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We explore possibility to find out a new model of gravastars in the extended D-dimensional Einstein—
Maxwell space-time. The class of solutions as obtained by Mazur and Mottola of a neutral gravastar
[1,2] have been observed as a competent alternative to D-dimensional versions of the Schwarzschild-
Tangherlini black hole. The outer region of the charged gravastar model therefore corresponds to a higher
dimensional Reissner-Nordstrom black hole. In connection to this junction conditions, therefore we have
formulated mass and the related Equation of State of the gravastar. It has been shown that the model
satisfies all the requirements of the physical features. However, overall observational survey of the results
also provide probable indication of non-applicability of higher dimensional approach for construction of
a gravastar with or without charge from an ordinary 4-dimensional seed as far as physical ground is
concerned.
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1. Introduction

A decade or more ago Mazur and Mottola [1,2] have proposed
a new solution for the endpoint of a gravitationally collapsing
neutral system. By extending the concept of Bose-Einstein con-
densation to gravitational systems they constructed a cold compact
object which consists of an (i) interior de Sitter condensate phase,
and (ii) exterior Schwarzschild geometry. These are separated by
a phase boundary with a small but finite thickness r, —ry = 4§ of
the thin shell, where r; and r, represent the interior and exterior
radii of the gravastar. Therefore, the equation of state (EOS) under
consideration are as follows:

I. Interior: 0 <r <r, with EOS p =—p,
II. Shell: r{ <r <y, with EOS p =+p,
IlIl. Exterior: r, <1, with EOS p=p =0.

Here the presence of matter on the shell is required to achieve
the stability of the systems under expansion by exerting an in-
ward force to balance the repulsion from within. These types of
gravitationally vacuum stars were termed as gravastars. Thereafter
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several scientists have been studied these models under different
viewpoints and have opened up a new field of research as an al-
ternative to Black Holes [3-15].

Very recently, a charged (3 + 1)-dimensional gravastar admit-
ting conformal motion has proposed by some of our collabora-
tors [16] in the framework of Mazur and Mottola model [1,2]. In
this work the authors provide an alternative to static black holes.
However, energy density here is found to diverge in the interior
region of the gravastar. This actually scales like an inverse second
power of its radius and unfortunately makes the model singular at
r = 0. However, interestingly in one of the solutions it is shown
that the total gravitational mass vanishes for vanishing charge and
turns the total gravitational mass into an electromagnetic mass
under certain conditions. An extension on charged gravastar of Us-
mani et al. [16] can be found in the work of Bhar [17] admitting
conformal motion with higher dimensional space-time.

In the present study we generalize the four-dimensional work
on gravastar by Usmani et al. [16] to the higher dimensional
space-time, however without admitting conformal motion. Our
main motivation here is to construct gravastars in the Einstein-
Maxwell geometry and see the higher dimensional effects, if
any. Therefore this investigation is also extension of the work of
Bhar [17] without admitting conformal motion and that of Ra-
haman et al. [18] with charge where originally higher dimensional
gravastar has been studied. A detailed discussion on higher dimen-
sion and its applications in various fields of astrophysics as well as
cosmology has been provided in Ref. [18].
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The plan of the present investigation is as follows: In Sec. 2 the
Einstein-Maxwell space-time geometry has been provided as the
background of the study whereas in Sec. 3 we discuss the Interior
space-time, Exterior space-time and Thin shell cases of the gravas-
tars with their respective solutions. The related junction conditions
are provided in Sec. 4. We explore physical features of the models,
viz. proper length, energy condition, entropy, mass and equation
of state in Sec. 5. At the end in Sec. 6 we provide some critically
discussed concluding remarks.

2. The Einstein-Maxwell space-time geometry

For higher dimensional gravastar, we assume a D-dimensional
space-time with the typical mathematical structure R'XS!'Xsd
(d =D —2), where S! is the range of the radial coordinate r and
R! is the time axis. Let us therefore consider a static spherically
symmetric metric in D =d + 2 dimension as

ds? = —e"dt® + e*dr? 4+ r*dQ3, (1)

where dQﬁ is a linear element on a d-dimensional unit sphere,
parametrized by the angles ¢1, ¢z, ..., ¢q, as follows: dQ3 = d¢3 +
sing ¢gldgp7 | +siny dg_1{dep] ,+...+sing ¢3(dp3 +siny ¢odp?).. ).

Now, the Hilbert action coupled to matter and electromagnetic
field can be provided as

D Rp
I‘/d X*/_g[wncn
where Ly, is the matter part of the Lagrangian and Fj; is the elec-
tromagnetic field tensor which is related to the electromagnetic
potentials through the relation Fj; = A; j — Aj ;.

In the above Eq. (2) the term Rp is the curvature scalar in
D-dimensional space-time whereas Gp is the D-dimensional New-
tonian constant and Ly, is the Lagrangian for matter-energy distri-
bution.

The Einstein—-Maxwell field equations now can be written as

+ (L + F,»kF”‘)} : ()

G =—8mGp[T}} + T, (3)

where Gil; is the Einstein tensor in D-dimensional space-time, Tg‘
and Tfjm are the matter-energy and electromagnetic tensors re-
spectively.

We assume that the interior of the star is filled up with perfect
fluid and therefore the matter-energy tensors can be considered in
the following form

Tii = (p + p)uiuj + pgij, (4)

where p is the energy density, p is the isotropic pressure and uf
(with uju' = 1) is the D-velocity of the fluid under consideration.
On the other hand, the electromagnetic tensors can be provided

as

T = L [F,-kF}‘ — lgiijlel] : (5)
47 Gp 4

The corresponding Maxwell electromagnetic field equations are

[(—g)'2F),; =4m J'(—g)'/2, (6)

Fiij g =0, (7)

where J! is the current four-vector satisfying J' = o u!, the param-
eter o being the charge density.

Hence the Einstein-Maxwell field equation (3), for the metric
(1) along with the energy-momentum tensors, Eqs. (4)-(7), can be
provided in the following explicit forms

o, [dd-=1) dx dd-—1)

e = =+ —— —87G E2 8

¢ [ 2r2 2r]+ 2r2 mGD p A E (8)
L, [dd-=1 dv dd-—1)

My -2 —8nGp p— E? 9
¢ [ 2r2 +2r] 2r2 7op p ’ )
e‘x|:,, AV v d=1)o) =)

- v ___l’___i

2 2 2 r

d—1)d—2 d—1)d—2

n ( )( )« )( ) _87Gpp+E.  (10)

r2 2r2

where E is the electric field. Here the symbol ‘7' denotes differ-
entiation with respect to the radial parameter r and ¢ =1 (in
geometrical unit).

Therefore, the energy conservation equation in the D-
dimensions is given by
rE?Y, (11)

1 / /
APV AP =
2 w+p) P 4w Gprd

with the electric field E as follows
d+1

(rUE) = 27;—:]rdo(r)e“2. (12)

NG

In traditional sense, the term oe*/2 appearing in the right hand

side of Eq. (12), is known as the volume charge density. The as-

sumption oe*/2 = gor™, can consistently be understood as the

higher dimensional volume charge density being polynomial func-
tion of r where the constant oy is the central charge density.

Now from the above Eq. (12) by assuming oe*/? = opr™, we

obtain the explicit form of the electric field as given by
dy1
2 2 g ™l
=9 _ 0 = Armt1 (13)
rd ) d+m+1)
d+1

where A= —2% > 9%

r(&h@d+m+1)”
3. The gravastar models
3.1. Interior space-time

Following [1] we assume that the EOS for the interior region
has the form

The above EOS is known in the literature as a ‘false vacuum’,
‘degenerate vacuum’, or ‘p-vacuum’ [19-22] which represents a re-
pulsive pressure, an agent responsible for the accelerating phase of
the Universe, and is termed as the A-dark energy [23-27]. It is ar-
gued by [16] that a charged gravastar seems to be connected to
the dark star [28-30].

The above EOS along with Eq. (11) readily provides

p=—p=kir?™D 4 k,. (15)
where ki = ‘/312(62[71(—;?1122)) and k; is an integration constant. How-
ever, if we put r =0 in Eq. (15), then it easily assigns the value
of the integration constant k; = p. = —p.. In general there is no
sufficient argument to take pressure and density to be zero at the
junction surface. Actually, in the thin shell limit the pressure and
density are step functions at the junction surface [31]. However,
for the sake of brevity and convenience, if one considers boundary
condition on the spherical surface that at r = R the pressure and
density in Eq. (15) vanish, then it yields k, = —k{R2M*D = —p,
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i.e. through ki now ky is also dependent on the charge density
0p. This simply provides an expression for the central density,
pc =kiR*™+D and thus in the present case we are treating with
a spherical stellar system with a constant central density or equiv-
alently pressure which is acting outwardly.

If one agrees with the above argument, then one can trust on
the relation between ki and k;, and also to the charge density
0p as a consequent. This, therefore, makes someone to speculate
about the “electromagnetic mass model (EMM)”. It is to be noted
that the spherically symmetric system being static the magnetic
counterpart will not act here at all and hence the matter stress
tensor is not completely electromagnetic in origin rather the elec-
tric part is associated only. However, even in this case one can
borrow the phrase “electromagnetic mass model (EMM)” because
of the fact that Lorentz [32] himself termed it like that and we are
in the present situation coining the phrase due to historical rea-
sons only.

Using Eq. (15) in the field equation (8), we get the expression
of the metric potential A given by

e —1— 24 2(m+2) 167Gkt a(m+2)
d(d+2m+3) d(d+2m+3)
167TGDI<2 2
—r +k , 16
dd+1) ar'” (16)

where k3 is an integration constant. Since d > 2 for dimension
higher than four and the solution is regular at r = 0, so one can
demand for k3 = 0. Thus, Eq. (16) essentially reduces to

s 2A2

et =1 ————
d(d+2m+3)
1GJTGDI(2 rz
dd+1)

Again, using Eqgs. (8), (9) and (15) one may obtain the following
unique relation

16 Gpkq

2(m+2)
d(d+2m+3)

2(m+2)

(17)

Ink=x+v, (18)

where k is an integration constant.
Thus we have the interior solutions for the metric potentials A
and v as follows

2
V—ke *=k|1— L 2
dd+2m+3)
M 2(m+2) Mrz s (19)
dd+2m+3) a@+D

The active gravitational mass M(r) in higher dimensions, can be
now calculated as

r1=R d+1
T2

EZ
M(R) = —__|d
® (i) Ao+ g |ar
2
B x5 [ A2 R2m+d+3 ki R2m+d+3 g, Rd+1
N % 8t 2m+d+3 3m+d+3 d+1 |
(20)

This is the usual gravitating mass for a d-dimensional sphere
of radius R and energy density p. The space-time metric here
turns out to be free from any central singularity. Another inter-
esting point one can easily observe that the density, pressure and
mass (Egs. (15) and (20)) do vanish and via the metric potentials
(Eq. (19)) space-time becomes flat for vanishing charge density

op. Therefore, the interior solutions provide electromagnetic mass
(EMM) model [32-44,16,45]. This result suggests that the interior
de Sitter vacuum of a charged gravastar is essentially an electro-
magnetic mass that must generate the gravitational mass [16].
A detailed discussion on this EMM model can be obtained in
Ref. [18].

3.2. Exterior space-time

The exterior region defined by p = p =0 in higher dimensions
is nothing but a generalization of Reissner-Nordstrom solution.
Therefore, following [46] the Reissner-Nordstrom metric can be
obtained as

2
2 n q 2
ds® = — (1 = + _r2(d71))dt

0 @\
2 2
Here u = 16w GpM/ 24 is the constant of integration with M,
the mass of the black hole and 4, the area of a unit d-sphere as

Qg =27(F) /T ().
3.3. Intermediate thin shell

Here we assume that the thin shell contains ultra-relativistic
fluid of soft quanta and obeys the EOS

p=p. (22)

This relation represents essentially a stiff fluid model as envi-
sioned by [47] in connection to cold baryonic universe and have
been considered by several authors for various situations in cos-
mology [48,49] as well as in astrophysics [50-52].

It is difficult to obtain a general solution of the field equations
in the non-vacuum region, i.e. within the shell. We try to find an
analytic solution within the thin shell limit, 0 < (e=* =h) << 1. As
an advantage of it, we may set h to be zero to the leading order.
Under this approximation, the field equations (8)-(10), with the
above EOS, may be recast in the following form

hW  (d—1) 2F?

= - 23
2r r d (23)
vh' (d - 1K da-1) 5
i =— 2E~°. 24
s T 2 T (24)
Integration of Eq. (20) immediately yields
2,2(m+2)
h=2d-1)Inr— —— + 1, 25
( ) 2 +c (25)
where c; is an integration constant. The other metric potential can
be found as
2m+4 d;lz
C r m
¢’ = o : (26)
r22d-1) d(d -1 - 2 A2r2m+4

where c; is an integration constant.

Now in order to calculate the pressure as well as the mat-
ter density within the thin shell, using the Eq. (8) and the EOS
Eq. (19), one may obtain
2m+1

p=p=Ber +c3e”, (27)

2
where B = A(i’;—a‘im and c3 is an integration constant. From
Eq. (27) it can be observed that the pressure and matter density
is depends on the central charge density and the thickness of the
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Fig. 1. Variation of the pressure and density of the ultra relativistic matter in the
shell against r for different dimensions where the specific legends used are shown
in the respective plots.

shell. The variation of the matter density over the shell is shown
in Fig. 1 for different dimensions which shows that the matter
density is increasing from the interior boundary to the exterior
boundary.

4. Junction condition

As mentioned earlier, in the gravastar configuration there are
three regions: interior, shell and exterior region. Interior and ex-
terior regions join at the junction interface of the shell. Though
at the shell the metric coefficients are continuous but to see
whether their derivatives are also continuous there we follow the
Darmois-Israel condition [53,54] to calculate the surface stresses
at the junction interface. Therefore following the Lancozs equa-
tions for the intrinsic surface stress energy tensor S;;, we can
determine the surface energy density (¥X) and surface pressure
Do, = Py, = ... = Pgy_ = Pt as

d w q?
X =R \/l T RET T R

1+167rGDk1R2(’”+2> 2A2R20m+2) 167w GpkyR2
d(d+2m+3) d(d+2m+3) did+1) ’
(28)
1| 2@—1)-4h
Dt =
8™ R 2
1— 5+ %
B el [ s
\/1 4 16wGpk R pA2R20MD) | 167 Gpk, R
d(d-+2m+3) d(d+2m+3) d(d+1)
(29)

5. Physical features of the models
5.1. Proper length

We consider that matter shell is situated at the surface r =R,
describing the phase boundary of region I. The thickness of the

0.0092*.\-
0.0090
0.0088 1
0.0086 1
0.0084 1

0.0082 1

1 1.0011.0021.0031.0041.0051.0061.0071.0081.009

r

[ d=3——d4—-— d=5 — d=6]

Fig. 2. Variation of the length against r for different dimensions where the specific
legends used are shown in the respective plots.

shell (¢ << 1) is assumed to be very small. Thus the region III
joins at the surface r=R + €.

Now, we calculate the proper thickness between two interfaces
i.e. of the shell as

R+e€ R+e d
g:/\/e_}‘dTZ/ d 2,2(m+2)
R R \/[C1+2(d—1)l“r_2/3!(rrn+2) ]
R+e J
;
_ / o (30)
r
g f
where f(r)=\/[C1 +2(d-"Dlnr - %]'

To solve the above equation, let us consider that df (r) fi S0
that we get

d
(=Rt~ fRI~eD
;
~ : (31)
Jier+2@ - 1)inr — 28700

As the value of € is very small so the higher order terms of
€ can be neglected. The variation of proper length for different
dimensions with polynomial index is shown in Fig. 2.

5.2. Energy

The energy E within the shell can be calculated as

R
Fl o2 d E?
E= / — | |:,0+—]dr
r (dj) 8w
R 2
d+1
2m 7 €A?
et s I:QRZ(’“-H)-M} ) (32)

()

We have considered the energy E within the shell up to the
first order in €. The thickness € of the shell being very small
(€ << 1), we expand it binomially about R and consider first or-
der of € only. It can be observed that the energy within the shell
(i) is proportional to € in first order of thickness, and (ii) depends
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on the dimension d of the space-time. Fig. 3 shows energy profile
of charged gravastar in higher dimension.

5.3. Entropy

Following Mazur and Mottola prescription [1] the entropy can
be given as

R+e€ 5 d+1
2
S=/ e rds(r)v erdr, (33)
[‘(dj)
R 2

where s(r) stands for the entropy density of the local temperature
T(r), which is written as

_EAET() (ks D
s(r) = Tanh: =§ <F> P (34)

where £ is a dimensionless constant.
Now the entropy of the fluid within the shell can be given by

s~ a5 | ekperd Ber2m+1 4 c3e—v (35)
~ d 2A22m+2)
F(#) hiv2m | c1 +2(d — Dinr — ci(rr;17+2)

Following Ref. [16] it can be shown that (i) the thickness of the
shell is negligibly small compared to its position from the center
of the gravastar (i.e., if € << R), and (ii) the entropy depends on
the thickness of the shell.

5.4. Mass

Now, it is easy to find the surface mass ms of the thin shell
from the equation

d+1
22 Ry
ms =
rh
e | 2
_ 22 dLX_ 1_L+q7 (36)
T rl) 4n Rd-1 " R2@-1 |’
167 Gpky R2(m+2) 2A2R2(m+2) 16w Gpko R2
Wherex:\/ T+ = gdme — — ddrams® T dd

Using Eq. (36) we can determine the total mass of the gravastar
in terms of the mass of the thin shell as

2A2R2m+d+3
d(d+2m+3)

qZ 167TGDI(1R2m+d+3
dd+2m+3)

167GpkeRT  m2 2m, x}

dd+1) F2R--1 F
(37)
o
T
where F = e [H]'
5.5. Equation of state
Let us assume py, = pp, = pPg; = ... = pr = —P, here P is the
surface tension as acts on the fluid of the gravastar.
Then Eqgs. (28) and (29) yield
P=w(R)X. (38)
Thus the Equation of State parameter w can be found as
2(01—1)—(01—1)’{‘%1 n Y
1 1- g8 "
- T Rd—1 T RE=D
o(R) = - — (39)

2d 2 ’
V11— 7 + e — X

_ 327 Gpkj (d+m+1)R2M+2) 4A2(d+m+1)R2(m+2)
where Y =2(d - 1) + d(d2m+3) T dd+2mi3)

327 GpkyR?
d+1 -

6. Discussions and conclusions

In the present study we have explored some possibilities to find
out a new model of gravastars in contrast to the Mazur-Mottola
type model of four-dimensional and neutral gravastar [1,2], specif-
ically seeking its generalization to: (i) the extended D-dimensional
space-time, and (ii) the Einstein-Maxwell geometry. Under these
two considerations we have found out a class of solutions and
hence some interesting results which can be observed as an al-
ternative to D-dimensional versions of the Reissner-Nordstrom-
Tangherlini black hole.

Some of the key physical features of the model are as follows:

(i) We have found out all the physical parameters e.g. metric po-
tentials, thickness of the thin shell, energy, entropy etc. and
our result matches to the result of [16] for d =2 and m=0
i.e. for 4-dimensional space-time without any polynomial in-
dex. All the plots (Figs. 1-3) related to these parameters also
suggest validity of physical requirements.

It is interesting to note that all the solutions are regular at
the center r =0 and positive inside the interior region of the
gravastar. Specifically, if we put r =0 in Eq. (15) then via the
integration constant k; = p. = —p. we get a spherical system
with a constant central density or pressure which being in-
compressible makes the gravastar free from singularity as well
as stable.

We observe (from Egs. (15) and (20)) that the density, pres-
sure and mass like all the physical parameters do vanish and
also the space-time becomes flat for vanishing charge den-
sity o0g. Therefore, the interior solutions provides electromag-
netic mass (EMM) model [32-44,16,45]. This result suggests
that unlike the work of Usmani et al. [16] and Rahaman et
al. [45] the interior de Sitter vacuum of a charged gravastar
is always an electromagnetic mass which must generate the

(ii

—

(iii

-
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gravitational mass rather in the present case a constant cen-
tral pressure acts as repulsive force which prevents the system
to undergo the fatal singularity.

As a final comment, we would like to put an important note
here regarding overall observational results of the present inves-
tigation on gravastar with higher dimensional space-time. As a
sample study a comparison between Figs. 1-3 shows that there
are lots of quantitative change in the profiles of the physical pa-
rameters and as one goes on towards higher dimensions much
appreciable results can be observed. All these observational sur-
veys are probable indication of applicability of higher dimensional
approach for construction of a gravastar with or without charge
from an ordinary 4-dimensional seed. In connection to this con-
cluding remark we note that in the work of Bhar et al. [55], where
they have performed an investigation on the possibility of higher
dimensional compact stars, the results are in favor of our present
study.
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