑐𝜏 + 𝑑 , 𝜏

)
= 0 for any ±

(
𝑎 𝑏
𝑐 𝑑

)
∈ PSL(2,R). (2.2.10)

As a consequence the Schwarzian derivative is invariant under Möbius transformations,
S( 𝑓 (𝜏), 𝜏) = S

(
𝑎 𝑓 (𝜏)+𝑏
𝑐 𝑓 (𝜏)+𝑑 , 𝜏

)
. Furthermore, one can check that S(tan(𝛼𝜏), 𝜏) = 2𝛼2, hence

the exponential in the density of the Schwarzian measures (2.2.3) can be rewritten using

S(tan(𝛼𝜑(𝜏)), 𝜏) = S(𝜑, 𝜏) +2𝛼2𝜑′2(𝜏). (2.2.11)

It is sometimes convenient to write S( 1
𝛼

tan(𝛼𝜑)) = S(tan(𝛼𝜑)), as this emphasises the conti-
nuity in the parameter 𝛼2 ∈ R. Here, we understand 𝜏 ↦→ 1

𝛼
tan(𝛼𝜏) = 1

𝛼

sin(𝛼𝜏)
cos(𝛼𝜏) ∈ R𝑃

1 � R∪{∞}
as a smooth map into the real projective line. The Schwarzian is in fact well-defined for any
such map, despite potential singularities.

We can now consider how the exponential density in (2.2.3) changes under left-composition
𝜑 ↦→ 𝜓 ◦𝜑 with some fixed diffeomorphism 𝜓 ∈ Diff (𝑆1):

S(tan(𝛼[𝜓 ◦𝜑]), 𝜏) = S(tan(𝛼𝜑), 𝜏) +
[
S(tan(𝛼𝜓), 𝜑(𝜏)) −2𝛼2]𝜑′2(𝜏). (2.2.12)

The formal reference measure
∏
𝜏

d𝜑(𝜏)
𝜑′ (𝜏) =

∏
𝜏

d[𝜓◦𝜑] (𝜏)
[𝜓◦𝜑]′ (𝜏) is invariant under left-translation.
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Theorem: For 𝛼2 ∈ R, 𝜎2 > 0 and any fixed 𝜓 ∈ Diff3(𝑆1) define d𝜓∗Ñ𝛼

𝜎2 (𝜑) = dÑ𝛼

𝜎2 (𝜓𝜑̃).
Then 𝜓∗Ñ𝛼

𝜎2 is absolutely continuous with respect to Ñ𝛼

𝜎2 with Radon–Nikodym derivative
given by

d𝜓∗Ñ𝛼

𝜎2

dÑ𝛼

𝜎2

(𝜑) = exp
[ 1
𝜎2

∫ 1

0
d𝜏

[
S(tan(𝛼𝜓), 𝜑(𝜏)) −2𝛼2]𝜑′2(𝜏)] . (2.2.13)

This expression allows us to study the invariance properties of the measures Ñ𝛼

𝜎2 . In fact it is
invariant under the subgroup of diffeomorphisms 𝜓 ∈ Diff (𝑆1), such that S(tan(𝛼𝜓)) = 2𝛼2,
or equivalently

1
𝛼

tan(𝛼𝜓(𝜏)) =
𝑎 1
𝛼

tan(𝛼𝜏) + 𝑏
𝑐 1
𝛼

tan(𝛼𝜏) + 𝑑
for some ±

(
𝑎 𝑏
𝑐 𝑑

)
∈ PSL(2,R). (2.2.14)

Generically, the above is satisfied for the 𝑈 (1)-subgroup of translations 𝜓𝜃 (𝜏) = 𝜏− 𝜃 corre-
sponding to ±

(
cos𝛼𝜃 − 1

𝛼
sin𝛼𝜃

𝛼 sin𝛼𝜃 cos𝛼𝜃

)
∈ PSL(2,R). We wrote this in terms of the variable 1

𝛼
tan(𝛼𝜏)

to highlight that this works for the whole parameter range 𝛼2 ∈ R. We claim that this exhausts
the invariance group of the measures, apart from the exceptional values 𝛼 = 𝑘𝜋 with 𝑘 ∈ N, for
which the symmetry group is enhanced to the 𝑘-fold covering group of PSL(2,R).

In fact, for 𝛼 ≠ 𝜋N and any other diffeomorphism 𝜓, without loss of generality satisfying
𝜓(0) = 0 (achieved after potentially composing with a translation), the ranges including mul-
tiplicities of the two sides in (2.2.14) don’t agree for non-trivial Möbius transformations2.
However, for 𝛼 = 𝜋N the map 1

𝛼
tan(𝛼·) : 𝑆1→ R𝑃1 � R∪ {∞} is 𝑘-to-1 and (2.2.14) has 𝑘

solutions for any 𝑀 = ±
(
𝑎 𝑏
𝑐 𝑑

)
∈ PSL(2,R).

Partition functions: Sketch of the argument. The first step in our approach to evaluating
the partition functions is an extension of above quasi-invariance: One can drop the requirement
that 𝜓′ and 𝜓′′ are periodic, i.e. consider 𝜓 ∈ Diff3 [0,1] (here we consider quasi-invariance for
the quotiented measure N𝛼

𝜎2 , for which a similar statement holds, see Proposition 5.2.6). Then
there is no reason to expect 𝜓∗N𝛼

𝜎2 to be absolutely continuous with respect to N𝛼

𝜎2 anymore.
In fact, for ℎ ∈ R define N𝛼,ℎ

𝜎2 as in (2.2.6) but with a Brownian bridge starting at 0 and ending
at level ℎ. This measure is supported on {𝜑 ∈ Diff1 [0,1] : 𝜑′(1) = 𝑒ℎ𝜑′(0)}. An extension of
our statement on quasi-invariance will show that for 𝜓 ∈ Diff3 [0,1], the measure 𝜓∗N𝛼

𝜎2 is

absolutely continuous with respect to N𝛼,ℎ𝜓

𝜎2 with ℎ𝜓 = log𝜓′(0)/𝜓′(1).

2This can be checked easily using the Iwasawa-decomposition of PSL(2,R).
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Now, the key “trick” to calculate the partition function, is that for the “hyperbolic/parabolic
orbits” 𝛼2 ≤ 0, there exists 𝜓𝛼 ∈ Diff3 [0,1] such that 𝜓∗𝛼N𝛼

𝜎2 = 𝑐𝛼,𝜎2N0,ℎ𝛼
𝜎2 for some explicit

constants 𝑐𝛼,𝜎2 > 0 and ℎ𝛼 ∈ R. This calculates the partition function for the hyperbolic orbits
𝛼2 ≤ 0, as the total mass of N0,ℎ𝛼

𝜎2 is fixed by convention. We can then calculate the total
mass of N𝛼

𝜎2 for all 𝛼2 < 𝜋2 by analytic continuation. The case 𝛼 = 𝜋, corresponding to the
Schwarzian field theory, is then obtained by controlling the divergence in the limit 𝛼↗ 𝜋.

2.3 Non-uniqueness of phase transitions for graphical repre-
sentations of Ising [UNIQ]

The summary for this publication will be rather short, as [UNIQ] is in itself already quite
compressed: In this work we consider consider several well-known random graph models
related to the Ising model. Among them are the random current, the loop 𝑂 (1), and the
random-cluster model. The latter can be directly coupled to the Ising model and demonstrates
useful monotonicity properties. The other models on the other hand generally appear in
representations of the Ising partition functions and it is not at all clear if they are “well-behaved”
as probabilistic percolation-type models themselves. For example, one may wonder if their
percolation threshold (if it exist) is unique and agrees with the critical point for the Ising model,
or one may ask about monotonicity of (say) the percolation probability. In this article we follow
these line of questions and construct some elementary counterexamples: We give examples of
tree-like graphs on which the loop O(1) and random current model exhibit non-unique phase
transitions. A particular consequence of this is the existence of infinite graphs G ⊆ G′, such
that the uniform even subgraph of G′ percolates, while the uniform even subgraph of G does
not. Furthermore, we see that the percolation thresholds on regular tree-like graphs don’t agree
for free boundary conditions (while they do for wired ones).





Chapter 3

H2|2-model and VRJP on trees [TREE]

Abstract: We explore the supercritical phase of the vertex-reinforced jump process (VRJP)
and the H2|2-model on rooted regular trees. The VRJP is a random walk, which is more
likely to jump to vertices on which it has previously spent a lot of time. The H2|2-model is
a supersymmetric lattice spin model, originally introduced as a toy model for the Anderson
transition.

On infinite rooted regular trees, the VRJP undergoes a recurrence/transience transition
controlled by an inverse temperature parameter 𝛽 > 0. Approaching the critical point from
the transient regime, 𝛽↘ 𝛽c, we show that the expected total time spent at the starting vertex
diverges as ∼ exp(𝑐/

√
𝛽− 𝛽c). Moreover, on large finite trees we show that the VRJP exhibits

an additional intermediate regime for parameter values 𝛽c < 𝛽 < 𝛽
erg
c . In this regime, despite

being transient in infinite volume, the VRJP on finite trees spends an unusually long time at the
starting vertex with high probability.

We provide analogous results for correlation functions of the H2|2-model. Our proofs rely
on the application of branching random walk methods to a horospherical marginal of the
H2|2-model.

3.1 Introduction and Main Results

3.1.1 History and Introduction

Our work will focus on two distinct but related models: The H2|2-model, a lattice spin model
which is related to the Anderson transition, and the vertex-reinforced jump process (VRJP), a
random walk on graphs which is more likely to jump to vertices on which it has already spent a
lot of time.
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The H2|2-model was initially introduced by Zirnbauer [20] as a toy model for studying
the Anderson transition. Formally, it is a lattice spin model taking values in the hyperbolic

superplane H2|2, a supersymmetric analogue of hyperbolic space. Independently, the VRJP was
introduced by Davis and Volkov [21] as a natural example of a reinforced (and consequently
non-Markovian) continuous-time random walk. Somewhat surprisingly, Sabot and Tarrès
[22] observed that these two models are intimately related. Namely, the time the VRJP
asymptotically spends on vertices can be expressed in terms of the H2|2-model. This has
been used to see the VRJP as a random walk in random environment, with the environment
being given by the H2|2-model. Furthermore, the two models are linked by a Dynkin-type
isomorphism theorem due to Bauerschmidt, Helmuth and Swan [2, 3], analogous to the
connection between simple random walk and the Gaussian free field [23].

Both models are parametrised by an inverse temperature 𝛽 > 0 and, depending on the
background geometry of the graph under consideration, may exhibit a phase transition at
some critical parameter 𝛽c ∈ (0,∞]. For the H2|2-model the expected transition is between a
disordered high-temperature phase (𝛽 < 𝛽c) and a symmetry-broken low-temperature phase
(𝛽 > 𝛽c) exhibiting long-range order. For the VRJP the transition is between a recurrent phase
due to strong reinforcement effects and a transient phase due to low reinforcement effects.

On Z𝐷 a fair bit is known about the phase diagram of the two models. In dimension 𝐷 ≤ 2
both models are never delocalised (i.e. they are always disordered and recurrent, respectively)
[2, 21, 22, 24–26]. In dimensions 𝐷 ≥ 3, however, they exhibit a phase transition from a
localised to a delocalised phase at a unique 𝛽c ∈ (0,∞) [22, 25, 27–31].

0

Figure 3.1: The rooted (𝑑 +1)-regular
tree T𝑑 for 𝑑 = 2 shown up to its third
generation, with the root vertex de-
noted as 0.

In this article we consider both models on the geom-
etry of a rooted (𝑑 +1)-regular tree T𝑑 with 𝑑 ≥ 2 (see
Figure 3.1). For the VRJP this setting was previously
explored by various authors [4, 32–35]. In particu-
lar, Basdevant and Singh [4] showed that the VRJP on
Galton-Watson trees with mean offspring 𝑚 > 1 has a
phase transition from recurrence to transience at some
explicitly characterised 𝛽c ∈ (0,∞). For simplicity, we
focus on the “deterministic case”, but our results should
translate to Galton-Watson trees as well (up to some
technical restrictions on the offspring distribution).

The main goal of this work is to provide new information on the supercritical phase (𝛽 > 𝛽c)
including the near-critical regime. Roughly speaking, we show that on the infinite rooted
(𝑑 + 1)-regular tree T𝑑 the order parameters of the VRJP and the H2|2-model diverge as
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β
0 βc βerg

c

recurrent: E[L0
∞] = ∞

‘ergodic’

transient: E[L0
∞] < ∞

intermediate ‘multifractal’

βc + ϵ

E[L0
∞] ∼ ec/

√
ϵ

On Td,n as n → ∞:
limt→∞ L0

t /t ∼ |Td,n|−ν

with ν = ν(β) ∈ (0, 1)

On Td,n as n → ∞:
limt→∞ L0

t /t ∼ |Td,n|−1

Figure 3.2: Sketch of the phase diagram for the VRJP on T𝑑 with 𝑑 ≥ 2. The recur-
rence/transience transition at 𝛽c is phrased in terms of E[𝐿0

∞], i.e. the expected total time
the walk (on the infinite rooted (𝑑 +1)-regular tree T𝑑) spends at the starting vertex. In this
article, we obtain precise asymptotics for E[𝐿0

∞] as 𝛽↘ 𝛽c. Second, we show that there is
an additional transition point 𝛽erg

c > 𝛽c. It is phrased in terms of the volume-scaling of the
fraction of total time, lim𝑡→∞ 𝐿0

𝑡 /𝑡, the VRJP on the finite tree T𝑑,𝑛 spends at the origin. Here,
the symbol “∼” is understood loosely, and we refer to the text for precise error terms.

exp(𝑐/
√
𝛽− 𝛽c) as one approaches the critical point from the supercritical regime, 𝛽↘ 𝛽c

(see Theorem 3.1.2 and 3.1.5, respectively). Such behaviour has previously been predicted
by Zirnbauer for Efetov’s model [36]. This “infinite-order” behaviour towards the critical
point is rather surprising, as it conflicts with usual scaling hypotheses in statistical mechanics,
which predict algebraic singularities as one approaches the critical points. Moreover, we show
that on finite rooted (𝑑 +1)-regular trees, the VRJP and the H2|2-model exhibit an additional
mulifractal intermediate regime for 𝛽 ∈ (𝛽c, 𝛽

erg
c ) (see Theorem 3.1.3, 3.1.4, and 3.1.6). An

illustration of some of our results for the VRJP is given in Figure 3.2.

Connection to the Anderson Transition and Efetov’s Model. Inspiration for our work
originates from predictions in the physics literature on Efetov’s model [36–41]. The latter is
a supersymmetric lattice sigma model that is considered to capture the Anderson transition
[42, 43]. To be more precise, Efetov’s model can be derived from a granular limit (similar to
a Griffiths-Simon construction [44]) of the random band matrix model, followed by a sigma
model approximation [45, 46]. The connection to our work is due to Zirnbauer, who introduced
the H2|2-model as a simplification of Efetov’s model [20]. Namely, in Efetov’s model spins take
value in the symmetric superspace U(1,1|2)/[U(1|1) ⊗U(1|1)]. According to Zirnbauer, the
essential features of this target space are its hyperbolic symmetry and its supersymmetry1. In
this sense, H2|2 is the simplest target space with these two properties. Study of the H2|2-model
may guide the analysis of supersymmetric field theories more closely related to the Anderson
transition.

1Also referred to as “perfect grading”. Roughly speaking, this refers to the fact that the space has the same
number of bosonic and fermionic degrees of freedom (in this case four each), while these are also “exchangeable”
under a symmetry of the space.
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Moreover, the H2|2-model and the VRJP are directly and rigorously related to an Anderson-
type model, which we refer to as the STZ-Anderson model (see Definition 3.1.8). This fact was
already hinted at by Disertori, Spencer and Zirnbauer [27], but only fully appreciated by Sabot,
Tarrès and Zeng [47, 48], who exploited the relationship to gain new insights on the VRJP. It is
an interesting open problem to better understand the spectral properties of this model and how
it relates to the VRJP and the H2|2-model.

Notably, the phase diagram of the H2|2-model is better understood than that of Efetov’s model
or the Anderson model on a lattice. For example, for the H2|2-model there is proven absence
of long-range order in 2D [2] as well as proven existence of a phase transition in 3D [27, 28].
For the Anderson model on Z𝐷 , the existence of a phase transition in 𝐷 ≥ 3 and the absence of
one in 𝐷 = 2 are arguably among the most prominent open problems in mathematical physics.
A good example of the Anderson model’s intricacies is given by the work of Aizenman and
Warzel [49, 50]. Despite many previous efforts, they were the first to gain a somewhat complete
understanding of the model’s spectral properties on the regular tree. However, many questions
are still open, in particular there are no rigorous results on the Anderson model’s (near-)critical
behaviour. In this sense one might (somewhat generously) interpret this article as a step towards
better understanding of the near-critical behaviour for a model in the “Anderson universality
class”.

We would also like to comment on the methods used in the physics literature on Efetov’s
model. The analysis of the model on a regular tree, initiated by Efetov and Zirnbauer [36, 37],
relies on a recursion/consistency relation that is specific to the tree setting. Using this approach,
Zirnbauer predicted the divergence of the order parameter (relevant for the symmetry-breaking
transition of Efetov’s model) for 𝛽↘ 𝛽c. We should mention that Mirlin and Gruzberg [51]
argued that this analysis should essentially carry through for the H2|2-model. In our case,
we take a different path, exploiting a branching random walk structure in the “horospherical
marginal” of the H2|2-model (the 𝑡-field).

After completion of this work, we were made aware by Martin Zirnbauer of recent numerical
investigations for the Anderson transition on random tree-like graphs [52, 53]. The observed
scaling behaviour near the transition point might suggest the need for a field-theoretic descrip-
tion beyond the supersymmetric approach of Efetov (also see [54, 55]). At this point, there
does not seem to exist a consensus on the theoretical description of near-critical scaling for the
Anderson transition of tree-like graphs and rigorous results would be of great value.

Notation: In multi-line estimates, we occasionally use “running constants” 𝑐,𝐶 > 0 whose
precise value may vary from line to line. We denote by [𝑛] = 1, . . . , 𝑛 the range of positive
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Figure 3.3: An illustration of various interconnected models, that we touch on. Solid lines
denote rigorous connections, i.e. relevant quantities in one model can be expressed in terms of
the other. Dashed lines signify conceptual/heuristic connections.

integers up to 𝑛. For a graph 𝐺 = (𝑉,𝐸) an unoriented edge {𝑥, 𝑦} ∈ 𝐸 will be denoted by
the juxtaposition 𝑥𝑦, whereas an oriented edge is denoted by a tuple (𝑥, 𝑦), which is oriented
from 𝑥 to 𝑦. Write ®𝐸 for the set of oriented edges. For a vertex 𝑥 in a rooted tree (or a particle
of a branching random walk), we denote its generation (i.e. distance from the origin) by |𝑥 |.
We use the short-hand

∑
|𝑥 |=𝑛 . . . to denote summation over all vertices/particles at generation

𝑛. Variants of this convention will be used and the meaning should be clear from context.
When our results concern the (𝑑 +1)-regular rooted tree T𝑑 , we assume 𝑑 ≥ 2 will typically
suppress the 𝑑-dependence of all involved constants, unless specified otherwise. Mentions of
𝛽c implicity refer to the critical parameter 𝛽c = 𝛽c(𝑑) as given by Proposition 3.2.14.
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of the Anderson transition. Finally, we thank the reviewers for their thorough reading of the
manuscript. This work was supported by the European Research Council under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No. 851682
SPINRG).
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3.1.2 Model Definitions and Results

In this section, we define the VRJP, the H2|2-model, the 𝑡-field and the STZ-Anderson model.
We are aware that spin systems with fermionic degrees of freedom, such as the H2|2-model,
might be foreign to some readers. However, understanding this model is not necessary for
the main results on the VRJP, and the reader can feel comfortable to skip references to the
H2|2-model on a first reading. We also note that all models that we introduce are intimately
related (as illustrated in Figure 3.3) and Section 3.2 will illuminate some of these connections.

3.1.2.1 Vertex-Reinforced Jump Process.

Definition 3.1.1: Let𝐺 = (𝑉,𝐸) be a locally finite graph equipped with positive edge-weights
(𝛽𝑒)𝑒∈𝐸 , and a starting vertex 𝑖0 ∈ 𝑉 . The VRJP (𝑋𝑡)𝑡≥0 starting at 𝑋0 = 𝑖0 is the continuous-
time jump process that at time 𝑡 jumps from a vertex 𝑋𝑡 = 𝑥 to a neighbour 𝑦 at rate

𝛽𝑥𝑦 [1+ 𝐿𝑦𝑡 ] with 𝐿
𝑦
𝑡 (𝑡) :=

∫ 𝑡

0
1𝑋𝑠=𝑦d𝑠. (3.1.1)

We refer to 𝐿𝑦𝑡 as the local time at 𝑦 up to time 𝑡.

Unless specified otherwise, the VRJP on a graph 𝐺 refers to the case of constants weights
𝛽𝑒 ≡ 𝛽 and the dependency on the weight 𝛽 is specified by a subscript, as in E𝛽 or P𝛽. By a
slight abuse of language, we refer to 𝛽 as an inverse temperature.

Results for the VRJP. Note that Figure 3.2 gives a rough picture of our statements for the
VRJP. In the following we provide the exact results.

In the following, 𝛽c = 𝛽c(𝑑) will denote the critical inverse temperature for the recur-
rence/transience transition of the VRJP on the infinite rooted (𝑑 +1)-regular tree T𝑑 with 𝑑 ≥ 2.
By Basdevant and Singh [4] this inverse temperature is well-defined and finite: 𝛽c ∈ (0,∞) (cf.

Proposition 3.2.14). Alternatively, 𝛽c is characterised in terms of divergence of the expected
total local time at the origin: 𝛽c = inf{𝛽 > 0 : E𝛽 [𝐿0

∞] <∞}. The following theorem provides
information about the divergence of E𝛽 [𝐿0

∞] as we approach the critical point from the transient
regime.

Theorem 3.1.2 (Local-Time Asymptotics as 𝛽↘ 𝛽c for the VRJP on T𝑑): Consider the
VRJP, started at the root 0 of the infinite rooted (𝑑 + 1)-regular tree T𝑑 with 𝑑 ≥ 2. Let
𝛽c = 𝛽c(𝑑) ∈ (0,∞) be as in Proposition 3.2.14. Let 𝐿0

∞ = lim𝑡→∞ 𝐿0
𝑡 denote the total time the
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VRJP spends at the root. There are constants 𝑐,𝐶 > 0 such that for sufficiently small 𝜖 > 0:

exp(𝑐/
√
𝜖) ≤ E𝛽c+𝜖 [𝐿0

∞] ≤ exp(𝐶/
√
𝜖). (3.1.2)

The above result concerned the infinite rooted (𝑑 + 1)-regular tree T𝑑 . On a finite rooted
(𝑑 +1)-regular tree T𝑑,𝑛 the total local time at the origin always diverges, but we may consider
the fraction of time the walk spends at the starting vertex. In terms of this quantity we can
identify both the recurrence/transience transition point 𝛽c as well as an additional intermediate
phase inside the transient regime.

Theorem 3.1.3 (Intermediate Phase for VRJP on Finite Trees): Consider the VRJP started at
the root of the rooted (𝑑 +1)-regular tree of depth 𝑛, T𝑑,𝑛, with 𝑑 ≥ 2. Let 𝐿0

𝑡 denote the total
time the walk spent at the root up until time 𝑡. We have

lim𝑡→∞
𝐿0
𝑡

𝑡
=

��T𝑑,𝑛��−𝜈(𝛽)+𝑜(1) w.h.p. as 𝑛→∞ (3.1.3)

with 𝛽 ↦→ 𝜈(𝛽) continuous and non-decreasing such that

𝜈(𝛽)


= 0 for 𝛽 ≤ 𝛽c

∈ (0,1) for 𝛽c < 𝛽 < 𝛽
erg
c

= 1 for 𝛽 > 𝛽erg
c ,

(3.1.4)

for some 𝛽erg
c = 𝛽

erg
c (𝑑) > 𝛽c. More precisely, we have

𝜈(𝛽) = max
(
0, inf
𝜂∈(0,1]

𝜓𝛽 (𝜂)
𝜂 log𝑑

)
(3.1.5)

with 𝜓𝛽 (𝜂) given in (3.3.7).

Moreover, in the intermediate phase the inverse fraction of time at the origin shows a multifractal

scaling behaviour:

Theorem 3.1.4: (Multifractality in the Intermediate Phase) Consider the setup of Theo-
rem 3.1.3 and suppose 𝛽 ∈ (𝛽c, 𝛽

erg
c ). For 𝜂 ∈ (0,1) we have

E𝛽 [(lim𝑡→∞
𝐿0
𝑡

𝑡
)−𝜂] ∼

��T𝑑,𝑛��𝜏𝛽 (𝜂)+𝑜(1) as 𝑛→∞, (3.1.6)

where

𝜏𝛽 (𝜂) =

𝜂

𝜂𝛽

𝜓𝛽 (𝜂𝛽)
log𝑑 for 𝜂 ≤ 𝜂𝛽

𝜓𝛽 (𝜂)
log𝑑 for 𝜂 ≥ 𝜂𝛽,

(3.1.7)
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where 𝜓𝛽 is given in (3.3.7) and 𝜂𝛽 = argmin𝜂>0𝜓𝛽 (𝜂)/𝜂 ∈ (0,1).

3.1.2.2 The H2|2-model.

Definition of the H2|2-Model. We start by writing down the formal expressions defining the
H2|2-model, and then make sense out of it afterwards. Conceptually, we think of the hyperbolic

superplane H2|2 as the set of vectors u = (𝑧, 𝑥, 𝑦, 𝜉, 𝜂), satisfying

−1 = u ·u := −𝑧2 + 𝑥2 + 𝑦2−2𝜉𝜂. (3.1.8)

Here, 𝑧, 𝑥, 𝑦 are even/bosonic coordinates and 𝜉,𝜂 are odd/fermionic, a notion that will be
explained shortly. For two vectors u𝑖 = (𝑧𝑖, 𝑥𝑖, 𝑦𝑖, 𝜉𝑖, 𝜂𝑖) and u 𝑗 = (𝑧 𝑗 , 𝑥 𝑗 , 𝑦 𝑗 , 𝜉 𝑗 , 𝜂 𝑗 ), we define
the inner product

u𝑖 ·u 𝑗 := −𝑧𝑖𝑧 𝑗 + 𝑥𝑖𝑥 𝑗 + 𝑦𝑖𝑦 𝑗 +𝜂𝑖𝜉 𝑗 − 𝜉𝑖𝜂 𝑗 . (3.1.9)

In other words, this pairing is of hyperbolic type in the even variables and of symplectic type in
the odd variables.

Consider a finite graph𝐺 = (𝑉,𝐸) with non-negative edge weights (𝛽𝑒)𝑒∈𝐸 and magnetic field
ℎ > 0. Morally, we think of the H2|2-model on𝐺 as a probability measure on spin configurations

u = (u𝑖)𝑖∈𝑉 ∈ (H2|2)𝑉 , such that the formal expectation of a functional 𝐹 ∈𝐶∞((H2|2)𝑉 ) is given
by 〈

𝐹 (u)
〉
𝛽,ℎ

:=
∫

(H2 |2)𝑉

∏
𝑖∈𝑉

du𝑖 𝐹 (u) 𝑒
∑

𝑖 𝑗∈𝐸 𝛽𝑖 𝑗 (u𝑖 ·u 𝑗+1)−ℎ
∑

𝑖∈𝑉 (𝑧𝑖−1) , (3.1.10)

with du denoting the Haar measure over H2|2. In other words, formally everything is analogous
to the definition of spin/sigma models with “usual” target spaces, such as spheres 𝑆𝑛 or
hyperbolic spaces H𝑛. The only subtlety is that we still need to understand what a functional
such as 𝐹 ∈ 𝐶∞((H2|2)𝑉 ) means and how to interpret the integral above.

Rigorously, the space H2|2 is not understood as a set of points, but rather is defined in a dual
sense by directly specifying its set of smooth functions to be

𝐶∞(H2|2) := 𝐶∞(R2) ⊗Λ(R2) (3.1.11)

In other words, this is the exterior algebra in two generators with coefficients in 𝐶∞(R2) (which
is the same as 𝐶∞(R2|2), analogous to the fact that H2 � R2 as smooth manifolds.). Note that
this set naturally carries the structure of a graded-commutative algebra. More concretely, any
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superfunction 𝑓 ∈ 𝐶∞(H2|2) can we written as

𝑓 = 𝑓0(𝑥, 𝑦) + 𝑓𝜉 (𝑥, 𝑦)𝜉 + 𝑓𝜂 (𝑥, 𝑦)𝜂+ 𝑓𝜉𝜂 (𝑥, 𝑦)𝜉𝜂 (3.1.12)

with smooth functions 𝑓0, 𝑓𝜉 , 𝑓𝜂, 𝑓𝜉𝜂 ∈ 𝐶∞(R2) and 𝜉,𝜂 generating a Grassmann algebra, i.e.

they satisfy the algebraic relations 𝜉𝜂 = −𝜂𝜉 and 𝜉2 = 𝜂2 = 0. We think of such 𝑓 as a smooth
function in the variables 𝑥, 𝑦, 𝜉, 𝜂 and write 𝑓 = 𝑓 (𝑥, 𝑦, 𝜉, 𝜂). In particular, the coordinate

functions 𝑥, 𝑦, 𝜉, 𝜂 are themselves superfunctions. In light of (3.1.8), we define the 𝑧-coordinate
to be the (even) superfunction

𝑧 := (1+ 𝑥2 + 𝑦2−2𝜉𝜂)1/2 := (1+ 𝑥2 + 𝑦2)1/2− 𝜉𝜂

(1+ 𝑥2 + 𝑦2)1/2
∈ 𝐶∞(H2|2). (3.1.13)

In this sense the coordinate vector u = (𝑧, 𝑥, 𝑦, 𝜉, 𝜂) satisfies u ·u = −1. By abuse of notation we
write u ∈ H2|2, but more correctly one might say that u parametrises H2|2. For a superfunction
𝑓 ∈ 𝐶∞(H2|2) we write 𝑓 (u) = 𝑓 (𝑥, 𝑦, 𝜉, 𝜂) = 𝑓 and in line with physics terminology we might
say that 𝑓 is a function of the even/bosonic variables 𝑧, 𝑥, 𝑦 and the odd/fermionic variables 𝜉,𝜂.

The definition of 𝑧 in (3.1.13) shows a particular example of a more general principle: The
composition of an ordinary function (the square root in the example) with a superfunction (in
the example that is 1+ 𝑥2 + 𝑦2−2𝜉𝜂) is defined by formal Taylor expansion in the Grassmann
variables. Due to nilpotency of the Grassmann variables this is well-defined.

Next we would like to introduce a notion of integrating a superfunction 𝑓 (u) over H2|2.
Expressing 𝑓 as in (3.1.12), we define the derivations 𝜕𝜉 , 𝜕𝜂 acting via

𝜕𝜉 𝑓 = 𝑓𝜉 (𝑥, 𝑦) + 𝑓𝜉𝜂 (𝑥, 𝑦)𝜂 and 𝜕𝜂 𝑓 = 𝑓𝜂 (𝑥, 𝑦) − 𝑓𝜉𝜂 (𝑥, 𝑦)𝜉. (3.1.14)

In particular, note that these derivations are odd: they anticommute, 𝜕𝜉𝜕𝜂 = −𝜕𝜂𝜕𝜉 , and satisfy
a graded Leibniz rule. The H2|2-integral of 𝑓 ∈ 𝐶∞(H2|2) is then defined to be the linear
functional ∫

H2 |2
du 𝑓 (u) :=

∫
R2

d𝑥 d𝑦 𝜕𝜂𝜕𝜉 [
1
𝑧
𝑓 ] . (3.1.15)

The factor 1
𝑧

plays the role of a H2|2-volume element in the coordinates 𝑥, 𝑦, 𝜉, 𝜂. Note that this
integral evaluates to a real number.

In a final step to formalise (3.1.10) we define multivariate superfunctions over H2|2

𝐶∞((H2|2)𝑉 ) :=
⊗
𝑖∈𝑉

𝐶∞(H2|2) � 𝐶∞(R2|𝑉 |) ⊗Λ(R2|𝑉 |), (3.1.16)
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that is the Grassmann algebra in 2|𝑉 | generators {𝜉𝑖, 𝜂𝑖}𝑖∈𝑉 with coefficients in 𝐶∞(R2|𝑉 |). An
element of this algebra is considered a functional over spin configurations u = {u𝑖}𝑖∈𝑉 and
we write 𝐹 = 𝐹 (u). Any superfunction 𝐹 ∈ 𝐶∞((H2|2)𝑉 ) can be expressed, analogously to
(3.1.12), as ∑︁

𝐼,𝐽⊆𝑉
𝑓𝐼,𝐽 ({𝑥𝑖, 𝑦𝑖}𝑖∈𝑉 )

∏
𝑖∈𝐼
𝜉𝑖

∏
𝑗∈𝐽
𝜂 𝑗 . (3.1.17)

The integral of such 𝐹 over (H2|2)𝑉 is defined as∫
(H2 |2)𝑉

du𝐹 (u) :=
∫

(H2 |2)𝑉

∏
𝑖∈𝑉

du𝑖 𝐹 (u) :=
∫

R2 |𝑉 |

∏
𝑖∈𝑉

d𝑥𝑖 d𝑦𝑖
∏
𝑖∈𝑉

𝜕𝜂𝑖𝜕𝜉𝑖 [(
∏
𝑖∈𝑉

1
𝑧𝑖
)𝐹 (u)] . (3.1.18)

With this notion of integration, the definition of the H2|2-model in (3.1.10) can be understood in
a rigorous sense: The “Gibbs factor” is the composition of a regular function (exponential) with
a superfunction (the exponent). As such it is defined by expansion in the Grassmann variables.

Results for the H2|2-Model. In the following we will simply rephrase above theorems in
terms of the H2|2-model.

Theorem 3.1.5 (Asymptotics as 𝛽↘ 𝛽c for the H2|2-model on T𝑑): Consider the H2|2-model
on T𝑑,𝑛. Suppose 𝛽c = 𝛽c(𝑑) ∈ (0,∞) is as in Proposition 3.2.14. The quantity

⟨𝑥2
0⟩
+
𝛽c+𝜖 := lim

ℎ↘0
lim
𝑛→∞
⟨𝑥2

0⟩𝛽c+𝜖 ;ℎ,T𝑑,𝑛
(3.1.19)

is well-defined and finite for any 𝜖 > 0. There exist constants 𝑐,𝐶 > 0 such that for sufficiently
small 𝜖 > 0

exp(𝑐/
√
𝜖) ≤ ⟨𝑥2

0⟩
+
𝛽c+𝜖 ≤ exp(𝐶/

√
𝜖). (3.1.20)

The above statement considered the infinite-volume limit, i.e. taking 𝑛→∞ before removing
the magnetic field ℎ↘ 0. One may also consider a finite-volume limit (also referred to as
inverse-order thermodynamic limit [56]): In that case, we consider scaling limits of observable
as ℎ↘ 0 before taking 𝑛→∞. In this limit, we also demonstrate an intermediate multifractal
regime for the H2|2-model.

Theorem 3.1.6 (Intermediate Phase for the H2|2-Model on T𝑑,𝑛): There exist 0 < 𝛽c < 𝛽
erg
c <

∞ as in Theorem 3.1.3, such that for 𝛽c < 𝛽 < 𝛽
erg
c we have for 𝜂 ∈ (0,1)

limℎ↘0 ℎ
−𝜂⟨𝑧0 |𝑥0 |−𝜂⟩𝛽,ℎ;T𝑑,𝑛

∼
��T𝑑,𝑛��𝜏𝛽 (𝜂)+𝑜(1) as 𝑛→∞ (3.1.21)
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with 𝜏𝛽 (𝜂) as given in (3.1.7).

At first glance, the observable in (3.1.21) might seem somewhat obscure. However, in the
physics literature on Efetov’s model and the Anderson transition, analogous quantities are
predicted to encode disorder-averaged (fractional) moments of eigenstates at a given vertex
and energy level, see for example [41, Equation (6)]. The volume-scaling of these quantities
provides information about the (de)localisation behaviour of the eigenstates.

3.1.2.3 The 𝑡-field.

Despite the inconspicuous name, the 𝑡-field is the most relevant object for our analysis. It
is directly related to both the VRJP, encoding the time the VRJP asymptotically spends on
each vertex, as well as the H2|2-model, arising as a marginal in horospherical coordinates (see
Section 3.2 for details).

Definition 3.1.7 (𝑡-field Distribution): Consider a finite graph 𝐺 = (𝑉,𝐸), a vertex 𝑖0 ∈ 𝑉 and
non-negative edge-weights (𝛽𝑒)𝑒∈𝐸 . The law of the 𝑡-field, with weights (𝛽𝑒)𝑒∈𝐸 , pinned at
𝑖0, is a probability measure on configurations t = {𝑡𝑖}𝑖∈𝑉 ∈ R𝑉 given by

Q (𝑖0)
𝛽
(dt) := 𝑒−

∑
𝑖 𝑗∈𝐸 𝛽𝑖 𝑗 [cosh(𝑡𝑖−𝑡 𝑗 )−1]𝐷𝛽 (t)1/2 𝛿(𝑡𝑖0)

∏
𝑖∈𝑉\{𝑖0}

d𝑡𝑖√︁
2𝜋/𝛽

, (3.1.22)

with the determinantal term

𝐷𝛽 (t) :=
∑︁

𝑇∈ ®T (𝑖0 )

∏
(𝑖, 𝑗)∈𝑇

𝛽𝑖 𝑗𝑒
𝑡𝑖−𝑡 𝑗 , (3.1.23)

where ®T (𝑖0) is the set of spanning trees in 𝐺 oriented away from 𝑖0.

Alternatively, one can write 𝐷𝛽 (t) =
∏
𝑖∈𝑉\{𝑖0} 𝑒

−2𝑡𝑖 det𝑖0 (−Δ𝛽(t)), where det𝑖0 denotes the
principal minor with respect to 𝑖0 and −Δ𝛽(t) is the discrete Laplacian for edge-weights
𝛽(t) = (𝛽𝑖 𝑗𝑒𝑡𝑖+𝑡 𝑗 )𝑖 𝑗 .

In general the determinantal term renders the law Q (𝑖0)
𝛽

highly non-local. However, in case the
underlying graph 𝐺 is a tree, only a single summand contributes to (3.1.23) and the measure
factorises in terms of the oriented edge-increments {𝑡𝑖 − 𝑡 𝑗 }(𝑖, 𝑗) . This simplification is essential
for this article and gives us the possibility to analyse the 𝑡-field on rooted (𝑑 +1)-regular trees
in terms of a branching random walk.
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3.1.2.4 STZ-Anderson Model.

The following introduces a random Schrödinger operator, which is related to the previously
introduced models. It will only be required for translating our results on the intermediate phase
to the H2|2-model (Section 3.5.2), so the reader may skip this definition on a first reading. As
Sabot, Tarrès and Zeng [47, 48] were the first to study this system in detail, we refer to it as the
STZ-Anderson model.

Definition 3.1.8 (STZ-Anderson Model): Consider a locally finite graph𝐺 = (𝑉,𝐸), equipped
with non-negative edge-weights (𝛽𝑒)𝑒∈𝐸 . For 𝐵 = (𝐵𝑖)𝑖∈Λ ⊆ RΛ

+ define the Schrödinger-type
operator

𝐻𝐵 := −Δ𝛽 +𝑉 (𝐵) with [𝑉 (𝐵)]𝑖 = 𝐵𝑖 −
∑
𝑗 𝛽𝑖 𝑗 . (3.1.24)

Define a probability distribution 𝜈𝛽 over configurations 𝐵 = (𝐵𝑖)𝑖∈Λ by specifying the Laplace
transforms of its finite-dimensional marginals: For any vector (𝜆𝑖)𝑖∈𝑉 ∈ [0,∞)𝑉 with only
finitely many non-zero entries, we have∫

𝑒−(𝜆,𝐵)𝜈𝛽 (d𝐵) =
1∏

𝑖∈𝑉
√

1+2𝜆𝑖
exp[−

∑︁
𝑖 𝑗∈𝐸

𝛽𝑖 𝑗 (
√︁

1+2𝜆𝑖
√︁

1+2𝜆 𝑗 −1)] . (3.1.25)

Subject to this distribution, we refer to 𝐵 as the STZ-field and to 𝐻𝐵 as the STZ-Anderson
model.

One may note that on finite graphs, the density of 𝜈𝛽 is explicit:

𝜈𝛽 (d𝐵) ∝
𝑒
−1

2
∑

𝑖 𝐵𝑖√︁
det(𝐻𝐵)

1𝐻𝐵>0 d𝐵 , (3.1.26)

where 𝐻𝐵 > 0 means that the matrix 𝐻𝐵 is positive definite. The definition via (3.1.25) is
convenient, since it allows us to directly consider the infinite-volume limit. We also note
that while the density (3.1.26) seems highly non-local, the Laplace transform in (3.1.25) only
involves values of 𝜆 at adjacent vertices and therefore implies 1-dependency of the STZ-field.

In the original literature the STZ-field is denoted by 𝛽 and referred to as the 𝛽-field. In order
to be consistent with the statistical physics literature and avoid confusion with the inverse
temperature, we introduced this slightly different notation. To be precise, we used this change of
notation to also introduce a slightly more convenient normalisation: one has 𝐵𝑖 = 2𝛽𝑖 compared
to the normalisation of the 𝛽-field {𝛽𝑖} used by Sabot, Tarrès and Zeng.
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3.1.3 Further Comments

Comments on Related Work. As noted earlier, the VRJP on tree geometries was already
studied by various authors [4, 32–35]. One notable difference to our work is that we do
not consider the more general setting of Galton-Watson trees. While this is mostly to avoid
unnecessary notational and technical difficulties, the Galton-Watson setting might be more
subtle. This is due to an “extra” phase transition in the transient phase, observed by Chen and
Zeng [34]. This phase transition depends on the probability of the Galton Watson tree having
precisely one offspring. It is an interesting question how this would interact with our analysis.

In regard to our results, the recent work by Rapenne [35] is of particular interest. He provides
precise quantitative information on the (sub-)critical phase 𝛽 ≤ 𝛽c. The results are phrased
in terms of a certain martingale, associated with the STZ-Anderson model, but they can be
formulated in terms of the H2|2-model with wired boundary conditions (or analogously the
VRJP started from the boundary) on a rooted (𝑑 +1)-regular tree of finite depth. In this sense,
Rapenne’s article can be considered as complementary to our work.

Another curious connection to our work is given by the Derrida-Retaux model [57–64]. The
latter is a toy model for a hierarchical renormalisation procedure related to the depinning
transition. It has recently been shown [64] that the free energy of this model may diverge as
∼ exp(−𝑐/√𝑝− 𝑝c) approaching the critical point from the supercritical phase, 𝑝↘ 𝑝c. There
are further formal similarities between their analysis and the present article. It would be of
interest to shed further light on the universality of this type of behaviour.

Debate on Intermediate Phase We would like to highlight that the presence/absence of such
an intermediate phase for the Anderson transition2 on tree-geometries has been a recent topic
of debate in the physics literature (see [56, 65] and references therein). In short, the debate
concerns the question of whether the intermediate phase only arises due to finite-volume and
boundary effects on the tree.

While the presence of a non-ergodic delocalised phase on finite regular trees has been
established in recent years [40, 41, 66], it was not clear if this behaviour persists in the absence
of a large “free” boundary. To study this, one can consider a system on a large random regular
graphs (RRGs) as a “tree without boundary” (alternatively one could consider trees with wired
boundary conditions). For the Anderson transition on RRGs, early numerical simulations
[39, 67, 68] suggested existence of an intermediate phase, in conflict with existing theoretical
predictions [38, 69–71]. Shortly afterwards, it was argued that the discrepancy was due to

2This may refer to the Anderson model, Efetov’s model, or certain sparse random matrix models (such as
random band matrices), all of which are largely considered equivalent in the theoretical physics community.
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finite-size effects that vanish at very large system sizes [40, 65, 72], even though this does not
seem to be the consensus3 [56, 68].

We should note that Aizenman and Warzel [49, 73] have shown the existence of an energy-
regime of “resonant delocalisation” for the Anderson model on regular trees. It would be
interesting to understand if/how this phenomenon is related to the intermediate phase discussed
here.

In accordance with the physics literature, we refer to the intermediate phase (𝛽c < 𝛽 < 𝛽
erg
c )

as multifractal as opposed to the ergodic phase (𝛽 > 𝛽erg
c ).

3.1.4 Structure of this Article

In Section 3.2 we provide details on the connections between the various models and recall
previously known results for the VRJP. In particular, we recall that the VRJP can be seen as
a random walk in random conductances given in terms of a 𝑡-field (referred to as the 𝑡-field

environment). On the tree, the 𝑡-field can be seen as a branching random walk (BRW) and we
recall various facts from the BRW literature. In Section 3.3 we apply BRW techniques to estab-
lish a statement on effective conductances in random environments given in terms of critical

BRWs (Theorem 3.3.2). With Theorem 3.3.1 we prove a result on effective conductances in the
near-critical 𝑡-field environment. We close the section by showing how the result on effective
conductances implies Theorem 3.1.2 on expected local times for the VRJP. In Section 3.4 we
continue to use BRW techniques for the 𝑡-field to establish Theorem 3.1.3 on the intermediate
phase for the VRJP. We also prove Theorem 3.1.4 on the multifractality in the intermediate
phase. Moreover, we argue that Rapenne’s recent work [35] implies the absence of such an
intermediate phase on trees with wired boundary conditions. In Section 3.5 we show how
to establish the results for the H2|2-model. For the near-critical asymptotics (Theorem 3.1.5)
this is an easy consequence of a Dynkin isomorphism between the H2|2-model and the VRJP.
For Theorem 3.1.6 on the intermediate phase, we make use of the STZ-field to connect the
observable for the H2|2-model with the observable lim𝑡→∞ 𝐿0

𝑡 /𝑡 that we study for the VRJP.

3To our understanding, the cited sources consider an inverse-order thermodynamic limit, in which they remove
the level-broadening (resp. magnetic field) before taking the system size to infinity. This corresponds to a finite-
volume limit, as opposed to the reversed limit order considered in other treatments of the Anderson transition. In
this sense, the different statements are not directly comparable.



3.2 Additional Background 27

3.2 Additional Background

3.2.1 Dynkin Isomorphism for the VRJP and the H2|2-Model

Analogous to the connection between the Gaussian free field and the (continuous-time) simple
random walk, there is a Dynkin-type isomorphism theorem relating correlation functions of the
H2|2-model with the local time of a VRJP.

Theorem 3.2.1 ([3, Theorem 5.6]): Suppose 𝐺 = (𝑉,𝐸) is a finite graph with positive edge-
weights {𝛽𝑖 𝑗 }𝑖 𝑗∈𝐸 . Let ⟨·⟩𝛽,ℎ denote the expectation of the H2|2-model and suppose that under
E𝑖, the process (𝑋𝑡)𝑡≥0 denotes a VRJP started from 𝑖. Suppose 𝑔 : R𝑉 → R is a smooth
bounded function. Then, for any 𝑖, 𝑗 ∈ 𝑉

⟨𝑥𝑖𝑥 𝑗𝑔(z−1)⟩𝛽,ℎ =
∫ ∞

0
E𝑖 [𝑔(L𝑡)1𝑋𝑡= 𝑗 ]𝑒−ℎ𝑡 d𝑡 , (3.2.1)

where L𝑡 = (𝐿𝑥𝑡 )𝑥∈𝑉 denotes the VRJP’s local time field.

This result will be key to deduce Theorem 3.1.5 from Theorem 3.1.2.

3.2.2 VRJP as Random Walk in a 𝑡-Field Environment

As a continuous-time process, there is some freedom in the time-parametrisation of the VRJP.
While the definition in (3.1.1) (the linearly reinforced timescale) is the “usual” parametrisation,
we also make use of the exchangeable timescale VRJP ( 𝑋̃𝑡)𝑡∈[0,+∞):

𝑋̃𝑡 := 𝑋𝐴−1 (𝑡) with 𝐴(𝑡) :=
∫ 𝑡

0 2(1+ 𝐿𝑋𝑠𝑠 ) d𝑠 =
∑
𝑥∈𝑉 [(1+ 𝐿𝑥𝑡 )2−1] (3.2.2)

Writing 𝐿̃𝑥𝑡 =
∫ 𝑡

0 1{𝑋̃𝑠 = 𝑥}d𝑠, the local times in the two timescales are related by

𝐿𝑥𝑡 =

√︃
1+ 𝐿̃𝑥𝑡 −1. (3.2.3)

Above reparametrisation is motivated by the following result of Sabot and Tarrès [22], showing
that the VRJP in exchangeable timescale can be seen as a (Markovian) random walk in random
conductances given in terms of the 𝑡-field.

Theorem 3.2.2 (VRJP as Random Walk in Random Environment [22]): Consider a finite
graph 𝐺 = (𝑉,𝐸), a starting vertex 𝑖0 ∈ 𝑉 and edge-weights (𝛽𝑒)𝑒∈𝐸 . The exchangeable
timescale VRJP, started at 𝑖0, equals in law an (annealed) continuous-time Markov jump
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process, with jump rates between from 𝑖 to 𝑗 given by

1
2 𝛽𝑖 𝑗𝑒

𝑇 𝑗−𝑇𝑖 , (3.2.4)

where T = (𝑇𝑥)𝑥∈𝑉 are random variables distributed according to the law of the 𝑡-field (3.1.22)
pinned at 𝑖0.

As a consequence of Theorem 3.2.2, the 𝑡-field can be recovered from the VRJP’s asymptotic
local time:

Corollary 3.2.3 (𝑡-field from Asymptotic Local Time [47]): Consider the setting of The-
orem 3.2.2. Let (𝐿𝑥𝑡 )𝑥∈𝑉 and ( 𝐿̃𝑥𝑡 )𝑥∈𝑉 denote the local time field of the VRJP in linearly
reinforced and exchangeable timescale, respectively. Then

𝑇𝑖 := lim
𝑡→∞

log
(
𝐿𝑖𝑡/𝐿

𝑖0
𝑡

)
(𝑖 ∈ 𝑉)

𝑇𝑖 := 1
2 lim
𝑡→∞

log
(
𝐿̃𝑖𝑡/𝐿̃

𝑖0
𝑡

)
(𝑖 ∈ 𝑉)

(3.2.5)

exist and follow the law Q (𝑖0)
𝛽

of the 𝑡-field in (3.1.22).

Proof. For the exchangeable timescale, Sabot, Tarrès and Zeng [47, Theorem 2] provide a
proof. The statement for the usual (linearly reinforced) VRJP then follows by the time change
formula for local times (3.2.3). □

Considering the VRJP as a random walk in random environment enables us to study its local
time properties with the tools of random conductance networks. For a 𝑡-field T = (𝑇𝑥)𝑥∈𝑉
pinned at 𝑖0, we refer to the collection of random edge weights (or conductances)

{𝛽𝑖 𝑗𝑒𝑇𝑖+𝑇 𝑗 }𝑖 𝑗∈𝐸 (3.2.6)

as the 𝑡-field environment. This should be thought of as a symmetrised version of the VRJP’s
random environment (3.2.4). It is easier to study a random walk with symmetric jump rates,
since its amenable to the methods of conductance networks. The following lemma relates local
times in the 𝑡-field environment with the local times in the environment of the exchangeable
timescale VRJP:

Lemma 3.2.4: Consider the setting of Theorem 3.2.2. Let ( 𝑋̃𝑡)𝑡≥0 and (𝑌𝑡)𝑡≥0 denote two
continuous-time Markov jump processes started from 𝑖0 with rates given by (3.2.4) and
(3.2.6), respectively. We write 𝐿̃𝑥𝑡 and 𝑙𝑥𝑡 for their respective local time fields. Let 𝐵 ⊆ 𝑉 and
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write T̃𝐵 and T𝐵 for the respective hitting times of 𝐵. Then

𝐿𝑥T̃𝐵
law
= 2𝑒𝑇𝑥 𝑙𝑥T𝐵 , (3.2.7)

for 𝑥 ∈ 𝑉 . In particular, 𝐿𝑖0T̃𝐵
law
= 2𝑙𝑖0T𝐵 .

Proof. The discrete-time processes associated to ( 𝑋̃𝑡)𝑡≥0 and (𝑌𝑡)𝑡≥0 apparently agree. In
particular, they both visit a vertex 𝑥 the same number of times, before hitting 𝐵. Every time
𝑋̃𝑡 visits the vertex 𝑥, it spends an Exp(∑𝑦

1
2 𝛽𝑥𝑦𝑒

𝑇𝑦−𝑇𝑥 )-distributed time there, before jumping
to another vertex. 𝑌𝑡 on the other hand will spend time distributed as Exp(∑𝑦 𝛽𝑥𝑦𝑒

𝑇𝑥+𝑇𝑦 ) =
1
2𝑒
−2𝑇𝑥Exp(∑𝑦

1
2 𝛽𝑥𝑦𝑒

𝑇𝑦−𝑇𝑥 ). This concludes the proof. □

3.2.3 Effective Conductance

Our approach to proving Theorem 3.1.2 will rely on establishing asymptotics for the effective

conductance in the 𝑡-field environment (Theorem 3.3.1).

Definition 3.2.5: Consider a locally finite graph 𝐺 = (𝑉,𝐸) with edge weights (or conduc-

tances) {𝑤𝑖 𝑗 }𝑖 𝑗∈𝐸 . For two disjoint sets 𝐴, 𝐵 ⊆ 𝑉 , the effective conductance between them is
defined as

𝐶eff (𝐴, 𝐵) := inf
𝑈 : 𝑉→R

𝑈 |𝐴≡0,𝑈 |𝐵≡1

∑︁
𝑖 𝑗∈𝐸

𝑤𝑖 𝑗 (𝑈 (𝑖) −𝑈 ( 𝑗))2. (3.2.8)

The variational definition (3.2.8) makes it easy to deduce monotonicity and boundedness
properties:

Lemma 3.2.6: Consider the situation of Definition 3.2.5. Suppose 𝑆 ⊆ 𝐸 is a edge-cutset
separating 𝐴, 𝐵. Then

𝐶eff (𝐴, 𝐵) ≤
∑︁
𝑖 𝑗∈𝑆

𝑤𝑖 𝑗 . (3.2.9)

Alternatively, suppose 𝐶 ⊆ 𝑉 is a vertex-cutset separating 𝐴, 𝐵. Then

𝐶eff (𝐴, 𝐵) ≤ 𝐶eff (𝐴,𝐶). (3.2.10)

Proof. For the first statement, consider (3.2.8) for the function𝑈 : 𝑉 → R that is constant zero
(resp. one) in the component of 𝐴 (resp. 𝐵) in 𝑉\𝑆. For the second statement, note that for
any funcion𝑈 : 𝑉 → R with𝑈 |𝐴 ≡ 0 and𝑈 |𝐶 ≡ 1 we can define a function 𝑈̃ that agrees with
𝑈 on 𝐶 and the connected compenent of 𝑉 \𝐶 containing 𝐴, and is constant equal to one
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on the component of 𝐵 in 𝑉 \𝑉 . Then, 𝑈̃ |𝐴 ≡ 0 and 𝑈̃ |𝐵 ≡ 1 and
∑
𝑖 𝑗∈𝐸 𝑤𝑖 𝑗 (𝑈 (𝑖) −𝑈 ( 𝑗))2 ≤∑

𝑖 𝑗∈𝐸 𝑤𝑖 𝑗 (𝑈̃ (𝑖) −𝑈̃ ( 𝑗))2, which proves the claim. □

The monotoniciy in (3.2.10) makes it possible to define an effective conductance to infinity.
For an increasing exhaustion 𝑉1 ⊆ 𝑉2 ⊆ · · · of the vertex set 𝑉 =

⋃
𝑛𝑉𝑛 and a given finite set

𝐴 ⊆ 𝑉 , we define the effective conductance from 𝐴 to infinity by

𝐶eff
∞ (𝐴) = lim

𝑛→∞
𝐶eff (𝐴,𝑉 \𝑉𝑛). (3.2.11)

One may check that this is independent from the choice of exhaustion. For us, the main use of
effective conductances stems from their relation to escape times:

Lemma 3.2.7: Consider a locally finite graph𝐺 = (𝑉,𝐸) with edge weights (or conductances)
{𝑤𝑖 𝑗 }𝑖 𝑗∈𝐸 . Let 𝐶eff (𝑖0, 𝐵) denote the effective conductance between the singleton {𝑖0} and a
disjoint set 𝐵. Consider a continuous-time random walk (𝑋𝑡)𝑡≥0 on 𝐺, starting at 𝑋0 = 𝑖0 and
jumping from 𝑋𝑡 = 𝑖 to 𝑗 at rate 𝑤𝑖 𝑗 . Let 𝐿esc(𝑖0, 𝐵) denote the total time the walk spends at
𝑖0 before visiting 𝐵 for the first time. Then 𝐿esc(𝑖0, 𝐵) is distributed as an Exp(1/𝐶eff (𝑖0, 𝐵))-
random variable.

For an infinite graph𝐺, the above conclusions also hold for 𝐵 “at infinity”: We let 𝐿esc,∞(𝑖0)
denote the total time spent at 𝑖0 and understand 𝐶eff

∞ (𝑖0) as in (3.2.11). Then 𝐿esc,∞(𝑖0) ∼
Exp(1/𝐶eff

∞ (𝑖0)).
Proof. According to [23, Section 2.2], the walk’s number of visits at 𝑖0 before hitting 𝐵 is a geo-
metric random variable 𝑁 ∼Geo(𝑝esc) with the escape probability 𝑝esc =𝐶

eff (𝑖0, 𝐵)/(
∑
𝑗∼𝑖0 𝑤𝑖0 𝑗 ).

Moreover, for the continuous-time process, every time we visit 𝑖0 we spend an Exp(∑ 𝑗∼𝑖0 𝑤𝑖0 𝑗 )-
distributed time there, before jumping to a neighbour. Hence, 𝐿esc(𝑖0, 𝐵) is distributed as the
sum of 𝑁 independent Exp(∑ 𝑗∼𝑖0 𝑤𝑖0 𝑗 )-distributed random variables. By standard results for the
exponential distribution (easily checked via its moment-generating function), this implies the
claim. Note that this argument also holds true for 𝐵 “at infinity”, in which case 𝑁 ∼ Geo(𝑝esc)
with 𝑝esc = 𝐶

eff
∞ (𝑖0)/(

∑
𝑗∼𝑖0 𝑤𝑖0 𝑗 ) will simply denote the total number of visits at 𝑖0 (see [23,

Section 2.2] for more details). □

3.2.4 The 𝑡-Field from the H2|2- and STZ-Anderson Model

𝑡-Field as a Horospherical Marginal of the H2|2-model First we introduce horospherical

coordinates on H2|2. In these coordinates, u ∈ H2|2 is parametrised by (𝑡, 𝑠, 𝜓̄,𝜓), with 𝑡, 𝑠 ∈ R
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and Grassmann variables 𝜓̄,𝜓 via

©­­­­­­­­­­«

𝑧

𝑥

𝑦

𝜉

𝜂

ª®®®®®®®®®®¬
=

©­­­­­­­­­­«

cosh(𝑡) + 𝑒𝑡 ( 12 𝑠
2 + 𝜓̄𝜓)

sinh(𝑡) − 𝑒𝑡 ( 12 𝑠
2 + 𝜓̄𝜓)

𝑒𝑡𝑠

𝑒𝑡𝜓̄

𝑒𝑡𝜓

ª®®®®®®®®®®¬
. (3.2.12)

A particular consequence of this is that 𝑒𝑡 = 𝑧 + 𝑥. By rewriting the Gibbs measure for the
H2|2-model, defined in (3.1.10), in terms of horospherical coordinates and integrating out the
fermionic variables 𝜓, 𝜓̄, one obtains a marginal density in 𝑡 = {𝑡𝑥}𝑥∈𝑉 and 𝑠 = {𝑠𝑥}𝑥∈𝑉 , which
can be interpreted probabilistically:

Lemma 3.2.8 (Horospherical Marginal of the H2|2-Model [2, 27, 28].): Consider a finite graph
𝐺 = (𝑉,𝐸), a vertex 𝑖0 ∈ 𝑉 , and non-negative edge-weights (𝛽𝑖 𝑗 )𝑖 𝑗∈𝐸 . There exist random
variables 𝑇 = {𝑇𝑥}𝑥∈𝑉 ∈ R𝑉 and 𝑆 = {𝑆𝑥}𝑥∈𝑉 ∈ R𝑉 , such that for any 𝐹 ∈ 𝐶∞c (R𝑉 ×R𝑉 )

⟨𝐹 (𝑡, 𝑠)⟩𝛽 = E[𝐹 (𝑇, 𝑆)] . (3.2.13)

The law of 𝑇 is given by the 𝑡-field pinned at 𝑖0 (see Definition 3.1.7). Moreover, conditionally
on 𝑇 , the 𝑠-field follows the law of a Gaussian free field in conductances {𝛽𝑖 𝑗𝑒𝑇𝑖+𝑇 𝑗 }𝑖 𝑗∈𝐸 ,
pinned at 𝑖0, 𝑆𝑖0 = 0.

𝑡-Field and the STZ-Anderson Model. It turns out that the (zero-energy) Green’s function
of the STZ-Anderson model is directly related to the 𝑡-field:

Proposition 3.2.9 ([47]): For 𝐻𝐵 denoting the STZ-Anderson model as in Definition 3.1.8
define the Green’s function 𝐺𝐵 (𝑖, 𝑗) = [𝐻−1

𝐵
]𝑖, 𝑗 . For a vertex 𝑖0 ∈ 𝑉 , define {𝑇𝑖}𝑖∈Λ via

𝑒𝑇𝑖 := 𝐺𝐵 (𝑖0, 𝑖)/𝐺𝐵 (𝑖0, 𝑖0). (3.2.14)

Then {𝑇𝑖} follows the law Q (𝑖0)
𝛽

of the 𝑡-field, pinned at 𝑖0. Moreover, with {𝑇𝑖} as above we
have 𝐵𝑖 =

∑
𝑗∼𝑖 𝛽𝑖 𝑗𝑒

𝑇 𝑗−𝑇𝑖 for all 𝑖 ∈ 𝑉 \ {𝑖0}.

This provides a way of coupling the STZ-field with the 𝑡-field, as well as a coupling of 𝑡-fields
pinned at different vertices.

Remark 3.2.10 (Natural Coupling): Lemma 3.2.8 and Proposition 3.2.9 give us a way to define
a natural coupling of STZ-field, 𝑡-field and 𝑠-field as follows: Fix some pinning vertex 𝑖0 ∈ 𝑉 .
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Sample an STZ-Anderson model 𝐻𝐵 with respect to edge weights {𝛽𝑖 𝑗 }𝑖 𝑗∈𝐸 . Then define the
𝑡-field {𝑇𝑖}𝑖∈𝑉 , pinned at 𝑖0 via (3.2.14). Then, conditionally on the 𝑡-field, sample the 𝑠-field
{𝑆𝑖}𝑖∈𝑉 as a Gaussian free field in conductances {𝛽𝑖 𝑗𝑒𝑇𝑖+𝑇 𝑗 }𝑖 𝑗∈𝐸 , pinned at 𝑖0, 𝑆𝑖0 = 0.

3.2.5 Monotonicity Properties of the 𝑡-Field

A rather surprising property of the 𝑡-field, proved by the first author, is the monotonicity of
various expectation values with respect to the edge-weights. The following is a restatement of
[25, Theorem 6] after applying Proposition 3.2.9:

Theorem 3.2.11 ([25, Theorem 6]): Consider a finite graph 𝐺 = (𝑉,𝐸) and fix some vertex
𝑖0 ∈ 𝑉 . Under E𝛽𝛽𝛽, we let T = {𝑇𝑖}𝑖∈𝑉 denote a 𝑡-field pinned at 𝑖0 with respect to non-negative
edge weights 𝛽𝛽𝛽 = {𝛽𝑒}𝑒∈𝐸 . Then, for any convex 𝑓 : [0,∞) → R and non-negative {𝜆𝑖}𝑖∈𝑉 ,
the map

𝛽𝛽𝛽 ↦→ E𝛽𝛽𝛽 [ 𝑓 (
∑
𝑖 𝜆𝑖𝑒

𝑇𝑖 )] (3.2.15)

is decreasing.

A direct corollary of the above is that expectations of the form E𝛽 [𝑒𝜂𝑇𝑥 ] are increasing in 𝛽 for
𝜂 ≤ [0,1] and are decreasing for 𝜂 ≥ 1. This will be the extent to which we make use of the
result.

3.2.6 The 𝑡-Field on T𝑑

Consider the 𝑡-field measure (3.1.22) on T𝑑,𝑛 = (𝑉𝑑,𝑛, 𝐸𝑑,𝑛), the rooted (𝑑 +1)-regular tree of
depth 𝑛, pinned at the root 𝑖0 = 0. Only one term contributes to the determinantal term (3.1.23),
namely the term corresponding to T𝑑,𝑛 itself, oriented away from the root:

Q (0)
𝛽;T𝑑,𝑛
(dt) = 𝑒−

∑
(𝑖, 𝑗 ) ∈ ®𝐸𝑑,𝑛

[𝛽 (cosh(𝑡 𝑗−𝑡𝑖)−1)+1
2 (𝑡 𝑗−𝑡𝑖)]𝛿(𝑡0)

∏
𝑖∈𝑉𝑑,𝑛\0

d𝑡𝑖√︁
2𝜋/𝛽

, (3.2.16)

where ®𝐸𝑑,𝑛 is the set of edges in T𝑑,𝑛 oriented away from the root. In other words, the increments
of the 𝑡-field along outgoing edges are i.i.d. and distributed according to the following:

Definition 3.2.12 (𝑡-field Increment Measure): For 𝛽 > 0 define the probability distribution

Qinc
𝛽 (d𝑡) = 𝑒

−𝛽[cosh(𝑡)−1]−𝑡/2 d𝑡√︁
2𝜋/𝛽

with 𝑡 ∈ R. (3.2.17)
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We refer to this as the 𝑡-field increment distribution and if not specified otherwise, 𝑇 will
always denote a random variable with distribution Qinc

𝛽
. The dependence on 𝛽 is either

implicit or denoted by a subscript, such as in E𝛽 or P𝛽.

The density (3.2.17) implies that

𝑒𝑇 ∼ IG(1, 𝛽) and 𝑒−𝑇 ∼ RIG(1, 𝛽), (3.2.18)

where IG (RIG) denotes the (reciprocal) inverse Gaussian distribution (cf. (3.6.4)). Note that
changing variables to 𝑡 ↦→ 𝑒𝑡 and comparing to the density of the inverse Gaussian, we see that
(3.2.17) is normalised.

Definition 3.2.13 (Free Infinite Volume 𝑡-field on T𝑑): For 𝛽 > 0, associate to every edge
𝑒 of the infinite rooted (𝑑 +1)-regular tree T𝑑 a 𝑡-field increment 𝑇𝑒, distributed according
to (3.2.17). For every vertex 𝑥 ∈ T𝑑 let 𝛾𝑥 denote the unique self-avoiding path from 0 to
𝑥 and define 𝑇𝑥 :=

∑
𝑒∈𝛾𝑥 𝑇𝑒. The random field {𝑇𝑥}𝑥∈T𝑑

is the free infinite volume 𝑡-field on
T𝑑 at inverse temperature 𝛽 > 0. In particular, its restriction {𝑇𝑥}𝑥∈T𝑑,𝑛

onto vertices up to
generation 𝑛 follows the law Q (0)

𝛽;T𝑑,𝑛
.

By construction, {𝑇𝑥}𝑥∈T𝑑
can be considered a branching random walk (BRW) with a determin-

istic number of offsprings (every particle gives rise to 𝑑 new particles in the next generation).
In Section 3.2.8 we will elaborate on this perspective.

3.2.7 Previous Results for VRJP on Trees.

As we have already noted in the introduction, the VRJP on tree graphs has received quite some
attention [4, 32–35]. In particular, Basdevant and Singh [4] studied the VRJP on Galton-Watson
trees with general offspring distribution, and exactly located the recurrence/transience phase
transition:

Proposition 3.2.14 (Basdevant-Singh [4]): Let T denote a Galton-Watson tree with mean
offspring 𝑏 > 1. Consider the VRJP started from the root of T , conditionally on non-extinction
of the tree. There exists a critical parameter 𝛽c = 𝛽c(𝑏), such that the VRJP is

• recurrent for 𝛽 ≤ 𝛽c,
• transient for 𝛽 > 𝛽c.

Moreover, 𝛽c is characterised as the unique positive solution to

1
𝑏
=

√︂
𝛽c
2𝜋

∫ +∞

−∞
d𝑡 𝑒−𝛽c (cosh(𝑡)−1) . (3.2.19)
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We also take the opportunity to highlight Rapenne’s recent results [35] concerning the (sub)critical
phase, 𝛽 ≤ 𝛽c. His statements can be seen to complement our results, which focus on the
supercritical phase 𝛽 > 𝛽c.

3.2.8 Background on Branching Random Walks

Let’s quickly recall some basic results from the theory of branching random walks. For a more
comprehensive treatment we refer to Shi’s monograph [74].

A branching random walk (BRW) with offspring distribution 𝜇 ∈ Prob(N0) and increment
distribution 𝜈 is constructed as follows: We start with a “root” particle 𝑥 = 0 at generation
|0| = 0 and starting position 𝑉 (0) = 𝑣0. We sample its number of offsprings according to 𝜇.
They constitute the particles at generation one, {|𝑥 | = 1}. Every such particle is assigned a
position 𝑣0 + 𝛿𝑉𝑥 with {𝛿𝑉𝑥} |𝑥 |=1 being i.i.d. according to the increment distribution 𝜈. This
process is repeated recursively and we end up with a random collection of particles {𝑥}, each
equipped with a position 𝑉 (𝑥) ∈ R, a generation |𝑥 | ∈ N0 and a history 0 = 𝑥0, 𝑥1, . . . , 𝑥 |𝑥 | = 𝑥 of
predecessors. Unless otherwise stated, we assume from now on that a BRW always starts from
the origin, 𝑣0 = 0.

A particularly useful quantity for the study of BRWs is the log-Laplace transform of the
offspring process:

𝜓(𝜂) := logE
[ ∑︁
|𝑥 |=1

𝑒−𝜂𝑉 (𝑥)
]
, (3.2.20)

where the sum goes over all particles in the first generation. A priori, we have 𝜓(𝜂) ∈ [0,∞],
but we typically assume 𝜓(0) > 0 and inf𝜂>0𝜓(𝜂) <∞. The first assumption corresponds to
supercriticality of the offspring distribution4, whereas the second assumption enables us to
study the average over histories of the BRW in terms of single random walk:

Proposition 3.2.15 (Many-To-One Formula): Consider a BRW with log-Laplace transform
𝜓(𝜂). Choose 𝜂 > 0 such that 𝜓(𝜂) <∞ and define a random walk 0 = 𝑆0, 𝑆1, . . . with i.i.d.
increments such that for any measurable ℎ : R→ R

E[ℎ(𝑆1)] = E
[∑
|𝑥 |=1 𝑒

−𝜂𝑉 (𝑥)ℎ(𝑉 (𝑥))
] /

E
[∑
|𝑥 |=1 𝑒

−𝜂𝑉 (𝑥)] . (3.2.21)

Then, for all 𝑛 ≥ 1 and 𝑔 : R𝑛→ [0,∞) measurable we have

E
[∑
|𝑥 |=𝑛 𝑔(𝑉 (𝑥1), . . . ,𝑉 (𝑥𝑛))

]
= E

[
𝑒𝑛𝜓(𝜂)+𝜂𝑆𝑛𝑔(𝑆1, . . . , 𝑆𝑛)

]
. (3.2.22)

4Here we mean supercriticality in the sense of Galton-Watson trees. In other words, with positive probability
the BRW consists of infinitely many particles. We also say that the BRW does not go extinct.
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For a proof we refer to Shi’s lecture notes [74, Theorem 1.1]. An application of the many-
to-one formula is the following statement about the velocity of extremal particles (cf. [74,
Theorem 1.3]).

Proposition 3.2.16 (Asymptotic Velocity of Extremal Particles): Suppose 𝜓(0) > 0 and
inf
𝜂>0

𝜓(𝜂) <∞. Then, almost surely under the event of non-extinction, we have

lim
𝑛→∞

1
𝑛

inf
|𝑥 |=𝑛

𝑉 (𝑥) = − inf
𝜂>0

𝜓(𝜂)/𝜂. (3.2.23)

Critical Branching Random Walks. A common assumption, under which BRWs exhibit
various universal properties, is 𝜓(1) = 𝜓′(1) = 0. While not common terminology in the
literature, we will refer to this as criticality:

BRW with 𝜓(𝜂) = logE[∑|𝑥 |=1 𝑒
−𝜂𝑉 (𝑥)] is critical

def⇐⇒ 𝜓(1) = 𝜓′(1) = 0 (3.2.24)

This definition can be motivated by considering the many-to-one formula (Proposition 3.2.15)
applied to a critical BRW for 𝜂 = 1: In that case, the random walk 𝑆𝑖 has mean zero increments,
E[𝑆1] = −𝜓′(1) = 0, and the exponential drift in (3.2.22) vanishes, 𝑒𝑛𝜓(1) = 1. Consequently,
as far as the many-to-one formula is concerned, critical BRWs inherit some of the universality
of mean zero random walks (e.g. Donsker’s theorem, say under an additional second moment
assumption). Moreover, the notion of criticality is particularly useful, since in many cases we
can reduce a BRW to the critical case by a simple rescaling/drift transformation:

Lemma 3.2.17 (Critical Rescaling of a BRW): Consider a BRW with log-Laplace transform
𝜓(𝜂) = logE[∑|𝑥 |=1 𝑒

−𝜂𝑉 (𝑥)]. Suppose there exists 𝜂∗ > 0 solving the equation

𝜓(𝜂∗) = 𝜂∗𝜓′(𝜂∗). (3.2.25)

Equivalently, 𝜂∗ is a critical point for 𝜂→ 𝜓(𝜂)/𝜂. Define a BRW with the same particles
{𝑥} and rescaled positions

𝑉∗(𝑥) = 𝜂∗𝑉 (𝑥) +𝜓(𝜂∗) |𝑥 |. (3.2.26)

The resulting BRW is critical.
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Proof. Write 𝜓∗(𝛾) = logE
∑
|𝑥 |=1 𝑒

−𝛾𝑉∗ (𝑥) for the log-Laplace transform of the rescaled BRW.
We easily check

𝜓∗(1) = logE
∑︁
|𝑥 |=1

𝑒−𝜂
∗𝑉 (𝑥)−𝜓(𝜂∗) = −𝜓(𝜂∗) + logE

∑︁
|𝑥 |=1

𝑒−𝜂
∗𝑉 (𝑥)

= −𝜓(𝜂∗) +𝜓(𝜂∗) = 0.
(3.2.27)

Equivalently, 1 = E
∑
|𝑥 |=1 𝑒

−𝜂∗𝑉 (𝑥)−𝜓(𝜂∗) , which together with (3.2.25) yields

(𝜓∗)′(1) = −
E
∑
|𝑥 |=1(𝜂∗𝑉 (𝑥) +𝜓(𝜂∗))𝑒−𝜂

∗𝑉 (𝑥)−𝜓(𝜂∗)

E
∑
|𝑥 |=1 𝑒

−𝜂∗𝑉 (𝑥)−𝜓(𝜂∗)

= −𝜂∗E
∑︁
|𝑥 |=1

𝑉 (𝑥)𝑒−𝜂∗𝑉 (𝑥) −𝜓(𝜂∗)

= 𝜂∗𝜓′(𝜂∗) −𝜓(𝜂∗) = 0,

(3.2.28)

which concludes the proof. □
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3.3 VRJP and the 𝑡-Field as 𝛽↘ 𝛽c

The main goal of this section is to prove Theorem 3.1.2 on the asymptotic escape time of the
VRJP as 𝛽↘ 𝛽c. The main work will be in establishing the following result on the effective
conductance in a 𝑡-field environment:

Theorem 3.3.1 (Near-Critical Effective Conductance): Let {𝑇𝑥}𝑥∈T𝑑
denote the (free) 𝑡-field

on T𝑑 , pinned at the origin. Let 𝐶eff
∞ denote the effective conductance from the origin to

infinity in the network given by conductances {𝛽𝑒𝑇𝑖+𝑇 𝑗1𝑖∼ 𝑗 }𝑖, 𝑗∈T𝑑
. There exist constants

𝑐,𝐶 > 0 such that

exp[−(𝐶 + 𝑜(1))/
√
𝜖] ≤ E𝛽c+𝜖 [𝐶eff

∞ ] ≤ exp[−(𝑐+ 𝑜(1))/
√
𝜖], (3.3.1)

as 𝜖 ↘ 0, where 𝛽c = 𝛽c(𝑑) > 0 is given by Proposition 3.2.19.

For establishing this result, the BRW perspective onto the 𝑡-field is essential. The lower
bound will follow from a mild modification of a result by Gantert, Hu and Shi [75] (see
Theorem 3.3.8). For the upper bound we will consider the critical rescaling of the near-critical
𝑡-field (cf. Lemma 3.2.17). The bound will then follow by a perturbative argument applied to a
result on effective conductances in a critical BRW environment. The latter we prove in a more
general form, for which it is convenient to introduce some additional notions.

For a random variable 𝑉 and a fixed offspring degree 𝑑 we write

𝜓𝑉 (𝜂) := log(𝑑E[𝑒−𝜂𝑉 ]). (3.3.2)

Analogous to Definition 3.2.13, for an increment distribution given by 𝑉 , we define a random
field {𝑉𝑥}𝑥∈T𝑑

and refer to it as the BRW with increments𝑉 . We say that𝑉 is a critical increment

if {𝑉𝑥}𝑥∈T𝑑
is critical, i.e. 𝜓𝑉 (1) = 𝜓′𝑉 (1) = 0. Note that this implicitly depends on our choice

of 𝑑 ≥ 2, but we choose to suppress this dependency. For a critical increment 𝑉 we write

𝜎2
𝑉

:= 𝜓′′𝑉 (1) = 𝑑E[𝑉2𝑒−𝑉 ] . (3.3.3)

Note that this is the variance of the (mean-zero) increments of the random walk (𝑆𝑖)𝑖≥0 given
by the many-to-one formula (Proposition 3.2.15 for 𝜂 = 1).

Theorem 3.3.2: Fix some offspring degree 𝑑 ≥ 2 and consider a critical increment 𝑉 with
𝜎2
𝑉
< ∞ and 𝜓𝑉 (1+ 2𝑎) < ∞ for some constant 𝑎 > 0. Write {𝑉𝑥}𝑥∈T𝑑

for the BRW with
increments 𝑉 and define the conductances {𝑒−𝛾(𝑉𝑥+𝑉𝑦)}𝑥𝑦. Let 𝐶eff

𝑛,𝛾 denote the effective
conductance between the origin 0 and the vertices in the 𝑛-th generation. Then, for 𝛾 ∈
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(1/2,1/2+ 𝑎), we have

E[𝐶eff
𝑛,𝛾] ≤ exp

[
−

[
min( 14 , 𝛾−

1
2 ) (𝜋

2𝜎2
𝑉 )1/3 + 𝑜(1)

]
𝑛1/3

]
as 𝑛→∞. (3.3.4)

Moreover, this is uniform with respect to 𝛾, 𝜎2
𝑉

and 𝜓𝑉 (1 + 2𝑎) in the following sense:
Suppose there is a family 𝑉 (𝑘) , 𝑘 ∈ N, of critical increments and define 𝐶eff

𝑛,𝛾;𝑘 as above.
Further assume 0 < inf𝑘 𝜎2

𝑉 (𝑘 )
≤ sup𝑘 𝜎2

𝑉 (𝑘 )
<∞ and sup𝑘 𝜓𝑉 (𝑘 ) (1+2𝑎) <∞. Then we have

limsup
𝑛→∞

sup
𝑘

sup
1
2<𝛾<

1
2+𝑎

(
𝑛−1/3 logE[𝐶eff

𝑛,𝛾;𝑘 ] +min( 14 , 𝛾−
1
2 ) (𝜋

2𝜎2
𝑉 (𝑘 )
)1/3

)
≤ 0. (3.3.5)

We note that random walk in (critical) multiplicative environments on trees has previously been
studied, see for example [76–81]. In particular, Hu and Shi [79, Theorem 2.1] established
bounds analogous to (3.3.4) for escape probabilities, instead of effective conductances. While
the quantities are related, bounds on the expected escape probability do not directly translate
into bounds for the expected effective conductance. Moreover, their setup for the random
environment does not directly apply to our setting5. Last but not least, for our applications, we
require additional uniformity of the bounds with respect to the underlying BRW.

3.3.1 The 𝑡-Field as a Branching Random Walk

Considered as a BRW, the 𝑡-field {𝑇𝑥}𝑥∈T𝑑
on the rooted (𝑑 + 1)-regular tree T𝑑 (or more

precisely the negative 𝑡-field) has a log-Laplace transform given by

𝜓𝛽 (𝜂) := logE[
∑︁
|𝑥 |=1

𝑒𝜂𝑇𝑥 ] = log(𝑑E𝛽 [𝑒𝜂𝑇 ]) (𝜂 > 0), (3.3.6)

where 𝑇 denotes the 𝑡-field increment as introduced in Definition 3.2.12. One can check easily
that 𝜓𝛽 (0) = 𝜓𝛽 (1) = log𝑑. More generally, using the density for 𝑇 we have

𝜓𝛽 (𝜂) = log
(
𝑑

∫
d𝑡√︁

2𝜋/𝛽
𝑒
−𝛽 [cosh(𝑡)−1]−( 12−𝜂) 𝑡

)
= log

(𝑑√︁2𝛽𝑒𝛽
√
𝜋

𝐾
𝜂−1

2
(𝛽)

)
(3.3.7)

where 𝐾𝛼 denotes the modified Bessel function of second kind. An illustration of 𝜓𝛽 for
different values of 𝛽 is given in Figure 3.4. In particular, it’s a smooth function in 𝛽,𝜂 > 0 and

5Roughly speaking, they are working with weights {𝑒−𝛾𝑉𝑥 } (𝑥,𝑦) ∈ ®𝐸 (T𝑑 ) while we consider the “symmetrised”
variant {𝑒−𝛾 (𝑉𝑥+𝑉𝑦 ) }𝑥𝑦∈𝐸 (T𝑑 ) .
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Figure 3.4: Illustration of 𝜓𝛽 (𝜂)/log(𝑑) for 𝑑 = 2 at different values of 𝛽. Its minimum is
always at 𝜂 = 1/2, and the value of this minimum is increasing with 𝛽. It is equal to zero at
𝛽 = 𝛽c.

one may check that it’s strictly convex since

𝜓′′𝛽 (𝜂) =
E𝛽 [𝑇2𝑒𝜂𝑇 ]
E𝛽 [𝑒𝜂𝑇 ]

−
E𝛽 [𝑇𝑒𝜂𝑇 ]2

E𝛽 [𝑒𝜂𝑇 ]2
> 0 (3.3.8)

equals the variance of a non-deterministic random variable. Moreover, by the symmetry and
monotonicity properties of the Bessel function (𝐾𝛼 = 𝐾−𝛼 and 𝐾𝛼 ≤ 𝐾𝛼′ for 0 ≤ 𝛼 ≤ 𝛼′), the
infimum of 𝜓𝛽 (𝜂) is attained at 𝜂 = 1/2:

inf
𝜂>0

𝜓𝛽 (𝜂) = 𝜓𝛽 (1/2) = log(𝑑E𝛽 [𝑒𝑇/2]) = log(
√︁

2𝛽𝑒𝛽𝑑
√
𝜋

𝐾0(𝛽)) (3.3.9)

The critical inverse temperature 𝛽c = 𝛽c(𝑑) > 0, as given in Proposition 3.2.14, is equivalently
characterised by the vanishing of this infimum:

𝜓𝛽c (1/2) = inf
𝜂>0

𝜓𝛽c (𝜂) = 0. (3.3.10)

In particular, by Lemma 3.2.17, this implies that {−1
2𝑇𝑥}𝑥∈Td is a critical BRW at 𝛽 = 𝛽c. More

generally, it will be useful to consider critical rescalings of {𝑇𝑥} for general 𝛽 > 0. For this we
write

𝜂𝛽 := argmin𝜂>0
𝜓𝛽 (𝜂)
𝜂

and 𝛾𝛽 := inf
𝜂>0

𝜓𝛽 (𝜂)
𝜂

=
𝜓𝛽 (𝜂𝛽)
𝜂𝛽

. (3.3.11)
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An illustration of these quantities is given in Figure 3.5. If 𝜂𝛽 as above is well-defined, then it
satisfies (3.2.25) and hence by Lemma 3.2.17 the rescaled field

𝜏
𝛽
𝑥 = −𝜂𝛽𝑇𝑥 +𝜓𝛽 (𝜂𝛽) |𝑥 | (3.3.12)

defines a critical BRW. The following lemma lends rigour to this:

Lemma 3.3.3: 𝜂𝛽 as given in (3.3.11) is well-defined and the unique positive root of the
strictly increasing map 𝜂 ↦→ 𝜂𝜓′

𝛽
(𝜂) −𝜓𝛽 (𝜂). Consequently, the maps 𝛽 ↦→ 𝜂𝛽 and 𝛽 ↦→ 𝛾𝛽

are continuously differentiable.

Proof. Recall the Bessel function asymptotics 𝐾𝛼 (𝛽) ∼ 1
2 (2/𝛽)

𝛼Γ(𝛼) as 𝛼→∞, hence by
(3.3.7) we have 𝜓𝛽 (𝜂) ∼ 𝜂 log𝜂 for 𝜂→∞. Consequently, 𝜓𝛽 (𝜂)/𝜂 diverges as 𝜂→∞ (and
it also diverges as 𝜂↘ 0). Hence it attains its infimum at some finite value. We claim that
there is a unique minimiser 𝜂𝛽. Since 𝜓𝛽 (𝜂)/𝜂 is continuously differentiable in 𝜂 > 0, at any
minimum it will have vanishing derivative 𝜕𝜂 (𝜓𝛽 (𝜂)/𝜂) = [𝜂𝜓′𝛽 (𝜂) −𝜓𝛽 (𝜂)]/𝜂2. And in fact
the map 𝜂 ↦→ 𝜂𝜓′

𝛽
(𝜂) −𝜓𝛽 (𝜂) is strictly increasing, since its derivative equals 𝜂𝜓′′

𝛽
(𝜂) > 0, see

(3.3.8), and as such has at most one root. This implies that 𝜂𝛽 as in (3.3.11) is well-defined and
the unique root of 𝜂𝜓′

𝛽
(𝜂) −𝜓𝛽 (𝜂).

Continuous differentiability of 𝛽 ↦→ 𝜂𝛽 follows from the implicit function theorem applied to
𝑓 (𝜂, 𝛽) := 𝜂𝜓′

𝛽
(𝜂)−𝜓𝛽 (𝜂), noting that 𝜕𝜂 𝑓 (𝜂, 𝛽) = 𝜂𝜓′′𝛽 (𝜂) > 0. This directly implies continuous

differentiability of 𝛽 ↦→ 𝛾𝛽 = 𝜓𝛽 (𝜂𝛽)/𝜂𝛽
□

Considering the graphs in Figure 3.5, one would conjecture that 𝜂𝛽 is strictly increasing in 𝛽.
One can apply the implicit function theorem to 𝑓 (𝜂, 𝛽) := 𝜂𝜓′

𝛽
(𝜂) −𝜓𝛽 (𝜂) to obtain

d𝜂𝛽
d𝛽

= −
[𝜕𝛽 𝑓 ] (𝜂𝛽, 𝛽)
[𝜕𝜂 𝑓 ] (𝜂𝛽, 𝛽)

=
[𝜕𝛽𝜓𝛽] (𝜂𝛽) −𝜂𝛽 [𝜕𝛽𝜓′𝛽] (𝜂𝛽)

𝜂𝛽𝜓
′′
𝛽
(𝜂𝛽)

. (3.3.13)

The denominator is positive by (3.3.8), but we are not aware how to show non-negativity of the
numerator for general 𝛽. We can however make use of this for the special case 𝛽 = 𝛽c, which
will be relevant in Section 3.3.3, in order to prove Theorem 3.3.1.

Proposition 3.3.4: Let 𝜓𝛽 (𝜂) and 𝜂𝛽 be as in (3.3.7) and (3.3.11), for some 𝑑 ≥ 2. For
𝛽c = 𝛽c(𝑑) > 0, as given in Proposition 3.2.14, we have 𝜂𝛽c = 1/2 and

d
d𝛽

���
𝛽=𝛽c

𝜂𝛽 > 0 and
d

d𝛽

���
𝛽=𝛽c

𝜓𝛽 (𝜂𝛽) > 0 (3.3.14)



3.3 VRJP and the 𝑡-Field as 𝛽↘ 𝛽c 41

0.0 0.2 0.4 0.6 0.8 1.0
β

0.0

0.5

1.0

βc βerg
c

ηβ

γβ/ log(d)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
η

−0.5

0.0

0.5

1.0

1.5

2.0

ψ
β
(η

)/
(η

lo
g
d
)

β = 0.015

β = βc ≈ 0.026

β = 0.07

β = βerg
c ≈ 0.39

β = 1.0

Figure 3.5: Illustration of 𝜂𝛽, 𝛾𝛽/log𝑑 and 𝜓𝛽 (𝜂)/(𝜂 log𝑑) for 𝑑 = 2. For the figure on the left,
note that 𝛾𝛽 is positive for 𝛽 > 𝛽c and attains its maximum at 𝛽erg

c , at the same point at which
𝜂𝛽 = 1. The right figure illustrates the same point: The minima of 𝜓𝛽 (𝜂)/𝜂 move to the right
with increasing 𝛽 and attain their highest value at 𝛽 = 𝛽erg

c .

Proof. By (3.3.10) we have 1
2𝜓
′
𝛽c
( 12 ) −𝜓𝛽c ( 12 ) = −𝜓𝛽c ( 12 ) = 0. Lemma 3.3.3 therefore implies

𝜂𝛽c = 1/2. Applying (3.3.13) and recalling 𝜓′
𝛽
( 12 ) = 0, we get

d𝜂𝛽
d𝛽

���
𝛽=𝛽c

=
𝜕𝛽 |𝛽=𝛽c𝜓𝛽 ( 12 )

1
2𝜓
′′
𝛽
(𝜂𝛽)

. (3.3.15)

The denominator is positive by (3.3.8). As for the numerator, we recall (3.3.7) for 𝜂 = 1/2:

𝜓𝛽 ( 12 ) = log

(
𝑑

∫ √︂
𝛽

2𝜋
𝑒−𝛽(cosh(𝑡)−1) d𝑡

)
. (3.3.16)

To see monotonicity of the integral in 𝛽 it is convenient to apply the change of variables.

𝑢 = 𝑒𝑡/2− 𝑒−𝑡/2 = 2sinh(𝑡/2) ⇐⇒ 𝑡 = 2arsinh(𝑢/2)
d𝑢
d𝑡

=
1
2
(𝑒𝑡/2 + 𝑒−𝑡/2) =

√︁
1+𝑢2/4

(3.3.17)

Note that 𝑢2/2 = 1
2 (𝑒

𝑡 + 𝑒−𝑡) −1 = cosh(𝑡) −1, hence∫ √︂
𝛽

2𝜋
𝑒−𝛽(cosh(𝑡)−1) d𝑡 =

∫ √︂
𝛽

2𝜋
𝑒−

𝛽

2 𝑢
2 2
√
𝑢2 +4

d𝑢

=

∫ √︂
1

2𝜋
𝑒−

1
2 𝑠

2 2√︁
𝑠2/𝛽+4

d𝑠 .
(3.3.18)
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Clearly, the integrand in the last line is strictly increasing in 𝛽, hence 𝜕𝛽𝜓𝛽 ( 12 ) > 0. This
implies the first statement in (3.3.14). For the second statement note that 𝜓′

𝛽c
( 12 ) = 0. Hence,

𝜕𝛽 |𝛽=𝛽c𝜓𝛽 (𝜂𝛽) = 𝜕𝛽 |𝛽=𝛽c𝜓𝛽 ( 12 ) > 0. □

As already suggested in Figure 3.5, there is a second natural transition point 𝛽erg
c > 𝛽c, which is

“special” due to 𝛾𝛽 attaining its maximum there. This transition point will be relevant for the
study of the intermediate phase in Section 3.4.

Proposition 3.3.5 (Characterisation of 𝛽erg
c ): Let 𝜓𝛽 (𝜂) and 𝜂𝛽 be as in (3.3.7) and (3.3.11),

for some 𝑑 ≥ 2. The map 𝛽 ↦→ 𝜓′
𝛽
(1) −𝜓𝛽 (1) is strictly decreasing and there exists a unique

𝛽
erg
c = 𝛽

erg
c (𝑑) > 0, such that

𝜓𝛽erg
c
(1) = 𝜓′

𝛽
erg
c
(1). (3.3.19)

Equivalently, 𝛽erg
c > 0 is characterised by any of the following conditions:

E𝛽erg
c
[𝑇] = − log𝑑 ⇐⇒ 𝜂𝛽erg

c
= 1 ⇐⇒ 𝛾𝛽erg

c
= sup
𝛽>0

𝛾𝛽 = log𝑑. (3.3.20)

Moreover, for 𝛽 < 𝛽erg
c we have that 𝜂𝛽 < 1 and that 𝛽 ↦→ 𝛾𝛽 is increasing, while for 𝛽 > 𝛽erg

c

one has 𝜂𝛽 > 1 and 𝛽 ↦→ 𝛾𝛽 is decreasing.

Proof. By definition of 𝜓𝛽 and the 𝑡-field increment measure we have

𝜓′𝛽 (1) −𝜓𝛽 (1) = E𝛽 [𝑇𝑒𝑇 ] − log𝑑 = −E𝛽 [𝑇] − log𝑑. (3.3.21)

We claim that 𝛽 ↦→ E𝛽 [𝑇] is strictly increasing. In fact, using the change of variables in (3.3.17)
and noting that 𝑒−𝑡/2 = cosh(𝑡/2) − sinh(𝑡/2) =

√︁
1+ (𝑢/2)2−𝑢/2, we have

E𝛽 [𝑇] =
∫ √︂

𝛽

2𝜋
𝑒−𝛽(cosh(𝑡)−1)𝑒−𝑡/2𝑡 d𝑡

=

∫ √︂
𝛽

2𝜋
𝑒−

𝛽

2 𝑢
2 2arsinh(𝑢/2) (

√︁
1+ (𝑢/2)2−𝑢/2)√︁

1+ (𝑢/2)2
d𝑢

=−2
∫ √︂

𝛽

2𝜋
𝑒−

𝛽

2 𝑢
2 𝑢

2
arsinh(𝑢/2)√︁

1+ (𝑢/2)2
d𝑢 .

(3.3.22)

It is easy to check that 𝑥 arsinh(𝑥)/
√

1+ 𝑥2 is strictly increasing in |𝑥 |. Consequently, rescaling
𝑢 = 𝑠/

√
𝛽 as in (3.3.18), we see that above integral is strictly increasing in 𝛽. Moreover, one

also observes that that E𝛽 [𝑇] → −∞ for 𝛽↘ 0, whereas E𝛽 [𝑇] → 0 for 𝛽→∞. Hence by
(3.3.21), there exists a unique 𝛽erg

c > 0, such that 𝜓′
𝛽

erg
c
(1) = 𝜓𝛽erg

c
(1). In particular, 𝜂𝛽erg

c
= 1.
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The first two alternative characterisations in (3.3.20) follow from (3.3.21) and our previous
considerations. Also, by Theorem 3.2.11, we have

𝜓𝛽 (1) ≶ 𝜓′𝛽 (1) for 𝛽 ≶ 𝛽
erg
c , (3.3.23)

which by Lemma 3.3.3 implies that 𝜂𝛽 ≶ 1 for 𝛽 ≶ 𝛽
erg
c .

To show the last characterisation in (3.3.20), we calculate the derivative of 𝛽 ↦→ 𝛾𝛽 =

𝜓𝛽 (𝜂𝛽)/𝜂𝛽:

𝜕𝛽𝛾𝛽 = 𝜕𝛽 [
𝜓𝛽 (𝜂𝛽)
𝜂𝛽
]

= 1
𝜂𝛽
[𝜕𝛽𝜓𝛽] (𝜂𝛽) + 1

𝜂𝛽
[𝜕𝛽𝜂𝛽]𝜓′𝛽 (𝜂𝛽) − 1

𝜂2
𝛽

[𝜕𝛽𝜂𝛽]𝜓𝛽 (𝜂𝛽)

= 1
𝜂𝛽
[𝜕𝛽𝜓𝛽] (𝜂𝛽),

(3.3.24)

where in the last line we used that 𝜂𝛽𝜓′𝛽 (𝜂𝛽) −𝜓𝛽 (𝜂𝛽) = 0. By Theorem 3.2.11, the last line
in (3.3.24) is non-negative if 𝜂𝛽 ≤ 1 and non-positive for 𝜂𝛽 ≥ 1. Since 𝜂𝛽 ≶ 1 for 𝛽 ≶ 𝛽

erg
c

this implies the last statement in (3.3.20) as well as the stated monotonicity behaviour of
𝛽 ↦→ 𝛾𝛽. □

3.3.2 Effective Conductance in a Critical Environment (Proof of Theo-
rem 3.3.2)

First we recall some results on small deviation of random walks. To be precise, we use an
extension of Mogulskii’s Lemma [82], due to Gantert, Hu and Shi [75].

Lemma 3.3.6 (Triangular Mogulskii’s Lemma [75, Lemma 2.1]): For each 𝑛 ≥ 1, let 𝑋 (𝑛)
𝑖

,
1 ≤ 𝑖 ≤ 𝑛, be i.i.d. real-valued random variables. Let 𝑔1 < 𝑔2 be continuous functions on [0,1]
with 𝑔1(0) < 0 < 𝑔2(0). Let (𝑎𝑛) be a sequence of positive numbers such that 𝑎𝑛→∞ and
𝑎2
𝑛/𝑛→ 0 as 𝑛→∞. Assume that there exist constants 𝜂 > 0 and 𝜎2 > 0 such that:

sup
𝑛≥1

E
[
|𝑋 (𝑛)1 |

2+𝜂
]
<∞, E

[
𝑋
(𝑛)
1

]
= 𝑜

(
𝑎𝑛

𝑛

)
, Var

[
𝑋
(𝑛)
1

]
→ 𝜎2. (3.3.25)

Consider the measurable event

𝐸𝑛 :=
{
𝑔1

(
𝑖

𝑛

)
≤
𝑆
(𝑛)
𝑖

𝑎𝑛
≤ 𝑔2

(
𝑖

𝑛

)
∀𝑖 ∈ [𝑛]

}
, (3.3.26)
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where 𝑆(𝑛)
𝑖

:= 𝑋 (𝑛)1 + · · · + 𝑋
(𝑛)
𝑖
, 1 ≤ 𝑖 ≤ 𝑛. We have

𝑎2
𝑛

𝑛
log (P[𝐸𝑛]) −−−−→

𝑛→∞
−𝜋

2𝜎2

2

∫ 1

0

1
(𝑔2(𝑡) −𝑔1(𝑡))2

d𝑡 . (3.3.27)

Lemma 3.3.7: For each 𝑘 ≥ 1, let 𝑋 (𝑘)
𝑖

, 𝑖 ∈ N, be i.i.d. real-valued random variables with
E[𝑋 (𝑘)

𝑖
] = 0 and 𝜎2

𝑘
:= E[(𝑋 (𝑘)

𝑖
)2]. Suppose that 0 < inf𝑘 𝜎2

𝑘
≤ sup𝑘 𝜎2

𝑘
< ∞. Write 𝑆𝑘

𝑖
=

𝑋
(𝑘)
1 + · · · + 𝑋

(𝑘)
𝑖

. For 𝛾 > 0 and 𝜈 ∈ (0, 1
2 ), define the events

𝐸
(𝑘)
𝑛 := {|𝑆𝑖 | ≤ 𝛾𝑛𝜈, ∀𝑖 ∈ [𝑛]}. (3.3.28)

then we have
lim
𝑛→∞

sup
𝑘∈N

����𝑛1−2𝜈 logP[𝐸 (𝑘)𝑛 ] +
(𝜋𝜎𝑘

2𝛾

)2
���� = 0. (3.3.29)

Proof. We proceed by contradiction. Write 𝑏 (𝑘)𝑛 := −𝑛1−2𝜈 logP[𝐸 (𝑘)𝑛 ] and 𝑏 (𝑘)∞ :=
( 𝜋𝜎𝑘

2𝛾
)2 and

suppose (3.3.29) does not hold. Then there exists 𝜖 > 0, (𝑘𝑛)𝑛∈N, and a subsequence N0 ⊆ N

∀𝑛 ∈ N0 :
���𝑏 (𝑘𝑛)𝑛 − 𝑏 (𝑘𝑛)∞

��� > 𝜖. (3.3.30)

Since the 𝜎2
𝑘

are bounded, we can refine to a subsequenceN1 ⊆ N0 ⊆ N, such that 𝜎2
𝑘𝑛
→ 𝜎̃ > 0

along N1. But by Lemma 3.3.6 (with 𝑎𝑛 = 𝑛𝜈, 𝑔1 = −𝛾, and 𝑔2 = +𝛾) we have 𝑏 (𝑘𝑛)𝑛 →−
(
𝜋𝜎̃
2𝛾

)2

along N1, in contradiction with (3.3.30). □

Proof of Theorem 3.3.2. Recall the notation in Theorem 3.3.2. We proceed by proving the
statement for an individual increment 𝑉 , but indicate at which steps care has to be taken to
establish the uniformity (3.3.5).

Write 𝜕Λ𝑛 := {𝑥 ∈ T𝑑 : |𝑥 | = 𝑛} for the vertices at distance 𝑛 from the origin. Set 𝛼 :=
1
2 (𝜋

2𝜎2
𝑉
)1/3. Define the stopping lines of {𝑉𝑥}𝑥∈T𝑑

at level 𝛼𝑛1/3:

L (𝑛) := {(𝑥, 𝑦) ∈ ®𝐸 : 𝑉𝑦 ≥ 𝛼𝑛1/3, ∀𝑧 ≺ 𝑦 :𝑉𝑧 < 𝛼𝑛1/3}, (3.3.31)

where we write ®𝐸 for the set or edges oriented away from the origin and “𝑎 ≺ 𝑏” means that 𝑎
is an ancestor of 𝑏. Let 𝐴𝑛 denote the event that L (𝑛) is a cut-set between the origin and 𝜕Λ𝑛.
By (3.2.9), conditionally on the event 𝐴𝑛 we have the point-wise bound

𝐶eff
𝑛,𝛾 ≤

∑︁
𝑥𝑦∈L (𝑛)

𝑒−𝛾(𝑉𝑥+𝑉𝑦) . (3.3.32)
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We thus have:
E
[
𝐶eff
𝑛,𝛾

]
≤ E

[ ∑︁
𝑥𝑦∈L (𝑛)

𝑒−𝛾(𝑉𝑥+𝑉𝑦)
]
+E

[
𝐶eff
𝑛,𝛾1𝐴c

𝑛

]
(3.3.33)

Bounding the second summand. Clearly, we have

P[𝐴c
𝑛] ≤ P[∃|𝑥 | = 𝑛, such that ∀𝑦 ≺ 𝑥, |𝑉𝑦 | ≤ 𝛼𝑛1/3]

+P[∃|𝑥 | ≤ 𝑛, such that 𝑉𝑥 ≤ −𝛼𝑛1/3] .
(3.3.34)

To bound the first summand on the right hand side, we apply the many-to-one formula (Propo-
sition 3.2.15) with 𝜂 = 1, and get a random walk (𝑆𝑖)𝑖≥0, such that

P[∃|𝑥 | = 𝑛, such that ∀𝑦 ≺ 𝑥, |𝑉𝑦 | ≤ 𝛼𝑛1/3]

≤ E
[∑
|𝑥 |=𝑛1{∀𝑦 ≺ 𝑥, |𝑉𝑦 | ≤ 𝛼𝑛1/3}

]
= E[𝑒𝑆𝑛1∀𝑖∈[𝑛],|𝑆𝑖 |≤𝛼𝑛1/3]

≤ 𝑒𝛼𝑛1/3
P[∀𝑖 ∈ [𝑛], |𝑆𝑖 | ≤ 𝛼𝑛1/3] .

(3.3.35)

In the third line we used that 𝜓𝑉 (1) = 0. We recall that (since 𝜓(1)𝑉 = 𝜓′
𝑉
(1) = 0) we have

E[𝑆1] = 0 and E[𝑆2
1] = 𝜎

2
𝑉

. Applying Lemma 3.3.7 (with 𝛾 = 𝛼 and 𝜈 = 1/3) yields

P[∀𝑖 ∈ [𝑛], |𝑆𝑖 | ≤ 𝛼𝑛1/3] = 𝑒−[2𝛼+𝑜(1)]𝑛1/3
, (3.3.36)

where we used that ( 𝜋𝜎𝑉2𝛼 )
2 = 2𝛼. Moreover, Lemma 3.3.7 states that the convergence in

(3.3.36) is uniform over a family 𝑉 (𝑘) , 𝑘 ∈ N, of critical increments given that 0 < inf𝑘 𝜎2
𝑉 (𝑘 )
≤

sup𝑘 𝜎2
𝑉 (𝑘 )

<∞. In conclusion we have

P[∃|𝑥 | = 𝑛, such that ∀𝑦 ≺ 𝑥, |𝑉𝑦 | ≤ 𝛼𝑛1/3] ≤ 𝑒−[𝛼+𝑜(1)]𝑛1/3
. (3.3.37)



46 H2|2-model and VRJP on trees [TREE]

Fot the second summand in (3.3.34) we have

P[∃|𝑥 | ≤ 𝑛, such that 𝑉𝑥 ≤ −𝛼𝑛1/3] ≤
𝑛∑︁
𝑖=1

E
[∑︁
|𝑥 |=𝑖

1𝑉𝑥≤−𝛼𝑛1/3

]
=

𝑛∑︁
𝑖=1

∑︁
|𝑥 |=𝑖

E[𝑒−𝑉𝑥 𝑒𝑉𝑥1𝑉𝑥≤−𝛼𝑛1/3]

≤
𝑛∑︁
𝑖=1

∑︁
|𝑥 |=𝑖

E[𝑒−𝑉𝑥 ]𝑒−𝛼𝑛1/3

=

𝑛∑︁
𝑖=1
𝑒𝑖𝜓𝑉 (1)𝑒−𝛼𝑛

1/3

=

𝑛∑︁
𝑖=1
𝑒−𝛼𝑛

1/3

=𝑛𝑒−𝛼𝑛
1/3
.

(3.3.38)

Where we used that 𝑒𝑖𝜓𝑉 (𝜂) =
∑
|𝑥 |=𝑖E[𝑒−𝜂𝑉𝑥 ], which one may check inductively. In conclusion,

(3.3.34), (3.3.37) and (3.3.38) yield P(𝐴c
𝑛) ≤ 𝑒−(𝛼+𝑜(1))𝑛

1/3
. We proceed by controlling the

second summand in (3.3.33) using Cauchy-Schwarz and properties of the effective conductance
(Lemma 3.2.6):

E[𝐶eff
𝑛,𝛾1𝐴c

𝑛
] ≤

√︃
E[(𝐶eff

𝑛,𝛾)2] 𝑒−
𝛼
2 [𝑛

1/3+𝑜(1)] (3.3.39)

To bound the first factor on the right hand side note that 𝐶eff
𝑛,𝛾 ≤

∑
|𝑥 |=1𝑒

−𝛾𝑉𝑥 by Lemma 3.2.6.
By Jensen’s and Hölder’s inequality

E[(∑|𝑥 |=1𝑒
−𝛾𝑉𝑥 )2] ≤ 𝑑E[∑|𝑥 |=1𝑒

−2𝛾𝑉𝑥 ]
= 𝑑2E[𝑒−2𝛾𝑉 ]

≤ 𝑑2E[𝑒−𝑉 ]2𝛾(1−
2𝛾−1

2𝑎 )E[𝑒−(1+2𝑎)𝑉 ]
2𝛾

1+2𝑎
2𝛾−1

2𝑎

≤ 𝑑2−2𝛾(1− 2𝛾−1
2𝑎 ) [ 1

𝑑
𝑒𝜓𝑉 (1+2𝑎)]

2𝛾
1+2𝑎

2𝛾−1
2𝑎 ,

(3.3.40)

where we used 1 = 𝑒𝜓𝑉 (1) = 𝑑E[𝑒−𝑉 ]. The last line in (3.3.40) is continuous in 𝛾 ∈ R, hence
uniformly bounded for 𝛾 ∈ (1/2,1/2+ 𝑎). In conclusion, we have

sup
1/2<𝛾<1/2+𝑎

E[𝐶eff
𝑛,𝛾1𝐴c

𝑛
] ≤ 𝐶 (𝜓𝑉 (1+2𝑎)) 𝑒−[ 𝛼2 +𝑜(1)]𝑛1/3

, (3.3.41)
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for a constant 𝐶 (𝜓𝑉 (1 + 2𝑎)) > 0 depending continuously on 𝜓𝑉 (1 + 2𝑎). In particular,
this yields a uniform bound over a family of critical increments 𝑉 (𝑘) with 0 < inf𝑘 𝜎2

𝑉 (𝑘 )
≤

sup𝑘 𝜎2
𝑉 (𝑘 )

<∞ and sup𝑘 𝜓𝑉 (𝑘 ) (1+2𝑎)∞.

Bounding the first summand. For a vertex 𝑥 ∈ 𝜕Λ𝑛 we write (𝑥𝑘 )𝑘=0,...,𝑛 for its sequence of
predecessors (𝑥0 = 0, 𝑥𝑛 = 𝑥). For a walk 𝑋 = (𝑋𝑖)𝑖≥0, analogously to our stopping lines, we
introduce the stopping time at level 𝛼𝑛1/3:

𝑇
(𝑛)
𝑋

= inf{𝑖 ≥ 0: 𝑋𝑖 ≥ 𝛼𝑛1/3} (3.3.42)

Note that on the event 𝐴𝑛, we know for every 𝑥 ∈ 𝜕Λ𝑛 that the sequence (𝑉𝑥𝑖 )𝑖=0,...,𝑛 crosses
level 𝛼𝑛1/3. In other words, 𝑇 (𝑛)(𝑉𝑥𝑖 )

≤ 𝑛.
Consequently, the first summand in (3.3.33) is bounded via

E
[ ∑︁
𝑥𝑦∈L (𝑛)

𝑒−𝛾(𝑉𝑥+𝑉𝑦)
]
≤

𝑛∑︁
𝑘=1

E
[ ∑︁
|𝑥 |=𝑘

1{𝑇 (𝑛)(𝑉𝑥𝑖 ) = 𝑘}𝑒
−𝛾(𝑉𝑥𝑘−1+𝑉𝑥𝑘 )

]
. (3.3.43)

The last line is amenable to the many-to-one formula (Theorem 3.2.15). Write (𝑆𝑖)𝑖≥0 for the
associated random walk (choosing 𝜂 = 1), then the last line in (3.3.43) is equal to

𝑛∑︁
𝑘=1

E
[
1{𝑇 (𝑛)

𝑆
= 𝑘}𝑒𝑆𝑘𝑒−𝛾(𝑆𝑘−1+𝑆𝑘)

]
=

𝑛∑︁
𝑘=1

E
[
1{𝑇 (𝑛)

𝑆
= 𝑘}𝑒−(2𝛾−1)𝑆𝑘−1𝑒(1−𝛾) (𝑆𝑘−𝑆𝑘−1)

]
. (3.3.44)

Now, since 𝑆𝑘 ≥ 𝛼𝑛1/3 for 𝑇 (𝑛)
𝑆

= 𝑘 , and since 𝛾 > 1/2 by assumption, we can bound the right
hand side and obtain

E
[ ∑︁
𝑥𝑦∈L (𝑛)

𝑒−𝛾(𝑉𝑥+𝑉𝑦)1𝐴𝑛

]
≤ 𝑒−(2𝛾−1)𝛼𝑛1/3 ×

𝑛∑︁
𝑘=1

E
[
1{𝑇 (𝑛)

𝑆
= 𝑘}𝑒(1−𝛾) (𝑆𝑘−𝑆𝑘−1)

]
≤ 𝑒−(2𝛾−1)𝛼𝑛1/3 ×𝑛E

[
𝑒(1−𝛾)𝑆1

] (3.3.45)

Now by using the definition of (𝑆𝑖) in (3.2.21) we have

E[𝑒(1−𝛾)𝑆1] = 𝑑E[𝑒−𝛾𝑉 ] ≤ 𝑑E[𝑒−(1+2𝑎)𝑉 ]
𝛾

1+2𝑎 ≤ 𝑑 [ 1
𝑑
𝑒𝜓𝑉 (1+2𝑎)]

𝛾

1+2𝑎 ≤ 𝐶 (𝜓𝑉 (1+2𝑎)), (3.3.46)
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for a constant 𝐶 (𝜓𝑉 (1+2𝑎)) > 0 that is independent of 𝛾 ∈ (1/2,1/2+ 𝑎) and continuous with
respect to 𝜓𝑉 (1+2𝑎). Hence,

E
[ ∑︁
𝑥𝑦∈L (𝑛)

𝑒−𝛾(𝑉𝑥+𝑉𝑦)
]
≤ 𝑒−[(2𝛾−1)𝛼+𝑜(1)]𝑛1/3

, (3.3.47)

and this bound holds uniformly with respect to 𝛾 ∈ (1/2,1/2+ 𝑎) and over family of critical
increments𝑉 (𝑘) , given that sup𝑘 𝜓𝑉 (𝑘 ) (1+2𝑎) <∞. In conclusion (3.3.32), (3.3.41) and (3.3.47)
yield

E[𝐶eff
𝑛,𝛾] ≤ 𝑒−[𝛼/2+𝑜(1)]𝑛

1/3 + 𝑒−[(2𝛾−1)𝛼+𝑜(1)]𝑛1/3

≤ 𝑒−[min( 12 ,2𝛾−1)𝛼+𝑜(1)]𝑛1/3

= 𝑒
−[min( 14 ,𝛾−

1
2 ) (𝜋

2𝜎2
𝑉
)1/3+𝑜(1)]𝑛1/3

(3.3.48)

uniformly over 𝛾 ∈ (1/2,1/2+ 𝑎) as 𝑛→∞. And as noted, this bound is also uniform over a
family of critical increments 𝑉 (𝑘) , given the assumptions in the theorem. This concludes the
proof. □

3.3.3 Near-Critical Effective Conductance (Proof of Theorem 3.3.1)

The upper bound in Theorem 3.3.1 will follow from Theorem 3.3.2 and a perturbative argument.
For the lower bound, we will apply a modification of a result due to Gantert, Hu and Shi [75].
In their work they give the asymptotics for the probability that some trajectory of a critical
branching random walk stays below a slope 𝛿 |𝑖 | when 𝛿↘ 0. We are interested in this result
applied to the critical rescaling of 𝑡-field {𝜏𝛽𝑥 }𝑥∈T𝑑

as given in (3.3.12). Comparing to Gantert,
Hu and Shi’s result, we will require additional uniformity in 𝛽:

Theorem 3.3.8: Let {𝜏𝛽𝑥 }𝑥∈T𝑑
be as in (3.3.12). For any 𝑎 > 0 small enough, there exists a

constant 𝐶 > 0 such that for all 𝛽 ∈ [𝛽𝑐, 𝛽𝑐 + 𝑎], for 𝛿 small enough:

P𝛽 [∃a path 𝛾 : 0→∞ s.t. ∀𝑖 ∈ N, 𝜏𝛽𝛾𝑖 ≤ 𝛿𝑖] ≥ 𝑒
−𝐶/
√
𝛿 .

This theorem will be proven in Appendix 3.7, as it closely follows the arguments of Gantert,
Hu and Shi, while taking some extra care to ensure the required uniformity.

Proof of Theorem 3.3.1. The main idea is to consider, for 𝛽 = 𝛽c + 𝜖 , the critical rescaling of
the 𝑡-field (see Lemma 3.2.17, (3.3.11) and Lemma 3.3.3)

𝜏
𝛽

𝑖
= −𝜂𝛽𝑇𝑖 +𝜓𝛽 (𝜂𝛽) |𝑖 |. (3.3.49)
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We remind the reader of the definition of the rescaled field with the following near-critical
behaviour for the constants (Proposition 3.3.4):

𝜂𝛽c+𝜖 =
1
2 + 𝑐𝜂𝜖 +𝑂 (𝜖

2) with 𝑐𝜂 > 0

𝜓𝛽c+𝜖 (𝜂𝛽c+𝜖 ) = 𝑐𝜓𝜖 +𝑂 (𝜖2) with 𝑐𝜓 > 0.
(3.3.50)

Together with these asymptotics, application Theorem 3.3.8 and Theorem 3.3.2 to {𝜏𝛽
𝑖
}𝑖∈T𝑑

,
will yield the lower and upper bound, respectively.

Lower Bound: According to Theorem 3.3.8 we have that there exist constants 𝑎,𝐶 > 0, such
that for all sufficiently small 𝛿 > 0:

inf
𝛽c<𝛽<𝛽c+𝑎

P𝛽 [∃a path 𝛾 : 0→∞ s.t. ∀𝑖 ∈ N, 𝜏𝛽𝛾𝑖 ≤ 𝛿𝑖] ≥ 𝑒
−𝐶/
√
𝛿 . (3.3.51)

Note that 𝜏𝛾𝑖 ≤ 𝛿𝑖 is equivalent to 𝑇𝛾𝑖 ≥ 𝜂−1
𝛽
[𝜓𝛽 (𝜂𝛽) − 𝛿]𝑖. Choosing 𝛿(𝜖) = 1

2𝑐𝜓𝜖 , we have
𝜂−1
𝛽c+𝜖 [𝜓𝛽c+𝜖 (𝜂𝛽c+𝜖 ) − 𝛿(𝜖)] = 𝑐𝜓𝜖 +𝑂 (𝜖2). Hence, for 𝜖 > 0 small enough

P𝛽c+𝜖 [∃a path 𝛾 : 0→∞ s.t. ∀𝑖 ∈ N, 𝑇𝛾𝑖 ≥ 1
2𝑐𝜓𝜖𝑖] ≥ 𝑒

−𝐶/
√
𝜖 . (3.3.52)

Write 𝐴𝜖 for the event in brackets. Conditionally on this event, we can bound 𝐶eff
∞ from below

by the conductance along the path 𝛾 (which is given by Kirchhoff’s rule for conductors in
series):

On 𝐴𝜖 : 𝐶eff
∞ ≥

[ ∞∑︁
𝑖=0

1
𝛽
𝑒
−2 1

2 𝑐𝜓𝜖 𝑖
]−1

= 𝛽(1− 𝑒−𝑐𝜓𝜖 ). (3.3.53)

Consequently, (3.3.52) and (3.3.53) yield

E𝛽c+𝜖 [𝐶eff
∞ ] ≥ (𝛽c + 𝜖) (1− 𝑒−𝑐𝜓𝜖 )𝑒−𝐶/

√
𝜖 = 𝑒−[𝐶+𝑜(1)]/

√
𝜖 as 𝜖 → 0. (3.3.54)

This concludes the proof of the lower bound in (3.3.1).

Upper Bound: Recalling the definition (3.3.49), we have for any 𝑖, 𝑗 ∈ T𝑑,𝑛 ⊆ T𝑑 that

𝑒𝑇𝑖+𝑇 𝑗 = 𝑒( |𝑖 |+| 𝑗 |)𝜓𝛽 (𝜂𝛽)/𝜂𝛽𝑒−𝜂
−1
𝛽
(𝜏𝛽

𝑖
+𝜏𝛽

𝑗
) ≤ 𝑒2𝑛𝜓𝛽 (𝜂𝛽)/𝜂𝛽𝑒−𝜂

−1
𝛽
(𝜏𝛽

𝑖
+𝜏𝛽

𝑗
)
. (3.3.55)
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Hence, if we write 𝐶̃eff
𝑛 for the effective conductance between the origin and 𝜕Λ𝑛 = {𝑥 ∈

T𝑑 : |𝑥 | = 𝑛} in the electrical network with conductances {𝑒−𝜂
−1
𝛽
(𝜏𝛽

𝑖
+𝜏𝛽

𝑗
)}𝑖 𝑗∈𝐸 , we have

E𝛽 [𝐶eff
𝑛 ] ≤ 𝑒2𝑛𝜓𝛽 (𝜂𝛽)/𝜂𝛽 E𝛽 [𝐶̃eff

𝑛 ] . (3.3.56)

For any 𝛽 > 0, the field 𝜏𝛽
𝑖

is the BRW for the critical increment 𝜏𝛽 := −𝜂𝛽𝑇 +𝜓𝛽 (𝜂𝛽), with 𝑇
is distributed as a 𝑡-field increment (at inverse temperature 𝛽). Hence, Theorem 3.3.2 implies

E𝛽 [𝐶̃eff
𝑛 ] ≤ exp[−

[
min( 14 , 𝜂

−1
𝛽 −1/2) (𝜋2𝜎2

𝜏𝛽
)1/3 + 𝑜(1)

]
𝑛1/3] as 𝑛→∞, (3.3.57)

and moreover this holds uniformly as 𝛽↘ 𝛽c. Note that by (3.3.50) we have min( 14 , 𝜂
−1
𝛽
−1/2) =

1
4 for 𝛽 sufficiently close to 𝛽c. In the following write 𝛽 = 𝛽c + 𝜖 . By (3.3.50) we have
𝜓𝛽c+𝜖 (𝜂𝛽c+𝜖 )/𝜂𝛽c+𝜖 ∼ 2𝑐𝜓𝜖 as 𝜖 ↘ 0. Hence, choosing 𝑛 = 𝑛(𝜖) = 𝑐′𝜖−3/2 we have

2𝑛(𝜖)𝜓𝛽c+𝜖 (𝜂𝛽c+𝜖 )/𝜂𝛽c+𝜖 ∼ 4𝑐𝜓𝑐′𝜖−1/2 and 𝑛(𝜖)1/3 = 𝑐′1/3𝜖−1/2, (3.3.58)

consequently for 𝑐′ > 0 sufficiently small, (3.3.56) and (3.3.57) together with Lemma 3.2.6
yield

E𝛽c+𝜖 [𝐶eff
∞ ] ≤ E𝛽c+𝜖 [𝐶eff

𝑛(𝜖)] ≤ 𝑒
−(𝐶+𝑜(1)) 𝜖−1/2

as 𝜖 ↘ 0, (3.3.59)

for some constant 𝐶 > 0. □

A corollary of the proof above, in particular (3.3.52), (3.3.53) is the following

Lemma 3.3.9: In the setting of Theorem 3.3.1 one has, for some constants 𝑐,𝐶 > 0

P𝛽c+𝜖 [𝐶eff
∞ > 𝑐𝜖] ≥ exp[−(𝐶 + 𝑜(1))/

√
𝜖], (3.3.60)

as 𝜖 ↘ 0.

3.3.4 Average Escape Time of the VRJP as 𝛽 ↘ 𝛽c (Proof of Theo-
rem 3.1.2)

Lemma 3.3.10 (Local Time and Effective Conductance): Let 𝐿0
∞ denote the time the VRJP

spends at the origin. Let 𝐶eff
∞ be the effective conductance between the origin and infinity in

the 𝑡-field environment. Also suppose 𝑍 is an independent exponential random variable of
unit mean. Then we have

𝐿0
∞

law
=

√︃
1+2𝑍/𝐶eff

∞ −1. (3.3.61)
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Proof. Write 𝐿̃0
∞ for the total time the exchangeable timescale VRJP spends at the origin. By

the time change formula for the local times (3.2.3), we have:

𝐿0
∞ =

√︃
1+ 𝐿̃0

∞−1. (3.3.62)

By Theorem 3.2.2, Lemma 3.2.4, and Lemma 3.2.7, 𝐿̃0
∞ is Exp(2/𝐶eff

∞ )-distributed. □

Lemma 3.3.11: Let 𝐶eff
∞ be as in Theorem 3.3.1. For any 𝛼 > 0, there exists a constant

𝑐 = 𝑐(𝑑,𝛼) > 0, such that for 𝜖 > 0 small enough and 𝑥 ≥ 𝑒𝑐/
√
𝜖

P𝛽c+𝜖 [ 1
𝐶eff
∞
> 𝑥] ≤ 𝑥−𝛼 . (3.3.63)

In particular, there exists a constant 𝐶 > 0 such that

E𝛽c+𝜖
[ 1
𝐶eff
∞

]
≤ 𝑒

𝐶√
𝜖 (3.3.64)

Proof. Recall that the 𝑡-field environment is given by edge-weights {𝛽𝑖 𝑗𝑒𝑇𝑖+𝑇 𝑗 }𝑖 𝑗∈𝐸 (T𝑑) , where
the 𝑡-field 𝑇𝑖 has independent increments along outgoing edges and is defined to equal 0 at the
origin. In particular, the environment on the subtree emanating from 𝑥 (which is isomorphic
to T𝑑) is distributed as a 𝑡-field environment on T𝑑 multiplied by 𝑒2𝑇𝑥 (which is the same as
requiring that the 𝑡-field equals 𝑇𝑥 at the “origin” 𝑥). For any 𝑛 ∈ N, and a vertex 𝑥 at generation
𝑛, write 𝜔𝑛,𝑥 for the effective conductance from 𝑥 to infinity. By the above we have that
{𝑒−2𝑇𝑥𝜔𝑛,𝑥} |𝑥 |=𝑛 are independently distributed as 𝐶eff

∞ . Also, they are independent from the
𝑡-field up to generation 𝑛.

In the following, we replace each of the 𝑑𝑛 subtrees emanating from the vertices 𝑥 at
generation 𝑛 by a single edge “to infinity” with weight 𝜔𝑛,𝑥 . The resulting network has the
same effective conductance between 0 and infinity.

Define the event
𝐴𝑛 := {∃|𝑥 | = 𝑛 : 𝑒−2𝑇𝑥𝜔𝑛,𝑥 > 2𝑐𝜖}. (3.3.65)

By Lemma 3.3.9 we have P𝛽c+𝜖 [𝑒−2𝑇𝑥𝜔𝑛,𝑥 > 2𝑐𝜖] ≥ 𝑒−2𝐶/
√
𝜖 and hence

P𝛽c+𝜖 [𝐴c
𝑛] = 1−P𝛽c+𝜖 [𝐴𝑛] ≤ (1− 𝑒−2𝐶/

√
𝜖 )𝑑𝑛 ≤ 𝑒−𝑑𝑛𝑒−2𝐶/

√
𝜖

, (3.3.66)

which is small for appropriately chosen 𝑛.
Hence, suppose we are working under the event 𝐴𝑛, and let 𝑥0 be a vertex at generation 𝑛,

such that 𝑒−2𝑇𝑥0𝜔𝑛,𝑥0 > 2𝑐𝜖 . The effective conductance on the tree is larger than the effective
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conductance on the subgraph where we only keep the edges between 0 and 𝑥0, as well as an
edge between 𝑥0 and infinity with conductance 𝑒2𝑇𝑥0 2𝑐𝜖 < 𝜔𝑛,𝑥0 . Denote the conductance of
this reduced graph by 𝐶red. We write 𝑦0 = 0, . . . , 𝑦𝑛 = 𝑥0 for the vertices along the path from 0
to 𝑥0. The series formula for conductances yields

1
𝐶eff
∞
≤ 1
𝐶red =

1
𝛽

𝑛−1∑︁
𝑖=0
𝑒−(𝑇𝑦𝑖+𝑇𝑦𝑖+1 ) + 1

2𝑐𝜖
𝑒−2𝑇𝑦𝑛 . (3.3.67)

We bound𝑇𝑦𝑖 +𝑇𝑦𝑖+1 ≥ 2min(𝑇𝑦𝑖 ,𝑇𝑦𝑖+1). Recall that𝑇𝑦𝑖
law
=

∑𝑖
𝑘=0𝑇

(𝑘) with i.i.d. samples {𝑇 (𝑘)}𝑘≥0

from the 𝑡-field increment measure (3.2.17). This yields

1
𝐶red ≤ (

𝑛
𝛽
+ 1

2𝑐𝜖 )𝑒
−2min(𝑇𝑦0 ,...,𝑇𝑦𝑛 ) . (3.3.68)

For fixed 𝜏 > 0 we apply a union bound and Chernoff’s bound (resp. Lemma 3.6.1)

P𝛽 [min(𝑇𝑦0 , . . . ,𝑇𝑦𝑛) < −𝑛𝜏] ≤
𝑛∑︁
𝑖=0

P[∑𝑖
𝑘=0𝑇

(𝑘) < −𝑛𝜏]

≤
𝑛∑︁
𝑖=0

exp(−𝑖Ψ∗𝛽 ( 𝑛𝑖 𝜏)),
(3.3.69)

where Ψ∗
𝛽
(𝜏) = sup𝜆≥0(𝜆𝜏 − logE𝛽 [𝑒−𝜆𝑇 ]) is the Fenchel-Legendre dual of the (negative) 𝑡-

field increment’s log-MGF. Convexity of Ψ∗
𝛽

(and Ψ∗
𝛽
(0) = 0) implies Ψ∗

𝛽
( 𝑛
𝑖
𝜏) ≥ 𝑛

𝑖
Ψ∗
𝛽
(𝜏).

Consequently, (3.3.69) yields

P𝛽 [min(𝑇𝑦0 , . . . ,𝑇𝑦𝑛) < −𝑛𝜏] ≤ (𝑛+1)𝑒−𝑛Ψ
∗
𝛽
(𝜏) for 𝜏 > 0 (3.3.70)

which by (3.3.67) and (3.3.68) implies

P𝛽c+𝜖 [ 1
𝐶eff
∞
> ( 𝑛

𝛽
+ 1

2𝑐𝜖 )𝑒
2𝑛𝜏 |𝐴𝑛] ≤ (𝑛+1) exp[−𝑛Ψ∗𝛽c+𝜖 (𝜏)], (3.3.71)

In Appendix 3.6 we obtain lower bounds on Ψ∗
𝛽

(Lemma 3.6.1). By (3.6.3), we have that for
fixed 𝛼 > 0 and sufficiently small 𝜖 > 0, any sufficiently large 𝜏 > 0 will satisfy Ψ∗

𝛽c+𝜖 (𝜏) ≥ 7𝛼𝜏,

uniformly as 𝜖↘ 0. To conclude, we choose 𝑛 ≥ 𝑁 (𝜖) := 4𝐶
log(𝑑)

√
𝜖
, such that P[𝐴𝑛] ≤ 𝑒−𝑑

𝑛/2
. In

conclusion, with above choices, (3.3.66) and (3.3.71) yield

P𝛽c+𝜖
[ 1
𝐶eff
∞
> 𝑒3𝑛𝜏] ≤ 𝑒−6𝑛𝛼𝜏 + 𝑒−𝑑𝑛/2 (3.3.72)
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This implies the claim. □

Proof of Theorem 3.1.2. We start with the lower bound: By Lemma 3.3.10 there exists an
exponential random variable 𝑍 of expectation 1 such that:

E[𝐿0
∞] = E

[√︃
1+2𝑍/𝐶eff

∞
]
−1

≥ E
[√︃

1+2𝑍/E(𝐶eff
∞ )

]
−1 by cond. Jensen inequality

≥ E[
√
𝑍]/E[𝐶eff

∞ ] −1

≥ exp(𝑐/
√
𝜖) −1 by Theorem 3.3.1.

(3.3.73)

For the upper bound, we start with Jensen’s inequality:

E[𝐿0
∞] = E

[√︃
1+2𝑍/𝐶eff

∞ −1
]

≤
√︃

1+2E
[
𝑍/𝐶eff

∞
]
−1

=

√︃
1+2E

[
1/𝐶eff

∞
]
−1

≤
√

2
√︃
E
[
1/𝐶eff

∞
]
.

(3.3.74)

The result now follows by Lemma 3.3.11. □
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3.4 Intermediate Phase of the VRJP

In this section we show that the VRJP on large finite regular trees exhibits an intermediate phase.
We also argue that Rapenne’s recent results [35] imply the absence of such an intermediate
phase on regular trees with wired boundary conditions.

3.4.1 Existence of an Intermediate Phase on T𝑑,𝑛 (Proof of Theorem 3.1.3)

The intermediate phase is characterised by the VRJP, despite being transient, spending “unusu-
ally much” time at the root. To be precise, on finite trees the fraction of time spent at the origin
scales with the system size as a fractional power of the inverse system volume. At the second
transition point the walk then reverts to the behaviour that one expects by comparison with
simple random walk, spending time inversely proportional to the tree’s volume at the starting
vertex.

We will see that the different scalings will be due to different regimes for the log-Laplace
transform of the 𝑡-field increments, 𝜓𝛽 (𝜂) = log[𝑑E𝛽𝑒𝜂𝑇 ], as elaborated in Section 3.3.1.

Before starting the proof, we show how the observable in Theorem 3.1.3 can be rephrased in
terms of a 𝑡-field. The proof will then proceed by analysing the resulting 𝑡-field quantity via
branching random walk methods.

Lemma 3.4.1: Consider the situation of Theorem 3.1.3. Further consider a 𝑡-field {𝑇𝑥} on
T𝑑,𝑛, rooted at the origin 0. We then have

lim𝑡→∞
𝐿0
𝑡

𝑡

law
=

[∑
|𝑥 |≤𝑛 𝑒

𝑇𝑥

]−1
, (3.4.1)

Proof. Trivially one has 𝑡 =
∑
|𝑥 |≤𝑛 𝐿

𝑥
𝑡 . Consequently,

lim
𝑡→∞

𝐿0
𝑡

𝑡
= lim
𝑡→∞

[ ∑︁
|𝑥 |≤𝑛

𝐿𝑥𝑡 /𝐿0
𝑡

]−1
. (3.4.2)

Hence, the claim follows from Corollary 3.2.3. □

Proof of Theorem 3.1.3. In light of Lemma 3.4.1 we consider a 𝑡-field {𝑇𝑥} on T𝑑 , rooted at the
origin. In the following we analyse the asymptotic behaviour of the random variable

∑
|𝑥 |≤𝑛 𝑒

𝑇𝑥 .
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Case 𝛽c < 𝛽 < 𝛽
erg
c : We note that it suffices to show∑︁

|𝑥 |≤𝑛
𝑒𝑇𝑥 = 𝑒𝑛𝛾𝛽+𝑜(𝑛) a.s. for 𝑛→∞ with 𝛾𝛽 = inf

𝜂>0
𝜓𝛽 (𝜂)/𝜂 > 0, (3.4.3)

since we have 0 < 𝛾𝛽 < log(𝑑) by Proposition 3.3.5. The lower bound in (3.4.3) follows from
Theorem 3.2.16: ∑︁

|𝑥 |≤𝑛
𝑒𝑇𝑥 ≥

∑︁
|𝑥 |=𝑛

𝑒𝑇𝑥 ≥ 𝑒max |𝑥 |=𝑛𝑇𝑥 = 𝑒𝑛𝛾𝛽+𝑜(𝑛) . (3.4.4)

For the upper bound in (3.4.3) note that for 𝜂 ∈ (0,1) and 𝜖 > 0 we have

P[
∑︁
|𝑥 |≤𝑛

𝑒𝑇𝑥 > 𝑒𝑛(𝛾𝛽+𝜖)] ≤ 𝑒−𝑛𝜂(𝛾𝛽+𝜖)E[(
∑︁
|𝑥 |≤𝑛

𝑒𝑇𝑥 )𝜂]

≤ 𝑒−𝑛𝜂(𝛾𝛽+𝜖)E[
∑︁
|𝑥 |≤𝑛

𝑒𝜂𝑇𝑥 ]

= 𝑒−𝑛𝜂(𝛾𝛽+𝜖)
𝑛∑︁
𝑘=0

𝑒𝜓(𝜂)𝑘

(3.4.5)

Now let 𝜂 = 𝜂𝛽 as in Lemma 3.3.3, i.e. such that 𝛾𝛽 = 𝜓𝛽 (𝜂𝛽)/𝜂𝛽 > 0. Note that by Proposi-
tion 3.3.5, we have 𝛾𝛽 ∈ (0, log(𝑑)). With this choice (3.4.5) implies limsup𝑛→∞ 1

𝑛
log

∑
|𝑥 |≤𝑛 𝑒

𝑇𝑥 ≤
𝛾𝛽 + 𝜖 almost surely for any 𝜖 > 0. This yields the lower bound in (3.4.3).

Case 𝛽 ≤ 𝛽c: This proceeds similarly to the previous case. For the lower bound we simply
use

∑
|𝑥 |≤𝑛 𝑒

𝑇𝑥 ≥ 𝑒𝑇0 = 1. For the lower bound we use (3.4.5) with 𝛾𝛽 ↦→ 0 and 𝜂 = 1/2, which
implies that limsup𝑛→∞ 1

𝑛
log

∑
|𝑥 |≤𝑛 𝑒

𝑇𝑥 ≤ 𝜖 . almost surely for any 𝜖 > 0.

Case 𝛽 > 𝛽erg
c : First note that the quantity𝑊𝑛 := 𝑑−𝑛

∑
|𝑥 |=𝑛 𝑒

𝑇𝑥 is a martingale. In the branching
random walk literature this is referred to as the additive martingale associated with the BRW
{𝑇𝑥}𝑥∈T𝑑

. Since 𝑊𝑛 is non-negative it converges almost surely to a random variable 𝑊∞ =

lim𝑛→∞𝑊𝑛. Biggin’s martingale convergence theorem [74, Theorem 3.2] implies that for 𝛽 >
𝛽

erg
c (equivalently 𝜓′

𝛽
(1) < 𝜓𝛽 (1), see Proposition 3.3.5), the sequence is uniformly integrable

and the limit𝑊∞ is almost surely strictly positive. Consequently we also get convergence for
the weighted average

1��T𝑑,𝑛�� ∑︁
|𝑥 |≤𝑛

𝑒𝑇𝑥 =
1��T𝑑,𝑛�� 𝑛∑︁

𝑘=0
𝑑𝑘𝑊𝑘 →𝑊∞ > 0 a.s. for 𝑛→∞. (3.4.6)
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In other words, ∑︁
|𝑥 |≤𝑛

𝑒𝑇𝑥 ∼
��T𝑑,𝑛��𝑊∞ = 𝑑𝑛+𝑂 (1) as 𝑛→∞, (3.4.7)

which implies the claim for 𝛽 > 𝛽erg
c . □

3.4.2 Multifractality of the Intermediate Phase (Proof of Theorem 3.1.4)

For the proof we will make use of explicit large deviation asymptotics for the maximum of the
𝑡-field. These follow (as an easy special case) from results due to Gantert and Höfelsauer on
the large deviations of the maximum of a branching random walk [83, Theorem 3.2]:

Lemma 3.4.2: Consider the 𝑡-field {𝑇𝑥}𝑥∈T𝑑
on T𝑑 , pinned at the origin 0. Let 𝛾𝛽 =

inf𝜂>0𝜓𝛽 (𝜂)/𝜂 as in (3.3.11). For any 𝛾 > 𝛾𝛽 we have

liminf𝑛→∞ 1
𝑛

logP[max|𝑥 |=𝑛𝑇𝑥 ≥ 𝑛𝛾] = −sup𝜂∈R [𝛾𝜂−𝜓𝛽 (𝜂)] < 0. (3.4.8)

Proof. As noted, this is a direct consequence of [83, Theorem 3.2]. To be precise, we consider
the special case of a deterministic offspring distribution (instead of Galton-Watson trees) and
fluctuations above the asymptotic velocity 𝛾𝛽 (corresponding to the case 𝑥 > 𝑥∗ in [83]). In this
case, the rate function given by Gantert and Höfelsauer (denoted by 𝑥 ↦→ 𝐼 (𝑥) − log(𝑚) in their
article) is equal to

𝛾 ↦→ sup
𝜂∈R
(𝛾𝜂− logE[𝑒𝜂𝑇 ]) − log𝑑 = sup

𝜂∈R
[𝛾𝜂−𝜓𝛽 (𝜂)] . (3.4.9)

This concludes the proof. □

Proof of Theorem 3.1.4. By Lemma 3.4.1, we would like to understand fractional moments of

[ lim
𝑡→∞

𝐿0
𝑡 /𝑡]−1 law

=
∑︁
|𝑥 |≤𝑛

𝑒𝑇𝑥 , (3.4.10)

where {𝑇𝑥}𝑥∈T𝑑
denotes a 𝑡-field on the rooted (𝑑 +1)-regular tree, pinned at the origin. Recall

the definition of 𝜂𝛽 in (3.3.11) and Lemma 3.3.3. For 𝛽 ∈ (𝛽c, 𝛽
erg
c ) we have 𝜂𝛽 ∈ (0,1) by

Proposition 3.3.5.
Case 𝜂 ∈

(
0, 𝜂𝛽

]
: We recall Proposition 3.2.16, which implies that

lim
𝑛→∞

1
𝑛

max
|𝑥 |=𝑛

𝑇𝑥 = 𝛾𝛽 = 𝜓𝛽 (𝜂𝛽)/𝜂𝛽. (3.4.11)
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By Jensen’s inequality and Fatou’s lemma we get

liminf
𝑛→∞

1
𝑛

logE[(
∑︁
|𝑥 |≤𝑛

𝑒𝑇𝑥 )𝜂] ≥ liminf
𝑛→∞

1
𝑛

logE[𝑒𝜂max |𝑥 |=𝑛𝑇𝑥 ]

≥ liminf
𝑛→∞

𝜂

𝑛
E[max
|𝑥 |=𝑛

𝑇𝑥]

≥ 𝜂𝜓𝛽 (𝜂𝛽)/𝜂𝛽.

(3.4.12)

On the other hand, since 𝜂/𝜂𝛽 ≤ 1

E[(
∑︁
|𝑥 |≤𝑛

𝑒𝑇𝑥 )𝜂] ≤ E[(
∑︁
|𝑥 |≤𝑛

𝑒𝑇𝑥 )𝜂𝛽 ]𝜂/𝜂𝛽 (3.4.13)

For any 𝜂 ∈ (0,1) and 𝛽 > 𝛽c we can bound

E[(
∑︁
|𝑥 |≤𝑛

𝑒𝑇𝑥 )𝜂] ≤ E[
∑︁
|𝑥 |≤𝑛

𝑒𝜂𝑇𝑥 ] ≤
𝑛∑︁
𝑘=0

𝑒𝑘𝜓𝛽 (𝜂) ≤ 𝑒𝑛𝜓𝛽 (𝜂)+𝑜(𝑛) , (3.4.14)

where we used that inf𝜂>0𝜓𝛽 (𝜂) = 𝜓𝛽 (1/2) > 0 for 𝛽 > 𝛽c (cf. (3.3.10), (3.3.9) and (3.3.16)).
Applying this to the last line of (3.4.13), we obtain

E[(
∑︁
|𝑥 |≤𝑛

𝑒𝑇𝑥 )𝜂] ≤ 𝑒𝑛𝜂𝜓𝛽 (𝜂𝛽)/𝜂𝛽+𝑜(𝑛) (3.4.15)

Case 𝜂 ∈
[
𝜂𝛽,1

)
: The upper bound already follows from (3.4.14). For the lower bound we

start with
E[(

∑︁
|𝑥 |≤𝑛

𝑒𝑇𝑥 )𝜂] ≥ E[𝑒𝜂max |𝑥 |=𝑛𝑇𝑥 ]

≥ 𝑒𝑛𝜂𝛾 P[max
|𝑥 |=𝑛

𝑇𝑥 ≥ 𝑛𝛾] for any 𝛾 > 0.
(3.4.16)

We get that for any 𝛾 ∈ R:

liminf
𝑛→∞

1
𝑛

logE[(
∑︁
|𝑥 |≤𝑛

𝑒𝑇𝑥 )𝜂] ≥ 𝜂𝛾 + liminf
𝑛→∞

1
𝑛

logP[max
|𝑥 |=𝑛

𝑇𝑥 ≥ 𝑛𝛾] . (3.4.17)

By Lemma 3.4.2, we have

liminf
𝑛→∞

1
𝑛

logE[(
∑︁
|𝑥 |≤𝑛

𝑒𝑇𝑥 )𝜂] ≥ sup
𝛾>𝛾𝛽

(
𝜂𝛾− sup

𝜂∈R
[𝛾𝜂−𝜓𝛽 (𝜂)]

)
. (3.4.18)
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We claim that the right hand side of (3.4.18) is equal to 𝜓𝛽 (𝜂). For the upper bound simply
choose 𝜂 = 𝜂. For the lower bound first note that the supremum of 𝜂 ↦→ 𝛾𝜂−𝜓𝛽𝜂 is attained at
the unique 𝜂, such that 𝜓′

𝛽
(𝜂) = 𝛾 (uniqueness follow from convexity of 𝜂 ↦→ 𝜓𝛽 (𝜂)). Since we

assumed 𝜂 > 𝜂𝛽, we may choose 𝛾 = 𝜓′
𝛽
(𝜂), satisfying 𝛾 > 𝛾𝛽 = 𝜓′𝛽 (𝜂𝛽). Together with previous

observation this shows that the right hand side is larger or equal to 𝜓𝛽 (𝜂). This concludes the
proof. □

3.4.3 On the Intermediate Phase for Wired Boundary Conditions

We recall that for the Anderson transition it was debated whether an intermediate multifractal
phase persists in the infinite volume and on tree-like graphs without free boundary conditions
(see Section 3.1.3).

We conjecture that there is no intermediate phase for the VRJP on regular trees with wired
boundary conditions. In this section, we would like to provide some evidence for this claim,
based on recent work by Rapenne [35].

Let T𝑑,𝑛 denote the rooted (𝑑 +1)-regular tree of depth 𝑛 with wired boundary, i.e. all vertices
at generation 𝑛 have an outgoing edge to a single boundary ghost 𝔤. We consider T𝑑,𝑛 ⊂ T𝑑,𝑛
as a the subgraph induced by the vertices excluding the ghost. Let {𝑇𝔤

𝑥}𝑥∈𝑇𝑑,𝑛
denote a 𝑡-field

on the wired tree T𝑑,𝑛, pinned at the ghost 𝔤, and at inverse temperature 𝛽. We define

𝜓𝑛 (𝑥) = 𝑒𝑇
𝔤

𝑥 for 𝑥 ∈ T𝑑,𝑛, (3.4.19)

where we use the index 𝑛 to make the dependence on the underlying domain T𝑑,𝑛 more explicit.
This coincides with the (vector) martingale {𝜓𝑛 (𝑥)}𝑥∈T𝑑,𝑛

considered by Rapenne (see [48,
Lemma 2] for a proof that these are in fact the same). By [35, Theorem 2] we have for 𝛽 > 𝛽c

and 𝑝 ∈ (1,∞)
sup𝑛≥1E𝛽 [𝜓𝑛 (0)𝑝] <∞. (3.4.20)

Our statement about the absence of an intermediate phase, will be conditional on a (conjectural)
extension of this result:

Conjecture: sup
𝑛≥1

1��T𝑑,𝑛�� ∑︁
𝑥∈T𝑑,𝑛

E𝛽 [𝜓𝑛 (𝑥)𝑝] <∞ for 𝑝 > 1 and 𝛽 > 𝛽c. (3.4.21)

We believe this statement to be true due to the following heuristic: Given that the origin of
T𝑑,𝑛 is furthest away from the ghost 𝔤, at which the 𝑡-field in (3.4.19) is pinned, we expect
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the fluctuations of 𝜓𝑛 (𝑥) to be largest at 𝑥 = 0. Hence, we expect the moments of 𝜓𝑛 (𝑥) to be
comparable with the ones of 𝜓𝑛 (0), in which case (3.4.20) would imply (3.4.21).

Proposition 3.4.3: Consider a VRJP started from the root of T𝑑,𝑛 and let 𝐿0
𝑡 denote the time

it spent at root up until time 𝑡. Assume (3.4.21) holds true. Then, for any 𝛽 > 𝛽c

lim
𝑡→∞

𝐿0
𝑡

𝑡
≤

��T𝑑,𝑛��−1+𝑜(1) w.h.p. as 𝑛→∞. (3.4.22)

This is to be contrasted with the behaviour in Theorem 3.1.3.

Proof. Let {𝑇𝑥}𝑥∈T𝑑,𝑛
denote the 𝑡-field on T𝑑,𝑛, pinned at the origin 0. We stress that this is

different from 𝑇
𝔤

𝑥 , as used in (3.4.19), which is pinned at the ghost 𝔤. However, we can sample
the former from the latter: First consider an STZ-Anderson operator 𝐻𝐵 on the infinite graph
T𝑑 , as defined in Definition 3.1.8. Define 𝐺̂𝑛 := (𝐻𝐵 |T𝑑,𝑛

)−1 and also define {𝜓𝑛 (𝑥)}𝑥∈T𝑑
by

(𝐻𝐵𝜓𝑛) |T𝑑,𝑛
= 0 and 𝜓 |T𝑑\T𝑑,𝑛

≡ 1. (3.4.23)

By [48, Lemma 2], the 𝜓𝑛 so defined (and restriced to T𝑑,𝑛) agree in law with the definition in
(3.4.19). Then define 𝑇𝑥 for 𝑥 ∈ T𝑑,𝑛 via

𝑒𝑇 𝑥 =
𝐺̂𝑛 (0, 𝑥) + 1

2𝛾𝜓𝑛 (0)𝜓𝑛 (𝑥)

𝐺̂𝑛 (0,0) + 1
2𝛾𝜓𝑛 (0)2

, (3.4.24)

where 𝛾 ∼ Gamma( 12 ,1) is independent of 𝐻𝐵. By [48, Proposition 8], {𝑇𝑥}𝑥∈T𝑑,𝑛
has the law

of a 𝑡-field on T𝑑,𝑛, pinned at the origin 0 (and restricted to T𝑑,𝑛). Note that T𝔤 is not defined by
(3.4.24). Using the conditional law of the 𝑡-field on T𝑑,𝑛 given its values away from the ghost,
we can however define it such that {𝑇𝑥}𝑥∈T𝑑,𝑛

is the “full” 𝑡-field on T𝑑,𝑛, pinned at the origin.
Then, as in (3.4.1), we have that

lim
𝑡→∞

𝐿0
𝑡

𝑡

law
=

[ ∑︁
𝑥∈T𝑑,𝑛

𝑒𝑇 𝑥

]−1

. (3.4.25)

By (3.4.24) and positivity of 𝐺̂ we get∑︁
𝑥∈T𝑑,𝑛

𝑒𝑇 𝑥 ≥
∑︁
𝑥∈T𝑑,𝑛

𝑒𝑇 𝑥 ≥ 𝜓𝑛 (0)
2𝛾𝐺̂𝑛 (0,0) +𝜓𝑛 (0)2

∑︁
𝑥∈T𝑑,𝑛

𝜓𝑛 (𝑥). (3.4.26)
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By [48, Theorem 1], for 𝛽 > 𝛽c the fraction on the right hand side converges a.s. to a (random)
positive number as 𝑛→∞. Hence, the claim in (3.4.22) follows if we show that

∑
𝑥∈T𝑑,𝑛

𝜓𝑛 (𝑥) ≥��T𝑑,𝑛��1−𝑜(1) a.s. as 𝑛→∞. For any 𝑠 > 0 and 𝑞 ≥ 1 we have

P[
∑︁
𝑥∈T𝑑,𝑛

𝜓𝑛 (𝑥) ≤ 𝑠
��T𝑑,𝑛��] = P[( 1��T𝑑,𝑛�� ∑︁

𝑥∈T𝑑,𝑛

𝜓𝑛 (𝑥))−𝑞 ≥ 𝑠−𝑞]

≤ 𝑠𝑞E[( 1��T𝑑,𝑛�� ∑︁
𝑥∈T𝑑,𝑛

𝜓𝑛 (𝑥))−𝑞]

≤ 𝑠𝑞 1��T𝑑,𝑛�� ∑︁
𝑥∈T𝑑,𝑛

E[𝜓𝑛 (𝑥)−𝑞]

= 𝑠𝑞
1��T𝑑,𝑛�� ∑︁

𝑥∈T𝑑,𝑛

E[𝜓𝑛 (𝑥)1+𝑞],

(3.4.27)

where in the last line we used the reflection property of the 𝑡-field (see Lemma 3.8.1). Subject
to the assumption that (3.4.21) holds true, we may choose 𝑞 = 1 and 𝑠 = 𝑛−2 in (3.4.27). An
application of the Borel-Cantelli lemma then yields that

∑
𝑥∈T𝑑,𝑛

𝜓𝑛 (𝑥) ≥
��T𝑑,𝑛��1−𝑜(1) a.s. as

𝑛→∞. Together with (3.4.25) and (3.4.26), this implies (3.4.22). □
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3.5 Results for the H2|2-Model

3.5.1 Asymptotics for the H2|2-Model as 𝛽↘ 𝛽c (Proof of Theorem 3.1.5)

Proof of Theorem 3.1.5. By Theorem 3.1.2 it suffices to show that

⟨𝑥2
0⟩
+
𝛽 = lim

ℎ↘0
lim
𝑛→∞
⟨𝑥2

0⟩𝛽;ℎ,T𝑑,𝑛
= E𝛽 [𝐿0

∞] . (3.5.1)

For this, we use the H2|2-Dynkin isomorphism (Theorem 3.2.1):

⟨𝑥2
0⟩𝛽;ℎ,T𝑑,𝑛

=

∞∫
0

d𝑡E𝛽;T𝑑,𝑛

[
𝑒−ℎ𝑡 1𝑋𝑡=0

]
, (3.5.2)

where, subject to E𝛽;T𝑑,𝑛
, (𝑋𝑡)𝑡≥0 is a VRJP on T𝑑,𝑛 started at 0. Coupling the VRJP on T𝑑,𝑛

with a VRJP on the infinite tree T𝑑 up to the time they first visit the leaves of T𝑑,𝑛, we get��E𝛽;T𝑑,𝑛
[1𝑋𝑡=0] −E𝛽;T𝑑

[1𝑋𝑡 = 0]
�� ≤ P𝛽;T𝑑

[𝑇𝑛 ≤ 𝑡], (3.5.3)

with 𝑇𝑛 being the VRJP’s hitting time of 𝜕T𝑑,𝑛 = {𝑥 ∈ T𝑑,𝑛 : |𝑥 | = 𝑛}. By definition of the VRJP,
the time it takes to reach 𝜕T𝑑,𝑛 is stochastically lower bounded by an exponential random
variable of rate 𝑑𝛽/𝑛. Consequently, the right hand side of (3.5.3) converges to zero as 𝑛→∞.
By this observation and the monotone convergence theorem we have

⟨𝑥2
0⟩
+
𝛽 = lim

ℎ↘0

∞∫
0

d𝑡 𝑒−ℎ𝑡E𝛽;T𝑑

[
1𝑋𝑡=0

]
=

∞∫
0

d𝑡E𝛽;T𝑑

[
1𝑋𝑡=0

]
= E𝛽;T𝑑

[𝐿0
∞], (3.5.4)

which proves the claim. □

3.5.2 Intermediate Phase for the H2|2-Model (Proof of Theorem 3.1.6)

In this section, we want to prove Theorem 3.1.6 on the intermediate phase of the H2|2-model.
We will make use of the STZ-Anderson model, as defined in Definition 3.1.8, making use of its
restriction properties as discussed in [25, 84].

The proof consists of three parts: First we evaluate the quantity on the left hand side of
(3.1.21) on a graph consisting of a single vertex (and a coupling to a ghost vertex). Then we
reduce the actual quantity in (3.1.21) onto the case of a single vertex with a random effective
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magnetic field ℎeff . As ℎ↘ 0, the law of ℎeff can be expressed in terms of the 𝑡-field and we
can deduce Theorem 3.1.6 from Theorem 3.1.4 on the VRJP’s multifractality.

Lemma 3.5.1: Consider the H2|2-model on a single vertex 0 with magnetic field ℎ > 0. For
𝜂 ∈ (0,1) we have

⟨𝑧0 |𝑥0 |−𝜂⟩ℎ;{0} = ℎ
𝜂 ×𝑔𝜂 (ℎ) (3.5.5)

with
𝑔𝜂 (ℎ) :=

1
𝜋
𝑒ℎ (2ℎ) (1−𝜂)/2 Γ( 12 −

𝜂

2 )𝐾(1−𝜂)/2(ℎ). (3.5.6)

In particular

𝑐𝜂 :=
1
𝜋

2−𝜂 Γ( 12 −
𝜂

2 )
2 = lim

ℎ↘0
𝑔𝜂 (ℎ) (3.5.7)

Proof. For convenience, lets write ⟨·⟩ = ⟨·⟩ℎ;{0}. By 𝑒𝑡0 = 𝑧0 + 𝑥0 and 𝑦0 = 𝑠0𝑒
𝑡0 , see (3.2.12),

we have

⟨𝑧0 |𝑥0 |−𝜂⟩ = ⟨𝑧0 |𝑦0 |−𝜂⟩ = ⟨(𝑒𝑡0 + 𝑥0) |𝑦0 |−𝜂⟩ = ⟨𝑒𝑡0 |𝑦0 |−𝜂⟩ = ⟨𝑒𝑡0 |𝑠0 |−𝜂𝑒−𝜂𝑡0⟩
= ⟨𝑒(1−𝜂)𝑡0 |𝑠0 |−𝜂⟩.

(3.5.8)

The last line can be interpreted in purely probabilistic terms: 𝑡0 follows the law of a 𝑡-field
increment with inverse temperature ℎ > 0 and conditionally on 𝑡0, 𝑠0 is a Gaussian random
variable with variance 𝑒−𝑡0/ℎ. Consequently,

E[|𝑠0 |−𝜂 |𝑡0] =
√︂
ℎ𝑒𝑡0

2𝜋

∫ +∞

−∞
d𝑠 |𝑠 |−𝜂𝑒−ℎ𝑒𝑡0 𝑠2/2

= (ℎ𝑒𝑡0)𝜂/2 1
√

2𝜋

∫ +∞

−∞
d𝑥 |𝑥 |−𝜂𝑒−𝑥2/2

= (ℎ𝑒𝑡0)𝜂/2 2−𝜂/2
√
𝜋

Γ( 12 −
𝜂

2 ).

(3.5.9)

With (3.5.8) we obtain

⟨𝑧0 |𝑥0 |−𝜂⟩ = ℎ𝜂/2
2−𝜂/2
√
𝜋

Γ( 12 −
𝜂

2 )Eℎ [𝑒
(1−𝜂/2)𝑇 ], (3.5.10)

where 𝑇 denotes a 𝑡-field increment at inverse temperature ℎ. Expressing the exponential
moments of 𝑇 in terms of the modified Bessel function of second kind 𝐾𝛼, as in (3.3.7), and
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using small-argument asymptotics for the latter, we obtain

Eℎ [𝑒(1−𝜂/2)𝑇 ] =
√

2ℎ𝑒ℎ
√
𝜋

𝐾(1−𝜂)/2(ℎ) ∼ ℎ𝜂/2×
2(1−𝜂)/2Γ( 12 −

𝜂

2 )√
2𝜋

as ℎ↘ 0. (3.5.11)

Inserting this into (3.5.10) yields the claim. □

Effective Weight. Before proceeding, we need to introduce the notion of effective weight for
the STZ-field: Consider an STZ-Anderson model 𝐻𝐵 as in 3.1.8 and suppose the underlying
graph 𝐺 = (𝑉,𝐸) is finite. Write 𝐺𝐵 = (𝐻𝐵)−1. Then, for 𝑖0, 𝑗0 ∈ 𝑉 , the effective weight
between these two vertices is defined by

𝛽eff
𝑖0 𝑗0

:=
𝐺𝐵 (𝑖0, 𝑗0)

𝐺𝐵 (𝑖0, 𝑖0)𝐺𝐵 ( 𝑗0, 𝑗0) −𝐺𝐵 (𝑖0, 𝑗0)2
. (3.5.12)

Another expression can be deduced using Schur’s complement: Write 𝑉0 = {𝑖0, 𝑗0} and 𝑉1 =

𝑉 \ {𝑖0, 𝑗0} and decompose 𝐻𝐵 as

𝐻𝐵 =
©­«
𝐻00 𝐻01

𝐻10 𝐻11

ª®¬, (3.5.13)

with 𝐻00 being the restriction of 𝐻𝐵 to entries with indices in 𝑉0 and analogously for the other
submatrices. By Schur’s decomposition we have

𝐺𝐵 |𝑉0 = 𝐻
−1
𝐵 |𝑉0

= (𝐻00−𝐻01𝐻
−1
11 𝐻10)−1

=

(
𝐵𝑖0 − [𝐻01𝐻

−1
11 𝐻10] (𝑖0, 𝑖0) −𝛽𝑖0 𝑗0 − [𝐻01𝐻

−1
11 𝐻10] (𝑖0, 𝑗0)

−𝛽 𝑗0𝑖0 − [𝐻01𝐻
−1
11 𝐻10] ( 𝑗0, 𝑖0) 𝐵 𝑗0 − [𝐻01𝐻

−1
11 𝐻10] ( 𝑗0, 𝑗0)

)−1

.

(3.5.14)

Note that (3.5.12) reads as 𝛽eff
𝑖0 𝑗0

= 𝐺𝐵 (𝑖0, 𝑗0)/det(𝐺𝐵 |𝑉0) = 𝐺𝐵 (𝑖0, 𝑗0) det( [𝐺𝐵 |𝑉0]−1). Hence
using the familiar formula for the inverse of a 2×2-matrix we get

𝛽eff
𝑖0 𝑗0

= 𝛽𝑖0 𝑗0 + [𝐻01𝐻
−1
11 𝐻10] (𝑖0, 𝑗0), (3.5.15)

which is measurable with respect to 𝐵 |𝑉1 . The relevance of the effective weight stems from the
following Lemma (see [25, Section 6])
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Lemma 3.5.2: For a finite graph 𝐺 = (𝑉,𝐸) with positive edge-weights {𝛽𝑖 𝑗 }𝑖 𝑗∈𝐸 and a
pinning vertex 𝑖0, consider the natural coupling of an STZ-field (𝐵𝑖)𝑖∈𝑉 and a 𝑡-field (𝑇𝑖)𝑖∈𝑉
(see Remark 3.2.10). For a vertex 𝑗0 ∈ 𝑉 \ {𝑖0} write 𝑉0 := {𝑖0, 𝑗0} and 𝑉1 :=𝑉 \ {𝑖0, 𝑗0}.

Then, conditionally on 𝐵|𝑉1 , the 𝑡-field 𝑇 |𝑉0 = (𝑇𝑖0 ,𝑇𝑗0) is distributed as a 𝑡-field on 𝑉0,
pinned at 𝑖0, with edge-weight given by 𝛽eff

𝑖0 𝑗0
= 𝛽eff

𝑖0 𝑗0
(𝐵 |𝑉1).

Moreover, the notion of effective weight and effective conductance are directly related:

Lemma 3.5.3 (Effective Conductance vs. Weight): Consider the setting of Lemma 3.5.2.
For 𝑗0 ∈ 𝑉 \ {𝑖0}, let 𝐶eff

𝑖0 𝑗0
denote the effective conductance between 𝑖0 and 𝑗0 in the 𝑡-field

environment {𝛽𝑖 𝑗𝑒𝑇𝑖+𝑇 𝑗 }𝑖 𝑗∈𝐸 . Then

𝐶eff
𝑖0 𝑗0

= 𝑒𝑇 𝑗0 𝛽eff
𝑖0 𝑗0
. (3.5.16)

This statement is proved in Appendix 3.8. In the following, we will come back to the setting of
the regular tree.

Reduction to Two Vertices on the Tree. We denote by T̃𝑑,𝑛 the graph obtained by adding
an additional ghost vertex 𝔤 connected to every vertex of the graph T𝑑,𝑛. For the H2|2-model
(and consequently the 𝑡-/𝑠-field) we refer to the model on T𝑑,𝑛 with magnetic field ℎ > 0 as the
model on T̃𝑑,𝑛, pinned at the ghost 𝔤, with weights 𝛽𝑥𝔤 = ℎ between the ghost and any other
vertex.

Lemma 3.5.4 (Effective Magnetic Field at the Origin): Consider the natural coupling of
𝑡-field, 𝑠-field and STZ-field on T̃𝑑,𝑛, at inverse temperature 𝛽 > 0 and with magnetic field
ℎ > 0, pinned at the ghost 𝔤. The random fields are denoted by 𝑇𝑥 , 𝑆𝑥 and 𝐵𝑥 , respectively
(𝑥 ∈ T̃𝑑,𝑛). Write 𝑉0 := {0,𝔤} and 𝑉1 := T̃𝑑,𝑛 \ {0,𝔤} and define 𝐻11 := 𝐻𝐵 |𝑉1 .

Conditionally on 𝐵 |𝑉1 , the 𝑡-/𝑠-field at the origin (𝑇0, 𝑆0) follows the law of a 𝑡-/𝑠-field on
{0,𝔤} with effective magnetic field

ℎeff := 𝛽eff
0𝔤 = ℎ+ ℎ𝛽

∑︁
𝑥,𝑦∈𝑉1:𝑦∼0

𝐻−1
11 (𝑦, 𝑥). (3.5.17)

Proof. By Lemma 3.5.2, conditionally on 𝐵 |𝑉1 , the 𝑡-field at the origin 𝑇0 has the law of a
𝑡-field increment at inverse temperature ℎeff . We claim that the analogous fact is true for the
joint measure of (𝑇0, 𝑆0).

Recall that, conditionally on {𝑇𝑥}, the law of {𝑆𝑥} is that of Gaussian free field, pinned at
𝔤, edge-weights given by the 𝑡-field environment {𝛽𝑖 𝑗𝑒𝑇𝑖+𝑇 𝑗 } over edges in T̃𝑑,𝑛 with 𝛽𝑥𝔤 = ℎ.
Let 𝐶eff

0𝔤 denote the effective conductance between the origin 0 and the ghost 𝔤 in the 𝑡-field
environment. Then, conditionally on {𝑇𝑥}, we have that 𝑆0 is a centred normal random
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variable with variance given by the effective resistance 1/𝐶eff
0𝔤 (see [23, Proposition 2.24]).

By Lemma 3.5.3 we have 𝐶eff
0𝔤 = 𝑒𝑇0𝛽eff

0𝔤 = 𝑒𝑇0ℎeff . To conclude, it suffices to note that ℎeff is
measurable with respect to 𝐵|𝑉1 . □

Lemma 3.5.5 (Law of Effective Magnetic Field as ℎ ↘ 0.): Consider the setting of
Lemma 3.5.4. Further consider a 𝑡-field {𝑇 (0)𝑥 } on T𝑑,𝑛, pinned at the origin, at the same
inverse temperature 𝛽. Then we have that

ℎeff

ℎ

law−→
∑︁
𝑥∈T𝑑,𝑛

𝑒𝑇
(0)
𝑥 as ℎ↘ 0. (3.5.18)

Proof. By (3.5.17) it suffices to show that

𝛽
∑︁

𝑦∈𝑉1 : 𝑦∼0
𝐻−1

11 (𝑦, 𝑥)
law−→ 𝑒𝑇

(0)
𝑥 as ℎ↘ 0. (3.5.19)

We start by decomposing the restriction of 𝐻𝐵 to T𝑑,𝑛, i.e. without the ghost vertex 𝔤, as follows

𝐻𝐵 |T𝑑,𝑛
=

©­«
𝐵0 −𝛽⊤0
−𝛽⊤0 𝐻11

ª®¬, (3.5.20)

where we write 𝛽0 = [𝛽1𝑦∼0]𝑦∈𝑉1 . By Schur’s complement we have

(𝐻𝐵 |T𝑑,𝑛
)−1 =

(
(𝐵0− 𝛽⊤0 𝐻

−1
11 𝛽0)−1 (𝐵0− 𝛽⊤0 𝐻

−1
11 𝛽0)−1𝛽⊤0 𝐻

−1
11

· · · · · ·

)
. (3.5.21)

As a consequence, for any 𝑥 ∈ 𝑉1

(𝐻𝐵 |T𝑑,𝑛
)−1(0, 𝑥)

(𝐻𝐵 |T𝑑,𝑛
)−1(0,0)

= (𝛽⊤0 𝐻
−1
11 ) (0, 𝑥) = 𝛽

∑︁
𝑦∈𝑉1 : 𝑦∼0

𝐻−1
11 (𝑦, 𝑥). (3.5.22)

We now note that as ℎ↘ 0 the law of 𝐵 |T𝑑,𝑛
converges to that of a STZ-field on T𝑑,𝑛, as can be

seen from (3.1.25). Consequently, by Proposition 3.2.9, the law of the left hand side in (3.5.22)
converges to that of 𝑒𝑇

(0)
𝑥 , which proves the claim. □

Proof of Theorem 3.1.6. Combining Lemma 3.5.1 and 3.5.4 we have

lim
ℎ↘0

ℎ−𝜂⟨𝑧0 |𝑥0 |−𝜂⟩𝛽,ℎ;T𝑑,𝑛
= lim
ℎ↘0

E𝛽,ℎ [
( ℎeff

ℎ

)𝜂
𝑔𝜂 (ℎeff)] (3.5.23)
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We note that by [25, Proposition 6.1.2] we have E[ℎeff] ≤ ℎ
��T𝑑,𝑛��. Hence, for any fixed 𝐶 > 0

we have ℎeff ≤ 𝐶 with probability 1− 𝑜(1) as ℎ↘ 0. Lemma 3.5.5 therefore implies

lim
ℎ↘0

ℎ−𝜂⟨𝑧0 |𝑥0 |−𝜂⟩𝛽,ℎ;T𝑑,𝑛
= 𝑐𝜂E𝛽 [

( ∑︁
𝑥∈T𝑑,𝑛

𝑒𝑇
(0)
𝑥

)𝜂
], (3.5.24)

with 𝑐𝜂 > 0 given in (3.5.7). Consequently, application of Lemma 3.4.1 and Theorem 3.1.4
concludes the proof. □

3.6 Appendix: Tail Bounds for the 𝑡-field increments.

In this section, we apply the Cramér-Chernoff method [85] to prove a doubly-exponential
lower tail-bound for sums of independent (negative) 𝑡-field increments. Consider the Fenchel-
Legendre dual of the 𝑡-field’s log-moment-generating function:

Ψ∗𝛽 (𝜏) = sup
𝜆≥0
(𝜆𝜏− logE𝛽 [𝑒−𝜆𝑇 ]). (3.6.1)

Lemma 3.6.1 (Lower Tail bound for sums of 𝑡-Field Increments): Let {𝑇𝑖}𝑖=1,...,𝑛 denote
independent random variables distributed according to the 𝑡-field increment measure Qinc

𝛽

(see Definition 3.2.12). For any 𝜏 > 0 we have

P𝛽 [
∑𝑛
𝑖=1𝑇𝑖 ≤ −𝑛𝜏] ≤ exp

[
−𝑛Ψ∗

𝛽
(𝜏)

]
, (3.6.2)

Moreover, Ψ∗
𝛽

is bounded from below as

Ψ∗𝛽 (𝜏) > sup
0<𝜌<1

[𝜌 𝛽𝑒
𝜏

2
− 𝛽(1−

√︁
1− 𝜌) + 1

2 log(1− 𝜌)]

≥ ( 38 𝛽𝑒
𝜏 − log[2𝑒𝛽/2]).

(3.6.3)

To prove this, we note that for a 𝑡-field increment 𝑇 , the random variable 𝑒±𝑇 follows a
(reciprocal) inverse Gaussian distribution. For completeness, recall that a random variable
𝑋 > 0 is said to follow an inverse Gaussian distribution, 𝑋 ∼ IG(𝜇, 𝛽), if it has density

𝑒𝛽/𝜇√︁
2𝜋/𝛽

𝑒
− 𝛽

2 (
𝑥

𝜇2 +
1
𝑥
) d𝑥
𝑥3/2 (3.6.4)
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over the positive real numbers. Similarly,𝑌 > 0 follows reciprocal inverse Gaussian distribution,
𝑌 ∼ RIG(𝜇, 𝛽), if it has density

𝑒𝛽/𝜇√︁
2𝜋/𝛽

𝑒
− 𝛽

2 (𝑦+
1

𝜇2𝑦
) d𝑦
√
𝑦

(3.6.5)

over the positive real numbers. With this convention, we have 𝑒𝑇 ∼ IG(1, 𝛽) and 𝑒−𝑇 ∼
RIG(1, 𝛽). Also recall the moment-generating functions (MGF):

E[𝑒𝜆𝑋] = 𝑒
𝛽

𝜇

(
1−
√

1−2𝜇2𝜆/𝛽
)

for 𝜆 < 𝛽/(2𝜇2),

E[𝑒𝜆𝑌 ] = 𝑒
𝛽

𝜇

(
1−
√

1−2𝜆/𝛽
)√︁

1−2𝜆/𝛽
for 𝜆 < 𝛽/2.

(3.6.6)

With this, we have everything we need:

Proof of Lemma 3.6.1. By Markov’s inequality one easily derives the Chernoff bound

P[𝑇 ≤ −𝜏] ≤ 𝑒−Ψ
∗
𝛽
(𝜏)
. (3.6.7)

Similarly, for independent 𝑡-field increments {𝑇𝑖} one obtains

P[∑𝑛
𝑖=1𝑇𝑖 ≤ −𝑛𝜏] ≤ 𝑒

−𝑛Ψ∗
𝛽
(𝜏)
. (3.6.8)

In the following, we establish lower bounds on Ψ∗
𝛽
. We start by bounding E𝛽 [𝑒−𝜆𝑡], using the

elementary inequality 𝑥𝜆 ≤ (𝜆/𝑒)𝜆𝑒𝑥 for 𝑥 > 0:

E[𝑒−𝜆𝑇 ] = 𝜌−𝜆E[(𝜌𝑒−𝑇 )𝜆]

≤
(
𝜆
𝜌𝑒

)𝜆
E[𝑒𝜌𝑒−𝑇 ],

(3.6.9)

with the right hand side being finite and explicit for 0 < 𝜌 < 𝛽/2 by the MGF for the reciprocal
inverse Gaussian distribution (3.6.6). Consequently, for any 𝜆, 𝜏 > 0 and 0 < 𝜌 < 𝛽/2 we have

𝜆𝜏− logE[𝑒−𝜆𝑇 ] ≥ 𝜆(𝜏− log(𝜆/𝜌) +1) − logE[𝑒𝜌𝑒−𝑇 ] . (3.6.10)

In 𝜆, the right hand side is maximised for 𝜆 = 𝜌𝑒𝜏, which yields

Ψ∗
𝛽
(𝜏) ≥ sup𝜌>0(𝜌𝑒𝜏 − logE[𝑒𝜌𝑒−𝑇 ]). (3.6.11)
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After inserting (3.6.6) and rescaling 𝜌 ↦→ 𝛽

2 𝜌, first bound in (3.6.3) follows. For the second
bound, one may simply choose 𝜌 = 3/4. □

3.7 Appendix: Uniform Gantert-Hu-Shi Asymptotics for 𝜏𝛽𝑥 :
Proof of Theorem 3.3.8

We will stay close to the original proof by Gantert, Hu ans Shi [75], but get rid of some of the
technical details as we only require a lower bound not a precise limit. Also note that Gantert et

al. prove their result for general branching random walks, whereas we only show the result for
a deterministic offspring distribution. A crucial technical ingredient to Gantert et al.’s proof is
their extension of Mogulskii’s Lemma (Lemma 3.3.6), which we also make use of.

Definition 3.7.1: Let 𝜌𝛽 (𝛿,𝑛) be the probability that there exists |𝑥 | = 𝑛 such that for all
𝑖 ∈ [𝑛], 𝜏𝑥𝑖 ≤ 𝛿𝑖.

Definition 3.7.2: Let 𝜏 = 𝜏𝛽 be a random variable distributed as the increment of {𝜏𝛽𝑥 }𝑥∈T𝑑
.

Let 𝑀𝛽 be such that P𝛽
(
𝜏 ≥ 𝑀𝛽

)
= 2/3 and let 𝑝𝑑 > 0 be the probability that a Galton-Watson

tree where the reproduction law is given by a binomial Bin(𝑑,2/3) survives. We now define
for any 𝛿 > 0 small enough and for any 𝑛 ∈ N the set 𝐺𝑛,𝛿 as follows:

𝐺𝑛,𝛿 := {|𝑥 | = 𝑛 such that 𝜏𝑥𝑖 ≤
1
2
𝛿𝑖,∀𝑖 ∈ [(1− 𝛿/(2𝑀𝛽)𝑛] and

for all
(
1− 𝛿

2𝑀𝛽

)
𝑛+1 ≤ 𝑘 ≤ 𝑛, 𝜏𝑥𝑘 − 𝜏𝑥𝑘−1 ≤ 𝑀𝛽}.

(3.7.1)

The idea is that if 𝐺𝑛,𝛿 is not empty, it means that there is a vertex 𝑥 such that |𝑥 | = 𝑛 and
∀𝑖 ∈ [𝑛], 𝜏𝑥𝑖 ≤ 𝛿𝑖. Then started at all the vertices of 𝐺𝑛,𝛿 we can see if the corresponding sets
𝐺𝑛,𝛿 are not empty. This allows us to create a Galton-Watson tree. The exact definition of 𝐺𝑛,𝛿

is chosen to ensure that if it is not empty it contains many vertices. In turn this means that if
the Galton-Watson tree we construct is not empty then it is infinite with high probability. To
compute everything precisely we will use 3.3.6 but first we need a preliminary result. The
following results allows us to show that if 𝐺𝑛,𝛿 is not empty then with high probability it has
many vertices.

Lemma 3.7.3 (Lemma 1 of [86]): Let (𝑍𝑛)𝑛∈N be a supercritical Galton Watson tree. There
exists 𝜂 > 1 such that:

P[𝑍𝑛 < 𝜂𝑛] = P[𝑍 is finite] + 𝑜(𝜂−𝑛). (3.7.2)
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Corollary 3.7.4: Let (𝑍𝑛)𝑛∈N be a supercritical Galton Watson tree. There exists 𝜂 > 1 such
that:

P[1 ≤ 𝑍𝑛 ≤ 𝜂𝑛] = 𝑜(𝜂−𝑛). (3.7.3)

Proof. The Galton-Watson tree conditioned on dying is a sub-critical Galton Watson tree and
thus the probability that it survives up to time 𝑛 decreases exponentially in 𝑛. This coupled
with 3.7.3 gives the desired result. □

Now the goal is to give a lower bound on the probability that 𝐺𝑛,𝛿 is not empty. First we express
this in terms of 𝜌𝛽.

Lemma 3.7.5 ([75, Lemma 4.3]): Let 𝛿 > 0. We have:

P𝛽 [𝐺𝑛,𝛿 ≠ ∅] ≥ 𝑝𝑑𝜌𝛽 (𝛿/2, 𝑛). (3.7.4)

Proof. Let 𝐿 :=
⌊(

1− 𝛿
2𝑀𝛽

)
𝑛

⌋
.

P𝛽 [𝐺𝑛,𝛿 ≠ ∅] =P𝛽
[
∃|𝑥 | = 𝐿 such that 𝜏𝑥𝑖 ≤

1
2
𝛿𝑖,∀𝑖 ∈ [𝐿]

]
. . .

. . .×P𝛽
[
∃|𝑥 | = 𝑛− 𝐿 such that max

1≤𝑘≤𝑛−𝐿
𝜏𝑥𝑖 − 𝜏𝑥𝑖−1 ≤ 𝑀𝛽

]
≥𝜌𝛽 (𝛿/2, 𝑛)𝑝𝑑 .

(3.7.5)

□

Once we have this lower bound, we need to show that with high probability if |𝐺𝑛,𝛿 | is not
empty then it has many children with high probability.

Lemma 3.7.6: Let 𝐿 :=
⌊(

1− 𝛿
2𝑀𝛽

)
𝑛

⌋
. There exists 𝜂 > 1 such that for 𝑛− 𝐿 large enough

(this only depends on 𝑑):

P𝛽
[
1 ≤ |𝐺𝑛,𝛿 | ≤ 𝜂𝑛−𝐿

��|𝐺𝑛,𝛿 | ≥ 1
]
= 𝑜

( 1
𝜂𝑛−𝐿

)
. (3.7.6)

Proof. If |𝐺𝑛,𝛿 | ≥ 1, it means that there exists 𝑥 such that |𝑥 | = 𝑛 and

𝜏𝑥𝑖 ≤ 𝛼𝛿𝑖,∀𝑖 ∈ [𝐿] and max
𝐿+1≤𝑘≤𝑛

𝜏𝑥𝑖 − 𝜏𝑥𝑖−1 ≤ 𝑀. (3.7.7)

Now, if we restrict 𝐺𝑛,𝛿 to the descendant of 𝑥𝐿 , we get a Galton-Watson tree conditioned to
survive up to time 𝑛− 𝐿 and where the reproduction law is a binomial 𝐵

(
𝑛,P𝛽 (𝜏 ≤ 𝑀𝛽)

)
which

does not depend on 𝛽. Then, by 3.7.4, we have the desired result. □
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What is left is to give a lower bound 𝜌. The goal of the next lemmata is to give a lower bound
of 𝜌 by terms for which we can apply Lemma 3.3.6.

Lemma 3.7.7 (Lemma 4.5 of [75]): For any 𝑛 ≥ 1 and any 𝑖 ∈ [𝑛], let 𝐼𝑖,𝑛 ⊂ R be a Borel set.
We have:

P𝛽
[
∃|𝑥 | = 𝑛 such that ∀𝑖 ∈ [𝑛], 𝜏𝑥𝑖 ∈ 𝐼𝑖,𝑛

]
≥
E𝛽

[
𝑒𝑆𝑛1∀𝑖∈[𝑛],𝑆𝑖∈𝐼𝑖,𝑛

]
1+ (𝑑 −1)∑𝑛

𝑗=1 ℎ 𝑗 ,𝑛
, (3.7.8)

where ℎ 𝑗 ,𝑛 is defined by:

ℎ 𝑗 ,𝑛 := sup
𝑢∈𝐼 𝑗 ,𝑛

E𝛽
[
𝑒𝑆𝑛− 𝑗1∀𝑙∈[𝑛− 𝑗],𝑆𝑙+𝑢∈𝐼𝑙+ 𝑗 ,𝑛

]
. (3.7.9)

Lemma 3.7.8: For any 𝛽 > 𝛽𝑐 we have:

𝜌𝛽 (𝑛−2/3, 𝑛) ≥
P𝛽

[
𝑖
𝑛
−1 ≤ 𝑆𝑖

𝑛1/3 ≤ 𝑖
𝑛
∀𝑖 ∈ [𝑛]

]
1+ (𝑑 −1)𝑛𝑒2𝑛1/3 . (3.7.10)

Proof. Let 𝐼𝑖,𝑛 :=
[
𝑖

𝑛2/3 −𝑛1/3, 𝑖

𝑛2/3

]
. We have:

𝜌𝛽 (𝑛−2/3, 𝑛) ≥P𝛽 [∃|𝑥 | = 𝑛 such that 𝜏𝑥𝑖 ∈ 𝐼𝑖,𝑛∀𝑖 ∈ [𝑛]]

≥
E𝛽

[
𝑒𝑆𝑛1∀𝑖∈[𝑛],𝑆𝑖∈𝐼𝑖,𝑛

]
1+ (𝑑 −1)∑𝑛

𝑗=1 ℎ 𝑗 ,𝑛
by lemma 3.7.7,

(3.7.11)

where ℎ 𝑗 ,𝑛 is as in lemma 3.7.7. The numerator of 3.7.11 can be bounded as follows:

E𝛽
[
𝑒𝑆𝑛1∀𝑖∈[𝑛],𝑆𝑖∈𝐼𝑖,𝑛

]
≥ 𝑒(1−1)𝑛1/3

P
[
∀𝑖 ∈ [𝑛], 𝑆𝑖 ∈ 𝐼𝑖,𝑛

]
. (3.7.12)

As for the denominator, we have:

ℎ 𝑗 ,𝑛 = sup
𝑢∈𝐼 𝑗 ,𝑛

E
[
𝑒𝑆𝑛− 𝑗1∀𝑖∈[𝑛− 𝑗],𝑆𝑖∈[(𝑖+ 𝑗)/𝑛2/3−𝜆𝑛1/3−𝑢,(𝑖+ 𝑗)/𝑛2/3−𝑢]

]
≤𝑒(𝑖+ 𝑗)/𝑛2/3− 𝑗/𝑛2/3+𝑛1/3

≤𝑒2𝑛1/3
.

(3.7.13)

From this we get the desired result.
□

Now we have everything we need to prove the result we want.
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Proof of Theorem 3.3.8. Given the tree T𝑑 and the 𝜏-field on it we create the new tree T̃ as
follows: we look at all the vertices 𝑥 at distance 𝑛 of the origin, and we only keep those that are
in 𝐺𝑛,𝛿. Then we look at the trees started at those vertices and we apply the same procedure
recursively. The tree we obtain is thus a Galton-Watson tree with reproduction law given by the
law of |𝐺𝑛,𝛿 |. Furthermore, by definition of 𝐺𝑛,𝛿, if T̃ is infinite then there exists an infinite
path 𝛾 in T𝑑 such that for all 𝑖 ∈ N, 𝜏𝛾𝑖 ≤ 𝛿𝑖. Now we just need to give a lower bound on the
probability that T̃ is infinite. By the lemmata 3.7.7 and 3.7.8, we have by taking 𝛿𝑛 := 2𝑛−2/3:

P𝛽 [𝐺𝑛,𝛿𝑛 ≠ ∅] ≥ 𝑝𝑑
P𝛽

[
𝑖
𝑛
−1 ≤ 𝑆𝑖

𝑛1/3 ≤ 𝑖
𝑛
∀𝑖 ∈ [𝑛]

]
1+ (𝑑 −1)𝑛𝑒2𝑛1/3 . (3.7.14)

Now we want to apply 3.3.6 but unfortunately we are not exactly in the conditions of the
theorem, we would need 𝑆𝑖

𝑛1/3 ≤ 𝑖
𝑛
+ something. To get that, we say that there exists some

constant 𝑐 such that uniformly on some interval [𝛽𝑐, 𝛽𝑐 + 𝑎] we have:

P𝛽 [𝑆1 ∈ (−2,−1)] ≥ 𝑐. (3.7.15)

Therefore for any 𝛿 > 0:

P𝛽 [∀𝑖 ∈ [𝛿𝑛1/3] (𝑆𝑖 − 𝑆𝑖−1) ∈ (−2,−1)] ≥ 𝑒log(𝑐)𝛿𝑛1/3
. (3.7.16)

Now, we get for any 𝜖 > 0 small enough:

P𝛽

[
𝑖

𝑛
−1 ≤ 𝑆𝑖

𝑛1/3 ≤
𝑖

𝑛
∀𝑖 ∈ [𝑛]

]
≥P𝛽

[
∀𝑖 ∈ [𝜖𝑛1/3], (𝑆𝑖 − 𝑆𝑖−1) ∈ (−2,−1)

]
P𝛽

[
𝑖

𝑛
−1+2𝜖 ≤ 𝑆𝑖

𝑛1/3 ≤
𝑖

𝑛
+ 𝜖 ∀𝑖 ∈ [𝑛− 𝜖𝑛1/3]

]
≥𝑒log(𝑐)𝜖𝑛1/3

P𝛽

[
𝑖

𝑛
−1+2𝜖 ≤ 𝑆𝑖

𝑛1/3 ≤
𝑖

𝑛
+ 𝜖 ∀𝑖 ∈ [𝑛]

]
.

(3.7.17)
Finally we satisfy the condition of our lemma 3.3.6. We have by lemma 3.3.6 that for any
interval of the form [𝛽𝑐, 𝛽𝑐 + 𝑎] there exists some explicit constant 𝐶𝑎 such that :

limsup
𝑛→∞

sup
𝛽∈[𝛽𝑐 ,𝛽𝑐+𝑎]

𝑛−1/3 logP𝛽
[
𝑖

𝑛
−1+2𝜖 ≤ 𝑆𝑖

𝑛1/3 ≤
𝑖

𝑛
+ 𝜖 ∀𝑖 ∈ [𝑛]

]
≤ 𝐶𝛿 . (3.7.18)
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Define 𝑓𝛽 by 𝑓𝛽 := E𝛽 [𝑠 |𝐺𝑛, 𝛿 (𝛼) |] and let 𝑞𝛽,𝑛 be the extinction probability. We have 𝑞𝛽,𝑛 =
𝑓𝛽 (𝛽,𝑛). For any 𝑟 < 𝑞𝛽,𝑛 we have:

𝑞𝛽,𝑛 = 𝑓𝛽 (0) +
∫ 𝑞𝛽,𝑛

0
𝑓
′
𝛽 (𝑠)d𝑠 = 𝑓𝛽 (0) +

∫ 𝑞𝛽,𝑛−𝑟

0
𝑓
′
𝛽 (𝑠)d𝑠+

∫ 𝑞𝛽,𝑛

𝑞𝛽,𝑛−𝑟
𝑓
′
𝛽 (𝑠)d𝑠. (3.7.19)

Now, using that 𝑓𝛽 is convex and therefore 𝑓
′
𝛽

is non-decreasing, we get:

𝑞𝛽,𝑛 ≤ 𝑓𝛽 (0) + (𝑞𝛽,𝑛− 𝑟) 𝑓
′
𝛽 (𝑞𝛽,𝑛− 𝑟) + 𝑟 𝑓

′
𝛽 (𝑞𝛽,𝑛) ≤ 𝑓𝛽 (0) + (1− 𝑟) 𝑓

′
𝛽 (1− 𝑟) + 𝑟. (3.7.20)

Now, 𝑓𝛽 (0) = P𝛽 [𝐺𝑛,𝛿𝑛 = ∅] and 𝑓
′
𝛽
(1− 𝑟) = E𝛽 [|𝐺𝑛,𝛿𝑛 | (1− 𝑟) |𝐺𝑛, 𝛿𝑛 |−1] which is bounded from

above by 1
1−𝑟E𝛽 ( |𝐺𝑛,𝛿𝑛 |𝑒−𝑟 |𝐺𝑛, 𝛿𝑛 |). Now if we take 𝑟 < 1/2 we get:

1− 𝑞𝛽,𝑛 ≥ P𝛽 [𝐺𝑛,𝛿𝑛 ≠ ∅] −2E𝛽 [|𝐺𝑛,𝛿𝑛 |𝑒−𝑟 |𝐺𝑛, 𝛿𝑛 |] − 𝑟. (3.7.21)

From this we get:

1− 𝑞𝛽,𝑛 ≥P𝛽 [𝐺𝑛,𝛿𝑛 ≠ ∅] −
2
𝑟2P𝛽

[
1 ≤ |𝐺𝑛,𝛿𝑛 | ≤ 𝑟2] − 2𝑒−1/𝑟

𝑟2 − 𝑟

≥P𝛽 [𝐺𝑛,𝛿𝑛 ≠ ∅] −
2
𝑟2P𝛽

[
1 ≤ |𝐺𝑛,𝛿 | ≤ 𝑟2] −2𝑟 for 𝑟 small enough.

(3.7.22)

By taking 𝑟 = 𝜂−𝑛 we get that for 𝑛 large enough, for some constant 𝐶 > 0, for any 𝛽 ∈
[𝛽𝑐, 𝛽𝑐 + 𝑎]:

1− 𝑞𝛽,𝑛 ≥ 𝑒−𝐶𝑛
1/3
. (3.7.23)

Then by noticing that 𝑛 = (2/𝛿𝑛)3/2 we get the desired result. □

3.8 Appendix: Effective Conductance and Effective Weight

Before starting with the proof of Lemma 3.5.3, we would like to remind the reader of the
definition of the effective weight (3.5.12) as well as the discussion following it.

Proof of Lemma 3.5.3. Let 𝐷𝑇 denote the graph Laplacian on 𝐺 with weights given by the
𝑡-field environment {𝛽𝑖 𝑗𝑒𝑇𝑖+𝑇 𝑗 }𝑖 𝑗∈𝐸 . The effective resistance (i.e. inverse effective conductance)
can be expressed as

1/𝐶eff
𝑖0 𝑗0

= (−𝐷𝑇 |𝑉\{𝑖0})−1( 𝑗0, 𝑗0), (3.8.1)
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where 𝐷𝑇 |𝑉\{𝑖0} denotes 𝐷𝑇 with deletion of the row and column corresponding to 𝑖0. Re-
call that on 𝑉 \ {𝑖0} we have 𝐵𝑥 =

∑
𝑦∼𝑥 𝛽𝑥𝑦𝑒

𝑇𝑦−𝑇𝑥 . Defining the diagonal matrices 𝐿𝑇 =

diag({𝑒𝑇𝑥 }𝑥∈𝑇\{𝑖0}), one may check that

−𝐷𝑇 |𝑉\{𝑖0} = 𝐿𝑇 𝐻𝐵 |𝑉\{𝑖0} 𝐿𝑇 . (3.8.2)

Inserting this into (3.8.1) yields

𝑒−𝑇 𝑗0𝐶eff
𝑖0 𝑗0

=
𝑒𝑇 𝑗0

(𝐻𝐵 |𝑉\{𝑖0})−1( 𝑗0, 𝑗0)
=

𝐻−1
𝐵
(𝑖0, 𝑗0)

𝐻−1
𝐵
(𝑖0, 𝑖0) (𝐻𝐵 |𝑉\{𝑖0})−1( 𝑗0, 𝑗0)

(3.8.3)

Using (3.5.14) and the familiar expression for the inverse of a 2x2-matrix, we have

𝐻−1
𝐵
(𝑖0, 𝑗0)

𝐻−1
𝐵
(𝑖0, 𝑖0)

=
𝛽𝑖0 𝑗0 + [𝐻01𝐻

−1
11 𝐻10] (𝑖0, 𝑗0)

𝐵 𝑗0 − [𝐻01𝐻
−1
11 𝐻10] ( 𝑗0, 𝑗0)

. (3.8.4)

Note that the numerator equals 𝛽eff
𝑖0 𝑗0

. On the other hand, using a Schur decomposition for
𝐻𝐵 |𝑉\{𝑖0}, decomposing 𝑉 \ {𝑖0} into { 𝑗0} and 𝑉1, one may compute

(𝐻𝐵 |𝑉\{𝑖0})−1( 𝑗0, 𝑗0) = 1/(𝐵 𝑗0 − [𝐻01𝐻
−1
11 𝐻10] ( 𝑗0, 𝑗0)). (3.8.5)

Inserting (3.8.4) and (3.8.5) into (3.8.3) we obtain

𝑒−𝑇 𝑗0𝐶eff
𝑖0 𝑗0

= 𝛽𝑖0 𝑗0 + [𝐻01𝐻
−1
11 𝐻10] (𝑖0, 𝑗0) = 𝛽eff

𝑖0 𝑗0
, (3.8.6)

which proves the claim. □

Lemma 3.8.1 (Reflection Property of the 𝑡-Field): Consider a finite graph 𝐺 = (𝑉,𝐸) with
positive edge weights {𝛽𝑖 𝑗 }𝑖 𝑗∈𝐸 . Let {𝑇𝑥}𝑥∈𝑉 denote a 𝑡-field on 𝐺 with weights {𝛽𝑖 𝑗 }, pinned
at some vertex 𝑖0. For any 𝑞 ∈ R and 𝑥 ∈ 𝑉 we have

E[𝑒𝑞𝑇𝑥 ] = E[𝑒(
1
2−𝑞)𝑇𝑥 ] . (3.8.7)

Proof. On a graph with two vertices, the claim follows from the density of the 𝑡-field increment
measure (Definition 3.2.12). On a larger graph, we consider the natural coupling of the
STZ-field {𝐵𝑥}𝑥∈𝑉 and the 𝑡-field. By [25, Section 6.1] we know that conditionally on 𝐵𝑦 for
𝑦 ∈𝑉 \{𝑖0, 𝑥}, the 𝑡-field on {𝑖0, 𝑥} follows the law of a 𝑡-field on this reduced graph (still pinned
at 𝑖0) with edge-weights given by an effective weight 𝛽𝑖0𝑥 (the latter being measurable with
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respect to the STZ-field outside {𝑖0, 𝑥}). Consequently, the claim follows from the statement on
two vertices. □



Chapter 4

More on the H2|2-model on trees

4.1 Tree-Recursion for the H2|2-Model

In [TREE] most of our insight into the H2|2-model and the VRJP came from analysis of the 𝑡-
field, which is simply a marginal of the H2|2-model in horospherical coordinates. Alternatively,
following a technique that is more common in the physics literature, one can exploit the
recursive structure of regular trees to produce consistency equations for, say, the single-site
marginal of the H2|2-model. Such an approach to “solving” the model has been successful
for other systems, such as the Ising model [87]. Zirnbauer [36] followed this path in a (non-
rigorous) treatment of Efetov’s model on the regular tree, predicting the model’s near-critical
behaviour, analogous to Theorem 3.1.5. Mirlin and Gruzberg argued that Zirnbauer’s reasoning
should translate to the H2|2-model [51] and in particular imply Theorem 3.1.5. Relying on
the recursive approach, Mirlin, Tikhonov and Sonner [40, 41] have predicted an intermediate
multifractal phase for Efetov’s model on finite regular trees. Their analysis relies on a partially
heuristic study of travelling wave solutions to the recursion equations.

The goal of this section is to provide details on the recursive approach to the H2|2-model. We
start by stating a recursion relation for the marginal “density” of the spin at the origin u0 on
T𝑑,𝑛. This results in an integral equation (4.1.2) for superfunctions over H2|2. We show that,
after passing to polar coordinates on H2|2, the problem reduces to the study of an integral for
functions of a single real variable. In the finite-volume limit (taking a scaling limit in ℎ↘ 0
before passing to infinite volume), the recursion equation further simplifies and we show that
its solution can be given explicitly in terms of the 𝑡-field (Proposition 4.1.5). Furthermore, our
results on the intermediate phase for the VRJP (Theorem 3.1.3) imply a certain travelling-wave
behaviour of the solutions. This provides rigorous evidence for behaviour analogous to such
predicted by Mirlin, Tikhonov and Sonner for Efetov’s Model [40, 41].
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n = 0 1 2 3

Figure 4.1: Illustration of T∗
𝑑,𝑛

for 𝑑 = 2 and various values of 𝑛. The topmost vertex is
considered the root and denoted by 0.

4.1.1 A Supersymmetric Recursion Relation for the H2|2-Model

In this and the following sections, we consider the H2|2-model on T∗
𝑑,𝑛

, the rooted (𝑑+1)-regular
tree of depth 𝑛 ≥ 0 with an additional “dangling edge”, as illustrated in Figure 4.1. Note that
the root 0 denotes the topmost vertex in Figure 4.1.

Consider the H2|2-model on T★
𝑑,𝑛

with magnetic field ℎ > 0. We are interested in observables at
the origin 0. The expectation of some observable 𝐹 (u0) for some superfunction 𝐹 ∈ 𝐶∞(H2|2)
can be expressed as

⟨𝐹 (u0)⟩
T★
𝑑,𝑛

𝛽,ℎ
=

∫
(H2 |2)T

★
𝑑,𝑛

∏
𝑖∈T★

𝑑,𝑛

du𝑖 𝐹 (u0) 𝑒𝛽
∑

𝑖 𝑗 (u𝑖 ·u 𝑗+1)−ℎ
∑

𝑖 (𝑧𝑖−1)

=

∫
H2 |2

du𝐹 (u) 𝑓𝑛 (u)𝑒−ℎ(𝑧−1) ,

(4.1.1)

where 𝑓𝑛 = 𝑓𝑛;𝛽,ℎ is the, up to a magnetic field factor, the marginal “density” of u0 after
integrating out all spins away from the origin. In the following we will typically suppress the
dependency of 𝑓𝑛 on 𝛽 and ℎ.

Proposition 4.1.1: The marginal functions 𝑓𝑛 = 𝑓𝑛;𝛽,ℎ ∈ 𝐶∞(H2|2), defined by the relation
(4.1.1), satisfy the recursion relation

𝑓𝑛+1(u′) =
∫
H2 |2

du𝑒𝛽(u·u
′+1)−ℎ(𝑧−1) 𝑓 𝑑𝑛 (u) with 𝑓0(u) = 1. (4.1.2)

Proof. For 𝑛 = 0 the graph T∗
𝑑,𝑛

is the singleton {0}. In that case, 𝑓0(u) = 1 is trivial. For 𝑛 ≥ 1,
consider the unique neighbour 0̄ of the root 0. From 0̄ we have 𝑑 outgoing copies of T∗

𝑑,𝑛−1 and
integrating out all spins on these (sub)trees yields 𝑑 factors of 𝑓𝑛−1(u0̄). There is an additional
factor 𝑒−ℎ(𝑧0̄−1) for the magnetic field at 0̄. Together, this implies the claim. □

In previous work by Efetov and Zirnbauer, an analogous recursion for Efetov’s model has been
studied [36, 37, 88]. In their work, in particular for the study of the symmetry-broken phase,
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they considered fixed points of the recursion, which are formally obtained in the 𝑛→∞ limit:

𝑓 (u′) = lim
𝑛→∞

𝑓𝑛 (u′) =
∫
H2 |2

du𝑒𝛽(u·u
′+1)−ℎ(𝑧−1) 𝑓 𝑑 (u). (4.1.3)

Note that such a solution 𝑓 implicitly depends on 𝛽, ℎ. Observe that for vanishing magnetic
field ℎ = 0 the constant function 𝑓 ≡ 1 is always a solution, reflecting the global symmetry
under isometries of H2|2, i.e. the supergroup OSp(2,1|2). However, a non-zero magnetic field
ℎ > 0 breaks this symmetry, in particular the invariance under Lorentz boost transformations.
Spontaneous symmetry-breaking is said to occur if the solution 𝑓 ≡ 1 is unstable under the
perturbation by a magnetic field. Hence, the symmetry-broken phase is characterised by the
existence of a non-trivial fixed point as ℎ↘ 0, while in the disordered phase any fixed point
should converge to 𝑓 ≡ 1 as ℎ↘ 0.

While above observations give a neat characterisation for the occurrence of a symmetry-
breaking transition, mathematical justification for the study of the fixed point equation is not
entirely clear. In particular, since the 𝑓𝑛 are superfunctions over H2|2, it is not obvious in which
sense to take their limit as 𝑛→∞.

In order to put above reasoning on a more rigorous footing, we would like to get rid of the
fermionic degrees of freedom in (4.1.2). In fact, in the following we will rewrite (4.1.2) in
terms of polar coordinates, which will enable us to perform the integral over the fermionic and
angular degrees of freedom, reduce the equation onto an integral equation in a single radial
variable.

4.1.2 Polar Coordinates on H2|2.

Note that the integral operator in (4.1.2) is invariant under OSp(2,1|2)-transformations which
fix 𝑧, in other words under the stabiliser Stab(u(0)) =OSp(2|2) of the origin u(0) := (1,0,0,0,0) ∈
H2|2. This motivates the use of generalised polar coordinates on H2|2 in order to simplify the
recursion in (4.1.2). In order to define polar coordinates most easily, we consider the following
elements of the Lie super-algebra 𝔬𝔰𝔭(2,1|2):
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𝐻 :=

©­­­­­­­­­­«

0 1

1 0

0 0 0

0 0 0

0 0 0

ª®®®®®®®®®®¬
, 𝑋 :=

©­­­­­­­­­­«

0

0 1

−1 0

0 0

0 0

ª®®®®®®®®®®¬
𝑌1 :=

©­­­­­­­­­­«

0

0 0 0 1

0 0 0 0

1 0 0 0

0 0 0 0

ª®®®®®®®®®®¬
, 𝑌2 :=

©­­­­­­­­­­«

0

0 0 −1 0

0 0 0 0

0 0 0 0

1 0 0 0

ª®®®®®®®®®®¬

(4.1.4)

𝐻 and 𝑋 are even elements of 𝔬𝔰𝔭(2,1|2) and generate 𝑥𝑧-boosts and 𝑥𝑦-rotations, respectively.
𝑌1 and 𝑌2 are odd elements and generate supersymmetries between 𝑥 and the two fermionic
coordinates 𝜉,𝜂.

The following result is due to Zirnbauer and yields an explicit formula for the Grassmann
integral of a superfunction over H2|2 in terms of polar coordinates.

Theorem 4.1.2 (Polar Coordinates on H2|2 [20]): Let 𝐻, 𝑋,𝑌1,𝑌2 denote the elements of
𝔬𝔰𝔭(2,1|2) as defined in (4.1.4). Then the mapping

(𝑟, 𝜑,𝜓, 𝜓̄) ↦→ 𝑒𝜑𝑋𝑒𝜓𝑌1+𝜓̄𝑌2𝑒𝑟𝐻u(0) with 𝑟 > 0, 𝜑 ∈ [0,2𝜋) , 𝜓, 𝜓̄ Grassmann, (4.1.5)

gives a parametrisation of H2|2 \ {u(0)}. For any 𝑔 ∈ 𝐶∞c (H2|2) it holds that

∫
H2 |2

du𝑔(u) = 𝑔(u(0)) +
∞∫

0

d𝑟
sinh(𝑟)

2𝜋∫
0

d𝜑
2𝜋

𝜕𝜓̄𝜕𝜓 𝑔

(
𝑒𝜑𝑋𝑒𝜓𝑌1+𝜓̄𝑌2𝑒𝑟𝐻u(0)

)
. (4.1.6)

More explicitly, we have

u =

( 𝑧
𝑥
𝑦
𝜉
𝜂

)
=

©­­«
cosh(𝑟)

(1+𝜓𝜓̄) sinh(𝑟) cos(𝜑)
(1+𝜓𝜓̄) sinh(𝑟) sin(𝜑)

𝜓 sinh(𝑟)
𝜓̄ sinh(𝑟)

ª®®¬ = 𝑒𝜑𝑋𝑒𝜓𝑌1+𝜓̄𝑌2𝑒𝑟𝐻u(0) . (4.1.7)

For illustration, we compare this to polar coordinates for the usual hyperbolic plane H2, where
𝐻 and 𝑋 generate 𝑥𝑧-boosts and 𝑥𝑦-rotations, respectively. In that case, one would have, for
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any 𝑔 ∈ 𝐶∞c (H2) ∫
H2

du𝑔(u) =
∞∫

0

d𝑟 sinh(𝑟)
2𝜋∫

0

d𝜑
2𝜋

𝑔

(
𝑒𝜑𝑋𝑒𝑟𝐻u(0)

)
. (4.1.8)

The additional fermionic degrees of freedom in H2|2 modify the radial volume factor and intro-
duce less intuitive “angular” supersymmetry generators 𝑌1,𝑌2. The most important difference
however, is the appearance of the constant “boundary term” 𝑔(u(0)) in (4.1.6). This singular
contribution is due to a localisation phenomenon, which is unique to the supersymmetric case.

4.1.3 Reduced Recursion Relation in Polar Coordinates

In this subsection we rewrite the recursion (4.1.2) in terms of polar coordinates for H2|2 and
integrate out the angular variables (including the fermionic degrees of freedom) to obtain a
recursion for a function in one real coordinate.

Proposition 4.1.3 (Reduced Recursion in Polar Coordinates): For 𝛽, ℎ > 0, let 𝑓𝑛 (u) denote
the superfunctions over H2|2 recursively defined in (4.1.2). There exist smooth functions
𝑓 rad
𝑛 : [1,∞) → R such that

𝑓 rad
𝑛 (𝑧) = 𝑓 rad

𝑛 (
√︁

1+ 𝑥2 + 𝑦2−2𝜉𝜂) = 𝑓𝑛 (u), (4.1.9)

as superfunctions over H2|2, that is as elements of the superalgebra 𝐶∞(H2|2). For 𝜆 > 1 we
let 𝜇 = 𝜇(𝜆) =

√
𝜆2−1. That is, in terms of polar coordinates 𝜆 = cosh(𝑟) and 𝜇 = sinh(𝑟). In

the following, we let 𝜇 implicitly depend on 𝜆. Then, the 𝑓 rad
𝑛 satisfy, for 𝜆′ > 1,

𝑓 rad
𝑛+1(𝜆

′) = 𝑒−𝛽(𝜆′−1) +
∞∫

1

d𝜆
𝜇2 𝐿𝛽 (𝜆,𝜆

′)𝐷ℎ (𝜆) ( 𝑓 rad
𝑛 )𝑑 (𝜆) and 𝑓 rad

0 (𝜆
′) = 1 (4.1.10)

with the kernel and the symmetry-breaking term given respectively by

𝐿𝛽 (𝜆,𝜆′) = 𝛽𝜇𝜇′𝐼1(𝛽𝜇𝜇′)𝑒−𝛽(𝜆𝜆
′−1) and 𝐷ℎ (𝜆) = 𝑒−ℎ(𝜆−1) , (4.1.11)

with 𝐼1 denoting the modified Bessel function of first kind.

Proof. We start with a crucial observation: Formally, the integral operator in (4.1.2) is invariant
with respect to the reduced symmetry group 𝐾 = OSp(2|2) and moreover 𝑓0 ≡ 1 is 𝐾-invariant.
Hence, all 𝑓𝑛 are 𝐾-invariant. In other words, at least formally the 𝑓𝑛 should only depend on the
radial coordinate. In rigorous terms, 𝐾-invariance is defined in terms the action of its super-Lie
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algebra 𝔬𝔰𝔭(2|2) on 𝐶∞(H2|2). Namely the 𝑓𝑛 are 𝐾-invariant in the sense that

𝑅. 𝑓𝑛 (u) = 0 for 𝑅 ∈ 𝔬𝔰𝔭(2|2), 𝑛 ≥ 0, (4.1.12)

where the dot denotes the action of 𝑅 as a derivation. By Coulembier-Bie-Sommen [89,
Theorem 3] a function 𝑓𝑛, which is rotationally invariant in the sense of (4.1.12), can be
expressed as a function of the “radius” 𝑥2 + 𝑦2−2𝜉𝜂 = 𝑧2−1 and in particular as a function of 𝑧.
In other words, there exist 𝑓 rad

𝑛 as in (4.1.9). Hence, rewriting the recursion in (4.1.2) in polar
coordinates using Theorem 4.1.2, we obtain

𝑓 rad
𝑛+1(cosh𝑟′) = 𝑒−𝛽(cosh(𝑟 ′)−1) +

∞∫
0

d𝑟
sinh(𝑟)

2𝜋∫
0

d𝜑
2𝜋

𝜕𝜓̄𝜕𝜓 ( 𝑓 rad
𝑛 )𝑑 (cosh𝑟) × · · ·

· · · × exp[𝛽
(
[𝑒𝜑𝑋𝑒𝜓𝑌1+𝜓̄𝑌2𝑒𝑟𝐻𝑢(0)] · [𝑒𝑟

′𝐻𝑢(0)] +1
)
− ℎ(cosh(𝑟) −1)] .

(4.1.13)
By (4.1.7) the interaction term in the exponential equals

[𝑒𝜑𝑋𝑒𝜓𝑌1+𝜓̄𝑌2𝑒𝑟𝐻𝑢(0)] · [𝑒𝑟
′𝐻𝑢(0)]

=
©­«

cosh(𝑟)
(1+𝜓̄𝜓) sinh(𝑟) cos(𝜑)
(1+𝜓̄𝜓) sinh(𝑟) sin(𝜑)

0
0

ª®¬ · ©­«
cosh(𝑟 ′)
sinh(𝑟 ′)

0
0
0

ª®¬+ [odd terms]

= −cosh(𝑟) cosh(𝑟′) + (1+𝜓𝜓̄) sinh(𝑟) sinh(𝑟′) cos(𝜑) + [odd terms] .

(4.1.14)

We suppressed the odd terms in above calculation as they do not contribute to the integral in
(4.1.13). The nilpotent part of the exponent in (4.1.13) can be expanded

exp[𝛽𝜓𝜓̄ sinh(𝑟) sinh(𝑟′) cos(𝜑) + [odd terms]] = 1+ 𝛽𝜓𝜓̄ sinh(𝑟) sinh(𝑟′) cos(𝜑). (4.1.15)

Plugging (4.1.14) and (4.1.15) into the recursion relation (4.1.13), we can perform the fermionic
integral and isolate the angular average:
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𝑓 rad
𝑛+1(cosh𝑟′)

= 𝑒−𝛽(cosh(𝑟 ′)−1) +
∞∫

0

d𝑟
sinh(𝑟) sinh(𝑟) sinh(𝑟′)𝑒−𝛽cosh(𝑟) cosh(𝑟 ′)𝑒−ℎcosh(𝑟) ( 𝑓 rad

𝑛 )𝑑 (cosh𝑟) × · · ·

· · · ×
2𝜋∫

0

d𝜑
2𝜋

cos(𝜑)𝑒𝛽 sinh(𝑟) sinh(𝑟 ′) cos(𝜑)

︸                                     ︷︷                                     ︸
𝐼1 (𝛽 sinh(𝑟) sinh(𝑟 ′))

,

(4.1.16)
where 𝐼1 denotes the modified Bessel function of first kind. Passing to 𝜆 = cosh(𝑟) and
𝜇 = sinh(𝑟) concludes the proof. □

4.1.4 Finite Volume Limit and Relation to a 𝑡-Field Martingale

Recall that a symmetry-breaking phase transition for the H2|2 is most easily characterised by
considering the limit limℎ↘0 lim𝑛→∞ 𝑓𝑛;𝛽,ℎ of the marginal functions 𝑓𝑛 = 𝑓𝑛;𝛽,ℎ as defined by
the recursion relation (4.1.2) or (4.1.10). This order of the limit corresponds to the infinite

volume limit. In this section, we consider the finite volume limit, namely for fixed 𝑛 we
extract a non-trivial scaling limit for 𝑓𝑛;𝛽,ℎ as ℎ↘ 0. The resulting finite-volume marginal

functions satisfy a simplified recursion relation which involves the 𝑡-field increment measure.
An analogous recursion for Efetov’s model has previously been studied in the literature [36, 40,
41].

Proposition 4.1.4 (Finite Volume Limit for the Recursion Relation): Consider the radial
marginal functions 𝑓 rad

𝑛 = 𝑓 rad
𝑛;𝛽,ℎ as defined in (4.1.11). Then

𝜓𝑛 (𝑡) = lim
ℎ↘0

𝑓 rad
𝑛;𝛽,ℎ (𝑒

𝑡/ℎ) with 𝑡 ∈ R (4.1.17)

exists point-wise. The functions 𝜓𝑛 satisfy the recursion relation

𝜓𝑛+1(𝑡′) =
∫
R

d𝑡 𝑙𝛽 (𝑡′− 𝑡)𝑒−𝑒
𝑡

𝜓𝑑𝑛 (𝑡) with 𝜓0(𝑡) = 1 (4.1.18)

where
𝑙𝛽 (𝑡) =

√︃
𝛽

2𝜋 𝑒
−𝛽(cosh(𝑡)−1)𝑒𝑡/2 (4.1.19)

coincides with the density of negative 𝑡-field increments (cf. Definition 3.2.12).
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Proof. For convenience we write 𝑓𝑛;𝛽,ℎ = 𝑓 rad
𝑛;𝛽,ℎ. We proceed by induction over 𝑛: For 𝑛 = 0 one

has 𝑓0;𝛽,ℎ (𝑒𝑡/ℎ) = 1 = 𝜓0(𝑡) for all ℎ ≥ 0. Now assume that 𝜓𝑛 (𝑡) as in (4.1.17) is well-defined.
We want to use the radial recursion relation (4.1.10) to obtain the scaling limit for 𝜓𝑛+1. For
this, we first claim that for fixed 𝜔,𝜔′ > 0 one has

𝐿𝛽 (𝜔/ℎ,𝜔′/ℎ) ∼
𝑒𝛽

ℎ

√︂
𝛽𝜔𝜔′

2𝜋
exp[− 𝛽

2

(
𝜔

𝜔′
+ 𝜔
′

𝜔

)
] . (4.1.20)

To see this, we use asymptotics 𝐼1(𝑧) ∼ 𝑒𝑧/
√

2𝜋𝑧 as 𝑧→∞. This yields

𝐿𝛽 (𝜔/ℎ,𝜔′/ℎ) ∼
√︃

𝛽

2𝜋 [(
𝜔
ℎ
)2−1]1/2 [(𝜔′

ℎ
)2−1]1/2× · · ·

· · ·×exp[−𝛽
(
(𝜔
ℎ
)2 (𝜔′

ℎ
)2− [(𝜔

ℎ
)2−1]1/2 [(𝜔′

ℎ
)2−1]1/2−1

)
]

(4.1.21)

To obtain (4.1.20) one simply expands the square roots in the exponent. Changing variables
𝜆 ↦→ 𝑒𝑡/ℎ in (4.1.10), we get

𝑓𝑛+1;𝛽,ℎ (𝑒𝑡
′/ℎ) = 𝑒−𝛽(𝑒𝑡

′/ℎ−1) +
∞∫

− log(ℎ)

d𝑡
[ ℎ𝑒𝑡

𝑒2𝑡 − ℎ2 𝐿𝛽 (𝑒
𝑡/ℎ, 𝑒𝑡′/ℎ)

]
𝐷ℎ (𝑒𝑡/ℎ) ( 𝑓𝑛;𝛽,ℎ)𝑑 (𝑒𝑡/ℎ)

(4.1.22)
The first summand on the right hand side converges to zero as ℎ ↘ 0. By (4.1.20), one
may check that the term in brackets converges point-wise to 𝑙𝛽 (𝑡′ − 𝑡) as ℎ↘ 0. For the
symmetry-breaking term we have 𝐷ℎ (𝑒𝑡/ℎ) → 𝑒−𝑒

𝑡

and by our inductive assumption we also
have 𝑓𝑛;𝛽,ℎ (𝑒𝑡/ℎ) → 𝜓𝑛 (𝑡). By induction over (4.1.18) it is clear that 𝜓𝑛 (𝑡) ≤ 1 for all 𝑡 ∈ R.
The claim then follows by an application of the dominated convergence theorem. □

Proposition 4.1.5: Consider 𝜓𝑛 = 𝜓𝑛;𝛽 as defined in Proposition 4.1.4. Further, consider a
𝑡-field {𝑇𝑥} on T∗

𝑑
, rooted at the origin. Then, we have

𝜓𝑛 (𝑡) = E𝛽 [exp(−𝑒𝑡∑𝑥∈T∗
𝑑,𝑛
\{0} 𝑒

𝑇𝑥 )] (4.1.23)

for all 𝑛 ≥ 0.

Proof. Write 𝐺𝑛 (𝑡) for the right hand side of (4.1.23). For 𝑛 = 0, the sum in (4.1.23) is empty,
hence we have 𝜓0(𝑡) = 1 = 𝐺0(𝑡). For 𝑛 ≥ 1, we claim that 𝐺𝑛 satisfies the recursion equation

𝐺𝑛+1(𝑡) = E[𝑒−𝑒𝑡+𝑇𝐺𝑑
𝑛 (𝑡 +𝑇)], (4.1.24)
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where 𝑇 is a random variable with law of the 𝑡-field increment (see Definition 3.2.12). In fact,
by (4.1.18), 𝜓𝑛 satisfies the same recursion relation, hence proving (4.1.24) is sufficient.

Write 0̄ for the unique neighbour of 0. Let {𝑇 (𝑖)𝑥 }𝑥∈T∗
𝑑,𝑛

with 𝑖 = 1, . . . , 𝑑 denote 𝑑 independent
copies of a 𝑡-field on T∗

𝑑,𝑛
. Then we have

𝐺𝑛+1(𝑡) = E[exp(−𝑒𝑡+𝑇0̄ [1+∑𝑑
𝑖=1

∑
𝑥∈T∗

𝑑,𝑛
\{0} 𝑒

𝑇
(𝑖)
𝑥 ])], (4.1.25)

where 𝑇0̄ is distributed as a 𝑡-field increment, independent of the {𝑇 (𝑖)𝑥 }. Using independence,
the claim follows. □

Remark 4.1.6 (Travelling-Wave Behaviour): By our analysis in the proof of Theorem 3.1.3, in
particular (4.2.3), we have∑︁

𝑥∈T∗
𝑑,𝑛
\{0}

𝑒𝑇𝑥 = 𝑒𝑛[max(𝛾𝛽 ,0)+𝑜(1)] a.s. as 𝑛→∞. (4.1.26)

Consequently 𝜓𝑛 (𝑡) should behave like a wave-front, moving to the left with velocity max(𝛾𝛽,0).
To make this precise, one needs finer control of the errors in (4.1.26). Outside the intermediate
phase this is rather easy (see the proof of Theorem 3.1.3 for details). For the intermediate phase,
this would need further analysis. This does however, provide a rigorous approach to statements
found in the physics literature on Efetov’s model [40, 41].

4.1.5 Addendum: Group-Theoretic Background on Polar Coordinates
for H2|2.

The main goal of this section is to justify the first statement of Theorem 4.1.2, namely that (4.1.5)
provides a parametrisation of H2|2 \ {0}. In order to prove formula (4.1.6) in Theorem 4.1.2,
one is only left with calculating the Berezinian (generalised Jacobian) of this parametrisation
and deal with the “boundary term” at u(0) , which will give rise to the singular contribution in
(4.1.6).

We follow Zirnbauer’s exposition and refer to his work for more details [20]. In the following
we will treat the supermanifold H2|2 and its isometry supergroup OSp(2,1|2) as if they were
manifolds and Lie groups, respectively.
We assure the reader that details justifying this simplification are well-understood in the
superanalysis literature and refer to Berezin’s monograph for more information [90].
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Let us write 𝐺 := OSp(2,1|2) for the group of isometries on H2|2 and 𝐾 := OSp(2|2) ⊆ 𝐺 for
its maximal compact subgroup. The latter can be identified with the stabiliser of the “origin”
u(0) = (1,0,0,0,0) ∈ H2|2. Hence, we have

𝐺/𝐾 �→ H2|2 via 𝑔𝐾 ↦→ 𝑔u(0) . (4.1.27)

This is simply stating that H2|2 is a symmetric space with respect to the supergroup 𝐺. However,
(4.1.27) also yields a parametrisation of H2|2. In order to get the polar decomposition from this,
we make use of the KAK-decomposition for 𝐺.

Write 𝐴 := {𝑒𝑟𝐻 : 𝑟 ∈ R}, for the subgroup consisting of 𝑥𝑧-boosts. 𝐴 is a maximal abelian
subgroup and we write 𝐴+ := {𝑒𝑟𝐻 : 𝑟 ∈ R+} for its “positive” part. If we write 𝑀 for the
centraliser of 𝐴 in 𝐾, then the quotient group 𝐾/𝑀 is generated by the super-Lie algebra
elements 𝑋,𝑌1,𝑌2 ∈ 𝔬𝔰𝔭(2,1|2), as defined in (4.1.4):

𝐾/𝑀 =

{
𝑒𝜑𝑋𝑒𝜓𝑌1+𝜓̄𝑌2𝑀 : 𝜑 ∈ R, 𝜓, 𝜓̄ Grassmann

}
. (4.1.28)

This fact is relevant since the following map is a diffeomorphism onto its image:

𝐾/𝑀 × 𝐴+→ 𝐺/𝐾 � H2|2, (𝑘𝑀,𝑎) ↦→ 𝑘𝑎𝐾 (4.1.29)

Indeed, injectivity follows from uniqueness of the 𝐾𝐴𝐾-decomposition and differentiability is
clear from the definition. We can think of 𝐴+ as parametrising a non-compact radial coordinate,
while the compact degrees of freedom 𝐾/𝑀 are angular. The image of (4.1.29) is H2|2 \ {u(0)}.
In conclusion, this shows what we initially claimed, namely that the mapping in (4.1.5) is a
parametrisation of H2|2 \ {u(0)}.

4.2 Heuristics and H2|2-Fourier analysis

In this section we introduce the basics of Fourier analysis over the hyperbolic superplane H2|2.
As a byproduct, we can diagonalise the integral operator that appears in the recursion (4.1.2),
and characterise the phase transition in terms of spectral linear stability. Moreover, we give a
rough heuristic for the 𝑒𝐶 (𝛽−𝛽c)−1/2

behaviour from a Fourier perspective.
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4.2.1 Fourier analysis and Harish-Chandra functions on H2|2

In this section we introduce a family of radially symmetric eigenfunctions of the Laplacian
on H2|2. These so-called Harish-Chandra functions form a Fourier-type basis to analyse the
recursion relation (4.1.2). In particular, for vanishing magnetic field ℎ = 0 the integral kernel
in (4.1.2) is diagonalised by these functions. The Fourier theory over H2|2 was developed by
Zirnbauer [20] and we refer to his work for additional details on the harmonic analysis over
H2|2.

Harish-Chandra spherical functions on H2|2. Let 𝑡 (u) denote the horospherical coordinate
of u ∈ H2|2. We define the Harish-Chandra Spherical Functions as angular averages of
exp[(−1

2 + 𝑖𝜌) 𝑡 (u)]:

𝜑𝜌 (u) :=
∫

d𝜑𝜕𝜓𝜕𝜓̄ exp[(−1
2 + 𝑖𝜌)𝑡 (𝑒

𝜑𝑋𝑒𝜓𝑌1+𝜓̄𝑌2u)] with 𝜌 ∈ R. (4.2.1)

The motivation behind this definition is that exp[(−1
2 + 𝑖𝜌) 𝑡 (u)] are eigenfunctions of the

H2|2-Laplacian and after angular averaging, they are radial eigenfunctions [20]. In particular,
they take a more explicit expression in terms of the radial coordinate:

Proposition 4.2.1: Let 𝑟 denote the radial coordinate over H2|2. Then, for 𝜌 ∈ R we have

𝜑𝜌 (u) = 𝜑𝜌 (𝑟) = (−1
2 + 𝑖𝜌) sinh(𝑟)

∫
d𝜑

cos(𝜑)
(cosh(𝑟) + cos(𝜑) sinh(𝑟))3/2−𝑖𝜌

. (4.2.2)

Moreover they satisfy the asymptotic

𝜑𝜌 (𝑟) ∼ −
1

2
√
𝜋

Γ(1− 𝑖𝜌)
Γ(1/2− 𝑖𝜌) 𝑒

(3/2−𝑖𝜌)𝑟 as 𝑟→∞. (4.2.3)

We give a proof for this further below (Section 4.2.4). The Harish-Chandra functions form a
Fourier-type basis in which to expand radial superfunctions and to diagonalise OSp(2,1|2)-
invariant operators over H2|2. A concrete example, that we will make use of, is the diagonalisa-
tion of the integral operator with kernel 𝑒𝛽(u·u

′+1):

Proposition 4.2.2: For 𝛽 > 0, 𝜌 ∈ R we have

𝜅𝛽 (𝜌)𝜑𝜌 (u′) = [𝐿𝛽𝜑𝜌] (u′) =
∫
H2 |2

du𝑒𝛽(u·u
′+1)𝜑𝜌 (u). (4.2.4)
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with eigenvalues 𝜅𝛽 (𝜌) given by

𝜅𝛽 (𝜌) =
√︂

𝛽

2𝜋

∫
d𝑡 𝑒−𝛽(cosh(𝑡)−1)𝑒𝑖𝜌𝑡 . (4.2.5)

In particular, they are real-valued and for any fixed 𝛽 > 0, 𝜅𝛽 (𝜌) is maximal at 𝜌 = 0.

In order to prove above statement, we need the following addition theorem, which we will not
prove here.

Lemma 4.2.3 (Addition Theorem for Harish-Chandra Functions [20]): For 𝑔 ∈ OSp(2,1|2)
and u ∈ H2|2

𝜑𝜌 (𝑔−1u)

=

∫
d𝜑𝜕𝜓𝜕𝜓̄ exp[(−1

2 + 𝑖𝜌)𝑡 (𝑒
𝜑𝑋𝑒𝜓𝑌1+𝜓̄𝑌2𝑔u(0))] exp[(−1

2 − 𝑖𝜌)𝑡 (𝑒
𝜑𝑋𝑒𝜓𝑌1+𝜓̄𝑌2u)],

(4.2.6)

in the sense of superfunctions over OSp(2,1|2) ×H2|2.

Proof of Proposition 4.2.2. Note, by radial symmetry of 𝜑𝜌, that it suffices to check (4.2.4)
for u′ = 𝑒𝑟 ′𝐻u(0) . We start with the right hand side of (4.2.4) for this special case and apply
boost-invariance of the integral kernel and the addition theorem (4.2.12):∫

du𝑒𝛽(u·[𝑒
𝑟′𝐻u(0) ]+1)𝜑𝜌 (u)

=

∫
du𝑒𝛽(u·u(0)+1)𝜑𝜌 (𝑒−𝑟

′𝐻u)

=

∫
du𝑒−𝛽(𝑧−1)

∫
d𝜑𝜕𝜓𝜕𝜓̄ exp[(−1

2 + 𝑖𝜌)𝑡 (𝑒
𝜑𝑋𝑒𝜓𝑌1+𝜓̄𝑌2𝑒𝑟

′𝐻u(0))]×

× exp[(−1
2 − 𝑖𝜌)𝑡 (𝑒

𝜑𝑋𝑒𝜓𝑌1+𝜓̄𝑌2u)]

(4.2.7)

In the last line, we may interchange the order of integration and note that the u-integral∫
du𝑒−𝛽(𝑧−1) exp[(−1

2 − 𝑖𝜌)𝑡 (𝑒
𝜑𝑋𝑒𝜓𝑌1+𝜓̄𝑌2u)]

=

∫
du𝑒−𝛽(𝑧−1) exp[(−1

2 − 𝑖𝜌)𝑡 (u)] =: 𝜅𝛽 (𝜌)
(4.2.8)

is independent of 𝜑,𝜓, 𝜓̄. The remaining integral in (4.2.7) equals 𝜑𝜌 (𝑒𝑟
′𝐻u(0)) by definition

of the Harish-Chandra functions in (4.2.1). Hence, we have∫
du𝑒𝛽(u·[𝑒

𝑟′𝐻u(0) ]+1)𝜑𝜌 (u) = 𝜅𝛽 (𝜌)𝜑𝜌 (𝑒𝑟
′𝐻) (4.2.9)
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This verifies (4.2.4) together with an explicit expression for the eigenvalues 𝜅𝛽 (𝜌) given in
(4.2.8). The latter can be further simplified by passing to horospherical coordinates:

𝜅𝛽 (𝜌) =
∫

du𝑒−𝛽(𝑧−1)𝑒(−
1
2−𝑖𝜌)𝑡 (u)

=

∫
d𝑡
𝑒𝑡

d𝑠
2𝜋
𝜕𝜓𝜕𝜓̄𝑒

−𝛽(cosh(𝑡)+𝑒𝑡 ( 12 𝑠
2+𝜓̄𝜓)−1)

𝑒
−( 12−𝑖𝜌)𝑡

=

√︂
𝛽

2𝜋

∫
d𝑡 𝑒−𝛽(cosh(𝑡)−1)𝑒𝑖𝜌𝑡

(4.2.10)

This expression is clearly maximal at 𝜌 = 0, due to positivity of 𝑒−𝛽(cosh(𝑡)−1) . □

4.2.2 Characterisation of 𝛽c: instability of the symmetric solution

As we discussed in Section 4.1.1, one may understand a symmetry-breaking phase transition of
the H2|2-model on the 𝑑-ary tree in terms of the fixed points of the recursion relation (4.1.2),
i.e. solutions 𝑓 = 𝑓𝛽,ℎ to (4.1.3). In this section we show that linear stability of the trivial
solution for ℎ = 0 indeed characterises the subcritical phase. In particular, the critical inverse
temperature agrees with the one for the VRJP/𝑡-field.

Theorem 4.2.4: Let 𝛽c > 0 denote the critical inverse temperature as defined in Proposi-
tion 3.2.14. The symmetric solution 𝑓 ≡ 1 to the fixed point equation

𝑓 (u′) = [𝐿𝛽 𝑓 𝑑] (u′) =
∫
H2 |2

du𝑒𝛽(u·u
′+1) 𝑓 𝑑 (u). (4.2.11)

is linearly stable under radially symmetric perturbations if and only 𝛽 < 𝛽c.

Proof. Consider the linearisation of the right hand side (4.2.11) around the 𝑓 ≡ 1 for ℎ = 0:∫
H2 |2

du𝑒𝛽(u·u
′+1) (1+ 𝜖𝑔(u))𝑑 = 1+ 𝜖𝑑

∫
H2 |2

du𝑒𝛽(u·u
′+1)𝑔(u) +𝑂 (𝜖2). (4.2.12)

Hence, linear stability of the fixed point 𝑓 ≡ 1 is governed by the operator

𝑔(u) ↦→ 𝑑

∫
H2 |2

du′ 𝑒𝛽(u·u
′+1)𝑔(u′), (4.2.13)

for radially symmetric perturbations 𝑔(u). Recall Proposition 4.2.2: The spectrum of the
operator (4.2.13) over radial functions is given by {𝑑𝜅𝛽 (𝜌)}𝜌∈R. Recall that the 𝜅𝛽 (𝜌) are
real-valued and (for fixed 𝛽) attain their maximum at 𝜌 = 0. The fixed point 𝑓 ≡ 1 is linearly
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1

d κβ(ρ)

ρ

1

d κβ(ρ)

ρρβ

β < βc β > βc

∼
√

β − βc

Figure 4.2: Illustration of the spectrum of the operator 𝐿𝛽 in the subcritical and supercritical
phases, respectively. In the subcritical phase, 𝛽 < 𝛽c the spectrum is stricly below 1. Conse-
quently, iterative applications of 𝐿𝛽 converge to zero. In the supercritical phase 𝛽 > 𝛽c, the
spectrum of 𝐿𝛽 is positive for |𝜌 | < 𝜌𝛽 ∼ (𝛽− 𝛽c)1/2. In other words, iterative application of
𝐿𝛽 will suppress Fourier modes 𝜌 > 𝜌𝛽 and amplify modes 𝜌 < 𝜌𝛽.

stable if and only if the spectrum of (4.2.13) is contained in the unit disk. Equivalently, if and
only if

max
𝜌∈R

𝜅𝛽 (𝜌) = 𝜅𝛽 (0) =
√︂

𝛽

2𝜋

∫
d𝑡 𝑒−𝛽(cosh(𝑡)−1) < 1/𝑑. (4.2.14)

This is equivalent to 𝛽 < 𝛽c. □

Note that the restriction to radially symmetric perturbations in Theorem 4.2.4 is natural. In fact,
any solution obtained by a limit of the recursion (4.1.2) will necessarily be radially symmetric.

4.2.3 Heuristic derivation of near-critical behaviour for the H2|2-model

The marginal functions satisfy the recursion in (4.1.2), in other words

𝑓𝑛+1 = 𝐿𝛽 [𝑒−ℎ(𝑧−1) 𝑓 𝑑𝑛 (u)] with 𝑓0(u) ≡ 1. (4.2.15)

For fixed 𝑛 as ℎ↘ 0 we have

𝑓𝑛 = 1− 𝐿𝑛𝛽 [𝑒
−ℎ(𝑧−1) −1] +𝑂 (ℎ2). (4.2.16)

By Proposition 4.2.2, the spectrum of the operator 𝐿𝛽 is given by 𝑑𝜅𝛽 (𝜌). In order to say
something about 𝑓𝑛, we can ask for which 𝜌 the modulus 𝑑𝜅𝛽 (𝜌) is larger or smaller than
1. In fact, the existence of values 𝜌 for which the modulus is larger than 1 characterises
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the supercritical phase, and the width of the interval for which this holds is relevant for the
near-critical behaviour. The qualitative picture is given in Figure 4.2. More quantitatively, we
have

𝑑𝜅𝛽 (𝜌) −1 = 𝑎 [𝛽− 𝛽c] − 𝑏(𝛽) 𝜌2 + O([𝛽− 𝛽𝑐]2 + 𝜌4) as 𝛽→ 𝛽c, (4.2.17)

with 𝑎, 𝑏 > 0. In the slightly supercritical regime, 0 < 𝛽c− 𝛽≪ 1 and disregarding error terms,
the right hand side of (4.2.17) is positive for |𝜌 | ≤ (1+ 𝑜(1))𝜌𝛽 with

𝜌𝛽 :=
√︁
𝑎/𝑏(𝛽c) (𝛽− 𝛽c)1/2. (4.2.18)

In other words, 𝐿𝛽 amplifies Fourier modes in that range (since 𝑑𝜅𝛽 (𝜌) > 1), while it sup-
presses the ones outside (since 𝑑𝜅𝛽 (𝜌) < 1). Hence, we expect the Fourier modes of 𝑓𝑛 to be
concentrated in 0 < 𝜌 < 𝜌𝛽 ∼ (𝛽− 𝛽c)1/2. Consequently, in the conjugate variable, namely the
horospherical 𝑡-variable (see (4.2.1)), we expect 𝑓𝑛 to be delocalised on a scale ∼ (𝛽− 𝛽c)−1/2.
In other words, we would expect limℎ↘0 lim𝑛→∞⟨𝑒2𝑡0⟩𝑛,ℎ to be of order 𝑒𝐶 (𝛽−𝛽c)−1/2

, which is
precisely what we show.

4.2.4 Addendum: Harish-Chandra functions in radial coordinates

Proof of Proposition 4.2.1. Recalling that 𝑒𝑡 = 𝑧+𝑥 and using the explicit representation (4.1.7)
for polar coordinates, we have

𝑒𝑡 = cosh(𝑟) + (1+ 𝜓̄𝜓) sinh(𝑟) cos(𝜑). (4.2.19)

Hence,

𝜑𝜌 (u) =
∫

d𝜑𝜕𝜓𝜕𝜓̄
1

[cosh(𝑟) + (1+ 𝜓̄𝜓) sinh(𝑟) cos(𝜑)]1/2−𝑖𝜌
. (4.2.20)

Expanding the integrand in the nilpontent variable 𝜓̄𝜓 one has

1
[cosh(𝑟) + (1+ 𝜓̄𝜓) sinh(𝑟) cos(𝜑)]1/2−𝑖𝜌

=
1

[cosh(𝑟) + sinh(𝑟) cos(𝜑)]1/2−𝑖𝜌
− 𝜓̄𝜓 (1/2− 𝑖𝜌) sinh(𝑟) cos(𝜑)

[cosh(𝑟) + sinh(𝑟) cos(𝜑)]3/2−𝑖𝜌
.

(4.2.21)

Plugging (4.2.21) into (4.2.20) we can perform the fermionic integration:

𝜑𝜌 (u) = (−1
2 + 𝑖𝜌) sinh(𝑟)

∫
d𝜑

cos(𝜑)
[cosh(𝑟) + sinh(𝑟) cos(𝜑)]3/2−𝑖𝜌

, (4.2.22)
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which proves the claim.
In order to derive the asymptotic (4.2.3), we follow the line of thought of Zirnbauer in the
Appendix of [36]. We start by using the elementary identity

𝑥−3/2+𝑖𝜌 =
1

Γ(3/2− 𝑖𝜌)

∫ ∞

0

d𝑧
𝑧
𝑧3/2−𝑖𝜌𝑒−𝑥𝑧 for 𝑥 ∈ R (4.2.23)

in above expression. This yields

𝜑𝜌 (𝑟) = −
1
2 − 𝑖𝜌

Γ(3/2− 𝑖𝜌) sinh(𝑟)
∫ ∞

0

d𝑧
𝑧
𝑧3/2−𝑖𝜌𝑒−𝑧 cosh(𝑟)

∫ 2𝜋

0

d𝜑
2𝜋

cos(𝜑)𝑒−𝑧 sinh(𝑟) cos(𝜑)

= − 1
Γ(1/2− 𝑖𝜌) sinh(𝑟)

∫ ∞

0

d𝑧
𝑧
𝑧3/2−𝑖𝜌𝑒−𝑧 cosh(𝑟) 𝐼1(𝑧 sinh(𝑟)),

(4.2.24)
where 𝐼𝛼 is the modified Bessel function of first kind. We may use the well-known asymptotic
𝐼1(𝑥) ∼ 𝑒𝑥/

√
2𝜋𝑥 for 𝑥→∞, which is easily derived by Laplace’s method. Using this, for

𝑟→∞ we have

𝜑𝜌 (𝑟) ∼ −
1

Γ(1/2− 𝑖𝜌) sinh(𝑟)
∫ ∞

0

d𝑧
𝑧
𝑧3/2−𝑖𝜌 𝑒

−𝑧(cosh(𝑟)−sinh(𝑟))√︁
2𝜋𝑧 sinh(𝑟)

∼ − 1
√

2𝜋
1

Γ(1/2− 𝑖𝜌)
√︁

sinh(𝑟)
∫ ∞

0

d𝑧
𝑧
𝑧1−𝑖𝜌𝑒−𝑧𝑒

−𝑟
(4.2.25)

In fact, we had to be a bit more careful in replacing 𝐼1 by its asymptotic under the integral:
This approximation is only valid for 𝑧≫ 𝑒−𝑟 . However, the contribution from the rest of the
domain is negligible for 𝑟→∞, so above approximation is valid. To conclude, we note that by
rescaling 𝑧 ↦→ 𝑒𝑟 𝑧 the integral in the last line of (4.2.25) is evaluated to 𝑒(1−𝑖𝜌)𝑟Γ(1− 𝑖𝜌). In
conclusion

𝜑𝜌 (𝑟) ∼ −
1
√

2𝜋
Γ(1− 𝑖𝜌)
Γ(1/2− 𝑖𝜌) 𝑒

(3/2−𝑖𝜌)𝑟 as 𝑟→∞. (4.2.26)

□



Chapter 5

Probabilistic definition of the Schwarzian
field theory [SCHW]

Abstract: We define the Schwarzian Field Theory as a finite measure on Diff1(T)/PSL(2,R)
and compute its generalised partition functions exactly using methods of stochastic analysis.
Our results rigorously implement an approach by Belokurov–Shavgulidze. The Schwarzian
Field Theory has attracted recent attention due to its role in the analysis of the Sachdev–
Ye–Kitaev model and as the proposed holographic dual to Jackiw–Teitelboim gravity. In
two companion papers by Losev, the predicted exact cross-ratio correlation functions for
non-crossing Wilson lines and the large deviations are derived from the probability measure.

5.1 Introduction and main results

5.1.1 Introduction

The Schwarzian Field Theory arose in the study of Sachdev–Ye–Kitaev (SYK) random matrix
model, see [91] and [92] for introductions, and it also appears interesting with different
motivation. In particular, it is an example of a highly nonlinear but, at least formally, exactly
solvable Euclidean field theory in 0+1 dimensions, with connections to Liouville Field Theory,
infinite dimensional symplectic geometry, two-dimensional Yang-Mills theory, and other
topics; references are given below. Perhaps most intriguingly, it has been proposed as the
holographic dual to Jackiw–Teitelboim (JT) gravity on the Poincaré disk, see for example
[93–95]. In [96] the partition function of the Schwarzian Field Theory was computed exactly
by a formal application of the Duistermaat–Heckman theorem on the infinite dimensional
space Diff1(T)/PSL(2,R), and in [97] the natural cross-ratio correlation functions of the
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Schwarzian Field Theory were obtained via an application of the conformal bootstrap and the
DOZZ formula to a degenerate limit of the two-dimensional Liouville Field Theory. Further
perspectives on the Schwarzian Field Theory, which are discussed in relation to our results
below, were proposed in [98] and [99].
The goal of this paper is to define a finite Borel measure on Diff1(T)/PSL(2,R) that corre-
sponds to the Schwarzian Field Theory and then compute the partition function of it and its
generalisations. This measure should formally be given by (see [96, (1.1)])

dℳ𝜎2
(
𝜑
)
= exp

{
+ 1
𝜎2

∫ 1

0

[
S𝜑 (𝜏) +2𝜋2𝜑′2(𝜏)

]
d𝜏

} ∏
𝜏∈[0,1)

d𝜑(𝜏)
𝜑′ (𝜏)

PSL(2,R) , (5.1.1)

where S𝜑 (𝜏) is the Schwarzian derivative of 𝜑 defined by

S𝜑 (𝜏) = S(𝜑, 𝜏) =
(
𝜑′′(𝜏)
𝜑′(𝜏)

)′
− 1

2

(
𝜑′′(𝜏)
𝜑′(𝜏)

)2
, (5.1.2)

and the measure ℳ𝜎2 should be supported on the topological space Diff1(T)/PSL(2,R), where
T = [0,1]/{0 ∼ 1} is the unit circle parametrised by the angle [0,1), and Diff1(T) is the space
of 𝐶1 orientation-preserving diffeomorphisms of T, see Section 5.1.4. The PSL(2,R) action on
Diff1(T) implicit in the quotient in (5.1.1) is described in the next paragraph. Heuristically, the
formal density (5.1.1) only depends on the orbit of this action and the quotient by PSL(2,R)
therefore makes sense.
The PSL(2,R) action on Diff1(T) arises from left composition by conformal diffeomorphisms
of the unit disk restricted to the boundary, which is identified with T. Explicitly, it is instructive
to map the circle to the real line and consider 𝑓 (𝜏) = tan(𝜋𝜑(𝜏) − 𝜋

2 ) instead of 𝜑(𝜏), where
𝜏 ∈ T remains on the circle. In terms of this variable, the exponential in the formal density
(5.1.1) of the measure can be written as

exp
{
+ 1
𝜎2

∫ 1

0
S(tan(𝜋𝜑− 𝜋

2 ), 𝜏) d𝜏
}
, (5.1.3)

again see Section 5.1.4, explaining the name Schwarzian Field Theory. The bijection 𝜑 ∈
(0,1) ↦→ 𝑓 = tan(𝜋𝜑− 𝜋

2 ) ∈ R is the restriction to the boundary of the standard conformal map
𝑧 ↦→ 𝑖 1+𝑧

1−𝑧 from the unit disk in C to the upper half plane, on which PSL(2,R) acts by the
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fractional linear transformation

𝑓 ↦→ 𝑀 ◦ 𝑓 = 𝑎 𝑓 + 𝑏
𝑐 𝑓 + 𝑑 , 𝑀 = ±©­«

𝑎 𝑏

𝑐 𝑑

ª®¬ ∈ PSL(2,R). (5.1.4)

Even though this PSL(2,R) action is by left composition, we will call it the right action on
Diff1(T), following the discussion in [96, Section 2.1], where this action is interpreted as an
action on the inverse of 𝜑. The Schwarzian is invariant under this PSL(2,R) action, i.e.,

S(𝑀 ◦ 𝑓 , 𝜏) = S( 𝑓 , 𝜏) for any 𝑀 ∈ PSL(2,R), (5.1.5)

and it vanishes if and only if 𝑓 itself is a fractional linear transformation. It can further be
argued that

∏
𝜏∈[0,1)

d𝜑(𝜏)
𝜑′ (𝜏) in the formal expression (5.1.1) should be the non-existent Haar

measure on the group Diff1(T), and in particular be invariant under the PSL(2,R) action, see
[96, Section 2.2]. We abuse the notation throughout the paper and use the same symbol for
𝜑 ∈ Diff1(T) and its conjugacy class 𝜑 ∈ Diff1(T)/PSL(2,R) when only the latter is relevant.

5.1.2 Main results

We follow the plan proposed in [98, 100], and interpret the measure (5.1.1) as an appropriate
change of variables of a reweighted Brownian bridge and a Lebesgue measure quotiented by
PSL(2,R), and then verify that the obtained measure satisfies the desired properties.
Essentially, using the parametrisation

𝜑(𝜏) = Θ+
∫ 𝜏

0 𝑒𝜉 (𝑡) d𝑡∫ 1
0 𝑒

𝜉 (𝑡) d𝑡
, (5.1.6)

with 𝜉 : [0,1] → R and Θ ∈ R a constant, one has

−S(tan(𝜋𝜑− 𝜋
2 ), 𝜏) =

1
2
𝜉′(𝜏)2− 𝜉′′(𝜏) −2𝜋2 ©­« 𝑒𝜉 (𝜏)∫ 1

0 𝑒
𝜉 (𝑡) d𝑡

ª®¬
2

, (5.1.7)

and under this change of variable, heuristically,∏
𝜏

d𝜑(𝜏)
𝜑′(𝜏) = dΘ

∏
𝜏

d𝜉 (𝜏). (5.1.8)
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Thus it is natural to interpret the measure with action given by (5.1.7) in terms of a reweighted
Brownian bridge, whose formal action is 1

2

∫
𝜉′(𝜏)2 d𝜏, and a constant Θ (the zero mode),

distributed according to the Lebesgue measure. In Section 5.2, we give a precise version
of this construction and show that it indeed leads to an PSL(2,R)-invariant infinite Borel
measure ℳ̃𝜎2 on Diff1(T) which can then be quotiented to obtain a finite measure ℳ𝜎2 on
Diff1(T)/PSL(2,R).
We prove that the unquotiented measure ℳ̃𝜎2 we construct satisfies a change of measure
formula that is consistent with the goal that the action functional corresponding to the measure
should be proportional to the Schwarzian derivative. Indeed, for 𝑓 , 𝑔 ∈ 𝐶3, the Schwarzian
derivative satisfies the following chain rule:

S(𝑔 ◦ 𝑓 , 𝜏) = S( 𝑓 , 𝜏) +S(𝑔, 𝑓 (𝜏)) 𝑓 ′(𝜏)2. (5.1.9)

It follows that S(tan(𝜋𝜓− 𝜋
2 ),𝜓) = 2𝜋2 and

S(tan(𝜋(𝜓 ◦𝜑) − 𝜋
2 ), 𝜏) = S(tan(𝜋𝜑− 𝜋

2 ), 𝜏) +
(
S(tan(𝜋𝜓− 𝜋

2 ), 𝜑(𝜏)) −2𝜋2
)
𝜑′(𝜏)2, (5.1.10)

see Section 5.1.4. Thus changing variables in (5.1.1) and (5.1.3) from 𝜑 to 𝜓 ◦ 𝜑 for a fixed
𝜓 ∈ Diff3(T), we expect that, if the action is given by the Schwarzian (5.1.3), then the Radon–
Nikodym derivative of the measures should be given by the exponential of the second term
on the right-hand side of (5.1.10). That this is indeed the case is the content of the following
theorem. It can be regarded as the analogue of the Girsanov formula for Brownian motion
under the change of variable from 𝐵 to 𝐵+ ℎ.
In the following statements, diffeomorphisms 𝜓 ∈ Diff3(T) act on 𝜑 ∈ Diff1(T) by left compo-
sition, i.e. 𝜓 ◦ 𝜑 ∈ Diff1(T), and 𝜓∗ℳ̃𝜎2 denotes the pullback of the measure ℳ̃𝜎2 under the
action of 𝜓,

𝜓∗ℳ̃𝜎2 (𝐴) = 𝜓−1
∗ ℳ̃𝜎2 (𝐴) = ℳ̃𝜎2 (𝜓 ◦ 𝐴), (5.1.11)

where 𝜓 ◦ 𝐴 :=
{
𝜓 ◦𝜑

��𝜑 ∈ 𝐴}. We further identify 𝑀 ∈ PSL(2,R) with its action 𝜓 via

𝑓 ↦→ 𝑀 ◦ 𝑓 = 𝑎 𝑓 + 𝑏
𝑐 𝑓 + 𝑑 , 𝑓 = tan(𝜋𝜑− 𝜋

2 ), 𝑀 ◦ 𝑓 = tan(𝜋(𝜓 ◦𝜑) − 𝜋
2 ). (5.1.12)

For any such 𝜓 one has S(tan(𝜋𝜓− 𝜋
2 ), 𝜑) =S(𝑀 ◦ 𝑓 , 𝜑) =S( 𝑓 , 𝜑) =S(tan(𝜋𝜑− 𝜋

2 ), 𝜑) = 2𝜋2.
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Theorem 5.1.1: The constructed measure ℳ̃𝜎2 is supported on Diff1(T) and satisfies the
following change of variable formula: for any 𝜓 ∈ Diff3(T),

d𝜓∗ℳ̃𝜎2 (𝜑)
dℳ̃𝜎2 (𝜑)

= exp
{

1
𝜎2

∫ 1

0

[
S(tan(𝜋𝜓− 𝜋

2 ), 𝜑(𝜏)) −2𝜋2
]
𝜑′(𝜏)2 d𝜏

}
. (5.1.13)

As a consequence, ℳ̃𝜎2 is PSL(2,R)-invariant, where we recall that the action of 𝑀 ∈
PSL(2,R) is identified with the action 𝜓 ◦𝜑 via (5.1.12) and that then S(tan(𝜋𝜓− 𝜋

2 )) = 2𝜋2.

We also confirm the exact formula for the partition function, i.e., the total mass of the quotient
measure, computed in [96] by using a formal application of the Duistermaat–Heckman theorem.
The normalisation of the partition function is explained in Remark 5.1.4 below.

Theorem 5.1.2: The measure ℳ̃𝜎2 from Theorem 5.1.1 can be quotiented by PSL(2,R) and
the resulting measure dℳ𝜎2 on Diff1(T)/PSL(2,R) is finite and has total mass

𝑍 (𝜎2) =
(

2𝜋
𝜎2

)3/2
exp

(
2𝜋2

𝜎2

)
=

∫ ∞

0
𝑒−𝜎

2𝐸 sinh(2𝜋
√

2𝐸) 2d𝐸. (5.1.14)

The right-hand side of (5.1.14) has the form of a Laplace transform of a spectral density
𝜌(𝐸) = 2sinh(2𝜋

√
2𝐸). It is expected that it approximates the thermal partition function

E[tr(𝑒−𝛽𝐻)] of the SYK model 𝐻 (and with 𝜎2 corresponding to inverse temperature 𝛽). For
further discussion, see for example [96, Section 2.4].
The above computation of the partition function also applies to generalised measures on
Diff1(T) which are similar to ℳ̃𝜎2 but not PSL(2,R) invariant (and thus cannot be quotiented
by PSL(2,R)), see Section 5.3 around (5.3.3). These measures correspond to other Virasoro
coadjoint orbits, discussed in [99, 101, 102].

The previous theorems can further be generalised by introduction of a non-constant metric
𝜌2 : T→ R+. Similar to [96, Appendix C], the Schwarzian Field Theory with background
metric 𝜌2 on T is formally given by

dℳ𝜌 (𝜑) = exp
{∫ 1

0
S(tan(𝜋𝜑− 𝜋

2 ), 𝜏)
d𝜏
𝜌(𝜏)

} ∏
𝜏∈[0,1)

d𝜑(𝜏)
𝜑′ (𝜏)

PSL(2,R) , (5.1.15)

where 𝜌 =
√︁
𝜌2 is the positive square root of the metric 𝜌2. Thus the constant choice 𝜌(𝜏) = 𝜎2

for all 𝜏 ∈ T corresponds to (5.1.1). We again define this measure precisely in Section 5.2.



96 Probabilistic definition of the Schwarzian field theory [SCHW]

Theorem 5.1.3: For 𝜌 : T→ R+ in 𝐶1(T), there is a PSL(2,R)-invariant positive measure
ℳ̃𝜌 on Diff1(T) satisfying the following change of variable formula: for any 𝜓 ∈ Diff3(T),

d𝜓∗ℳ̃𝜌 (𝜑)
dℳ̃𝜌 (𝜑)

= exp
{∫ 1

0

[
S(tan(𝜋𝜓− 𝜋

2 ), 𝜑(𝜏)) −2𝜋2
]
𝜑′(𝜏)2 d𝜏

𝜌(𝜏)

}
, (5.1.16)

and its quotient dℳ𝜌 by PSL(2,R) has total mass

𝑍 (𝜌) = exp
{

1
2

∫
𝜌′(𝜏)2
𝜌(𝜏)3

𝑑𝜏

}
𝑍 (𝜎2

𝜌), where 𝜎2
𝜌 =

∫
𝜌d𝜏, (5.1.17)

and 𝑍 (𝜎2) denotes the partition function (5.1.14).

Remark 5.1.4: The normalisation of measures ℳ𝜎2 and ℳ𝜌 uses the following convention.
Essentially, we define the partition function of the unnormalised Brownian bridge with boundary
conditions 𝜉 (0) = 0 and 𝜉 (1) = 𝑎 and metric 𝜌2 : [0,1] → R+, corresponding to the action

1
2

∫ 1

0
𝜉′(𝜏)2 d𝜏

𝜌(𝜏) , (5.1.18)

see Section 5.2.1 for the precise definition, by

𝑍BB(𝜌) =
(
2𝜋

∫ 1

0
𝜌(𝑡) d𝑡

)−1/2
exp

−
𝑎2

2
∫ 1

0 𝜌(𝑡) d𝑡

 . (5.1.19)

This normalisation implies a natural composition property for unnormalised Brownian bridges
(see Section 5.2.1) and is also proportional to the square root of the 𝜁-function regularised
determinant of the Laplacian. The latter is a standard definition of the partition function of the
free field, used for example in the context of Liouville CFT, see [103] for a review.
Since the measure of the Schwarzian Field Theory will be defined in terms of Brownian bridges,
the partition function is essentially determined uniquely with this convention.

Remark 5.1.5: The quadratic variation of (log𝜑′(𝜏))𝜏∈[0,1) does not depend on the representa-
tive of 𝜑 ∈ Diff1(T)/PSL(2,R) because the action by PSL(2,R) is by left-composition with a
smooth function. It follows from the construction of the measure ℳ𝜌 that, almost surely under
the normalised version of ℳ𝜌, this quadratic variation is given by (

∫ 𝜏

0 𝜌(𝑡) d𝑡)𝜏∈[0,1) .
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Remark 5.1.6: In [96, Appendix C], the ‘correlation functions’ of the Schwarzian Field Theory
are formally defined by differentiation of the partition function with respect to the metric:

⟨S(𝜏1) · · ·S(𝜏𝑛)⟩𝜎2 =
1

𝑍 (𝜎2)
𝜕𝑛

𝜕𝜖1 · · ·𝜕𝜖𝑛
𝑍 (𝜌(𝜖1, . . . , 𝜖𝑛)),

1
𝜌
(𝜖1, . . . , 𝜖𝑛) =

1
𝜎2 + 𝜖1𝛿𝜏1 + · · · + 𝜖𝑛𝛿𝜏𝑛 .

(5.1.20)

These ‘correlation functions’ can be computed from the formula (5.1.17). For example,

⟨S(0)⟩𝜎2 = 2𝜋2 + 3
2𝜎

2 (5.1.21)

and

⟨S(0)S(𝜏)⟩𝜎2 = [4𝜋4 +10𝜋2𝜎2 + 15
4 𝜎

4] −2𝜎2 [2𝜋2 + 3
2𝜎

2] 𝛿(𝜏) −𝜎2𝛿′′(𝜏). (5.1.22)

See the appendix in Section 5.5. In the relation to Liouville Field Theory, these correlation
correspond to stress-energy tensor correlation functions, see [97, Appendix A].

Remark 5.1.7: Since the definition of the partition functions involves 𝜁 -function regularisation
(see Remark 5.1.4), the correlation functions defined by (5.1.20) are not obviously expectations
of random variables. In fact, the Schwarzian S 𝑓 (𝜏) of a function 𝑓 : T→ R is only defined if
𝑓 ∈ 𝐶3 while the support of the Schwarzian Field Theory measure dℳ𝜎2 only has 𝐶1-regularity.
Cross-ratios

O
(
𝜑; 𝑠, 𝑡

)
=

𝜋
√︁
𝜑′(𝑡)𝜑′(𝑠)

sin(𝜋[𝜑(𝑡) −𝜑(𝑠)]) , (5.1.23)

where 𝑠 ≠ 𝑡, provide a finite-difference-type regularisation of the Schwarzian derivative, which
still respects the PSL(2,R)-invariance and is well-defined for 𝐶1-functions. For 𝐶3-functions,
in the limit of infinitesimally close end-points, the cross-ratios approximate the Schwarzian
derivative.
In [104], the (probabilistically well-defined) correlation functions of cross-ratios are explicitly
computed, confirming the predictions of [97] obtained using the conformal bootstrap. It is
further shown that in the limit 𝑡 − 𝑠→ 0 these coincide with the above Schwarzian correlation
functions obtained by differentiating the partition function.
In [94, 95], these cross-ratio observables are related to Wilson lines in the gauge theory
formulation of JT gravity.

Remark 5.1.8: The change of measure formulas (5.1.13) and (5.1.16) are consistent with the
goal that the action of the measures is the desired Schwarzian action. It would be interesting to
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show that these change of measure formulas indeed characterise the measure uniquely. Our
results show that the partition functions of the measures agree with those from [96]. In [104] it
is further shown that the cross-ratio correlation functions, which agree with those of [97], in
fact characterise the measure uniquely. Finally, in [105], it is shown that the large deviations of
the measure as 𝜎2→ 0 are indeed described by the Schwarzian action as expected.

5.1.3 Related probabilistic literature

We will not survey the vast literature in physics related to the Schwarzian Field Theory and
the SYK model, but refer to [91, 92] for a starting point on the SYK model and [93–95] for a
starting point on its relation to JT gravity. Further physical perspectives on the construction
carried out in this paper can be found in [98, 100, 106, 107]. In the following, we do mention
some related more probabilistic references.
The Schwarzian Field Theory is formally related to a degenerate limit of Liouville Field Theory
[97, 108], and the conformal bootstrap and the DOZZ formula applied in this context has been
used to predict the correlation functions of the Schwarzian Field Theory [97]. While much
progress has been made on the mathematical justification of Liouville Field Theory [109, 110],
see [103] for a review, and it would be very interesting to explore this connection, this paper,
[104], and [105] only use standard stochastic analysis.
Random homeomorphisms of T have also been studied in the context of random conformal
welding [111, 112], where given a random homeomorphism of the circle one constructs
an associated random Jordan curve in the plane. The Schwarzian Field Theory provides a
different natural random diffeomorphism of the circle, and it would be interesting to explore
the associated random conformal welding. We also remark that the space Diff1(T)/PSL(2,R)
has also appeared in the study of large deviations of SLE [113].
Some motivation for the construction of quasi-invariant measures on diffeomorphism groups
(and loop groups), of which the Schwarzian Theory is an example, has been the construction of
unitary representations of those. The earliest references concerning quasi-invariant measures
on Diff1(T) appear to go back to Shavgulidze and collaborators such as [114], and we refer
to [115] for further discussion and references. The Malliavins also considered such measures
[116], and diffusion on such spaces (and quotients) and associated Wiener measures were
studied in follow-up works such as [117, 118].
Finally, we mention that the theory of path integrals for coadjoint orbits of loop group extension
of compact Lie groups is somewhat well-developed. On a formal level, these orbits again carry
a natural symplectic structure and the path integral associated to the Hamiltonian generating the
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𝑈 (1) action is of Duistermaat–Heckman form. However, this case looks simpler as the relevant
Hamiltonian is simply the Dirichlet energy associated with a Lie algebra valued Brownian
bridge. Bismut has developed an analytical approach to the calculation of the corresponding
heat kernels via a rigorous Duistermaat–Heckman-type deformation involving hypoelliptic
Laplacians, see, e.g., [119].

5.1.4 Preliminaries and notation

We write D𝑟 = {𝑧 ∈ C : |𝑧 | < 𝑟} for the open disk of radius 𝑟 and D = D1 for the open unit disk.
The unit circle is denoted by T = [0,1]/{0 ∼ 1}, and Diff𝑘 (T) is the set of oriented 𝐶𝑘-
diffeomorphisms of T, i.e. 𝜑 ∈ Diff𝑘 (T) can be identified with a 𝑘-times continuously differ-
entiable function 𝜑 : R→ R satisfying 𝜑(𝜏 +1) = 𝜑(𝜏) +1 and 𝜑′(𝜏) > 0 for all 𝜏 ∈ R. Note
that Diff𝑘 (T) is not a linear space. The topology on Diff𝑘 (T) is the natural one given by
the identification of 𝜑 with 𝜉 ∈ 𝐶𝑘−1 [0,1] and Θ ∈ R as in (5.1.6), which makes Diff𝑘 (T) is
a Polish (separable completely metrisable) space as well as a topological group. The same
topology is induced by viewing Diff𝑘 (T) as a subspace of 𝐶𝑘 (T).
It is also useful to consider diffeomorphisms of [0,1] (or more generally of [0,𝑇]) that
are not periodic, and we denote by Diff𝑘 [0,𝑇] the set of oriented 𝐶𝑘-diffeomorphisms of
[0,𝑇] satisfying 𝜑′(𝑡) > 0, 𝜑(0) = 0, and 𝜑(𝑇) = 𝑇 . Thus the derivatives do not have to
match at the endpoints. We further set 𝐶0,free [0,𝑇] = { 𝑓 ∈ 𝐶 [0,𝑇] | 𝑓 (0) = 0}, and 𝐶0 [0,𝑇] =
{ 𝑓 ∈ 𝐶 [0,𝑇] | 𝑓 (0) = 𝑓 (𝑇) = 0}.
The projective special linear group is PSL(2,R) = SL(2,R)/{±1} where SL(2,R) consists of
all matrices 𝑀 =

(
𝑎 𝑏
𝑐 𝑑

)
with real entries and determinant 1. The action of ±𝑀 ∈ PSL(2,R) on

𝜑 ∈ T is

𝑓 ↦→ 𝑀 ◦ 𝑓 = 𝑎 𝑓 + 𝑏
𝑐 𝑓 + 𝑑 , where 𝑓 = tan(𝜋𝜑− 𝜋

2 ). (5.1.24)

We may identify PSL(2,R) with its orbit at idT ∈ Diff1(T), equivalently parametrised by1

𝜑𝑧,𝑎 (𝑡) = 𝑎−
𝑖

2𝜋
ln
𝑒𝑖2𝜋𝑡 − 𝑧

1− 𝑧𝑒𝑖2𝜋𝑡
(mod 1), for 𝑧 ∈D := {𝑧 ∈ C : |𝑧 | < 1}, 𝑎 ∈ [0,1). (5.1.25)

1This parametrisation is the restriction to the boundary of the action of PSL(2,R) as a conformal map of the
unit disk onto itself, see for example [120, Section 6.2].
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Up to normalisation, the Haar measure on PSL(2,R) then takes the form2

d𝜈𝐻 (𝜑𝑧,𝑎) =
4𝜌d𝜌 d𝜃 d𝑎
(1− 𝜌2)2

, where 𝑧 = 𝜌 𝑒𝑖2𝜋𝜃 , (5.1.26)

and we always assume this normalisation for the Haar measure. One may check that the
subspace topology on the {𝜑𝑧,𝑎}𝑧∈D,𝑎∈[0,1) inherited from Diff1(T) agrees with the topology
on PSL(2,R). Hence, the PSL(2,R)-orbit at idT is a faithful embedding of PSL(2,R) as a
subgroup of Diff1(T). As a consequence, the right action of PSL(2,R) on Diff1(T) is a proper

group action.
Finally, we recall the definition of the Schwarzian derivative (5.1.2) and the chain rule (5.1.9).
The chain rule implies that the Schwarzian action can be written as

S(tan(𝜋𝜑− 𝜋
2 ), 𝜏) = S(𝜑, 𝜏) +2𝜋2𝜑′(𝜏)2 (5.1.27)

where we used that S(tan(𝜋𝜑− 𝜋
2 ), 𝜑) = 2𝜋2. In particular,

S(tan(𝜋(𝜓 ◦𝜑) − 𝜋
2 ), 𝜏) = S(𝜓 ◦𝜑, 𝜏) +2𝜋2(𝜓 ◦𝜑)′(𝜏)2

= S(𝜑, 𝜏) +
[
S(𝜓,𝜑(𝜏)) +2𝜋2(𝜓′(𝜑(𝜏))2

]
𝜑′(𝜏)2

= S(tan(𝜋𝜑− 𝜋
2 ), 𝜏) +

(
S(tan(𝜋𝜓− 𝜋

2 ), 𝜑(𝜏)) −2𝜋2
)
𝜑′(𝜏)2,

(5.1.28)
where we used (5.1.27) on the first and third line and the chain rule (5.1.9) on the second line.

5.2 Definition of the Schwarzian measure

In this section, we define the Schwarzian Field Theory as a finite Borel measure ℳ𝜎2 supported
on Diff1(T)/PSL(2,R), and its unquotiented version ℳ̃𝜎2 which is an infinite Borel measure
on Diff1(T).
In Section 5.2.1, we begin with the definition of the unnormalised Brownian bridge measure
B 𝑎,𝑇
𝜎2 which is the starting point for the definition of the former measures. In Section 5.2.2,

we then define measures 𝜇𝜎2 through a change of variable of the product of an unnormalised
Brownian bridge and a Lebesgue measure. The Schwarzian Field Theory measure is finally
defined in Section 5.2.3.

2See for example [121, Lemma 9.16] which states that the Haar measure on PSL(2,R) is given as the uniform
measure on circle (corresponding to d𝑎) and the hyperbolic measure on the upper half plane H. In (5.1.26) we
have parametrised the hyperbolic measure by the Poincaré disk D instead of H.
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5.2.1 Unnormalised Brownian Bridge measure

The unnormalised version of the Brownian bridge measure is defined in Definition 5.2.1 below.
It should be a finite measure on 𝐶0,free [0,𝑇] = { 𝑓 ∈ 𝐶 [0,𝑇] | 𝑓 (0) = 0} formally represented as

dB 𝑎,𝑇
𝜎2 (𝜉) = exp

{
− 1

2𝜎2

∫ 𝑇

0
𝜉′2(𝑡) d𝑡

}
𝛿(𝜉 (0))𝛿(𝜉 (𝑇) − 𝑎)

∏
𝜏∈(0,𝑇)

d𝜉 (𝜏). (5.2.1)

More generally, with a metric 𝜌2 : T→ R+, the unnormalised Brownian bridge measure should
be

dB 𝑎,𝑇𝜌 (𝜉) = exp
{
−1

2

∫ 𝑇

0
𝜉′2(𝑡) d𝑡

𝜌(𝑡)

}
𝛿(𝜉 (0))𝛿(𝜉 (𝑇) − 𝑎)

∏
𝜏∈(0,𝑇)

d𝜉 (𝜏). (5.2.2)

For any 𝑇1,𝑇2 > 0, 𝑎 ∈ R and any positive continuous functional 𝐹 on 𝐶 [0,𝑇1 +𝑇2], we then
expect ∫

𝐹 (𝜉) dB 𝑎,𝑇1+𝑇2
𝜌 (𝜉) =

∫
R

∫ ∫
𝐹 (𝜉1⊔ 𝜉2) dB 𝑏,𝑇1

𝜌 (𝜉1) dB 𝑎−𝑏,𝑇2
𝜌(𝑇1+·) (𝜉2) d𝑏, (5.2.3)

where for 𝑓 ∈ 𝐶0,free [0,𝑇1] and 𝑔 ∈ 𝐶0,free [0,𝑇2], we denote by 𝑓 ⊔ 𝑔 ∈ 𝐶0,free [0,𝑇1 +𝑇2] the
function

( 𝑓 ⊔𝑔) (𝑡) =
{
𝑓 (𝑡) if 𝑡 ∈ [0,𝑇1],
𝑓 (𝑇1) +𝑔(𝑡 −𝑇1) if 𝑡 ∈ (𝑇1,𝑇1 +𝑇2] .

(5.2.4)

The precise definition achieving these properties is as follows.

Definition 5.2.1: The unnormalised Brownian bridge measure with variance 𝜎2 > 0 is a finite
Borel measure dB 𝑎,𝑇

𝜎2 on 𝐶0,free [0,𝑇] such that

√︁
2𝜋𝑇𝜎2 exp

{
𝑎2

2𝑇𝜎2

}
dB 𝑎,𝑇

𝜎2 (𝜉) (5.2.5)

is the distribution of a Brownian bridge (𝜉 (𝑡))𝑡∈[0,𝑇] with variance 𝜎2 and 𝜉 (0) = 0, 𝜉 (𝑇) = 𝑎.
More generally, given 𝜌 : [0,𝑇] → R+, let dB 𝑎,𝑇𝜌 be a measure on 𝐶0,free [0,𝑇] such that√︄

2𝜋
∫ 𝑇

0
𝜌(𝑡) d𝑡 exp


𝑎2

2
∫ 𝑇

0 𝜌(𝑡) d𝑡

 dB 𝑎,𝑇𝜌 (𝜉) (5.2.6)

is the distribution of a Brownian bridge (𝜉 (𝑡))𝑡∈[0,𝑇] with quadratic variation
(
∫ 𝑡

0 𝜌(𝜏) d𝜏)𝑡∈[0,𝑇] and 𝜉 (0) = 0, 𝜉 (𝑇) = 𝑎.
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Remark 5.2.2: A Brownian bridge on [0,𝑇] with quadratic variation (
∫ 𝑡

0 𝜌(𝜏) d𝜏)𝑡∈[0,𝑇] can
be obtained from a Brownian bridge with quadratic variation 𝜎2𝑡 via the reparametrisation

𝑡 ↦→ ℎ(𝑡) =
∫ 𝑡

0

𝜌(𝜏)
𝜎2 d𝜏, where 𝜎2𝑇 =

∫ 𝑇

0
𝜌(𝜏) d𝜏, (5.2.7)

and the normalisations in (5.2.5) and (5.2.6) are also compatible. In other words,

𝜉 ◦ ℎ ∼ B 𝑎,𝑇𝜌 if 𝜉 ∼ B 𝑎,𝑇
𝜎2 . (5.2.8)

Heuristically, this corresponds to the following change of variable in the action of the Brownian
bridge:

1
𝜎2

∫ 𝑇

0
𝜉′(𝜏)2 d𝜏 =

1
𝜎2

∫ 𝑇

0
𝜉′(ℎ(𝜏))2ℎ′(𝜏) 𝑑𝜏 = 1

𝜎2

∫ 𝑇

0
(𝜉 ◦ℎ)′(𝜏)2 𝑑𝜏

ℎ′(𝜏) =
∫ 𝑇

0
(𝜉 ◦ℎ)′(𝜏)2 𝑑𝜏

𝜌(𝜏) .
(5.2.9)

The remaining definitions in Section 5.2 which are expressed in terms of constant 𝜎2 can
therefore be transferred in a straightforward way by reparametrisation.

The above normalisation of the normalised Brownian bridge in Definition 5.2.1 is exactly the
one that is needed to ensure that the composition property (5.2.3) holds. We note that, up to a
constant, it coincides with the 𝜁-function regularisation of the determinant, see Remark 5.2.4.

Proposition 5.2.3: The unnormalised Brownian bridge measures dB 𝑎,𝑇
𝜎2 satisfy the property

(5.2.3).

Proof. Notice that dB 𝑎,𝑇𝜌 (𝜉) ⊗ d𝑎 is a probability measure and that the distribution of 𝜉 under
this measure that of a Brownian motion restricted to [0,𝑇], see [RevuzYor, Exercise (3.16)].
Therefore, the Markov property for Brownian motion implies that the distribution of 𝜉1⊔ 𝜉2

under dB 𝑏,𝑇1
𝜌 (𝜉1) ⊗ d𝑏 ⊗ dB 𝑎−𝑏,𝑇2

𝜌 (𝜉2) ⊗ d𝑎 is a Brownian motion restricted to [0,𝑇1 +𝑇2]. On
the other hand, 𝜉 under dB 𝑎,𝑇1+𝑇1

𝜌 (𝜉) ⊗ d𝑎 is also a Brownian motion on [0,𝑇1 +𝑇2]. Since
(𝜉1⊔ 𝜉2) (𝑇1 +𝑇2) = 𝑎 under the first measure and 𝜉 (𝑇1 +𝑇2) = 𝑎 under the second measure, the
distributions of 𝜉1⊔ 𝜉2 and 𝜉 under dB 𝑏,𝑇1

𝜌 (𝜉1) ⊗ d𝑏 ⊗ dB 𝑎−𝑏,𝑇2
𝜌 (𝜉2) respectively dB 𝑎,𝑇1+𝑇1

𝜌 (𝜉)
must be the same, i.e. (5.2.3) holds. □

Remark 5.2.4: The normalisation in (5.2.6) coincides with square root of the 𝜁-function
normalised determinant, up to an overall constant. Indeed, if Δ𝜌 = 𝜌

−1 𝜕
𝜕𝜏
(𝜌−1 𝜕

𝜕𝜏
) is the
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Laplace–Beltrami operator on [0,𝑇] with metric 𝜌2 and Dirichlet boundary condition, then

det′
(
− 1

2𝜋
Δ𝜌

)
= 𝐶

∫ 𝑇

0
𝜌(𝑡) d𝑡, (5.2.10)

where det′ is the 𝜁-regularised determinant and 𝐶 is a constant independent of 𝜌. The determi-
nant is defined by (see for example [122])

det′
(
− 1

2𝜋
Δ𝜌

)
= 𝑒−𝜁

′ (0) , (5.2.11)

where 𝜁 is the spectral 𝜁-function, i.e. the analytic continuation of 𝜁 (𝑠) = ∑
𝑛𝜆
−𝑠
𝑛 where 𝜆𝑛 are

the eigenvalues of − 1
2𝜋Δ𝜌. To see the equality (5.2.10) one can adapt the argument leading to

[122, Equation (1.13)] to 𝑑 = 1.

5.2.2 Unnormalised Malliavin–Shavgulidze measure

Towards defining the Schwarzian measure ℳ𝜎2 , we next define a finite measure 𝜇𝜎2 on Diff1(T)
that is similar to what is known as the Malliavin–Shavgulidze measure, see [115, Section 11.5].
This measure is defined as a push-forward of an unnormalised Brownian bridge on [0,1] with
respect to a suitable change of variables, and should formally correspond to

d𝜇𝜎2 (𝜑) = exp

{
− 1

2𝜎2

∫ 1

0

(
𝜑′′(𝜏)
𝜑′(𝜏)

)2
d𝜏

} ∏
𝜏∈[0,1)

d𝜑(𝜏)
𝜑′(𝜏) . (5.2.12)

To motivate the actual definition, recall the formal density (5.2.1) of the unnormalised Brow-
nian bridge measure B 0,1

𝜎2 . Thus, formally, under the measure 𝜇𝜎2 the process (log𝜑′(𝜏) −
log𝜑′(0))𝜏∈[0,1) has the same density as (𝜉𝑡)𝑡∈[0,1) under B 0,1

𝜎2 . We define 𝜇𝜎2 by

d𝜇𝜎2 (𝜑) := dB 0,1
𝜎2 (𝜉) ⊗ dΘ, with 𝜑(𝑡) = Θ+P𝜉 (𝑡) (mod1), for Θ ∈ [0,1), (5.2.13)

where dΘ is the Lebesgue measure on [0,1) and with the change of variables

P(𝜉) (𝑡) := P𝜉 (𝑡) :=

∫ 𝑡

0 𝑒
𝜉 (𝜏) d𝜏∫ 1

0 𝑒
𝜉 (𝜏) d𝜏

, (5.2.14)
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The variable Θ corresponds to the value of 𝜑(0). Note that the map 𝜉 ↦→ P(𝜉) is a bijection
between 𝐶0,free [0,1] and Diff1 [0,1] with inverse map

P−1 : Diff1 [0,1] → 𝐶0,free [0,1]
𝜙 ↦→ log𝜙′(·) − log𝜙′(0).

(5.2.15)

With 𝜇𝜎2 defined as above, the following change of variables formula holds:

Proposition 5.2.5: Let 𝑓 ∈ Diff3 [0,1] be such that 𝑓 ′(0) = 𝑓 ′(1) and 𝑓 ′′(0) = 𝑓 ′′(1), and
denote by 𝑓 ∗𝜇𝜎2 = 𝑓 −1

∗ 𝜇𝜎2 the push-forward of 𝜇𝜎2 under left composition with 𝑓 −1, i.e.,

𝑓 ∗𝜇𝜎2 (𝐴) = 𝜇𝜎2 ( 𝑓 ◦ 𝐴), (5.2.16)

where 𝑓 ◦ 𝐴 :=
{
𝑓 ◦𝜑

��𝜑 ∈ 𝐴}. Then

d 𝑓 ∗𝜇𝜎2 (𝜑)
d𝜇𝜎2 (𝜑) = exp

{
1
𝜎2

∫ 1

0
S 𝑓

(
𝜑(𝑡)

)
𝜑′2(𝑡) d𝑡

}
. (5.2.17)

The proposition is a consequence of the following change of variable formula for the unnor-
malised Brownian bridge. For 𝑓 ∈ Diff3 [0,1] denote by 𝐿 𝑓 the left composition operator on
Diff1 [0,1]:

𝐿 𝑓 (𝜑) = 𝑓 ◦𝜑. (5.2.18)

Proposition 5.2.6: Let 𝑓 ∈ Diff3 [0,1] and set 𝑏 = log 𝑓 ′(1) − log 𝑓 ′(0). Let 𝑓 ♯B 𝑎,1
𝜎2 =

𝑓 −1
♯
B 𝑎,1
𝜎2 be the push-forward of B 𝑎,1

𝜎2 under P−1 ◦ 𝐿 𝑓 −1 ◦P =
(
P−1 ◦ 𝐿 𝑓 ◦P

)−1. Then for

any 𝑎 ∈ R, 𝑓 ♯B 𝑎,1
𝜎2 is absolutely continuous with respect to B 𝑎−𝑏,1

𝜎2 and

d 𝑓 ♯B 𝑎,1
𝜎2 (𝜉)

dB 𝑎−𝑏,1
𝜎2 (𝜉)

=
1√︁

𝑓 ′(0) 𝑓 ′(1)
exp

{
1
𝜎2

[
𝑓 ′′(0)
𝑓 ′(0) P

′
𝜉 (0) −

𝑓 ′′(1)
𝑓 ′(1) P

′
𝜉 (1)

]
+ 1
𝜎2

∫ 1

0
S 𝑓

(
P𝜉 (𝑡)

)
P′𝜉 (𝑡)2 d𝑡

}
.

(5.2.19)

We prove this statement in an appendix in Section 5.6. A similar statement (for the Wiener
measure instead of the unnormalised Brownian bridge) can be found in [115, Theorem 11.5.1],
for example. For now, we show how it implies Proposition 5.2.5:

Proof of Proposition 5.2.5. Let

𝜑(𝑡) = Θ+P𝜉 (𝑡) (mod1), (5.2.20)(
𝑓 ◦𝜑

)
(𝑡) = Θ̃+P

𝜉
(𝑡) (mod1). (5.2.21)
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In other words,
Θ̃ = 𝑓 (Θ), 𝜉 =

(
P−1 ◦ 𝐿 𝑓Θ ◦P

)
(𝜉), (5.2.22)

where 𝑓Θ(𝜏) = 𝑓 (𝜏 +Θ) − Θ̃. From (5.2.13) we see that,

d 𝑓 ∗𝜇𝜎2 (𝜑) = d 𝑓 ♯
Θ
B 0,1
𝜎2 (𝜉) ×d 𝑓 (Θ), (5.2.23)

with notation as in Proposition 5.2.6. Hence, Proposition 5.2.6 implies

d 𝑓 ♯
Θ
B 0,1
𝜎2 (𝜉)

dB 0,1
𝜎2 (𝜉)

=
1

𝑓 ′(Θ) exp
{

1
𝜎2

∫
T
S 𝑓

(
𝜑(𝑡)

)
𝜑′2(𝑡) d𝑡

}
, (5.2.24)

and using
d 𝑓 (Θ)

dΘ
= 𝑓 ′(Θ) (5.2.25)

the proof is finished. □

We define the measure 𝜇𝜌 in which 𝜎2 is generalised to 𝜌 : T→ R+ analogously to (5.2.13) by

d𝜇𝜌 (𝜑) := exp
{∫ 1

0

(𝜑′′(𝜏)
𝜑′(𝜏)

)′ d𝜏
𝜌(𝜏)

}
dB 0,1

𝜌 (𝜉) ⊗ dΘ, (5.2.26)

again with 𝜑(𝑡) = Θ+P𝜉 (𝑡) (mod1) and P𝜉 (𝑡) given by (5.2.14), and where the term in the
exponential is interpreted as the Itô integral∫ 1

0

(𝜑′′(𝜏)
𝜑′(𝜏)

)′ d𝜏
𝜌(𝜏) =

∫ 1

0
𝜉′′(𝜏) d𝜏

𝜌(𝜏) =
∫ 1

0

𝜌′(𝜏)
𝜌(𝜏)2

d𝜉 (𝜏). (5.2.27)

Thus 𝜇𝜌 has formal density

d𝜇𝜌 (𝜑) = exp
{∫ 1

0
S(𝜑, 𝜏) d𝜏

𝜌(𝜏)

} ∏
𝜏∈[0,1)

d𝜑(𝜏)
𝜑′(𝜏) . (5.2.28)

Lemma 5.2.7: Let ℎ : [0,1] → [0,1] be as in (5.2.7). Then∫
𝐹 (𝜑) d𝜇𝜌 (𝜑) = exp

{
1
2

∫ 1

0

𝜌′(𝜏)2
𝜌(𝜏)3

d𝜏
} ∫

𝐹 (𝜑 ◦ ℎ) d𝜇𝜎2 (𝜑). (5.2.29)
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Proof. Giranov’s theorem, using that the quadratic variation of d𝜉 (𝜏) is 𝜌(𝜏) d𝜏, gives

exp
{
−1

2

∫ 1

0

𝜌′(𝜏)2
𝜌(𝜏)3

d𝜏
} ∫

𝐹 (𝜑) d𝜇𝜌 (𝜑)

=

∫
𝐹 (𝜑) exp

{∫ 1

0
𝜓′(𝜏) 𝑑𝜉 (𝜏) − 1

2

∫ 1

0
𝜓′(𝜏)2 𝜌(𝜏) d𝜏

}
dB 0,1

𝜌 (𝜉) ⊗ dΘ

=

∫
𝐹 (𝜑𝜓) dB 0,1

𝜌 (𝜉) ⊗ dΘ

(5.2.30)

where 𝜓(𝑡) = −1/𝜌(𝜏) and

𝜑𝜓 (𝑡) = Θ+
∫ 𝑡

0 𝑒
𝜉 (𝜏)+𝑔(𝜏) d𝜏∫ 1

0 𝑒
𝜉 (𝜏)+𝑔(𝜏) d𝜏

= Θ+
∫ 𝑡

0 𝑒
𝜉 (𝜏) 𝜌(𝜏) d𝜏∫ 1

0 𝑒
𝜉 (𝜏) 𝜌(𝜏) d𝜏

, (5.2.31)

with the following drift resulting from Girsanov’s theorem:

𝑔(𝜏) =
∫ 𝜏

0
𝜓′(𝑡)𝜌(𝑡) d𝑡 =

∫ 𝜏

0
(log 𝜌)′(𝑡) d𝑡 = log(𝜌(𝜏)/𝜌(0)). (5.2.32)

Let 𝜉 ∼ B 0,1
𝜎2 and recall that 𝜉 = 𝜉 ◦ ℎ ∼ B 0,1

𝜌 . Let Θ ∼ dΘ on [0,1). Then since 𝜌(𝜏) = 𝜎2ℎ′(𝜏),

𝜑𝜓 (𝑡) = Θ+
∫ 𝑡

0 𝑒
(𝜉◦ℎ) (𝜏) ℎ′(𝜏) d𝜏∫ 1

0 𝑒
(𝜉◦ℎ) (𝜏) ℎ′(𝜏) d𝜏

= Θ+
∫ ℎ(𝑡)

0 𝑒𝜉 (𝜏) d𝜏∫ 1
0 𝑒

𝜉 (𝜏) d𝜏
= (𝜑̃ ◦ ℎ) (𝑡) (5.2.33)

where 𝜑̃ ∼ 𝜇𝜎2 . In summary, we have∫
𝐹 (𝜑) exp

{
−1

2

∫ 1

0

𝜌′(𝜏)2
𝜌(𝜏)3

d𝜏
}

d𝜇𝜌 (𝜑) =
∫
𝐹 (𝜑̃ ◦ ℎ) d𝜇𝜎2 (𝜑̃) (5.2.34)

which is the claim. □

Remark 5.2.8: It is instructive to verify the identity (5.2.29) in terms of the formal actions of
𝜇𝜎2 and 𝜇𝜌, see (5.2.12) and (5.2.28). Let 𝑦 : [0,1] → [0,1] be the inverse to ℎ. Then, in view
of (5.2.8), the statement for the formal actions is equivalent to

1
2𝜎2

∫ 1

0

( (𝜑 ◦ 𝑦)′′(𝜏)
(𝜑 ◦ 𝑦)′(𝜏)

)2
d𝜏 =

1
2

∫ 1

0

(𝜑′′(𝜏)
𝜑′(𝜏)

)2 d𝜏
𝜌(𝜏) −

∫ 1

0

(𝜑′′(𝜏)
𝜑′(𝜏)

)′ d𝜏
𝜌(𝜏) +

1
2

∫ 1

0

𝜌′′(𝜏)2
𝜌′(𝜏)3

d𝜏.

(5.2.35)
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To verify this, note

1
2

∫ 1

0

( (𝜑 ◦ 𝑦)′′(𝜏)
(𝜑 ◦ 𝑦)′(𝜏)

)2
d𝜏 =

1
2

∫ 1

0

( (𝜑′′ ◦ 𝑦) (𝜏)𝑦′(𝜏)2 + (𝜑′ ◦ 𝑦) (𝜏)𝑦′′(𝜏)
(𝜑′ ◦ 𝑦) (𝜏)𝑦′(𝜏)

)2
d𝜏

=
1
2

∫ 1

0

( (𝜑′′ ◦ 𝑦) (𝜏)
(𝜑′ ◦ 𝑦) (𝜏)

)2
𝑦′(𝜏)2 d𝜏

+
∫ 1

0

(𝜑′′ ◦ 𝑦) (𝜏)
(𝜑′ ◦ 𝑦) (𝜏) 𝑦

′′(𝜏) d𝜏 + 1
2

∫ 1

0

( 𝑦′′(𝜏)
𝑦′(𝜏)

)2
d𝜏.

(5.2.36)

Changing variables from 𝜏 to ℎ(𝜏) and using 𝑦′(ℎ(𝜏)) = 1/ℎ′(𝜏) and 𝑦′′(ℎ(𝜏))ℎ′(𝜏) =−ℎ′′(𝜏)/ℎ′(𝜏)2,
the right-hand side equals

1
2

∫ 1

0

(𝜑′′(𝜏)
𝜑′(𝜏)

)2 d𝜏
ℎ′(𝜏) +

∫ 1

0

𝜑′′(𝜏)
𝜑′(𝜏)

( 1
ℎ′(𝜏)

)′
d𝜏 + 1

2

∫ 1

0

ℎ′′(𝜏)2
ℎ′(𝜏)3

d𝜏. (5.2.37)

The claim is obtained by dividing by 𝜎2 and using 𝜎2ℎ′(𝜏) = 𝜌(𝜏).

5.2.3 Schwarzian measure

In view of (5.1.1) and (5.2.12), the unquotiented Schwarzian measure is defined by

dℳ̃𝜎2 (𝜑) = exp
{

2𝜋2

𝜎2

∫ 1

0
𝜑′2(𝜏) d𝜏

}
d𝜇𝜎2 (𝜑). (5.2.38)

Since 𝜇𝜎2 is supported on Diff1(T), this defines a Borel measure on Diff1(T). In Proposi-
tion 5.2.9 below, it is verified that this measure is invariant under the right action of PSL(2,R).
In particular, we remark that ℳ̃𝜎2 is an infinite measure since PSL(2,R) has infinite Haar
measure. The Schwarzian measure on Diff1(T)/PSL(2,R) with formal density (5.1.1) will
be defined as the quotient of ℳ̃𝜎2 by PSL(2,R), see Proposition 5.2.10 and Definition 5.2.11
below.
The change of measure formula from Theorem 5.1.1 is a consequence of Proposition 5.2.5. We
recall the statement as the following proposition.

Proposition 5.2.9: The measure ℳ̃𝜎2 satisfies the following change of variable formula for
any 𝜓 ∈ Diff3(T):

d𝜓∗ℳ̃𝜎2 (𝜑)
dℳ̃𝜎2 (𝜑)

= exp
{

1
𝜎2

∫ 1

0

[
S(tan(𝜋𝜓 + 𝜋2 ), 𝜑(𝑡)) −2𝜋2

]
𝜑′2(𝑡) d𝑡

}
. (5.2.39)
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In particular, ℳ̃𝜎2 is invariant under the right action of PSL(2,R). In other words, for any
𝜓 ∈ PSL(2,R) and Borel 𝐴 ⊂ Diff1(T) we have

ℳ̃𝜎2
(
𝜓 ◦ 𝐴

)
= ℳ̃𝜎2

(
𝐴
)
, (5.2.40)

where 𝜓 ◦ 𝐴 :=
{
𝜓 ◦𝜑

��𝜑 ∈ 𝐴}.

Proof. By Proposition 5.2.5,

d𝜓∗𝜇𝜎2

d𝜇𝜎2
= exp

{
1
𝜎2

∫ 1

0
S𝜓

(
𝜑(𝜏)

)
𝜑′2(𝜏) d𝜏

}
(5.2.41)

and

exp
{

2𝜋2

𝜎2

∫ 1
0 (𝜓 ◦𝜑)

′2(𝜏) d𝜏
}

exp
{

2𝜋2

𝜎2

∫ 1
0 𝜑
′2(𝜏) d𝜏

} = exp
{

2𝜋2

𝜎2

∫ 1

0

(
𝜓′(𝜑(𝜏))2−1

)
𝜑′2(𝜏) d𝜏

}
. (5.2.42)

Using the identity (5.1.27), i.e.,

S(tan(𝜋𝜓− 𝜋
2 ), 𝜑) = S(𝜓,𝜑) +2𝜋2𝜓′2(𝜑), (5.2.43)

therefore

d𝜓∗ℳ̃𝜎2 (𝜑)
dℳ̃𝜎2 (𝜑)

= exp
{

1
𝜎2

∫ 1

0

[
S(tan(𝜋𝜓− 𝜋

2 ), 𝜑(𝜏)) −2𝜋2
]
𝜑′2(𝜏) d𝜏

}
(5.2.44)

as claimed. □

From the PSL(2,R)-invariance of the measure, it follows that ℳ̃𝜎2 can be decomposed into a
product of the Haar measure of PSL(2,R) with its quotient by PSL(2,R). Since PSL(2,R) is
not compact, we need to choose the normalisation of the Haar measure 𝜈𝐻 , and we work with
the normalisation (5.1.26). The precise statement is as follows.

Proposition 5.2.10: There exists a unique Borel measure ℳ𝜎2 on Diff1(T)/PSL(2,R) such
that for any continous 𝐹 : Diff1(T) → [0,∞],∫

Diff1 (T)

dℳ̃𝜎2 (𝜑) 𝐹 (𝜑) =

∫
Diff1 (T)/PSL(2,R)

dℳ𝜎2 (𝜑)
∫

PSL(2,R)

d𝜈𝐻 (𝜓) 𝐹 (𝜓 ◦𝜑), (5.2.45)



5.2 Definition of the Schwarzian measure 109

where the right hand side is well-defined since the second integral only depends on 𝜑 ∈
Diff1(T) through the conjugacy class of 𝜑 in Diff1(T)/PSL(2,R). (We recall the abuse of
notation to use 𝜑 both for an element of Diff1(T) and its conjugacy class.)

Proof. Since the space Diff1(T) is not locally compact, we could not locate a reference for
the existence of the quotient measures (which would be standard in the locally compact
situation). Therefore, in the appendix in Section 5.7, we establish a sufficiently general result
(Proposition 5.7.1) about such quotient measures. Note that the assumptions of that result are
satisfied in our context: ℳ̃𝜎2 is a Radon measure on Diff1(T) (because the Brownian bridge is
a Radon measure on 𝐶 [0,1]), Diff1(T) is a complete separable metric space, and PSL(2,R)
acts continuously and properly from the right (note the discussion after (5.1.26)). Moreover,
PSL(2,R) is unimodular and ℳ̃𝜎2 is invariant under its right action. □

Definition 5.2.11: The Schwarzian measure is given by ℳ𝜎2 .

Finally, we generalise the above definition to a nontrivial metric 𝜌2 : T→ R+. First, define the
unquotiented Schwarzian measure with metric 𝜌2 : T→ R+ analogously by

dℳ̃𝜌 (𝜑) = exp
{
2𝜋2

∫ 1

0
𝜑′2(𝜏) d𝜏

𝜌(𝜏)

}
d𝜇𝜌 (𝜑), (5.2.46)

where we recall that 𝜌 is the positive square root of 𝜌2. The change of variable formula (5.2.29)
relating 𝜇𝜎2 and 𝜇𝜌, together with the identity (see (5.4.5) for the computation)∫ 1

0
S(ℎ, 𝜏) d𝜏

𝜌(𝜏) =
1
2

∫ 1

0

𝜌′(𝜏)2
𝜌(𝜏)3

d𝜏, (5.2.47)

where ℎ is defined in terms of 𝜌 by (5.2.7), then imply the following relation between ℳ̃𝜎2 and
ℳ̃𝜌 and in particular the generalisation of Proposition 5.2.9.

Proposition 5.2.12: For any bounded continuous 𝐹 : Diff1(T) → R,∫
𝐹 (𝜑) dℳ̃𝜌 (𝜑) = exp

{∫ 1

0
S(ℎ, 𝜏) d𝜏

𝜌(𝜏)

} ∫
𝐹 (𝜑 ◦ ℎ) dℳ̃𝜎2

𝜌
(𝜑), 𝜎2

𝜌 =

∫ 1

0
𝜌(𝜏) d𝜏.

(5.2.48)
In particular, the change of variable formula (5.1.16) follows from (5.1.13), i.e.

d𝜓∗ℳ̃𝜌 (𝜑)
dℳ̃𝜌 (𝜑)

= exp
{∫ 1

0

[
S(tan(𝜋𝜓− 𝜋

2 ), 𝜑(𝜏)) −2𝜋2
]
𝜑′(𝜏)2 d𝜏

𝜌(𝜏)

}
. (5.2.49)
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As a consequence of the change of variable formula, also ℳ̃𝜌 is PSL(2,R) invariant and the
quotient of ℳ̃𝜌 by PSL(2,R) exists as in Proposition 5.2.10. We define ℳ𝜌 as this quotient.

Definition 5.2.13: The Schwarzian measure ℳ𝜌 with metric 𝜌2 is the quotient of ℳ̃𝜌 by
PSL(2,R).

Remark 5.2.14: The change of variable formula (5.2.48) is consistent with the chain rule for
the Schwarzian derivative, i.e. for any 𝑓 , ℎ ∈ 𝐶3,

S( 𝑓 ◦ ℎ, 𝜏) = S( 𝑓 , ℎ(𝜏)) (ℎ′(𝜏))2 +S(ℎ, 𝜏). (5.2.50)

Indeed, the chain rule implies that

1
𝜎2

∫ 1

0
S( 𝑓 ◦ 𝑦, 𝜏) d𝜏 =

∫ 1

0
S( 𝑓 , 𝜏) d𝜏

𝜌(𝜏) −
∫ 1

0
S(ℎ, 𝜏) d𝜏

𝜌(𝜏) , (5.2.51)

where 𝑦 is the inverse to ℎ.

5.3 Expectation via regularisation

In this section we will introduce an approximation of the Schwarzian measure by finite measures
with formal density

exp

{
− 1

2𝜎2

∫ 1

0

[(
𝜑′′(𝜏)
𝜑′(𝜏)

)2
−4𝛼2𝜑′2(𝜏)

]
d𝜏

} ∏
𝜏∈[0,1)

d𝜑(𝜏)
𝜑′(𝜏) , (5.3.1)

where we allow 𝛼2 to take real values in (−∞, 𝜋2), i.e., 𝛼 ∈ 𝑖R∪ (0, 𝜋). For 𝛼 = 𝜋 this measure
would correspond to the unquotiented Schwarzian measure ℳ̃𝜎2 , which is infinite as remarked
below (5.2.38). Below we will see that the measure is finite for 𝛼2 < 𝜋2 and then compute
its partition function (i.e. total mass) as a function of 𝛼2. The latter is accessible due to
a diagonalisation (also referred to as a bosonisation in the literature) of the measure that
is available for 𝛼2 < 0: Indeed, in that case one can see that 𝜉 := 2

√
−𝛼2 𝜑 + log𝜑′ satisfies

𝜉 (1) = 𝜉 (0) +2
√
−𝛼2 and has formal density

𝛼

sin𝛼
exp

{
− 1

2𝜎2

∫ 1

0
𝜉′2(𝜏) d𝜏

} ∏
𝜏∈[0,1)

d𝜉 (𝜏). (5.3.2)
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Thus it describes the law on an unnormalised Brownian bridge (plus a uniform shift according
to the Lebesgue measure on R).
Upon quotienting by the R-translation (which corresponds to quotienting by a U(1)-symmetry
in (5.3.1)), the partition function of (5.3.2) can be evaluated in terms of that of the unnormalised
Brownian bridge and equals

𝛼

sin𝛼
𝑒2𝛼2/𝜎2

√
2𝜋𝜎2

. (5.3.3)

A similar reasoning is explained in [99], see also [102] and Remark 5.3.9 below. For comparison,
we emphasise that the former reference uses a different normalisation, without the prefactor
𝛼/sin𝛼 in (5.3.2). The prefactor is important in the limit 𝛼→ 𝜋 that we are interested in,
however, because 𝛼/sin𝛼 diverges. We will show that this formal calculation indeed provides
the total mass of (5.3.1) for all 𝛼2 < 𝜋2, by relying on the described bosonisation for 𝛼2 < 0
and using an additional analytic extension to access the parameter range 𝛼2 ∈ [0, 𝜋2).

Remark 5.3.1: The measures in (5.3.1) can be motivated in the context of Virasoro coadjoint
orbits. Any 𝛼2 ∈ R corresponds to an orbit of Diff (T) acting on 𝔳𝔦𝔯∗. The action has geometrical
meaning in that its Hamiltonian flow (with respect to the natural Kirillov-Kostant-Souriau
symplectic form on the orbit) generates the U(1)-action 𝜓(·) ↦→ 𝜓(· + 𝑡).

5.3.1 Measure regularisation

In order to evaluate expectations with respect to the (finite) quotient measure ℳ𝜎2 , it is helpful
to approximate the (infinite) unquotiented measure ℳ̃𝜎2 by finite measures. Since these
measures are finite, they necessarily break the PSL(2,R)-invariance. The following convenient
regularisation was proposed in [98]. For 𝛼 ∈ (0, 𝜋) ∪ 𝑖R consider the measures given by

d𝒩𝛼

𝜎2 (𝜑) = exp
{

2𝛼2

𝜎2

∫ 1

0
𝜑′2(𝑡) d𝑡

}
dB 0,1

𝜎2 (𝜉), where 𝜑 = P(𝜉). (5.3.4)

By definition, this measure is supported on functions 𝜑 with 𝜑(0) = 0. In particular, ℳ̃𝜎2

differs from the limiting case 𝛼↗ 𝜋 of 𝒩𝛼

𝜎2 only by rotation by the random angle Θ, which is
chosen independently and uniformly on T. As hinted at earlier, these measures are finite and
we can explicitly determine their partition function (i.e. total mass):

Proposition 5.3.2: For any 𝛼 ∈ (0, 𝜋) ∪ 𝑖R we have

𝒩
𝛼

𝜎2

(
Diff1(T)

)
=

𝛼

sin𝛼
𝑒2𝛼2/𝜎2

√
2𝜋𝜎2

. (5.3.5)
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Note that this mass diverges as 𝛼↗ 𝜋, which is expected due to the PSL(2,R)-invariance of
the limiting measure (resp. the limiting measure with an additional uniform rotation). However,
we are able to obtain precise control over the divergence of mass along PSL(2,R)-orbits (see
Lemma 5.3.5). As a consequence, we obtain the following approximation result for expectations
of non-negative functionals of the quotiented Schwarzian measure:

Proposition 5.3.3: Let 𝐹 : Diff1(T)/PSL(2,R) → [0,∞] be a continuous function. Then∫
Diff1 (T)/PSL(2,R)

𝐹 (𝜑) dℳ𝜎2 (𝜑) = lim
𝛼→𝜋−

4𝜋(𝜋−𝛼)
𝜎2

∫
Diff1 (T)

𝐹 (𝜑) d𝒩𝛼

𝜎2 (𝜑), (5.3.6)

where, by slight abuse of notation, on the right-hand side we denote the lift of 𝐹 along the
quotient map Diff1(T)↠ Diff1(T)/PSL(2,R) by 𝐹 as well.

5.3.1.1 Regularised measures 𝒩𝛼

𝜎2 as 𝛼↗ 𝜋: Proof of Proposition 5.3.3

The proposition follows from the following lemmas. Recall the parametrisation (5.1.25) of
PSL(2,R) and that in this parametrisation, the Haar measure takes the form (5.1.26).

Lemma 5.3.4: For 𝜑𝑧,𝑎 as in (5.1.25), with 𝜌 = |𝑧 | < 1,∫ 1

0
𝜑′2𝑧,𝑎 (𝑠) d𝑠 =

1+ 𝜌2

1− 𝜌2 . (5.3.7)

Moreover, as 𝜌↗ 1 the functions 1−𝜌2

1+𝜌2 𝜑
′2
𝑧,0 are an approximate identity on T, i.e. for any

𝑓 ∈ 𝐶 (T),

lim
𝜌↗1

[
1− 𝜌2

1+ 𝜌2

∫
𝜑′2𝑧,0(𝑠) 𝑓 (𝑠) d𝑠

]
= 𝑓 (𝜃), 𝑧 = 𝜌 𝑒𝑖2𝜋𝜃 , (5.3.8)

uniformly in 𝜃 ∈ T.

Proof. Since

𝑒𝑖2𝜋𝜑𝑧,𝑎 (𝑡) = 𝑒𝑖2𝜋𝑎
𝑒𝑖2𝜋𝑡 − 𝑧

1− 𝑒𝑖2𝜋𝑡𝑧
, (5.3.9)

it suffices to consider Möbius transformations of D1, given by

𝑤→ 𝐺𝑧 (𝑤) =
𝑤− 𝑧

1−𝑤𝑧 . (5.3.10)

In order to prove (5.3.7) we then need to show that

1
(2𝜋)2

∫ 1

0

���� d
d𝑡

(
𝑒𝑖2𝜋𝑡 − 𝑧

1− 𝑒𝑖2𝜋𝑡 𝑧

)����2 d𝑡 =
1+ |𝑧 |2
1− |𝑧 |2

. (5.3.11)
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To see this, expand
𝑒𝑖2𝜋𝑡 − 𝑧

1− 𝑒𝑖2𝜋𝑡 𝑧
= −𝑧+

∞∑︁
𝑛=1

𝑒𝑖2𝜋𝑛𝑡𝑧𝑛−1(1− 𝑧 𝑧). (5.3.12)

Therefore,
1
(2𝜋)2

∫ 1

0

���� d
d𝑡

(
𝑒𝑖2𝜋𝑡 − 𝑧

1− 𝑒𝑖2𝜋𝑡 𝑧

)����2 d𝑡 =
∞∑︁
𝑛=1

𝑛2 |𝑧 |2𝑛−2(1− |𝑧 |2)2. (5.3.13)

The right-hand side equals

∞∑︁
𝑛=0
(𝑛+1)2 |𝑧 |2𝑛−2

∞∑︁
𝑛=1

𝑛2 |𝑧 |2𝑛 +
∞∑︁
𝑛=2
(𝑛−1)2 |𝑧 |2𝑛 = 1+4|𝑧 |2−2|𝑧 |2 +

∞∑︁
𝑛=2

2|𝑧 |2𝑛 = 1+ |𝑧 |2
1− |𝑧 |2

,

(5.3.14)
which gives (5.3.11). The claim (5.3.8) follows similarly. Since 𝐶∞(T) is dense in 𝐶 (T), it
suffices to assume that 𝑓 ∈ 𝐶∞(T). Then

𝑓 (𝑡) =
∑︁
𝑘∈Z

𝑒𝑖2𝜋𝑘𝑡 𝑓𝑘 , (5.3.15)

with ( 𝑓𝑘 )𝑘∈Z ∈ ℓ1. Therefore

1
(2𝜋)2

∫ 1

0

���� d
d𝑡

(
𝑒𝑖2𝜋𝑡 − 𝑧

1− 𝑒𝑖2𝜋𝑡 𝑧

)����2 𝑓 (𝑡) d𝑡 =
∑︁
𝑘

𝑓𝑘

∞∑︁
𝑛=1

1𝑛≥−𝑘 𝑛(𝑛+ 𝑘)𝑧𝑘 |𝑧 |2𝑛−2(1− |𝑧 |2)2

=
∑︁
𝑘

𝑓𝑘𝑒
𝑖2𝜋𝑘𝜃𝑞𝑘 (𝜌) (5.3.16)

with

𝑞𝑘 (𝜌) =
∞∑︁
𝑛=1

1𝑛≥−𝑘 𝑛(𝑛+ 𝑘)𝜌2𝑛−2+𝑘 (1− 𝜌2)2. (5.3.17)

Analogous to (5.3.14),

𝑞𝑘 (𝜌) =
∞∑︁
𝑛=0

1𝑛≥−𝑘−1 (𝑛+1) (𝑛+1+ 𝑘)𝜌2𝑛+𝜌 −2
∞∑︁
𝑛=1

1𝑛≥−𝑘 𝑛(𝑛+ 𝑘)𝜌2𝑛+𝑘

+
∞∑︁
𝑛=2

1𝑛≥−𝑘+1 (𝑛−1) (𝑛−1+ 𝑘)𝜌2𝑛+𝑘 =
∞∑︁
𝑛=2

1𝑛≥−𝑘 2𝜌2𝑛+𝑘 +𝑂 (1). (5.3.18)
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Therefore as 𝜌↗ 1,

(1− 𝜌2)𝑞𝑘 (𝜌) =𝑂 (1), lim
𝜌↗1
(1− 𝜌2)𝑞𝑘 (𝜌) = 2. (5.3.19)

By dominated convergence, (5.3.8) follows. □

Lemma 5.3.5: For 𝜑 ∈ Diff1(T), define

𝐷𝛼 (𝜑) = 4𝜋(𝜋−𝛼)
𝜎2

∫
PSL(2,R)

exp
{
−2(𝜋2−𝛼2)

𝜎2

∫ 1

0
(𝜓 ◦𝜑)′2(𝑡) d𝑡

}
d𝜈𝐻 (𝜓). (5.3.20)

Then the following holds.

1. For any 𝜑 ∈ Diff1(T),
𝐷𝛼 (𝜑) ≤ 2𝜋

𝜋 +𝛼 . (5.3.21)

2. For any 𝜑 ∈ Diff1(T),
lim
𝛼→𝜋−

𝐷𝛼 (𝜑) = 1. (5.3.22)

Proof. First, we prove (5.3.21). By (5.1.26),∫
PSL(2,R)

𝐹 (𝜓) d𝜈𝐻 (𝜓) =
∫

0≤𝜌<1
0≤𝜃<1
0≤𝑎<1

𝐹 (𝜑𝑧,𝑎)
4𝜌d𝜌 d𝜃 d𝑎
(1− 𝜌2)2

. (5.3.23)

Recall the parameterisation (5.1.25). Clearly one has (𝜑𝑧,𝑎 ◦ 𝜑)′ = (𝜑𝑧,0 ◦ 𝜑)′ = (𝜑′𝑧,0 ◦ 𝜑) 𝜑
′.

Upon the reparametrisation 𝑠 = 𝜑(𝑡), we get∫ 1

0
(𝜑𝑧,𝑎 ◦𝜑)′2(𝑡) d𝑡 =

∫ 1

0

𝜑′2
𝑧,0(𝑠)

(𝜑−1)′(𝑠)
d𝑠. (5.3.24)

We insert this into (5.3.20) and apply Jensen’s inequality to obtain

𝐷𝛼 (𝜑) = 4𝜋(𝜋−𝛼)
𝜎2

∫
0≤𝜌<1
0≤𝜃<1

exp

{
−2(𝜋2−𝛼2)

𝜎2

∫ 1

0

𝜑′2
𝑧,0(𝑠)

(𝜑−1)′(𝑠)
𝑑𝑠

}
4𝜌d𝜌 d𝜃
(1− 𝜌2)2

,

≤ 4𝜋(𝜋−𝛼)
𝜎2

∫
0≤𝜌<1
0≤𝜃<1

∫ 1

0

1− 𝜌2

1+ 𝜌2 𝜑
′2
𝑧,0(𝑠) exp

{
−2(𝜋2−𝛼2)

𝜎2 · 1+ 𝜌
2

1− 𝜌2 ·
1

(𝜑−1)′(𝑠)

}
d𝑠

4𝜌d𝜌 d𝜃
(1− 𝜌2)2

.

(5.3.25)
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Then, by Tonelli’s theorem,

𝐷𝛼 (𝜑) ≤ 4𝜋(𝜋−𝛼)
𝜎2

∫
0≤𝜌<1

∫ 1

0
exp

{
−2(𝜋2−𝛼2)

𝜎2 · 1+ 𝜌
2

1− 𝜌2 ·
1

(𝜑−1)′(𝑠)

}
d𝑠

4𝜌d𝜌
(1− 𝜌2)2

=
4𝜋(𝜋−𝛼)

𝜎2

∫ 1

0
exp

{
− 2(𝜋2−𝛼2)
𝜎2(𝜑−1)′(𝑠)

}
𝜎2(𝜑−1)′(𝑠)
2(𝜋2−𝛼2)

d𝑠

≤ 4𝜋(𝜋−𝛼)
𝜎2

∫ 1

0

𝜎2(𝜑−1)′(𝑠)
2(𝜋2−𝛼2)

d𝑠

=
2𝜋
𝜋 +𝛼 .

(5.3.26)

To find the limit of 𝐷𝛼 (𝜑), recall that
{

1−𝜌2

1+𝜌2 𝜑
′2
𝑧,0

}
𝜌↗1

is an approximate identity. More precisely,

∫ 1

0

𝜑′2
𝑧,0(𝑠)

(𝜑−1)′(𝑠)
d𝑠 =

1+ 𝜌2

1− 𝜌2 ·
(

1
(𝜑−1)′(𝜃)

+ 𝑜(1)
)

as 𝜌↗ 1, (5.3.27)

uniformly in 𝜃 ∈ T, by Lemma 5.3.4. Therefore, as 𝛼↗ 𝜋,∫
0≤𝜌<1

exp

{
−2(𝜋2−𝛼2)

𝜎2

∫ 1

0

𝜑′2
𝑧,0(𝑠)

(𝜑−1)′(𝑠)
d𝑠

}
4𝜌d𝜌
(1− 𝜌2)2

= exp

{
− 2(𝜋2−𝛼2)
𝜎2

[
(𝜑−1)′(𝜃) + 𝑜(1)

] } 𝜎2 [(𝜑−1)′(𝜃) + 𝑜(1)
]

2(𝜋2−𝛼2)
+𝑂 (1)

=
𝜎2(𝜑−1)′(𝜃)
2(𝜋2−𝛼2)

(
1+ 𝑜(1)

)
.

(5.3.28)

Integration in 𝜃 finishes the proof. □

Proof of Proposition 5.3.3. It follows from the definition of ℳ̃𝜎2 that

exp
{
−2(𝜋2−𝛼2)

𝜎2

∫ 1

0
𝜑′2(𝑡) d𝑡

}
dℳ̃𝜎2 (𝜑) = d𝒩𝛼

𝜎2 (𝜑0) ⊗ dΘ, (5.3.29)

where
𝜑(·) = 𝜑0(·) +Θ, for Θ ∈ [0,1). (5.3.30)

Therefore,∫
Diff1 (T)

𝐹 (𝜑) d𝒩𝛼

𝜎2 (𝜑) =
∫

Diff1 (T)
𝐹 (𝜑) exp

{
−2(𝜋2−𝛼2)

𝜎2

∫ 1

0
𝜑′2(𝑡) d𝑡

}
dℳ̃𝜎2 (𝜑). (5.3.31)
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Using the definition of 𝐷𝛼 given in (5.3.20) and the factorisation of ℳ̃𝜎2 as stated in (5.2.45),

4𝜋(𝜋−𝛼)
𝜎2

∫
Diff1 (T)

𝐹 (𝜑) exp
{
−2(𝜋2−𝛼2)

𝜎2

∫ 1

0
𝜑′2(𝑡) d𝑡

}
dℳ̃𝜎2 (𝜑)

=

∫
Diff1 (T)/PSL(2,R)

𝐷𝛼 (𝜑)𝐹 (𝜑) dℳ𝜎2 (𝜑). (5.3.32)

If
∫
𝐹
(
𝜑
)
dℳ𝜎2

(
𝜑
)

is finite, then using Lemma 5.3.5 and the Dominated Convergence Theorem
we obtain the desired result. If, on the other hand,

∫
𝐹
(
𝜑
)
dℳ𝜎2

(
𝜑
)

is infinite, then we get the
desired by Fatou’s Lemma. □

5.3.1.2 Partition function of 𝒩𝛼

𝜎2: Proof of Proposition 5.3.2

The first step of the proof of Proposition 5.3.2 is the following application of the change of
measure formula for the unnormalised Malliavin–Shavgulidze measure.

Proposition 5.3.6: For any 𝛼 ∈ (0, 𝜋) ∪ 𝑖R we have

𝒩
𝛼

𝜎2

(
Diff1(T)

)
=

𝛼

sin𝛼

∫
Diff1 (T)

exp

{
8sin2 𝛼

2
𝜎2 · 𝜑′(0)

}
d𝒩0

𝜎2 (𝜑). (5.3.33)

Remark 5.3.7: All functions of 𝛼 in Proposition 5.3.6 are even. Therefore, their values are
real.

Proof. For 𝛼 = 0 the statement is obvious. First we consider 𝛼 ∈ (0, 𝜋). Take

𝑓 (𝑡) = 1
2

[
1

tan 𝛼
2

tan
(
𝛼

(
𝑡 − 1

2

))
+1

]
. (5.3.34)

It is easy to check that

S 𝑓 (𝑡) = 2𝛼2, 𝑓 ′(0) = 𝑓 ′(1) = 𝛼

sin𝛼
, − 𝑓

′′(0)
𝑓 ′(0) =

𝑓 ′′(1)
𝑓 ′(1) = 2𝛼 tan

𝛼

2
. (5.3.35)

Thus, it follows from Proposition 5.2.6 and the definition of 𝒩𝛼

𝜎2 which was given in (5.3.4)
that for any non-negative continuous functional 𝐹 on Diff1(T) we have∫

Diff1 (T)
𝐹 (𝜑) d𝒩0

𝜎2 (𝜑)

=
sin𝛼
𝛼

∫
Diff1 (T)

𝐹 ( 𝑓 ◦𝜑) exp
{
−4𝛼
𝜎2 tan

𝛼

2
· 𝜑′(0) + 2𝛼2

𝜎2

∫ 1

0
𝜑′2(𝑡) d𝑡

}
d𝒩0

𝜎2 (𝜑). (5.3.36)
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Now we choose 𝐹 to be

𝐹 (𝜑) = exp

{
8sin2 𝛼

2
𝜎2 · 𝜑′(0)

}
, (5.3.37)

which guarantees that

𝐹 ( 𝑓 ◦𝜑) = exp
{

4𝛼
𝜎2 tan

𝛼

2
· 𝜑′(0)

}
, (5.3.38)

and the claim follows. Finally, for 𝛼 ∈ 𝑖R the proof is exactly the same if we take

𝑓 (𝑡) = 1
2

[
1

tanh 𝑖𝛼
2

tanh
(
𝑖𝛼

(
𝑡 − 1

2

))
+1

]
. (5.3.39)

□

Now we make sense of and prove [98, Equation (20)]. For 𝜆 ≥ 1 this is a direct change
of variable and related to the construction in [99] of global equivariant Darboux charts, see
Remark 5.3.9.

Lemma 5.3.8: For any 𝜆 ∈ (−1,+∞) we have

∫
exp


−2𝜆2

𝜎2(𝜆+1)
· 1∫ 1

0 𝑒
𝜉 (𝑡) d𝑡

 dB 0,1
𝜎2 (𝜉) =

1
√

2𝜋𝜎
exp

{
−

2
(
log(𝜆+1)

)2

𝜎2

}
. (5.3.40)

Proof. We follow the argument from Appendix B in [100]. Consider 𝑔 ∈ Diff3
+ [0,1] given by

𝑔(𝑡) = (𝜆+1)𝑡
𝜆𝑡 +1

. (5.3.41)

It is easy to see that

𝑔′(𝑡) = 𝜆+1
(𝜆𝑡 +1)2

, 𝑔′′(𝑡) = −2(𝜆+1)𝜆
(𝜆𝑡 +1)3

, S𝑔 (𝑡) = 0. (5.3.42)

Then, according to Proposition 5.2.6,

d𝑔♯B−2log(𝜆+1),1
𝜎2 (𝜉)

dB 0,1
𝜎2 (𝜉)

= exp

−2𝜆
𝜎2

(
1− 1

𝜆+1

)
1∫ 1

0 𝑒
𝜉 (𝑡)𝑑𝑡

 . (5.3.43)
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Therefore,∫
exp


−2𝜆
𝜎2

(
1− 1

𝜆+1

)
1∫ 1

0 𝑒
𝜉 (𝑡) d𝑡

 dB 0,1
𝜎2 (𝜉) =

1
√

2𝜋𝜎
exp

{
−

(
2log(𝜆+1)

)2

2𝜎2

}
, (5.3.44)

which finishes the proof. □

Remark 5.3.9: The construction from the proof above is related to the construction of global
equivariant Darboux charts proposed in [99] as follows: For 𝛼 ∈ 𝑖R take 𝑓 as in the proof
of Proposition 5.3.6 and 𝑔 as in the proof of Lemma 5.3.8 with 𝜆 = 𝑒 |𝛼 | − 1. Then 𝑔 ◦ 𝑓 ◦P
corresponds to map 𝑞−1 as defined in [99] under suitable normalisation. However, this map
does not generalize to the case 𝛼 > 0.

We use the following analytic continuation lemma to access 𝜆 ∈ C satisfying |𝜆+1| = 1.

Lemma 5.3.10: Let P be a non-negative measure on R+. Assume that there exists 𝜀 > 0
such that the exponential moment generating function 𝐹 (𝑧) =

∫
exp (𝑧𝑋) dP(𝑋) exists for

all 𝑧 ∈ [0, 𝜀). Assume further that for some 𝑅 > 0, 𝐹 (𝑧) can be analytically continued for
all 𝑧 ∈ D𝑅. Then

∫
exp (𝑧𝑋) dP(𝑋) converges absolutely for all 𝑧 ∈ D𝑅, and is equal to the

analytic continuation of 𝐹 (𝑧) to D𝑅.

Proof. Since P supported on R+, by Tonelli’s Theorem,

𝐹 (𝑧) =
∑︁
𝑛≥0

𝑧𝑛

∫
𝑋𝑛 dP(𝑋)
𝑛!

, (5.3.45)

for 𝑧 ∈ [0, 𝜀). Given that 𝐹 (𝑧) is analytic in D𝑅, we conclude that the right-hand side converges
absolutely for 𝑧 ∈ D𝑅. Thus, by Tonelli’s Theorem again, Eexp (𝑧𝑋) converges for 𝑧 ∈ [0, 𝑅)
and is equal to 𝐹 (𝑧). We can continue the equality for the whole disc D𝑅, since |𝑧𝑛𝑋𝑛 | ≤ |𝑧 |𝑛𝑋𝑛,
and all expressions are absolutely convergent in D𝑅. □

Lemma 5.3.11: For any 𝜆 ∈ C with |𝜆+1| = 1 we have

∫
exp


−2𝜆2

𝜎2(𝜆+1)
· 1∫ 1

0 𝑒
𝜉 (𝑡) d𝑡

 dB 0,1
𝜎2 (𝜉) =

1
√

2𝜋𝜎
exp

{
−

2
(
log(𝜆+1)

)2

𝜎2

}
. (5.3.46)

Here log(𝜆+1) is taken in [−𝑖𝜋, 𝑖𝜋), making the right-hand side of (5.3.46) continuous for 𝜆
in question.
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Observe that the right-hand side of (5.3.46) is not a well-defined analytic function on the whole
complex plane. Thus, the left-hand side of (5.3.46) does not converge for some values of 𝜆.

Proof. We prove that we can analytically continue the equality from Lemma 5.3.8. Consider
the function

𝐹 (𝑧) =
∫

exp


𝑧

𝜎2
∫ 1

0 𝑒
𝜉 (𝑡) d𝑡

 dB 0,1
𝜎2 (𝜉). (5.3.47)

We are interested in taking 𝑧 = − 2𝜆2

𝜆+1 . Observe that since 𝑧 = −2((𝜆+1) −2+ 1
𝜆+1 ), we have that

𝜆 in question correspond to 𝑧 ∈ [0,8], and 𝜆 ∈ (−1,∞) corresponds to 𝑧 ∈ (−∞,0].
First, we notice that it follows from Lemma 5.6.1 that there exists 𝜀 > 0 such that the integral
in (5.3.47) converges absolutely for all 𝑧 ∈ D𝜀, defining an analytic function in D𝜀.
Secondly, observe that from (5.3.40) for 𝜆 ∈ (−1,+∞) we obtain that for all 𝑧 ∈ (−𝜖,0], we
have

𝐹 (𝑧) = 1
√

2𝜋𝜎
exp

−
2
𝜎2

(
log

(
−𝑧+4+

√
𝑧2−8𝑧

4

))2 . (5.3.48)

Notice that the right-hand side in (5.3.48) defines an analytic function for |𝑧 | < 8. Indeed, the
only problematic point in D8 is 𝑧 = 0, but around 𝑧 = 0 the expression in (5.3.48) is analytic,
since different branches of the square root give rise to the values of log which differ only by a
sign which, in turn, is cancelled by taking the square. Now we use Lemma 5.3.10 and obtain
that for 𝑧 ∈ D8 the expectation in (5.3.47) converges and

∫
exp


𝑧

𝜎2
∫ 1

0 𝑒
𝜉 (𝑡) d𝑡

 dB 0,1
𝜎2 (𝜉) =

1
√

2𝜋𝜎
exp

−
2
𝜎2

(
log

(
−𝑧+4+

√
𝑧2−8𝑧

4

))2 , (5.3.49)

for all 𝑧 ∈ D8. Also note that by taking 𝑧→ 8 and monotone convergence we can continue
identity for 𝑧 = 8 as well. We finish the proof by using the fact that values of 𝜆 with |𝜆+1| = 1
correspond to 𝑧 ∈ [0,8]. □

Proof of Proposition 5.3.2. By Proposition 5.3.6 and (5.3.4) we have

𝒩
𝛼

𝜎2

(
Diff1(T)

)
=

𝛼

sin𝛼

∫
𝐶0 [0,1]

exp


8sin2 𝛼
2

𝜎2 · 1∫ 1
0 𝑒

𝜉 (𝑡) d𝑡

 dB 0,1
𝜎2 (𝜉) (5.3.50)
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where we used that for 𝜑 = P(𝜉), we have

𝜑′(0) = 1∫ 1
0 𝑒

𝜉 (𝑡) d𝑡
. (5.3.51)

Applying Lemma 5.3.11 with 𝜆 = 𝑒𝑖𝛼 −1 for 𝛼 ∈ (0, 𝜋) or Lemma 5.3.8 with 𝜆 = 𝑒 |𝛼 | −1 for
𝛼 ∈ 𝑖R we get

∫
𝐶0 [0,1]

exp


8sin2 𝛼
2

𝜎2 · 1∫ 1
0 𝑒

𝜉 (𝑡) d𝑡

 dB 0,1
𝜎2 (𝜉) =

1
√

2𝜋𝜎
exp

{
2𝛼2

𝜎2

}
, (5.3.52)

which concludes the proof. □

5.4 Partition function and proofs of main theorems

Theorem 5.1.1 was already proved in Proposition 5.2.9, and the corresponding change of
measure formula with general metric of Theorem 5.1.3 was proved in Proposition 5.2.12. Thus
it remains to prove Theorem 5.1.2 and the corresponding statement for the partition function
with general metric in Theorem 5.1.3.

Proof of Theorem 5.1.2. Our goal is to prove

𝑍 (𝜎2) :=ℳ𝜎2

(
Diff1(T)/PSL(2,R)

)
=

(
2𝜋
𝜎2

)3/2
exp

(
2𝜋2

𝜎2

)
=

∫ ∞

0
exp

(
−𝜎

2𝑘2

2

)
sinh(2𝜋𝑘) 2𝑘 d𝑘

=

∫ ∞

0
𝑒−𝜎

2𝐸 sinh(2𝜋
√

2𝐸) 2d𝐸.

(5.4.1)

For the first line in (5.4.1) we apply Proposition 5.3.3 and Proposition 5.3.2:

ℳ𝜎2

(
Diff1(T)/PSL(2,R)

)
= lim
𝛼→𝜋−

4𝜋(𝜋−𝛼)
𝜎2 𝒩

𝛼

𝜎2

(
Diff1(T)

)
.

= lim
𝛼→𝜋−

4𝜋(𝜋−𝛼)
𝜎2

𝛼

sin𝛼
𝑒2𝛼2/𝜎2

√
2𝜋𝜎2

=

(
2𝜋
𝜎2

)3/2
exp

(
2𝜋2

𝜎2

)
.

(5.4.2)
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The second line in (5.4.1) follows from an elementary integration by parts:∫ ∞

0
exp

(
−𝜎

2𝑘2

2

)
sinh(2𝜋𝑘) 2𝑘 d𝑘 =

4𝜋
𝜎2

∫ ∞

0
exp

(
−𝜎

2𝑘2

2

)
cosh(2𝜋𝑘) d𝑘

=
2𝜋
𝜎2

∫ ∞

−∞
exp

(
−𝜎

2𝑘2

2
+2𝜋𝑘

)
d𝑘

=

(
2𝜋
𝜎

)3/2
exp

(
2𝜋2

𝜎2

)
.

(5.4.3)

The third line then follows by changing variables to 𝐸 = 1
2 𝑘

2. □

Proof of (5.1.17) in Theorem 5.1.3. By the definition of the Schwarzian measure with metric
and the representation (5.2.48), the total mass of ℳ̃𝜌 is simply

𝑍 (𝜎2
𝜌) exp

{∫ 1

0
S(ℎ, 𝜏) d𝜏

𝜌(𝜏)

}
, where 𝜎2

𝜌 =

∫ 1

0
𝜌(𝜏) d𝜏. (5.4.4)

As already remarked in (5.2.47), by integrating by parts, the term inside the exponential can be
written ∫ 1

0
S(ℎ, 𝜏) d𝜏

ℎ′(𝜏) =
∫ 1

0

((
ℎ′′(𝜏)
ℎ′(𝜏)

)′
− 1

2

(
ℎ′′(𝜏)
ℎ′(𝜏)

)2
)

d𝜏
ℎ′(𝜏)

=

∫ 1

0

(
−

(
ℎ′′(𝜏)
ℎ′(𝜏)

) (
1

ℎ′(𝜏)

)′
− 1

2

(
ℎ′′(𝜏)2
ℎ′(𝜏)3

))
d𝜏

=
1
2

∫ 1

0

ℎ′′(𝜏)2
ℎ′(𝜏)3

d𝜏,

(5.4.5)

which gives the claim. □

5.5 Appendix: Calculation of formal correlation functions

The truncated correlation functions are formally defined as the functional derivatives

⟨S(𝜏1); · · · ;S(𝜏𝑘 )⟩𝜎2 :=
𝛿

𝛿(1/𝜌) (𝜏1)
· · · 𝛿

𝛿(1/𝜌) (𝜏𝑘 )

���
𝜌=𝜎2

log𝑍 (𝜌). (5.5.1)

In the following we make sense of this expression in a distributional sense by considering the 𝑘-
th variation of log𝑍 (𝜌): For ℎ1, . . . , ℎ𝑘 ∈ 𝐶∞(T) define 𝜌𝜖1,...,𝜖𝑘 via 1/𝜌𝜖1,...,𝜖𝑘 = 1/𝜌+∑𝑘

𝑖=1 𝜖𝑖ℎ𝑖.
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Then

[𝐷𝑘
1/𝜌 log𝑍 (𝜌)] (ℎ1, . . . , ℎ𝑘 ) :=

𝜕𝑘

𝜕𝜖1 · · ·𝜕𝜖𝑘
��
0 log(𝑍 (𝜌𝜖1,...,𝜖𝑘 ))

=

∫ 𝑘∏
𝑖=1

d𝜏𝑖 ℎ(𝜏1) · · · ℎ(𝜏𝑘 ) ⟨S(𝜏1); · · · ;S(𝜏𝑘 )⟩𝜌,
(5.5.2)

where the last line is understood as defining (5.5.1) as a 𝑘-variate distribution.

Proposition 5.5.1: For 𝜎2 > 0, 𝑘 ≥ 1 and ℎ1, · · · , ℎ𝑘 ∈ 𝐶∞(T) we have

[𝐷𝑘
1/𝜌 log𝑍 (𝜌)]

���
𝜌=𝜎2
(ℎ1, . . . , ℎ𝑘 )

= (−1)𝑘 𝑘!𝜎2(𝑘−1)
∑︁

1≤𝑖< 𝑗≤𝑘

∫
d𝜏ℎ′𝑖ℎ

′
𝑗

∏
𝑙≠𝑖, 𝑗ℎ𝑙

+ (−1)𝑘𝜎2𝑘
∑︁

𝜋∈Part[𝑘]
𝜎2|𝜋 | [log𝑍] ( |𝜋 |) (𝜎2)

∏
𝐵∈𝜋

(
|𝐵 |!

∫
d𝜏

∏
𝑏∈𝐵

ℎ𝑏 (𝜏)
)
,

(5.5.3)

where the sum in the last line is over all partitions 𝜋 = {𝐵1, . . . , 𝐵|𝜋 |} of {1, . . . , 𝑘}.

Corollary 5.5.2: For non-coinciding 𝜏1, · · · , 𝜏𝑘 ∈ T we have

⟨S(𝜏1); · · · ;S(𝜏𝑘 )⟩𝜎2 = (−1)𝑘𝜎4𝑘 [log𝑍] (𝑘) (𝜎2) = 2𝜋2𝑘!𝜎2(𝑘−1) + 3
2 (𝑘 −1)!𝜎2𝑘 . (5.5.4)

Thus the Schwarzian correlators are constant away from coinciding points and their values
(up to factors of 𝜎2) are given by the cumulants of the Boltzmann-weighted spectral density
𝑒−𝜎

2𝐸 𝜌(𝐸) d𝐸 , see (5.1.14). The untruncated Schwarzian correlators for non-coinciding points
are therefore equal to the moments of the spectral measure 𝜌(𝐸) (again up to factors of 𝜎2).
We note that this relationship has been predicted by Stanford and Witten [96, Appendix C].
More generally, by (5.5.2) and (5.5.3) we can express the truncated Schwarzian correlators
completely in terms of multivariate (derivatives of) 𝛿-functions in the variables 𝜏𝑖. While the
general expression is somewhat messy, we can easily derive (5.1.21) and (5.1.22):

⟨S(𝜏)⟩𝜎2 = −𝜎4 [log𝑍]′(𝜎2) = 2𝜋 + 3
2𝜎

2 (5.5.5)

and

⟨S(0)S(𝜏)⟩𝜎2 = ⟨S(0);S(𝜏)⟩𝜎2 + ⟨S(0)⟩𝜎2 ⟨S(𝜏)⟩𝜎2

= [2𝜋2𝜎2 + 3
2𝜎

4 + (2𝜋 + 3
2𝜎

2)2] −2𝜎2 [(2𝜋 + 3
2𝜎

2)]𝛿(𝜏) −2𝜎2𝛿′′(𝜏).
(5.5.6)
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Proof of Proposition 5.5.1. We treat the first and second summand in

log𝑍 (𝜌) = 1
2

∫
𝜌′2

𝜌3 + log𝑍 (𝜎2
𝜌) (5.5.7)

separately. For the second term, we simply apply the multivariate version Faà di Bruno’s
formula:

[𝐷𝑘
1/𝜌 log𝑍 (𝜎2

𝜌)]
���
𝜌=𝜎2
(ℎ1, . . . , ℎ𝑘 ) =

∑︁
𝜋∈Part[𝑘]

[log𝑍] ( |𝜋 |) (𝜎2)
∏
𝐵∈𝜋

(
[𝐷 |𝐵 |1/𝜌𝜎

2
𝜌]

���
𝜌=𝜎2
({ℎ𝑏}𝑏∈𝐶)

)
.

(5.5.8)
Recall that 𝜎2

𝜌 =
∫
𝜌 and check that

[𝐷 |𝐵 |1/𝜌𝜎
2
𝜌]

���
𝜌=𝜎2
({ℎ𝑏}𝑏∈𝐶) = (−1) |𝐵 | |𝐵 |!𝜎2( |𝐵 |+1)

∫ ∏
𝑏∈𝐵

ℎ𝑏 . (5.5.9)

This yields the second summand on the right hand side of (5.5.3). For the first summand write

𝐹 ( 1
𝜌
) :=

1
2

∫
𝜌′2

𝜌3 =
1
2

∫ (
log

1
𝜌

)′ ( 1
𝜌

)′
d𝜏. (5.5.10)

For smooth functions 𝑓 , ℎ ∈ 𝐶∞(T) and 𝑓 > 0 we have for 𝜖 > 0 sufficiently small

log( 𝑓 + 𝜖ℎ)′( 𝑓 + 𝜖ℎ)′ = ( 𝑓 ′+ 𝜖ℎ′)
(
log 𝑓 +

∑︁
𝑘≥1

(−1)𝑘−1

𝑘
𝜖 𝑘

(
ℎ

𝑓

) 𝑘 )′
= ( 𝑓 ′+ 𝜖ℎ′)

(
𝑓 ′

𝑓
+
∑︁
𝑘≥1
(−1)𝑘−1𝜖 𝑘

(
ℎ

𝑓

) 𝑘−1 (
ℎ

𝑓

)′)
,

(5.5.11)

with the series converging uniformly on T. Hence, we have for sufficiently small 𝜖 > 0 that

𝐹 ( 1
𝜎2 + 𝜖ℎ) =

1
2

∑︁
𝑘≥2
(−𝜖)𝑘𝜎2(𝑘−1)

∫
ℎ′2ℎ𝑘−2. (5.5.12)

In other words

[𝐷𝑘
1/𝜌𝐹 (1/𝜌)]

���
𝜌=𝜎2
(ℎ, . . . , ℎ) = (−1)𝑘 𝑘!𝜎2(𝑘−1) 1

2

∫
ℎ′2ℎ𝑘−2. (5.5.13)

The general derivative [𝐷𝑘
1/𝜌𝐹 (1/𝜌)]

��
𝜌=𝜎2 (ℎ1, . . . , ℎ𝑘 ) follows by polarisation of this identity

and yields the first summand on the right hand side (5.5.3). □
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5.6 Appendix: Change of variables: Proof of Proposition 5.2.6

LetW𝜎2 denote the Wiener measure with variance𝜎2 on𝐶0,free [0,1] = { 𝑓 ∈ 𝐶 [0,1] | 𝑓 (0) = 0},
and recall the definition of the unnormalised Brownian bridge B 𝑎,1

𝜎2 from 0 to 𝑎 in time 1 from
Definition 5.2.1. Then by [RevuzYor, Exercise (3.16)], for any 𝑋 ⊂ 𝐶0,free [0,1],

W𝜎2 (𝑋) =
∫
R
B 𝑎,1
𝜎2 (𝑋) d𝑎. (5.6.1)

Lemma 5.6.1: Let P be either B 𝑎,𝑇
𝜎2 for some 𝑎 ∈ R and 𝑇 > 0, orW𝜎2 (in this case we put

𝑇 = 1). Then there exists 𝜀 > 0 such that∫
exp©­« 𝜀∫ 𝑇

0 𝑒𝜉 (𝜏) d𝜏
ª®¬dP(𝜉) <∞. (5.6.2)

Proof. If P = B 𝑎,𝑇
𝜎2 , then let 𝜉 be a Brownian bridge distributed according to the probability

measure
√

2𝜋𝑇𝜎 exp
(
𝑎2

2𝑇𝜎2

)
dB 𝑎,𝑇

𝜎2 (𝜉), and according toW𝜎2 otherwise. Then

P


1∫ 𝑇

0 𝑒𝜉 (𝜏) d𝜏
> 𝜆

 ≤ P
[

min
𝑡∈[0,𝑒𝜆−1)]

𝜉 (𝑡) < −1
]
≤ 𝐶−1𝑒−𝐶𝜆, (5.6.3)

for some 𝐶 > 0, independent of 𝜆 > 10/𝑇 . □

Recall the left-composition operator 𝐿 𝑓 as in (5.2.18). The following lemma is key for the
calculations. It verifies formula (7) in [98] and (2.7) in [100], which are key for the calculations.

Lemma 5.6.2: Let 𝑓 ∈ Diff3 [0,1], and let 𝑓 ♯W𝜎2 = 𝑓 −1
♯
W𝜎2 be the push-forward ofW𝜎2

under P−1 ◦ 𝐿 𝑓 −1 ◦P =
(
P−1 ◦ 𝐿 𝑓 ◦P

)−1. Then

d 𝑓 ♯W𝜎2 (𝑊)
dW𝜎2 (𝑊) =

1√︁
𝑓 ′(0) 𝑓 ′(1)

× exp
{

1
𝜎2

[
𝑓 ′′(0)
𝑓 ′(0) P

′
𝑊 (0) −

𝑓 ′′(1)
𝑓 ′(1) P

′
𝑊 (1)

]
+ 1
𝜎2

∫ 1

0
S 𝑓

(
P𝑊 (𝑡)

) (
P′𝑊 (𝑡)

)2
d𝑡

}
. (5.6.4)
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Proof. Let 𝐵(𝑡) = 𝜎−1𝑊 (𝑡) be a standard Brownian motion. The transformation 𝑊 ↦→ P−1 ◦
𝐿 𝑓 ◦P(𝑊) corresponds to the transformation of 𝐵(𝑡) given by

𝐵(𝑡) ↦→ 𝐵(𝑡) +𝜎−1 log 𝑓 ′©­«
∫ 𝑡

0 𝑒
𝜎𝐵(𝜏) d𝜏∫ 1

0 𝑒
𝜎𝐵(𝜏) d𝜏

ª®¬−𝜎−1 log 𝑓 ′(0). (5.6.5)

The problem reduces to the calculation of Radon-Nikodym derivative of the probability measure,
corresponding to the standard Brownian motion under the transformation inverse to (5.6.5).
Denote

𝜙(𝑡) =
∫ 𝑡

0 𝑒
𝜎𝐵(𝜏) d𝜏∫ 1

0 𝑒
𝜎𝐵(𝜏) d𝜏

, (5.6.6)

and
ℎ(𝑥) = log 𝑓 ′(𝑥) − log 𝑓 ′(0). (5.6.7)

Using [123, Theorem 4.1.2], the Radon-Nikodym derivative is given by

det2 (1+𝐾) exp
(
−𝛿(𝑢) − 1

2

∫ 1

0
𝑢2(𝑡) d𝑡

)
, (5.6.8)

where 𝛿 denotes Skorokhod integral, det2 is a Hilbert-Carleman (or Carleman-Fredholm)
determinant (see, e.g. [124, Chapter X]), 𝑢(𝑡) = 𝑢[𝜙] (𝑡) is given by

𝑢(𝑡) = d
d𝑡
𝜎−1ℎ

(
𝜙(𝑡)

)
= 𝜎−1ℎ′

(
𝜙(𝑡)

)
𝜙′(𝑡), (5.6.9)

and 𝐾 = 𝐾 [𝜙] is the Fréchet derivative of the map

(𝐵(𝑡))𝑡∈[0,1] ↦→ (𝜎−1ℎ(𝜙(𝑡)))𝑡∈[0,1] =
©­«𝜎−1 log 𝑓 ′©­«

∫ 𝑡

0 𝑒
𝜎𝐵(𝜏) d𝜏∫ 1

0 𝑒
𝜎𝐵(𝜏) d𝜏

ª®¬−𝜎−1 log 𝑓 ′(0)ª®¬𝑡∈[0,1]
(5.6.10)

with respect to the Cameron-Martin space of Brownian motion, which we associate with the
Sobolev space 𝐻̃1 =

{
𝑔 : ∥𝑔∥𝐻̃1 =

∫ 1
0

(
𝑔′(𝑡)

)2 d𝑡 <∞, 𝑔(0) = 0
}
. Direct calculation shows that

(𝐾𝑔) (𝑡) =
∫ 1

0
𝑘 (𝑡, 𝑠)𝑔(𝑠) d𝑠, with 𝑘 (𝑡, 𝑠) = −ℎ′ (𝜙(𝑡)) 𝜙(𝑡)𝜙′(𝑠) +⊮𝑠<𝑡 ℎ′ (𝜙(𝑡)) 𝜙′(𝑠).

(5.6.11)
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Integral. First, we calculate Skorokhod integral

𝛿(𝑢) = 𝜎−1𝛿
(
ℎ′(𝜙(𝑡))𝜙′(𝑡)

)
= 𝜎−1𝛿

©­«ℎ′©­«
∫ 𝑡

0 𝑒
𝜎𝐵(𝜏) d𝜏∫ 1

0 𝑒
𝜎𝐵(𝜏) d𝜏

ª®¬ 𝑒𝜎𝐵(𝑡)∫ 1
0 𝑒

𝜎𝐵(𝜏) d𝜏
ª®¬ . (5.6.12)

The process is not adapted because of the term
∫ 1

0 𝑒
𝜎𝐵(𝜏) d𝜏. We use [123, Theorem 3.2.9] in

order to reduce the Skorokhod integral to a Itô integral. It follows from Lemma 5.6.1 that the
random variable

1∫ 1
0 𝑒

𝜎𝐵(𝜏) d𝜏
(5.6.13)

is Malliavin smooth and that

𝐷𝑡
©­« 1∫ 1

0 𝑒
𝜎𝐵(𝜏)𝑑𝜏

ª®¬ =
𝜎

∫ 1
𝑡
𝑒𝜎𝐵(𝜏) d𝜏(∫ 1

0 𝑒
𝜎𝐵(𝜏) d𝜏

)2 . (5.6.14)

Thus, since 𝑢(𝑡) is also Malliavin smooth, using [123, Theorem 3.2.9] we get

𝛿
©­«ℎ′©­«

∫ 𝑡

0 𝑒
𝜎𝐵(𝜏) d𝜏∫ 1

0 𝑒
𝜎𝐵(𝜏) d𝜏

ª®¬ 𝑒𝜎𝐵(𝑡)∫ 1
0 𝑒

𝜎𝐵(𝜏) d𝜏
ª®¬=

∫ 1

0
ℎ′

(
𝐹

∫ 𝑡

0
𝑒𝜎𝐵(𝜏) d𝜏

)
𝐹 𝑒𝜎𝐵(𝑡) d𝐵(𝑡)

����
𝐹=

(∫ 1
0 𝑒𝜎𝐵(𝜏 ) d𝜏

)−1

+
∫ 1

0

[
ℎ′′

(
𝜙(𝑡)

)
𝜙(𝑡)𝜙′(𝑡) + ℎ′

(
𝜙(𝑡)

)
𝜙′(𝑡)

]
· ©­«
𝜎

∫ 1
𝑡
𝑒𝜎𝐵(𝜏)𝑑𝜏∫ 1

0 𝑒
𝜎𝐵(𝜏)𝑑𝜏

ª®¬d𝑡. (5.6.15)

We observe that the expression in square brackets is equal to

d
d𝑡

[
ℎ′(𝜙(𝑡))𝜙(𝑡)

]
, (5.6.16)

and calculate the second term in the right-hand side of (5.6.15) by integrating by parts

∫ 1

0

[
ℎ′′

(
𝜙(𝑡)

)
𝜙(𝑡)𝜙′(𝑡) + ℎ′

(
𝜙(𝑡)

)
𝜙′(𝑡)

]
· ©­«
𝜎

∫ 1
𝑡
𝑒𝜎𝐵(𝜏) d𝜏∫ 1

0 𝑒
𝜎𝐵(𝜏) d𝜏

ª®¬d𝑡

= 𝜎

∫ 1

0
ℎ′(𝜙(𝑡))𝜙(𝑡) 𝑒𝜎𝐵(𝑡)∫ 1

0 𝑒
𝜎𝐵(𝜏) d𝜏

d𝑡. (5.6.17)
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Integrating by parts once again we obtain

𝜎

∫ 1

0
ℎ′(𝜙(𝑡))𝜙(𝑡) 𝑒𝜎𝐵(𝑡)∫ 1

0 𝑒
𝜎𝐵(𝜏) d𝜏

d𝑡 = 𝜎
∫ 1

0
ℎ′(𝜙(𝑡))𝜙′(𝑡)𝜙(𝑡) d𝑡

= 𝜎 ℎ(1) −𝜎
∫ 1

0
ℎ(𝜙(𝑡))𝜙′(𝑡) d𝑡

= 𝜎 ℎ(1) −𝜎
∫ 1

0
ℎ(𝑠) d𝑠. (5.6.18)

We calculate the first term in the right-hand side of (5.6.15) by replacing 𝑒𝜎𝐵(𝑡) d𝐵(𝑡) =
𝜎−1 d𝑒𝜎𝐵(𝑡) − 𝜎

2 𝑒
𝜎𝐵(𝑡) d𝑡, and using Itô integration by parts∫ 1

0
ℎ′

(
𝐹

∫ 𝑡

0
𝑒𝜎𝐵(𝜏) d𝜏

)
𝐹 𝑒𝜎𝐵(𝑡) d𝐵(𝑡)

����
𝐹=

(∫ 1
0 𝑒𝜎𝐵(𝜏 ) d𝜏

)−1

=
ℎ′(1)𝑒𝜎𝐵(1)

𝜎
∫ 1

0 𝑒
𝜎𝐵(𝜏) d𝜏

− ℎ′(0)
𝜎

∫ 1
0 𝑒

𝜎𝐵(𝜏) d𝜏
− 𝜎

2

∫ 1

0
ℎ′

(
𝜙(𝑡)

)
𝜙′(𝑡) d𝑡 −𝜎−1

∫ 1

0
ℎ′′ (𝜙(𝑡)) 𝜙′2(𝑡) d𝑡

= 𝜎−1ℎ′(1)𝜙′(1) −𝜎−1ℎ′(0)𝜙′(0) − 𝜎
2
ℎ(1) −𝜎−1

∫ 1

0
ℎ′′ (𝜙(𝑡)) 𝜙′2(𝑡) d𝑡. (5.6.19)

Therefore,

𝛿(𝑢) = 𝜎−2 (ℎ′(1)𝜙′(1) − ℎ′(0)𝜙′(0)) + 1
2
ℎ(1) −

∫ 1

0
ℎ(𝑠) d𝑠−𝜎−2

∫ 1

0
ℎ′′ (𝜙(𝑡)) 𝜙′2(𝑡) d𝑡.

(5.6.20)
Determinant. To calculate the Hilbert-Carleman determinant det2 (1+𝐾), with 𝐾 given by
(5.6.11), we use [124, Chapter XIII, Corollary 1.2]. In the notations from [124, Chapter XIII]
we have

𝑘 (𝑡, 𝑠) =

𝐹1(𝑡)𝐺1(𝑠), 0 ≤ 𝑠 < 𝑡 ≤ 1;

−𝐹2(𝑡)𝐺2(𝑠), 0 ≤ 𝑡 < 𝑠 ≤ 1,
(5.6.21)

with

𝐹1(𝑡) = ℎ′(𝜙(𝑡)) (1−𝜙(𝑡)) , 𝐹2(𝑡) = ℎ′(𝜙(𝑡))𝜙(𝑡), 𝐺1(𝑠) = 𝐺2(𝑠) = 𝜙′(𝑠). (5.6.22)

According to [124, Chapter XIII, Corollary 1.2],

det2(1+𝐾) = det (𝑁1 +𝑁2𝑈 (1)) · exp
{∫ 1

0
𝐹2(𝑠)𝐺2(𝑠) d𝑠

}
, (5.6.23)
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where

𝑁1 =
©­«
1 0

0 0
ª®¬ , 𝑁2 =

©­«
0 0

0 1
ª®¬ , (5.6.24)

and𝑈 (𝑡) is a 2×2 matrix which satisfies the differential equation

𝑈 (0) = ©­«
1 0

0 1
ª®¬ , 𝑈′(𝑡) = −©­«

𝐺1(𝑡)𝐹1(𝑡) 𝐺1(𝑡)𝐹2(𝑡)

𝐺2(𝑡)𝐹1(𝑡) 𝐺2(𝑡)𝐹2(𝑡)
ª®¬𝑈 (𝑡). (5.6.25)

We start by solving the differential equation (5.6.25). Note that

©­«
𝐺1(𝑡)𝐹1(𝑡) 𝐺1(𝑡)𝐹2(𝑡)

𝐺2(𝑡)𝐹1(𝑡) 𝐺2(𝑡)𝐹2(𝑡)
ª®¬ = ℎ′

(
𝜙(𝑡)

)
𝜙′(𝑡) ©­«

1−𝜙(𝑡) 𝜙(𝑡)

1−𝜙(𝑡) 𝜙(𝑡)
ª®¬ . (5.6.26)

Therefore, by rewriting (5.6.25), we see that𝑈 (𝑡) =𝑉
(
𝜙(𝑡)

)
with

𝑉 ′(𝑠) = −ℎ′(𝑠) ©­«
1− 𝑠 𝑠

1− 𝑠 𝑠

ª®¬𝑉 (𝑠) = −ℎ′(𝑠) ©­«
1

1
ª®¬
(
1
2

(
1 1

)
+ 2𝑠−1

2

(
−1 1

))
𝑉 (𝑠). (5.6.27)

Observe that if

𝑣(𝑡) = 𝑣1(𝑡) ©­«
1

1
ª®¬+ 𝑣2(𝑡) ©­«

−1

1
ª®¬ (5.6.28)

is a representation of 𝑣(𝑡) =𝑉 (𝑡)𝑣(0) in terms of the orthogonal basis, then

𝑣2(𝑡) = 𝑣2(0), (5.6.29)

𝑣1(𝑡) = 𝑣1(0)𝑒−ℎ(𝑡) −
∫ 𝑡

0
𝑒ℎ(𝑠)−ℎ(𝑡)ℎ′(𝑠) (2𝑠−1)𝑣2(𝑠) d𝑠 (5.6.30)

= 𝑣1(0)𝑒−ℎ(𝑡) − 𝑣2(0)
(
(2𝑡 −1) + 𝑒−ℎ(𝑡) −2𝑒−ℎ(𝑡)

∫ 𝑡

0
𝑒ℎ(𝑠) d𝑠

)
. (5.6.31)

In particular,

𝑣2(1) = 𝑣2(0), 𝑣1(1) = 𝑣1(0)𝑒−ℎ(1) + 𝑣2(0)
(
2𝑒−ℎ(1)

∫ 1

0
𝑒−ℎ(𝑠) d𝑠− 𝑒−ℎ(1) −1

)
. (5.6.32)
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Therefore,

𝑉 (1) ©­«
1

1
ª®¬ = 𝑒−ℎ(1) ©­«

1

1
ª®¬ (5.6.33)

𝑉 (1) ©­«
−1

1
ª®¬ = ©­«
−1

1
ª®¬+

(
2𝑒−ℎ(1)

∫ 1

0
𝑒−ℎ(𝑠) d𝑠− 𝑒−ℎ(1) −1

) ©­«
1

1
ª®¬ (5.6.34)

which is equivalent to

𝑈 (1) =𝑉 (1) = ©­«
1+ 𝑒−ℎ(1) − 𝑒−ℎ(1)

∫ 1
0 𝑒

ℎ(𝑠) d𝑠 −1+ 𝑒−ℎ(1)
∫ 1

0 𝑒
ℎ(𝑠) d𝑠

𝑒−ℎ(1) − 𝑒−ℎ(1)
∫ 1

0 𝑒
ℎ(𝑠) d𝑠 𝑒−ℎ(1)

∫ 1
0 𝑒

ℎ(𝑠) d𝑠
ª®¬ . (5.6.35)

Thus,

det
(
𝑁1 +𝑁2𝑈 (1)

)
= 𝑒−ℎ(1)

∫ 1

0
𝑒ℎ(𝑠) d𝑠. (5.6.36)

Also,∫ 1

0
𝐹2(𝑠)𝐺2(𝑠) d𝑠 =

∫ 1

0
ℎ′

(
𝜙(𝑠)

)
𝜙(𝑠)𝜙′(𝑠)𝑑𝑠 =

∫ 1

0
ℎ′(𝑡)𝑡 d𝑡 = ℎ(1) −

∫ 1

0
ℎ(𝑡) d𝑡. (5.6.37)

Combining (5.6.23), (5.6.36), and (5.6.37) we obtain

det2 (1+𝐾) = exp
(
−
∫ 1

0
ℎ(𝑡) d𝑡

)
·
∫ 1

0
𝑒ℎ(𝑠) d𝑠. (5.6.38)

Final result. Bringing together (5.6.38), (5.6.20), (5.6.7), and the formula for the Radon-
Nikodym derivative (5.6.8) we get the desired result. □

Proposition 5.2.6 is a straightforward consequence of the previous lemma. For convenience,
we restate it as the following corollary.

Corollary 5.6.3: Suppose 𝑓 ∈ Diff3 [0,1]. Denote 𝑏 = log 𝑓 ′(1) − log 𝑓 ′(0). Let 𝑓 ♯B 𝑎,1
𝜎2 =

𝑓 −1
♯
B 𝑎,1
𝜎2 be the push-forward of B 𝑎,1

𝜎2 under P−1 ◦ 𝐿 𝑓 −1 ◦P =
(
P−1 ◦ 𝐿 𝑓 ◦P

)−1. Then for any

𝑎 ∈ R, 𝑓 ♯B 𝑎,1
𝜎2 is absolutely continuous with respect to B 𝑎−𝑏,1

𝜎2 and

d 𝑓 ♯B 𝑎,1
𝜎2 (𝜉)

dB 𝑎−𝑏,1
𝜎2 (𝜉)

=
1√︁

𝑓 ′(0) 𝑓 ′(1)
exp

{
1
𝜎2

[
𝑓 ′′(0)
𝑓 ′(0) P

′
𝜉 (0) −

𝑓 ′′(1)
𝑓 ′(1) P

′
𝜉 (1)

]
+ 1
𝜎2

∫ 1

0
S 𝑓

(
P𝜉 (𝑡)

) (
P′𝜉 (𝑡)

)2
d𝑡

}
.

(5.6.39)



130 Probabilistic definition of the Schwarzian field theory [SCHW]

Proof. The corollary follows immediately by combining Lemma 5.6.2, the decomposition
(5.6.1), the fact that the right-hand side in Lemma 5.6.2 is continuous in𝑊 , and( [

P−1 ◦ 𝐿𝑔 ◦P
]
𝜉

)
(1) = log𝑔′(1) − log𝑔′(0) + 𝜉 (1). (5.6.40)

□

5.7 Appendix: Quotients of measures: Proof of Proposi-
tion 5.2.10

Suppose (𝑋, 𝑑) is a complete separable metric space (not necessarily locally compact). Suppose
a locally compact Hausdorff group 𝐺 is acting properly and continuously on 𝑋 from the right.
Then 𝑋/𝐺 is a Polish space3. Let 𝜈 denote a left-invariant Haar measure on 𝐺 and Δ𝐺 denote
the modular function, such that 𝜈(·𝑔) = Δ𝐺 (𝑔)𝜈(·). Write 𝜋 : 𝑋 → 𝑋/𝐺 for the canonical
projection. Write 𝐶𝑏 (𝑋) for the space of continuous bounded functions equipped with the
compact-open topology. Denote by 𝐶𝐺−inv

𝑏
(𝑋) the subspace of 𝐺-invariant functions equipped

with the subspace topology. Observe that 𝜋∗ : 𝐶𝑏 (𝑋/𝐺) → 𝐶𝐺−inv
𝑏

(𝑋), ℎ ↦→ ℎ ◦ 𝜋 is a bijection.
We say that a set 𝐴 ⊆ 𝑋 is 𝐺-(pre)compact if 𝐺𝐴 := {𝑔 ∈ 𝐺 : 𝐴∩ 𝐴𝑔 ≠ ∅} is (pre)compact in
𝐺. Furthermore, we say that a set 𝐴 is 𝐺-tempered if it is 𝐺-precompact and moreover has a
𝐺-precompact open neighbourhood 𝑈 ⊇ 𝐴, such that 𝑈𝐺 ⊇ Cl(𝐴𝐺). Write 𝐶𝐺−temp

𝑏
(𝑋) for

the space of bounded continuous functions whose support is 𝐺-tempered (note that this space
is not necessarily linear). For 𝑓 ∈ 𝐶𝐺−temp

𝑏
(𝑋) write

𝑓 ♭(𝑥) =
∫
𝐺

𝑓 (𝑥𝑔) d𝜈(𝑔). (5.7.1)

Note that 𝑓 ♭ is 𝐺-invariant (i.e. 𝑓 ♭(·𝑔) = 𝑓 ♭) and satisfies [ 𝑓 (·𝑔)]♭ = Δ𝐺 (𝑔)−1 𝑓 ♭, for 𝑔 ∈ 𝐺.
The main goal of this appendix is to prove the following

3Separability is clear. Using continuity of the projection 𝜋 : 𝑋→ 𝑋/𝐺 and paracompactness of 𝑋 , one may
check that 𝑋/𝐺 is paracompact. Since 𝐺 acts properly, it also is Hausdorff. As a consequence, it is normal
(Theorem of Jean Dieudonné). Moreover, since 𝜋 is an open map, 𝑋/𝐺 is second countable and Urysohn’s
metrisation theorem implies that it is metrisable. Finally, complete metrisability follows from [125].
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Proposition 5.7.1: Suppose 𝜇 is a Radon measure on 𝑋 such that 𝜇(·𝑔) = Δ𝐺 (𝑔) 𝜇 for 𝑔 ∈ 𝐺.
Then there exists a unique Radon measure 𝜆 on 𝑋/𝐺 such that∫

𝑋/𝐺
𝑓 ♭(𝑥) d𝜆(𝑥𝐺) =

∫
𝑋

𝑓 (𝑥) d𝜇(𝑥), (5.7.2)

for any 𝑓 ∈ 𝐶𝐺−temp
𝑏

(𝑋). This extends to all non-negative 𝑓 ∈ 𝐶 (𝑋).

The modular function makes an appearance in our condition for𝐺-covariance of 𝜇, since we are
working with a left-Haar measure 𝜈, but a right-action on 𝑋 . Requiring that 𝜇(·𝑔) = Δ𝐺 (𝑔) 𝜇,
tells us that the measure transforms like a left-Haar measure under the right action. Also,
note that in our application, the group 𝐺 = PSL(2,R) is unimodular, hence Δ𝐺 ≡ 1, and the
requirement simply reduces to 𝐺-invariance of 𝜇.

We follow [126, Section 2], with appropriate modifications to allow for 𝑋 not locally compact.

Lemma 5.7.2: For 𝑓 ∈ 𝐶𝐺−temp
𝑏

(𝑋), the function 𝑓 ♭ is well-defined as an element of
𝐶𝐺−inv
𝑏

(𝑋).

Proof. Obviously, we have | 𝑓 (𝑥𝑔) | ≤ ∥ 𝑓 ∥∞1spt(𝑔 ↦→ 𝑓 (𝑥𝑔)) . Moreover, note that spt(𝑔 ↦→ 𝑓 (𝑥𝑔))
is contained in a𝐺-translate of𝐺spt 𝑓 , hence 𝑓 ♭(𝑥) ≤ ∥ 𝑓 ∥∞𝜈(spt(𝑔 ↦→ 𝑓 (𝑥𝑔))) ≤ ∥ 𝑓 ∥∞𝜈(𝐺spt 𝑓 ).
Consequently, 𝑓 ♭ is well-defined and uniformly bounded. 𝐺-invariance is clear from in-
variance of the Haar-measure 𝜈. Regarding continuity, suppose 𝑥𝑛 → 𝑥 in 𝑋 . Write X :=
{𝑥} ∪ {𝑥𝑛}𝑛∈N. Let 𝑈 ⊇ spt( 𝑓 ) denote a 𝐺-precompact open neighbourhood of spt( 𝑓 ) such
that 𝑈𝐺 ⊇ Cl(spt( 𝑓 )𝐺). We may assume 𝑥 ⊆ 𝑈𝐺. In fact, otherwise 𝑓 ♭(𝑥𝑛) = 0 = 𝑓 ♭(𝑥) for
sufficiently large 𝑛 and continuity is clear. Moreover, choosing 𝑔0 ∈ 𝐺 such that 𝑥 ∈𝑈𝑔0, we
can assume without loss of generality that X ⊆ 𝑈𝑔0. Now consider

| 𝑓 ♭(𝑥) − 𝑓 ♭(𝑥𝑛) | ≤
∫
𝐺

| 𝑓 (𝑥𝑔) − 𝑓 (𝑥𝑛𝑔) | d𝜈(𝑔). (5.7.3)

Since 𝑓 is bounded, it suffices to show that we can restrict the integral to a compact subset of
𝐺 (independently from 𝑛). Note for 𝑔 ∈ 𝐺 we have | 𝑓 (𝑥𝑔) − 𝑓 (𝑥𝑛𝑔) | ≠ 0 only if 𝑈 ∩X𝑔 ≠ ∅.
Since X𝑔 ⊆ 𝑈𝑔0𝑔, the set of such 𝑔 is precompact. Consequently, the right hand side of (5.7.3)
goes to zero as 𝑛→∞ by dominated convergence, proving continuity of 𝑓 ♭. □

Lemma 5.7.3: For any 𝑥 ∈ 𝑋 , there exists an open neighbourhood𝑈 ∋ 𝑥 which is𝐺-tempered.

Proof. First we show that there exist arbitrarily small 𝐺-compact neighbourhoods: Consider a
decreasing sequence of neighbourhoods {𝑈𝑛}𝑛∈N, such that

⋂
𝑛𝑈𝑛 = {𝑥}. Assume that none of

the𝑈𝑛 is 𝐺-precompact, hence there exists a sequence 𝑥𝑛 ∈𝑈𝑛 and 𝑔𝑛 ∈ 𝐺, such that 𝑥𝑛𝑔𝑛 ∈𝑈𝑛,
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but with {𝑔𝑛} non-precompact. However, by definition of the𝑈𝑛, we have 𝑥𝑛→ 𝑥 and 𝑥𝑛𝑔𝑛→ 𝑥,
and since 𝐺 acts properly on 𝑋 this implies that 𝑔𝑛 is precompact, leading to a contradiction.
Now suppose 𝑈̃ is a 𝐺-compact neighbourhood of 𝑥. Then 𝑈̃𝐺 is a neighbourhood of 𝑥𝐺 in
𝑋/𝐺. Since 𝑋/𝐺 is metrisable, we may choose a sufficiently small ball B around [𝑥] in 𝑋/𝐺,
such that Cl(B) ⊆ 𝑈̃𝐺. Set𝑈 := 𝑈̃ ∩ 𝜋−1(B). This is a 𝐺-tempered neighbourhood of 𝑥. □

Lemma 5.7.4: For any 𝑥0 ∈ 𝑋 and 𝜖 > 0 sufficiently small, there exists 0 < 𝜖′ < 𝜖 and a
non-negative function 𝑣 ∈ 𝐶𝐺−temp

𝑏
(𝑋) with spt(𝑣) ⊆ 𝐵𝜖 (𝑥0), such that

0 < inf
𝑥′∈𝐵𝜖 ′ (𝑥0)

𝑣♭(𝑥′) < sup
𝑥′∈𝐵𝜖 ′ (𝑥0)

𝑣♭(𝑥′) <∞. (5.7.4)

Proof. It suffices to show the following: for any 𝑥0 ∈ 𝑋 and 𝜖 > 0 sufficiently small, there
exists 0 < 𝜖 ′ < 𝜖 , such that

0 < inf
𝑥′∈𝐵𝜖 ′ (𝑥0)

(1♭
𝐵𝜖 (𝑥0)) (𝑥

′) < sup
𝑥′∈𝐵𝜖 ′ (𝑥0)

(1♭
𝐵𝜖 (𝑥0)) (𝑥

′) <∞, (5.7.5)

where we note that (1♭
𝐵𝜖 (𝑥0)) (𝑥

′) = 𝜈({𝑔 ∈ 𝐺 : 𝑥′𝑔∩𝐵𝜖 (𝑥0) ≠ ∅}). Indeed if above holds then
we can choose 𝑣 = max(0,1− 4

3𝜖 dist(𝑥, 𝐵𝜖/2(𝑥0))). Since 1
31𝐵𝜖 /2 ≤ 𝑣 ≤ 1𝐵𝜖

, for small enough
𝜖 > 0 the claim in (5.7.4) follows.
Now we address the claim (5.7.5). By continuity of the group action 𝑋 ×𝐺→ 𝑋, (𝑥, 𝑔) ↦→ 𝑥𝑔,
the preimage of 𝐵𝜖 (𝑥0) under this map is an open neighbourhood of (𝑥0, id). In particular,
it contains a neighbourhood of the form 𝐵𝜖 ′ (𝑥0) ×𝑈, with 𝑈 ⊆ 𝐺 a neighbourhood of id. In
particular, for 𝑥′ ∈ 𝐵𝜖 ′ (𝑥0) we have𝑈 ⊆ {𝑔 ∈ 𝐺 : 𝑥′𝑔∩𝐵𝜖 (𝑥0) ≠ ∅} and hence (1♭

𝐵𝜖 (𝑥0)) (𝑥
′) ≥

𝜈(𝑈) > 0. This proves the lower bound in (5.7.5). For the upper bound note that we may
assume 𝜖 > 0 sufficiently small, such that 𝐵𝜖 (𝑥0) is 𝐺-tempered. As a consequence {𝑔 ∈
𝐺 : 𝑥′𝑔 ∩ 𝐵𝜖 (𝑥0) ≠ ∅} ⊆ 𝐺𝐵𝜖 (𝑥0) for 𝑥′ ∈ 𝐵𝜖 (𝑥0), so (1♭

𝐵𝜖 (𝑥0)) (𝑥
′) ≤ 𝜈(𝐺𝐵𝜖 (𝑥0)) < ∞, which

proves the upper bound in (5.7.5). □

Lemma 5.7.5: Consider above setting and consider a Radon measure 𝜇 on 𝑋 . There exists a
countable family of non-negative functions 𝑢𝑖 ∈ 𝐶𝐺−temp

𝑏
(𝑋), 𝑖 ∈ N, with bounded support,

such that 𝜇(𝑢𝑖) <∞ and such that {𝑢♭
𝑖
} is a partition of unity.

Moreover, writing 𝑋𝑖 := spt(𝑢𝑖) ·𝐺, the map 𝑓 ↦→ 𝑓 ♭ is surjective from 𝐶𝐺−temp(𝑋𝑖) onto
𝐶𝐺−inv(𝑋𝑖).

Proof. Recall that by assumption 𝑋/𝐺 is Polish, hence Hausdorff and paracompact. This
implies that any open cover of 𝑋/𝐺 admits a subordinate partition of unity. We choose
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{𝑥𝑖}𝑖∈N ⊆ 𝑋 and 𝜖𝑖 > 0, with {𝐵𝜖𝑖 (𝑥𝑖)}𝑖∈N covering the whole space, such that 𝐵𝜖𝑖 (𝑥𝑖) is 𝐺-
tempered and 𝜇(𝐵𝜖𝑖 (𝑥𝑖)) < ∞ (which can be done by Lemma 5.7.3 and since 𝜇 is Radon).
Furthermore, choose 𝜖𝑖 sufficiently small, such that the conclusion of Lemma 5.7.4 holds true:
There are 0 < 𝜖 ′

𝑖
< 𝜖𝑖 and non-negative functions 𝑣𝑖 ∈ 𝐶𝐺−temp

𝑏
(𝑋) supported in 𝐵𝜖𝑖 (𝑥𝑖), such

that 𝑣♭
𝑖

is uniformly bounded away from zero and infinity on 𝐵𝜖 ′
𝑖
(𝑥𝑖).

The saturated balls {𝐵𝜖 ′
𝑖
(𝑥𝑖)𝐺} form an open cover of the quotient space 𝑋/𝐺, hence admit

a subordinate partition of unity {𝑢̄𝑖}𝑖∈N, with 𝑢̄𝑖 ∈ 𝐶𝑏 (𝑋/𝐺) and spt(𝑢̄𝑖) ⊆ 𝐵𝜖 ′
𝑖
(𝑥𝑖)𝐺. The lifts

𝜋∗𝑢̄𝑖 ∈ 𝐶𝐺−inv
𝑏

(𝑋) along 𝜋 : 𝑋→ 𝑋/𝐺 form a partition of unity on 𝑋 . Define the functions

𝑢𝑖 =


𝑣𝑖

𝑣♭
𝑖

𝜋∗𝑢̄𝑖 on 𝐵𝜖 ′
𝑖
(𝑥𝑖)𝐺

0 otherwise.
(5.7.6)

Notice that 𝑢𝑖 ≥ 0 is a well-defined bounded continuous function, is supported in 𝐵𝜖𝑖 (𝑥𝑖),
and satisfies 𝑢♭

𝑖
= 𝜋∗𝑢̄𝑖. This concludes the construction of the 𝑢𝑖. Moreover, by the same

construction as in (5.7.6), we see the surjectivity of 𝑓 ↦→ 𝑓 ♭ from 𝐶𝐺−temp(𝑋𝑖) onto 𝐶𝐺−inv(𝑋𝑖).
□

Proof of Proposition 5.7.1. In the following we write 𝜇( 𝑓 ) =
∫
𝑋
𝑓 d𝜇. We first note that the

condition 𝜇(·𝑔) = Δ𝐺 (𝑔) 𝜇 implies that 𝜇( 𝑓1 𝑓 ♭2 ) = 𝜇( 𝑓
♭
1 𝑓2) for any 𝑓1, 𝑓2 ∈𝐶𝐺−temp

𝑏
(𝑋). Indeed,

𝜇( 𝑓1 𝑓 ♭2 ) =
∫
𝑋

d𝜇(𝑥) 𝑓1(𝑥)
∫
𝐺

d𝜈(𝑔) 𝑓2(𝑥𝑔)

=

∫
𝐺

d𝜈(𝑔)
∫
𝑋

d𝜇(𝑥𝑔)Δ𝐺 (𝑔)−1 𝑓1(𝑥) 𝑓2(𝑥𝑔)

=

∫
𝐺

d𝜈(𝑔)Δ𝐺 (𝑔)−1
∫
𝑋

d𝜇(𝑥) 𝑓1(𝑥𝑔−1) 𝑓2(𝑥)

=

∫
𝑋

d𝜇(𝑥)
[∫

𝐺

d𝜈(𝑔)Δ𝐺 (𝑔)−1 𝑓1(𝑥𝑔−1)
]
𝑓2(𝑥)

=

∫
𝑋

d𝜇(𝑥)
[∫

𝐺

d𝜈(𝑔−1) 𝑓1(𝑥𝑔−1)
]
𝑓2(𝑥).

= 𝜇( 𝑓 ♭1 𝑓2),

(5.7.7)

where in second to last line we used that d𝜈(𝑔)Δ𝐺 (𝑔)−1 = d𝜈(𝑔−1).
Consider {𝑢𝑖} as in Lemma 5.7.5 and write 𝑋𝑖 := spt(𝑢𝑖) ·𝐺 for the saturation of the support.
For any 𝑖 ∈ N, define a linear functional 𝐼𝑖 : 𝐶𝐺−inv

𝑏
(𝑋𝑖) → R by

𝐼𝑖 (ℎ) = 𝜇(𝑢𝑖ℎ) for for ℎ ∈ 𝐶𝐺−inv
𝑏 (𝑋𝑖). (5.7.8)
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By (5.7.7) we have 𝐼𝑖 ( 𝑓 ♭) = 𝜇(𝑢♭𝑖 𝑓 ) for any 𝑓 ∈𝐶𝐺−temp
𝑏

(𝑋𝑖). Note that this characterises 𝐼𝑖 due
to the surjectivity of 𝑓 ↦→ 𝑓 ♭ from 𝐶

𝐺−temp
𝑏

(𝑋𝑖) onto 𝐶𝐺−inv
𝑏

(𝑋𝑖). Each 𝐼𝑖 is monotone, since
𝜇𝑢𝑖 is a positive measure, so 𝐼𝑖 is continuous with respect to the compact-open topology on
𝐶𝐺−inv
𝑏

(𝑋𝑖). Considering the push-forward along 𝜋 : 𝑋𝑖→ 𝑋𝑖/𝐺, we get 𝐼𝑖 := 𝜋∗𝐼𝑖 ∈ 𝐶𝑏 (𝑋𝑖/𝐺)∗.
Continuity of 𝐼𝑖 follows from continuity of 𝜋 and definition of the compact-open topologies.
Since 𝜇𝑢𝑖 is a finite Radon measure, for any 𝜖 > 0 there exists a compact set 𝐾𝜖 ⊆ 𝑋𝑖 such that
𝜇(𝑢𝑖ℎ) ≤ 𝜖 ∥ℎ∥∞ for ℎ ∈ 𝐶𝐺−inv

𝑏
(𝑋𝑖) with ℎ |𝐾𝜖𝐺 ≡ 0. Consequently, application of a variant of

the Riesz–Markov–Kakutani representation theorem [127, Theorem 7.10.6] to 𝐼𝑖 and the fact
that 𝐶𝑏 (𝑋𝑖/𝐺) � 𝐶𝐺−inv

𝑏
(𝑋𝑖) imply that there exists a unique finite Radon measure 𝜆𝑖 on 𝑋𝑖/𝐺,

such that ∫
𝑋𝑖/𝐺

𝑓 ♭(𝑥) d𝜆𝑖 (𝑥𝐺) =
∫
𝑋𝑖

𝑓 (𝑥)𝑢♭𝑖 (𝑥) d𝜇(𝑥) for 𝑓 ∈ 𝐶𝐺−temp
𝑏

(𝑋𝑖). (5.7.9)

In the following, also write 𝜆𝑖 for the push-forward along the inclusion 𝑋𝑖 ↩→ 𝑋 . Since
∑
𝑖 𝑢
♭
𝑖
= 1,

we define 𝜆 =
∑
𝑖 𝜆𝑖 and note that it satisfies (5.7.2) (using monotone convergence and positivity

of 𝑓 ↦→ 𝑓 ♭). This defines a locally finite Borel measure and since 𝑋/𝐺 is strongly Radon (as a
completely separable metric space), 𝜆 is a Radon measure. Regarding uniqueness, note that for
any 𝜆 satisfying (5.7.2), we have 𝜆 ·𝑢♭

𝑖
= 𝜆𝑖. In particular, any other candidate for 𝜆 constructed

using a different partition of unity will therefore agree, which implies that the so constructed
measure is unique.

The extension from 𝑓 ∈ 𝐶𝐺−temp
𝑏

(𝑋) to non-negative 𝑓 ∈ 𝐶 (𝑋) follows from the existence of
a partition of unity on 𝑋 , consisting of functions with 𝐺-tempered supports, and monotone
convergence. □



Chapter 6

More on the Schwarzian field theory

This chapter provides additional context for the Schwarzian field theory and the mathematical
structures in relation to it. In Section 6.1 we follow discussions from the physics literature, and
argue how the Schwarzian action relates to other well-known models, namely Liouville field
theory, the SYK model, and JT-gravity. In Section 6.2 we revisit the Schwarzian derivative
and motivate it using cross-ratios and the real projective line. Then we discuss the theory of
coadjoint orbits and their classification in the context of loop groups and the Virasoro group.
In the latter case we can see how the family of Schwarzian measures appears naturally in this
geometric language.

6.1 Origins of the Schwarzian theory

In the following subsections we discuss how the Schwarzian action arises from other well-
known models in theoretical physics. Our discussion will follow a “physics style” discussion:
We explicitly do not follow rigorous arguments, but aim to provide a condensed presentation of
physics folklore.

6.1.1 Liouville field theory

From a high-level perspective, both Liouville field theory as well as the Schwarzian theory
can be constructed as a “geometric action” related to the Virasoro group [16, 128]. More
concretely, one can argue that the Schwarzian action arises in a simultaneous semiclassical and
“thin cylinder” limit of Liouville field theory [14].
Liouville theory has been extensively studied in the recent probabilistic literature. In particu-
lar, correlation functions under the Euclidean path integral measure D[𝜙]𝑒−𝑆E [𝜙] have been
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constructed, where
1
𝑐
LE [𝜙] = 1

2 (𝜕𝜏𝜙)
2 + 1

2 (𝜕𝜎𝜙)
2 +2𝑒2𝜙 − 𝜕2

𝜎𝜙. (6.1.1)

To discuss the connection with the Schwarzian, we consider the action in Lorentzian signature:

1
𝑐
LL [𝜙] := −1

2 (𝜕𝜏𝜙)
2 + 1

2 (𝜕𝜎𝜙)
2 +2𝑒2𝜙 − 𝜕2

𝜎𝜙. (6.1.2)

The theories are connection by a formal Wick rotation 𝜏 ↦→ −𝑖𝜏. For example, one formally
expects that the partition functions agree∫

D[𝜙]𝑒−𝑆E [𝜙] =

∫
D[𝜙]𝑒𝑖𝑆L [𝜙] . (6.1.3)

Similar statements hold true for correlation functions, as elaborated by the Osterwalder–
Schrader theory. In the limit 𝑐→∞, the Lorentzian theory localises on critical points of the
action. In the next paragraph we study the classical solutions in this situation.
We consider the Lorentzian Liouville theory on a strip (𝜏,𝜎) ∈ R× [0, 1

2 ]. In the limit of
large central charge 𝑐→∞, the theory should be dominated by critical points (i.e. classical
solutions) of (6.1.2). Thermal correlators of the Lorentzian theory can be expressed in terms
of an Euclidean path integral on a cylinder (𝜏,𝜎) ∈ [0, 𝛽] × [0, 1

2 ] with periodic boundary
conditions in the time variable.

tr(𝑒−𝛽𝐻̂) =
∫
D[𝜙]𝑒−

∫ 𝛽

0 d𝜏
∫ 1/2

0 d𝜎L𝐸 [𝜙] . (6.1.4)

Classical solutions of Lorentzian Liouville theory on the strip. We are interested in the
classical solutions (i.e. the Euler-Lagrange equations) corresponding to the Lagrangian LL in
(6.1.2) on a strip (𝜏,𝜎) ∈ R× [0, 1

2 ], equipped with boundary conditions at 𝜎 = 0, 1
2 :

−𝜕2
𝜏 𝜙+ 𝜕2

𝜎𝜙+4𝑒2𝜙 = 0. (6.1.5)

The boundary conditions of interest are Dirichlet–von Neumann in terms of the variable
𝑉 (𝜏,𝜎) := 𝑒−𝜙(𝜏,𝜎):

𝑉 |𝜎=0 = 0 and 𝜕𝜎 |𝜎=1/2𝑉 = 2cos(𝛼) with 𝛼 ∈ R≥0∪ 𝑖R≥0 (6.1.6)

These are referred to as ZZ–FZZT𝛼 boundary conditions. Note that the boundary behaviour of
𝜙 is singular in that 𝜙(𝜏,𝜎) →∞ as 𝜎↘ 0. In order to eliminate ambiguities that arise due to
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this singularity, one can make the additional assumptions

𝜕𝜎 |𝜎=0𝑉 = 2 and lim
𝜏↘0

𝜕𝜎𝜕𝜏𝑉/𝑉 = 0. (6.1.7)

Solutions to (6.1.5), subject to boundary conditions (6.1.6) have been extensively studied in
the physics literature and are connected to the coadjoint orbits of the Virasoro group (cf. [129]).
Following the treatment in [130], it is convenient to rephrase the Liouville equations (6.1.5)
in terms of 𝑉 = 𝑒−𝜙 and to use light-cone coordinates 𝑥 = 𝜏 +𝜎, 𝑥 = 𝜏−𝜎. Then the Liouville
equation is equivalent to

𝑉𝜕𝑥𝜕𝑥𝑉 − 𝜕𝑥𝑉𝜕𝑥𝑉 = 1 and 𝑉 > 0. (6.1.8)

The light-cone coordinates highlight the conformal symmetry of Liouville’s equation: For any
smooth function 𝜉 : R→ R with 𝜉 (𝜏 +1) = 𝜉 (𝜏) +1, the reparametrisation

𝑉𝜉 (𝑥, 𝑥) := 𝜉′(𝑥)−1/2𝜉′(𝑥)−1/2𝑉 (𝜉 (𝑥), 𝜉 (𝑥)) (6.1.9)

is also a solution. In other words, every solution comes with an associated Diff (𝑆1)-orbit of
solutions. It turns out that this is the only “degree of freedom”:

Proposition 6.1.1 ([130]): Consider 0 ≤ 𝛼 ≤ 𝜋 or 𝛼 ∈ 𝑖R≥0. Subject to ZZ-FZZT𝛼 boundary
conditions (6.1.6) and the regularity constraint (6.1.7), the solutions to Liouville’s equation
(6.1.8) are given by the Diff (𝑆1)-orbit 𝜉 ↦→𝑉

(𝛼)
𝜉

, where

𝑉 (𝛼) (𝑥, 𝑥) :=
1
𝛼

sin(𝛼[𝑥− 𝑥]) = 1
𝛼

sin(2𝛼𝜎). (6.1.10)

For 𝛼 > 𝜋, (6.1.10) and its associated orbits still defines a solution to the global Liouville
equation (6.1.8) with the positivity constraint for 𝑉 dropped. However, these solutions don’t
correspond to regular solutions of (6.1.5).

The Hamiltonian for classical solutions. By a standard Legendre transformation, the Hamil-
tonian corresponding to (6.1.2) is given by

𝐻
[
{𝜙(𝜎)}𝜎, {𝜋𝜙 (𝜎)}𝜎

]
=

1
2∫

0

d𝜎 [𝜋2
𝜙 + 1

2 (𝜕𝜎𝜙)
2 +2𝑒2𝜙 −2𝜕2

𝜎𝜙], (6.1.11)
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where 𝜋𝜙 is a momentum variables conjugate to 𝜙, hence the field space is equipped with the
canonical symplectic form 𝜔 =

∫
d𝜎d𝜙(𝜎) ∧d𝜋𝜙 (𝜎). We can evaluate the Hamiltonian of the

solutions given in Proposition 6.1.1:

Proposition 6.1.2: Let 𝑉 (𝛼)
𝜉

be as in Proposition 6.1.1 and write 𝜙(𝛼)
𝜉
(𝜏,𝜎) = − log(𝑉 (𝛼)

𝜉
).

Then we have
H[𝜙(𝛼)

𝜉
] := 𝐻 [{𝜙(𝛼)

𝜉
(𝜏,𝜎)}𝜎, {𝜕𝜏𝜙(𝛼)𝜉 (𝜏,𝜎)}𝜎]

= −1
2

∫ 1

0
d𝜎[S(𝜉 (𝜎),𝜎) +2𝛼2𝜉′2(𝜎)] .

(6.1.12)

In other words, we see that the Hamiltonian of classical solutions with ZZ–FZZT𝛼 boundary
conditions is the action of the Schwarzian measure at parameter 𝛼. Also, note that the Hamilto-
nian (6.1.12) is constant in time 𝜏, as it should for solutions to the Hamiltonian equations.

Proof. For 𝑉 = 𝑒𝜙 one can use 𝜕𝜎 = 𝜕𝑥 − 𝜕𝑥 and 𝜕𝜏 = 𝜕𝑥 + 𝜕𝑥 to show that generally

𝜕2
𝑥𝑉

𝑉
+
𝜕2
𝑥𝑉

𝑉
= 1

2 (𝜕𝜏𝜙)
2 + 1

2 (𝜕𝜎𝜙)
2 +2𝑒2𝜙 − 𝜕2

𝜎𝜙. (6.1.13)

Now, consider a solution 𝑉 (𝛼)
𝜉

as in Proposition 6.1.1. We have

𝜕𝑥𝑉𝜉 = −1
2 log(𝜉′)′(𝑥)𝑉𝜉 + 𝜉′(𝑥) (𝜕𝑥𝑉)𝜉 . (6.1.14)

And hence
𝜕2
𝑥𝑉𝜉 = −1

2 [log(𝜉′)′′(𝑥) − 1
2 log(𝜉′)′2(𝑥)]𝑉𝜉 + 𝜉′2(𝑥) (𝜕2

𝑥𝑉)𝜉 . (6.1.15)

Note that the term in brackets is the Schwarzian of 𝜉. Also, according to (6.1.10) we have
𝜕2
𝑥𝑉 = 𝜕2

𝑥𝑉 = −𝛼2𝑉 . Consequently

𝜕2
𝑥𝑉𝜉 (𝑥, 𝑥)
𝑉𝜉

= −1
2 [S(𝜉 (𝑥), 𝑥) +2𝛼2𝜉′2(𝑥)], (6.1.16)

and analogously for (𝜕2
𝑥𝑉𝜉)/𝑉𝜉 , with 𝑥 replaced by 𝑥 on the right hand side. Note that (6.1.16)

is chiral, in that it only depends on 𝑥 = 𝜏 +𝜎 and the same goes for (𝜕2
𝑥𝑉𝜉)/𝑉𝜉 , which only

depends on 𝑥 = 𝜏−𝜎. Since 𝜉 (𝑥 + 1) = 𝜉 (𝑥) + 1 is periodic with period one, we can use the
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“doubling trick”

𝐻 =

∫ 1/2

0
d𝜎

𝜕2
𝑥𝑉𝜉

𝑉𝜉
(𝜏 +𝜎) +

𝜕2
𝑥𝑉𝜉

𝑉𝜉
(𝜏−𝜎)

=

∫ 1

0
d𝜎

𝜕2
𝑥𝑉𝜉

𝑉𝜉
(𝜎)

= −1
2

∫ 1

0
d𝜎[S(𝜉 (𝜎),𝜎) +2𝛼2𝜉′2(𝜎)] .

(6.1.17)

□

Schwarzian theory in the thin cylinder limit.

𝑐

∫
d𝜏

{∫ 1
2

0
d𝜎𝜋𝜙𝜕𝜏𝜙+

∫ 1
2

0
d𝜎 [𝜋2

𝜙 + 1
2 (𝜕𝜎𝜙)

2 +2𝑒2𝜙 − 𝜕2
𝜎𝜙]

}
. (6.1.18)

At the formal path integral-level this is seen by a Hubbard-Stratonovich transform

exp[−𝑐
∫
(𝜕𝜏𝜙)2/2] ∝

∫
D[𝜋𝜙] exp

[
𝑐

∫
[𝑖𝜋𝜙𝜕𝜏𝜙− 𝜋2

𝜙/2]
]
. (6.1.19)

In the following we make use of the above (rigorous) study of the classical Liouville equation to
given a (very much heuristic) “physics-style” explanation for the connection between Liouville
field theory and Schwarzian actions.

We have seen in Proposition 6.1.2 that the Schwarzian action (resp. more generally the family
of actions associated to coadjoint Virasoro orbits) appears as the Hamiltonian of classical
solutions (6.1.12) given appropriate boundary conditions. As such, the Schwarzian appears in
the Hamiltonian formulation of the action (6.1.18) in the semiclassical limit 𝑐→∞, where the
quantum theory localises on classical solutions.

Suppose there is appropriate Hilbert-space formulation for Liouville field theory at central
charge 𝑐 and with ZZ-FZZT𝛼 boundary conditions. That is, suppose there is Hamiltonian 𝐻̂𝑐,𝛼
together with an appropriate Hilbert space and a representation of field operators 𝜙(𝜎), 𝜋̂𝜙 (𝜎).
For some (time-ordered) observable O[𝜙], typically a product of vertex operators 𝑒−𝑙𝜙(𝜏,𝜎) ,
one can formally rewrite unnormalised thermal expectations as

tr(O[𝜙]𝑒−𝛽𝐻̂𝑐̂,𝛼) =N
∫

ZZ–FZZT𝛼

D[𝜙]D[𝜋𝜙]O[𝜙] exp

(
− 𝑐

𝛽∫
0

d𝜏
{ 1

2∫
0

d𝜎𝑖𝜋𝜙𝜕𝜏𝜙+H [𝜙, 𝜋𝜙]
})
,

(6.1.20)
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where the integral runs over field configurations satisfying ZZ–FZZT𝛼 boundary conditions,
and where N denotes an unspecified (potentially divergent) normalisation factor. For 𝑐→∞
we expect the path integral to be dominated by field configurations 𝜙, 𝜋𝜙 solving the classical
equations of motion, subject to ZZ–FZZT𝛼 boundary conditions. On the strip (𝜏,𝜎) ∈ R×
[0,1/2], these are given by

𝜙
strip
𝜉
(𝜏,𝜎) = 1

2 log(𝜉′) (𝜏 +𝜎) + 1
2 log(𝜉′) (𝜏−𝜎) − log[ 1

𝛼
sin(𝛼[𝜉 (𝜏 +𝜎) − 𝜉 (𝜏−𝜎)])]

𝜋
strip
𝜙,𝜉
(𝜏,𝜎) = 1

2 log(𝜉′)′(𝜏 +𝜎) + 1
2 log(𝜉′)′(𝜏−𝜎) −𝛼 𝜉′(𝜏 +𝜎) − 𝜉′(𝜏−𝜎)

tan(𝛼[𝜉 (𝜏 +𝜎) − 𝜉 (𝜏−𝜎)]) ,
(6.1.21)

for 𝜉 ∈ D̃iff(𝑆1). Here, we are working on the geometry of a cylinder with circumference 𝛽. The
claim(!) is now as follows: Taking 𝛽 = 2

𝑐𝜎2 → 0 simultaneously, the dominant configurations
become time-independent and are of the form

𝜙𝜉 (𝜎) = 𝜙𝜉 (𝜏,𝜎) = 1
2 log(𝜉′) (𝜎) + 1

2 log(𝜉′) (−𝜎) − log[ 1
𝛼

sin(𝛼[𝜉 (𝜎) − 𝜉 (−𝜎)])]

𝜋𝜙,𝜉 (𝜎) = 𝜋𝜙,𝜉 (𝜏,𝜎) = 1
2 log(𝜉′)′(𝜎) + 1

2 log(𝜉′)′(−𝜎) −𝛼 𝜉′(𝜎) − 𝜉′(−𝜎)
tan(𝛼[𝜉 (𝜎) − 𝜉 (−𝜎)]) .

(6.1.22)

For these the kinetic terms vanishes and the Hamiltonian is evaluated by Proposition 6.1.2,
which leaves us with

lim
𝑐→∞

tr(O[𝜙]𝑒−
2

𝑐̂𝜎2 𝐻̂𝑐̂,𝛼)

tr(𝑒−
2

𝑐̂𝜎2 𝐻̂𝑐̂,𝛼)
“ = ”

1
𝑍𝛼,𝜎2

∫
Ξ𝛼

D[𝜉]O[𝜙𝜉]𝑒
1
𝜎2

∫ 1
0 d𝜎[S(𝜉 (𝜎),𝜎)+2𝛼2𝜉′2 (𝜎)]

,

(6.1.23)
for some partition function 𝑍𝛼,𝜎2 . More concretely, (6.1.23) relates operator insertions in
Liouville theory to such in Schwarzian field theory: From (6.1.22) one sees that

𝑒𝑙𝜙(𝜏,𝜎) ↦→ 𝑒𝑙𝜙𝜉 (𝜎) = O𝛼 (−𝜎,𝜎)𝑙 =
[

𝛼
√︁
𝜉′(𝜎)𝜉′(−𝜎)

sin(𝛼[𝜉 (𝜎) − 𝜉 (−𝜎)])

] 𝑙
. (6.1.24)

This also holds true for 𝛼 = 0, where it is understood that 1
𝛼

sin(𝛼[𝜉 (𝜎) − 𝜉 (−𝜎)]) |𝛼=0 =

𝜉 (𝜎) − 𝜉 (−𝜎). In other words, vertex operator insertions 𝑒𝑙𝜙(𝜏,𝜎) in Liouville theory become
cross-ratio observables on the Schwarzian side.

In (6.1.23) we suppressed details regarding the integration measure of 𝜉. In order to really
identify the right-hand side as the Schwarzian field theory, we would like to show that the
integration measure for 𝜉 agrees with the one in (2.2.1). In geometric parlance, we would like
it to be the symplectic volume measure on the appropriate Virasoro coadjoint orbit. In fact,
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recall that in the Hamiltonian path integral (6.1.20), the measure D[𝜙]D[𝜋𝜙] is interpreted
as the volume form associated to the canonical symplectic form 𝜔 =

∫ 1/2
0 d𝜎d𝜙(𝜎) ∧d𝜋𝜙 (𝜎).

Inserting (6.1.22), using the “doubling trick” and dismissing total derivatives, one obtains

𝜔 = 1
4

∫ 1

0
[dlog(𝜉′(𝜎)) ∧dlog(𝜉′(𝜎))′−2𝛼2d𝜉 (𝜎) ∧d𝜉′(𝜎)], (6.1.25)

which agrees with the KKS-form on the Virasoro coadjoint orbits (6.2.38). This should reassure
us that the right-hand side of (6.1.23) really is the Schwarzian field theory. Since the latter is
invariant under rotations/translations along the circle, we can translate 𝜎 ↦→ 𝜎 +1/2 to ease the
comparison with out definition in (2.2.1). Consequently, we end up with

Claim 6.1.3: Consider the Hamiltonian operator 𝐻̂𝑐,𝛼 for Lorentzian Liouville field theory
on a strip (𝜏,𝜎) ∈ R× [0, 1

2 ] with ZZ-FZZT𝛼 boundary conditions. For a finite family 𝑙𝑖 ∈ R
and 𝜎𝑖 ∈ [0, 1

2 ], 𝑖 ∈ I, and 𝜎2 > 0, we expect

lim
𝑐→∞

tr
(∏

𝑖 𝑒
𝑙𝑖𝜙(𝜎𝑖) 𝑒−

2
𝑐̂𝜎2 𝐻̂𝑐̂,𝛼

)
∝

[∏
𝑖O𝑙𝑖𝛼 ( 12 −𝜎𝑖,

1
2 +𝜎𝑖)

]
𝛼,𝜎2

(6.1.26)

We reiterate that all of the above is conjectural. In order to make this rigorous, one would
require a Hilbert space formulation of Lorentzian Liouville field theory on a strip. Alternatively,
one can reinterpret the left hand side in terms of the thermal (Euclidean) path integral, in which
case it reduces to a questions about Liouville field theory on the cylinder/annulus. The latter
has been studied in the recent mathematical literature [131, 132], which may serve as a starting
point for a rigorous study.

Boundary operator. Instead of imposing the ZZ-FZZT𝛼 boundary conditions as part of the
integral measure we can impose them for critical points of the action by adding a “boundary
term” to the action. We keep the Dirichlet (ZZ) boundary condition at 𝜎 = 0, i.e. 𝑉 |𝜎=0 =

𝑒−𝜙 |𝜎=0 = 0, but drop the von Neumann (FZZT𝛼) boundary condition 𝜕𝜎𝑉 |𝜎=1/2 = 2cos(𝛼) (or
equivalently 𝜕𝜎𝜙 = −2cos(𝛼)𝑒𝜙 at 𝜎 = 1/2), while adding a term

𝑆
(𝛼)
bdry [𝜙] = 𝑐

∫
d𝜏 [−2cos(𝛼)𝑒𝜙(𝜏,1/2)] (6.1.27)

to the action. we can impose the boundary condition as part of the variational equations. We
refer to 𝑒𝑆

(0)
bdry [𝜙]−𝑆

(𝛼)
bdry [𝜙] as a “boundary operator insertion” for Liouville field theory: In the

semiclassical limit, this insertion “shifts” the boundary condition at 𝜎 = 1/2 from FZZT0 to
FZZT𝛼. According to (6.1.24), we can interpret the boundary operator in the Schwarzian limit.
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In that case, using using (6.1.24) with 𝛼 = 0 and 𝜉 (𝜎 +1) = 𝜉 (𝜎) +1, we have

𝑒𝜙(𝜏,1/2) ↦→
√︁
𝜉′(1)𝜉′(0)
𝜉 (1) − 𝜉 (0) = 𝜉

′(0). (6.1.28)

Consequently, using 1− cos(𝛼) = 2sin2( 𝛼2 ), the boundary operator insertion becomes

𝑒
𝑆
(0)
bdry [𝜙]−𝑆

(𝛼)
bdry [𝜙] ↦→ 𝑒4sin2 ( 𝛼2 )𝜉

′ (0) . (6.1.29)

Claim 6.1.4: In other words, for observables O (𝑖)𝛼 = O𝛼 (𝑠𝑖, 𝑡𝑖), we expect

[∏𝑖O
(𝑖)
𝛼 ]Sch

𝛼

[1]Sch
𝛼

=
[∏𝑖O

(𝑖)
0 𝑒4sin2 ( 𝛼2 )𝜉

′ (0)]Sch
0

[𝑒4sin2 ( 𝛼2 )𝜉′ (0)]Sch
0

(6.1.30)

In fact, a very similar statement is the “key lemma” used by Losev in [6] in order to calculate
Schwarzian correlation functions. There is it proved using a change-of-variables formula for
the Schwarzian field theory. It is satisfying to see that it has a somewhat clear interpretation
from the Liouville perspective.

Heuristic for the solution of the Schwarzian Let ⟨·⟩𝛼 and [·]𝛼 denote the normalised and
unnormalised expectations of Schwarzian field theory at parameter 𝛼 ∈ R≥0∪ 𝑖R≥0, respectively.
Here we’d like to present a heuristic calculation of the partition function of Schwarzian theory,
using the “boundary operator” representation in (6.1.30).

Proposition 6.1.5: Suppose (6.1.30) holds for 𝛼2 < 𝜋. Then we have

[1]𝛼 =
𝛼

sin(𝛼) 𝑒
𝛼2 [1]0 (6.1.31)

The partition function [1]0 is usually fixed by convention (in our case we impose it to be equal
to the 𝜁-regularised determinant of Dirichlet Laplacian).
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Proof. First step:

𝜕𝛼 log[𝑒4sin2 (𝛼/2)𝜑′ (0)]0 = 2sin(𝛼) [𝜑
′(0)𝑒4sin2 (𝛼/2)𝜑′ (0)]0
[𝑒4sin2 (𝛼/2)𝜑′ (0)]0

= 2sin(𝛼) [O0(0,1)𝑒4sin2 (𝛼/2)𝜑′ (0)]0
[𝑒4sin2 (𝛼/2)𝜑′ (0)]0

= 2sin(𝛼) [O𝛼 (0,1)]𝛼[1]𝛼
= 2sin(𝛼) 𝛼

sin(𝛼)
[𝜑′(0)]𝛼
[1]𝛼

= 2𝛼

(6.1.32)

Consequently
[𝑒4sin2 (𝛼/2)𝜑′ (0)]0 = 𝑒𝛼

2 [1]0 (6.1.33)

By translational invariance, application of (6.1.30) and (6.1.33) we get

𝜕𝛼 log[1]𝛼 = 2𝛼
[𝜑′2(0)]𝛼
[1]𝛼

= 2𝛼
sin2(𝛼)
𝛼2

[𝜑′2(0)𝑒4sin2 (𝛼/2)𝜑′ (0)]0
[𝑒4sin2 (𝛼/2)𝜑′ (0)]0

= 2𝛼
sin2(𝛼)
𝛼2

1
𝑒𝛼

2

1
2sin(𝛼) 𝜕𝛼

( 1
2sin(𝛼) 𝜕𝛼𝑒

𝛼2 )
= 𝜕𝛼 log[ 𝛼

sin(𝛼) 𝑒
𝛼2] .

(6.1.34)

Consequently
[1]𝛼 =

𝛼

sin(𝛼) 𝑒
𝛼2 [1]0. (6.1.35)

This determined the partition function. □

Channel duality and boundary states. In the context boundary conformal field theory, there
is a relatively well-established principle of channel duality (or open/closed string duality),
which relates thermal expectations in a theory with spatial boundary conditions (such as the left
hand side of (6.1.20)) to quantum transition amplitudes between appropriate boundary states

(or branes). Roughly speaking, this amounts to swapping the role of space- and time-variables.
In the context of Liouville theory with ZZ–FZZT𝛼 boundary conditions, the statement for the
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partition function would be

tr(𝑒−𝛽𝐻̂𝑐̂,𝛼) = ⟨ZZ𝑐 | 𝑒−
𝑎0
𝛽
𝐻̂clo
𝑐̂

��FZZT𝛼,𝑐
〉
, (6.1.36)

where 𝑎0 > 0 is some universal constant, 𝐻̂clo
𝑐

is a Hamiltonian for field configurations on a
circle, and the bra/ket-states are certain “boundary states”. We mention this, since it provides
an alternative starting point to studying the Schwarzian limit from the Liouville field theory,
which is perhaps closer to currently available methods in constructive field theory.

6.1.2 SYK model

The Sachdev–Ye–Kitaev (SYK) model resembles a family of fermions with mean-field spin-
glass-type interactions. The typical setup consists of 2𝑁 Majorana fermions {𝜒𝑖}𝑖=1,...,2𝑁

interacting via a quartic action with i.i.d. Gaussian couplings 𝐽𝑖 𝑗 𝑘𝑙 , where 1 ≤ 𝑖 < 𝑗 < 𝑘 < 𝑙 ≤ 2𝑁:

𝐻 = −
∑︁

1≤𝑖< 𝑗<𝑘<𝑙≤2𝑁
𝐽𝑖 𝑗 𝑘𝑙 𝜒𝑖𝜒 𝑗 𝜒𝑘 𝜒𝑙 . (6.1.37)

Algebraically, referring to 𝜒𝑖 as Majorana fermions means that we impose the ∗-algebra 𝜒∗
𝑖
= 𝜒𝑖

and {𝜒𝑖, 𝜒 𝑗 } = 2𝛿𝑖 𝑗 , i.e. the real Clifford algebra over 2𝑁 generators. Using a matrix realisation
of this algebra, we can consider 𝐻 as a 2𝑁 -dimensional random matrix.

An explicit representation in terms of Pauli matrices on the Hilbert space (C2)⊗𝑛 is given,
up to normalisation, by generators of the form 𝜎⊗𝑘0 ⊗ 𝜎1|2 ⊗ 𝜎⊗(𝑁−𝑘−1)

3 . Another explicit
representation can be given in terms of fermionic creation/annihilation operators 𝑎1, . . . , 𝑎𝑁 :

𝜒2𝑘 =
1
√

2
[𝑎𝑘 + 𝑎∗𝑘 ] and 𝜒2𝑘+1 =

𝑖
√

2
[𝑎𝑘 − 𝑎∗𝑘 ] . (6.1.38)

The canonical anticommutation relations ({𝑎𝑖, 𝑎 𝑗 } = 0, {𝑎𝑖, 𝑎∗𝑗 } = 𝛿𝑖 𝑗 ) imply the Clifford algebra.
A Hilbert-space representation is given by the fermionic Fock space spanned by the basis
| 𝑗1 · · · 𝑗𝑁⟩ := (𝑎†1)

𝑗1 · · · (𝑎†
𝑁
) 𝑗𝑁 |0⟩ with 𝑗𝑘 ∈ {0,1}.

Physical observables. The physically relevant quantities (in terms of linear response theory)
are the retarded real-time Green’s functions at some inverse temperature 𝛽 > 0:

𝐺R
𝑖 𝑗 (𝑡, 𝑡′) = −𝑖Θ(𝑡 − 𝑡′)

1
𝑍

tr(𝑒−𝛽𝐻 [𝜒𝑖 (𝑖𝑡), 𝜒 𝑗 (𝑖𝑡′)]), (6.1.39)
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where we define 𝜒𝑖 (𝜏) = 𝑒𝜏𝐻𝜒𝑖𝑒−𝜏𝐻 . After Fourier transformation in the time/frequency domain
and analytic continuation, it turns out that one may equivalently focus on the thermal Green’s
function (also: imaginary-time time-ordered Green’s function):

𝐺 th
𝑖 𝑗 (𝜏, 𝜏′) = ⟨T𝜒𝑖 (𝜏)𝜒 𝑗 (𝜏′)⟩ :=

1
𝑍

tr(𝑒−𝛽𝐻T𝜒𝑖 (𝜏)𝜒 𝑗 (𝜏′)) (6.1.40)

with T denoting a formal time-ordering operator defined via

⟨T𝜒𝑖 (𝜏)𝜒 𝑗 (𝜏′)⟩ :=

⟨𝜒𝑖 (𝜏)𝜒 𝑗 (𝜏′)⟩ if 𝜏 ≥ 𝜏′

−⟨𝜒 𝑗 (𝜏′)𝜒𝑖 (𝜏)⟩ if 𝜏 < 𝜏′.
(6.1.41)

The thermal Green’s function is antiperiodic with period 𝛽. All above quantities are understood
in terms of finite-dimensional matrices and as such well-defined. Above definitions were with
respect to fixed/quenched disorder. In the following we denote the disorder-averaging by an
expectation E. In relation to the Schwarzian theory we are interested in disorder-averaged
Green’s functions

G(𝜏, 𝜏′) = G (𝑛) (𝜏, 𝜏′) := E[𝐺 th
𝑖𝑖 (𝜏, 𝜏′)], (6.1.42)

in the limit of 𝑛→∞. More generally, we are interested in disorder-averages of products of
Green’s functions, which form the relevant family of “correlation functions”.

Coherent state path integral for observables. Thermal (imaginary-time) correlators can be
rewritten using the (Euclidean) coherent state path integral over the Grassmannian fields 𝜒𝑖 (𝜏),
𝑖 = 1, . . . , 𝑁:

E
∫
D[𝜒(𝜏)]𝐹 [𝜒] exp[−

𝛽∫
0

d𝜏
(1
2

∑︁
𝑖

𝜒𝑖 (𝜏)𝜕𝜏𝜒𝑖 (𝜏) +
∑︁
𝑖 𝑗 𝑘𝑙

𝐽𝑖 𝑗 𝑘𝑙𝜒𝑖 (𝜏)𝜒 𝑗 (𝜏)𝜒𝑘 (𝜏)𝜒𝑙 (𝜏)
)
],

(6.1.43)
where 𝐹 [𝜒] stands for some field insertions, such as 𝜒𝑖 (𝜏)𝜒𝑖 (𝜏′) in the case of the thermal
Green’s function (6.1.42). One can formally perform the average over the disorder variables
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𝐽𝑖 𝑗 𝑘𝑙 :

Eexp
[
−

∑︁
𝑖 𝑗 𝑘𝑙

𝐽𝑖 𝑗 𝑘𝑙

𝛽∫
0

d𝜏[𝜒𝑖𝜒 𝑗 𝜒𝑘 𝜒𝑙] (𝜏)
]

= exp
[E[𝐽2]

2

∑︁
𝑖 𝑗 𝑘𝑙

𝛽∫
0

d𝜏
𝛽∫

0

d𝜏′[𝜒𝑖𝜒 𝑗 𝜒𝑘 𝜒𝑙] (𝜏) [𝜒𝑖𝜒 𝑗 𝜒𝑘 𝜒𝑙] (𝜏′)
]

= exp
[E[𝐽2]

2
𝑁4

4!

∑︁
𝑖 𝑗 𝑘𝑙

𝛽∫
0

d𝜏
𝛽∫

0

d𝜏′(− 1
𝑁

∑︁
𝑖

𝜒𝑖 (𝜏)𝜒𝑖 (𝜏′))4
]

= exp
[𝑁

2
J 2

4

∫ 𝛽

0

∫ 𝛽

0
d𝜏d𝜏′𝐺 𝜒 (𝜏, 𝜏′)4

]
,

(6.1.44)

where we defined 𝐺 𝜒 (𝜏, 𝜏′) = 1
𝑁

∑
𝑖 𝜒𝑖 (𝜏)𝜒𝑖 (𝜏′) and set E[𝐽2] = 3!J 2/𝑁3 for J 2 > 0 in order

to obtain a non-trivial 𝑁→∞ limit.

𝐺-Σ field theory for SYK. In the spirit of mean-field theory, we would now like to treat
𝐺 𝜒 (𝜏, 𝜏′) as a “self-sufficient” bilocal field. Following the presentation in [7, 133], we proceed
as follows: we introduce a new field𝐺 (𝜏, 𝜏′), which is set to𝐺 𝜒 (𝜏, 𝜏′) via a Lagrange multiplier
Σ(𝜏, 𝜏′). That is, we would like to insert the following into our integral:

1 =

∫
D[Σ(𝜏, 𝜏′)]D[𝐺 (𝜏, 𝜏′)] 𝑒𝑖 𝑁2

∫
d𝜏d𝜏′Σ(𝜏,𝜏′) [𝐺 (𝜏,𝜏′)−𝐺𝜒 (𝜏,𝜏′)] . (6.1.45)

Formally, for every 𝜏, 𝜏′ ∈ [0, 𝛽]2 the variable Σ(𝜏, 𝜏′) is integrated along the real axis (or a
contour parallel to it). It is typically assumed that one can “rotate” this integration contour onto
the imaginary axis, in effect dropping the imaginary unit in the exponential. To justify this, one
would need to insert (6.1.45) into the path integral, integrate out the fermionic variables and
then consider a careful analysis of the integrand’s singularities with respect to the Σ-field. In
the following, we just assume that this works and drop the imaginary unit, 𝑖Σ ↦→ Σ. Frankly,
(6.1.45) contains another subtlety that is much more fundamental: For any fixed number 𝑁
of Majorana fermions, the quantity 𝐺 𝜒 is nilpotent: 𝐺 𝜒 (𝜏, 𝜏′)𝑁+1 = 0. This is problematic as
we think of 𝐺 (𝜏, 𝜏′) as a real variable (even and non-nilpotent in the context of Grassmann
integrals). Consequently, integrating over Σ cannot really set 𝐺 = 𝐺 𝜒, but this might still be
true “under the integral” in that for example all correlation functions involving 𝐺𝑁+1 vanish.
We refer to the appendix in [12] for a more detailed discussion of a toy model including the
mentioned subtleties.
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Now we proceed with the evaluation of (6.1.43). For this assume that the observable 𝐹 [𝜒] =
𝐹 [𝐺 𝜒] is actually a function of 𝐺 𝜒. Inserting (6.1.45) and setting 𝐺 𝜒 = 𝐺 in the disorder-
averaged interaction term (6.1.44) we get

∫
D[Σ(𝜏, 𝜏′)]D[𝐺 (𝜏, 𝜏′)] 𝐹 [𝐺]𝑒𝑁/2

∫
d𝜏d𝜏′ [Σ(𝜏,𝜏′)𝐺 (𝜏,𝜏′)+ J

2
4 𝐺 (𝜏,𝜏′)4]×

×
∫
D[𝜒(𝜏)]𝑒− 1

2
∑

𝑖

∫
d𝜏d𝜏′𝜒𝑖 (𝜏) [𝛿(𝜏−𝜏′)𝜕𝜏+Σ(𝜏,𝜏′)]𝜒𝑖 (𝜏)

=

∫
D[Σ,𝐺] 𝐹 [𝐺]𝑒𝑁/2

[
logdet(𝜕𝜏+Σ)+

∫
d𝜏d𝜏′ [Σ(𝜏,𝜏′)𝐺 (𝜏,𝜏′)+ J

2
4 𝐺 (𝜏,𝜏′)4]

]
(6.1.46)

In the 𝑁 →∞ limit this integral should be dominated by the maxima of the action in the
exponential. In fact, the saddle point equations are

𝐺 = (𝜕𝜏 +Σ)−1 and Σ(𝜏, 𝜏′) = J 2𝐺 (𝜏, 𝜏′)3, (6.1.47)

where we understand 𝐺 and Σ as integral operators, defined by their kernels 𝐺 (𝜏, 𝜏′) and
Σ(𝜏, 𝜏′), respectively. In [7, 133] it is argued that for 𝛽J ≫ 1 the 𝜕𝜏-term in (6.1.47) becomes
negligible. It is claimed that solutions of this time-independent equation are of the form

G𝜑 (𝜏1, 𝜏2) ∝
sgn(𝜏1− 𝜏2)
[𝛽J]1/2

[
𝜋
√︁
𝜑′(𝜏1/𝛽)𝜑′(𝜏2/𝛽)

sin(𝜋 |𝜑(𝜏1/𝛽) −𝜑(𝜏2/𝛽) |)

]1/2

, (6.1.48)

for any 𝜑 ∈ Diff (𝑆1) and some universal constant of proportionality. Defining Σ𝜑 = G−1
𝜑 we

have Σ𝜑 (𝜏, 𝜏′) = J 2G𝜑 (𝜏, 𝜏′)3.
To reiterate, the above is an infinite-dimensional family of saddle points (with the same action)

in the limit 𝑁→∞ and 𝛽J →∞. One expects that for finite but large values of 𝑁 and 𝛽J , the
path integral in (6.1.46) is still dominated by the integral over the functions G𝜑, but the error in
neglecting the 𝜕𝜏-term may give these terms a finite 𝜑-dependent action. In fact, on the level
of the action, the approximation error is 𝑁

2 [tr log(𝜕𝜏 +Σ𝜑) − tr log(Σ𝜑)] = 𝑁
2 tr log(1+ 𝜕𝜏𝐺𝜑),

where we assumed (6.1.47). Note that here 𝜕𝜏𝐺𝜑 is a composition of operators. This can
formally be expanded in powers of 𝜕𝜏𝐺𝜑 with the first non-vanishing term being

𝑁

4
tr[𝜕𝜏𝐺𝜑𝜕𝜏𝐺𝜑] ∝ −

𝑁

𝛽J

∬
d𝜏d𝜏′

[
𝜋
√︁
𝜑′(𝜏)𝜑′(𝜏′)

sin
(
𝜋 |𝜑(𝜏) −𝜑(𝜏′) |

) ]3

. (6.1.49)
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Note that this expression is inherently non-local. In a further approximation step it is conjec-
tured that the theory defined by such an action is dominated by the singular diagonal 𝜏 ≈ 𝜏′

contribution[
𝜋
√︁
𝜑′(𝜏)𝜑′(𝜏′)

sin
(
𝜋 |𝜑(𝜏) −𝜑(𝜏′) |

) ]3

=
1

|𝜏− 𝜏′|3
+9|𝜏− 𝜏′|S(tan(𝜋𝜑(𝜏)), 𝜏) +𝑂 ( |𝜏− 𝜏′|2). (6.1.50)

The divergent contribution is independent of 𝜑, and can be absorbed into a normalisation
constant. Consequently, the claim is, that the leading-order action for the low-energy excitation
G𝜑 is

𝑆eff [𝐺𝜑] ∝ −
𝑁

𝛽J

∫
d𝜏S(tan(𝜋𝜑(𝜏)), 𝜏), (6.1.51)

which is precisely the Schwarzian action. Furthermore, disorder-averaged Green’s function
correlators should correspond to correlators of Schwarzian cross-ratio observables.

6.1.3 JT-gravity

Jackiw-Teitelboim (JT) gravity is defined over a surface Σ with boundary 𝜕Σ. We will consider
the case where Σ is the upper half-plane H2 = {𝑧 = 𝑡 + 𝑖𝑦 : 𝑡 ∈ R, 𝑦 > 0}. The formal action is
given for a metric 𝑔 and a scalar “dilaton field” 𝜙:

𝐼 [𝑔, 𝜙] = − 1
16𝜋𝐺

[∫
Σ

(𝑅𝑔 +2)𝜙√𝑔d𝑥 +2
∫
𝜕Σ

𝐾𝑔𝜙
√
𝛾 d𝑢

]
, (6.1.52)

where
√
𝑔 denotes the square root determinant of the metric tensor 𝑔𝜇𝜈, 𝑅𝑔 is its Ricci scalar

curvature, 𝛾 is the induced metric on the boundary and 𝐾𝑔 the extrinsic curvature.
Ideally, one would like to make sense of the formal path integral measure D𝑔D𝜙𝑒−𝐼 [𝑔,𝜙] . As

there are various issues1 with this, one may resort to making sense of a “regularised on-shell
action”. Here, on-shell refers to the fact that we derive an action for configurations that satisfy
the classical equations of motion. The latter are given by

0 = 𝑅𝑔 +2

0 = ∇𝜇∇𝜈𝜙+𝑔𝜇𝜈 (−Δ+1)𝜙.
(6.1.53)

1For real-valued 𝜙 the integration is unbounded and generally the integration space for metrics is not clear. In
the physics literature one typically assumes that we can deform the contour onto the imaginary axis, in which case
the integral “localises” on solutions to 𝑅𝑔 +2 = 0, which is essentially equivalent to the on-shell action.
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In particular, all “on-shell geometries” are of constant negative curvature. Ideally, one would
now like to parametrise all such solutions and insert them into the action. The bulk term
vanishes, but the boundary term might yield a non-trivial quantity. In this case the solution
space includes unbounded geometries, for which the boundary term doesn’t make sense, and
one imposes an additional form of regularisation: We restrict onto a subset of geometries for
which the boundary term can be evaluated, namely finite volume and boundary-length subsets
of the hyperbolic plane enscribed by a particular boundary curve:

Recall that the geodesic boundary of the hyperbolic plane H2 can be identified with the real
projective line R𝑃1 � R∪{∞}. For any orientation-preserving diffeomorphism 𝑓 : R𝑃1→R𝑃1

of the boundary2, given in affine coordinates 𝑡 = 𝑓 (𝑢) with 𝑡, 𝑢 ∈ R∪ {∞}, and any fixed 𝜖 > 0
we define the curve in the upper half-plane

𝑝 𝑓 ,𝜖 (𝑢) = 𝑓 (𝑢) + 𝑖𝜖 𝑓 ′(𝑢). (6.1.54)

The area above this curve defines a (simply-connected) finite-volume portion of the hyperbolic
plane with smooth boundary. By the Riemann mapping theorem, we can map this back onto
H2 and consider the induced metric as a metric on the upper half-plane. To be precise, this
mapping is up to a global PSL(2,R)-transformation, which acts via Möbius transformations on
𝑓 . In other words, every 𝜖 > 0 and 𝑓 ∈ Diff (R𝑃1)/PSL(2,R) determines a metric on H. Given
a boundary condition 𝜙 |𝜕Σ, we can evaluate the boundary term in (6.1.52). For (𝑛𝜇) denoting
the normal vector to the curve 𝑝 𝑓 ,𝜖 , the extrinsic/geodesic curvature is

𝐾𝑔 = ∇𝜇𝑛𝜇 = 𝜕𝜇𝑛𝜇 +Γ𝜇𝜇𝜈𝑛𝜈 . (6.1.55)

For the upper half-plane model, the Christoffel symbols are given by Γ𝑡𝑡𝑦 = Γ𝑡𝑦𝑡 = Γ
𝑦
𝑦𝑦 = −Γ𝑦𝑡𝑡 = 1

𝑦

and hence

𝐾𝑔 =
𝑦(𝑡′𝑦′′− 𝑦′𝑡′′) + 𝑡′(𝑦′2 + 𝑡′2)

(𝑡′2 + 𝑦′2)3/2

= 1+ 𝜖2 𝑓
′′′

𝑓 ′2
− 3

2
𝜖2 𝑓

′′2

𝑓 ′2
+O(𝜖4)

= 1+ 𝜖2Sch( 𝑓 , 𝑢) +O(𝜖4)

(6.1.56)

The induced metric 𝛾𝑎𝑏 = 𝑔𝜇𝜈 𝜕𝑥
𝜇

𝜕𝑢𝑎
𝜕𝑥𝜈

𝜕𝑢𝑏
can be evaluated to

𝛾𝑢𝑢 =
1
𝜖2 +

𝑓 ′′2

𝑓 ′2
. (6.1.57)

2Any such diffeomorphism or the real projective line can be related to a circle diffeomorphism 𝜑 ∈ Diff (𝑆1)
via 𝑓 (tan(𝜋𝜏)) = tan(𝜋𝜑(𝜏)).
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To evaluate the boundary term we have to impose some boundary conditions for the dilaton
field:

𝜙(𝑝 𝑓 ,𝜖 (𝑢)) =
1
𝜖
𝜙r(𝑢) (6.1.58)

for some fixed function 𝜙r. Inserting (6.1.56), (6.1.57), (6.1.58) into (6.1.52), we get

𝐼 (𝑔[𝑝 𝑓 ,𝜖 ]) = −
1

8𝜋𝐺

∫ ∞

−∞
d𝑢

1
𝜖
𝜙r(𝑢) [1+ 𝜖2S( 𝑓 , 𝑢) +𝑂 (𝜖4)]

√︄
1
𝜖2 +

𝑓 ′′2

𝑓 ′2

= − 1
8𝜋𝐺

1
𝜖2

∫ ∞

−∞
d𝑢 𝜙r(𝑢) −

1
8𝜋𝐺

∫
d𝑢 𝜙r(𝑢)S( 𝑓 , 𝑢) +𝑂 (𝜖)

= − 1
8𝜋𝐺

∫ ∞

−∞
d𝑢 𝜙r(𝑢)S( 𝑓 , 𝑢) + 𝑆counter,𝜖 +𝑂 (𝜖),

(6.1.59)

where we absorbed the divergent part into a “counter-term” that is discarded as part of the
regularisation. In other words we find that the Schwarzian action appears as the leading 𝑓 -
dependent contribution for the on-shell JT-action for a specific set of geometries. The boundary
datum 𝜙r can be chosen freely and for 𝜙r(𝑢) = [𝜋(1+ 𝑢2)]−1 we can reparametrise via 𝑢 =

tan(𝜋𝜏) : 𝑆1→R𝑃1 to obtain the usual Schwarzian measure (writing 𝑓 (tan(𝜋𝜏)) = tan(𝜋𝜑(𝜏))
for a circle diffeomorphism 𝜑 ∈ Diff (𝑆1)).

6.2 Additional Background

This section provides a kaleidoscopic view over various objects which are directly or indirectly
related to the Schwarzian field theory. We mention the real projective line and how the
Schwarzian derivative arises as an infinitesimal cross-ratio. Furthermore, we mention the
Schwarzian’s relevance in the context of Sturm-Liouville (/Hill’s) operators. Then, we discuss
coadjoint orbits and their classification in the context of two infinite-dimensional cases, the loop
group and the Virasoro group. The path integral of Schwarzian measures can be seen to appear
naturally in this context. In particular, this point of view provides a way to “guess” the partition
function by formally applying an infinite-dimensional analogue of the Duistermaat-Heckman
theorem [17].

6.2.1 Cross-ratios and the Schwarzian derivative

In the following we recall some basic facts about the geometry of the real projective line,
including the notion of cross-ratios and how the Schwarzian derivative appears naturally in this
context.
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Projective line, cross-ratios and PSL(2,R). Recall the definition of the real projective line
R𝑃1 as equivalence classes [𝑥 : 𝑦] of points in R2\{0} under rescaling: [𝑥 : 𝑦] = [𝑡𝑥 : 𝑡𝑦]
for 𝑡 ≠ 0. Topologically, R𝑃1 is just the circle, with 𝑆1 ∋ 𝜏 ↦→ [sin(𝜋𝜏) : cos(𝜋𝜏)] providing
a homeomorphism. We typically refer to a point [𝑥 : 𝑦] = [𝑥/𝑦 : 1] ∈ R𝑃1 via the affine

coordinate 𝑥/𝑦 ∈ R∪{∞}, with the understanding that this is equal to∞ if 𝑦 = 0. Consequently,
we typically understand R𝑃1 � R∪ {∞}. In these coordinates, the identification with the circle
is given by tan(𝜋·) : 𝑆1 ↦→ R𝑃1 � R∪ {∞}.

The action of 𝑀 =
(
𝑎 𝑏
𝑐 𝑑

)
∈ GL(2,R) on R2 induces an action on R𝑃1:

𝑀 [𝑥 : 𝑦] := [𝑎𝑥 + 𝑏𝑦 : 𝑐𝑥 + 𝑑𝑦] =
[𝑎𝑥/𝑦 + 𝑑
𝑐𝑥/𝑦 + 𝑑 : 1

]
. (6.2.1)

In particular, on the affine coordinate this acts via fractional linear (i.e. Möbius) transformations
and it descends to a faithful transitive action of PSL(2,R) = SL(2,R)/{±1} = GL(2,R)/R× on
the real projective line R𝑃1.

Consider four points 𝑎, 𝑏, 𝑐, 𝑑 ∈ R𝑃1. We write 𝑎 = [𝑎0 : 𝑎1], 𝑏 = [𝑏0 : 𝑏1] et cetera. For two
vectors in 𝑥 = (𝑥0, 𝑥1) and 𝑦 = (𝑦0, 𝑦1) we define the “cross product” 𝑥× 𝑦 = 𝑥0𝑦1− 𝑥1𝑦0. The
cross-ratio is defined as

[𝑎, 𝑏;𝑐, 𝑑] := [(𝑎× 𝑐) (𝑏× 𝑑) : (𝑎× 𝑑) (𝑏× 𝑐)] ∈ R𝑃1. (6.2.2)

Note that the cross product of two vectors in R2 is invariant under SL(2,R) transformations
(as it measures the area of the parallelogram spanned by those vectors). Consequently, the
cross-ratio is manifestly invariant under the PSL(2,R)-action on R𝑃1. Using affine coordinates,
we can rewrite (6.2.2) into the more familiar form

[𝑎, 𝑏;𝑐, 𝑑] = [(𝑎0𝑐1− 𝑎1𝑐0) (𝑏0𝑑1− 𝑏1𝑑0) : (𝑎0𝑑1− 𝑎1𝑑0) (𝑏0𝑐1− 𝑏1𝑐0)]

=

[(
𝑎0
𝑎1
− 𝑐0
𝑐1

) (
𝑏0
𝑏1
− 𝑑0
𝑑1

)
:
(
𝑎0
𝑎1
− 𝑑0
𝑑1

) (
𝑏0
𝑏1
− 𝑐0
𝑐1

)]
=
(𝑎− 𝑐) (𝑏− 𝑑)
(𝑎− 𝑑) (𝑏− 𝑐) ,

(6.2.3)

where we identify points in R𝑃1 with their affine coordinate.
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Schwarzian as an infinitesimal cross-ratio. Consider a map 𝑓 : R→ R𝑃1 � R∪ {∞}.
Expanding the infinitesimal cross-ratio in 𝜖 > 0 one finds

[ 𝑓 (𝑡), 𝑓 (𝑡 + 𝜖); 𝑓 (𝑡 +2𝜖), 𝑓 (𝑡 +3𝜖)] = 1+ 𝜖
2

6
S( 𝑓 , 𝑡) + 𝑜(𝜖2). (6.2.4)

As a consequence of this, the PSL(2,R)-invariance of the Schwarzian is clear. In the context of
the Schwarzian we are also interested in observables

[ 𝑓 (𝑡), 𝑓 (𝑠); 𝑓 (𝑡 + 𝜖), 𝑓 (𝑠+ 𝜖)] = ( 𝑓 (𝑡 + 𝜖) − 𝑓 (𝑡)) ( 𝑓 (𝑠+ 𝜖) − 𝑓 (𝑠))( 𝑓 (𝑡) − 𝑓 (𝑠)) ( 𝑓 (𝑡 + 𝜖) − 𝑓 (𝑠+ 𝜖))

= 𝜖2 𝑓 ′(𝑡) 𝑓 ′(𝑠)
( 𝑓 (𝑡) − 𝑓 (𝑠))2

+𝑂 (𝜖3).
(6.2.5)

Consequently, for 𝑡→ 𝑠, we see

𝑓 ′(𝑡) 𝑓 ′(𝑠)
( 𝑓 (𝑡) − 𝑓 (𝑠))2

=
1

|𝑡 − 𝑠 |2
+6|𝑡 − 𝑠 |2S( 𝑓 , 𝜏) + 𝑜( |𝑡 − 𝑠 |2). (6.2.6)

Cross-ratios, hyperbolic distances and JT-observables. Consider the upper half plane-
model for the hyperbolic plane H2 = {𝑧 = 𝑡 + 𝑖𝑦 : 𝑡 ∈ R, 𝑦 > 0} with the metric 𝑔 = 1

𝑦2 [d𝑡2 +d𝑦2].
Its geodesic boundary is R∪ {∞} and can be identified with the real projective plane R𝑃1. In
fact, the hyperbolic distance is directly related to the cross-ratio:

Lemma 6.2.1 ([134]): Consider two points 𝑧1, 𝑧2 ∈ H2. Suppose the unique geodesic through
these points hits the boundary at 𝑡1, 𝑡2 ∈ R∪ {∞} � R𝑃1. Then we have

dist(𝑧1, 𝑧2) =
��� log[𝑡1, 𝑡2; 𝑧1, 𝑧2]

���, (6.2.7)

where we understand the cross-ratio as in the last line of (6.2.3), extended to complex (affine)
coordinates.

This is of particular interest in view of the relationship between JT-gravity and the Schwarzian
theory (Section 6.1.3): Consider an orientation-preserving diffeomorphism 𝑓 : R𝑃1→ R𝑃1

and the associated curve 𝑝 𝑓 ,𝜖 (𝑢) = 𝑓 (𝑢) + 𝑖𝜖 𝑓 ′(𝑢) as in (6.1.45). Lemma 6.2.1 gives us a way
of calculating distances between different points on the curve 𝑝 𝑓 ,𝜖 as 𝜖 ↘ 0: For sufficiently
small 𝜖 , the geodesic through 𝑝 𝑓 ,𝜖 (𝑡) and 𝑝 𝑓 ,𝜖 (𝑠) will be a circular arc hitting the boundary at
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points 𝑓 (𝑡) +𝑂 (𝜖2) and 𝑓 (𝑠) +𝑂 (𝜖2). Hence, we calculating the cross-ratio

[ 𝑓 (𝑡), 𝑓 (𝑠); 𝑝 𝑓 ,𝜖 (𝑡), 𝑝 𝑓 ,𝜖 (𝑠)] = [ 𝑓 (𝑡), 𝑓 (𝑠); 𝑓 (𝑡) + 𝑖𝜖 𝑓 ′(𝑡), 𝑓 (𝑠) + 𝑖𝜖 𝑓 ′(𝑠)]

=
−𝜖2 𝑓 ′(𝑡) 𝑓 ′(𝑠)

( 𝑓 (𝑡) − 𝑓 (𝑠) − 𝑖𝜖 𝑓 ′(𝑠)) ( 𝑓 (𝑠) − 𝑓 (𝑡) − 𝑖𝜖 𝑓 ′(𝑡))

= 𝜖2 𝑓 ′(𝑡) 𝑓 ′(𝑠)
| 𝑓 (𝑡) − 𝑓 (𝑠) |2

+𝑂 (𝜖3)

(6.2.8)

we obtain that for 𝜖 ↘ 0

dist
(
𝑝 𝑓 ,𝜖 (𝑡), 𝑝 𝑓 ,𝜖 (𝑠)) = log

(1+ 𝑜(1)
𝜖2

)
− log

( 𝑓 ′(𝑡) 𝑓 ′(𝑠)
| 𝑓 (𝑡) − 𝑓 (𝑠) |2

)
. (6.2.9)

In other words, exponential of the renormalised distance (removing the universal divergence
as 𝜖 → 0) between boundary points in JT-gravity (or, more honestly, the “approximation”
constructed in Section 6.1.3) are expressed in terms of Schwarzian cross-ratio observables.

Hill’s operators and the Schwarzian. The Schwarzian derivative makes an appearance in the,
seemingly, entirely separate context of Sturm-Liouville/Hill’s operators. This perspective is of
particular interest for the classification of coadjoint orbits of the Virasoro group (Section 6.2.5).

Proposition 6.2.2: Consider a smooth potential 𝑏 : R→ R and two linearly independent
solutions 𝑓 , 𝑔 : R→ R to Hill’s equation

0 = [𝜕2
𝜏 + 1

2𝑏(𝜏)] 𝑓 (𝜏) = [𝜕
2
𝜏 + 1

2𝑏(𝜏)]𝑔(𝜏) (6.2.10)

Then the Wronskian 𝑊 = det
(
𝑓 𝑔

𝑓 ′ 𝑔′

)
is constant. Without loss of generality, after potential

rescaling, it can be chosen to be constant equal to one,𝑊 ≡ 1. In particular 𝑓 , 𝑔 don’t have
coinciding zeros and we can define the projective solution

𝜂(𝜏) = 𝑔(𝜏)
𝑓 (𝜏) : R→ R𝑃1 � R∪ {∞}. (6.2.11)

Then, 𝜂′ = 1/ 𝑓 2 > 0 is monotone and satisfies

S(𝜂, 𝜏) = 𝑏(𝜏). (6.2.12)
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Proof. The Wronskian is constant since Hill’s equation has no first-order term. To be more
explicit, one can check that

𝜕𝜏

(
𝑓 𝑔

𝑓 ′ 𝑔′

)
=

(
0 1

− 1
2 𝑏(𝜏) 0

) (
𝑓 𝑔

𝑓 ′ 𝑔′

)
. (6.2.13)

Note that tr
(

0 1
− 1

2 𝑏(𝜏) 0

)
= 0, hence the flow (6.2.13) leaves the determinant constant. Moreover,

rescaling and/or interchanging the role of 𝑓 and 𝑔 we can make sure the Wronskian is constant
equal to 1. To calculate S(𝜂) = log(𝜂)′′− 1

2 log(𝜂)′2, we first note that

𝜂′ =
( 𝑔
𝑓

)′
=
𝑓 𝑔′− 𝑓 ′𝑔

𝑓 2 =
1
𝑓 2 . (6.2.14)

Consequently,
S(𝜂) = −2log( 𝑓 )′′− 1

2 [−2log( 𝑓 )]′2

= −2 𝑓 ′′/ 𝑓
= 𝑏(𝜏).

(6.2.15)

□

The Schwarzian of the tangent is special. The tangent function tan𝜃 = sin𝜃/cos𝜃 ∈ R𝑃1 �

R∪ {∞} is conveniently considered to take values in the real projective line. We think of it as a
“uniform rotation” in R𝑃1 � 𝑆1. It turns out that its Schwarzian derivative is remarkably simple,
a fact that will be relevant in the classification of Virasoro coadjoint orbits (Section 6.2.4 and
Section 6.2.5):

Lemma 6.2.3: For any 𝛼2 ∈ R, that is 𝛼 ∈ R≥0∪ 𝑖R≥0, we have

S(tan(𝛼𝜏), 𝜏) = S( 1
𝛼

tan(𝛼𝜏), 𝜏) = 2𝛼2. (6.2.16)

Proof. We demonstrate two separate derivations. The first, fast and indirect, is a consequence
of Proposition 6.2.2: Consider the Sturm-Liouville operator 𝜕2

𝜏 +𝛼2. Both 𝑓 = cos(𝛼𝜏) and
𝑔 = 1

𝛼
sin(𝛼𝜏) are (real-valued) solutions, such that 𝑓 𝑔′− 𝑓 ′𝑔 = cos2(𝛼𝜏) +sin2(𝛼𝜏) = 1. Hence,

by (6.2.11), we have S(tan(𝛼)) = S(𝑔/ 𝑓 ) = 2𝛼2, which proves the claim. The second one is
by direct calculation. Recall that tan(𝛼𝜏)′ = 𝛼/cos2(𝛼𝜏). Hence

log
( 1
𝛼

tan(𝛼𝜏)′
)′
= log(tan(𝛼𝜏)′)′ = −2log(cos(𝛼𝜏))′ = 2𝛼 tan(𝛼𝜏). (6.2.17)
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Consequently, for 𝛼 ∈ R we have (recall tan′ = 1+ tan2)

S(tan(𝛼𝜏), 𝜏) = log(tan(𝛼𝜏)′)′′− 1
2

log(tan(𝛼𝜏)′)′2

= 2𝛼 tan(𝛼𝜏)′−2𝛼2 tan2(𝛼𝜏)
= 2𝛼2.

(6.2.18)

□

Schwarzian as a 1-cocycle. A central property of the Schwarzian is its composition rule

S( 𝑓 ◦𝑔) = S(𝑔) + |𝑔′|2S( 𝑓 ) ◦𝑔 (6.2.19)

This can be stated in more flamboyant terms: Suppose a group 𝐺 acts an a vector space 𝑉 . A
map 𝜌 : 𝐺→𝑉 is a 1-cocycle (or crossed homomorphism) if

𝜌(𝑔ℎ) = 𝜌(𝑔) +𝑔 · 𝜌(ℎ) for 𝑔, ℎ ∈ 𝐺. (6.2.20)

In our case, the group is 𝐺 = Diff (𝑆1) and 𝑉 = F2(𝑆1) = {𝐹 (𝜏) (d𝜏)2 : 𝐹 : 𝑆1→ R} is the space
of 2-tensor densities on 𝑆1, i.e. functions 𝐹 (𝜏) that transform via (𝑔 ·𝐹) (𝜏) := |𝑔′|2𝐹 (𝑔(𝜏)) un-
der the action of a reparametrisation 𝑔 ∈ Diff (𝑆1). In other words, (6.2.19) says that the

Schwarzian is a 1-cocycle on Diff (𝑆1) with coefficients in F2(𝑆1). For this reason, the
Schwarzian derivative is relevant for the central extension of Diff (𝑆1), namely the Virasoro
group (see Section 6.2.4).
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6.2.2 Coadjoint orbits

Consider a Lie group 𝐺 with Lie algebra 𝔤. 𝐺 acts on 𝔤 via the adjoint representation Ad,
which (for matrix groups) we can write as Ad𝑔 (𝑋) = 𝑔𝑋𝑔−1, with 𝑔 ∈ 𝐺 and 𝑋 ∈ 𝔤. By duality,
there is a coadjoint representation Ad∗ = Hom(𝔤,R) on the vector-space dual 𝔤∗ of the Lie
algebra, such that ⟨𝜉, 𝑋⟩ = ⟨Ad∗𝑔𝜉,Ad𝑔𝑋⟩ for any 𝑔 ∈ 𝐺,𝜉 ∈ 𝔤∗, 𝑋 ∈ 𝔤 and where ⟨·, ·⟩ denotes
the canonical pairing. For an element 𝜉 ∈ 𝔤∗ we write O𝜉 := Ad𝐺𝜉 � 𝐺/Stab(𝜉) for the orbit
of 𝜉 under this action. These spaces are referred to as coadjoint orbits. Mathematically these
spaces are of particular interest as they carry a natural symplectic structure: On O𝜉 we can
define the Kirillov–Kostant–Souriau (KKS) 2-form 𝜔 ∈ Ω2(O𝜉):

𝜔𝜈 (ad∗𝑋𝜈,ad∗𝑌 𝜈) := ⟨𝜈, [𝑋,𝑌 ]⟩ with 𝜈 ∈ O𝜉 and 𝑋,𝑌 ∈ 𝔤. (6.2.21)

This defines a closed, non-degenerate and 𝐺-invariant 2-form, hence an invariant symplectic
form. Moreover, the canonical embedding 𝜇 : O𝜉 ↩→ 𝔤∗ defines a moment map, i.e. for any Lie
algebra element 𝑋 ∈ 𝔤 the gradient flow generated by the Hamiltonian ⟨𝜇, 𝑋⟩ : O𝜉 → R agrees
with the 𝐺-action generated by 𝑋 .

What is this good for? From a mathematical point of view, the above construction opens the
door to Kirillov’s orbit method, relating geometric properties of the coadjoint orbits with the
irreducible unitary representations of 𝐺. For example, Kirillov’s character formula expresses
the characters of irreducible representations in terms orbital integrals∫

O𝜉

𝑒𝑖⟨𝜇,𝑋⟩dvolO𝜉
where dvolO𝜉

= 𝜔𝑛/𝑛!, (6.2.22)

for dimO𝜉 = 2𝑛 is the volume form induced by the KKS-form 𝜔.
From a physical point of view, the orbit method produces a wealth of examples for geometric

quantisation: As a symplectic manifold, a coadjoint orbit can be considered as the phase space
(i.e. the space of positions and momenta) of a classical mechanical system, with a family
of potential Hamiltonian functions provided by the moment map. Geometric quantisation
then constructs a Hilbert space of quantum states, where classical observables (such as the
Hamiltonian) are promoted to operators, and which is equipped with a unitary 𝐺-representation.

Alternatively, the orbital integrals (6.2.22) provide natural candidates for the construction
of path integrals. This is particularly true for the case of infinite-dimensional groups and
orbits, in which case one may try to give probabilistic meaning to formal measures such as
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𝑒−𝛽⟨𝜇,𝑋⟩dvolO𝜉
. A central point of the following chapters is to discuss this perspective for the

Schwarzian theory.

Orbital integrals and the Duistermaat–Heckman theorem. Without further knowledge,
one might expect orbital integrals (6.2.22) to be rather hard to evaluate. However, if 𝑋 ∈ 𝔤
generates a𝑈 (1)-action, a somewhat magical statement in symplectic geometry states that the
integral “localises” on critical points of the action ⟨𝜇, 𝑋⟩: Suppose 𝐺 is finite-dimensional and
𝐻𝑋 had finitely many non-degenerate critical points. Then Write 𝐻𝑋 (𝜈) = ⟨𝜇, 𝑋⟩(𝜈) ∈ R for
𝜈 ∈ O𝜉 ∫

O𝜉

𝑒𝑖𝜆𝐻𝑋 (𝜈)dvolO𝜉
(𝜈) =

∑︁
𝜈0 : D𝐻𝑋 (𝜈0)=0

𝑒𝑖𝜆𝐻𝑋 (𝜈0)√︁
det(2𝜋𝜆D2𝐻𝑋 (𝜈0))

. (6.2.23)

In other words, the saddle point approximation for the orbital integral is exact! Witten and
Stanford suggested that the equivalent statement holds true in the infinite-dimensional setting
[17], which allowed them to “guess” the partition function of the Schwarzian field theory, by
interpreting it as a orbital integral.

A note on the infinite-dimensional setting. In this section we are mostly interested in the
coadjoint orbits of the Virasoro group and so-called loop groups, both of which are infinite-
dimensional and understood as Fréchet manifolds. In this scenario, various functional-analytic
and geometric subtleties come into play. For example, the exponential map from the Virasoro
algebra to its group is not even locally surjective. We will mostly ignore such issues, as our
interest in the coadjoint orbits is mostly for “guessing” interesting action functionals. We refer
to the monograph [135] for a more careful treatment.

Moreover, in the context of an infinite-dimensional group 𝐺, we will typically consider the
coadjoint orbits of its central extension 𝐺, assuming it is unique. It’s Lie algebra 𝔤̂ is a central
extension of the Lie algebra 𝔤, with dual space 𝔤̂∗. However, since central elements acts trivially
via the (co)adjoint representation, the coadjoint orbits of 𝐺 simply correspond to the 𝐺-orbits
in 𝔤̂∗. As a consequence, if we refer to the coadjoint orbits of 𝐺, we usually refer to this
generalisation3.

3Nita that this modification is typically irrelevant in the finite-dimensional case, as semi-simple finite-
dimensional Lie algebras don’t have any central extensions. On the other hand, for our infinite-dimensional groups,
the coadjoint actions of their central extensions tend to be more “regular” and offer a richer structure.
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6.2.3 Loop groups and their coadjoint orbits

Consider a finite-dimensional Lie group 𝐺 with Lie algebra 𝔤. We define the loop group

𝐿𝐺 = 𝐶∞(𝑆1,𝐺) as the smooth maps from to circle into 𝐺 with pointwise multiplication, as
well as the loop algebra 𝐿𝔤 = 𝐶∞(𝑆1,𝔤) as smooth maps with pointwise Lie brackets4. In
the following we recall the theory of coadjoint orbits for these groups, roughly following the
monograph [135].

Mathematically, loop groups are of interest as one of the easiest and best-understood examples
of infinite-dimensional Lie groups, with a well-understood Lie algebra theory (Kac-Moody
algebras), and natural connections to topology and homotopy theory. From a physical perspec-
tive, they find use in the context of string theory (e.g. strings propagating in a group manifold)
and in certain integrable systems, such as the Korteweg–de Vries (KdV) equations of shallow
water waves5.

To ease the notation, we will treat 𝐺 as a matrix group, identifying 𝔤 as a space of matrices
as well. We quickly state the main result of this chapter, before going into more details: We
will see that the (smooth) dual of the centrally extended loop algebra 𝐿𝔤

∗
can be identified

with “covariant derivatives” −𝑐𝜕𝜏 + 𝐴(𝜏), where 𝑐 ∈ R and 𝐴 ∈ 𝐶∞(𝑆1,𝔤). The coadjoint action
of 𝑔(𝜏) ∈ 𝐿𝐺 leaves 𝑐 invariant and maps 𝐴 ↦→ 𝑔𝐴𝑔−1 + 𝑐𝜕𝜏𝑔𝑔−1, where multiplication is
understood pointwise.

Theorem 6.2.4 ([135–137]): Let 𝐺 denote a compact connected Lie group. There is a one-to-
one correspondence between the coadjoint orbits of (the central extension of) 𝐿𝐺 at 𝑐 = 1 and
the conjugacy classes of 𝐺. In particular, every orbit contains a constant element (𝐴(𝜏),1),
with 𝐴(𝜏) ≡ 𝑋 ∈ 𝔤, and is of the form 𝐿𝐺/𝐻 for 𝐻 = StabAd(𝑋) ⊆ 𝐺.

Central extension of the loop algebra. Given an Ad-invariant inner product on 𝔤 (denoted
by tr), we define the central extension 𝐿𝔤: Elements of 𝐿𝔤 are of the form (𝑋 (𝜏), 𝑘), where
𝑋 (𝜏) is a 𝔤-valued function of 𝑆1 and 𝑘 ∈ R is central. The Lie bracket on 𝐿𝔤 is defined by

ad(𝑋,𝑘) (𝑣, 𝑙) = [(𝑋 (𝜏), 𝑘), (𝑌 (𝜏), 𝑙)] =
(
[𝑋 (𝜏),𝑌 (𝜏)]𝔤,

∫
𝑆1

tr
(
𝑌 (𝜏)𝑋′(𝜏)

)
d𝜏

)
. (6.2.24)

4𝐿𝔤 naturally carries a Fréchet-space structure, and the pointwise exponential map exp: 𝐿𝔤→ 𝐿𝐺 is locally
surjective onto a neighbourhood of the identity. Via left-translation, this endows 𝐿𝐺 with the structure of a Fréchet
Lie group with Lie algebra 𝐿𝔤.

5Generally, the geodesic/Hamiltonian flows on natural infinite-dimensional groups and coadjoint orbits give
rise to well-known partial differential equations. A notable example are the Euler equations, which can be seen as
the geodesic flow on the group of volume-preserving diffeomorphisms [135].
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One may check that this bracket still defines the Jacobi identity6. Note that the scalar term
on the right hand side does not depend on 𝑘, 𝑙. Consequently, the added element is central:
[(0,1), (𝑌, 𝑙)] = 0 for all (𝑌, 𝑙) ∈ 𝐿𝔤.

Adjoint and coadjoint action. The infinitesimal adjoint action (6.2.24) “integrates” to the
following adjoint action of 𝑔 ∈ 𝐿𝐺 on 𝐿𝔤:

Ad𝑔 (𝑌, 𝑙) =
(
𝑔(𝜏)𝑌 (𝜏)𝑔(𝜏)−1, 𝑙 −

∫
𝑆1

d𝜏 tr[𝑔−1𝜕𝜏𝑔𝑌 ]
)
. (6.2.25)

From this we would like to derive the coadjoint action: The (smooth subspace7 of the) dual Lie
algebra 𝐿𝔤

∗
can be described as tuples (𝐴(𝜏), 𝑐) ∈ 𝐶∞(𝑆1,𝔤) ×R with the paring

⟨(𝐴(𝜏), 𝑐), (𝑋 (𝜏), 𝑘)⟩ = tr
∫
𝑆1
𝐴(𝜏)𝑋 (𝜏)d𝜏 − 𝑐𝑘. (6.2.26)

From (6.2.25) and (6.2.26), one can see that the coadjoint action of 𝑔(𝜏) ∈ 𝐿𝐺 on 𝐿𝔤
∗

is given
by

Ad∗
𝑔(𝜏) (𝐴(𝜏), 𝑐) = (𝐴𝑔,𝑐 (𝜏), 𝑐) :=

(
𝑔(𝜏)𝐴(𝜏)𝑔(𝜏)−1 + 𝑐𝜕𝜏𝑔(𝜏)𝑔(𝜏)−1, 𝑐

)
(6.2.27)

In other words, 𝑐−1𝐴(𝜏), transforms like a 𝐺-connection (i.e. a gauge field):

𝑔(𝜏) [−𝑐𝜕𝜏 + 𝐴(𝜏)]𝑔(𝜏)−1 = −𝑐𝜕𝜏 + 𝐴𝑔,𝑐 (𝜏). (6.2.28)

Monodromy and classification of coadjoint orbits. The interpretation of the elements of the
coadjoint orbit as connections(/gauge fields) suggests to consider their monodromy: Consider
the parallel transport[

− 𝑐𝜕𝜏 + 𝐴(𝜏)
]
𝜓(𝜏) = 0 for 𝜓 : R→ 𝐺 with 𝜓(0) = 1. (6.2.29)

Define the monodromy 𝑀(𝐴,𝑐) := 𝑀𝜓 = 𝜓(0)−1𝜓(1) ∈ 𝐺.

Lemma 6.2.5: Suppose (𝐴, 𝑐) ∈ 𝐿𝔤∗ for 𝑐 ≠ 0. The conjugacy class Ad𝐺𝑀(𝐴,𝑐) of its mon-
odromy is invariant under the coadjoint action.

6This is equivalent to the statement that 𝜂 : 𝐿𝔤×𝐿𝔤→R, 𝜂(𝑋,𝑌 ) :=
∫

tr[𝑌 (𝜏)𝑋 ′ (𝜏)] is a Lie algebra 2-cocycle:
𝜂( [𝑋,𝑌 ], 𝑍) +𝜂( [𝑍, 𝑋],𝑌 ) +𝜔( [𝑌, 𝑍], 𝑋) = 0.

7The topological dual consists of 𝔤-valued Schwartz distributions. For our purposes, we implicitly restrict to
the regular dense subspace spanned by smooth functions.
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Proof. We consider 𝜓(𝜏) as in (6.2.29). Dropping the condition 𝜓(0) = 1, any other so-
lution to (6.2.29) is of the form 𝜓̃(𝜏) = 𝜓(𝜏)ℎ for ℎ ∈ 𝐺. The monodromy 𝜓̃(0)−1𝜓̃(1) =
ℎ−1𝜓(0)−1𝜓(1)ℎ is conjugate to 𝑀(𝐴,𝑐) . Hence, for determining the conjugacy class of the
monodromy, it doesn’t matter which solution to the parallel transport equations we con-
sider. Now, recall the transformation behaviour (6.2.28) of the covariant derivative. For any
𝑔 ∈ 𝐿𝐺, we have that 𝜓𝑔 (𝜏) := 𝑔(𝜏)𝜓(𝜏) is a solution to [−𝑐𝜕𝜏 + 𝐴𝑔,𝑐]𝜓𝑔 = 0 with monodromy
𝜓(0)−1𝑔(0)−1𝑔(1)𝜓(1) = 𝜓(0)−1𝜓(1). Hence 𝑀(𝐴𝑔,𝑐 ,𝑐) and 𝑀(𝐴,𝑐) are conjugate (with respect
to 𝜓𝑔 (0) = 𝑔(0)). □

In short, the conjugacy class of the monodromy is an invariant of the coadjoint orbits. On the
other hand, suppose that two elements (𝐴, 𝑐), (𝐵, 𝑐) ∈ 𝐿𝔤∗ give rise to the same conjugacy class.
In other words, there exist solutions 𝜓,𝜑

[−𝑐𝜕𝜏 + 𝐴]𝜓 = 0 and [−𝑐𝜕𝜏 +𝐵]𝜑 = 0, (6.2.30)

and without loss of generality 𝑀𝜓 = 𝑀𝜑 (otherwise just translate by a constant element). Then
𝑔(𝜏) := 𝜑(𝜏)𝜓(𝜏)−1 is periodic and smooth. Hence it is an element of 𝐿𝐺 such that 𝜓𝑔 = 𝜑 and
𝐴𝑔 = 𝐵. We arrive at the following:

Lemma 6.2.6: Fix 𝑐 ≠ 0, then the map O(𝐴,𝑐) ↦→ Ad𝐺𝑀(𝐴,𝑐) is an injective map from the set
of coadjoint orbits of 𝐿𝐺 into the conjugacy classes of 𝐺.

Proof of Theorem 6.2.4. By Lemma 6.2.6, it suffices to ask the “classical” question which
group elements 𝑔 can be obtained as monodromies of (6.2.29). For 𝐺 compact and connected,
the exponential map is surjective, and consequently for every 𝑔 ∈ 𝐺 there exists 𝑋 ∈ 𝔤, such
that 𝐴(𝜏) ≡ 𝑋 has monodromy 𝑔. This completes the proof. □

Remark 6.2.7: One often assumes that 𝐺 is simply connected as well. While this is not essen-
tial for the classification, one should note that otherwise 𝐿𝐺 is disconnected and consequently
the orbits consists of several connected components.

Remark 6.2.8: In Theorem 6.2.4, compactness of 𝐺 was only required for the surjectivity of
the exponential map. In special cases, such as 𝐺 = R, this is clear despite lack of compactness.
Hence, the same classification result holds true.
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Symplectic structure. Recall that coadjoint orbits are naturally equipped with a symplectic
form, see (6.2.21). On the coadjoint orbits of the loop group, the KKS-form is defined by

𝜔(𝐴(𝜏),𝑐) (ad∗(𝑋,0) (𝐴, 𝑐),ad∗(𝑌,0) (𝐴, 𝑐))

=

∫
tr

(
𝐴(𝜏) [𝑋 (𝜏),𝑌 (𝜏)]𝔤

)
+ 𝑐

2

∫
tr

(
𝑋 (𝜏)𝑌 ′(𝜏) − 𝑋′(𝜏)𝑌 (𝜏)

)
.

(6.2.31)

Still thinking of 𝐺 as a matrix group, we can formally consider the collection (𝑔(𝜏))𝜏∈𝑆1 as
a family of coordinates for 𝐿𝐺 (and therefore for a given orbit). Associated to the matrix
coordinate 𝑔(𝜏), there is a differential form d𝑔(𝜏). In these coordinates, the Maurer-Cartan
form is given by 𝑔(𝜏)−1 d𝑔(𝜏). The KKS-form can be written as

𝜔(𝐴,𝑐) =
1
2

∫
d𝜏 tr

(
𝐴(𝜏)

[
𝑔(𝜏)−1 d𝑔(𝜏) , 𝑔(𝜏)−1 d𝑔(𝜏)

] )
+𝑐

2

∫
d𝜏 tr

(
𝑔(𝜏)−1 d𝑔(𝜏) ∧

(
𝑔(𝜏)−1 d𝑔(𝜏)

)′)
,

(6.2.32)

where the bracket in the first line is understood as the bracket between Lie-algebra valued
one-forms.

The example of 𝐿R. We write 𝜉 (𝜏) ∈ 𝐿R for an element of the loop group. The Lie algebra
is Lie(𝐿R) = 𝐿R. The coadjoint action of 𝜉 (𝜏) on (𝐴(𝜏), 𝑐) ∈ 𝐿R∗ is

Ad∗𝜉 (𝜏) (𝐴(𝜏), 𝑐) = (𝐴(𝜏) + 𝑐𝜉′(𝜏), 𝑐). (6.2.33)

Consequently, all coadjoint orbits are simply of the form O𝑎0 = {(𝑎0 + 𝑐𝜉′(𝜏), 𝑐) : 𝜉 ∈ 𝐿R} for
a constant 𝑎0. For the KKS-form, the first term in (6.2.32) vanishes (as R is abelian). And
𝑔(𝜏)−1 d𝑔(𝜏) = d𝜉 (𝜏). Consequently

𝜔 =
𝑐

2

∫
d𝜏 d𝜉 (𝜏) ∧d𝜉′(𝜏). (6.2.34)

6.2.4 Virasoro group and its coadjoint action

In the following consider the group Diff (𝑆1) of (orientation-preserving) smooth reparametrisa-
tions of the circle. The (unique) central extension of this group is the so-called Virasoro group

Vir, whose Lie algebra is the Virasoro algebra 𝔳𝔦𝔯. We are interested in the coadjoint action of
Diff (𝑆1) on the (smooth) dual of the Virasoro algebra 𝔳𝔦𝔯∗. Before giving more details, we give
a short overview of the main result: The smooth dual 𝔳𝔦𝔯∗ of the Virasoro algebra will be iden-
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tified with Hill’s operators 𝑐𝜕2
𝜏 + 1

2𝑏(𝜏), with 𝑐 ∈ R and 𝑏 ∈ 𝐶∞(𝑆1,R). The coadjoint action
of 𝜑−1 ∈ Diff (𝑆1) leaves 𝑐 invariant and acts on the potential via 𝑏 ↦→ 𝑏𝜑 = 𝜑

′2𝑏 + 𝑐S(𝜑). Note
the structural similarity with the case of loop groups. In fact, perhaps somewhat surprisingly,
the classification of coadjoint orbits of the Virasoro group closely resembles that of loop groups
(Theorem 6.2.4) for the case 𝐺 = PSL(2,R). To be precise, we need to consider the universal
covering group S̃L(2,R) of PSL(2,R), which will be discussed in Section 6.2.5.

Theorem 6.2.9 ([135, 137]): For 𝑐 = 1, there is a one-to-one correspondence between
the coadjoint orbits of the Virasoro-Bott group and the GL(2,R)-conjugacy classes of
S̃L(2,R)\{id}. Any orbit 𝜑 ↦→ (𝑏𝜑, 𝑐) is of the form 𝑏𝜑 (𝜏) = 𝑐S(𝜂 ◦𝜑, 𝜏) for some smooth
𝜂 : R→ R𝑃1 with 𝜂′ > 0. Moreover, 𝜂(𝜏+1) =M𝜂(𝜏) for some monodromyM ∈ PSL(2,R)
acting via Möbius transformations, and this monodromy is a representative of the (projection
onto PSL(2,R) of the) conjugacy class.

By GL(2,R)-conjugacy class we mean there exists an action of GL(2,R) on S̃L(2,R), induced
by conjugation on SL(2,R), and the conjugacy classes are the orbits of this action. Note that
these are “almost” PSL(2,R)-conjugacy classes: Conjugation with GL(2,R) factors through
PGL(2,R) = GL(2,R)/R× � PSL(2,R) ×Z2. In fact, any element from PGL(2,R) is a product
of an element from PSL(2,R) and {1,

( 0 1
1 0

)
} � Z2.

Remark 6.2.10 (Orbits of constant potentials): Of particular interest for the Schwarzian mea-
sures are the orbits of constant potential 𝑏 (𝛼) ≡ 2𝛼2 for 𝛼 ∈R≥0∪𝑖R≥0 (we usually write 𝛼2 ∈R).
In this case the orbit O𝛼 := O𝑏 (𝛼) is given by (see Proposition 6.2.2 and use the composition
rule (6.2.19))

𝑏
(𝛼)
𝜑 (𝜏) = 𝑐S(tan(𝛼𝜑), 𝜏) = 𝑐[S(𝜑, 𝜏) +2𝛼2𝜑′2(𝜏)] . (6.2.35)

The corresponding monodromy (𝜂 = 1
𝛼

tan(𝛼𝜑)) is

M𝛼 =

(
cos(𝛼) 1

𝛼
sin(𝛼)

−𝛼 sin(𝛼) cos(𝛼)

)
. (6.2.36)

Following the classification of GL(2,R)-conjugacy classes of PSL(2,R) (see Proposition 6.2.16),
we refer to elliptic, hyperbolic and parabolic orbits/monodromies respectively:

M𝛼 =

(
cos(𝛼) 1

𝛼
sin(𝛼)

−𝛼 sin(𝛼) cos(𝛼)

)
. M𝑖𝜆 =

(
cosh(𝜆𝜏) 1

𝜆
sinh(𝜆𝜏)

𝜆 sinh(𝜆𝜏) cosh(𝜆𝜏)

)
M0 =

( 1 1
0 1

)
, (6.2.37)

where 𝛼 ∈ R+\𝜋N, 𝜆 ∈ R+. For 𝛼 ∈ 𝜋N we have M𝑘𝜋 =
( 1 0

0 1
)
, which are referred to as

exceptional orbits/monodromies.
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Remark 6.2.11 (Schwarzian measures as orbital integrals of O𝛼): In the beginning of Sec-
tion 6.2.2 we discussed how coadjoint orbits are naturally equipped with a symplectic structure
and an associated moment map. In the infinite-dimensional setup, these things are more sub-
tle8. In the following, we ignore any such details and hope that the finite-dimensional setting
generalises appropriately. In (6.2.49) we will see that O𝛼 formally carries a symplectic structure

𝜔
𝑏
(𝛼)
𝜑

= 𝑐

∫
d𝜏

[
1
2 dlog(𝜑′(𝜏)) ∧dlog(𝜑′(𝜏))′−2𝛼2d𝜑(𝜏) ∧d𝜑′(𝜏)

]
. (6.2.38)

Here one understands 𝜑(𝜏) ∈ R and log(𝜑′(𝜏)) ∈ R as coordinates on the orbit, with d𝜑(𝜏) and
dlog(𝜑′(𝜏)) as corresponding 1-forms. With respect to the symplectic structure, ⟨𝑏 (𝛼)𝜑 , ·⟩ : O𝛼 ↦→
𝔳𝔢𝔠(𝑆1)∗ is the moment map for the Diff (𝑆1)-action. In particular, pairing with the con-
stant vector field 𝑣(𝜏) � 1 ∈ 𝔳𝔢𝔠(𝑆1), we obtain the Hamiltonian generating the 𝑈 (1)-action
𝜑 ↦→ 𝜑(· + 𝜏0)

𝐻 (𝛼) (𝜑) =
∫

d𝜏𝑏 (𝛼)𝜑 (𝜏) = −𝑐
∫

d𝜏S(tan(𝛼𝜑), 𝜏) . (6.2.39)

This is the action of the Schwarzian measure (2.2.3). For 𝛼2 ≤ 𝜋2, the action has a unique
minimiser 𝜑0 = id𝑆1 with value 𝐻 (𝛼) (id𝑆1) = −2𝑐𝛼2. A formal application of the Duistermaat-
Heckman formula (see [17] for more details) yields∫

O𝛼

𝑒−𝐻
(𝛼) (𝜑)dvol𝑂𝛼

(𝜑) “ ∝ ” (2𝜋𝑐) 1
2 dimStab(𝑏 (𝛼) )𝑒2𝑐𝛼2

, (6.2.40)

where dimStab(𝑏𝛼) is equal to 3 for 𝛼 = 𝜋 and 1 for 𝛼2 < 𝜋2 and where the constant of
proportionality may depend on 𝛼 but not 𝑐.

Virasoro algebra and (co)adjoint action. The Lie algebra of Diff (𝑆1) is identified with the
Witt algebra diff (𝑆1) = 𝔳𝔢𝔠(𝑆1), the space of vector fields 𝑣(𝜏)𝜕𝜏 on the circle, equipped with
the Lie bracket [𝑣1, 𝑣2]𝔳𝔢𝔠 = 𝑣1𝑣

′
2− 𝑣

′
1𝑣2. The Witt algebra has a unique central extension, the

Virasoro algebra 𝔳𝔦𝔯 = 𝔳𝔢𝔠(𝑆1) ⊕R with Lie bracket defined by

[(𝑣, 𝑎), (𝑤, 𝑏)] =
(
[𝑣,𝑤]𝔳𝔢𝔠,

1
2

∫
d𝜏[𝑣′′′𝑤− 𝑣𝑤′′′]

)
. (6.2.41)

8In certain cases, in particular for the exceptional orbit O𝜋 which is relevant to the Schwarzian field theory,
one can understand the orbits (resp. a completion thereof) as a proper infinite-dimensional Hilbert-manifold. In
that case, the symplectic form can be understood in a “classical” sense as a 2-form over this manifold, see [138,
139] for details.



164 More on the Schwarzian field theory

This “integrates” to the following adjoint action of Diff (𝑆1) on 𝔳𝔦𝔯:

Ad𝜑−1 (𝑣(𝜏), 𝑎) =
(𝑣(𝜑(𝜏))
𝜑′(𝜏) , 𝑎 +

∫
d𝜏
𝑣(𝜑(𝜏))
𝜑′(𝜏) S(𝜑, 𝜏)

)
for 𝜑 ∈ Diff (𝑆1), (6.2.42)

with the Schwarzian derivative S(𝜑, 𝜏) = log(𝜑′)′′− 1
2 log(𝜑′)′2 For reasons of notational con-

venience we expressed the action in terms of the inverse element 𝜑−1. To obtain (6.2.41) from
(6.2.42), one may note S(𝜏 − 𝜖𝑤(𝜏), 𝜏) = −𝜖𝑤′′′(𝜏) +𝑂 (𝜖2). Note that (6.2.42) has a clear
geometric meaning in that 𝑣 simply transforms like a vector field under reparametrisation. The
regular subspace of the dual 𝔳𝔦𝔯∗ can be identified with pairs (𝑏(𝜏), 𝑐) ∈ 𝐶∞(𝑆1) ×R, together
with the pairing

⟨(𝑏, 𝑐), (𝑣, 𝑎)⟩ = −𝑐𝑎 +
∫

d𝜏 𝑏(𝜏)𝑣(𝜏). (6.2.43)

The minus sign above is chosen purely for notational convenience. By (6.2.42) and (6.2.43)
one deduces the coadjoint action

Ad∗
𝜑−1 (𝑏, 𝑐) = (𝑏𝜑, 𝑐) with 𝑏𝜑 (𝜏) = 𝑏𝜑,𝑐 (𝜏) := 𝜑′2(𝜏)𝑏(𝜏) + 𝑐S(𝜑, 𝜏) (6.2.44)

We will often drop the 𝑐-dependence in our notation, as it is left invariant under the coadjoint
action. For 𝑐 = 0 the formula (6.2.44) has a geometric interpretation in that 𝑏 transforms like
a 2-tensor density 𝑏(𝜏) (d𝜏)2. For general 𝑐 ∈ R, this transformation behaviour is that of a
stress-energy tensor in a (chiral two-dimensional) CFT with central charge 12𝑐 (for notational
convenience we departed from physics conventions for the normalisation of the central charge).
We see that for different values of 𝑐 ≠ 0, the orbits of (6.2.44) can be related by rescaling.
Consequently, to classify the coadjoint orbits it is sufficient to consider 𝑐 = 0 and 𝑐 = 1. The
former case is not particularly relevant to us, however, and we refer to [15] for a short treatment.

Symplectic structure. The action of an infinitesimal diffeomorphism 𝜑(𝜏) = 𝜏 + 𝜖𝑣(𝜏) +
𝑂 (𝜖2), respectively its inverse 𝜑−1(𝜏) = 𝜏− 𝜖𝑣(𝜏) +𝑂 (𝜖2) follows from (6.2.44):

[ad∗−𝑣𝑏] (𝜏) = 𝑣(𝜏)𝑏′(𝜏) +2𝑣′(𝜏)𝑏(𝜏) − 𝑐𝑣′′′(𝜏). (6.2.45)



6.2 Additional Background 165

By (6.2.21) and (6.2.41) the KKS form is given by

𝜔(𝑏,𝑐)
(
ad∗−𝑣 (𝑏, 𝑐),ad∗−𝑤 (𝑏, 𝑐)

)
= ⟨(𝑏, 𝑐),

(
[𝑣,𝑤]𝔳𝔢𝔠,

1
2

∫
d𝜏[𝑣′′′𝑤− 𝑣𝑤′′′]

)
⟩

=

∫
d𝜏

[
𝑏(𝜏) (𝑣𝑤′− 𝑣′𝑤) + 𝑐

2
(𝑣′′′𝑤− 𝑣𝑤′′′)

]
=

∫
d𝜏

[
𝑏(𝜏) (𝑣𝑤′− 𝑣′𝑤) + 𝑐

2
(𝑣′𝑤′′− 𝑣′′𝑤′)

] (6.2.46)

We can also write it more globally: Formally consider the collection (𝜑(𝜏))𝜏∈𝑆1 as a family
of coordinates for 𝜑 ∈ Diff (𝑆1) (and therefore for the orbit). Associated to these coordinates,
there are 1-forms 𝑑𝜑(𝜏). Then d𝜑(𝜏)/𝜑′(𝜏) acts as (a coordinate of) the Maurer-Cartan
form for the Diff (𝑆1)-action: The action of 𝑣(𝜏) ∈ 𝔳𝔢𝔠(𝑆1) on 𝜑 is via the infinitesimal flow
(𝐿𝜑∗𝑣) (𝜏) = 𝜕𝜖 |𝜖=0𝜑(𝜏 + 𝜖𝑣(𝜏)) = 𝜑′(𝜏)𝑣(𝜏), where 𝐿𝜑 : 𝜓 ↦→ 𝜑 ◦𝜓 denotes left-translation.
Consequently, 1

𝜑′ (𝜏) ⟨d𝜑(𝜏) , 𝐿𝜑∗𝑣⟩ = 𝑣(𝜏), which is the defining property of the Maurer-Cartan
form. Consequently, by (6.2.46), we can write

𝜔𝑏𝜑 =

∫
d𝜏

[
𝑏𝜑 (𝜏)

d𝜑 (𝜏)
𝜑′(𝜏) ∧

(d𝜑(𝜏)
𝜑′(𝜏)

)′
+ 𝑐

2

(d𝜑(𝜏)
𝜑′(𝜏)

)′
∧

(d𝜑(𝜏)
𝜑′(𝜏)

)′′]
(6.2.47)

We can further simplify this for the orbits of constant potentials, 𝑏 (𝛼)𝜑 (𝜏) = −𝑐S(tan(𝛼𝜑), 𝜏) =
−𝑐[S(𝜑, 𝜏) − 2𝛼2𝜑′2(𝜏)] for 𝛼2 ∈ R. In that case, using that (d𝜑(𝜏))′ = d𝜑′(𝜏) and d𝜑(𝜏) ∧
d𝜑(𝜏) = 0 we expand (and drop total derivatives) to obtain∫

d𝜏
(d𝜑(𝜏)
𝜑′(𝜏)

)′
∧

(d𝜑(𝜏)
𝜑′(𝜏)

)′′
=

∫
d𝜏

[
2S(𝜑, 𝜏)
𝜑′2(𝜏)

d𝜑(𝜏) ∧d𝜑′(𝜏) + 1
𝜑′2(𝜏)

d𝜑′(𝜏) ∧d𝜑′′(𝜏)
]

=

∫
d𝜏

[
2S(𝜑, 𝜏)
𝜑′2(𝜏)

d𝜑(𝜏) ∧d𝜑′(𝜏) +dlog(𝜑′(𝜏)) ∧dlog(𝜑′(𝜏))′
] (6.2.48)

Consequently, the S(𝜑)-contributions from 𝑏
(𝛼)
𝜑 and (6.2.48) cancel and we obtain

𝜔
𝑏
(𝛼)
𝜑

= 𝑐

∫
d𝜏

[
dlog(𝜑′(𝜏)) ∧dlog(𝜑′(𝜏))′−2𝛼2d𝜑(𝜏) ∧d𝜑′(𝜏)

]
. (6.2.49)

Hill’s operators and monodromy. In the orbit theory of loop groups, we considered the
first order operators −𝑐𝜕𝜏 + 𝐴(𝜏), as the coadjoint action on 𝐴 had a convenient interpretation
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in terms of the (adjoint) transformation behaviour of this operator and its solutions. Perhaps
somewhat surprisingly, it turns out that a similar picture exists in the context of the Virasoro
group. For (𝑏(𝜏), 𝑐) ∈ 𝔳𝔦𝔯∗ we define the Hill’s operator

𝐻𝑏,𝑐 := 𝑐𝜕2
𝜏 + 1

2𝑏(𝜏). (6.2.50)

We consider this as an operator acting on functions over R, with 𝑏 extended periodically.

Proposition 6.2.12: Suppose 𝑓 : R→ R solves Hill’s equation for some potential 𝑏: 𝐻𝑏,𝑐 𝑓 =
0. For 𝜑 ∈ Diff (𝑆1) we define

𝑓𝜑 (𝜏) := 𝜑′(𝜏)−1/2 𝑓 (𝜑(𝜏)). (6.2.51)

Then 𝑓𝜑 solves Hill’s equation for the potential 𝑏𝜑:

𝐻𝑏𝜑 ,𝑐 𝑓𝜑 = [𝑐𝜕2
𝜏 + 1

2𝑏𝜑,𝑐] 𝑓𝜑 = 0. (6.2.52)

Proof. To start off, we note that

𝜕2
𝜏 [𝜑′(𝜏)−1/2] = −1

2𝑆(𝜑, 𝜏) 𝜑
′(𝜏)−1/2. (6.2.53)

We find that

𝜕2
𝜏 𝑓𝜑 (𝜏) = 𝜕2

𝜏

[
𝜑′(𝜏)−1/2 𝑓 (𝜑(𝜏))

]
= −1

2𝑆(𝜑, 𝜏) 𝑓𝜑 (𝜏) +𝜑
′(𝜏)3/2 𝑓 ′′(𝜑(𝜏)). (6.2.54)

Consequently, using 𝑏𝜑,𝑐 − 𝑐S(𝜑, 𝜏) = 𝜑′(𝜏)2𝑏(𝜑(𝜏))

[𝑐𝜕2
𝜏 + 𝑏𝜑,𝑐] 𝑓𝜑 = 𝜑′(𝜏)3/2𝑐 𝑓 ′′(𝜑(𝜏)) + [ 12𝑏𝜑,𝑐 −

𝑐
2S(𝜑, 𝜏)] 𝑓𝜑 (𝜏)

= 𝜑′(𝜏)3/2
(
[𝑐𝜕2

𝜏 + 1
2𝑏] 𝑓

)
(𝜑(𝜏))

= 0

(6.2.55)

□

In other words, the coadjoint action on the potential agrees with the transformation behaviour
of Hill’s operators considered as maps from −1/2-densities into 3/2-densities9.

Proposition 6.2.13: For (𝑏, 𝑐) ∈ 𝔳𝔦𝔯∗ consider the Hill’s operator 𝑐𝜕𝜏 + 1
2𝑏(𝜏). Let 𝜂 : R→

R𝑃1 � R∪ {∞} denote the projective solution, see Proposition 6.2.2. Under the coadjoint

9If 𝑓 (𝜏) (d𝜏)−1/2 transforms as a −1/2-tensor density, then 𝜕2
𝜏 𝑓 (𝜏) (d𝜏)3/2 transforms as a 3/2-tensor density.
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action of 𝜑−1 ∈ Diff (𝑆1), it transforms as 𝜂 ↦→ 𝜂 ◦ 𝜑. To be precise, 𝜂 ◦ 𝜑 is a projective
solution for the Hill’s equation corresponding to (𝑏𝜑,𝑐, 𝑐), meaning that S(𝜂 ◦𝜑) = 𝑏𝜑,𝑐/𝑐.

Proof. Consider two 𝑓 , 𝑔 to Hill’s equation with 𝜂 = 𝑔/ 𝑓 . By Proposition 6.2.12 these transform
as −1/2-tensor densities. Consequently 𝜂 = 𝑔/ 𝑓 transforms as a 0-tensor density, in other words
as 𝜂 ↦→ 𝜂 ◦𝜑. □

6.2.5 Classification of Virasoro coadjoint orbits

Topologically, PSL(2,R) is a solid torus and as such homotopic to 𝑆1. The appearance of the
universal covering can be explained by the difference between Diff (𝑆1) and 𝐿𝑆1. The latter
contains maps 𝑔(𝜏) ∈ 𝑆1 that wind around 𝑆1 arbitrarily often. Thinking about the parallel
transport in (6.2.29), the map 𝜓(𝜏) naturally lifts to a path in the universal covering of 𝐺 = 𝑆1.
Conjugation with 𝑔(𝜏) won’t change the (conjugation class of the) monodromy, but it changes
the lift. Now Diff (𝑆1) does not contain “multiply winding” maps and consequently cannot
change the lift of the monodromy, which is why we need to control the full covering group.

Also, as opposed to the case of loop groups 𝐿𝐺 with compact 𝐺, we don’t have that any
orbits contains a constant element. For 𝐿𝐺 this was a consequence of the fact that any element
in 𝐺 is a Lie algebra exponential, in other words lies in a 1-parameter subgroup. Segal claims
[137] that the same is true for Virasoro coadjoint orbits: Orbits contains a constant element if
and only if their conjugacy class lies in a 1-parameter subgroup of S̃L(2,R).

On the universal covering group S̃L(2,R). We provide some intuition for the universal
covering group of SL(2,R). This is somewhat difficult, since it has no matrix representation.
We can first understand it topologically and then algebraically. According to the Iwasawa
decomposition, we can parametrise 𝐴 ∈ SL(2,R) via

𝐴(𝜃,𝑟, 𝑥) := ©­«
cos𝜃 −sin𝜃

sin𝜃 cos𝜃
ª®¬©­«
𝑟

1/𝑟
ª®¬©­«

1 𝑥

1
ª®¬ with 𝜃 ∈ [0,2𝜋) , 𝑟 > 0, 𝑥 ∈ R. (6.2.56)

In other words SL(2,R) is diffeomorphic to 𝑆1×H2 and has fundamental group 𝜋1(SL(2,R)) �
𝜋1(𝑆1) = Z. The universal covering group S̃L(2,R) will be obtained by “unwinding” the 𝑆1-
variable into a real line R. Formally, this will be obtained via a central extension by Z. In
the following we are following the construction by Rawnsley [140]. Suppose 𝜑 : SL(2,R) →
𝑆1 is a smooth function with 𝜑(1) = 1 and 𝜑(𝐴−1) = 𝜑(𝐴)−1, inducing an isomorphism of
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fundamental groups. Then the relation 𝜑(𝐴1𝐴2) = 𝜑(𝐴1)𝜑(𝐴2)𝑒𝑖𝜂(𝐴1,𝐴2) defines a 2-cocycle
𝜂 : SL(2,R) ×SL(2,R) → R. In other words, we can define the set

𝐺 := {(𝐴, 𝑐) ∈ SL(2,R) : 𝜑(𝐴) = 𝑒𝑖𝑐} (6.2.57)

and equip it with the operation

(𝐴1, 𝑐1) · (𝐴2, 𝑐2) := (𝐴1𝐴2, 𝑐1 + 𝑐2 +𝜂(𝐴1, 𝐴2)). (6.2.58)

In fact, 𝐺 turns out to be a Lie group with identity element (1,0), inverse (𝐴, 𝑐)−1 = (𝐴−1,−𝑐)
and a surjective homomorphisms (𝐴, 𝑐) ↦→ 𝐴 onto SL(2,R) with kernel (1,2𝜋Z). In other
words 𝐺 � S̃L(2,R). This group carries a natural Z2-action given by (𝐴, 𝑐) ↦→ ((𝐴−1)⊤, 𝑐).
This is the “outer automorphism” on SL(2,R) induced by conjugation with

( 0 1
1 0

)
∉ SL(2,R).

To complete above construction, one needs to give concrete examples for 𝜑 and 𝜂, for which
(6.2.58) is manageable. We refer to [140] for details.

Monodromy of Hill’s operators and classification of orbits. In Section 6.2.4 we discussed
how the coadjoint action can be seen as acting on Hill’s operators. In the following we
introduce the notion of monodromy for those operators, and show that a picture similar to that
for coadjoint orbits of loop groups in Section 6.2.3
Consider a potential 𝑏 with corresponding Hill’s operator 𝐻𝑏,𝑐 = 𝐻𝑏 = 𝜕2

𝜏 + 1
2𝑏(𝜏) (by rescaling

we can focus on the case 𝑐 = 1). For any two solutions 𝐻𝑏 𝑓 = 0 = 𝐻𝑏𝑔 we can define 𝑀 (𝜏) =(
𝑓 𝑔

𝑓 ′ 𝑔′

)
. Then, 𝑀 (𝜏) satisfies the following parallel transport equation

𝜕𝜏𝑀 (𝜏) = 𝜕𝜏
(
𝑓 𝑔

𝑓 ′ 𝑔′

)
=

(
0 1

− 1
2 𝑏(𝜏) 0

) (
𝑓 𝑔

𝑓 ′ 𝑔′

)
=: 𝐴(𝜏)𝑀 (𝜏). (6.2.59)

Note that 𝐴(𝜏) ∈ 𝔰𝔩(2,R), namely tr 𝐴(𝜏) = 0. Choosing, say, 𝑀 (0) = 1, this defines a path
𝑀 (𝜏) ∈ SL(2,R). We can lift this path 𝑀 (𝜏) to the universal covering S̃L(2,R). Define
𝑀𝑏 = 𝑀 (1) (and 𝑀𝑏 = 𝑀 (1)) as the monodromy (resp. lifted monodromy) of the Hill’s operator
𝐻𝑏.

By periodicity of the potential 𝑏(𝜏), we have that 𝑀 (𝜏 + 1) = 𝑀 (𝜏)𝑀 (1) = 𝑀 (𝜏)𝑀𝑏. In
particular ( 𝑓 (𝜏 + 1), 𝑔(𝜏 + 1)) = ( 𝑓 (𝜏), 𝑔(𝜏))𝑀𝑏. For the projective solution 𝜂 = 𝑔/ 𝑓 ∈ R𝑃1

we similarly have 𝜂(𝜏 +1) = 𝜂(𝜏)𝑀𝑏, with the right action via Möbius transformations. Note
that due to sharp 3-transitivity of PSL(2,R) acting on R𝑃1 this uniquely characterises ±𝑀𝑏 ∈
PSL(2,R).
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Note that given 𝜂 and an assumption on the Wronksian (which we set to 1), we can reconstruct
𝑓 , 𝑔: We have 𝜂′ = 1/ 𝑓 2. Consequently, 𝜂(0), 𝜂′(0), 𝜂′′(0) and the Wronskian determine the
initial conditions for 𝑓 , 𝑔. If 𝑀 (0) = 1, then we call 𝑓 , 𝑔 the fundamental solutions . The
associated 𝜂 is a fundamental projective solution.

Lemma 6.2.14: For a diffeomorphism 𝜑 ∈ Diff (𝑆1), the monodromies 𝑀𝑏 and 𝑀𝑏𝜑 are
conjugate in PSL(2,R).

Proof. Let 𝜂 = 𝑔/ 𝑓 denote the fundamental projective solution associated to 𝐻𝑏. By Proposi-
tion 6.2.13 we have that 𝜂 ◦𝜑 is a projective solution of 𝐻𝑏𝜑 . Then 𝜂(𝜑(𝜏+1)) = 𝜂(𝜑(𝜏) +1) =
𝜂(𝜑(𝜏))𝑀𝑏 However, 𝜂 ◦ 𝜑 does not yet satisfy the initial conditions of a fundamental pro-
jective solution. By (sharp) 3-transitivity, there exists a unique 𝑁𝜑 ∈ PSL(2,R), such that
𝜂𝜑 (𝜏) := 𝜂(𝜑(𝜏))𝑁𝜑 is a fundamental projective solution at 𝜏 = 0. Consequently

𝜂𝜑 (𝜏 +1) = 𝜂(𝜑(𝜏))𝑀𝑏𝑁𝜑 = 𝜂𝜑 (𝜏)𝑁−1
𝜑 𝑀𝑏𝑁𝜑 = 𝜂𝜑 (𝜏)𝑀𝑏𝜑 (6.2.60)

In other words, 𝑀𝑏𝜑 = 𝑁
−1
𝜑 𝑀𝑏𝑁𝜑 as elements in PSL(2,R). □

Lemma 6.2.15: Suppose we have two Hill’s operators 𝑐𝜕2
𝜏 + 𝑏𝑖 (𝜏) with 𝑖 = 0,1, such that

the associated lifted monodromies 𝑀𝑖 (1) in S̃L(2,R) are the same. Then there exists a
diffeomorphism 𝜑 ∈ Diff (𝑆1), such that (𝑏1, 𝑐) = Ad∗

𝜑−1 (𝑏0, 𝑐).

Proof-sketch. In the following, we sketch the argument following Ovsienko [141]. We refer
to [135, 137] for different approaches. Since 𝑀0(1) = 𝑀1(1), the paths 𝑀𝑖 (𝜏) in PSL(2,R)
are homotopic. In a first step one shows that there exists a smooth homotopy of Hill’s oper-
ators (𝜕2

𝜏 + 1
2𝑏𝑠 (𝜏))𝑠∈[0,1] with associated monodromies 𝑀𝑠 (𝜏), such that (𝑀𝑠 (𝜏))𝑠∈[0,1] is a

homotopy between 𝑀0 and 𝑀1.
In a second step one shows that this homotopy can be generated by the Diff (𝑆1)-action on

Hill’s operators. In fact, consider (6.2.45) for the infinitesimal coadjoint action, and solve
the ODE 𝜕𝑠𝑏𝑠 = ad∗−𝑣𝑠𝑏𝑠. We can find a smoothly parametrised family of vector fields 𝑣𝑠 (𝜏),
such that the the flow 𝜕𝑠 𝑓𝑠 (𝜏) = 𝑣𝑠 (𝜏)𝜕𝜏 𝑓𝑠 (𝜏) integrates to a diffeomorphism 𝜑 ∈ Diff (𝑆1),
i.e. 𝑓1 = 𝑓0 ◦𝜑. In particular, the infinitesimal coadjoint action (6.2.45) integrates to (𝑏1, 𝑐) =
Ad∗

𝜑−1 (𝑏0, 𝑐). □

Conjugacy classes of PSL(2,R). For convenience we recall the classification of PSL(2,R)-
conjugacy classes:
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Proposition 6.2.16: The GL(2,R)-conjugacy classes of ±𝑀 ∈ PSL(2,R)\{±1} are charac-
terised by |tr(𝑀) |. The same is true for PGL(2,R)-conjugacy classes.

Elements with |tr(𝑀) | < 2 are called elliptic, while ones with |tr(𝑀) | > 2 are hyperbolic.
The case |tr(𝑀) | = 2 is referred to as parabolic. We will use the convention to explicitly
exclude the case 𝑀 = ±1, which we refer to as exceptional.

Proof. Note that for 𝑀 ∈ SL(2,R), its conjugacy class in GL(2,C) is uniquely determined
by its Jordan normal form. In fact, this is even true for conjugacy with respect to GL(2,R)
since for any complex eigenvector, its real and complex parts are real eigenvectors. Moreover,
conjugation with GL(2,R) factorises through PGL(2,R) = GL(2,R)/R× Finally, note that the
characteristic polynomial of 𝑀 ∈ SL(2,R) is given by 𝜆2 − tr(𝑀)𝜆 + 1. In other words, the
trace fully characterises the eigenvalues. If |tr(𝑀) | ≠ 2, these are non-degenerate and hence
𝑀 is diagonalisable and its Jordan normal form is determined. If |tr(𝑀) | = 2, then the Jordan
normal form is

( 1 𝑥
1
)

for 𝑥 ∈ {0,1}, however we explicitly excluded the identity, so the Jordan
normal form is also fixed. This completes the classification of conjugacy classes. □

6.2.6 Mapping between Virasoro and loop group orbits

In the previous sections we considered the orbit theory for loop groups and the Virasoro group.
Here we would like to show that hyperbolic orbits of the Virasoro group are “isomorphic”
(as symplectic manifolds with an 𝑆1-flow generating Hamiltonian) to coadjoint orbits of 𝐿R.
Orbital integrals for the latter can be identified with the Wiener measure. Consequently,
hyperbolic Virasoro group orbits (resp. the associated orbital path integral) are “just Brownian
bridges”. This is referred to as “bosonisation” of these orbits and was first demonstrates by
Alekseev and Shatashvili [142].

We consider the coadjoint orbits of the (central extension of the) loop group 𝐿R. We denote
the centrally extended loop algebra by 𝐿̂𝔯

∗
, where 𝔯 = Lie(R) � R. For simplicity we restrict

to 𝑐 = 1. For simplicity, we fix the central charge 𝑐 = 1 and drop it from our notation. The
coadjoint orbits are parameterised by a real parameter 𝑎0 ∈ R:

O𝑎0 = {𝐴𝜉 := 𝑎0 + 𝜉′(𝜏) : 𝜉 ∈ 𝐶∞(𝑆1,R)}. (6.2.61)

According to (6.2.34), the symplectic form is formally expressed as

𝜔𝐴𝜉
:=

1
2

∫
d𝜏d𝜉 (𝜏) ∧d𝜉′(𝜏). (6.2.62)
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Moreover, the 𝑆1-action 𝜉′ ↦→ 𝜉′(· + 𝜏0) is generated by the Hamiltonian

𝐻 (𝐴𝜉) := 1
2

∫
𝐴2
𝜉 d𝜏 = 1

2

∫
(𝑎2

0 + 𝜉
′2)d𝜏. (6.2.63)

Indeed, let 𝑋𝐻 denote the vector field generating the 𝑆1-action, that is 𝑋𝐻𝐹 [𝜉] = 𝜕𝜖 |𝜖=0𝐹 [𝜉 +
𝜖𝜉′(𝜏)]. In particular ⟨d𝜉 (𝜏), 𝑋𝐻⟩ = 𝜉′(𝜏). Then we have that

d𝐻 (𝐴𝜉) =
∫

d𝜏𝜉′d𝜉′ = 𝜔𝐴𝜉
(𝑋𝑆1 , ·), (6.2.64)

meaning that the Hamiltonian flow generated by 𝐻 agrees with the 𝑆1-action.
However, identifying diff (𝑆1) � 𝐿𝔯 , there is a natural action of Diff (𝑆1) on 𝐿̂𝔯

∗
with orbits

given by
Õ𝑎0 := {𝑎̃𝜑 := 𝑎0𝜑

′(𝜏) + (log𝜑′(𝜏))′ : 𝜑 ∈ Diff (𝑆1)}. (6.2.65)

In fact, we have O𝑎0 = Õ𝑎0 , in fact this is just another parametrisation of the same loop group
orbit. The symplectic structure on these Virasoro orbits is

𝜔̃𝑎𝜑 =
1
2

∫
[𝑎2

0𝛿𝜑∧ 𝛿𝜑
′+ 𝛿 log𝜑′∧ 𝛿 log(𝜑′)′]d𝜏, (6.2.66)

which agrees with the Virasoro KKS-form (6.2.49) for 2𝛼 = 𝑖𝑎0. Moreover, the 𝑆1-action is
generated by

𝐻̃ (𝑎𝜑) = 1
2

∫
[𝑎2

0𝜑
′2 + (log𝜑′)′2]d𝜏, (6.2.67)

which is the moment map (6.2.39) for 2𝛼 = 𝑖𝑎0.





Chapter 7

Non-uniqueness of phase transitions for
graphical representations of Ising [UNIQ]

Abstract: We consider the graphical representations of the Ising model on tree-like graphs.
We construct a class of graphs on which the loop O(1) model and the single random current
exhibit a non-unique phase transition with respect to the inverse temperature, highlighting the
non-monotonicity of both models. It follows from the construction that there exist infinite
graphs G ⊆ G′ such that the uniform even subgraph of G′ percolates and the uniform even
subgraph of G does not. We also show that on the wired 𝑑-regular tree, the phase transitions of
the loop O(1), the single random current, and the random-cluster models are all unique and
coincide.

7.1 Introduction

The Ising model needs no introduction as one of the cornerstones of statistical mechanics, and
over the past 50 years its so-called graphical representations have become one of the main tools
for its rigorous study [143–145]. Consequently, they are increasingly regarded as objects of
independent study [146–151]. The most prominent of these is the random-cluster model1 𝜑𝑥 ,
introduced in [152] as an interpolation between Potts models. The loop O(1)model ℓ𝑥 , was
introduced by Van der Waerden [153] as the high-temperature expansion of the Ising model. On
finite graphs, ℓ𝑥 can be defined as Bernoulli percolation P𝑝 at parameter 𝑝 = 𝑥

1+𝑥 conditioned on
being even (that is every vertex has even degree). The random current representation P𝑥 was
first introduced in [154] and given a useful probabilistic interpretation in [143]. While usually

1We only consider the case of cluster weight 𝑞 = 2 in which case it is also referred to as the FK-Ising model.
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considered as a multigraph, we will be concerned with its traced version (i.e. the induced simple
graph), which can be defined as P𝑥 = ℓ𝑥 ∪P1−

√
1−𝑥2 , where 𝜇1∪ 𝜇2 is the distribution of 𝜔1∪𝜔2

under 𝜇1 ⊗ 𝜇2 (𝜔𝑖 ∼ 𝜇𝑖). We also refer to P𝑥 ∪P𝑥 as the double random current.
Similarly, we note that the random-cluster can be defined as 𝜑𝑥 = ℓ𝑥 ∪P𝑥 . As all models are
obtained from the loop O(1) model via "sprinkling" with Bernoulli percolation, much of our
analysis will focus on the former.
In this paper, we investigate a number of natural questions regarding the interplay between the
graphical representations which, while by no means ground-breaking, offer some conceptual
clarification which is at present not well-represented in the literature.

7.1.1 Results

In this paper, we prove non-uniqueness of the percolative phase transition of the (free) loop
O(1) model ℓ0

𝑥,G. Here, the index G denotes the underlying graph and the superscript 0 denotes
free boundary conditions. We also let C∞ denote the event that there exists an infinite cluster.

Theorem 7.1.1: There exists a graph M where 𝑥 ↦→ ℓ0
𝑥,M [C∞] is not monotone.

In Theorem 7.2.8 we prove the same result for the (traced, sourceless) single random current
model P0

𝑥 . Next, consider the uniform even subgraph UEGG, defined to be the uniform measure
on even subgraphs of G. This model is intimately related to the Ising model [150, 155, 156]
and can be understood as a special case of ℓ0

𝑥,𝐺
for 𝑥 = 1. Using Theorem 7.1.1, we prove that

percolation of the uniform even subgraph is not monotone in the graph.

Corollary 7.1.2: There exist graphs G′ ⊂ G such that UEGG [C∞] = 0 and UEGG′ [C∞] = 1.

In [150], it was proven that on the hypercubic lattice Z𝑑 , the regime of exponential decay for
the loop 𝑂 (1) and random current model coincides with the high temperature phase of the
Ising model. Here we establish the phase diagrams for the 𝑑-regular tree T𝑑 as well as the
graph obtained from the 𝑑-regular tree by replacing every edge with a cycle of length 2𝑛 (and
glued through opposite points of the cycle), henceforth denoted C𝑑𝑛 . For a boundary condition
𝜉 ∈ {0,1}, corresponding respectively to free and wired boundaries, we define the critical point
of the loop 𝑂 (1) model via 𝑥𝑐 (ℓ𝜉G) = inf𝑥∈[0,1]{ℓ𝜉𝑥,G [C∞] > 0}. Analogous definitions are used
for the other models.

Theorem 7.1.3: For any 𝑑 ≥ 2 and 𝑛 ≥ 1, it holds that

𝑥𝑐 (ℓ1
T𝑑 ) = 𝑥𝑐 (P1

T𝑑 ) = 𝑥𝑐 (P1
T𝑑 ∪P1

T𝑑 ) = 𝑥𝑐 (𝜑1
T𝑑 )

𝑥𝑐 (ℓ0
T𝑑 ) > 𝑥𝑐 (P0

T𝑑 ) > 𝑥𝑐 (P0
T𝑑 ∪P0

T𝑑 ) > 𝑥𝑐 (𝜑0
T𝑑 ).
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ℓ1
T𝑑 , P1

T𝑑 , 𝜑1
T𝑑

ℓ0
C𝑑𝑛

, P0
C𝑑𝑛

, 𝜑0
C𝑑𝑛

𝑥𝑐 (𝜑0) 𝑥𝑐 (P0) 𝑥𝑐 (ℓ0)

exp decay percolation

exp decay

𝑥 = 0 𝑥 = 1

ℓ0
M

exp decay

Figure 7.1: The phase diagrams of the loop O(1), single random current, and random-cluster
measures on the 𝑑-regular wired tree T𝑑 coincide. The free measures on C𝑑𝑛 , the 𝑑-regular
tree where every edge is substituted by a cycle, have different phase transitions. Finally, the
free loop O(1) model on the monster M (constructed in the proof of Theorem 7.1.1) has a
non-unique phase transition. This is to be contrasted with the corresponding table for the
hypercubic and hexagonal lattices in [150, Figure 1].

The same statements are true for the graph C𝑑𝑛 . In both cases, all phase transitions are unique.

This theorem is the most basic illustration of the mechanism first investigated in [157]: While it
is surprising that the single random current, double random current and random-cluster model
should share a single phase transition2, this phenomenon ultimately boils down to the existence
of long loops in the ambient graph. In the absence of loops (as in the free tree), the phase
transitions should be distinct, and if there are only long loops (as in the wired tree), we expect
them to be one and the same. This carries over to the situation where all loops are of uniformly
bounded length (as for the free loops on C𝑑𝑛).
In Figure 7.1, we provide a graphical overview of the results. Finally, we prove that the phase
transitions of the uniform even subgraph and Bernoulli percolation are not in any way related:

Theorem 7.1.4: For any 𝜀 > 0, there exists a graph G𝜀 with 𝑝𝑐 (P𝑝,G𝜀 ) ∈ (1− 𝜀,1) and
UEGG𝜀 [C∞] = 1.

7.1.2 The graphical representations of Ising

We define the random-cluster and random current model as in [158, 159] through the couplings
to the loop O(1) model. Given a finite graph 𝐺 = (𝑉,𝐸), an even subgraph (𝑉,𝐹) of 𝐺 is
a spanning subgraph where each 𝑣 ∈ 𝑉 is incident to an even number of edges in 𝐹. We let
Ω∅ (𝐺) denote the set of even subgraphs of 𝐺. The loop O(1) model ℓ𝑥,𝐺 is a natural probability

2See the introduction in [150] for further explication.
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measure on Ω∅ (𝐺):

ℓ𝑥,𝐺 [𝜂] =
1
𝑍𝐺
𝑥 |𝜂 |, for each 𝜂 ∈ Ω∅ (𝐺) (7.1.1)

with 𝑍𝐺 =
∑
𝜂∈Ω∅ (𝐺) 𝑥

|𝜂 |. Here |𝜂 | denotes the number of (open) edges in 𝜂 and 𝑥 = tanh(𝛽) ∈
(0,1) as in [160], where 𝛽 is the inverse temperature. For 𝐺 a graph with boundary, we denote
ℓ1
𝑥,𝐺

= ℓ𝑥,𝐺/∼, where ∼ identifies the boundary vertices of 𝐺. We refer to ℓ1
𝑥,𝐺

as the wired loop
O(1) model.
We denote Bernoulli edge percolation with parameter 𝑥 ∈ [0,1] by P𝑥 and define the (traced,
sourceless) single random current at parameter 𝑥 and boundary condition 𝜉 ∈ {0,1} as

P𝜉𝑥 = ℓ
𝜉
𝑥 ∪P𝜉1−√1−𝑥2

, (7.1.2)

where ℓ0
𝑥 = ℓ𝑥 . This definition of the model is equivalent to the standard definition due to a

result by Lupu and Werner [161].
Similarly, we define the random-cluster model via

𝜑
𝜉
𝑥 = ℓ

𝜉
𝑥 ∪P𝜉𝑥 , (7.1.3)

which is equivalent to the standard definition of the model by a result due to Grimmet and
Janson [156].
The random-cluster model satisfies several useful monotonicity properties which are not enjoyed
by the loop O(1) and random current models [158]. We endow {0,1}𝐸 with the pointwise
partial order ⪯, and say that an event 𝐴 is increasing if 𝜔 ∈ 𝐴 and 𝜔 ⪯ 𝜔′ implies that 𝜔′ ∈ 𝐴.
The following monotonicity properties will be of use in this paper (see [145, Theorem 1.6]):

1. The FKG inequality: 𝜑𝑥,𝐺 [𝐴∩𝐵] ≥ 𝜑𝑥,𝐺 [𝐴]𝜑𝑥,𝐺 [𝐵] for 𝐴 and 𝐵 increasing.

2. Monotonicity in boundary conditions: 𝜑1
𝑥,𝐺
[𝐴] ≥ 𝜑0

𝑥,𝐺
[𝐴] for 𝐴 increasing.

3. Stochastic monotonicity: 𝜑𝑥2,𝐺 [𝐴] ≥ 𝜑𝑥1,𝐺 [𝐴], whenever 𝑥1 < 𝑥2 and 𝐴 is increasing.
We write 𝜑𝑥1,𝐺 ⪯ 𝜑𝑥2,𝐺 .

The last property is equivalent to the existence of an increasing coupling - that is, a probability
measure 𝜇 with marginals 𝜔1 ∼ 𝜑𝑥1 and 𝜔2 ∼ 𝜑𝑥2 such that 𝜔1 ⪯ 𝜔2 almost surely (i.e. 𝜔1 is a
subgraph of 𝜔2).
We refer to the lecture notes of Duminil-Copin [145] for an overall introduction to the Ising
model and its graphical representations. Furthermore, we stick with the parametrisation in
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terms of the loop O(1) parameter 𝑥 ∈ [0,1] throughout this paper and refer to [150, Table 1] for
an overview of the standard parametrisations.

7.1.3 Graphical representations and uniform even subgraphs.

In the following, we will consider the uniform even subgraph UEG, which not only serves
as the limiting case of the loop 𝑂 (1) model ℓ𝑥 for 𝑥 = 1, but also yields (perhaps surprising)
connections between the different graphical representations. For a finite graph 𝐺, the uniform
even subgraph UEG𝐺 is a uniform element of Ω∅ (𝐺), the set of even subgraphs of 𝐺. In [150],
an abstract view of the uniform even subgraph was taken as the Haar measure on the group
of even graphs3, and its percolative properties were studied. Before that, the uniform even
subgraph and its infinite volume measures were studied in detail by Angel, Ray and Spinka in
[155], where the free UEG0 and wired uniform even subgraphs UEG1 were introduced and it
was shown that they coincide on one-ended graphs [155, Lemma 3.9]. In this article, we are
concerned with tree-like graphs (as opposed to, say, Z𝑑), which in general have infinitely many
ends. Hence, the distinction between the free and wired measures, UEG0 and UEG1, plays a
bigger role than in [150, 155].
For an infinite graph G the wired uniform even subgraph UEG1

G can be defined as the Haar
measure (normalised to probability) on Ω∅, the group of all even subgraphs of G. In particular,
it pushes forward to Haar measures under group homomorphisms and as a consequence, its
marginals are also Haar measures on their supports.
The set of all finite even graphs Ω<∞

∅ (G) = {𝜂 ∈ Ω∅ (G) | |𝜂 | < ∞} is a subgroup of Ω∅. Its
closure

Ω0(G) = Ω<∞
∅ (G)

is a (compact) subgroup of Ω∅ (G), and the free uniform even subgraph UEG0
G is the Haar

measure on that group. For more details on the construction of the free and wired uniform even
subgraphs for infinite graphs see [150, Section 3.2].
In [156, Theorem 3.5] it was realised that the loop O(1) model arises as the uniform even
subgraph of the random-cluster model and in [158, Theorem 4.1], that it is also the uniform
even subgraph of the double random current.
Thus, on any graph, the loop 𝑂 (1) measure can be written as follows:

ℓ
𝜉

G [ · ] = 𝜑
𝜉

G

[
UEG𝜉

𝜔 [ · ]
]
, (7.1.4)

3With the group operation given by pointwise addition mod 2 in the space {0,1}𝐸 — or, equivalently, taking
symmetric differences of edge sets.
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where 𝜉 = 0 in the free case and 𝜉 = 1 in the wired case4, and 𝜑𝜉G is defined as a thermodynamic
limit (see e.g. [150, Sec. 2.1.3.]) when G is infinite. In infinite volume, this may be taken as
the definition of the loop O(1) model (cf. [150, (4)]). This can then be used to define the single
and double random current,

P𝜉𝑥 = ℓ
𝜉
𝑥 ∪P1−

√
1−𝑥2 and P𝜉𝑥 ∪P𝜉𝑥 = ℓ

𝜉
𝑥 ∪ ℓ𝜉𝑥 ∪P𝑥2 . (7.1.5)

7.1.4 Percolation regimes

Since the graphs we will work on are not vertex-transitive, we will use the following definition
of percolation: We say that a percolation measure 𝜇𝑥,G on an infinite graph G percolates if
𝜇𝑥,G [C∞] > 0 (recall that C∞ denotes the event that there exists an infinite cluster) and we
define the percolation regime

P(𝜇𝑥,G) = {𝑥 ∈ (0,1) | 𝜇𝑥,G [C∞] > 0}. (7.1.6)

We say that the phase transition on G is unique if both P(𝜇𝑥,G) and (0,1) \ P(𝜇𝑥,G) are
connected. In that case, we define the critical parameter 𝑥𝑐 (𝜇𝑥,G) = infP(𝜇𝑥,G). By stochastic
monotonicity, the phase transition of the random-cluster model 𝜑 is unique on any graph.

7.1.4.1 Bernoulli percolation on a tree.

We denote by T𝑑 the 𝑑-regular tree and by T𝑑𝑛 the ball of size 𝑛 for the graph distance on T𝑑 .
Observing that the cluster of the origin can be described in terms of a Galton-Watson process
(and with the observation that vertex-transitivity implies that P𝑝,T𝑑 [0↔∞] > 0 if and only if
P𝑝,T𝑑 [C∞] = 1), one sees that the critical parameter for Bernoulli percolation on the 𝑑-regular
tree is

𝑝𝑐 (PT𝑑 ) = 1
𝑑 −1

. (7.1.7)

7.1.4.2 Percolation versus long-range order

For readers more familiar with models on lattices, a brief word of caution might be in order:
One might wonder why models that essentially share correlation functions nonetheless have
different critical parameters for percolation.

4For finite graphs we write ℓ, omitting the boundary condition.
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In particular, we have the following agreement of two-point functions (see e.g. [145, Corollary
1.4, Lemma 4.3]):

𝜑0
𝑥,𝐺 [𝑣↔ 𝑤]2 = ⟨𝜎𝑣𝜎𝑤⟩2𝐺,𝛽 = P0

𝑥,𝐺 ∪P0
𝑥,𝐺 [𝑣↔ 𝑤] (7.1.8)

for all finite graphs 𝐺 and vertices 𝑣,𝑤 (here ⟨𝜎𝑣𝜎𝑤⟩𝐺,𝛽 is the Ising correlation function and
𝛽 = arctanh(𝑥)). However, this is not an obstruction to percolation setting in at different values
of 𝑥 because percolation does not, in general, imply anything for the two-point function. One is
tempted to write that the bound 𝜑0 [𝑣↔ 𝑤] ≥ 𝜑0 [𝑣↔∞]𝜑0 [𝑤↔∞] follows from the FKG
inequality, but this only holds if the infinite cluster is unique, which, as may be checked, is
never true for trees.

7.2 Non-uniqueness of percolation

In this section we tackle the following question.

Question 7.2.1: Let 𝐺 ⊆ 𝐺′ be two infinite graphs and suppose that the uniform even subgraph
of 𝐺′ almost surely percolates. Does the uniform even subgraph of 𝐺 almost surely percolate?

The following counterexample answers the question negatively and at the same time constructs
a class of graphs for which P(ℓ𝑥) has multiple connected components.
We use that the loop 𝑂 (1) model factorises on graphs lacking certain cycles: A cycle denotes
a path of vertices 𝑣1, 𝑣2, ..., 𝑣𝑛 such that 𝑣1 = 𝑣𝑛. We say that a cycle is simple if 𝑣 𝑗 ≠ 𝑣𝑘 for
distinct 1 ≤ 𝑗 , 𝑘 < 𝑛.

Definition 7.2.2: For a graph 𝐺 and two subgraphs 𝐺1,𝐺2 ⊆ 𝐺, we say that (𝐺1,𝐺2) is a
cut-point factorisation of 𝐺 if 𝐸 (𝐺) = 𝐸 (𝐺1) ¤∪𝐸 (𝐺2) and it holds that there is no simple
cycle in 𝐺 which contains edges from both 𝐸 (𝐺1) and 𝐸 (𝐺2).
Definition 7.2.3: We say that a graph-indexed family of percolation measures 𝜈𝐺 cut-point
factorises if 𝜈𝐺 = 𝜈𝐺1 ⊗ 𝜈𝐺2 whenever (𝐺1,𝐺2) is a cut-point factorisation of 𝐺.

The following lemma will be useful.

Lemma 7.2.4 (Cut point factorisation): Each of the measures ℓ𝑥 , 𝜑𝑥 ,P𝑥 ,P𝑥 ∪P𝑥 cut-point
factorises.

Proof. We first prove the statement for the loop O(1) model. For any even subgraph 𝜂 of 𝐺,
its restrictions 𝜂1, 𝜂2 to the subgraphs 𝐺1 and 𝐺2 are even graphs since (𝐺1,𝐺2) is a cut-point
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factorisation of 𝐺. Thus, writing Ω𝑖 = {0,1}𝐸𝑖 , one may simply rewrite

ℓ𝑥,𝐺 [𝜂] =
𝑥 |𝜂 |∑

𝜂′∈Ω 1𝜕𝜂′=∅𝑥 |𝜂′ |
=

𝑥 |𝜂1 |𝑥 |𝜂2 |∑
𝜂′
𝑖
∈Ω𝑖

1𝜕𝜂′1=∅1𝜕𝜂′2=∅𝑥
|𝜂′1 |𝑥 |𝜂′2 |

= ℓ𝑥,𝐺1 [𝜂1]ℓ𝑥,𝐺2 [𝜂2] .

For the other models, the statement follows from the couplings of P,P∪P and 𝜑 to the loop
O(1) model (which we used to define said models in Section 7.1.2). Indeed, note that for any
two product measures, 𝜇𝑥,𝐺 = 𝜇𝑥,𝐺1 ⊗ 𝜇𝑥,𝐺2 and 𝜈𝑥,𝐺 = 𝜈𝑥,𝐺1 ⊗ 𝜈𝑥,𝐺2 that

𝜇𝑥,𝐺 ∪ 𝜈𝑥,𝐺 = (𝜇𝑥,𝐺1 ∪ 𝜈𝑥,𝐺1) ⊗ (𝜇𝑥,𝐺2 ∪ 𝜈𝑥,𝐺2),

and Bernoulli percolation clearly cut-point factorises. □

In Theorem 7.2.4 we proved the cut-point factorisation property for finite graphs. The infinite
volume measures also have the cut-point factorisation property as they are either limits or
(sprinkled) uniform even subgraphs of a cut-point factorising measure.

Lemma 7.2.5 (Non-monotonicity of loop 𝑂 (1) two-point function): There exist parameter
values 0 < 𝑥1 < 𝑥2 < 1, and a finite graph 𝐺⋄ with vertices 𝑎, 𝑏 such that

ℓ𝑥2,𝐺⋄ [𝑎↔ 𝑏] < 1
4
< ℓ𝑥1,𝐺⋄ [𝑎↔ 𝑏] .

Proof. Consider the graph 𝐺⋄, described in the right-most column of Figure 7.2 (which was
previously used as an example in [158]). In this graph, the probability that the two marked
vertices are connected is

ℓ𝑥,𝐺⋄ [𝑎↔ 𝑏] = 𝑥2𝑚 + 𝑥2𝑚+2𝑛

1+ 𝑥2𝑛 + 𝑥2𝑚 +4𝑥𝑛+𝑚 + 𝑥2𝑚+2𝑛 .

Setting 𝑛 = 12,𝑚 = 2, 𝑥1 = 0.85, and 𝑥2 = 0.965 yields

ℓ𝑥2,𝐺⋄ [𝑎↔ 𝑏] ≤ 0.245 <
1
4
, and ℓ𝑥1,𝐺⋄ [𝑎↔ 𝑏] ≥ 0.27 >

1
4
.

We have also plotted the graph of 𝑥 ↦→ ℓ𝑥,𝐺⋄ [𝑎↔ 𝑏] in Figure 7.3. □

With this in hand, we can construct our counterexample for Theorem 7.1.1: We note that the
proof of the theorem also implies that the percolation regime P(ℓ0

𝑥,G) ⊂ [0,1] is not connected.

Proof. We construct M from the 𝑑-regular tree T𝑑 with root 0 for an appropriate choice of 𝑑.
Consider the natural orientation of the tree where edges are oriented away from the root and



7.2 Non-uniqueness of percolation 181

Figure 7.2: The graph 𝐺⋄ (pictured to the right) along with its eight even subgraphs (including
𝐺⋄ itself). We let the outer paths be 𝑛 edges long and the inner paths be 𝑚 edges long. The
nodes 𝑎 and 𝑏 are marked with dots. We list the number of edges of each subgraph, the
corresponding weights and whether 𝑎 and 𝑏 are connected in the subgraph. (Sketch and text
partially revised from [158].)
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Figure 7.3: Graph of the connection probability for the loop O(1) model on the graph 𝐺⋄,
described in Figure 7.2, for 𝑛 = 12 and 𝑚 = 2. See also [158, Figure 2.3] for similar figures.
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replace every such oriented edge 𝑒 = (𝑣,𝑤) by a copy of the graph 𝐺⋄ where 𝑎 is identified
with 𝑣 and 𝑏 is identified with 𝑤. More formally, let M = (∐𝑒∈𝐸 (T𝑑)𝐺

⋄
𝑒)/∼, where ∼ is the

equivalence relation such that 𝑎𝑒 ∼ 𝑏𝑒′ whenever the source of 𝑒 is equal to the sink of 𝑒′.
See Figure 7.4 for an illustration. Now, since the macroscopic structure of M is that of a tree,
Lemma 7.2.4 applies, and it holds that

ℓ0
𝑥,M = ⊗𝑒∈𝐸 (T𝑑)ℓ

0
𝑥,𝐺⋄𝑒

. (7.2.1)

As a consequence, analysing percolation of ℓ𝑥,M just boils down to Bernoulli percolation on T𝑑:
For given 𝜂 ∈ Ω0

∅ (M) and 𝑒 ∈ 𝐸 (T𝑑), we define 𝑚𝑒 = 1 if 𝑎
𝜂
↔ 𝑏 in 𝐺⋄𝑒 and 𝑚𝑒 = 0 otherwise.

In other words, 𝑚 = (𝑚𝑒)𝑒∈𝐸 (T𝑑) maps a percolation configuration in M onto one in T𝑑 such
that 0

𝑚(𝜂)
←→∞ if and only if 0

𝜂
←→∞. Furthermore, by (7.2.1), the image measure of ℓ𝑥,M is

Bernoulli percolation: 𝑚(ℓ0
𝑥,M) = P 𝑓 (𝑥),T𝑑 where 𝑓 (𝑥) = ℓ𝑥,𝐺⋄ [𝑎↔ 𝑏].

As a consequence, it holds that ℓ0
𝑥,𝑀
[C∞] =P 𝑓 (𝑥),T𝑑 [C∞]. By (7.1.7), we know that P 𝑓 (𝑥),T𝑑 [C∞] >

0 if and only if 𝑓 (𝑥) > 1
𝑑+1 . Now, by Lemma 7.2.5 there exist 𝑥1 < 𝑥2 and 𝑑 such that

𝑓 (𝑥2) < 1
𝑑+1 < 𝑓 (𝑥1), which proves the desired. □

As a result, we obtain a negative answer to Question 7.2.1, that is a proof of Corollary 7.1.2:

Proof of Corollary 7.1.2 (in the free case). First, recall that the loop O(1) model can be ob-
tained by sampling a uniform even subgraph from a random-cluster configuration, see (7.1.4).
For the random-cluster model 𝜑0

𝑥,M we consider the increasing coupling in 𝑥. For 𝑥1 < 𝑥2 as
above, the uniform even subgraph of 𝜑0

𝑥1,M
almost surely percolates and the uniform even

subgraph of 𝜑0
𝑥2,M

almost surely does not. Since the coupling is increasing, there must exist
at least one pair 𝜔1 ⪯ 𝜔2 where the uniform even subgraph of 𝜔1 percolates while that of 𝜔2

does not. □

7.2.1 Corollary 7.1.2 in the wired case.

In this section, we will construct a supergraph5 of Z for which the wired UEG does not
percolate.
Define G = (Z, Ê), where (𝑛,𝑚) ∈ 𝐸̂ if either |𝑛−𝑚 | = 1 or 𝑛 = −𝑚. Let Êarc := Ê \E(Z) and
Garc = (Z, 𝐸̂arc).

5One may note that our trick is basically to pick a one-ended supergraph of a two-ended graph. One may
check that the wired UEG of a graph with multiple ends percolates (see also [150, Eq. (14)]). Therefore, our
construction does not have the flavour of an optimal solution to the problem.
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Figure 7.4: An example of the graph M built from the graphs 𝐺⋄ (see Figure 7.2) when 𝑑 = 2.
To the left with the 𝑑-regular tree overlaid. To the right, the geometry of M at a single vertex of
the initial tree.

Lemma 7.2.6: The marginal UEG1
G |Êarc

= P 1
2 ,Garc

.

Proof. This follows from the fact that the restriction group homomorphism Ω∅ (𝐺) → {0,1}Êarc

is surjective. To see that the map is surjective, it suffices that all single-edge configurations lie
in the image. For a given 𝑒 = (−𝑛,𝑛) ∈ Êarc, we see that 11𝑒 is the image of the loop containing
[−𝑛,𝑛] ∩Z and 𝑒. □

Proof of Corollary 7.1.2 (for the wired case). Let G be as above. Let 𝑣 ∈ Z and note that on
the event that there is an open edge in Êarc outside of [−|𝑣 |, |𝑣 |], the cluster of 𝑣 has to be
finite. By Lemma 7.2.6, with probability 1, infinitely many edges in Êarc are open in UEGG.
By the previous comment, on this event, all clusters are finite. Hence UEGG does not percolate.
However, Z has exactly two even subgraphs, 𝜂 ≡ 0 and 𝜂 ≡ 1, so UEG1

Z does percolate. □

7.2.2 Generalisations and non-uniqueness of random current phase tran-
sitions

We can adapt the earlier construction of a disconnected percolation regime from the loop 𝑂 (1)
model to more general cut-point factorising measures:

Proposition 7.2.7: Let 𝐹 be a finite graph and that 𝑣,𝑤 are two vertices. Let {𝜇𝑥,𝐹}𝑥∈[0,1] be
a family of cut point factorising percolation measures. Suppose that there exists a finite graph
𝐹 such that 𝑥 ↦→ 𝜇𝑥,𝐹 [𝑣↔ 𝑤] is not monotone. Then, there exists an infinite graph M such
that P(𝜇𝑥,M) is disconnected.

Proof. By assumption, there exist 𝑥1 < 𝑥2 < 𝑥3 such that

max{𝜇𝑥1,𝐹 [𝑣↔ 𝑤], 𝜇𝑥3,𝐹 [𝑣↔ 𝑤]} < 𝜇𝑥2,𝐹 [𝑣↔ 𝑤] .
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For 𝑝 ∈ (0,1) let G𝑝 ∼ P𝑝,T𝑑 . Notice that almost surely, 𝑥𝑐 (P𝑥,G𝑝
) = 1

𝑝(𝑑−1) . By tuning the
parameters 𝑝 and 𝑑 appropriately, we can make sure that

max{𝜇𝑥1,𝐹 [𝑣↔ 𝑤], 𝜇𝑥3,𝐹 [𝑣↔ 𝑤]} < 1
𝑝(𝑑 −1) < 𝜇𝑥2,𝐹 [𝑣↔ 𝑤] .

Now, construct M by sampling G𝑝 and substituting each edge of G𝑝 by a copy of 𝐹, gluing in
the same way as in our construction in the proof of Theorem 7.1.1. □

The proposition shows that we do not need to "fine-tune" the parameters for the transition
points to fit the phase transition of the 𝑑-regular tree.
As a consequence, we can see that the single random current also admits a disconnected
percolation regime: Recall that [158, Figure 2.3] gives an example of a graph for which
connection probabilities are not monotone, hence, by the above proposition, it follows that we
get:

Corollary 7.2.8: There exists an infinite graph G such that P(P𝐺) is not connected.

Remark 7.2.9: We note that since single site connection probabilities are monotone for 𝜑𝑥 and
P𝑥 ∪P𝑥 , the counterexamples do not work for these models.

Another model of statistical mechanics which cut-point factorises is the arboreal gas model.
The simplest definition of this model in finite volume is as Bernoulli percolation conditioned to
be a forest (i.e. conditioned not to contain any cycles):

𝜈𝛽,𝐺 [𝜔] =
1
𝑍𝐺,𝛽

𝛽 |𝜔|11Ω∅ (𝜔)={0},

where 0 denotes the empty graph, which is even. It is immediate that if (𝐺1,𝐺2) is a cut-
point factorisation of 𝐺 and 𝐹1, 𝐹2 are subforests of 𝐺1 and 𝐺2 respectively, then 𝐹1∪𝐹2 is
a subforest of 𝐺. Thus, 𝜈𝛽,𝐺 cut-point factorises. At present, the connection probabilities of
the model are conjectured to be monotone in 𝛽 on all finite graphs 𝐺 [162, p.2], but supposing
that they are not, our construction would go through for this model as well, yielding a graph on
which the percolation phase transition of the model is not unique.
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7.3 Phase transitions of the wired models on the 𝑑-regular
tree coincide

In this section, we prove the first part of Theorem 7.1.3 on trees. The main tool in the proof is
the observation that all wired cycles in T𝑑 are infinite. In particular, ℓ1

𝑥,T𝑑 is empty if it does not
percolate.
First, we will need a small bookkeeping result. Let T̃𝑑 denote the rooted 𝑑-regular tree. Cycles
of T𝑑 containing an open edge 𝑒 will consist of two infinite paths in isomorphic copies of T̃𝑑 .
It will therefore be important (and easily demonstrated) that changing the degree of a single
vertex does not change the phase transition.

Lemma 7.3.1: For any 𝑑 ≥ 2, we have that 𝑥𝑐 (𝜑1
T𝑑 ) = 𝑥𝑐 (𝜑1

T̃𝑑
).

Proof. Fix one edge 𝑒 of T𝑑 and note that for any 𝑥 ∈ (0,1),

𝜑1
𝑥,T𝑑 [C∞] = 𝜑1

𝑥,T𝑑 [C∞ | 𝜔𝑒 = 1] 𝜑1
𝑥,T𝑑 [𝜔𝑒 = 1] + 𝜑1

𝑥,T𝑑 [C∞ | 𝜔𝑒 = 0] 𝜑1
𝑥,T𝑑 [𝜔𝑒 = 0] .

By tail-triviality (see [149, Theorem 10.67]), 𝜑1
𝑥,T𝑑 [C∞] ∈ {0,1} and since 𝜑1

𝑥,T𝑑 [𝜔𝑒 = 0] ∈
(0,1), we conclude that

𝜑1
𝑥,T𝑑 [C∞ | 𝜔𝑒 = 0] = 𝜑1

𝑥,T𝑑 [C∞] .

Furthermore, (V(T𝑑),E(T𝑑) \ {𝑒}) has two connected components, both of which are isomor-
phic to T̃𝑑 . Permitting ourselves a natural abuse of notation, remark that by the Domain Markov
Property [145, p.8], 𝜑1

𝑥,T𝑑 [ · | 𝜔𝑒 = 0] = 𝜑1
𝑥,T̃𝑑
⊗ 𝜑1

𝑥,T̃𝑑
. Thus,

𝜑1
𝑥,T𝑑 [C∞] = 𝜑1

𝑥,T𝑑 [C∞ | 𝜔𝑒 = 0] = 𝜑1
𝑥,T̃𝑑 ⊗ 𝜑1

𝑥,T̃𝑑 [C∞] = 1− (1−𝜑1
𝑥,T̃𝑑 [C∞])2,

which finishes the proof. □

Theorem 7.3.2: For 𝑥 > 𝑥𝑐 (𝜑1
T𝑑 ), there exists 𝑐 > 0 such that for any vertex 𝑣,

ℓ1
𝑥,T𝑑 [𝑣↔∞] ≥ 𝑐.

In particular, 𝑥𝑐 (ℓ1
T𝑑 ) = 𝑥𝑐 (𝜑1

T𝑑 ).

Proof. Consider two neighbouring vertices 𝑣,𝑤 and define the event 𝐴𝑣 = {𝑣←→∞ in T𝑑 \
{𝑣,𝑤}} and analogously 𝐴𝑤 . Define the event 𝐿𝑣,𝑤 := 𝐴𝑣 ∩ 𝐴𝑤 ∩ {(𝑣,𝑤) open}. In words, this
is the event that that there is a loop which contains the edge (𝑣,𝑤) goes through the wired
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boundary at infinity. Now, suppose 𝑥 > 𝑥𝑐 (𝜑1
T𝑑 ). In this case, by the FKG inequality, we obtain

a lower bound that a random-cluster configuration 𝜔 satisfies 𝐿𝑣,𝑤:

𝜑1
𝑥,T𝑑 [𝐿𝑣,𝑤] ≥ 𝜑1

𝑥,T𝑑 [𝐴𝑣]𝜑1
𝑥,T𝑑

𝑛
[𝐴𝑤]𝜑1

𝑥,T𝑑 [(𝑣,𝑤) open] ≥ 𝜑1
𝑥,T̃𝑑 [0↔∞]2𝑥 ≥ 𝑐 > 0,

where, in the second inequality, we have used monotonicity in boundary conditions, the fact
that the probability of a given edge being open is at least 𝑥 (which follows from (7.1.3)), as
well as Lemma 7.3.1.
Conditionally on 𝐿𝑣𝑤, there exist two disjoint infinite paths in 𝜔 starting from 𝑣 and 𝑤 respec-
tively. Let us argue that, for such a configuration 𝜔, UEG𝜔 [(𝑣,𝑤) open, 𝑣↔∞] = 1

2 . This
boils down to two observations: First, because all components of an even subgraph of T𝑑 are
either trivial or infinite,

UEG1
𝜔 [(𝑣,𝑤) open, 𝑣↔∞] = UEG1

𝜔 [(𝑣,𝑤) open] . (7.3.1)

Second, the probability of a given edge, which is part of a loop in 𝜔, being open in UEG𝜔 is 1
2

(see the much more general statement [150, Lemma 3.5]).
In conclusion, for 𝑥 > 𝑥𝑐 (𝜑1

T𝑑 ),

ℓ1
𝑥,T𝑑 [𝑣↔∞] ≥ 𝜑1

𝑥,T𝑑 [UEG1
𝜔 [𝑣↔∞]] > 𝑐/2 > 0.

□

To finish the proof of the first statement in Theorem 7.1.3, we make a short aside to discuss the
subcritical regime of the random-cluster and random current models on the tree. It is classical
that, for 𝑥 < 𝑥𝑐 (𝜑1

T𝑑 ), we have that 𝜑1
𝑥,T𝑑 = P𝑥,T𝑑 (see [149, Theorem 10.67]). A similar result

holds for the double random current:

Lemma 7.3.3: For 𝑥 < 𝑥𝑐 (𝜑1
T𝑑 ), then P1

𝑥,T𝑑 ∪P1
𝑥,T𝑑 = P𝑥2,T𝑑 . Moreover, 𝑥𝑐 (𝜑1

T𝑑 ) ≤ 𝑥𝑐 (P1
T𝑑 ∪

P1
T𝑑 ).

Proof. Since 𝑥 < 𝑥𝑐 (𝜑1
T𝑑 ) and ℓ1

𝑥,T𝑑 ⪯ 𝜑1
𝑥,T𝑑 , we get that ℓ1

𝑥,T𝑑 [C∞] ≤ 𝜑1
𝑥,T𝑑 [C∞] = 0. Therefore,

since all trivial components of an even subgraph of T𝑑 are infinite, we have that

ℓ1
𝑥,T𝑑 [𝜂 ≡ 0| Ω∅ (T𝑑) \ C∞] = 1.

By (7.1.5), this implies that P1
𝑥,T𝑑 ∪P1

𝑥,T𝑑 = P𝑥2,T𝑑 . For the second statement, note that P𝑥2,T𝑑 ⪯
P𝑥,T𝑑 = 𝜑1

𝑥,T𝑑 . □
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We can now put (7.1.5), Theorem 7.3.2 and Lemma 7.3.3 together to obtain

𝑥𝑐 (ℓ1
T𝑑 ) ≥ 𝑥𝑐 (P1

T𝑑 ) ≥ 𝑥𝑐 (P1
T𝑑 ∪P1

T𝑑 ) ≥ 𝑥𝑐 (𝜑1
T𝑑 ) = 𝑥𝑐 (ℓ1

T𝑑 ).

Hence, we arrive at the following corollary:

Corollary 7.3.4: For 𝑑 ≥ 2, then

𝑥𝑐 (ℓ1
T𝑑 ) = 𝑥𝑐 (P1

T𝑑 ) = 𝑥𝑐 (P1
T𝑑 ∪P1

T𝑑 ).

7.3.1 Modifications for C𝑑𝑛 .

In the following, we comment on how to adapt the previous proof strategy to yield the analogue
of Corollary 7.3.4 (resp./ the first part of Theorem 7.1.3) on C𝑑𝑛 . This requires two ingredients:

a) For 𝑥 < 𝑥𝑐 (𝜑1
C𝑑𝑛
), all models reduce to explicitly comparable independent models. In

particular, we will argue that

𝑥𝑐 (P1
𝑥,C𝑑𝑛
∪P1

𝑥,C𝑑𝑛
) ≥ 𝑥𝑐 (𝜑1

𝑥,C𝑑𝑛
).

b) For 𝑥 > 𝑥𝑐 (𝜑1
C𝑑𝑛
), the loop O(1) model ℓ1

𝑥,C𝑑𝑛
percolates.

For 𝑎) if 𝑥 < 𝑥𝑐 (𝜑1
C𝑑𝑛
), rather than ℓ1

𝑥,C𝑑𝑛
being deterministically empty, it includes each simple

cycle of C𝑑𝑛 independently since the free loops cut-point factorise. Accordingly, P1
𝑥,C𝑑𝑛
∪P1

𝑥,C𝑑𝑛
is a union of two independent cycle measures and a Bernoulli percolation and therefore, it
percolates only if it has better connection probabilities in finite volume than 𝜑1

𝑥,C𝑑𝑛
. But the

finite-volume two-point function of 𝜑1
𝑥,C𝑑𝑛

is always larger than that of P1
𝑥,C𝑑𝑛
∪P1

𝑥,C𝑑𝑛
by (7.1.8).

Since 𝑥 < 𝑥𝑐 (𝜑1
C𝑑𝑛
), we conclude that P1

𝑥,C𝑑𝑛
∪P1

𝑥,C𝑑𝑛
does not percolate.

Now, for 𝑏), if 𝑥 > 𝑥𝑐 (𝜑1
C𝑑𝑛
), we want to make an observation that infinite paths can be deduced

in ℓ1
𝑥,C𝑑𝑛

from a local configuration. On a tree, it is true that any open edge is part of an infinite

cluster (this is what we used in the proof for T𝑑 , see (7.3.1)). On C𝑑𝑛 , instead, it is true that if
𝑒, 𝑒′ are edges belonging to the same simple cycle, and 𝜂 ∈ Ω∅ (C𝑑𝑛) with 𝜂𝑒 = 1 and 𝜂𝑒′ = 0,
then 𝑒 lies on an infinite cluster in 𝜂 (in which case 𝑒′ and 𝑒 are on opposite paths between the
glued vertices). By the same argument as previously, conditionally on 𝑒 being cyclic and lying
in an infinite component of 𝜔 ∼ 𝜑1

𝑥,C𝑑𝑛
, the probability that 𝜂𝑒 = 1 and 𝜂𝑒′ = 0 is at least 1

4 for

𝜂 ∼ UEG1
𝜔, which concludes the argument.
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7.4 Explicit computation of critical points

In this section we explicitly compute the critical points for the free models on C𝑑𝑛 , the 𝑑-regular
tree where every edge is replaced by a cycle of length 2𝑛 (and glued through opposite point of
the cycle).

Proposition 7.4.1: For any 𝑛 ≥ 1 and 𝑑 ≥ 2, it holds that

𝑥𝑐 (ℓ0
C𝑑𝑛
) = (𝑑 −2)− 1

2𝑛

𝑥𝑐 (𝜑0
C𝑑𝑛
) = 𝑛

√︃
(𝑑 −1) −

√︁
(𝑑 −1)2−1

𝑥𝑐 (P0
C𝑑𝑛
∪P0

C𝑑𝑛
) = 2𝑛

√︃
(2𝑑 −5) −

√︁
(2𝑑 −5)2−1 .

In particular, the three different models have three different phase transitions.

A graphical presentation of the functions is given in Figure 7.5.

Proof. Let 𝐶2𝑛 denote cycle graph of length 2𝑛 and let 𝑎 and 𝑏 be two antipodal points. As in
the proof Theorem 7.1.1, we use cut-point factorisation (Lemma 7.2.4) to reduce everything to
Bernoulli percolation on T𝑑 with parameter 𝜈𝑥,𝐶2𝑛 [𝑎↔ 𝑏] (with 𝜈 denoting one of the models
under consideration). The rest follows by direct computation:
Loop O(1) model: It holds that ℓ𝑥,𝐶2𝑛 [𝑎↔ 𝑏] = 𝑥2𝑛

1+𝑥2𝑛 . Thus,

1
𝑑 −1

=
𝑥2𝑛
𝑐

1+ 𝑥2𝑛
𝑐

can be solved to obtain 𝑥𝑐 (ℓ0
C𝑑𝑛
) = (𝑑 −2)− 1

2𝑛 .

Random-cluster model: Now, for (𝜂,𝜔) ∼ ℓ𝑥,𝐶2𝑛 ⊗ P𝑝,𝐶2𝑛 , we see that

ℓ𝑥,𝐶2𝑛 ⊗ P𝑝,𝐶2𝑛 [𝜂∪𝜔 ∈ (𝑎↔ 𝑏) | 𝜂] =


1 𝜂 ≡ 1

2𝑝𝑛− 𝑝2𝑛 𝜂 ≡ 0.

Since the cycle graph has exactly two even subgraphs (the full and the empty graph) we get that

(ℓ𝑥,𝐶2𝑛 ∪P𝑝,𝐶2𝑛) [𝑎↔ 𝑏] = 𝑥
2𝑛 +2𝑝𝑛− 𝑝2𝑛

1+ 𝑥2𝑛 . (7.4.1)
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Thus, for the random-cluster model (where we choose 𝑝 = 𝑥) we obtain

1
𝑑 −1

= 𝜑𝑥𝑐 ,𝐶2𝑛 [𝑎↔ 𝑏] =
𝑥2𝑛
𝑐 +2𝑥𝑛𝑐 − 𝑥2𝑛

𝑐

1+ 𝑥2𝑛
𝑐

=
2𝑥𝑛𝑐

1+ 𝑥2𝑛
𝑐

,

which can be solved with the substitution 𝑧 = 𝑥𝑛𝑐 and we obtain that

𝑥𝑐 (𝜑0
C𝑑𝑛
) = 𝑛

√︃
(𝑑 −1) −

√︁
(𝑑 −1)2−1.

Double random current: Analogously to (7.4.1) we obtain

(ℓ𝑥,𝐶2𝑛 ∪ ℓ𝑥,𝐶2𝑛 ∪P𝑝,𝐶2𝑛) [𝑎↔ 𝑏] = 2𝑥2𝑛 + 𝑥4𝑛 +2𝑝𝑛− 𝑝2𝑛

(1+ 𝑥2𝑛)2
.

Hence, choosing 𝑝 = 𝑥2 for the double random current we obtain the following equation

1
𝑑 −1

=
4𝑥2𝑛

(1+ 𝑥2𝑛)2

which can be solved with the substitution 𝑧 = 𝑥2𝑛, giving rise to

𝑥𝑐 (P0
C𝑑𝑛
∪P0

C𝑑𝑛
) = 2𝑛

√︃
(2𝑑 −5) −

√︁
(2𝑑 −5)2−1 .

□

The same argument for the single current does not lead to a closed formula, but the following
separate argument allows us to conclude Theorem 7.1.3.

Proof of Theorem 7.1.3. The first part of the theorem is given by combining Theorem 7.3.2 and
Theorem 7.3.4. We focus on the single random current: From (7.4.1) we sprinkle with 𝑝(𝑥) =
1−
√

1− 𝑥2 to obtain the single current. One may check that for any increasing (differentiable)
function 𝑝(𝑥) taking values in [0,1], the function 𝑥 ↦→ (ℓ𝑥∪P𝑝(𝑥)) [𝑎↔ 𝑏] is increasing. Hence,
there exists a unique solution 𝑥𝑐 to the equation

1
𝑑 −1

=
𝑥2𝑛
𝑐 +2𝑝(𝑥𝑐)𝑛− 𝑝(𝑥𝑐)2𝑛

1+ 𝑥2𝑛
𝑐

.

Thus, if 𝑝 and 𝑞 are increasing differentiable functions that take values in [0,1] such that
𝑝(𝑥) < 𝑞(𝑥) for all 𝑥 ∈ [0,1] then 𝑥𝑐 (ℓ0

𝑥,C𝑑𝑛
∪P𝑝(𝑥),C𝑑𝑛 ) > 𝑥𝑐 (ℓ

0
𝑥,C𝑑𝑛
∪P𝑞(𝑥),C𝑑𝑛 ).
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Figure 7.5: The critical 𝑥𝑐 on the graph C𝑑,𝑛 as a function of 𝑑 for the loop O(1), and double
random current.

Using this for the functions 𝑟 (𝑥) = 0, 𝑝(𝑥) = 1−
√

1− 𝑥2, and 𝑞(𝑥) = 𝑥2 together with stochastic
domination yields

𝑥𝑐 (ℓ0
𝑥,C𝑑

𝑛

) > 𝑥𝑐 (ℓ0
𝑥,C𝑑𝑛
∪P𝑝(𝑥),C𝑑𝑛︸           ︷︷           ︸
P0
𝑥,C𝑑𝑛

) > 𝑥𝑐 (ℓ0
𝑥,C𝑑𝑛
∪P𝑞(𝑥),C𝑑𝑛 ) ≥ 𝑥𝑐 (ℓ

0
𝑥,C𝑑𝑛
∪ ℓ0

𝑥,C𝑑𝑛
∪P𝑞(𝑥),C𝑑𝑛︸                     ︷︷                     ︸

P0
𝑥,C𝑑𝑛
∪P0

𝑥,C𝑑𝑛

).

□

7.5 The critical probability for Bernoulli percolation is no
obstruction for the UEG

In the previous section, we considered graphs where the free uniform even subgraph is intimately
tied to the behaviour of ordinary Bernoulli percolation on another graph. One might wonder
about general links between the behaviour of Bernoulli percolation and that of the UEG. For
instance, one might have a suspicion that if a graph G is easily disconnected in the sense that
the percolation threshold 𝑝𝑐 (PG) is very close to 1, this lack of connectivity might also impact
the UEG. This turns out to be false even for one-ended graphs.
We are going to give two counterexamples:

• The first is a construction that can be applied to just about any graph and which admits
an easy proof. However, the graphs thus produced are not of inherent interest otherwise.
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• The second is the infinite cluster of 𝜑𝑥𝑐+𝜀,Z2 as 𝜀→ 0+, which is a more natural object,
but for which the proof is more involved.

The UEG of the latter model always percolates by [157, Theorem 1.3], and it is reasonable
to believe that continuity of the phase transition implies that breaking even a small fraction
𝛿 = 𝛿(𝜀) of the edges breaks the infinite cluster. However, the proof we give relies on [163], the
results of which are (conjecturally) not valid for all planar percolation models with a continuous
phase transition (see discussion after [163, Theorem 7.5]). Therefore, the matter is much more
subtle than one might expect and restating all necessary prerequisites is beyond the scope of the
present paper. As such, we shall settle for referring to suitable places in the literature. However,
we find the example to be important in the sense that the graph produced is, in some sense, a
much more natural negative resolution to the question.

7.5.1 The edge-halving construction

For a graph G = (V,E), define G1/2 with V(G1/2) = V∪E and E(G1/2) consisting of pairs
(𝑣, 𝑒) with 𝑣 ∈ V and 𝑒 an edge in G with 𝑣 as its one end-point. One may note that G1/2 is
bipartite with bi-partition V∪E. In pictures, G1/2 is obtained from G by dividing each edge in
two. The point is that doing so does not change the behaviour of the uniform even subgraph at
all, while it makes it strictly harder for Bernoulli percolation to percolate.
We note that since G1/2 is bipartite, a subgraph thereof will have an infinite component if and
only if it has a connected component containing infinitely many vertices from V.

Lemma 7.5.1: For any graph G= (V,E) there is a group isomorphism 𝜓 :Ω∅ (G1/2) →Ω∅ (G)
such that

𝜂
𝑣←→ 𝑤 if and only if

𝜓(𝜂)
𝑣←→ 𝑤,

for every 𝜂 ∈ Ω∅ (G) and 𝑣,𝑤 ∈ V. In particular, UEG1
G percolates if and only if UEG1

G1/2

does.

Remark 7.5.2: We note that the lemma also holds for UEG0, but omit it from the statement
for notational ease. The same proof carries through.

Proof. Any 𝑒 = (𝑣,𝑤) ∈ E has degree two in G1/2. Therefore, for any 𝜂 ∈ Ω∅ (G1/2), (𝑣, 𝑒) ∈ 𝜂
if and only if (𝑤, 𝑒) ∈ 𝜂. Accordingly,

𝜓(𝜂) = {𝑒 ∈ E| deg𝜂 (𝑒) = 2}
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defines an even subgraph of G with the desired connectivity property. One checks that 𝜓 is a
group homomorphism and, furthermore, that its inverse is given by

𝜓−1(𝜂) = {(𝑣, 𝑒) | 𝑒 ∈ 𝜂}.

Since 𝜓 is a group homomorphism and UEG1
G1/2 is the Haar measure on Ω∅ (G1/2), it pushes

forward to Haar measure on its image under 𝜓, which is UEG1
G, since 𝜓 is surjective. □

Lemma 7.5.3: For any graph G = (V,E), it holds that 𝑝𝑐 (PG1/2) =
√︁
𝑝𝑐 (PG).

Proof. The proof proceeds by coupling 𝜔𝑝 ∼ P𝑝2,G and 𝜔𝑝,1/2 ∼ P𝑝,G1/2 for every 𝑝 ∈ [0,1] in
such a way that 𝜔𝑝 ∈ {𝑣↔ 𝑤} if and only if 𝜔𝑝,1/2 ∈ {𝑣↔ 𝑤} for every pair 𝑣,𝑤 ∈ V. The
coupling itself declares that 𝑒 = (𝑣,𝑤) ∈ 𝜔𝑝 if and only if (𝑣, 𝑒) ∈ 𝜔𝑝,1/2 and (𝑤, 𝑒) ∈ 𝜔𝑝,1/2.
The process 𝜔𝑝 thus defined is i.i.d. since 𝜔𝑝,1/2 is, and its marginals may be checked to
be Bernoulli variables of parameter 𝑝2. The desired connectivity property also follows by
construction. □

This allows us to prove Theorem 7.1.4:

Proof. Let 𝜀 > 0 and let G0 = Z2, the uniform even subgraph of which percolates by [157]
and for which 𝑝𝑐 (PZ2) = 1

2 by Kesten’s Theorem [164]. Inductively, define G 𝑗+1 = G1/2
𝑗

. By
Lemma 7.5.1, we have that UEGG 𝑗

[0↔∞] > 0 for every 𝑗 and by Lemma 7.5.3, we have that
𝑝𝑐 (G 𝑗 ) = 2−2− 𝑗 . Picking 𝑗 sufficiently large proves the desired. □

7.5.2 The infinite cluster of the slightly supercritical random-cluster
model.

For our second example, for 𝑥 > 𝑥𝑐 we let G𝑥 denote the infinite cluster of 𝜑𝑥,Z2 . By [157, The-
orem 3.1], we have that the uniform even subgraph of G𝑥 percolates almost surely. Therefore,
we obtain a second proof of Theorem 7.1.4 if we can prove the following:

Proposition 7.5.4: Almost surely, under the increasing coupling of 𝜑𝑥,Z2 , we have

lim
𝑥↓𝑥𝑐

𝑝𝑐 (PG𝑥 ) = 1.

Proof. We start by fixing parameters and notation. Fix 𝛿 ∈ (0,1) and let 𝜌 > 0 be small enough.
For finite 𝐺 ⊆ Z2, let (𝜔𝐺 , 𝜉𝐺,𝛿) ∼ 𝜑1

𝑥𝑐 ,𝐺
⊗P1−𝛿,𝐺 . Furthermore, let 𝑅𝑘 = [−𝑘, 𝑘] × [−3𝑘,3𝑘] ∩
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Z2, Λ𝑘 = [−𝑘, 𝑘]2∩Z2 and let 𝒞𝑘 denote the event that there is a crossing in 𝑅𝑘 between its
left and right faces.
We claim that if 𝑘 = 𝑘 (𝛿, 𝜌) is large enough, then

𝜑1
𝑥𝑐 ,𝑅𝑘
⊗ P1−𝛿,𝑅𝑘

[𝜔𝑅𝑘
∩ 𝜉𝛿,𝑅𝑘

∈ 𝒞𝑘 ] < 𝜌. (7.5.1)

Before we indicate how to prove (7.5.1), let us see how it finishes the proof. As any crossing
between Λ𝑘 and Λ3𝑘 must cross at least one rotated translate of 𝑅𝑘 , monotonicity in boundary
conditions and a union bound implies that

𝜑1
𝑥𝑐 ,Λ3𝑘

⊗ P1−𝛿,Λ3𝑘 [𝜔Λ3𝑘 ∩ 𝜉𝛿,Λ3𝑘 ∈ {Λ𝑘 ↔ Λ3𝑘 }] < 4𝜌. (7.5.2)

It is well-known that if 𝜌 is sufficiently small, an estimate of the form (7.5.2) for some 𝑘 is
enough to imply non-percolation by techniques that go back to [165] (see e.g. the proof of [150,
Proposition 2.11]). However, by continuity of the finite volume measures, (7.5.2) remains true
if 𝜔Λ3𝑘 is replaced by 𝜔̃Λ3𝑘 ∼ 𝜑1

𝑥𝑐+𝜀,Λ3𝑘
for 𝜀 sufficiently small. Upon inspection, this is the

same as saying that 𝑝𝑐 (PG𝑥 ) ≥ 1−𝛿 almost surely for 𝑥 ∈ (𝑥𝑐, 𝑥𝑐 +𝜀), which is what we wanted,
since, under the increasing coupling, 𝑥 ↦→ 𝑝𝑐 (PG𝑥 ) is almost surely decreasing.
Now, to see that (7.5.1) holds provided 𝑘 is large enough, we refer to [166, Lemma 5.2]. This
lemma is stated in the context of Boolean percolation, but as is remarked on in that paper,
its proof only relies on the techniques of [163, Theorem 7.5]. Thus, it is also valid for the
random-cluster model. Combining [166, Lemma 5.2] with the fact that the four-arm exponent
of the random-cluster model is smaller than 2 [167, Page 11] yields (7.5.1). □
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