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We explore possibility to find out a new model of gravastars in the extended D-dimensional Einstein–
Maxwell space–time. The class of solutions as obtained by Mazur and Mottola of a neutral gravastar 
[1,2] have been observed as a competent alternative to D-dimensional versions of the Schwarzschild–
Tangherlini black hole. The outer region of the charged gravastar model therefore corresponds to a higher 
dimensional Reissner–Nordström black hole. In connection to this junction conditions, therefore we have 
formulated mass and the related Equation of State of the gravastar. It has been shown that the model 
satisfies all the requirements of the physical features. However, overall observational survey of the results 
also provide probable indication of non-applicability of higher dimensional approach for construction of 
a gravastar with or without charge from an ordinary 4-dimensional seed as far as physical ground is 
concerned.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

A decade or more ago Mazur and Mottola [1,2] have proposed 
a new solution for the endpoint of a gravitationally collapsing 
neutral system. By extending the concept of Bose–Einstein con-
densation to gravitational systems they constructed a cold compact 
object which consists of an (i) interior de Sitter condensate phase, 
and (ii) exterior Schwarzschild geometry. These are separated by 
a phase boundary with a small but finite thickness r2 − r1 = δ of 
the thin shell, where r1 and r2 represent the interior and exterior 
radii of the gravastar. Therefore, the equation of state (EOS) under 
consideration are as follows:

I. Interior: 0 ≤ r < r1, with EOS p = −ρ ,
II. Shell: r1 < r < r2, with EOS p = +ρ ,

III. Exterior: r2 < r, with EOS p = ρ = 0.

Here the presence of matter on the shell is required to achieve 
the stability of the systems under expansion by exerting an in-
ward force to balance the repulsion from within. These types of 
gravitationally vacuum stars were termed as gravastars. Thereafter 
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several scientists have been studied these models under different 
viewpoints and have opened up a new field of research as an al-
ternative to Black Holes [3–15].

Very recently, a charged (3 + 1)-dimensional gravastar admit-
ting conformal motion has proposed by some of our collabora-
tors [16] in the framework of Mazur and Mottola model [1,2]. In 
this work the authors provide an alternative to static black holes. 
However, energy density here is found to diverge in the interior 
region of the gravastar. This actually scales like an inverse second 
power of its radius and unfortunately makes the model singular at 
r = 0. However, interestingly in one of the solutions it is shown 
that the total gravitational mass vanishes for vanishing charge and 
turns the total gravitational mass into an electromagnetic mass 
under certain conditions. An extension on charged gravastar of Us-
mani et al. [16] can be found in the work of Bhar [17] admitting 
conformal motion with higher dimensional space–time.

In the present study we generalize the four-dimensional work 
on gravastar by Usmani et al. [16] to the higher dimensional 
space–time, however without admitting conformal motion. Our 
main motivation here is to construct gravastars in the Einstein–
Maxwell geometry and see the higher dimensional effects, if 
any. Therefore this investigation is also extension of the work of 
Bhar [17] without admitting conformal motion and that of Ra-
haman et al. [18] with charge where originally higher dimensional 
gravastar has been studied. A detailed discussion on higher dimen-
sion and its applications in various fields of astrophysics as well as 
cosmology has been provided in Ref. [18].
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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The plan of the present investigation is as follows: In Sec. 2 the 
Einstein–Maxwell space–time geometry has been provided as the 
background of the study whereas in Sec. 3 we discuss the Interior 
space–time, Exterior space–time and Thin shell cases of the gravas-
tars with their respective solutions. The related junction conditions 
are provided in Sec. 4. We explore physical features of the models, 
viz. proper length, energy condition, entropy, mass and equation 
of state in Sec. 5. At the end in Sec. 6 we provide some critically 
discussed concluding remarks.

2. The Einstein–Maxwell space–time geometry

For higher dimensional gravastar, we assume a D-dimensional 
space–time with the typical mathematical structure R1 X S1 X Sd

(d = D − 2), where S1 is the range of the radial coordinate r and 
R1 is the time axis. Let us therefore consider a static spherically 
symmetric metric in D = d + 2 dimension as

ds2 = −eνdt2 + eλdr2 + r2d�2
d, (1)

where d�2
d is a linear element on a d-dimensional unit sphere, 

parametrized by the angles φ1, φ2, ..., φd , as follows: d�2
d = dφ2

d +
sin2 φd[dφ2

d−1 +sin2 φd−1{dφ2
d−2 + ... +sin2 φ3(dφ2

2 +sin2 φ2dφ2
1)...}].

Now, the Hilbert action coupled to matter and electromagnetic 
field can be provided as

I =
∫

dD x
√−g

[
R D

16πG D
+ (Lm + Fik F ik)

]
, (2)

where Lm is the matter part of the Lagrangian and Fij is the elec-
tromagnetic field tensor which is related to the electromagnetic 
potentials through the relation Fij = Ai, j − A j,i .

In the above Eq. (2) the term R D is the curvature scalar in 
D-dimensional space–time whereas G D is the D-dimensional New-
tonian constant and Lm is the Lagrangian for matter–energy distri-
bution.

The Einstein–Maxwell field equations now can be written as

G D
ij = −8πG D [T m

ij + T em
ij ], (3)

where G D
ij is the Einstein tensor in D-dimensional space–time, T m

ij
and T em

ij are the matter–energy and electromagnetic tensors re-
spectively.

We assume that the interior of the star is filled up with perfect 
fluid and therefore the matter–energy tensors can be considered in 
the following form

T m
ij = (ρ + p)uiu j + pgij, (4)

where ρ is the energy density, p is the isotropic pressure and ui

(with uiui = 1) is the D-velocity of the fluid under consideration.
On the other hand, the electromagnetic tensors can be provided 

as

T em
ij = − 1

4πG D

[
F jk F k

i − 1

4
gij Fkl F kl

]
. (5)

The corresponding Maxwell electromagnetic field equations are

[(−g)1/2 F ij], j = 4π J i(−g)1/2, (6)

F [i j,k] = 0, (7)

where J i is the current four-vector satisfying J i = σ ui , the param-
eter σ being the charge density.

Hence the Einstein–Maxwell field equation (3), for the metric 
(1) along with the energy–momentum tensors, Eqs. (4)–(7), can be 
provided in the following explicit forms
−e−λ

[
d(d − 1)

2r2
− dλ′

2r

]
+ d(d − 1)

2r2
= 8πG D ρ + E2, (8)

e−λ

[
d(d − 1)

2r2
+ dν ′

2r

]
− d(d − 1)

2r2
= 8πG D p − E2, (9)

e−λ

2

[
ν ′′ − λ′ν ′

2
+ ν ′2

2
− (d − 1)(λ′ − ν ′)

r

+ (d − 1)(d − 2)

r2

]
− (d − 1)(d − 2)

2r2
= 8πG D p + E2, (10)

where E is the electric field. Here the symbol ‘′’ denotes differ-
entiation with respect to the radial parameter r and c = 1 (in 
geometrical unit).

Therefore, the energy conservation equation in the D-
dimensions is given by

1

2
(ρ + p) ν ′ + p′ = 1

4πG Drd
(rd E2)′, (11)

with the electric field E as follows

(rd E)′ = 2π
d+1

2


(d+1
2 )

rdσ(r)eλ/2. (12)

In traditional sense, the term σ eλ/2 appearing in the right hand 
side of Eq. (12), is known as the volume charge density. The as-
sumption σ eλ/2 = σ0rm , can consistently be understood as the 
higher dimensional volume charge density being polynomial func-
tion of r where the constant σ0 is the central charge density.

Now from the above Eq. (12) by assuming σ eλ/2 = σ0rm , we 
obtain the explicit form of the electric field as given by

E = q

rd
= 2π

d+1
2 σ0


(d+1
2 )

rm+1

(d + m + 1)
= Arm+1, (13)

where A = 2π
d+1

2 σ0


( d+1
2 )(d+m+1)

.

3. The gravastar models

3.1. Interior space–time

Following [1] we assume that the EOS for the interior region 
has the form

p = −ρ. (14)

The above EOS is known in the literature as a ‘false vacuum’, 
‘degenerate vacuum’, or ‘ρ-vacuum’ [19–22] which represents a re-
pulsive pressure, an agent responsible for the accelerating phase of 
the Universe, and is termed as the �-dark energy [23–27]. It is ar-
gued by [16] that a charged gravastar seems to be connected to 
the dark star [28–30].

The above EOS along with Eq. (11) readily provides

p = −ρ = k1r2(m+1) + k2. (15)

where k1 = A2(2m+d+2)
4πG D (2m+2)

and k2 is an integration constant. How-
ever, if we put r = 0 in Eq. (15), then it easily assigns the value 
of the integration constant k2 = pc = −ρc . In general there is no 
sufficient argument to take pressure and density to be zero at the 
junction surface. Actually, in the thin shell limit the pressure and 
density are step functions at the junction surface [31]. However, 
for the sake of brevity and convenience, if one considers boundary 
condition on the spherical surface that at r = R the pressure and 
density in Eq. (15) vanish, then it yields k2 = −k1 R2(m+1) = −ρc , 
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i.e. through k1 now k2 is also dependent on the charge density 
σ0. This simply provides an expression for the central density, 
ρc = k1 R2(m+1) and thus in the present case we are treating with 
a spherical stellar system with a constant central density or equiv-
alently pressure which is acting outwardly.

If one agrees with the above argument, then one can trust on 
the relation between k1 and k2, and also to the charge density 
σ0 as a consequent. This, therefore, makes someone to speculate 
about the “electromagnetic mass model (EMM)”. It is to be noted 
that the spherically symmetric system being static the magnetic 
counterpart will not act here at all and hence the matter stress 
tensor is not completely electromagnetic in origin rather the elec-
tric part is associated only. However, even in this case one can 
borrow the phrase “electromagnetic mass model (EMM)” because 
of the fact that Lorentz [32] himself termed it like that and we are 
in the present situation coining the phrase due to historical rea-
sons only.

Using Eq. (15) in the field equation (8), we get the expression 
of the metric potential λ given by

e−λ = 1 − 2A2

d(d + 2m + 3)
r2(m+2) + 16πG Dk1

d(d + 2m + 3)
r2(m+2)

+ 16πG Dk2

d(d + 1)
r2 + k3r1−d, (16)

where k3 is an integration constant. Since d > 2 for dimension 
higher than four and the solution is regular at r = 0, so one can 
demand for k3 = 0. Thus, Eq. (16) essentially reduces to

e−λ = 1 − 2A2

d(d + 2m + 3)
r2(m+2) + 16πG Dk1

d(d + 2m + 3)
r2(m+2)

+ 16πG Dk2

d(d + 1)
r2. (17)

Again, using Eqs. (8), (9) and (15) one may obtain the following 
unique relation

ln k = λ + ν, (18)

where k is an integration constant.
Thus we have the interior solutions for the metric potentials λ

and ν as follows

eν = ke−λ = k

[
1 − 2A2

d(d + 2m + 3)
r2(m+2)

+ 16πG Dk1

d(d + 2m + 3)
r2(m+2) + 16πG Dk2

d(d + 1)
r2

]
, (19)

The active gravitational mass M(r) in higher dimensions, can be 
now calculated as

M(R) =
r1=R∫
0

⎡
⎣ 2π

d+1
2



(

d+1
2

)
⎤
⎦ rd

[
ρ + E2

8π

]
dr

= 2π
d+1

2



(

d+1
2

)
[

A2

8π

R2m+d+3

2m + d + 3
− k1 R2m+d+3

3m + d + 3
− k2 Rd+1

d + 1

]
.

(20)

This is the usual gravitating mass for a d-dimensional sphere 
of radius R and energy density ρ . The space–time metric here 
turns out to be free from any central singularity. Another inter-
esting point one can easily observe that the density, pressure and 
mass (Eqs. (15) and (20)) do vanish and via the metric potentials 
(Eq. (19)) space–time becomes flat for vanishing charge density 
σ0. Therefore, the interior solutions provide electromagnetic mass 
(EMM) model [32–44,16,45]. This result suggests that the interior 
de Sitter vacuum of a charged gravastar is essentially an electro-
magnetic mass that must generate the gravitational mass [16]. 
A detailed discussion on this EMM model can be obtained in 
Ref. [18].

3.2. Exterior space–time

The exterior region defined by p = ρ = 0 in higher dimensions 
is nothing but a generalization of Reissner–Nordström solution. 
Therefore, following [46] the Reissner–Nordström metric can be 
obtained as

ds2 = −
(

1 − μ

rd−1
+ q2

r2(d−1)

)
dt2

+
(

1 − μ

rd−1
+ q2

r2(d−1)

)−1

dr2 + d�2
d . (21)

Here μ = 16πG D M/�d is the constant of integration with M , 
the mass of the black hole and �d , the area of a unit d-sphere as 
�d = 2π( d+1

2 )/
( d+1
2 ).

3.3. Intermediate thin shell

Here we assume that the thin shell contains ultra-relativistic 
fluid of soft quanta and obeys the EOS

p = ρ. (22)

This relation represents essentially a stiff fluid model as envi-
sioned by [47] in connection to cold baryonic universe and have 
been considered by several authors for various situations in cos-
mology [48,49] as well as in astrophysics [50–52].

It is difficult to obtain a general solution of the field equations 
in the non-vacuum region, i.e. within the shell. We try to find an 
analytic solution within the thin shell limit, 0 < (e−λ ≡ h) << 1. As 
an advantage of it, we may set h to be zero to the leading order. 
Under this approximation, the field equations (8)–(10), with the 
above EOS, may be recast in the following form

h′

2r
= (d − 1)

r2
− 2E2

d
, (23)

ν ′h′

4
+ (d − 1)h′

2r
= − (d − 1)

r2
+ 2E2. (24)

Integration of Eq. (20) immediately yields

h = 2(d − 1) ln r − 2A2r2(m+2)

d(m + 2)
+ c1, (25)

where c1 is an integration constant. The other metric potential can 
be found as

eν = c2

r2(2d−1)

(
r2m+4

d(d − 1) − 2A2r2m+4

) d−1
m+2

, (26)

where c2 is an integration constant.
Now in order to calculate the pressure as well as the mat-

ter density within the thin shell, using the Eq. (8) and the EOS 
Eq. (19), one may obtain

p = ρ = Bεr2m+1 + c3e−ν, (27)

where B = A2(2m+d+2)
4πG D

and c3 is an integration constant. From 
Eq. (27) it can be observed that the pressure and matter density 
is depends on the central charge density and the thickness of the 
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Fig. 1. Variation of the pressure and density of the ultra relativistic matter in the 
shell against r for different dimensions where the specific legends used are shown 
in the respective plots.

shell. The variation of the matter density over the shell is shown 
in Fig. 1 for different dimensions which shows that the matter 
density is increasing from the interior boundary to the exterior 
boundary.

4. Junction condition

As mentioned earlier, in the gravastar configuration there are 
three regions: interior, shell and exterior region. Interior and ex-
terior regions join at the junction interface of the shell. Though 
at the shell the metric coefficients are continuous but to see 
whether their derivatives are also continuous there we follow the 
Darmois–Israel condition [53,54] to calculate the surface stresses 
at the junction interface. Therefore following the Lancozs equa-
tions for the intrinsic surface stress energy tensor Sij , we can 
determine the surface energy density (
) and surface pressure 
pθ1 = pθ2 = ... = pθd−1 = pt as


 = − d

4π R

⎡
⎣

√
1 − μ

Rd−1
+ q2

R2(d−1)

−
√

1 + 16πG Dk1 R2(m+2)

d(d + 2m + 3)
− 2A2 R2(m+2)

d(d + 2m + 3)
+ 16πG Dk2 R2

d(d + 1)

⎤
⎦ ,

(28)

pt = 1

8π R

⎡
⎢⎣ 2(d − 1) − (d−1)μ

Rd−1√
1 − μ

Rd−1 + q2

R2(d−1)

− 2(d − 1) + 32πG D k1(d+m+1)R2(m+2)

d(d+2m+3)
− 4A2(d+m+1)R2(m+2)

d(d+2m+3)
+ 32πG D k2 R2

d+1√
1 + 16πG D k1 R2(m+2)

d(d+2m+3)
− 2A2 R2(m+2)

d(d+2m+3)
+ 16πG D k2 R2

d(d+1)

⎤
⎥⎦ .

(29)

5. Physical features of the models

5.1. Proper length

We consider that matter shell is situated at the surface r = R , 
describing the phase boundary of region I. The thickness of the 

Fig
leg

sh
jo

i.e

�

w

th

�

ε
di

5.

E

fir
(ε
de
(i)
. 2. Variation of the length against r for different dimensions where the specific 
ends used are shown in the respective plots.

ell (ε << 1) is assumed to be very small. Thus the region III 
ins at the surface r = R + ε .

Now, we calculate the proper thickness between two interfaces 
. of the shell as

=
R+ε∫
R

√
eλdr =

R+ε∫
R

dr√
[c1 + 2(d − 1) ln r − 2A2r2(m+2)

d(m+2)
]

=
R+ε∫
R

dr

f (r)
. (30)

here f (r) =
√

[c1 + 2(d − 1) ln r − 2A2r2(m+2)

d(m+2)
].

To solve the above equation, let us consider that df (r)
dr = 1

f (r) , so 
at we get

= [ f (R + ε) − f (R)] ≈ ε
df

dr

≈ ε√
[c1 + 2(d − 1) ln r − 2A2r2(m+2)

d(m+2)
]
. (31)

As the value of ε is very small so the higher order terms of 
can be neglected. The variation of proper length for different 

mensions with polynomial index is shown in Fig. 2.

2. Energy

The energy E within the shell can be calculated as

=
R+ε∫
R

⎡
⎣ 2π

d+1
2



(

d+1
2

)
⎤
⎦ rd

[
ρ + E2

8π

]
dr

≈
⎡
⎣ 2π

d+1
2



(

d+1
2

)
⎤
⎦[

ε A2

8π
R2(m+1)+d

]
. (32)

We have considered the energy E within the shell up to the 
st order in ε . The thickness ε of the shell being very small 
<< 1), we expand it binomially about R and consider first or-
r of ε only. It can be observed that the energy within the shell 
 is proportional to ε in first order of thickness, and (ii) depends 
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Fig. 3. Variation of energy with r for different dimensions where the specific legends 
used are shown in the respective plots.

on the dimension d of the space–time. Fig. 3 shows energy profile 
of charged gravastar in higher dimension.

5.3. Entropy

Following Mazur and Mottola prescription [1] the entropy can 
be given as

S =
R+ε∫
R

⎡
⎣ 2π

d+1
2



(

d+1
2

)
⎤
⎦ rds(r)

√
eλdr, (33)

where s(r) stands for the entropy density of the local temperature 
T (r), which is written as

s(r) = ξ2k2
B T (r)

4π h̄2
= ξ

(
kB

h̄

)√
p

2π
, (34)

where ξ is a dimensionless constant.
Now the entropy of the fluid within the shell can be given by

S ≈
⎡
⎣ 2π

d+1
2



(

d+1
2

)
⎤
⎦ ξkBεrd

h̄
√

2π

√√√√ Bεr2m+1 + c3e−ν

c1 + 2(d − 1)lnr − 2A2r2(m+2)

d(m+2)

. (35)

Following Ref. [16] it can be shown that (i) the thickness of the 
shell is negligibly small compared to its position from the center 
of the gravastar (i.e., if ε << R), and (ii) the entropy depends on 
the thickness of the shell.

5.4. Mass

Now, it is easy to find the surface mass ms of the thin shell 
from the equation

ms = 2π
d+1

2


(d+1
2 )

Rd


= 2π
d+1

2


(d+1
2 )

dRd−1

4π

[
X −

√
1 − μ

Rd−1
+ q2

R2(d−1)

]
, (36)

where X =
√

1 + 16πG Dk1 R2(m+2)

d(d+2m+3)
− 2A2 R2(m+2)

d(d+2m+3)
+ 16πG Dk2 R2

d(d+1)
.

Using Eq. (36) we can determine the total mass of the gravastar 
in terms of the mass of the thin shell as
μ = q2

Rd−1
−

[
16πG Dk1 R2m+d+3

d(d + 2m + 3)
− 2A2 R2m+d+3

d(d + 2m + 3)

+ 16πG Dk2 Rd+1

d(d + 1)
+ m2

s

F 2 Rd−1
− 2ms

F
X

]
,

(37)

where F = 2π
d+1

2


( d+1
2 )

[
d

4π

]
.

5.5. Equation of state

Let us assume pθ1 = pθ2 = pθ3 = ... = pt = −P , here P is the 
surface tension as acts on the fluid of the gravastar.

Then Eqs. (28) and (29) yield

P = ω(R)
. (38)

Thus the Equation of State parameter ω can be found as

ω(R) = −1

2d

⎡
⎢⎢⎢⎢⎢⎣

2(d−1)−(d−1)
μ

Rd−1√
1− μ

Rd−1 + q2

R2(d−1)

+ Y
X

√
1 − μ

Rd−1 + q2

R2(d−1) − X

⎤
⎥⎥⎥⎥⎥⎦ , (39)

where Y = 2(d − 1) + 32πG Dk1(d+m+1)R2(m+2)

d(d+2m+3)
− 4A2(d+m+1)R2(m+2)

d(d+2m+3)
+

32πG D k2 R2

d+1 .

6. Discussions and conclusions

In the present study we have explored some possibilities to find 
out a new model of gravastars in contrast to the Mazur–Mottola 
type model of four-dimensional and neutral gravastar [1,2], specif-
ically seeking its generalization to: (i) the extended D-dimensional 
space–time, and (ii) the Einstein–Maxwell geometry. Under these 
two considerations we have found out a class of solutions and 
hence some interesting results which can be observed as an al-
ternative to D-dimensional versions of the Reissner–Nordström–
Tangherlini black hole.

Some of the key physical features of the model are as follows:

(i) We have found out all the physical parameters e.g. metric po-
tentials, thickness of the thin shell, energy, entropy etc. and 
our result matches to the result of [16] for d = 2 and m = 0
i.e. for 4-dimensional space–time without any polynomial in-
dex. All the plots (Figs. 1–3) related to these parameters also 
suggest validity of physical requirements.

(ii) It is interesting to note that all the solutions are regular at 
the center r = 0 and positive inside the interior region of the 
gravastar. Specifically, if we put r = 0 in Eq. (15) then via the 
integration constant k2 = pc = −ρc we get a spherical system 
with a constant central density or pressure which being in-
compressible makes the gravastar free from singularity as well 
as stable.

(iii) We observe (from Eqs. (15) and (20)) that the density, pres-
sure and mass like all the physical parameters do vanish and 
also the space–time becomes flat for vanishing charge den-
sity σ0. Therefore, the interior solutions provides electromag-
netic mass (EMM) model [32–44,16,45]. This result suggests 
that unlike the work of Usmani et al. [16] and Rahaman et 
al. [45] the interior de Sitter vacuum of a charged gravastar 
is always an electromagnetic mass which must generate the 
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gravitational mass rather in the present case a constant cen-
tral pressure acts as repulsive force which prevents the system 
to undergo the fatal singularity.

As a final comment, we would like to put an important note 
here regarding overall observational results of the present inves-
tigation on gravastar with higher dimensional space–time. As a 
sample study a comparison between Figs. 1–3 shows that there 
are lots of quantitative change in the profiles of the physical pa-
rameters and as one goes on towards higher dimensions much 
appreciable results can be observed. All these observational sur-
veys are probable indication of applicability of higher dimensional 
approach for construction of a gravastar with or without charge 
from an ordinary 4-dimensional seed. In connection to this con-
cluding remark we note that in the work of Bhar et al. [55], where 
they have performed an investigation on the possibility of higher 
dimensional compact stars, the results are in favor of our present 
study.
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