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Abstract

In this thesis two-loop massive corrections for two relevant processes at hadron colliders are
presented.

The first part illustrates the Next-to-next-to-leading order QCD massive corrections to
diphoton production at LHC. This process is an important test of the Standard Model and an
interesting framework to evaluate the size of massive corrections at NNLO. All the relevant
partonic subprocesses are taken into account. In particular, the two-loop amplitude in quark
annihilation channel involves elliptic Master Integrals, which have been evaluated through
differential equations. A semi-analytical approach to the solution, based on generalised
power series expansions, has been adopted. A phenomenological study of the impact of these
corrections on the invariant mass distribution is also presented.

The second part of the thesis is about the two-loop mixed QCD-Electroweak corrections
to qg → Hq and its crossed channels, q̄g → Hq̄ and qq̄ → Hg, considering the light-quark
contribution and the exact dependence on the electroweak boson mass. Also for this process
the relevant master integrals have been computed by means of the differential equation method,
finding a solution as generalised power series expansions. Compared to the analytical formulae
available in literature, our semi-analytical result allows to reduce the evaluation time of the
relevant scattering amplitudes of one order of magnitude.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is, so far, the most accurate model we have
to describe nature, namely its building blocks and how do they interact at high-energy scales,
or equivalently at short-distances. The discovery of the Higgs boson [1] in 2012 has been one of
the main success of the SM. Furthermore, the SM describes with a very high accuracy a number
of experimental results obtained at hadron and lepton colliders, with few exceptions, which,
however, are not statistically significant. Nevertheless, experimental facts and theoretical
arguments suggest that the SM is incomplete.

The requirement for fine tuning of some parameters in the strong CP and hierarchy problem
is an indication that there is something we have not yet understood. The Flavour puzzle is
an other longstanding unresolved problem: while the SM describes very well the generation
of fermion masses and quark-mixing, it does not explain the origin of the observed hierarchy
between the masses and between the mixing angles. We do not even know why there are
three generations of fermions. It is not clear which is the mechanism which generates neutrino
masses, which are different from zero, since neutrinos oscillate. Are strong and electroweak
interactions low-energy realizations of a unified more fundamental force? Which is the UV
completion of gravity? Then, there are experimental observations from the universe: Standard
Model does not explain the nature of dark matter and dark energy as well as the origin of the
asymmetry matter-antimatter. The list continues ... what it is certain is that hints of New
Physics beyond Standard Model already exist and a better model is needed. Such a model
should solve one or more of the problems aforementioned and, hopefully, predict unknown
features of New Physics.

One thing that we can do is to test up to which scales the Standard Model is valid. To
this aim, collider experiments are performing measurements with an unprecedented precision,
and in the next years a statistic ten times greater than the current one will be achieved.
To exploit such a level of precision, theoretical predictions must be carried out with the
same accuracy. Increasing both theoretical and experimental precision leads to enhance the
sensitivity to possible discrepancies with the Standard Model predictions, constraining models
of New Physics.

A theoretical prediction, namely a cross-section computation, consists of several parts,
each of them requiring a dedicated and an in-depth study. This thesis concerns mainly the
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calculation of scattering amplitudes, which capture the hard dynamics part. Amplitudes
are a bridge between theory and phenomenology since they embed information about the
microscopic world. In the Standard Model they can be computed only through perturbation
theory in the couplings and can be expressed as sums of Feynman diagrams. The theoretical
uncertainty comes though from the truncation of the perturbative series and can be reduced
considering more terms. Next-to-next-to leading order (NNLO) QCD corrections are now
the standard along with the Next-to leading order (NLO) electroweak corrections. For some
processes also the Next-to-next-to-next-to leading order (N3LO) QCD corrections and mixed
QCD-electroweak corrections are becoming relevant (see for instance [2] and ref.s therein). At
higher-orders in perturbation theory amplitudes have an increasing number of legs and loops,
and consequently the complexity of the calculation rapidly increases. Nowadays two-loop
2 → 3 processes as well as three-loop 2 → 2 processes are the challenge.

In scattering amplitude computations often happens that, despite highly complicated
intermediate steps, the final result is simpler than one could have expected. Sometimes
incredibly simple (an emblematic example is given by [3]). This has inspired the development
of a number of modern techniques, such as on-shell methods, which allow to compute amplitudes,
or part of them, without Lagrangian, assuming only unitarity and Lorentz invariance. So,
scattering amplitudes, besides being fundamental ingredients to improve the accuracy of the
theoretical predictions, turn out to represent a portal to study the role of physical principles
in observable quantities.

So far, in most of the cases higher-order corrections have been computed with massless
internal particles, which capture the most sizable part. However, to reach an accuracy of
∼ 1%, required by the experimental precision, also massive corrections have to be taken into
account. Massive particles in the loops are only recently being considered at NNLO accuracy.
Masses introduce more complex structures in the amplitudes, whose understanding is only just
beginning. In QCD, massive corrections are mainly originated from the top quark, sometimes
also corrections due to the masses of bottom and charm turn out to be appreciable (see
introduction to chapter 4 for details). When electroweak corrections are considered several
scales appear due to the presence of W and Z bosons. Moreover, for lepton collider processes,
lepton masses, and in particular the muon mass, can be relevant.

This thesis describes the computation of two-loop massive corrections for two relevant
processes at hadron colliders. In chapter 2 we review some modern techniques for the
computation of Feynman integrals. In chapter 3 we present the diphoton production at NNLO
with top quark mass dependence. In particular, in section 3.1 we describe the computation of
the two-loop form factors for diphoton production in the qq̄ channel, where Feynman diagrams
with a loop of top quark have been considered [4]. In section 3.2 we present a phenomenological
study for diphoton production at NNLO which fully takes into account the dependence on the
top quark mass in all the relevant channels [5]. In chapter 4 we present the two-loop mixed
QCD-Electroweak corrections to qg → Hq and its crossed channels, q̄g → Hq̄ and qq̄ → Hg,
considering the light-quark contribution and the exact dependence on the electroweak boson
mass.
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Chapter 2

Computational methods for
Feynman integrals

Nowadays, thanks to a variety of modern techniques, tree-level and one-loop calculations
can be carried out with a number of automated programs [6–9], that have strongly boosted
the field of precision phenomenology. Such tools allowed us to reach NLO accuracy for highly
non-trivial multi-particle processes. A similar level of automation has not yet been achieved
for NNLO calculations. Despite significant progress has been made recently in computing
multiloop scattering amplitudes, a tool that allows for the generation and evaluation of two-loop
amplitudes is still lacking. However, a number of techniques and programs have been developed
in the past few years to address different tasks in higher-loop computations. In this chapter,
we describe some of these methods, emphasizing the ones used for the processes studied in
this thesis.

In quantum field theory, when calculating perturbative scattering amplitudes, two distinct
challenges typically arise, both of which become increasingly complex as the number of loops
and legs increases. The first challenge is to express the loop integrand for the given scattering
process in an appropriate form, and the second is to efficiently evaluate the resulting integrals,
either through analytical or numerical methods.

For the first of the two problems, the standard approach consists in expressing the
scattering amplitude in terms of Feynman diagrams and performing for each diagram a series
of algebraic manipulations to separate the overall Lorentz structures (combinations of spinors
and polarization vectors) from the scalar Feynman integrals. Although initially this procedure
may seem straightforward, it can become highly difficult in practice for multiloop and multileg
scattering amplitudes. A more efficient widely used approach for decomposing any scattering
amplitude into scalar Feynman integrals is the projector method. By exploiting the symmetries
of the scattering amplitudes, starting from Poincaré and gauge invariance, one can express
any amplitude as a sum of Lorentz tensors, each multiplied by a scalar form factor. This
decomposition is non-perturbative and, fixed the process, valid for any loop order, since it relies
on symmetry arguments. From this decomposition, projector operators can be constructed,
which, when applied to the scattering amplitude expressed as sum of Feynman diagrams,
isolate the corresponding form factors.
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The second problem we have to address is the calculation of scalar Feynman integrals.
It has long been known that not all the scalar integrals contributing to a given process are
independent. Indeed, they satisfy a number of identities called integration-by-parts identities
(IBPs) [10, 11]. The solution of these identities, usually achieved through the Laporta’s
algorithm [12], lead to express every scalar integral in the amplitude as linear combination
of a finite basis of integrals, which are called Master Integrals (MIs). Different processes can
share a same subset of MIs. The reduction of a scattering amplitude to a linear combination
of MIs is a bottleneck for some state-of-the-art computations due to the huge size of the IBPs.

The last problem that has to be addressed is the computation of the MIs, either analytically
or numerically. Direct integration relies mostly on Feynman parametrization as well as
Mellin-Barnes representation. Another widely used method to compute master integrals is
based on differential equations [13–20], adopted also for the processes investigated in this
thesis. Exploiting both the integration techniques, it has been found that a large set of
MIs, contributing to phenomenologically relevant multiloop scattering amplitudes, admit an
analytical expression in terms of Multiple Polylogarithms (MPLs), also called Goncharov
Polylogarithms (GPLs) [21–24]. They are a class of special functions defined as iterated
integrals over rational kernels, and represent a generalization of the classical Polylogarithms
Lin. MPLs form a Hopf algebra, and a systematic way to generate all possible functional
identities among them is known. Codes to perform algebraic manipulations with MPLs are
available [25,26], as well as a public routine, Ginac [27], for their efficient numerical evaluation.

While a considerable number of multiloop amplitudes, that have been computed so far, are
expressed in terms of MPLs, an increasing number of cases, especially when massive particles
are considered, are known to show a more complicated mathematical structure. A first example
dates back to ’50s, at the beginning of QED, when the electron two-loop self-energy was
found to involve elliptic integrals. Not surprisingly, also several amplitudes involving massive
states, computed recently, show analytic structures characterised by the presence of elliptic
functions, some of them [28,29], included the two-loop heavy-quark contribution to diphoton
production [4], studied in the next chapter of this thesis. In addition, even more complex
geometries, beyond the elliptic case, have been found to appear in perturbative scattering
amplitudes [30].

In recent years, a big effort has been devoted to the understanding of the analytic structure
of Feynman integrals which do not admit an expression in terms of MPLs. However, in
most cases, the numerical evaluation of the functions associated to such solution can be
extremely challenging for phenomenological applications. Notably, there exist semi-analytical
and numerical methods which allows for an efficient evaluation of Feynman integrals even in the
cases where a knowledge of the class of special functions (and its properties) connected to the
solution is missing. The program pySecDec [31], for example, combines sector decomposition,
contour deformation and direct numerical Monte Carlo integration, to evaluate Feynman
integrals. A different, semi-analytical method consists instead in finding the solution as
generalized power series expansions around several points of the phase-space [32]. This
technique relies on the differential equation system, satisfied by a basis of MIs, and has been
implemented in a number of codes [33,34].
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We did not carry out a full-analytical study of the MIs contributing to the processes
described in chapters 3 and 4 since our main goal is studying the phenomenological impact of
the computed scattering amplitudes. Instead, we have done an extensive use of power series
expansions, which, unlike other numerical techniques, allow to reach a very high number of
significant digits.

This chapter is organised as follows: we describe the Integration-by-part identities in 2.1,
while in 2.2 we review the differential equation method along with a discussion of the canonical
basis, which particularly simplifies the differential equation system, and a description of the
generalized power expansion technique.

2.1 Integration by Parts identities

Feynman integrals are in general divergent in four dimensions, so they have to be regulated,
as usual we adopt dimensional regularization with D = 4 − 2ϵ the dimension of the space-time.
A generic scalar Feynman integral has the following form:

∫ L∏
j=1

dDkj

∏P
k=1 N bk

k∏E
i=1 Dai

i

, (2.1)

where L is the number of loops, kj are the loop momenta, E is the number of propagators and
P the number of irreducible scalar products. The exponents ai can assume any integer value,
while bi are non-negative. A generic denominator has the form Di = q2

i − m2
i + iε, where qi

is the momentum flowing in the associated leg and mi is the mass. The set of denominators
{Di} defines the topology of the integral. Let n − 1 be the number of independent external
momenta, then the sum of the number of denominators and the number of numerators is fixed
to P + E = L(L+1)

2 + (n − 1)L.
A certain topology contains an infinite number of integrals, obtained varying the exponents

ai and bi. However, every integral can be expressed, exploiting integration-by-parts identities,
as a linear combination of a finite basis of MIs. The IBPs are a realization of the invariance of
the loop integration measure under space-time translations. All of them can be derived from a
D−dimensional generalization of Gauss theorem:

∫ L∏
j=1

dDkj
∂

∂kµ
l

(
vµ

∏P
k=1 N bk

k∏E
i=1 Dai

i

)
= 0, (2.2)

where vµ is either an external or a loop momentum. It can be easily checked that IBPs
are relations between integrals of the same topology since derivatives do not introduce new
denominators. We refer to a subset of integrals which have the same denominators as a sector,
i.e. two integrals of a given topology belong to the same sector if and only if the positive
denominator exponents ai are the same for both integrals.

The solution to the IBPs consists of expressing every integral of a given topology as linear
combination of a finite basis of Master Integrals. An algorithm to find such solution, and so
determine the basis of MIs, is called Laporta’s algorithm [12]. The algorithm is based on a
bottom-up approach, starting from sectors with few denominators. Once the sector is given,
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the algorithm consider all the integrals with fixed values of Md =
∑

i(ai − 1) and Mp =
∑

i bi.
For each of these integrals the IBPs are generated, and all the integrals already known are
substituted into them. If an IBP identity is independent w.r.t. all the ones considered before,
it is used to reduce an integral. When all the IBPs have been analyzed, the algorithm increases
Md and Mp and generates new IBPs. Once Md and Mp have reached predefined limits, the
reduction of a new sector starts. The final result is the reduction of all the integrals, which
appear in the selected IBPs, in terms of a finite basis of MIs. The choice of the MIs is arbitrary,
The Laporta algorithm tends to prefer MIs with the lowest ai, and eventually numerators if
a sector has more than one master integral, although it is not the most convenient choice,
especially for setting up a differential equation system.

To better illustrate the concepts introduced, we will apply them to a simple example, the
massless one-loop box. The definition of the topology is:

I (a1, a2, a3, a4) =
∫

DDk
1

Da1
1 Da2

2 Da3
3 Da4

4
,

where the inverse propagators are defined as,

D1 = k2, D2 = (k − p1)2 ,

D3 = (k + p2)2 , D4 = (k − p1 + p3)2 ,

where we have dropped the +iε for the sake of simplicity. The external massless particles are
on-shell, p2

i = 0 and (p1 + p2 − p3)2 = 0, while there are two independent kinematics variables,
(p1 + p2)2 = s and (p1 − p3)2 = t. The exponents of the denominators ai can be any integer
numbers.
Applying (2.2) with the integrand of (2.1) and vµ = {kµ, (k − p1)µ , (k + p2)µ , (k − p1 + p3)µ},
the following IBPs are obtained:

a4I (a1 − 1, a2, a3, a4 + 1) + a3I (a1 − 1, a2, a3 + 1, a4) + a2I (a1 − 1, a2 + 1, a3, a4)
+ (2a1 + a2 + a3 + a4 − D) I (a1, a2, a3, a4) − a4tI (a1, a2, a3, a4 + 1) = 0, (2.3)

a4I (a1, a2 − 1, a3, a4 + 1) + a3I (a1, a2 − 1, a3 + 1, a4) + a1I (a1 + 1, a2 − 1, a3, a4)
+ (a1 + 2a2 + a3 + a4 − D) I (a1, a2, a3, a4) − a3sI (a1, a2, a3 + 1, a4) = 0, (2.4)

a4I (a1, a2, a3 − 1, a4 + 1) + a2I (a1, a2 + 1, a3 − 1, a4) + a1I (a1 + 1, a2, a3 − 1, a4)
+ (a1 + a2 + 2a3 + a4 − D) I (a1, a2, a3, a4) − a2sI (a1, a2 + 1, a3, a4) = 0, (2.5)

a3I (a1, a2, a3 + 1, a4 − 1) + a2I (a1, a2 + 1, a3, a4 − 1) + a1I (a1 + 1, a2, a3, a4 − 1)
+ (a1 + a2 + a3 + 2a4 − D) I (a1, a2, a3, a4) − a1tI (a1 + 1, a2, a3, a4) = 0. (2.6)

Let us consider the sector I(0, 1, 1, 0), then equations (2.4) and (2.5), with a1 = a4 = 0
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and a2 = a3 = 1, read

(3 − D)I(0, 1, 1, 0) − s I(0, 1, 2, 0) = 0, (2.7)
(3 − D)I(0, 1, 1, 0) − s I(0, 2, 1, 0) = 0, (2.8)

which allow to reduce I(0, 1, 2, 0) and I(0, 2, 1, 0) to I(0, 1, 1, 0), which can be chosen as a
master integral. Indeed one can show that all the integrals of this sector can be reduced to the
bubble in the s−channel I(0, 1, 1, 0). Similarly, the t−channel bubble I(1, 0, 0, 1) can be chosen
as a master integral for the corresponding sector. Other bubble sectors with one on-shell leg
are zero for dimensional regularization, as well as tadpoles. Let us consider now a triangle
sector, for example I(1, 1, 1, 0), then equation (2.3), with a1 = a2 = a3 = 1 and a4 = 0, reads

I(0, 1, 2, 0) + I(0, 2, 1, 0) + (4 − D)I(1, 1, 1, 0) = 0, (2.9)

which, together with (2.7) and (2.8), allows to reduce the triangle to the bubble:

I(1, 1, 1, 0) = −2(3 − D)
s(4 − D)I(0, 1, 1, 0). (2.10)

It is not difficult to show that there are no master integrals in the triangle sectors, since they
can all be reduced to one of the two bubble MIs. Finally, the box sector can be shown to have
one master integral which can be chosen as I(1, 1, 1, 1). So, in this case we have three master
integrals that, as usual, we organise in a vector,

I(0, 1, 1, 0)
I(1, 0, 0, 1)
I(1, 1, 1, 1)

 . (2.11)

For state-of-the-art computations the scalar part of an amplitude can contain tens of
thousands Feynman integrals, which are reduced to a basis of hundreds of master integrals.
In these cases the analytical solution to IBPs is recovered starting from multiple numerical
solutions, which are obtained by means of finite fields reconstruction technique. IBP solution
methods have been implemented recently in a number of public codes [35–44]. Recently a
package for the generation, inspired by algebraic geometry, of very compact sets of IBPs has
been developed [45]. Reducing an amplitude to a linear combination of master integrals, with
rational coefficients expressed in a suitable form for an efficient numerical evaluation, is one of
the main bottlenecks for higher-order predictions for collider observables.

2.1.1 Lorentz identities

Lorentz invariance generates a set of identities between Feynman integrals, called Lorentz
identities (LIs), which can be shown to be linear dependent to IBPs. However, LIs can be
useful in practice to find the solution and often are added into IBP linear systems.
Let us consider an infinitesimal Lorentz transformation on the external momenta,

pµ
i → pµ

i + δpµ
i = pµ

i + ωµνpiν , (2.12)
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where ωµν is an antisymmetric tensor. A scalar Feynman integral I (pi) is Lorentz invariant,
which means

I (pi) = I (pi + δpi) . (2.13)

Expanding the right-hand side of (2.13),

I (pi + δpi) ≃ I (pi) +
∑

j

∂

∂pµ
j

I (pi) δpµ
j , (2.14)

and making the antisymmetry of ωµν explicit, we obtain the following identity,

ωµν
∑

j

(
∂

∂pµ
j

I (pi) pjν − ∂

∂pν
j

I (pi) pjµ

)
= 0. (2.15)

We can generate LIs from the last expression by replacing the Lorentz transformation parameters
ωµν with antisymmetric combinations of the external momenta.
Once the integral is given, equation (2.15) can generate up to 6 identities. However, the
number of independent external momenta constraints the number of antisymmetric tensors.
For example, no LIs exist for the bubble, which has only one independent external momentum,
while for the triangle the only choice is ωµν = pµ

1 pν
2 − pν

1pµ
2 , and so on.

There also many symmetry relations among different sectors which simplify considerable
the IBP equation system.

2.2 Differential equations

The last problem that has to be addressed is the calculation of the master integrals. To
this aim the differential equation method has turned out to be very effective. Given a basis
of MIs, it is possible, using IBPs, to set up a system of linear differential equations. Thus
the problem of integrating over loop momenta is moved to the integration of a differential
equation. In this section we will describe this method.

Scalar Feynman integrals are functions of the independent kinematic invariants and the
masses of external and internal particles. If n is the number of the external particles, there are
3n − 10 independent kinematic invariants, which can be parametrized by momentum twistor
variables or, in the case of four particles, by the Mandelstam invariants s and t. To derive an
integral w.r.t. the independent kinematic variables some algebraic manipulations are needed
since denominators and numerators are expressed in terms of momenta.

Let us consider n external outgoing particles with momenta pi, i = 1, ..., n, which satisfy
momentum conservation

∑
i pi = 0 and on-shell conditions p2

i = 0 (generalization to p2
i = m2

i

is straightforward). We define the differential operator

Ojk = pµ
j

∂

∂pµ
k

, (2.16)
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which, introducing the Mandelstam invariants (pi + pj)2 = sij , can be expressed as

Ojk = sji
∂

∂sik
, (2.17)

where the sum over dummy indices is implied. We will refer to the set of the independent
kinematic variables as {xi}. The Mandelstam sij can be expressed as combinations of the xi,
then the derivative with respect to xi can be obtained using the chain rule,

∂

∂xi
=
∑
j<k

∂sjk

∂xi

∂

∂sjk
. (2.18)

By inverting equation (2.17), we can finally express the derivative (2.18) w.r.t. xi in terms of
momentum derivatives,

∂

∂xi
=
∑
j<k

∂sjk

∂xi

(
G−1

)
jl

Olk, (2.19)

where Gij = sij . In general G−1 is singular since sij are not all independent, however the
combination in (2.19) is finite.

Since the differential operators (2.19) do not introduce new denominators, the derivatives
of a basis of master integrals can be reduced, using IBPs, to linear combinations of the same
starting MIs. Let f⃗(x⃗, ϵ) be the vector of the elements of a basis of MIs, then it satisfies the
following linear systems of differential equations,

∂xi f⃗(x⃗, ϵ) = Ai(x⃗, ϵ)f⃗(x⃗, ϵ), (2.20)

where the matrices Ai(x⃗, ϵ) are rational functions of ϵ and the xi. Setting up the systems
(2.20) requires the reduction of top-sector integrals with one of the denominators raised to the
power of two, which normally do not appear in the amplitude. However, reducing derivatives
demands the solution of a smaller set of IBPs than the one which is needed for amplitude
reduction.
From Schwarz Lemma for partial derivatives, we deduce the integrability conditions for the
matrices Ai,

∂xiAj − ∂xj Ai − [Ai, Aj ] = 0. (2.21)

By performing a change of basis g⃗(x⃗, ϵ) = T (x⃗, ϵ)f⃗(x⃗, ϵ) (the choice of the MIs is arbitrary),
the matrices Ai change according to the following,

Ai → Ãi = TAiT
−1 + (∂xiT ) T −1, (2.22)

while differential equations become

∂xi g⃗(x⃗, ϵ) = Ãi(x⃗, ϵ)g⃗(x⃗, ϵ). (2.23)

Defining dA =
∑

i Aidxi, we can write (2.20) in a more compact form,

df⃗ = dAf⃗ , (2.24)
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where df⃗ =
∑

i ∂xi f⃗dxi is the usual notation for the differential of a multivariate function.
We will explicitly derive the differential equation system for the MIs of the one-loop massless

box. We have two independent kinematic invariants s and t, however we can derive and solve
differential equations with respect to the ratio x = t

s and reconstruct the dependence on s

through dimensional analysis. This can be achieved in practise by making the substitutions
s → 1 and t → x. The derivative with respect to x can be written as a linear combination of
derivatives with respect to the Mandelstam invariants,

d

dx
= ∂

∂s13
− ∂

∂s23
, (2.25)

where we used the notation s12 = (p1 +p2)2, s13 = (p1 −p3)2, s23 = (p2 −p3)2 and the fact that,
after the substitutions, s12 = 1, s13 = x, s23 = −1 − x. Applying (2.17) with j = k = 1, 2, 3,
we obtain the rules,

p3 · ∂

∂p3
= x

∂

∂s13
− (1 + x) ∂

∂s23
, (2.26)

p2 · ∂

∂p2
= ∂

∂s12
− (1 + x) ∂

∂s23
, (2.27)

p1 · ∂

∂p1
= ∂

∂s12
+ x

∂

∂s13
, (2.28)

which allow us to reduce the differential operator with respect to x in terms of momentum
derivatives,

d

dx
= 1

2

[(1
x

+ 1
1 + x

)
p3 · ∂

∂p3
+
(1

x
− 1

1 + x

)(
p1 · ∂

∂p1
− p2 · ∂

∂p2

)]
. (2.29)

Using the IBPs (2.3–2.6) with the substitutions s → 1 and t → x, it is possible to express
the derivatives of the MIs in closed form:

d

dx
g⃗(x, ϵ) = A(x, ϵ)g⃗(x, ϵ) A(x, ϵ) =


0 0 0
0 − ϵ

x 0
2(2ϵ−1)
x(1+x)

2(1−2ϵ)
x2(1+x) − 1+x+ϵ

x(1+x)

 , (2.30)

where g⃗(x, ϵ) is the vector of MIs (2.11).

2.2.1 Canonical basis

Differential equations (2.20) can simplify considerably when a good choice of basis is made.
To this aim, in [46] the concept of canonical basis was introduced. A set of master integrals fi

is in canonical form if: i) the integration of the corresponding system of differential equations
is given directly by iterated integrals in the ϵ expansion; ii) fi have uniform transcendentality
according to the definition given in [46]. More concretely, a basis of master integrals fi is a
canonical basis if it satisfies the following two conditions:

• the ϵ dependence of the differential equation matrix factorizes as,

df⃗(x, ϵ) = ϵdÃ(x)f⃗(x, ϵ); (2.31)
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• the matrix dÃ(x) is a dlog form:

dÃij(x) =
∑

k

ckijd log (lk(x)) ckij ∈ Q, (2.32)

where ckij are rational numbers and lk(x) are the letters of the solution and are algebraic
functions of the kinematics variables.

As far as the initial conditions are known, the solution to (2.31) is immediately reached in
terms of Chen’s iterated integrals [47],

f⃗(x, ϵ) = P
[
exp

(
ϵ

∫
γ

dÃ(x)
)]

f⃗ (x0, ϵ) , (2.33)

where γ is a path in the space of the kinematics variables which connects the initial point x0

with the end point x. The canonical master integrals fi are normalized so that they have a
Taylor expansion in the regulator parameter,

f⃗(x⃗, ϵ) =
∞∑

k=0
ϵkf⃗ (k)(x⃗). (2.34)

The first condition (2.31) is essential for a simple perturbative solution in ϵ. The equa-
tion (2.32) is a sufficient, not necessary, condition for the integral basis fi to be uniform
transcendental. All the integrals that can be expressed in terms of GPLs admit a dlog form,
however the contrary is not true, in [48] an example of a double integral of dlog forms which
is not polylogarithmic is shown. In the elliptic case, while a procedure to cast the system in
ϵ−factorised form has been provided by [49], it is not clear in a complete general case what
should be a uniform transcendental form equivalent to Eq. (2.32).

A number of techniques have been developed to find the canonical basis for a basis of
master integrals [50]. For the processes studied in this thesis we used a semi-algorithmic
top-bottom approach proposed in [51] and structured in the following steps:

• The first step consists of searching for the precanonical basis, which proceeds by trial
and constitutes the non-algorithmic part of the method.
Let us consider master integrals of a given sector. Since we adopt a top-bottom approach,
we assume that the canonical MIs fa(x, ϵ) for the subsectors have already been found.
Differential equations read,

dTi = dHijTj + dSiafa (2.35)

where we reserve the indices i, j, k, ... for the sector considered, while the indices a, b, c, ...

are used for the subsectors. Ti are precanonical if the matrix of the corresponding
homogeneous system depends linearly on ϵ and decouple as soon as ϵ = 0,

dH = dH0(x) + ϵdH1(x), (2.36)

where dH0 is triangular up to a reordering of the Ti.

• The second step is about finding the canonical form of the homogeneous part of (2.35).
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The following change of basis is considered,

gi = h0ij(x)Tj , (2.37)

where h0(x) is an invertible solution of the equation,

dh0 + h0dH0 = 0. (2.38)

Differential equations in the new basis {gi} are:

dgi = dS̃iafa + ϵdH̃1ijgj , (2.39)

where dS̃ia = h0ikdSka and dH̃1 = h0dH1h−1
0 .

• The third and final step consists of rotating to the canonical form the inhomogeneous
terms. In most cases1, it happens that dS̃ has only simple poles in ϵ,

dS̃ = dS̃0 +
∑

α

dS̃α

(ϵ − rα) , (2.40)

where rα are rational numbers. The canonical basis is constructed through the following
Ansatz,

fi = gi +
(

Ω0 +
∑

α

Ωα

(ϵ − rα)

)
ib

fb, (2.41)

where Ω0 and Ωα have to be determined. Writing differential equations for fi and
imposing that only the term proportional to ϵ survives, one obtains the conditions which
fix the Ωs,

dS̃ − rαdH̃1Ωα + dΩα + rαΩαdG = 0, (2.42)
dS̃0 − dH̃1

∑
α

Ωα + dΩ0 +
∑

α

ΩαdG = 0, (2.43)

where we used dfa = ϵdGabfb. Finally, the canonical differential system reads

dfi = ϵdH̃1ijfj + ϵ
(
Ω0dG − dH̃1Ω0

)
ia

fa. (2.44)

As prove of concept we describe the canonical basis of the one-loop massless box topology,
starting from the system of differential equations (2.30). We choose the following basis for the
three master integrals:

f1 = ϵ(1 − 2ϵ)g1 (2.45)
f2 = ϵ(1 − 2ϵ)g2 (2.46)
f3 = ϵ2xg3, (2.47)

where gi are given in (2.11). The normalization was chosen such that all fi admit a Taylor
1We stress that we are not describing a complete general algorithm but rather an empiric method which

works for several phenomenologically relevant cases.
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expansion in ϵ. This basis satisfies the system of differential equations,

df⃗(x, ϵ) = ϵdÃ(x)f⃗(x, ϵ), (2.48)

with

dÃ(x) =


0 0 0
0 −1 0
0 2 −1

 d log(x) +


0 0 0
0 0 0

−2 −2 1

 d log(1 + x). (2.49)

The result at any order in ϵ can be written as a linear combination of harmonic polylogarithms
[52] of argument x, with indices in the set {0, −1}. In particular, the symbol alphabet in this
case is {x, 1 + x}. The last information we need to completely determine the solution are the
boundary conditions. The bubble integrals f1 and f2 are known in closed form:

f1 = Γ2(1 − ϵ)
Γ(1 − 2ϵ)(−s)−ϵ (2.50)

f2 = Γ2(1 − ϵ)
Γ(1 − 2ϵ)(−s)−ϵx−ϵ, (2.51)

where we reconstructed the dependence on s by dimensional analysis and used the integration
measure:

DDk = dDk

iπ
D
2 Γ(1 + ϵ)

. (2.52)

Furthermore, the requirement that the planar integrals be finite at x = −1 (which corresponds
to u = 0) turns out to fix the boundary for f3:

f3(−1) = 2 Γ2(1 − ϵ)
Γ(1 − 2ϵ)(−s)−ϵ−2(1 + e−iπϵ). (2.53)

This completely solves this family of Feynman integrals, to all orders in ϵ. For example f3 up
to ϵ4 reads

f3 = 2 Γ2(1 − ϵ)
Γ(1 − 2ϵ)(−s)−ϵ−2

{
2 − ϵG(0, x) − π2

2 ϵ2+

ϵ3
[
−1

2π2G(−1, x) + 1
2π2G(0, x) − G(−1, 0, 0, x) + G(0, 0, 0, x) − ζ(3)

]
+

ϵ4
[
−ζ(3)G(−1, x) + ζ(3)G(0, x) − 1

2π2G(−1, −1, x) + 1
2π2G(−1, 0, x)+

1
2π2G(0, −1, x) − 1

2π2G(0, 0, x) − G(−1, −1, 0, 0, x) + 2G(−1, 0, 0, 0, x)+

G(0, −1, 0, 0, x) − 2G(0, 0, 0, 0, x) − π4

30

]}
, (2.54)

where G are multiple polylogarithms [21–24], defined as,

G(a1, a2, ..., an; z) =
∫ z

0

dt

t − a1
G(a2, ..., an; t) G(; z) = 1 (2.55)
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G(0, ..., 0︸ ︷︷ ︸
n

; z) = 1
n! logn z, (2.56)

where ai are complex numbers and are called weights. Multiple polylogarithms with weights
only in the set {0, 1, −1} are called harmonic polylogarithms (HPL or H), as the ones in Eq.
(2.54). We see that all the basis elements fi have uniform degree of transcendentality, to all
orders in ϵ.

2.2.2 Generalized power series expansions

While massless corrections can be usually expressed in terms of GPLs, higher-order massive
corrections have in general a more complicated mathematical structure. This is for instance the
case of the two MIs of the equal-mass two-loop sunrise. The related system of first-order linear
differential equations cannot be decoupled and it admits solutions in terms of complete elliptic
integrals of the first and second kind. Despite a lot of progress being made in understanding
classes of special functions beyond GPLs, such as iterated integrals over elliptic kernels, we
still do not have a sufficient analytic control required for their efficient numerical evaluation,
with the exception of a small number of cases.

In this contest, the generalized power series expansion method allows to efficiently evaluate
Feynman integrals without knowing the analytical solution. The method consists in finding
series solutions for Feynman integrals starting from their systems of differential equations. The
advantage is that series representation is already suitable for an efficient numerical evaluation
inside the radius of convergence.

In order to clearly describe the method we apply it to find series solutions to the two MIs
of the equal-mass two-loop sunrise. The system of first-order linear differential equations that
involves the two coupled MIs F1 and F2 at O(ϵ0) is

dF1
dx

= 1
x

F1 − 3
x

F2 − 9
x

(2.57)

dF2
dx

= 2(x + 3)
(x + 9)(x + 1)xF1 − 10x + 18

(x + 9)(x + 1)xF2 − x2 + 31x + 108
2(x + 9)(x + 1)x, (2.58)

where x = − p2

m2 with p the momentum injected in the diagram and m the internal mass. This
system corresponds to a single second-order linear differential equation for one of the two MIs
involved. In the case of F1 we find

d2F1
dx2 + p(x)dF1

dx
+ q(x)F1 = Ω(x), (2.59)

with

p(x) = 10x + 18
x(x + 9)(x + 1) (2.60)

q(x) = − 4
x(x + 9)(x + 1) (2.61)

Ω(x) = − 2x2 + 13x + 141
4x(x + 1)(x + 9) . (2.62)
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The method consists in finding multiple series solutions to (2.59) around a set of points which
allow us to cover the phase-space region we want to have access. The starting observation
is that Feynman integrals satisfy Fuchsian differential equations. Given a general linear
differential equation of the p−th order of the form of (2.59),

dpF
dxp

+
p∑

l=1
ql(x)dp−lF

dxp−l
= 0, (2.63)

and being x0 a singular point for a subset of the coefficients ql(x), (2.63) is Fuchsian if and
only if (x − x0)lql(x) is analytical in x0 with l = 1, ..., p. This condition ensures that every
singular point for the differential equation is either a regular point or a regular singular point
for the solution. Consequently the solution to (2.63) can be expressed, in the vicinity of x0, as
a generalized power series with terms of the form,

(x − x0)w+m logn(x − x0), (2.64)

where m and n are positive integer numbers, and w is in general a rational number either
positive or negative. Not all the linear differential equations are Fuchsian, indeed if we consider
the following,

df

dx
+ f = 0, (2.65)

it cannot be associated to any Feynman integral since the singular point x = ∞ does not satisfy
the Fuchsian condition. To confirm this, we observe that the solution e−x has en essential
singular point at x = ∞ and does not admit an expansion with terms of the form of (2.64).

Going back to the sunrise example, we start to find the solution around x = 0. We first
consider the corresponding homogeneous equation of (2.59). Since x = 0 is a singular regular
point, we make an Ansatz for the solution of the form:

F (0)
1 = xα

∞∑
n=0

anxn, (2.66)

where an are numerical coefficients determined from the differential equation and from the
boundary conditions. Substituting the solution (2.66) in the homogeneous version of (2.59) and
picking the first term of the expansion, we obtain the indicial equation for the determination
of α:

α(α + 1) = 0, (2.67)

with two solutions α = 0 and α = −1. Since the MIs must be regular at x = 0, we keep
only the solution with α = 0. Therefore, the general solution of the homogeneous differential
equation is

F (0)
1 =

∞∑
n=0

anxn, (2.68)

which converges in a circle of radius r = 9, i.e. up to the nearest singular point. Considering
the following terms in the expansion of the homogeneous differential equation, we can fix all
the coefficients of the series in terms of the first one, a0.
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We now look for a particular solution of Eq. (2.59) in x = 0 of the form:

F̃1 =
∞∑

n=0
pnxn. (2.69)

Substituting eq. (2.69) in the second-order differential equation expanded around x = 0 we
obtain, as in the case of the general solution of the homogeneous equation, terms pn that
depend on p0. However, in this case we can choose to set p0 = 0. The general solution of the
complete equation is therefore:

F1 =
∞∑

n=0
cnxn, (2.70)

where cn = an + pn. The first few coefficients are:

c0 = a0 (2.71)

c1 = 2
9a0 − 47

24 (2.72)

c2 = 17
108 − 2

81a0 (2.73)

c3 = 2
243a0 − 37

648 . (2.74)

Matching with boundary conditions, the coefficient a0 is found to be:

a0 = 21
2 − 3

√
3
(Li2(l+) − Li2(l−)

2i

)
, l± = −1 ± i

√
3

2 . (2.75)

In order to cover the whole physical region we have to expand around singular branch
points2. In the sunrise example the branch point is x = −9, which corresponds to the three
particle production threshold. From unitarity we expect the solution to develop a branch cut
for x < −9. The Ansatz for the solution around x = −9 is:

F (0)
1 = (x + 9)α

∞∑
n=0

an(x + 9)n, (2.76)

which, substituted in the homogeneous second-order differential equation, leads to the indicial
equation,

α(α − 2) = 0. (2.77)

For the sake of simplicity the numerical coefficients have the same symbols of the ones in the
series solution around x = 0, even though they are different. The solutions of (2.77) constraint
the general homogeneous solution, which reads3:

F (0)
1 =

∞∑
n=0

an(x + 9)n + log(x + 9)
∞∑

n=2
bn(x + 9)n. (2.78)

2An alternative would be expanding around complex values of the kinematics variables as implemented in
the program SeaSyde [34].

3See [32] for a detailed discussion on how to build the homogeneous solution starting from roots of the
indicial polynomial.
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We can fix all the coefficients of the series in terms of the two coefficients a0 and a2. We look
for the particular solution of Eq. (2.59) around x = −9 of the same form of the homogeneous
one, with the difference that we can now set to zero the two free constants. The general
solution of (2.59) is therefore:

F1 =
∞∑

n=0
cn(x + 9)n + log(x + 9)

∞∑
n=2

dn(x + 9)n, (2.79)

where the first few coefficients are:

c0 = a0 (2.80)

c1 = 31
48 − 1

18a0 (2.81)

c2 = a2 d2 = 1
432a0 + 5

384 (2.82)

c3 = 17
93312a0 + 1

12a2 − 107
82944 d3 = 1

5184a0 + 5
4608 . (2.83)

The coefficients a0 and a2 are determined by matching with the solution around x = 0. The
matching is performed by imposing that the two solutions, centered at x = 0 and x = −9,
assume the same value in the region where both series converge. In practice one can choose an
intermediate point, such as x = −4.5, and match the solutions for both the MIs. The solution
for F2 can be obtained from the solution for F1 and Eq. (2.57).

To evaluate the solution (2.79) on its branch-cut we use the Feynman prescription, which
attributes to x a small negative imaginary part. Consequently the logarithm, for x < −9, has
the following analytic continuation:

log(x + 9) → log(s − 9) − iπ, (2.84)

where s = −x. One can continue this procedure, for example expanding around the point
x = ∞ and matching with the solution in x = −9. To reach the wanted number of significant
digits one has to find the right compromise between the number of expansions and the number
of terms in the series used for the numerical matching, considering that lowering one of them
means increasing the other.

For multi-scale problems, for which there is a set of kinematics invariants {si}, one usually
defines a path γ(x) = (γs1(x), γs2(x), ...), where x is the line parameter. The differential
equation along the path is:

d

dx
f⃗(x, ϵ) = Ax(x, ϵ)f⃗(x, ϵ) Ax(x, ϵ) =

∑
i

dγi(x)
dx

Asi(γ(x), ϵ). (2.85)

In the series expansion method, one considers multiple one-dimensional series solutions to
(2.85). A solution centered in a branch point or singularity (x0) has the following general form:

f
(i)
j (x) =

∑
w∈W

Ni,j∑
l=0

∞∑
k=k0

cijkl;w(x − x0)w+k logl(x − x0), (2.86)
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where f
(i)
j is the coefficient of ϵi of the j−th master integral, and W is a finite set of algebraic

numbers, in almost all the applications W = {0, 1
2}. A detailed description on how to determine

(2.86) starting from the differential equation system in a complete general case can be found
in [32,33]. The analytic continuation of (2.86) can be performed by assigning an imaginary
part to the line parameter, in accordance with the Feynman prescription.

The method has been implemented in a number of codes [33,34,53], and succesfully applied
in several phenomenological applications [5, 54–56].



19

Chapter 3

Heavy quark contribution to
diphoton production at hadron
colliders

The production of photon pairs (diphotons) at the Large Hadron Collider (LHC) is a
very relevant process for phenomenological studies in the context of the Standard Model
(SM) [57–60] and in the search for new physics [61–66]. In particular, diphoton final states are
highly relevant for Higgs boson studies [67–74] (and played a crucial role in its discovery [75,76]),
as they constitute an irreducible background for a Higgs boson decaying into two photons.

Due to its physical relevance, the study of diphoton production requires dedicated and
accurate theoretical calculations, in particular including QCD radiative corrections at high
perturbative orders. The state of the art for diphoton production is represented by the next-to-
next-to-leading order (NNLO) accuracy (taking into account five light quark flavours) [77–80] in
perturbative QCD. Massless NNLO corrections enhance the NLO prediction for the invariant
mass spectrum of ∼ 40% for mγγ > 50 GeV, turning out to be important. The relevant
scattering amplitudes in the completely massless case have been known in the literature for
some time [81–91].

More recently, scattering amplitudes belonging to higher orders in the strong coupling αs

(i.e. beyond the NNLO) have become available (in the massless case): the three-loop matrix
element [92]; the two-loop scattering amplitudes for a photon pair in association with one jet
in the leading colour approximation [93–95], and, very recently, the full colour case [96, 97].
The two-loop scattering amplitudes for diphoton production in gluon fusion [98] together with
the recent computation of diphoton production in association with one jet [97,99] at NNLO
emphasise that all the building blocks are in place for the next-to-next-to-next-to-leading order
(N3LO) massless calculation. However, the implementation of slicing subtraction methods
to reach the N3LO accuracy could be challenging in this case, due to the presence of a high
number of particles in the final state and the use of a photon isolation prescription. More
clearly, the NNLO calculation of the diphoton cross section in association with one jet at small
diphoton transverse momentum could be very CPU demanding. First-order electroweak/QED
corrections are also known [100,101].
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Regarding the diphoton background in Higgs boson production, it is possible to constrain
the Higgs boson width from interference effects of the continuum gg → γγ spectrum with the
signal gg → H → γγ. The phenomenology behind this process has therefore been studied in
detail in the literature, with effective calculations at NLO (and beyond) [83,102–109].

The small transverse momentum region of the diphoton pair is also of interest in SM and
Higgs boson studies, in the determination of the Higgs boson width, etc. The transverse
momentum (qT ) resummation for diphoton production is known at next-to-next-to-leading
logarithmic accuracy (NNLL) [110] and at N3LL [111] in association with fixed-order NNLO
results.

The possibility of measuring the top quark mass has been pointed out in the literature [112,
113], if massive scattering amplitudes in diphoton production are taken into account (via
loop corrections). These threshold effects of top quark pair production are manifested in the
diphoton-invariant mass spectrum around two times the value of the top quark mass.

In the massive case, the first non-trivial corrections appear at the NNLO, through the
inclusion of top quark loops and top quark radiation1. The mass effects of the so-called box
contribution (gg → γγ) were discussed in ref. [78] (together with partial N3LO contributions).
Due to the large gluon luminosity at the LHC, the size of the box contribution is of the
order of the Born subprocess qq̄ → γγ. It is therefore of interest to calculate the corrections
of the following perturbative order to gluon fusion channel (formally N3LO contributions).
Regarding the gluon fusion channel only, the simplest approach (which captures very sizable
components) is to consider the NLO QCD corrections to the box contribution. In this context,
two recent papers have shown the impact of massive NLO QCD corrections on the gluon fusion
channel [114,115]. In the gluon channel the effective NLO top-quark correction turned out to
enhance the effective NLO massless prediction of ∼ 7% for mγγ > 400 GeV.

Considering the full NNLO accuracy, with the top-quark mass dependence, there are
still three missing ingredients that were not available or not presented together in previous
phenomenological studies in the literature: i) the massive one-loop real-virtual contribution
(qq̄ → γγg and q(q̄)g → γγq(q̄)), the double real radiation of top quarks (qq̄ → γγtt̄ and
gg → γγtt̄) and the two-loop virtual corrections to the Born sub-process qq̄ → γγ.

In section 3.1 we report on the computation of the two-loop amplitude for diphoton
production in the quark annihilation channel, where the full dependence on the heavy quark
mass, which appear in the loops, is retained. This is the last missing ingredient needed to a
full phenomenological study of diphoton up to NNLO in QCD. This work is presented also
in [4].

In section 3.2 we consider a phenomenological study of diphoton production at NNLO,
taking into account the full top quark mass dependence. This work has been presented for the
first time in [116]. We include all NNLO massive scattering amplitudes: i) the box contribution
in the gluon fusion channel [78], ii) the two-loop scattering amplitude qq̄ → γγ presented in
section 3.1, and the real radiation contributions (double real and real-virtual).

1The inclusion of the massive b-quark contribution it is also possible in this context but it is often not
considered in the literature.
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3.1 Two-loop heavy quark QCD corrections to qq → γγ

To perform the computation described in this section we employed a number of techniques
for scattering amplitude calculations. We considered the partonic process qq̄ → γγ and the
relative two-loop Feynman diagrams, which contain a massive heavy quark loop, as shown in
figure 3.1. The associated amplitude is decomposed into a combination of tensors multiplied by
scalar form factors, as described in [117], and the scalar integrals appearing in the expressions
of the form factors are written in terms of a basis of master integrals (MIs). The decomposition
in terms of MIs is performed using Integration-by-Parts (IBPs) identities [10, 11], via the
Laporta Algorithm [12], implemented in the computer code2 KIRA [35, 36]. The MIs relevant
for this process have been computed by means of the differential equations method [13–20].
While for the integrals associated to the planar topologies analytic expressions are available in
the literature [51, 118–123], the non-planar ones have been computed numerically in [114,115].
Indeed, while the planar MIs admit an analytic solution in terms of Multiple Polylogarithmic
functions (MPLs) [25,124–128], it is known that the functional space for the analytic solution of
the non-planar double-box family [129] contains elliptic integrals [49,130–140]. In recent years, a
big effort has been devoted to the understanding of the analytic structure of Feynman integrals
which do not admit an expression in terms of MPLs. However, even in the cases in which an
analytic solution in closed form is available, the numerical evaluation of the functions associated
to such solution can be extremely challenging for phenomenological applications [141,142]. In
order to be able to overcome the issues previously described, we choose to exploit the generalised
power series method [32,143–148] to solve the system of differential equations associated to the
MIs. This technique, currently implemented in two public computer codes [33,34], has recently
attracted a lot of interest due to its wide range of applicability and it has been successfully
employed in several phenomenological applications [5, 54–56]. Specifically, in the calculation
reported in this work, we used the software DiffExp [33] to obtain a semi-analytic solution for
the MIs.

In 3.1.1 we describe the general setup for the computation and we set the context in which
the two-loop amplitudes are relevant. We discuss the form factors computation along with
their UV singularity structure and the renormalisation procedure. In 3.1.2 we report on the
MIs calculation, describing the approach that we used to solve the differential equations, along
with a brief analysis on the geometry underlying the actual analytic solution.

3.1.1 Computational setup and amplitude structure

We consider the two-loop form factors for diphoton production in the quark annihilation
channel with a heavy quark loop. At the partonic level, the scattering amplitude proceeds as
the Born subprocess:

q(p1) + q(p2) + γ(p3) + γ(p4) → 0, (3.1)
2Other available implementations are described in [37–43]
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where all the momenta of the particles are incoming. The kinematics for this process is
described by the Mandelstam variables

s = (p1 + p2)2, t = (p1 + p3)2, u = (p2 + p3)2, with s + t + u = 0, (3.2)

where the external particles are on-shell, i.e. p2
i = 0, and we indicate with m2

t the heavy-

Figure 3.1. Representative set of two-loop diagrams with internal heavy-quark loops, which contribute
at NNLO QCD corrections to diphoton production in the quark annihilation channel. Thin black
lines represents light quarks, thick black lines heavy quarks, curly lines gluons and wavy lines
photons.

quark squared mass3. In order to obtain the scattering amplitude, we generated the relevant
Feynman diagrams using the FeynArts package [149]. We found a total number of 14 diagrams
contributing to the amplitude, the representative ones are shown in fig. 3.1. We write the
scattering amplitude in terms of form factors, which are decomposed into a basis of 63 MIs
exploiting IBPs reduction [10–12,35,38–44], as implemented in the software Kira [35].

The Feynman diagrams contributing to this process can be mapped into 5 different scalar
integral families: NPA, PLA, PLAx12, PLAx124 and PLAx1234, reported in appendix A.
After the reduction, the whole set of MIs is described only by the families NPA, PLA and
PLAx12, and there are 5 top-sectors, shown in fig. 3.7.

Out of the 63 MIs, 57 admit an analytical expression in terms of Multiple Polylogarithms
and they have been studied in [51,122,123,145,150,151], the remaining 6, belonging to the non
planar topology NPA, are elliptic. Specifically, the non-planar triangle sector, which contains 2
MIs, has been solved analytically in [152] in terms of elliptic Multiple Polylogarithms (eMPLs),
a class of special functions which are a generalisation, in the elliptic case, of the standard
MPLs. On the other hand, the 4 double-box MIs of the non-planar top-sector (shown in fig.
3.6) have been computed numerically in [114, 115]. Moreover, the homogeneous solution of
the non-planar double-box has been studied analytically in [153]. In the work described in [4]
and presented also in this section, we performed an independent calculation of all the MIs
by means of the differential equations method [13–20]. In particular we solved the system
of differential equations semi-analytically exploiting the generalised power series expansion
technique, as described in [32] and implemented in the software DiffExp [33].

The two-loop amplitude computed in this work constitutes a necessary ingredient of the
recently presented full massive NNLO QCD corrections to diphoton production at hadron

3For the rest of this paper we will refer to the heavy quark as top quark. We note however that our formulas
are general and they can be evaluated with a different value of the heavy quark mass.
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Figure 3.2. PLA(1, 1, 1, 1, 0, 1, 1, 0, 1) Figure 3.3. PLAx12(1, 1, 1, 1, 0, 1, 1, 0, 1)

Figure 3.4. PLA(1, 1, 0, 1, 0, 1, 0, 1, 0) Figure 3.5. PLAx12(1, 1, 0, 1, 0, 1, 0, 1, 0)

Figure 3.6. NPA(1, 1, 1, 1, 0, 1, 1, 1, 0)

Figure 3.7. The 5 top-sectors for the master integrals are shown: subfigures 3.2 and 3.3 are respectively
a planar double-box topology and its crossed one, 3.4 and 3.5 are respectively the massless box,
times the tadpole, and its crossed, while 3.6 is a non-planar double-box topology. Thin black lines
represents massless particles, thick black lines heavy particles.

colliders [5], which will be the topic of section 3.2. We anticipate that our two-loop form
factors, taking into account the full dependence on the top quark mass, are finite after
UV renormalization. Therefore, they can be included directly (without the use of any IR
regularization prescription) in any numerical implementation of the NNLO cross section. Below
we will illustrate the precedent statement with a specific example based on the qT -subtraction
method [154,155] (which can easily be extended to any other subtraction method).

To this end, we consider the following scattering process,

h1 + h2 → γγ + X (3.3)

where h1 and h2 are the colliding hadrons, and X denotes any additional radiation, we are
indeed considering the inclusive process. At the NNLO, the cross-section for this process can
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be computed using the qT -subtraction method [154–156] as follows

dσγγ
NNLO = Hγγ

NNLO ⊗ dσγγ
LO +

[
dσγγ+jets

NLO − dσCT
NLO

]
. (3.4)

The terms inside the square brackets dσγγ+jets
NLO and dσCT

NLO represent the cross section for
diphoton plus jet production at NLO [91] and the corresponding counterterm, needed to cancel
the associated singularities in the small-qT limit. The coefficient function Hγγ

NNLO (defined
in [156]) is the so-called hard-virtual function and it includes the one-loop and two-loop
corrections to the Born subprocess. This object admits a perturbative expansion in terms of
the strong coupling αS :

Hγγ = 1 + αS

π
Hγγ

NLO +
(

αS

π

)2
Hγγ

NNLO + · · · . (3.5)

In our particular case (diphoton production) the one-loop contribution to eq. (3.5) was
calculated in [88], while the massless two-loop contribution was first calculated in [90] and
later in [92]. The explicit expressions of the hard virtual factor (computed with the previous
massless one- and two-loop amplitudes) in the hard scheme (see [155] for more details) are given
in Appendix A of ref. [155]. The inclusion of the new two-loop massive form factors proceeds
by simple addition to that of the massless case [90]. After regularising the IR divergences [155]
present in the massless two-loop amplitude [90], our massive two-loop contribution can be
added directly to the massless finite remainder.

After generating all the relevant Feynman diagrams for the process, the amplitude Aqq̄,γγ

has been decomposed in terms of form factors [117], and the UV singularities have been
regularised in dimensional regularisation. The expression obtained has been used to compute
the NNLO corrections to the hard function Hγγ coming from two-loop diagrams which involve
a massive top quark loop. Specifically, from the knowledge of the finite remainder A(fin)

qq̄,γγ of
the amplitude, we can obtain the hard function from the all-orders relation [155]:

Hγγ =
|A(fin)

qq̄,γγ |2

|A(0)
qq̄,γγ |2

, (3.6)

where A(0)
qq̄,γγ is the Born-level amplitude for this process:

|A(0)
qq̄,γγ |2 = 128 π2 α2

em Q4
q Nc

(
t

u
+ u

t

)
, (3.7)

where αem is the QED coupling, Qq is the electric charge of the incoming quarks and Nc is
the number of colours. We also performed a sum over initial and final polarisations and initial
colours.

This massive hard-virtual coefficient represents the last missing ingredient necessary to
perform a NNLO phenomenological study, for diphoton production at the LHC, which takes
into account the complete dependence on the top quark mass [5].
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Form factors

The bare scattering amplitude can be written4 as

Aqq̄,γγ = αem δij ϵµ
λ3

(p3)ϵν
λ4(p4)vs2(p2)Aµν(s, t, u, m2

t )us1(p1), (3.8)

where δij is the Kronecker delta function with i and j the color indices of the incoming qq̄ pair,
ϵµ
λ3

(p3) and ϵν
λ4

(p4) are external photon polarisation vectors and vs2(p2), us1(p1) the quark
spinors.

We decomposed the amplitude in tensor structures, which embed the dependence on
external particle polarisations, and scalar form factors. In our computation we adopt the ’t
Hooft-Veltman scheme, where the external momenta and polarisations are four-dimensional
objects while internal momenta and gamma matrices are D-dimensional. As outlined in [117], in
this scheme there is a correspondence between the number of independent helicity amplitudes
in the process and the number of tensor structures that remain independent when four-
dimensional external states are considered. For the process we are considering there are four
possible helicity configurations:

A
(
q−

p1 , q+
p2 , γ+

p3 , γ+
p4

)
A
(
q−

p1 , q+
p2 , γ+

p3 , γ−
p4

)
(3.9)

A
(
q−

p1 , q+
p2 , γ−

p3 , γ+
p4

)
A
(
q−

p1 , q+
p2 , γ−

p3 , γ−
p4

)
. (3.10)

Right-handed quark configurations can be obtained by charge-conjugation transformation.
Therefore the amplitude (3.8) can be decomposed in terms of a set of four independent tensors
which are built using external momenta and polarisation vectors:

Aqq̄,γγ =
4∑

k=1
Fk Tk, (3.11)

where the Tk are chosen as [117]:

T1 = vs2(p2)/ϵλ3
(p3)us1(p1)ϵλ4(p4) · p2,

T2 = vs2(p2)/ϵλ4
(p4)us1(p1)ϵλ3(p3) · p1,

T3 = vs2(p2)/p3us1(p1)ϵλ3(p3) · p1ϵλ4(p4) · p2,

T4 = vs2(p2)/p3us1(p1)ϵλ3(p3) · ϵλ4(p4).

(3.12)

The decomposition (3.11) has been achieved also by enforcing the physical transversality
conditions ϵλi

· pi = 0 for the polarisation vectors, and by choosing as gauge fixing the
conditions ϵλ3 · p2 = ϵλ4 · p1 = 0, which imply for the photons the polarization sums:

∑
λ3

ϵµ
λ3

ϵ∗ν
λ3 = −gµν + pµ

2 pν
3 + pµ

3 pν
2

p2 · p3
,

∑
λ4

ϵµ
λ4

ϵ∗ν
λ4 = −gµν + pµ

1 pν
4 + pµ

4 pν
1

p1 · p4
, (3.13)

where gµν = diag(1, −1, −1, −1). The coefficients of Tk are the so-called scalar form factors, Fk.
These objects are functions of the kinematic invariants of the process, and of the space-time

4For the sake of simplicity we are omitting color indices on the left side of Eq. (3.8)
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dimension D, and they can be written in terms of scalar Feynman integrals. Their expression
can be obtained by applying a set of projectors, {Pk}, to the amplitude Aqq̄,γγ and summing
over polarizations:

Fk =
∑

s1,s2,λ3,λ4

Pk Aqq̄,γγ . (3.14)

The projectors are

Pi =
4∑

j=1

(
M−1

)
ij

T †
j , Mij =

∑
pol

T †
i Tj , (3.15)

where Mij is called the projector matrix and it depends in general on the dimension D. The
inverse of M is smooth when D = 4, confirming that the tensors 3.12 are independent in four
dimensions. For completeness we give here the explicit expressions for the set of projectors
{Pk} with k = 1, ..., 4,

P1 = 1
(D − 3)t

[
u

2s2 T †
1 − u

2s2t
T †

3

]
, (3.16)

P2 = 1
(D − 3)t

[
u

2s2t
T †

3 + u

2s2 T †
2

]
, (3.17)

P3 = 1
(D − 3)t

[(
Du2 − 4st

)
2s2ut2 T †

3 − u

2s2t
T †

1 + u

2s2t
T †

2 − (t − s)
2sut

T †
4

]
, (3.18)

P4 = 1
(D − 3)t

[
−(t − s)

2sut
T †

3 + 1
2u

T †
4

]
. (3.19)

We stress that the independent four-dimensional tensors 3.12 span the space of the helicity
amplitudes of the process we are considering. In [117] bases of four-dimensional tensors for
most of the processes relevant for collider phenomenology are built, and some of them have been
applied for recent multiloop multileg scattering amplitude computations, in particular the basis
3.12 was already successfully applied in the computation of the three-loop massless scattering
amplitudes for the production of a pair of photons in quark-antiquark annihilation [157].

The form factors Fk admit the following perturbative expansion:

Fk = F (0)
k +

(
αS

π

)
F (1)

k +
(

αS

π

)2
F (2)

k + · · · , (3.20)

where αS is the strong coupling constant. At leading order we have:

F (0)
1 = 4παemδijQ2

q

−1
t

, (3.21)

F (0)
2 = 4παemδijQ2

q

1
t

, (3.22)

F (0)
3 = 4παemδijQ2

q

2
tu

, (3.23)

F (0)
4 = 4παemδijQ2

q

(t − u)
tu

. (3.24)

The massive corrections, we are interested in, appear starting from the two-loop order.
Therefore, they affect only the term F (2)

k . From now on we will focus just on this contribution,
which we will refer to as F (2)

k,top. We generated all the relevant Feynman diagrams for this
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contribution using FeynArts [149], and we found 14 different two-loop Feynman diagrams, the
representative ones are depicted in fig. 3.1. We used FORM [158,159] to apply the projectors to
the Feynman diagrams and perform the Dirac algebra. The form factors, then, were expressed
as linear combinations of 63 MIs, which are defined in appendix A.

We find the following structure for the form factors F (2)
k,top:

F (2)
k,top = F (2)

k,top;0 + F (2)
k,top;2 , (3.25)

F (2)
k,top;0 = 4παemδij CF Q2

q Bk F (2)
k,top;2 = 4παemδij CF Q2

t Ck, (3.26)

where Bk and Ck depend only on the kinematic variables and the dimension D, CF = N2
c −1

2Nc

is the Casimir of the fundamental representation of SU(Nc) and Qt is the electric charge of
the top quark running in the loop. The two contributions F (2)

k,top;0 and F (2)
k,top;2 are related to

different powers of the top electric charge Qt. The first contribution F (2)
k,top;0 is associated to

the diagrams of the type (c), (d) and (e) in fig. 3.1 in which the top quark does not couple to
the external photons, while the second contribution F (2)

k,top;2 comes from the diagrams of the
type (a) and (b) where the top quark actually couples with the photon.

We perform our computations in the context of dimensional regularisation. As a con-
sequence, potential ultraviolet (UV) and infrared (IR) singularities can appear in the form
factors as poles in the dimensional regulator ϵ = (4 − D)/2. However, since the diagrams with
a top loop start contributing to the qq̄ channel at the two-loop order, F (2)

k,top does not have IR
singularities and therefore all the ϵ poles are of UV origin. Furthermore, F (2)

k,top;2 is also free of
UV divergences because the top electric charge does not appear at previous orders, then the
UV poles come only from the contribution F (2)

k,top;0.

Helicity amplitudes

For the construction of the helicity amplitudes we followed [157], and we report here
the main steps. We can obtain the helicity amplitudes from our form factors by evaluating
the tensor structures Ti for well-defined helicity states. We write for left-handed spinors
v̄L(p2) = ⟨2| and uL(p1) = |1] and for the the photon j of momentum pj :

ϵµ
j,−(qj) = ⟨qj |γµ|j]√

2⟨qjj⟩
, ϵµ

j,+(qj) = ⟨j|γµ|qj ]√
2[jqj ]

.

With these definitions and denoting with λq the helicity of the quark, we can compute the
helicity amplitudes Aλqλ3λ4 . For a left-handed quark, these are:

AL−− = 2[34]2

⟨13⟩[23]α , AL−+ = 2⟨24⟩[13]
⟨23⟩[24] β ,

AL+− = 2⟨23⟩[41]
⟨24⟩[32] γ , AL++ = 2⟨34⟩2

⟨31⟩[23]δ ,

(3.27)



3.1 Two-loop heavy quark QCD corrections to qq → γγ 28

with

α = t

2

(
F2 − t

2F3 + F4

)
,

β = t

2

(
s

2F3 + F4

)
,

γ = s t

2u

(
F2 − F1 − t

2F3 − t

s
F4

)
,

δ = t

2

(
F1 + t

2F3 − F4

)
.

(3.28)

Note that the remaining amplitudes for a right-handed quark can be obtained by a charge-
conjugation transformation as follows,

ARλ3λ4 = ALλ3λ4
(⟨ij⟩ ↔ [ji]) , (3.29)

where λi indicates −λi.

UV Renormalisation

We renormalise the bare form factors in a mixed scheme. The external quark fields are
renormalised on shell; the strong coupling constant is renormalised in a scheme in which
the massless contribution, coming from light quarks and gluons, is treated in MS, while the
heavy-quark contribution is renormalised on shell (at zero momentum). No renormalisation is
needed for the top quark mass mt at this order in perturbation theory and the same occurs
for the external photon field.

We have, then
Fk = Zq Fk

(
αS = µ2ϵZαS αS

)
, (3.30)

where the overlined objects Fk, αS are the renormalised ones and µ is the renormalisation
scale. The renormalisation factors Zq and ZαS admit a perturbative expansion in the strong
coupling constant [160–163]:

Zq = 1 +
(

αS

π

)
δZ(1)

q +
(

αS

π

)2
δZ(2)

q + O(α3
S) , (3.31)

ZαS = 1 +
(

αS

π

)
δZ(1)

αs
+ O(α2

S) . (3.32)

In our renormalisation scheme, we have

δZ(1)
q = 0 , (3.33)

δZ(2)
q = π−2ϵΓ2(1 + ϵ)

(
µ2

m2
t

)2ϵ

CF NhTF

( 1
16ϵ

− 5
96

)
, (3.34)

δZ(1)
αs

= δZ
(1)
αs,MS + δZ

(1)
αs,Nh,OS , (3.35)

where δZ
(1)
αs,MS contributes only to the renormalisation of the massless amplitude, while

δZ
(1)
αs,Nh,OS, proportional to the number of heavy quarks Nh, renormalizes exclusively the



3.1 Two-loop heavy quark QCD corrections to qq → γγ 29

massive contribution to the amplitude. The expression of δZ
(1)
αs,Nh,OS is given by

δZ
(1)
αs,Nh,OS = π−ϵΓ(1 + ϵ)

(
µ2

m2
t

)ϵ
Nh

6ϵ
. (3.36)

In our case we consider only the top-quark, so Nh = 1, and we used TF = 1
2 .

Putting all together, the renormalised form factors read

F (2)
k,top;2 = F (2)

k,top;2 , (3.37)

F (2)
k,top;0 = (µ2)2ϵ F (2)

k,top;0 + µ2ϵ δZ
(1)
αs,Nh,OS F (1)

k + δZ(2)
q F (0)

k . (3.38)

The merely two-loop contribution of the renormalised finite form factors, F (2)
k,top;2 and F (2)

k,top;0,
is written as a linear combination of ϵ-expanded master integrals of the precanonical basis,
given in A, where the coefficients are rational functions of the Mandelstam, while the UV
counter term contribution is written in terms of harmonic polylogarithms (HPL). The analytic
expressions of the counter terms µ2ϵ δZ

(1)
αs,Nh,OS F (1)

k + δZ
(2)
q F (0)

k are given in appendix B.

3.1.2 Master Integrals Computation

In this subsection we discuss the details of the MIs computation. The MIs are computed
through the differential equations method. The system of differential equations associated to
the MIs is solved semi-analytically employing the generalised power series expansion technique,
as described in [32] and implemented in the software DiffExp [33]. We also show that some
of the MIs that appear in the computation admit an analytic solution in terms of elliptic
functions.

We provide a single system of differential equations which includes all the MIs appearing
in the amplitude. This system is in canonical form just for the sectors whose analytic solution
could be given in terms of MPLs. We notice that the basis of MIs in which we solve the
differential equations, which we will refer in the following as f⃗ , and the one in which we write
the form factors are different. We choose this approach in order to avoid square roots of the
kinematic invariants in the expressions of the form factors. In appendix A, along with the
definition of the precanonical basis Ti, we provide the rotation to the basis fi.

The system of differential equations

The three integral families to which the MIs belong are defined as follows:

Itopo(n1, ..., n9) =
∫ Dk1Dk2

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5 Dn6

6 Dn7
7 Dn8

8 Dn9
9

, (3.39)

where topo ∈ {PLA, PLAx12, NPA} labels the families and the corresponding propagators
D1, ..., D9 are given in appendix A. The computation is done in dimensional regularization
with D = 4 − 2ϵ dimensions, and our convention for the integration measure is

Dk = dD k

iπ2−ϵΓ(1 + ϵ)m2ϵ
t . (3.40)
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Figure 3.8. Diagrams representing the two elliptic sectors in the non planar topology NPA. Thin lines
represent massless particles, while thick lines massive particles.

The number of MIs appearing in the form factors is 63. The system of differential equations
can be divided in two different subsets:

• (I) Canonical logarithmic: the subset of MIs whose differential equations are in
canonical logarithmic form;

• (II) Elliptic sectors: this subset contains MIs whose analytic solution involves elliptic
functions and it is not written in ϵ-factorized form.

We refer to the basis used to solve the system as f⃗(x⃗, ϵ), where

x⃗ = {s, t} , s = 2 p1 · p2
m2

t

, t = 2 p1 · p3
m2

t

(3.41)

is the vector of the kinematic invariants with respect to which we derived the differential
equations5. The subset (II) contains two sectors: the first one is a non-planar triangle with a
massive loop [152], shown in fig. 3.8 (a). This sector has 2 MIs, f58 and f59, which admit a
representation in terms of elliptic multiple polylogarithms (eMPLs) [164]. The second sector
whose analytic structure is characterised by the presence of elliptic functions is the top sector
of the topology NPA, i.e. the non planar double-box integral, shown in fig. 3.8 (b), which
contains the 4 MIs f60−63. The subsystem of differential equations corresponding to the subset
(I) has been put in canonical logarithmic form [19], for the planar topologies this result has
been obtained for the first time in [51], while for the non-planar polylogarithmic subsectors
this is an original result. The whole system of differential equations reads

df⃗(x⃗, ϵ) = dA(x⃗, ϵ)f⃗(x⃗, ϵ) dA(x⃗, ϵ) = ϵ dAI(x⃗) + dAII(x⃗, ϵ), (3.42)

where d is the total differential with respect to the kinematic invariants, and the matrices
ϵAI(x⃗) and AII(x⃗, ϵ) are respectively the matrices of the subsystems (I) and (II). We stress
that the subsystem (I) does not involve elliptic MIs of the subsystem (II), conversely the latter
is coupled, as expected, to a subset of the MIs belonging to (I). The matrix AI(x⃗) does not
depend on ϵ and it is a linear combination of logarithms:

AI(x⃗) =
∑

i

ci log(wi(x⃗)). (3.43)

5Note that s and t defined in eq. 3.41 are adimensional and so different from the ones defined in eq. 3.2
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The ci represent matrices of rational numbers, while {wi(x⃗)} is the alphabet of the solution
and it is made by algebraic functions of the kinematic invariants. The knowledge of the
logarithmic canonical form for the subsystem (I) of the differential equations (3.42), would
allow us, in principle, to obtain a fully analytic representation for the non elliptic MIs,
i.e. {fi} with i = 1, · · · , 57. However, the presence of the set of square roots, given in
equations (A.72), makes the achievement of such analytic expression non trivial. Indeed,
these square roots are not simultaneously rationalizable. As a consequence, in order to
obtain a fully analytic representation of the solution one would have to exploit symbol level
techniques [165,166]. For the purpose of this project, we found that the semi-analytic evaluation,
which we achieved exploiting a generalised power series expansion method, was sufficient to
perform phenomenological studies.

In the upcoming work [167] the full-analytic form of two-loop massive amplitudes for
diphoton production in quark-antiquark and gluon fusion channels will be provided. The
elliptic MIs will be given in ϵ−factorised basis, found through the technique described in [49].
In this thesis we adopt the same canonical basis for polylogarithmic MIs defined in [167]. For
the elliptic MIs we also use the precanonical form of [167]. A such definition of the integrals is
slightly different with respect to the one previously provided in [4]. Nevertheless, we decided
to rearrange the basis of MIs mainly for two reasons: a unique global system of differential
equations for all the MIs contributing to the amplitude (included permutations) improves the
efficiency of the numerical evaluation; we could easily provide intermediate analytical checks
for the amplitude computed in [167].

The boundary conditions for the system are provided in the origin of the space of kinematic
variables s = t = 0, where many simplifications occur, indeed the following canonical MIs
vanish in this point:

fi(0, 0) = 0 if 5 ≤ i ≤ 22 ∨ 25 ≤ i ≤ 57. (3.44)

For the remaining MIs, except for the tadpole, the origin is a singular point, consequentially
we have to provide at least an asymptotic behaviour. This can be easily achieved for the non
elliptic MIs: f1, f2, f3 and f4, respectively the tadpole and the massless bubbles in s, t and u

channel, have simple well-known analytical expressions:

f1 = 1 (3.45)

f2 = −
(

−1
s

)ϵ Γ(1 − ϵ)2

Γ(1 − 2ϵ) (3.46)

f3 = −
(

−1
t

)ϵ Γ(1 − ϵ)2

Γ(1 − 2ϵ) (3.47)

f4 = −
(

− 1
u

)ϵ Γ(1 − ϵ)2

Γ(1 − 2ϵ) ; (3.48)
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the canonical MI f23 (f24) is the massless box in the u (t) channel, its analytical expression is

f23 =
(

−1
s

)ϵ Γ(1 − ϵ)2

Γ(1 − 2ϵ)

{
4 − 2 ϵ H

(
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s

)
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u

s

)
− 2H
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u

s

)
+ 2H

(
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u

s

)
− 2ζ(3)

]
+

ϵ4
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−2ζ(3)H
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u

s
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s
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− π2H
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+
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s
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+ π2H

(
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− π2H

(
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u

s
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−
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(
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(
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u
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(
0, −1, 0, 0,

u

s

)
−

4H

(
0, 0, 0, 0,

u

s

)
− π4
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]}
,

(3.49)

for f24 just swap u ↔ t. The last expression has been known for many years and it can be
obtained, for example, integrating the corresponding differential equation and imposing the
regularity of the solution along t = 0 (see [168] or chapter 2). The analytic continuation of
3.45–3.49 is given by the Feynman prescription: a Mandelstam invariant acquires a small
positive imaginary part as long as it becomes positive,

s → s + iδ, t → t + iδ, u → u + iδ, (3.50)

where δ is positive and small. The formula 3.49 was cross checked analytically with [168] and
numerically with AMFlow [53]. For the elliptic MIs f58−63 we adopted the following strategy:
i) introducing free parameters in the series solution around the origin; ii) evolving to a point
(s0, t0) different from the origin; iii) matching the series solution with the AMFlow numerical
solution, for the elliptic MIs, in the point (s0, t0), and so fixing the unknown parameters; iv)
using (s0, t0) as the new boundary point to evolve the system to any other point.

Semi-Analytic solution with Generalised power series

We continue by describing the solution for the system of differential equations. As already
mentioned, we choose to exploit the generalised power series method, as described in [32] and
implemented in the software DiffExp [33], to obtain a semi-analytic solution for the set of
MIs. This method has the advantage of not being limited by the functional space in which the
MIs would be analytically represented. This feature allows us to avoid the issues connected
with the presence of MIs which admit an analytic solution in terms of elliptic integrals, for
which both the understanding of their analytic structure and the numerical evaluation can
still represent a bottleneck for phenomenological applications.

We exploit the method to build a grid of points for the contribution of the corrections
considered here to the hard function Hγγ

NNLO. After interpolation, the grid has been used in
the fully massive NNLO phenomenological study for diphoton production in [5]. The grid has
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been generated directly in the physical region of the phase-space for this process:

s > 0, t = −s

2(1 − cos θ), −s < t < 0, (3.51)

where θ, 0 < θ < π, is the scattering angle in the partonic center of mass frame. Since the

θ

s

Figure 3.9. Schematic representation of the procedure exploited to optimise the grid construction
within DiffExp. Red dots represents the points in which the MIs are evaluated and the blue dashed
lines connect the sequential evaluations.

evaluation time, within DiffExp, for the MIs needed in this process is relatively low, we can
build the grid of points as follows6. We consider a total number of 13752 points in the following
range for the scattering angle θ and the energy of the center of mass

√
s:

−0.99 < cos θ < 0.99, 8 GeV <
√

s < 2.2 TeV . (3.52)

The points pi,j = (si, ti,j)7 of the grid are defined as follows:

pi,j :=

si = s0 + (sf − s0) i
572

ti,j = − si
2 (1 − cos θj), cos θj = cos θ0 + (cos θf − cos θ0) j

23

(3.53)

where s0 = 64 GeV2, sf = 4.84 ·106 GeV2, cos θ0 = −0.99, cos θf = 0.99 and the indices i, j take
the values i ∈ [0, 572], j ∈ [0, 23]. We constructed the grid by performing sequential numerical
evaluations of the MIs in DiffExp as depicted schematically in figure 3.9. Starting from the
origin of the phase-space, we perform a first evaluation in the physical point p0,0. From this
point, at fixed value of s, we move along the θ axis, from cos θ = −0.99 to cos θ = 0.99, up to
the point p0,23. Then, we increase the value of s and we move in the other direction along the θ

axis up to the point p1,0, and so on so forth. In order to optimise the grid generation, for each
evaluation we use as boundary conditions the value of the MIs obtained at the previous point.
This procedure effectively increases the efficiency of the evaluation for the MIs. In particular,
we managed to evaluate the MIs in all the points of the grid, with a 16 digits accuracy, in
about 13 hours, on a single core laptop.

6We notice that for more CPU demanding computations more refined approaches have to be used.
7For the purpose of this discussion we use the dimensional Mandelstam variables defined in Eq. 3.2
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Figure 3.10. Numerical results for the dimensionless elliptic non-planar MIs T58, T59, T60, T61, T62 and
T63. The plots show the order O(ϵ0). Continuous blue and yellow lines represent, respectively,
the real and imaginary part of the MIs obtained with DiffExp, with a real top-quark mass
mt = 173 GeV. Dashed blue and yellow lines represent, respectively, the real and imaginary part
of the MIs obtained with SeaSyde, with complex top-quark mass with a width Γt = 1.76 GeV.
Dots represent numerical values obtained with AMFlow. The evaluations are performed for different
values of

√
s at fixed angle θ (in this case cos θ = 0.5). The vertical dashed black line represents

the threshold at 2mt. We notice that the complex mass smoothens the singular behavior around
threshold, especially for T61.

In order to validate our results, we performed numerical checks for the MIs against
independent numerical evaluations done with the AMFlow package [53], which implements the
auxiliary mass flow method [169,170]. The MIs have been checked for several points in the
physical phase-space region, finding an agreement between the two independent evaluations
of at least 16 digits of accuracy in each point for every master. As a proof of concept of the
numerical checks we show in figure 3.10 our results for the non-planar triangle and double-box
MIs of the topology NPA.

In addition to the analytical continuation (3.50) of the Mandelstam variables, we need to
know at which side of the branch-cut, s > 4m2

t , we have to evaluate the solution after having
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passed the top-quark threshold. To this aim, Feynman prescription once again comes to our
assistance:

4 − s → 4 − s − iδ, (3.54)

where we used the dimensionless variables (3.41).
In the Standard Model the top-quark is an unstable particle which decays through elec-

troweak interactions and has a decay width Γt. Consequently dimensionless kinematic variables
assume complex values in the physical region. They are given, in the approximation Γt ≪ mt,
by the following substitution:

s

m2
t

→ s

µ2 , µ2 = m2
t − imtΓt. (3.55)

The task of finding the solution to the differential equation system as power series expansions
around complex values of the kinematic variables has been automatized in the program
SeaSyde [34]. The effect of the complex mass smoothens the behavior near the threshold of
the master integrals. However, in our case the impact of the top-quark width turns out to be
tiny and we have decided not to include it in phenomenological study.

The numerical grid for the master integrals has been used to construct a grid for each form
factor. The last are the building blocks to set up the grid for the hard function, which is given
by the following formula:

H(2;top)
γγ =

2
∑

jk
F (0)

j MjkF (2)
k,top

|A(0)
qq̄,γγ |2

, (3.56)

where M is the projector matrix in D = 4 dimensions. A plot of the massive contribution to the
hard function is shown in figure 3.11. The grid of the hard function has been interpolated with
cubic splines, providing a Fortran routine for a fast numerical evaluation. The interpolation
deviates from the true result within 0.3%.

Figure 3.11. Contribution of the top-quark to the NNLO hard function is shown. We observe that
the top-quark mass introduces a dependence on the energy

√
s which is absent in the massless

contribution. We notice also the negative bump around two times the top-quark mass.
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Maximal cut of the elliptic sectors

We conclude this section analyzing the maximal cut of the elliptic sectors. The maximal
cut of an integral can be obtained from it by replacing each propagator with a delta-function,
then it is a solution of the homogeneous differential equation for the starting integral and
contains information about the functional space of the full solution.

The non-polylogarithmic structure of the non-planar double-box is two-fold. First, the
differential equations for the MIs f60, f61, f62 and f63 contain the triangle integrals f58 and
f59 in the non-homogeneous part of the system. As a consequence the analytic solution of the
differential equations requires the integration over kernels that contains eMPLs. Moreover,
also the homogeneous part of the differential equation itself contains elliptic functions. This
statement can be verified by studying the maximal cut of the double-box integral [20]:

INPA(1, 1, 1, 1, 0, 1, 1, 1, 0). (3.57)

In order to perform such computation we adopted the loop-by-loop analysis [171,172] of the
Baikov [173] representation of the integral, we refer to refs. [171–174] for a description of the
method. In order to emphasize the common features between the solution of the non-planar
triangle and the double-box one, we also provide the maximal cut of the former. The results
for the maximal cut of the two non-planar integrals read

MCut (INPA(1, 1, 1, 0, 0, 1, 1, 1, 0)) ∝
∫ dz√

z(z + s)(z − z+)(z − z−)
, (3.58)

MCut (INPA(1, 1, 1, 1, 0, 1, 1, 1, 0)) ∝
∫ dz

(z − t)
√

z(z + s)(z − z+)(z − z−)
, (3.59)

where z± = 1
2

(
−s ±

√
s(s + 16m2

t )
)

, and we dropped overall terms which do not depend on
z since they are immaterial for a qualitative study. As we can see from Eq. (3.59) the result of
the maximal cut for the double box non planar integral in fig. 3.8 (b) is a one-fold integral. It
is possible to show that Eq. (3.59) can be written in terms of complete elliptic integrals of
first and third kind, where the elliptic curve is given by the polynomial of fourth-order in the
integration variable z:

y2 = z(z + s)(z − z+)(z − z−). (3.60)

We observe that the elliptic curve (3.60) is the same curve of the non-planar triangle in
fig. 3.8 (a) [141,152,164].

3.2 Top-quark mass dependence in diphoton production at
NNLO in QCD

In this section, we consider diphoton production at NNLO, taking into account the full
top quark mass dependence [116]. We include all NNLO massive contributions to the cross
section: the box contribution in the gluon fusion channel [78], the two-loop corrections to
qq̄ → γγ [4] described in the previous section, and the real radiation contributions (double
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a) b) c) d)

Figure 3.12. Different types of contributions to the massive corrections at NNLO for diphoton
production in perturbative QCD. The explanation of the different features is given in the text.

real and real-virtual).
In 3.2.1 we explain the setup of our calculation and in 3.2.2 we present selected numerical

results for the LHC phenomenology.

3.2.1 Organisation of the calculation

Since the massless (five light quark flavours) NNLO QCD corrections to diphoton production
are known [77], our approach is to consider all the remaining massive scattering amplitudes
and combine them in an appropriate way.

The first non-trivial massive corrections appear at NNLO. We classify the scattering
amplitudes into four types of contributions. In first place, we consider the known massive
one-loop box scattering amplitude gg → γγ [78] as depicted in Fig. 3.12 a). The two-loop
(double-virtual) corrections to the Born sub-process qq̄ → γγ [4] are shown with a representative
Feynman diagram in Fig. 3.12 b), where in the loop we consider a massive top quark. We also
consider massive real-virtual contributions to diphoton production (see Fig. 3.12 c)), where
the diphoton pair is produced in association with real radiation (quarks and gluons). This
scattering amplitude is interfered with the corresponding tree-level matrix element (qq̄ → γγg

or qg → γγq depending on the partonic channel). The partonic contributions to Fig. 3.12 c)
are finite, not only in four dimensions, but also after integration over the transverse momentum
of the diphoton pair (pγγ

T ). This amplitude is presented in the appendix of ref. [78], but it is
considered for its squared modulus (effective N3LO contribution). In our case we calculated
this contribution and we checked it numerically with OpenLoops [6,175–179]. The last element
that we considered (which completes the NNLO massive corrections) is shown in Fig. 3.12 d);
it is related to diphoton production in association to the emission of two on-shell top-quarks
(qq̄ → γγtt̄ and gg → γγtt̄). We computed these double-real amplitudes and we checked
them numerically with OpenLoops. Although this sub-process can be effectively detected
experimentally and (therefore) then subtracted, we include it explicitly in our calculation.
Indeed, LHC measurements of diphoton production take into account any kind of additional
radiation accompanying the two isolated photons, and therefore this contribution must be
taken into account in any comparison with LHC data [57–60] that claim full NNLO QCD
massive corrections.

All our massive corrections are encoded in a new version of the 2γNNLO code [77], which
has been cross-checked with the MATRIX [180] numerical code (version 2.0.0) (which includes
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the massless NNLO QCD corrections to diphoton production). The new version of the 2γNNLO
code benefits from the fast integration routines of the DYTurbo framework [181,182].

The double-real and real-virtual sub-processes (see Fig. 3.12 c) and d)) are not only finite
in four dimensions, but they are also finite after integration over the transverse momentum of
the diphoton pair. We have checked numerically that under qT integration these contributions
are finite and numerically stable in the whole qT range.

3.2.2 NNLO results with full top-quark mass dependence

In this section, we present our results for the diphoton production at NNLO in perturbative
QCD, taking into account the full top-quark mass dependence. We fix the pole mass mt of the
top quark to the value mt = 173 GeV. Our computational setup that was explained in 3.2.1,
has been encoded in a new version of the 2γNNLO code.

We consider isolated diphoton production in pp collisions at the centre–of–mass energy
√

s = 13 TeV. We apply the following kinematical cuts on photon transverse momenta and
rapidities: phard

T γ ≥ 40 GeV, psoft
T γ ≥ 30 GeV and the rapidity of both photons is limited in the

range |yγ | < 2.37, excluding the rapidity interval 1.37 < |yγ | < 1.52. The minimum angular
separation between the two photons is Rmin

γγ = 0.4. These are essentially the kinematical cuts
used in the ATLAS Collaboration study of ref. [57].

In the perturbative calculation, the QED coupling constant α is fixed at 1/α = 137.035999139.
We use the central set of the NNPDF3.1 PDFs [183] as implemented in the LHAPDF frame-
work [184] and the associated strong coupling with αs(MZ) = 0.118.

The central factorization and renormalization scale is chosen to be equal to the invariant
mass of the diphoton pair µ ≡ µR = µF = Mγγ . The theoretical uncertainty is estimated by
varying the default scale choice for µR and µF independently by factors of {1/2, 2}, while
omitting combinations with µR/µF = 4 or 1/4, resulting in the usual seven-point variation
of scale combinations. Our standard choice of the central scale, can be replaced with other
options, for instance the transverse mass of the diphoton pair, MT

γγ =
√

(Mγγ)2 + (pγγ
T )2. Since

our aim is to show the impact of the new massive corrections, we refer the reader to more
detailed studies on scale variation (and scale choices) to refs. [79, 80].

We use the smooth cone isolation criterion [185] (see also refs. [79, 186,187]), which fixes
the size R of the isolation cone (drawn around the direction of the photon) and requires that
the hadronic activity Ehad

T allowed inside the cone satisfies

Ehad
T (r) ≤ ϵ pT γ χ(r; R) , in all cones with r ≤ R , (3.61)

where the function χ(r; R) is defined as

χ(r; R) =
(

r

R

)2n

. (3.62)

The specific values of the isolation parameters in our case [57] are: R = 0.4, ϵ = 0.09 and we
take n = 1. The choice of the χ(r; R) function as well as the particular value of the exponent
n is explained in ref. [79]. Since our aim is to present the effects of massive corrections, we
suggest that the interested reader consult the isolation studies in refs. [79, 80]. The top quark
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Figure 3.13. NNLO invariant mass distribution with full top quark mass dependence. In the lower
panel we plot the ratio of the NNLO invariant mass distribution between the massive result and
that with only five light quark flavours. The bands are obtained (as explained in the text) using the
customary 7-point scale variation. The central scale is shown with a black dashed line.

threshold region (∼ 346 GeV) is not particularly sensitive to the effects of the choice of isolation
parameters [79].

Since we rely on the qT subtraction method [154,155] to perform our NNLO calculations,
we use the technical parameter8 (a cut on the transverse momentum of the diphoton pair)
rcut = 0.0005 < pγγ

T /Mγγ . The large diphoton invariant mass tail is not particularly sensitive
to rcut variations around our chosen value [180]. Studies on the impact of the fiducial power
corrections and on the size of the rcut parameter in colour singlet processes can be found in
refs. [180,188–190].

The rest of this section proceeds as follows: first, we anticipate our results for diphoton
production at NNLO in perturbative QCD, taking into account the full top quark mass
dependence. At the end of this section, we discuss the relative weight of the different massive
contributions involved in the NNLO calculation.

In Fig. 3.13 we present our results regarding the invariant mass distribution of the photon
pair at NNLO using the kinematical cuts described above. In the lower panel, we show the
ratio between the fully massive NNLO result and the NNLO prediction for five light quark
flavours (5lf). Around the region Mγγ ∼ 2mt (the top-quark pair threshold), the invariant

8We have also checked that in the extrapolation to rcut = 0 the associated results for the total cross sections
and the differential distributions vary less than 1% when rcut = 0.0005 is used.
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Figure 3.14. Ratios of diverse massive corrections to the massless case. In the upper panel we show
the ratio of the two-loop (qq̄ → γγ) massive contribution to the massless one. In the lower panel we
show the corresponding ratio but for the 1-loop box (gg → γγ) contribution. The central scale is
shown with a black dashed line.
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Figure 3.15. Invariant mass distribution of the double-real (pp → γγtt̄) contribution to the NNLO
fully massive result. In the lower panel we show the relative size of each one of the partonic channels
that form the total double-real contribution. Only central scale results are shown.
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mass distribution exhibits its negative peak 9 due to a superposition of effects coming from
the loop contributions. In the low-mass region (Mγγ < 2mt), the massive result is still slightly
larger than the massless case since the real corrections can resolve the top quark loop because
the total centre–of–mass energy can be larger than 2mt [114]. Beyond the negative peak, the
massive NNLO prediction presents its maximum (positive) deviation from the massless result
at about 2.3 times of the value of the top quark pair threshold. The position (and shape) of
this positive peak is the result of a competition between two opposite behaviours of (mainly)
two contributions: the box scattering amplitude (gg-channel) and the two-loop form factor
(qq̄-channel) (see Fig. 3.14). We postpone the discussion of the decreasing tail in the ratio
between the massive and massless result, to the end of this section. The effect of the massive
corrections (within the fiducial cuts discussed above) in the invariant mass from 1 GeV to
2 TeV is a deviation from the massless result in the range [-0.4%, 0.8%]. The effect may be
larger if we use different selection cuts and for values of Mγγ > 2 TeV.

We now comment on the two-loop contribution to the NNLO invariant mass distribution10,
underlining the common features with the one-loop contribution in gluon-fusion channel. In
Fig. 3.14 (upper panel) we show the ratio between the fully massive two-loop contribution and
the massless case. The ratio is performed explicitly using the hard virtual factors H(2) defined
in the hard resummation scheme as explained in ref. [155] and in our paper of the two-loop
massive form factors [4], reported also in 3.1. The bands are computed implementing the usual
7-point scale variation as described above. As we can see from both of the panels in Fig. 3.14,
in the region below the top-quark threshold (Mγγ < 2mt) the presence of a heavy-quark
flavour inhibits the effect that would have a 6th massless flavour. As in any massive loop
contribution, the ratio exhibits the typical peak around the top quark threshold. In this region
of the invariant mass the perturbative result mimics the production of a top-antitop pair
on-shell which would tend to enhance the cross-section. This effect, combined with the common
destructive interference between massive and massless amplitudes, results in a negative peak
around the top-quark threshold. The size of both ratios, one-loop gg and two-loop, around the
negative peak is quantitatively similar and amounts to roughly −15%. For invariant masses
larger than 2mt (and after a peak around Mγγ ∼ 2.3 × 2mt), the tail decreases. At this point
we observed also, that the massless two-loop contribution obtained with six light quark flavours
is smaller (in the whole invariant mass range) than the result with five light flavours and a
massive one, confirming the mitigating effect of the top-mass. Moreover, at large invariant
masses, the ratio between the massless results (H(2)(nf = 6lf)/H(2)(nf = 5)) tends to get
closer, as expected, to the corresponding massive result shown in Fig. 3.14 top panel. We
postpone to future developments an exploration to larger values of the photon-pair invariant
mass, which would allow us to determine the region where the massive and the six-flavour
massless result overlap.

In the bottom panel of Fig. 3.14 we show the known behaviour of the ratio between the
fully massive one-loop box contribution and the corresponding contribution with five light
quark flavours. In the gluon-fusion channel there are two kinds of massive contributions:

9In the ratios, the corrections larger (smaller) than the unity are named positive (negative) since they are
larger (smaller) than the five light flavour result.

10The representative Feynman diagram of this two-loop contribution is shown in Fig. 3.12 b).
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Figure 3.16. Invariant mass distribution of the one-loop real emission massive contribution at
NNLO. Only the massive top quark circulates in the loop. The light quark flavours are already
considered in the massless part of the calculation. We show the different partonic channels and a
comparison with the size of the double real correction shown in Fig. 3.15.

the interference between the massless one-loop box and the massive one, and the squared
modulus of the massive one-loop box. In this case, for large values of Mγγ ≫ mt, the ratio
asymptotically11 approaches the value(∑

nf =6 Q2
q

)2

(∑
nf =5 Q2

q

)2 = 225
121 , (3.63)

implying that the massive contribution behaves as if it were composed of 6 light quark
flavours [78]. The one-loop in gluon-fusion and two-loop in quark channel are the two most
sizable massive contributions at NNLO accuracy. The distinctive and opposite behaviour
of these two contributions at large values of Mγγ (taking into account also the vanishing
luminosity of the gluon) determines the position of the positive peak in the ratio of Fig. 3.13.

We now consider the massive double real corrections (pp → γγtt̄ + X). In Fig. 3.15 we
show the invariant mass distribution obtained from the partonic sub-processes gg → γγtt̄ and
qq → γγtt̄. Since we produce two on-shell top quarks, and since we are dealing with tree-level
scattering amplitudes, there is no top quark threshold in the distribution (it has a continuously
decreasing (logarithmic) tail as in the massless case). The only peak in this invariant mass
distribution is due to kinematic effects (it peaks at about 2 × phard cut

T γ = 80 GeV, as in the
massless case). This kinematic effect is explained in detail in ref. [79] for the massless result.
In the bottom panel of Fig. 3.15 we show the relative size of the different channels (the qq̄

and gg channels) with respect to the total. For large values of Mγγ the luminosity of the
gluon decreases and the total contribution is (mainly) due to the qq̄ channel. The vanishing

11For the kinematical cuts considered here, the asymptotic regime is reached at (roughly) 3 TeV, which is not
shown in these plots.
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luminosity (at large invariant masses) of the gluon explains why the qq̄ channel dominates at
large values of Mγγ in the total NNLO invariant mass distribution. The prevalence of the qq̄

channel in the tail, explains why the ratio in Fig. 3.13 decreases at large values of Mγγ , even
though the fully massive box contribution (gg channel) is almost twice the massless box in the
tail (see Fig. 3.14 bottom panel). At large invariant masses the partonic channels containing
at least one gluon vanish and the massive real corrections are almost negligible. Conversely,
the negative corrections coming from the qq̄ channel (massive two-loop contribution) are still
present, and in the full result the ratio turns out to be negative in this kinematic region (see
the ratio in Fig. 3.13 around Mγγ ∼ 2 TeV).

In the following, we discuss the real-virtual contribution of the one-loop NNLO massive
corrections to diphoton production (pp → γγj + X). In Fig. 3.16 we compare the invariant
mass distribution of the different channels with respect to the total correction. The qq̄ and qg

channels show very different behaviour (being the qg initiated sub process the channel that
dominates the contribution around the top quark threshold). The positive peak behaviour
around the top quark threshold is also found in the box contribution when only a massive top
quark is circulating in the loop [114]. As the remaining five light flavours are also included
in the loop, the destructive interference between these two types of terms dominates the box
contribution, producing the typical negative peak (as it is shown in Fig. 3.14 bottom panel).

Here (in the real-virtual case), since the one-loop scattering amplitudes (see Fig. 3.12
c)) are interfered with the corresponding tree-level matrix elements, there is no such mixing
between massive and massless quarks circulating through the loop. For large values of the
invariant mass (Mγγ > 500 GeV) the contribution of the real-virtual term is negative, slightly
enhancing the decreasing behaviour in the tail of the ratio in Fig. 3.13.

In Fig. 3.16 we also show the contribution of the whole pp → γγtt̄ + X sub-process. The
size of the real-virtual and the double-real contributions are roughly of the same order, and
they are subdominant with respect to the one-loop box and two-loop form factors.

Finally, in Fig. 3.17 we show the ratios of each of the massive contributions (schematically
drawn in Fig. 3.12) with respect to the massless NNLO differential prediction. As expected
from the previous paragraphs, the two-loop qq̄ (dot-dashed black line) and the one-loop box
corrections (solid red line) dominate throughout the invariant mass range. The effect of the
real-virtual contribution (dashed green line) is subdominant and reduces the size of the negative
peak at the top quark threshold. The effect of the massive double real corrections (emission of
two on-shell top quarks) is tiny and not relevant for the phenomenology (dotted blue line).
The correction introduced by the two-loop massive contribution at large values of the invariant
mass is negative and reduces the cross section. For Mγγ > 2 TeV it is the dominant massive
effect.
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Figure 3.17. Ratios of each one of the massive contributions with respect to the NNLO massless
cross section as a function of the invariant mass.
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Chapter 4

Two-loop mixed QCD-EW
corrections to quark-induced Higgs
production at hadron colliders

After the discovery of the Higgs boson with the Large Hadron Collider (LHC) at CERN
in 2012 [1, 191], the work of the LHC community has focused on the study of the Higgs
sector, which provides a stringent test of the Standard Model of particles (SM) and a fertile
environment for the search of New Physics (NP) signals [192–204].

Two of the most relevant observables in Higgs studies are the Higgs total cross section
and the Higgs transverse momentum (pT ) distribution. The dominant Higgs production mode
at the LHC is the gluon fusion channel. In the production via gluon fusion, the coupling of
the Higgs boson to gluons is mediated by a heavy-quark loop. This gives the opportunity to
test the Standard Model of particles and to look for possible deviations from it, if the NP
particles couple to the Higgs boson. Since Higgs coupling with the gluons is proportional to
the Yukawa coupling yQ, and thus to the mass mQ, of the heavy quark circulating in the loop,
in the Standard Model the largest contribution comes from the top-quark loop, making the
Higgs production cross section roughly proportional to y2

t .
The Higgs production cross section was computed at leading order in the ’70s [205], and

at next-to-leading-order (NLO) in strong coupling constant αs in the ’90s [206, 207], where
the exact dependence on the heavy-quark mass has been retained. NLO QCD corrections are
sizable (∼ 100%) and considering higher-orders is thus indispensable. The next-to-next-to-
leading-order (NNLO) [208–210] and the next-next-to-next-to-leading-order (N3LO) [211, 212]
corrections in αs have been computed in the Higgs Effective Field Theory (HEFT) approach,
i.e. in the limit of a top quark much heavier than the Higgs boson, mt ≫ mh, assuming
all other quarks are massless. HEFT replaces the loop-mediated coupling by an effective
tree-level coupling, reducing by one both the number of loops and the number of scales in
the computation of the relevant amplitudes. NNLO and N3LO corrections are found to be
respectively of the order of ∼ 20% and ∼ 3% of the cross section.

The NNLO and N3LO corrections in αs to the Higgs total cross section are respectively
O
(
αα4

s

)
and O

(
αα5

s

)
. Since α ∼ α2

s, the last two corrections call the mixed QCD-Electroweak
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(QCD-EW) contribution, which starts at O
(
α2α2

s

)
, and the corresponding NLO corrections in

αs (O
(
α2α3

s

)
). In the light-quark mixed QCD-EW contribution the Higgs is produced through

its gauge coupling to the EW bosons V = W, Z. Introducing a heavy quark, we open other
two channels for Higgs production: the Yukawa coupling to the heavy quark and the trilinear
self-coupling. Mixed QCD-EW contribution with full heavy-quark mass dependence [213–216]
increases the N3LO cross section by about 2% [217]. As for QCD corrections also for the
QCD-EW contribution the dominant mode for the Higgs production is the gluon fusion channel
because of the high gluon luminosity at LHC. Since the largest part (∼ 98%) of the increase
at O

(
α2α2

s

)
is due to the light-quark part of the mixed QCD-EW contribution, the evaluation

of the NLO corrections has been aimed at the light-quark part. These have been computed
in [218] for gg → H, and, as it is usual for QCD NLO corrections in gluon channel, turned out
to be sizeable, in this case of the same magnitude of the O

(
α2α2

s

)
contribution. Briefly, mixed

QCD-EW corrections (LO+NLO) increase of ∼ 5% the total Higgs cross section.
In [217] all the main effects mentioned so far have been combined, where approximated

results have been used for those that had not yet been determined. As result the following
prediction for the gluon-fusion cross-section at the LHC, with a center-of-mass energy of 13
TeV, for a Higgs boson with a mass mh = 125 GeV, was presented:

σ = 48.58 pb+2.22 pb (+4.56%)
−3.27 pb (−6.72%) (theory) ± 1.56 pb (3.20%) (PDF+αs) . (4.1)

The breakdown of the different effects is:

48.58 pb = 16.00 pb (+32.9%) (LO, rHEFT)
+ 20.84 pb (+42.9%) (NLO, rHEFT)
− 2.05 pb (−4.2%) ((t, b, c), exact NLO)
+ 9.56 pb (+19.7%) (NNLO, rHEFT)
+ 0.34 pb (+0.2%) (NNLO, 1/mt)
+ 2.40 pb (+4.9%) (EW, QCD-EW)
+ 1.49 pb (+3.1%) (N3LO, rHEFT),

(4.2)

where rHEFT is the contribution in the large-mt limit, rescaled by the ratio RLO of the
exact LO cross-section by the cross-section in the HEFT:

RLO =
σLO

ex;t
σLO

EF T

= 1.063. (4.3)

Specifically, the first line, (LO, rHEFT), is the cross-section at LO taking into account only
the top quark. The second line, (NLO, rHEFT), are the NLO corrections in the rescaled
HEFT, and the third line, ((t, b, c), exact NLO), is the correction that needs to be added to
the first two lines in order to obtain the exact QCD cross-section through NLO, including
the full dependence on top, bottom and charm quark masses. The fourth and fifth lines
contain the NNLO QCD corrections in the rescaled HEFT: (NNLO, rHEFT) denotes the
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NNLO corrections in the HEFT rescaled by RLO, and (NNLO, 1/mt) contains subleading
corrections in the top mass at NNLO computed as an expansion in 1/mt. The sixth line, (EW,
QCD-EW), contains the two-loop electroweak corrections, computed exactly, and three-loop
mixed QCD-electroweak corrections, computed in an effective theory approach. The last
line, (N3LO, rHEFT), contains the N3LO corrections rescaled by RLO. Resummation effects
contribute at the per mille level and are therefore negligible.

Physical effects of the exact dependence on the quark masses beyond NLO (O
(
α3

s

)
) have

been considered for a few years. The one-loop Higgs + 4 partons amplitudes with exact
dependence on the heavy-quark mass have been computed in [219] and [220]. The three-loop
gg → H amplitudes have been computed in [221] with only one top loop, and in [222] with
one and two top loops, while in [223] two scales amplitudes, with a loop of top-quark and a
loop of bottom-quark, have been considered. However the main obstacle when calculating the
total cross section with full heavy-quark mass dependence are the two-loop Higgs + 3 partons
amplitudes. These have been calculated numerically in [224] and [225], and semi-analytically
in the form of one-dimensional generalised power series in [226]. In [225] the phenomenological
impact of the full top-quark mass dependence on the total cross section has been studied,
and in [227] also the top-bottom interference has been included. The NNLO (O

(
α4

s

)
) top

correction is found to raise the central value of ∼ 0.3%, while top-bottom interference at the
same perturbative order increases the cross section of ∼ 1%. It has also been noticed that
top-bottom interference is as large at (O

(
α4

s

)
) as it is at (O

(
α3

s

)
), but with opposite sign. On

the other hand, the NNLO top correction is smaller than the NLO one, with still an opposite
sign.

If, from the QCD frontier, one aims to better understand the quark masses effects, also the
electroweak corrections are being studied, in particular the efforts are focused on the reduction
of the theoretical uncertainty coming from the NLO mixed QCD-EW corrections. To this
task, the attempts of the community go towards the computation of the relevant two-loop
one real emission amplitudes in all the partonic channels with an exact dependence on the
electroweak boson masses. The O

(
α2α3

s

)
corrections consist of three parts: the one-loop

2 → 3, the three-loop 2 → 1, and the two-loop 2 → 2. In [228], the one-loop 2 → 3 processes
were computed and found to yield a negligible contribution. The three-loop contribution
was evaluated analytically and expressed in terms of multiple polylogarithms (MPLs) [229].
In [230], the two-loop 2 → 2 process in the soft emission approximation was added and in [231]
the total cross section was evaluated in the small EW-boson mass limit mV ≪ mh. The
complete helicity amplitudes, with the exact EW-boson mass, for gg → Hg were presented
in [232], where the calculation was done analytically, expressing the results in terms of MPLs.
In [233] an independent computation of the same amplitudes, based on the series solution
method of [32], was done.

Including the two-loop real-emission gg → Hg with exact EW-boson mass dependence, the
EW contribution to the Higgs cross section in gluon fusion channel at LHC13 is [233]:

σ
(α2

sα2+α3
sα2)

gg→H+X = 1.467(2) +18.7%
−14.6% (µR var.) ± 2% (PDF) pb ,

which represents 5.1% of the NLO QCD cross section, result very close to the 5.2% obtained in
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the infinite weak boson mass limit [231]. This result therefore allowed to reduce the uncertainty
of ±1% assigned previously to the EW gluon-induced contribution in order to reflect the
absence of an exact weak boson mass treatment at NLO. Furthermore, the rescaling of the cross
section with higher-order QCD corrections, computed in HEFT, and the evaluation of other
partially unknown effects yields the best estimate of 6.91±0.93% (relative to the gluon-induced
NLO QCD) for all the corrections of EW origin to Higgs production at LHC [233].

At this stage an important source of uncertainty comes from the NLO quark-induced EW
contribution. The relevant two-loop amplitudes, qg → Hq, q̄g → Hq̄ and qq̄ → Hg, with
exact EW-boson mass dependence, have been computed analytically and expressed in terms of
multiple polylogarithms (MPLs) in [234]. However the complexity of the amplitudes results in
a large evaluation time: for a single point in the phase space and requiring 20 digits accuracy
the evaluation with Ginac [27] takes about 30 minutes. Then, in order to reduce the evaluation
time and facilitate a phenomenological study of the NLO quark-induced EW corrections, we
performed an independent calculation of qg → Hq, and crossed channels, where the relevant
MIs have been computed exploiting the differential equations method and one-dimension
generalised power series expansions.

In 4.1 we describe the structure of the light-quark two-loop amplitude qg → Hq. We
discuss the form factors computation along with their UV and IR singularity structure. In 4.2
we report on the MIs calculation, describing the basis and the system of differential equations.

4.1 Amplitude structure

We consider the light-quark part of the NLO quark-induced EW corrections to Higgs
production with one real emission, retaining the exact electroweak-boson mass dependence.
At the partonic level, the relevant two-loop scattering amplitudes are gq → Hq, gq̄ → Hq̄ and
qq̄ → Hg. We computed the first of them and obtained the others by crossing. We assigned
the momenta as follows,

g(p1) + q(p2) → q(p3) + H(p4). (4.4)

The kinematics for this process is described by the Mandelstam variables

s = (p1 + p2)2, t = (p1 − p3)2, u = (p2 − p3)2, with s + t + u = m2
h, (4.5)

where the external particles are on-shell, i.e. p2
1 = p2

2 = p2
3 = 0 and p2

4 = m2
h, and we indicate

with mh and mW (mZ) respectively the Higgs and W (Z) mass. The bare scattering amplitude
can be written as

Mgq,Hq = (2π)4
(

i α3/2mW

2 sin3 θW

)
i T a

ij ϵµ
λ1

(p1) us3(p3)Aµus2(p2), (4.6)

where T a
ij is the generator of the fundamental representation of SU(Nc) (being Nc the number

of colors), with a and i(j) the color indices of the gluon and the outgoing (incoming) quark
respectively, α is the QED coupling and θW the Weinberg angle, ϵµ

λ1
(p1) is the gluon polarisation
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and us3(p3), us2(p2) the quark spinors.

Figure 4.1. (a) Figure 4.2. (b) Figure 4.3. (c)

Figure 4.4. Representative diagrams contributing to the amplitude gq → Hq.

The Feynman diagrams which contribute to the amplitude are of two classes: the diagrams
which contain a fermion loop, and the diagrams which have only an open fermion current.
We will refer to the latter as "open" diagrams, and to the former as "closed" diagrams. A
representative open diagram is shown in fig. 4.1, while fig. 4.2 and 4.3 show two closed diagrams.
The amplitude will be the sum of the two contributions,

Aµ = Aopen
µ + Aclosed

µ . (4.7)

The contribution to the amplitude coming from the open diagrams, Aopen
µ , can be decomposed

in a left-handed and a right-handed part

Aopen
µ = Aopen

L,µ + Aopen
R,µ . (4.8)

The left-handed (L) and the right-handed (R) projectors are defined as

PL = I − γ5
2 , PR = I + γ5

2 . (4.9)

The left-handed open fermion current reads

us3(p3)Γ1γα(gv
V + γ5ga

V )γδΓ2γβ(gv
V + γ5ga

V )Γ3PLus2(p2), (4.10)

where Γ1, Γ2 and Γ3 are chains of an even number of γ matrices and γµ(gv
V + γ5ga

V ) is the
coupling of the electroweak boson V with the quark. As always, in our computation we use
dimensional regularization with d = 4 − 2ϵ. Furthermore, we adopted the naive dimensional
regularization scheme (NDR) [235] which assumes that the usual anticommutation relations
valid in four dimensions hold also in d dimensions

{γµ, γν} = 2gµν , {γµ, γ5} = 0, γ2
5 = I. (4.11)

Anticommuting γ5 in (4.10) until it gets contracted with a chiral projector, and using γ5PL =
−PL, the open fermion current can be written as

(gv
V − ga

V )2 us3(p3)Γ1γαγδΓ2γβΓ3PLus2(p2). (4.12)

Similarly, the right-handed open fermion current,

us3(p3)Γ1γα(gv
V + γ5ga

V )γδΓ2γβ(gv
V + γ5ga

V )Γ3PRus2(p2), (4.13)
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can be written as
(gv

V + ga
V )2 us3(p3)Γ1γαγδΓ2γβΓ3PRus2(p2). (4.14)

From (4.12) and (4.14) we observe that we can replace the electroweak boson coupling with
an effective vector coupling: (gv

V − ga
V )γµ for the left-handed open amplitude and (gv

V + ga
V )γµ

for the right-handed one. Then the computation proceeds through the usual techniques
that we would adopt in the pure QCD case: determine the tensor structures, construct and
apply projectors to extract the form factors. We adopt the ’t Hooft Veltman scheme with
four-dimensional external states. So we have two independent four-dimensional tensors

T1 =ϵµ
λ1

(p1) u(p3) τ1,µ u(p2), (4.15)
T2 =ϵµ

λ1
(p1) u(p3) τ2,µ u(p2), (4.16)

where

τ1,µ = /p1p2µ − p2 · p1γµ , τ2,µ = /p1p3µ − p1 · p3γµ . (4.17)

With these definitions of the tensors the projectors are

P1 = 2 − d

2(d − 3)s2u
T †

1 + 4 − d

2(d − 3)stu
T †

2 , (4.18)

P2 = 4 − d

2(d − 3)stu
T †

1 + 2 − d

2(d − 3)t2u
T †

2 . (4.19)

Choosing p2 as the reference vector for ϵµ(p1), the sum over the polarisations of the gluon is
∑
pol

ϵµ(p1)ϵ∗
ν(p1) = −gµν + p1µp2ν + p1νp2µ

p1 · p2
. (4.20)

According to the normalization (4.6), the electroweak boson couplings gv
V and ga

V are

gv
W = 1

2 ga
W = 1

2 (4.21)

gv
Z =

√
2

cos2 θW

(
Tq

2 − sin2 θW Qq

)
ga

Z =
√

2
cos2 θW

Tq

2 , (4.22)

where Qq and Tq are respectively the electric charge and the third generator of the quark q.
Finally, using (4.21) and (4.22), we arrive to the following structure for the left-handed and
right-handed open amplitudes:

Aopen
L,µ =

( 2
cos4 θW

Q2
q sin4 θW

) [
τ1,µF open

1,mZ
+ τ2,µF open

2,mZ

]
PL, (4.23)

Aopen
R,µ =

[
τ1,µF open

1,mW
+ τ2,µF open

2,mW

]
PR

+ 2
cos4 θW

(
Tq − Qq sin2 θW

)2 [
τ1,µF open

1,mZ
+ τ2,µF open

2,mZ

]
PR.

(4.24)

We notice that the left-handed amplitude receives contribution only from the Z boson. We
stress that we extracted the form factors F open

1,mV
and F open

2,mV
applying the projectors (4.18) and
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(4.19) to the amplitude after having replaced the electroweak boson coupling with the effective
vector coupling. The dependence on the quark polarization is embedded into a rescaling of the
coupling constant.

An exact evaluation of the entire contribution coming from the closed diagrams is chal-
lenging, essentially due to the top-quark circulating in the loop, which, with a mass of the
order of the electroweak scale, is much heavier than all the other quarks. Considering an exact
analytic dependence on the top-quark mass is a highly non-trivial task, first of all for the
reduction to the master integrals, and it is beyond the scope of this thesis. However, as already
mentioned, the heavy-quark contribution has been found to be a few percent of the light-quark
correction for Higgs production via gluon-fusion, and it is believed to be small also in quark
initiated channels. Still, we postpone to future developments an approximated estimation of
the heavy-quark contribution, for example exploiting the infinite top-quark mass limit of the
HEFT. For now, in order to capture the most sizeable contribution to the next-to-leading
mixed QCD-EW corrections to quark-induced Higgs production, we ignored the top-quark
and considered contribution coming from five massless quark flavours u, d, s, c and b.

The closed diagrams are, in turn, of two types, depending on how many vector bosons
are attached to the quark-loop. The vector part of the diagrams with only one electroweak
boson attached to the quark-loop (see Fig. 4.2) vanishes for Furry’s theorem, the corresponding
axial vector part vanishes summing over complete degenerate isospin doublets. The third
generation, which is incomplete, gives rise to an axial vector anomalous contribution, that,
in the calculation presented in this thesis, has not been included. Consequentially, closed
diagrams with one-boson insertion, shown in Fig. 4.2, do not contribute to our form factors.

The closed non-anomalous contribution comes entirely from diagrams with two electroweak
bosons attached to the quark-loop, as the one shown in Fig. 4.3. Anticommuting γ5 inside
the Dirac trace, we can find a vector contribution proportional to (gv

V )2 + (ga
V )2, and an axial

vector contribution proportional to gv
V ga

V γ5, which vanishes summing over complete degenerate
isospin-doublets. As in the case of one-boson insertion, the b-quark contribution gives rise to an
anomalous term, which, for the computation described in this thesis, has not been considered.
We notice that, as far as we neglect any kind of top-quark contribution, the anomaly arises
only from diagrams with a Z boson. We plan to include this anomalous contribution, both for
one- and two-boson insertion, in further developments of this work, exploiting the prescription
given in [236,237] to treat γ5.

We computed the (non-anomalous) contribution to the amplitude coming from closed
diagrams replacing (as for the open diagrams) the electroweak boson coupling with an effective
vector coupling. We took into account different light-quark flavours: the first two generations
((u, d) and (c, s)) for diagrams with a W boson, the first two generations and the single b-quark
for diagrams with a Z boson. Using the coupling constants (4.21) and (4.22) we find the
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Figure 4.5. Representative diagram contributing to the leading order amplitude gq → Hq.

following structure for the closed amplitude,

Aclosed
µ = Niso

[
τ1,µF closed

1,mW
+ τ2,µF closed

2,mW

]
+ 2

cos4 θW

[
Nd

(
Q2

d sin4 θW − Qd sin2 θW Td + T 2
d

2

)

+ Nu

(
Q2

u sin4 θW − Qu sin2 θW Tu + T 2
u

2

)] [
τ1,µF closed

1,mZ
+ τ2,µF closed

2,mZ

]
,

(4.25)

where Niso is the number of generations circulating in the loop for the W boson contribution,
and Nu (Nd) is the number of up-like (down-like) quarks circulating in the loop for the Z boson
contribution. In accordance with what was stated above, we have set for phenomenological
applications Niso = 2, Nu = 2 and Nd = 3. The form factors F closed

1,mV
and F closed

2,mV
have been

obtained applying the projectors (4.18) and (4.19) to closed diagrams with two bosons attached
to the quark-loop (Fig. 4.3).

The form factors F open
j,mV

and F closed
j,mV

admit an expansion in the strong coupling constant

F open
j,mV

=
√

αs

[
F

open,(1)
j,mV

+
(

αs

2π

)
F

open,(2)
j,mV

+ O
(
α2

s

)]
,

F closed
j,mV

=
√

αs

[(
αs

2π

)
F

closed,(2)
j,mV

+ O
(
α2

s

)]
,

(4.26)

where F
class,(l)
j,mV

is the l-loop contribution of the corresponding class of diagrams and mV can be
either mZ or mW . The open contribution starts at leading order (see Fig. 4.5), while the closed
contribution is a next-to leading order effect. While F

open,(1)
j,mV

and F
closed,(2)
j,mV

have a trivial color
structure, F

open,(2)
j,mV

can be decomposed in a leading and a subleading color contribution,

F
open,(2)
j,mV

= 1
m4

V

[
Nc Cj,mV

(
s

m2
V

,
t

m2
V

,
u

m2
V

, ϵ

)
+ 1

Nc
Dj,mV

(
s

m2
V

,
t

m2
V

,
u

m2
V

, ϵ

)]
, (4.27)

where Cj,mV and Dj,mV are dimensionless functions of the kinematic invariants and the
dimension regulator ϵ.

In order to obtain the scattering amplitude, we generated the relevant Feynman diagrams
using qgraf [238]. The Feynman diagrams contributing to this process belong to 6 different
scalar integral families: PL, PLx13, PLx123, NA, NB and NBx132, reported in appendix
C.1. We used FORM [158, 159] to apply the projectors to the amplitude and perform the Dirac
algebra. We have used a Mathematica script to map each diagram to one of the families
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defined in appendix C.1, the same script converts the qgraf output into FORM expressions.
The scalar integrals appearing in the expressions of the form factors are written in terms
of a basis of 180 master integrals. The decomposition in terms of MIs is performed using
Integration-by-Parts identities [10, 11], via the Laporta Algorithm [12], implemented in the
computer code KIRA [35, 36]. After the reduction, we end up with 10 seven-denominator
top-sectors including permutations of external legs (all of them are shown in fig. 4.16).

In the calculation we employed two bases of master integrals: the precanonical basis, {Ji},
and a partially canonical basis, {Gi}, both defined in appendix C. Form factors are expressed
in terms of the ϵ−expanded Ji, while the basis {Gi} has been used to solve the system of
differential equations, described in section 4.2. In the rest of this section we report on the
construction of the finite remainders.

4.1.1 UV renormalization and infrared structure

We need only the renormalization of αs which, in MS scheme, is

αs = αsS−1
ϵ µ2ϵ

[
1 −

(
αs

2π

)
β0
ϵ

]
+ O

(
α3

s

)
, (4.28)

where αs is the renormalized coupling, Sϵ = (4π)ϵe−ϵγ and

β0 = 11CA − 4Nf TR

6 , (4.29)

where CA = Nc is the casimir of the adjoint representation, Nf is the number of active flavours,
in our case 5, and TR = 1

2 .
The renormalized form factors are then:

F
open
j,mV

=
√

αs

[
F

open,(1)
j,mV

+
(

αs

2π

)
F

open,(2)
j,mV

+ O
(
α2

s

)]
, (4.30)

F
closed
j,mV

=
√

αs

[(
αs

2π

)
F

closed,(2)
j,mV

+ O
(
α2

s

)]
, (4.31)

where

F
open,(1)
j,mV

= F
open,(1)
j,mV

(4.32)

F
closed,(2)
j,mV

= F
closed,(2)
j,mV

(4.33)

F
open,(2)
j,mV

= F
open,(2)
j,mV

− 1
2

β0
ϵ

(
m2

V

µ2

)ϵ

F
open,(1)
j,mV

. (4.34)

After renormalization, F
open,(2)
j,mV

still contains IR poles. The structure of such singularities
for QCD virtual NLO corrections is well-known and is fully captured by Catani’s operator
I(1) [239]. After subtraction of the infrared singularities, the finite reminder is

Fopen,(2)
j,mV

= F
open,(2)
j,mV

− I(1)
(

m2
V

µ2

)ϵ

F
open,(1)
j,mV

, (4.35)
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where Catani’s operator I(1) reads

I(1) = −1
2

eϵγ

Γ(1 − ϵ)

{
Vsing

q (ϵ)2CF − CA

CF

(
−µ2

u

)ϵ

+

+1
2

(
Vsing

g (ϵ) + CA

CF
Vsing

q (ϵ)
)[(

−µ2

t

)ϵ

+
(

−µ2

s

)ϵ]}
,

(4.36)

where CF = (N2
c − 1)/(2Nc) is the casimir of the fundamental representation and the Vsing

are given by the following,

Vsing
q (ϵ) = CF

ϵ2 + 3CF

2ϵ
, (4.37)

Vsing
g (ϵ) = CA

ϵ2 + 11CA − 2Nf

6ϵ
. (4.38)

According to Feynman prescription Mandelstam invariants carry an implicit small positive
imaginary part. Finally, the finite remainders have the following structures,

Fopen,(1)
j,mV

= 1
m4

V

Aj,mV

(
s

m2
V

,
t

m2
V

,
u

m2
V

)
(4.39)

Fopen,(2)
j,mV

= 1
m4

V

[
Nf Bj,mV

(
s

m2
V

,
t

m2
V

,
u

m2
V

,
µ2

m2
V

)
(4.40)

+ Nc Cj,mV

(
s

m2
V

,
t

m2
V

,
u

m2
V

,
µ2

m2
V

)
(4.41)

+ 1
Nc

Dj,mV

(
s

m2
V

,
t

m2
V

,
u

m2
V

,
µ2

m2
V

)]
(4.42)

Fclosed,(2)
j,mV

= 1
m4

V

Ej,mV

(
s

m2
V

,
t

m2
V

,
u

m2
V

)
, (4.43)

where the functions Aj,mV , Bj,mV , Cj,mV , Dj,mV and Ej,mV depend only on the kinematics.

4.2 Master Integrals Computation

In this section we discuss the details of the MIs computation. The scalar integrals appearing
in the amplitude can be reduced to a basis of 180 master integrals. All the seven-denominator
top-sectors, including those obtained with a permutation of the external particles, are shown
in fig. 4.16.

The MIs of the planar seven-denominator topology of fig. 4.6 (and permuted configurations)
have been solved analytically in [240] in terms of Multiple Polylogarithms, integrating the
canonical form of the differential equation system. For the non-planar topology NA, shown
in fig. 4.13, the analytical solution, in terms of MPLs, has been found in [232], and a semi-
analytical solution of the canonical MIs, as one-dimension generalised power series, is also
available [233]. All the other master integrals, not mentioned so far, which contribute to the
process studied in this chapter, have been computed analytically, in terms of MPLs, in [234],
where a direct integration over Feynman parameters has been adopted.
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In [234] the authors provide analytical expressions for the different parts of the two-loop
finite remainder. In particular, the different components of the form factors are expressed,
after non-trivial simplifications, as sum of independent algebraic prefactors multiplied by
(non-zero) transcendental functions with maximum weight 4. Despite the efforts made to
simplify and reduce the size of the NLO form factors, the expressions provided in [234] still
contain several thousands of different MPLs. The numerical evaluation, performed with Ginac,
is time consuming (30 minutes for a single phase-space point requiring an accuracy of 20
digits), preventing the possibility of a direct implementation of the analytic expression of
the amplitude inside a Montecarlo integrator. The objective of our work is to overcome
this time issue, facilitating a phenomenological study of the corrections computed. To this
purpose, we performed an independent calculation of all the MIs by means of the differential
equations method [13–20]. In particular we solved the system of differential equations semi-
analytically exploiting the generalised power series expansion technique, as described in [32]
and implemented in the software DiffExp [33]. In our approach, the number of expansions
needed for a numerical evaluation of the amplitude is lower since the number of non-zero entries
of the differential equation matrix is typically smaller than the number of different MPLs1.
Furthermore, in the differential equation approach, each evaluation point can be related to the
previous one, with an effective decreasing of the evaluation time (up to a minimum given by
the time needed for a single expansion). In the following we describe the construction and the
solution of the differential equation system.

We have built the system of differential equations including all the MIs coming from the
amplitude, considering permutations of the external legs. The six integral families to which
the MIs belong are defined as follows:

Itopo(n1, ..., n9) =
∫ Dk1Dk2

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5 Dn6

6 Dn7
7 Dn8

8 Dn9
9

, (4.44)

where topo ∈ {PL, PLx13, PLx123, NA, NB, NBx132} labels the families and the corresponding
propagators D1, ..., D9 are given in appendix C.1. The computation is done in dimensional
regularization with d = 4 − 2ϵ dimensions, and our convention for the integration measure is

Dki = ddki

iπ2−ϵ
eϵγ m2ϵ

V . (4.45)

We derived the differential equations with respect to the kinematic variables:

S = s

m2
V

, T = t

m2
V

, ω = m2
h

m2
V

. (4.46)

Master integrals of the precanonical basis, {Ji}, defined in appendix C.2, solve the system of
differential equations,

dJ⃗ (x⃗, ϵ) = dA(x⃗, ϵ)J⃗ (x⃗, ϵ), x⃗ = (S, T, ω) , (4.47)
1The redundancy in the numerical evaluation of the analytical expression can be eliminated expanding once

for all the independent kernels of the MPLs.
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where d is the total differential with respect to the kinematic invariants S, T and ω. After
rescaling each integral Ji with a suitable power of ϵ, the matrix dA(x⃗, ϵ) admits a Taylor
expansion in ϵ,

dA(x⃗, ϵ) = dA0(x⃗) +
4∑

j=1
ϵj dAj(x⃗) + O(ϵ5). (4.48)

We observed that integrating out dA0(x⃗) leads to a speedup, by a factor of four, of the series
expansion algorithm. Indeed, for a null A0(x⃗), the solution can be directly expressed as iterated
integrals2. Then we define a new basis, {Gi}, reported in C.2, which satisfies the following
differential equation system,

dG⃗(x⃗, ϵ) = dB(x⃗, ϵ)G⃗(x⃗, ϵ), dB(x⃗, ϵ) = ϵ dB1(x⃗) + ϵ2 dB2(x⃗), (4.49)

G⃗(x⃗, ϵ) = Ω(x⃗, ϵ)J⃗ (x⃗, ϵ), (4.50)

where Ω(x⃗, ϵ) is algebraic in the kinematics variables and the Gi admit a Taylor expansion
in ϵ. The basis {Gi} is an ϵ-factorised basis up to the non-planar top-sector of fig. 4.14
(and the permuted 4.15), which contains three MIs. Indeed (dB2)ij is non-zero only for
(173 ≤ i ≤ 175, 1 ≤ j ≤ 172) and (178 ≤ i ≤ 180, 1 ≤ j ≤ 177), i.e. the non-homogeneous part
of the differential equation system for the non-planar top-sectors of the topologies NB and
NBx132.

In general, in the polylogarithmic case, for a given sector, there exists a basis of MIs,
which, rescaled by suitable powers of ϵ, decouple as soon as ϵ = 0, this is usually referred to as
the precanonical basis. This happens also in our case, up to a non-planar six-denominator
sub-sector of the topology NA, shown in fig. 4.17, whose two out of the three MIs remain
fully coupled even at ϵ = 0 (the same occurs for the permuted sector shown in fig. 4.18). The
same sector appears also in the electroweak corrections to gg → Hg. To find an ϵ-factorised
basis for this sector, we adopted the same non-standard change of basis used in [54], in which
the interested precanonical MIs are multiplied by polynomials in ϵ where the coefficients are
functions of the kinematics invariants.

We exploit crossing symmetry to evaluate the different amplitudes, gq → Hq, gq → Hq

and qq → Hg, needed for the cross-section. Each amplitude corresponds to a specific physical
region in the plane (s, t):

{s < 0, t < 0} for qq → Hg (4.51)
{s < 0, t > −s + m2

h} for gq → Hq (4.52)
{t < 0, s > −t + m2

h} for gq → Hq (4.53)

A graphical representation of the scattering regions is given in fig. 4.20.

We computed numerical boundary conditions, exploiting the auxilary mass flow method,
using the package Amflow. A boundary condition has been computed in each physical region.

2We note that such a solution has not necessary a uniform transcendentality according to the definition
given in [46].
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From the boundary point we evolve the solution expanding in one-dimension power series in
the plane (S, T ) using Diffexp. No physical thresholds have to be crossed since the center-
of-mass energy is greater than the Higgs mass which is greater than W and Z boson masses.
Nevertheless, we had to provide, for the evaluation in Diffexp, the following prescription:

√
4 − S − T →

√
4 − S − T − iδ. (4.54)

To numerically evaluate Ji we need to evaluate square roots C.92–C.103 on their branch-cut
using Feynman prescription. The square roots that have a small positive imaginary part in the
physical regions are automatically processed by Diffexp, which attributes to them a +iδ by
default. While we have to manually provide the analytic continuation of square roots which
have both a branch-cut in the physical regions and a small negative imaginary part, in our
case only (4.54). However we observe that changing prescription consistently in the series
solution for the Gi and in the numerical evaluation of the Ji would not affect the final result
since no physical thresholds are crossed.

The time needed to evolve the solution in Diffexp between two points which in the (s, t)
plane are 3 · 104 GeV2 distant, with 16 digits accuracy and making a single expansion, is 30
seconds on avarage on a single core laptop. In the following table benchmark values for the
different components of the LO and NLO form factors and for the different physical regions
are reported.

qg qg qq

A1,W −0.002079 + 0.000537i −0.001350 + 0.001737i 0.010919

B1,W −0.001551 + 0.000981i −0.000644 + 0.001767i 0.005944

C1,W 0.010654 − 0.007064i 0.006335 − 0.010879i −0.004454 − 0.000206i

D1,W 0.001225 − 0.021369i −0.004808 − 0.011242i 0.011864 + 0.039780i

E1,W 0.142207 + 0.012437i 0.142207 + 0.012437i 0.000561 − 0.001206i

In the table we used the following values of the kinematics variables:

qg : {s = 106 GeV2, t = −944915.8824 GeV2} (4.55)
qg : {s = −944915.8824 GeV2, t = 106 GeV2} (4.56)
qq : {s = −944915.8824 GeV2, t = −39371.4951 GeV2}. (4.57)

We used the following values for the W mass and the renormalization scale:

mW = 80.3850 GeV µ = 85.7863 GeV . (4.58)

Finally, we compared numerically our results with [234] and found complete agreement in
all the phase space regions.
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Figure 4.6. PL(1, 1, 1, 1, 1, 1, 1, 0, 0) Figure 4.7. PL(0, 1, 1, 1, 1, 1, 1, 1, 0)

Figure 4.8. PLx13(1, 1, 1, 1, 1, 1, 1, 0, 0) Figure 4.9. PLx13(0, 1, 1, 1, 1, 1, 1, 1, 0)

Figure 4.10. PLx123(1, 1, 1, 1, 1, 1, 1, 0, 0) Figure 4.11. PLx123(0, 1, 1, 1, 1, 1, 1, 1, 0)

Figure 4.12. PL(1, 1, 1, 1, 1, 0, 1, 0, 1) Figure 4.13. NA(1, 1, 1, 1, 1, 1, 1, 0, 0)

Figure 4.14. NB(1, 1, 1, 1, 0, 1, 1, 1, 0) Figure 4.15. NBx132(1, 1, 1, 1, 0, 1, 1, 1, 0)

Figure 4.16. The figure shows the seven-denominator top-sectors for the master integrals. All the
possible permutations of external legs arising from the amplitude are shown. Subfigures 4.6 to 4.12
are planar topologies, while subfigures 4.13 to 4.15 are non-planar topologies. Thin black lines
represents massless particles, thick black lines heavy particles and dashed line the Higgs.
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Figure 4.17. NA(1, 1, 1, 1, 0, 1, 1, 0, 0) Figure 4.18. NA(0, 1, 1, 1, 1, 1, 1, 0, 0)

Figure 4.19. The figure shows the sectors whose precanonical MIs remain coupled at ϵ = 0 (see
the text for more details). Thin black lines represents massless particles, thick black lines heavy
particles and dashed line the Higgs.

Figure 4.20. The figure shows the physical regions for the different partonic subprocesses contributing
to the cross-section. The green region corresponds to qq → Hg, the blue region corresponds to
gq → Hq and the yellow region corresponds to gq → Hq. The orange region corresponds to the
decay H → qqg.
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Conclusions

In this thesis we presented two-loop corrections, with exact dependence on internal masses,
to two relevant processes at hadron colliders.

In chapter 3 we presented the diphoton production at NNLO with top quark mass depen-
dence. In particular, in section 3.1 we described the computation of the two-loop form factors
for diphoton production in the qq̄ channel, where Feynman diagrams with a loop of top quark
have been considered [4].

The non-planar topology which contributes to this process contains two sectors of MIs
whose analytic representation cannot be given in terms of MPLs. In order to be able to exploit
our results for phenomenological applications, we computed the MIs by means of differential
equations, exploiting the generalised power series technique. This method proves to be of great
use for phenomenological applications, especially in cases where the functional space for the
MIs contains not only polylogarithmic functions.

In section 3.2 we presented a phenomenological study for diphoton production at NNLO
which fully takes into account the dependence on the top quark mass in all the relevant
channels [5]. We presented a detailed study of the impact of the massive corrections in the
invariant mass distribution around the top quark threshold. We have shown the different
components of the total NNLO QCD massive result. The two most significant contributions
are the one-loop (gg → γγ) box term [78] and the two-loop (qq̄ → γγ) massive amplitude [4].
The negative peak around the top quark threshold is, therefore, the result of (mainly) these
two contributions showing the same (negative peak) behaviour. The moderated size of the
positive peak introduced by the real-virtual contribution (see Fig. 3.16) only slightly modifies
the size of the negative peak. The position of the positive peak in the ratio of Fig. 3.13 is the
result of the two competing opposite behaviours of the two dominant contributions (see Fig.
3.14).

The precedent discussion suggests that the massive corrections presented are relevant not
only for the invariant mass region around the top mass threshold but also for larger values
(mγγ > 2mt). This kinematic region (mγγ ≥ 500 GeV) is of interest for BSM searches.

We leave the inclusion of partial N3LO massless and massive effects to further studies.
In chapter 4 we presented the two-loop mixed QCD-Electroweak corrections to qg → Hq

and its crossed channels, q̄g → Hq̄ and qq̄ → Hg, considering the light-quark contribution and
the exact dependence on the electroweak boson mass. The relevant master integrals have been
computed by means of the differential equations method and exploiting the semi-analytical
approach based on generalised power series expansion. Compared to the analytical result in
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terms of Multiple Polylogarithms [234], our Diffexp implementation allows to considerably
reduce the evaluation time of the relevant scattering amplitudes. On the other hand our
expressions do not see all the cancellations that happen in the analytical formulae.

We are going to include these corrections, in the near future, in a phenomenological
study of Higgs production, investigating their impact on the Higgs total cross section and pT

distribution.
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Appendix A

Integral families and master
integrals for diphoton

A.1 Integral families

The two-loop Feynman diagrams with a loop of heavy-quark, contributing to the process
q(p1) + q(p2) + γ(p3) + γ(p4) → 0, can be mapped into 5 different scalar integral families, NPA,
PLA, PLAx12, PLAx124 and PLAx1234. We define the scalar integrals as

Itopo(n1, ..., n9) =
∫ Dk1Dk2

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5 Dn6

6 Dn7
7 Dn8

8 Dn9
9

, (A.1)

where depending on the topology the set of the propagators {Di} can be one of the following:

• family NPA

D1 = k2
1

D2 = k2
2 − m2

t

D3 = (−k2 + k1)2 − m2
t

D4 = (−p1 + k1)2

D5 = (−p1 + k2)2

D6 = (−p2 − p1 + k1)2

D7 = (p3 − k2 + k1)2 − m2
t

D8 = (−p3 − p2 − p1 + k2)2 − m2
t

D9 = (−p2 − p1 − k2 + k1)2

• family PLA

D1 = k2
1

D2 = k2
2 − m2

t

D3 = (−k2 + k1)2 − m2
t
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D4 = (−p1 + k1)2

D5 = (−p1 + k2)2

D6 = (−p2 − p1 + k1)2

D7 = (−p2 − p1 + k2)2 − m2
t

D8 = (−p3 − p2 − p1 + k1)2

D9 = (−p3 − p2 − p1 + k2)2 − m2
t

• family PLAx12

D1 = k2
1

D2 = k2
2 − m2

t

D3 = (−k2 + k1)2 − m2
t

D4 = (−p2 + k1)2

D5 = (−p2 + k2)2

D6 = (−p2 − p1 + k1)2

D7 = (−p2 − p1 + k2)2 − m2
t

D8 = (−p3 − p2 − p1 + k1)2

D9 = (−p3 − p2 − p1 + k2)2 − m2
t

• family PLAx124

D1 = k2
1

D2 = k2
2 − m2

t

D3 = (−k2 + k1)2 − m2
t

D4 = (−p2 + k1)2

D5 = (−p2 + k2)2

D6 = (p3 + p1 + k1)2

D7 = (p3 + p1 + k2)2 − m2
t

D8 = (p1 + k1)2

D9 = (p1 + k2)2 − m2
t

• family PLAx1234

D1 = k2
1

D2 = k2
2 − m2

t

D3 = (−k2 + k1)2 − m2
t

D4 = (−p2 + k1)2

D5 = (−p2 + k2)2
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D6 = (−p3 − p2 + k1)2

D7 = (−p3 − p2 + k2)2 − m2
t

D8 = (p1 + k1)2

D9 = (p1 + k2)2 − m2
t

A.2 Precanonical basis

After IBPs reduction all the scalar integrals coming from the amplitude can be reduced to
a basis of 63 master integrals, that we chose as following:

T1 = IPLA(0, 2, 2, 0, 0, 0, 0, 0, 0)
T2 = IPLA(2, 2, 0, 0, 0, 1, 0, 0, 0)
T3 = IPLA(0, 2, 2, 0, 0, 1, 0, 0, 0)
T4 = IPLA(0, 2, 1, 0, 0, 2, 0, 0, 0)
T5 = IPLA(0, 2, 2, 0, 0, 0, 1, 0, 0)
T6 = IPLA(0, 2, 0, 2, 0, 0, 0, 1, 0)
T7 = IPLAx12(0, 2, 0, 2, 0, 0, 0, 1, 0)
T8 = IPLA(0, 0, 2, 2, 0, 0, 0, 0, 1)
T9 = IPLA(0, 0, 2, 1, 0, 0, 0, 0, 2)

T10 = IPLAx12(0, 0, 2, 2, 0, 0, 0, 0, 1)
T11 = IPLAx12(0, 0, 2, 1, 0, 0, 0, 0, 2)
T12 = IPLA(0, 1, 2, 1, 0, 0, 1, 0, 0)
T13 = IPLA(0, 1, 1, 2, 0, 0, 1, 0, 0)
T14 = IPLA(0, 2, 2, 1, 0, 0, 1, 0, 0)
T15 = IPLA(2, 2, 0, 0, 0, 1, 1, 0, 0)
T16 = IPLA(0, 1, 3, 1, 0, 0, 0, 0, 1)
T17 = IPLAx12(0, 1, 3, 1, 0, 0, 0, 0, 1)
T18 = IPLA(1, 0, 2, 0, 0, 1, 0, 0, 1)
T19 = IPLA(2, 0, 2, 0, 0, 1, 0, 0, 1)
T20 = IPLA(0, 1, 3, 0, 0, 1, 0, 0, 1)
T21 = IPLA(0, 1, 2, 0, 0, 0, 1, 0, 1)
T22 = IPLA(1, 1, 1, 0, 0, 1, 1, 0, 0)
T23 = IPLA(1, 2, 0, 1, 0, 1, 0, 1, 0)
T24 = IPLAx12(1, 2, 0, 1, 0, 1, 0, 1, 0)
T25 = IPLA(1, 1, 1, 0, 0, 1, 0, 0, 1)
T26 = IPLA(1, 0, 2, 1, 0, 1, 0, 0, 1)
T27 = IPLA(1, 0, 2, 1, 0, 1, 0, −1, 1)
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T28 = IPLAx12(1, 0, 2, 1, 0, 1, 0, 0, 1)
T29 = IPLAx12(1, 0, 2, 1, 0, 1, 0, −1, 1)
T30 = IPLA(0, 1, 1, 1, 0, 1, 0, 0, 1)
T31 = IPLA(0, 1, 2, 1, 0, 1, 0, 0, 1)
T32 = IPLAx12(0, 1, 1, 1, 0, 1, 0, 0, 1)
T33 = IPLAx12(0, 1, 2, 1, 0, 1, 0, 0, 1)
T34 = IPLA(0, 1, 2, 1, 0, 0, 1, 0, 1)
T35 = IPLA(0, 1, 3, 1, 0, 0, 1, 0, 1)
T36 = IPLA(0, 1, 2, 1, −1, 0, 1, 0, 1)
T37 = IPLAx12(0, 1, 2, 1, 0, 0, 1, 0, 1)
T38 = IPLAx12(0, 1, 3, 1, 0, 0, 1, 0, 1)
T39 = IPLAx12(0, 1, 2, 1, −1, 0, 1, 0, 1)
T40 = IPLA(2, 1, 0, 0, 0, 1, 1, 0, 1)
T41 = INPA(1, 1, 1, 0, 0, 0, 1, 1, 0)
T42 = INPA(0, 1, 1, 1, 0, 0, 1, 1, 0)
T43 = INPA(0, 1, 1, 1, 0, 0, 1, 2, 0)
T44 = INPA(0, 1, 1, 2, 0, 0, 1, 1, 0)
T45 = IPLA(1, 1, 1, 1, 0, 1, 0, 0, 1)
T46 = IPLAx12(1, 1, 1, 1, 0, 1, 0, 0, 1)
T47 = IPLA(1, 1, 1, 0, 0, 1, 1, 0, 1)
T48 = INPA(1, 1, 1, 1, 0, 0, 1, 1, 0)
T49 = INPA(1, 2, 1, 1, 0, 0, 1, 1, 0)
T50 = IPLA(1, 1, 1, 1, 0, 1, 1, 0, 1)
T51 = IPLA(1, 1, 1, 1, −1, 1, 1, 0, 1)
T52 = IPLA(1, 1, 1, 1, 0, 1, 1, −1, 1)
T53 = IPLA(1, 1, 1, 1, −1, 1, 1, −1, 1)
T54 = IPLAx12(1, 1, 1, 1, 0, 1, 1, 0, 1)
T55 = IPLAx12(1, 1, 1, 1, −1, 1, 1, 0, 1)
T56 = IPLAx12(1, 1, 1, 1, 0, 1, 1, −1, 1)
T57 = IPLAx12(1, 1, 1, 1, −1, 1, 1, −1, 1)
T58 = INPA(1, 1, 1, 0, 0, 1, 1, 1, 0)
T59 = INPA(1, 2, 1, 0, 0, 1, 1, 1, 0)
T60 = INPA(1, 1, 1, 1, 0, 1, 1, 1, −1)
T61 = INPA(1, 2, 1, 1, 0, 1, 1, 1, −1)
T62 = INPA(1, 1, 1, 1, 0, 1, 1, 1, −2)
T63 = INPA(1, 1, 1, 1, 0, 1, 1, 1, 0).
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A.3 Semi-Canonical basis

The basis fi, canonical only for the non-elliptic MIs f1−57 which are the same of [167], has
the following definition in terms of the Ti:

f1 = ϵ2 T1 (A.2)
f2 = s ϵ2 T2 (A.3)
f3 = t ϵ2 T7 (A.4)
f4 = −(s + t) ϵ2 T6 (A.5)
f5 = r1 ϵ2 T5 (A.6)
f6 = s ϵ2 T3 (A.7)

f7 = 1
2 r1 ϵ2 T3 + r1 ϵ2 T4 (A.8)

f8 = t ϵ2 T11 (A.9)

f9 = r2 ϵ2 T10 + 1
2 r2 ϵ2 T11 (A.10)

f10 = −(s + t) ϵ2 T9 (A.11)

f11 = r3 ϵ2 T8 + 1
2 r3 ϵ2 T9 (A.12)

f12 = s ϵ3 T12 (A.13)
f13 = s ϵ3 T13 (A.14)

f14 = r1 ϵ3 T12 + 1
2 r1 ϵ3 T13 + r1 ϵ2 T14 (A.15)

f15 = r1 s ϵ2 T15 (A.16)
f16 = s ϵ3 T18 (A.17)

f17 = r4 s ϵ2 T19 − r4 ϵ3 T1
4ϵ + 2 (A.18)

f18 = s ϵ2 T20 (A.19)
f19 = t ϵ2 T17 (A.20)
f20 = −(s + t) ϵ2 T16 (A.21)
f21 = s ϵ3 T21 (A.22)
f22 = −s ϵ3(2ϵ − 1) T22 (A.23)
f23 = −s(s + t) ϵ3 T23 (A.24)
f24 = s t ϵ3 T24 (A.25)
f25 = r3 s ϵ3 T26 (A.26)
f26 = s(s + t) ϵ3 T26 + s ϵ3 T27 (A.27)
f27 = r2 s ϵ3 T28 (A.28)
f28 = s ϵ3 T29 − s t ϵ3 T28 (A.29)
f29 = s ϵ4 T25 (A.30)
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f30 = t ϵ4 T30 (A.31)
f31 = r8 ϵ3 T31 (A.32)
f32 = −(s + t) ϵ4 T32 (A.33)
f33 = r7 ϵ3 T33 (A.34)
f34 = r10 ϵ3 T34 (A.35)
f35 = r8 ϵ3 T34 + r8 ϵ2 T35 (A.36)
f36 = s ϵ3 T36 (A.37)
f37 = r11 ϵ3 T37 (A.38)
f38 = r7 ϵ3 T37 + r7 ϵ2 T38 (A.39)
f39 = s ϵ3 T39 (A.40)
f40 = s2 ϵ3 T40 (A.41)
f41 = s ϵ4 T41 (A.42)
f42 = s ϵ4 T42 (A.43)

f43 = s(4 − t) ϵ4 T10
t(ϵ − 1) − s(s + t + 4) ϵ4 T8

t(ϵ − 1) + s2 ϵ3 T43
t

+ (A.44)

2 s ϵ3 T16(−(s + t)(ϵ − 1) + 2ϵ − 1)
t(ϵ − 1) + s ϵ3 T11(2tϵ − 2ϵ + 3)

2t(ϵ − 1) + (A.45)

s ϵ3 T9(2(s + t)ϵ + 2ϵ − 3)
2t(ϵ − 1) − 2 s ϵ3 T17(t(ϵ − 1) + 2ϵ − 1)

t(ϵ − 1) (A.46)

f44 = r9 ϵ3 T44 (A.47)
f45 = r1 s ϵ4 T47 (A.48)
f46 = −s(s + t) ϵ4 T45 (A.49)
f47 = s t ϵ4 T46 (A.50)
f48 = r16 ϵ4 T48 (A.51)

f49 = −1
4 s2 ϵ3 T33 − 1

4 (s + t)2 ϵ3 T44 − s(s + t) ϵ3 T49 − 1
4 s(s + t) (4ϵ + 1)ϵ3 T48 (A.52)

f50 = r8 s ϵ4 T50 (A.53)
f51 = s2 ϵ4 T51 − s2 ϵ4 T50 (A.54)
f52 = r1 s(s + t) ϵ4 T50 + r1 s ϵ4 T52 − r1 (s + t) ϵ3 T31 + 2 r1 (s + t) ϵ3 T34+ (A.55)

2 r1 (s + t) ϵ2 T35 (A.56)

f53 = −2 s ϵ4 T30 − 1
2 s2 ϵ4 T47 + 1

2 s2(s + t) ϵ4 T50 + 1
2 (s − 2)s ϵ4 T52+ (A.57)

s ϵ4 T53 − 1
2 s ϵ3 T22 − 1

2 s(s + t) ϵ3 T31 + s(s + t) ϵ3 T34− (A.58)

s t ϵ3 T40 + s(s + t) ϵ2 T35 (A.59)
f54 = r7 s ϵ4 T54 (A.60)
f55 = s2 ϵ4 T55 − s2 ϵ4 T54 (A.61)
f56 = −r1 s t ϵ4 T54 + r1 s ϵ4 T56 + r1 t ϵ3 T33 − 2 r1 t ϵ3 T37 − 2 r1 t ϵ2 T38 (A.62)
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f57 = −2 s ϵ4 T32 − 1
2 s2 ϵ4 T47 − 1

2 s2 t ϵ4 T54 + 1
2 (s − 2)s ϵ4 T56+ (A.63)

s ϵ4 T57 − 1
2 s ϵ3 T22 + 1

2 s t ϵ3 T33 − s t ϵ3 T37+ (A.64)

s(s + t) ϵ3 T40 − s t ϵ2 T38 (A.65)
f58 = s ϵ4 T58 (A.66)
f59 = s2(s + 16) ϵ4 T59 (A.67)
f60 = ϵ4 T60 (A.68)
f61 = ϵ4 T61 (A.69)
f62 = ϵ4 T62 (A.70)
f63 = ϵ4 T63, (A.71)

where r1, · · · , r16 are square roots of the kinematic invariants:

r1 =
√

s − 4
√

s (A.72)
r2 =

√
t − 4

√
t (A.73)

r3 =
√

s + t
√

s + t + 4 (A.74)
r4 =

√
s
√

s + 4 (A.75)

r7 =
√

s
√

t
√

st − 4(s + t) (A.76)

r8 =
√

s
√

s + t
√

s(s + t) − 4t (A.77)

r9 =
√

t
√

s + t
√

t(s + t) − 4s (A.78)

r10 =
√

s
√

s(s + t + 1)2 − 4(s + t)2 (A.79)

r11 =
√

s
√

s(t − 1)2 − 4t2 (A.80)

r16 =
√

s
√

t
√

−(s + t). (A.81)
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Appendix B

Counter terms for the heavy-quark
contribution to qq → γγ

δF (2)
1,top;0 = π−2ϵΓ2(1 + ϵ)

(
µ2

m2
t

)2ϵ

4παemδij Q2
q CF Nh{

1
ϵ3

[
− 1

12(s + u)

]
+

1
ϵ2

2 log
(
− s

m2
t

)
− 3

24(s + u)

 +

1
ϵ

[
− 1

24(s + u) log2
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)
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8(s + u) log
(

− s
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t

)
−

−s2 + su + u2

24s(s + u)2 log2
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u

s

)
+

1
288

(
−84u(s + u) − 4π2(s − 2u)(3s + 2u)

u(s + u)2 − 9
t

)
+

1
24

( 1
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+ 1
s

− 1
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)
log2

(
t
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24

( 3
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− 1
s
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log

(
t
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+

1
24

( 2
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+ 1
s

)
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(
u
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)]
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π2

24(s + u) + π2

24s
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24u

)
H

(
−1,

t

s

)
+( 1

12(s + u) + 1
12s

− 1
12u

)
H

(
−1, 0, 0,

t

s

)
+(

− π2u

24(s + u)2 + π2

12(s + u) − π2

24s

)
H

(
−1,

u

s

)
+(

− u

12(s + u)2 + 1
6(s + u) − 1

12s

)
H

(
−1, 0, 0,

u

s

)
+

log
(

− s

m2
t

)((
− 1

24(s + u) − 1
24s

+ 1
24u

)
log2

(
t

s

)
+
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( 1
24s

− 1
8(s + u)

)
log

(
t

s

)
+ 21 − 10π2

72(s + u) +

π2u

24(s + u)2 +
(

u
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24s
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log2
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u
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24s
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24u
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log3
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log2
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36s
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36u
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48s
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192tu
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,

δF (2)
2,top;0 = − δF (2)

1,top;0,

δF (2)
3,top;0 = π−2ϵΓ2(1 + ϵ)
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Appendix C

Integral families and master
integrals for Higgs production

C.1 Integral families

The two-loop Feynman diagrams, contributing to the process g(p1)+q(p2) → q(p3)+H(p4)
and described in sec. 4.1, can be mapped into 6 different scalar integral families, PL, PLx13,
PLx123, NA, NB and NBx132. We define the scalar integrals as

Itopo(n1, ..., n9) =
∫ Dk1Dk2

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5 Dn6

6 Dn7
7 Dn8

8 Dn9
9

, (C.1)

where depending on the topology the set of the propagators {Di} can be one of the following:

• family PL

D1 = k2
1

D2 = k2
2 − m2

V

D3 = (k1 − k2)2

D4 = (k1 − p2)2

D5 = (k1 − p2 − p1)2

D6 = (k1 − p1 − p2 + p3)2

D7 = (k2 − p1 − p2 + p3)2 − m2
V

D8 = (k2 − p2)2

D9 = (k2 − p2 − p1)2

• family PLx13

D1 = k2
1

D2 = k2
2 − m2

V

D3 = (k1 − k2)2
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D4 = (k1 − p2)2

D5 = (k1 − p2 + p3)2

D6 = (k1 − p1 − p2 + p3)2

D7 = (k2 − p1 − p2 + p3)2 − m2
V

D8 = (k2 − p2)2

D9 = (k2 − p2 + p3)2

• family PLx123

D1 = k2
1

D2 = k2
2 − m2

V

D3 = (k1 − k2)2

D4 = (k1 + p3)2

D5 = (k1 − p2 + p3)2

D6 = (k1 − p1 − p2 + p3)2

D7 = (k2 − p1 − p2 + p3)2 − m2
V

D8 = (k2 + p3)2

D9 = (k2 − p2 + p3)2

• family NA

D1 = k2
1

D2 = (k1 − k2 + p1)2

D3 = (k1 − p2)2

D4 = k2
2 − m2

V

D5 = (k1 − p2 + p3)2

D6 = (k2 − p1 − p2 + p3)2 − m2
V

D7 = (k1 − k2)2

D8 = (k2 − p1 − p2)2 − m2
V

D9 = (k1 − p1 − p2)2

• family NB

D1 = k2
1

D2 = (k1 − k2 + p1)2

D3 = (k1 − p2)2

D4 = k2
2 − m2

V

D5 = (k1 − p2 + p3)2
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D6 = (k2 − p1 − p2 + p3)2 − m2
V

D7 = (k1 − k2)2

D8 = (k2 − p1 − p2)2

D9 = (k1 − p1 − p2)2

• family NBx132

D1 = k2
1

D2 = (k1 − k2 − p3)2

D3 = (k1 − p1)2

D4 = (k2)2 − m2
V

D5 = (k1 − p1 − p2)2

D6 = (k2 − p1 − p2 + p3)2 − m2
V

D7 = (k1 − k2)2

D8 = (k2 − p1 + p3)2

D9 = (k1 − p1 + p3)2

C.2 Bases of MIs

After IBPs reduction all the scalar integrals appearing in the amplitude can be reduced to
a basis of 180 master integrals, that we chose as following:

J1 = IPL(2, 1, 1, 0, 0, 0, 0, 0, 0) J2 = IPL(2, 2, 0, 0, 1, 0, 0, 0, 0) (C.2)
J3 = IPL(0, 1, 2, 0, 2, 0, 0, 0, 0) J4 = IPL(0, 2, 2, 0, 1, 0, 0, 0, 0) (C.3)
J5 = IPL(2, 2, 0, 0, 0, 1, 0, 0, 0) J6 = IPL(0, 1, 2, 0, 0, 2, 0, 0, 0) (C.4)
J7 = IPL(0, 2, 2, 0, 0, 1, 0, 0, 0) J8 = IPL(0, 2, 0, 2, 0, 1, 0, 0, 0) (C.5)
J9 = IPL(0, 1, 2, 1, 0, 1, 0, 0, 0) J10 = IPL(0, 2, 2, 1, 0, 1, 0, 0, 0) (C.6)

J11 = IPL(1, 2, 0, 1, 1, 1, 0, 0, 0) J12 = IPL(0, 1, 2, 1, 1, 1, 0, 0, 0) (C.7)
J13 = IPL(0, 2, 1, 1, 1, 1, 0, 0, 0) J14 = IPL(2, 1, 1, 0, 0, 0, 2, 0, 0) (C.8)
J15 = IPL(0, 0, 2, 2, 0, 0, 1, 0, 0) J16 = IPL(0, 0, 1, 2, 0, 0, 2, 0, 0) (C.9)
J17 = IPL(0, 1, 2, 1, 0, 0, 1, 0, 0) J18 = IPL(0, 1, 2, 1, 0, 0, 2, 0, 0) (C.10)
J19 = IPL(1, 1, 1, 1, 0, 0, 1, 0, 0) J20 = IPL(2, 2, 0, 0, 1, 0, 1, 0, 0) (C.11)
J21 = IPL(1, 0, 2, 0, 1, 0, 1, 0, 0) J22 = IPL(1, 0, 2, 0, 1, 0, 2, 0, 0) (C.12)
J23 = IPL(0, 1, 2, 0, 1, 0, 1, 0, 0) J24 = IPL(0, 2, 2, 0, 1, 0, 1, 0, 0) (C.13)
J25 = IPL(1, 1, 1, 0, 1, 0, 1, 0, 0) J26 = IPL(1, 1, 2, 0, 1, 0, 1, 0, 0) (C.14)
J27 = IPL(2, 1, 1, 0, 1, 0, 2, 0, 0) J28 = IPL(1, 1, 1, 0, 1, 0, 2, 0, 0) (C.15)
J29 = IPL(1, 0, 2, 1, 1, 0, 1, 0, 0) J30 = IPL(1, 0, 1, 1, 1, 0, 2, 0, 0) (C.16)
J31 = IPL(0, 1, 1, 1, 1, 0, 1, 0, 0) J32 = IPL(0, 1, 2, 1, 1, 0, 1, 0, 0) (C.17)
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J33 = IPL(1, 1, 1, 1, 1, 0, 1, 0, 0) J34 = IPL(1, 1, 1, 1, 1, −1, 1, 0, 0) (C.18)
J35 = IPL(1, 1, 1, 1, 1, 0, 2, 0, 0) J36 = IPL(2, 2, 0, 0, 0, 1, 1, 0, 0) (C.19)
J37 = IPL(1, 2, 1, 0, 0, 1, 1, 0, 0) J38 = IPL(0, 2, 0, 2, 0, 1, 1, 0, 0) (C.20)
J39 = IPL(0, 1, 1, 1, 0, 1, 1, 0, 0) J40 = IPL(0, 1, 2, 1, 0, 1, 1, 0, 0) (C.21)
J41 = IPL(0, 2, 1, 1, 0, 2, 1, 0, 0) J42 = IPL(0, 2, 1, 1, 0, 1, 1, 0, 0) (C.22)
J43 = IPL(0, 1, 1, 0, 1, 1, 1, 0, 0) J44 = IPL(1, 1, 0, 1, 1, 1, 1, 0, 0) (C.23)
J45 = IPL(0, 1, 1, 1, 1, 1, 1, 0, 0) J46 = IPL(−1, 1, 1, 1, 1, 1, 1, 0, 0) (C.24)
J47 = IPL(0, 2, 1, 1, 1, 1, 1, 0, 0) J48 = IPL(1, 1, 1, 1, 1, 1, 1, 0, 0) (C.25)
J49 = IPL(0, 0, 2, 0, 0, 2, 0, 1, 0) J50 = IPL(1, 0, 2, 0, 0, 1, 0, 1, 0) (C.26)
J51 = IPL(0, 1, 2, 0, 0, 1, 0, 1, 0) J52 = IPL(1, 1, 2, 0, 0, 1, 0, 1, 0) (C.27)
J53 = IPL(1, 2, 1, 0, 0, 1, 0, 1, 0) J54 = IPL(1, 2, 1, 0, 0, 2, 0, 1, 0) (C.28)
J55 = IPL(0, 1, 1, 0, 1, 1, 0, 1, 0) J56 = IPL(0, 1, 2, 0, 1, 1, 0, 1, 0) (C.29)
J57 = IPL(1, 0, 2, 0, 0, 0, 1, 1, 0) J58 = IPL(1, 1, 2, 0, 0, 0, 1, 1, 0) (C.30)
J59 = IPL(0, 0, 2, 0, 1, 0, 1, 1, 0) J60 = IPL(0, 1, 1, 0, 1, 0, 2, 1, 0) (C.31)
J61 = IPL(0, 1, 2, 0, 1, 0, 1, 1, 0) J62 = IPL(0, 0, 2, 0, 0, 1, 1, 2, 0) (C.32)
J63 = IPL(0, 1, 2, 0, 0, 1, 1, 1, 0) J64 = IPL(0, 0, 0, 1, 0, 2, 1, 2, 0) (C.33)
J65 = IPL(0, 1, 0, 2, 0, 1, 1, 1, 0) J66 = IPL(0, 0, 1, 0, 1, 1, 1, 1, 0) (C.34)
J67 = IPL(0, 1, 2, 0, 1, 1, 1, 1, 0) J68 = IPL(−1, 1, 1, 1, 1, 1, 1, 1, 0) (C.35)
J69 = IPL(0, 1, 1, 1, 1, 1, 1, 1, 0) J70 = IPL(0, 1, 1, 1, 1, 1, 1, 1, −1) (C.36)
J71 = IPL(2, 0, 2, 0, 0, 0, 0, 0, 1) J72 = IPL(2, 1, 1, 0, 0, 0, 0, 0, 2) (C.37)
J73 = IPL(0, 1, 2, 1, 0, 0, 0, 0, 1) J74 = IPL(1, 1, 1, 1, 0, 0, 0, 0, 1) (C.38)
J75 = IPL(1, 1, 0, 0, 2, 0, 0, 0, 2) J76 = IPL(1, 0, 2, 0, 0, 0, 1, 0, 1) (C.39)
J77 = IPL(1, 1, 2, 0, 0, 0, 1, 0, 1) J78 = IPL(1, 0, 1, 1, 0, 0, 1, 0, 1) (C.40)
J79 = IPL(1, 0, 2, 1, 0, 0, 1, 0, 1) J80 = IPL(0, 1, 1, 1, 0, 0, 2, 0, 1) (C.41)
J81 = IPL(0, 1, 2, 1, 0, 0, 1, 0, 1) J82 = IPL(1, 1, 2, 1, 0, 0, 1, 0, 1) (C.42)
J83 = IPL(2, 1, 0, 0, 1, 0, 1, 0, 1], ) J84 = IPL(1, 0, 1, 0, 1, 0, 1, 0, 1) (C.43)
J85 = IPL(1, 1, 1, 1, 1, −1, 1, 0, 1) J86 = IPL(1, 1, 1, 1, 1, 0, 1, 0, 1) (C.44)
J87 = IPL(1, 1, 1, 1, 1, 0, 1, −1, 1) J88 = IPL(0, 1, 2, 0, 0, 1, 0, 0, 1) (C.45)
J89 = IPL(0, 1, 2, 0, 0, 1, 1, 0, 1) J90 = IPL(0, 1, 2, 0, 0, 1, 0, 1, 1) (C.46)
J91 = IPL(0, 1, 2, 0, 0, 1, 1, 1, 1) J92 = IPL(1, 0, 2, 0, 0, 0, 1, 1, 1) (C.47)
J93 = IPL(1, 1, 2, 0, 0, 0, 1, 1, 1) J94 = IPLx13(2, 2, 0, 0, 1, 0, 0, 0, 0) (C.48)
J95 = IPLx13(0, 1, 2, 0, 2, 0, 0, 0, 0) J96 = IPLx13(0, 2, 2, 0, 1, 0, 0, 0, 0) (C.49)
J97 = IPLx13(1, 2, 0, 1, 1, 1, 0, 0, 0) J98 = IPLx13(0, 1, 2, 1, 1, 1, 0, 0, 0) (C.50)
J99 = IPLx13(0, 2, 1, 1, 1, 1, 0, 0, 0) J100 = IPLx13(2, 2, 0, 0, 1, 0, 1, 0, 0) (C.51)

J101 = IPLx13(1, 0, 2, 0, 1, 0, 1, 0, 0) J102 = IPLx13(1, 0, 2, 0, 1, 0, 2, 0, 0) (C.52)
J103 = IPLx13(0, 1, 2, 0, 1, 0, 1, 0, 0) J104 = IPLx13(0, 2, 2, 0, 1, 0, 1, 0, 0) (C.53)
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J105 = IPLx13(1, 1, 1, 0, 1, 0, 1, 0, 0) J106 = IPLx13(1, 1, 2, 0, 1, 0, 1, 0, 0) (C.54)
J107 = IPLx13(2, 1, 1, 0, 1, 0, 2, 0, 0) J108 = IPLx13(1, 1, 1, 0, 1, 0, 2, 0, 0) (C.55)
J109 = IPLx13(1, 0, 2, 1, 1, 0, 1, 0, 0) J110 = IPLx13(1, 0, 1, 1, 1, 0, 2, 0, 0) (C.56)
J111 = IPLx13(0, 1, 1, 1, 1, 0, 1, 0, 0) J112 = IPLx13(0, 1, 2, 1, 1, 0, 1, 0, 0) (C.57)
J113 = IPLx13(1, 1, 1, 1, 1, 0, 1, 0, 0) J114 = IPLx13(1, 1, 1, 1, 1, −1, 1, 0, 0) (C.58)
J115 = IPLx13(1, 1, 1, 1, 1, 0, 2, 0, 0) J116 = IPLx13(0, 1, 1, 0, 1, 1, 1, 0, 0) (C.59)
J117 = IPLx13(1, 1, 0, 1, 1, 1, 1, 0, 0) J118 = IPLx13(0, 1, 1, 1, 1, 1, 1, 0, 0) (C.60)
J119 = IPLx13(−1, 1, 1, 1, 1, 1, 1, 0, 0) J120 = IPLx13(0, 2, 1, 1, 1, 1, 1, 0, 0) (C.61)
J121 = IPLx13(1, 1, 1, 1, 1, 1, 1, 0, 0) J122 = IPLx13(0, 1, 1, 0, 1, 1, 0, 1, 0) (C.62)
J123 = IPLx13(0, 1, 2, 0, 1, 1, 0, 1, 0) J124 = IPLx13(0, 1, 1, 0, 1, 0, 2, 1, 0) (C.63)
J125 = IPLx13(0, 1, 2, 0, 1, 0, 1, 1, 0) J126 = IPLx13(0, 1, 2, 0, 1, 1, 1, 1, 0) (C.64)
J127 = IPLx13(−1, 1, 1, 1, 1, 1, 1, 1, 0) J128 = IPLx13(0, 1, 1, 1, 1, 1, 1, 1, 0) (C.65)
J129 = IPLx13(0, 1, 1, 1, 1, 1, 1, 1, −1) J130 = IPLx123(1, 2, 0, 1, 1, 1, 0, 0, 0) (C.66)
J131 = IPLx123(0, 1, 2, 1, 1, 1, 0, 0, 0) J132 = IPLx123(0, 2, 1, 1, 1, 1, 0, 0, 0) (C.67)
J133 = IPLx123(1, 0, 2, 1, 1, 0, 1, 0, 0) J134 = IPLx123(1, 0, 1, 1, 1, 0, 2, 0, 0) (C.68)
J135 = IPLx123(0, 1, 1, 1, 1, 0, 1, 0, 0) J136 = IPLx123(0, 1, 2, 1, 1, 0, 1, 0, 0) (C.69)
J137 = IPLx123(1, 1, 1, 1, 1, 0, 1, 0, 0) J138 = IPLx123(1, 1, 1, 1, 1, −1, 1, 0, 0) (C.70)
J139 = IPLx123(1, 1, 1, 1, 1, 0, 2, 0, 0) J140 = IPLx123(1, 1, 0, 1, 1, 1, 1, 0, 0) (C.71)
J141 = IPLx123(0, 1, 1, 1, 1, 1, 1, 0, 0) J142 = IPLx123(−1, 1, 1, 1, 1, 1, 1, 0, 0) (C.72)
J143 = IPLx123(0, 2, 1, 1, 1, 1, 1, 0, 0) J144 = IPLx123(1, 1, 1, 1, 1, 1, 1, 0, 0) (C.73)
J145 = IPLx123(0, 1, 1, 0, 1, 1, 0, 1, 0) J146 = IPLx123(0, 1, 2, 0, 1, 1, 0, 1, 0) (C.74)
J147 = IPLx123(0, 1, 1, 0, 1, 0, 1, 1, 0) J148 = IPLx123(0, 1, 2, 0, 1, 0, 1, 1, 0) (C.75)
J149 = IPLx123(0, 1, 2, 0, 1, 1, 1, 1, 0) J150 = IPLx123(−1, 1, 1, 1, 1, 1, 1, 1, 0) (C.76)
J151 = IPLx123(0, 1, 1, 1, 1, 1, 1, 1, 0) J152 = IPLx123(0, 1, 1, 1, 1, 1, 1, 1, −1) (C.77)
J153 = INA(1, 1, 1, 1, 0, 0, 1, 0, 0) J154 = INA(1, 1, 0, 1, 1, 0, 1, 0, 0) (C.78)
J155 = INA(0, 1, 1, 1, 1, 0, 1, 0, 0) J156 = INA(0, 1, 1, 2, 1, 0, 1, 0, 0) (C.79)
J157 = INA(1, 1, 1, 0, 0, 1, 1, 0, 0) J158 = INA(1, 1, 1, 0, 0, 2, 1, 0, 0) (C.80)
J159 = INA(1, 1, 1, 1, 0, 1, 1, 0, 0) J160 = INA(1, 1, 1, 1, −1, 1, 1, 0, 0) (C.81)
J161 = INA(1, 1, 1, 2, 0, 1, 1, 0, 0) J162 = INA(0, 1, 1, 0, 1, 1, 1, 0, 0) (C.82)
J163 = INA(1, 1, 0, 1, 1, 1, 1, 0, 0) J164 = INA(0, 1, 1, 1, 1, 1, 1, 0, 0) (C.83)
J165 = INA(−1, 1, 1, 1, 1, 1, 1, 0, 0) J166 = INA(0, 1, 1, 1, 1, 2, 1, 0, 0) (C.84)
J167 = INA(1, 1, 1, 1, 1, 1, 1, 0, 0) J168 = INA(1, 1, 1, 1, 1, 1, 1, 0, −1) (C.85)
J169 = INA(1, 1, 1, 1, 1, 1, 1, 0, −2) J170 = INA(1, 1, 1, 1, 1, 1, 1, −1, −1) (C.86)
J171 = INB(1, 1, 1, 1, 0, 0, 1, 1, 0) J172 = INB(1, 1, 1, 0, 0, 1, 1, 1, 0) (C.87)
J173 = INB(1, 1, 1, 1, 0, 1, 1, 1, 0) J174 = INB(1, 1, 1, 1, 0, 1, 1, 1, −1) (C.88)
J175 = INB(1, 1, 1, 1, −1, 1, 1, 1, −1) J176 = INBx132(1, 1, 1, 1, 0, 0, 1, 1, 0) (C.89)
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J177 = INBx132(1, 1, 1, 0, 0, 1, 1, 1, 0) J178 = INBx132(1, 1, 1, 1, 0, 1, 1, 1, 0) (C.90)
J179 = INBx132(1, 1, 1, 1, 0, 1, 1, 1, −1) J180 = INBx132(1, 1, 1, 1, −1, 1, 1, 1, −1). (C.91)

The basis {Gi}, which makes simpler the differential equation system, has the following
definition in terms of the Ji:

G1 = J1(ϵ − 1)ϵ2

G2 = J2Sϵ2

G3 = J3(S − 1)ϵ2 − 2J4ϵ2

G4 = J4Sϵ2

G5 = J5ωϵ2

G6 = J6 (ω − 1) ϵ2 − 2J7ϵ2

G7 = J7ωϵ2

G8 = J8Tϵ2

G9 = 6J9 (T − ω) ϵ3

ω − T + 2 − 2J6 (ω − 1) ϵ2

ω − T + 2 + 2J7 (ω + 2) ϵ2

ω − T + 2

− J10 (ω − T − 1) (ω − T ) ϵ2

ω − T + 2 − 2J8Tϵ2

ω − T + 2
G10 = J9 (T − ω) ϵ3

G11 = J11STϵ3

G12 = J12(S − 1)Tϵ3 − J13Tϵ3

G13 = J13STϵ3

G14 = J14q1q2ϵ2 − J7 (ω − 1) q1ϵ2

2q2
− J1q1(ϵ − 1)ϵ2

2q2
− J6 (ω − 1) q1ϵ2

4q2

G15 = J15(T − 1)ϵ2 − 2J16ϵ2

G16 = J16Tϵ2

G17 = 3J17q1q2 (ω − T ) ϵ3

2 (ω − 2T ) + J18q1q2
(
ω(T − 1) − T 2) ϵ2

ω − 2T
+

J1q1q2(ϵ − 1)ϵ2

2 (ω − 2T ) + J16q1q2(T − 1)ϵ2

2 (ω − 2T ) + J15q1q2(T − 1)ϵ2

4 (ω − 2T )
G18 = J17 (T − ω) ϵ3

G19 = J19 (T − ω) ϵ4

G20 = J20q1q2Sϵ2

G21 = 6J21 (S − ω) ϵ3

ω − S + 2 − 2J6 (ω − 1) ϵ2

ω − S + 2 + 2J7 (ω + 2) ϵ2

ω − S + 2 −

J22 (ω − S − 1) (ω − S) ϵ2

ω − S + 2 − 2J2Sϵ2

ω − S + 2
G22 = J21 (S − ω) ϵ3

G23 = 3J23q1q2 (ω − S) ϵ3

2 (ω − 2S) + J24q1q2
(
ω(S − 1) − S2) ϵ2

ω − 2S
+
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J1q1q2(ϵ − 1)ϵ2

2 (ω − 2S) + J4q1q2(S − 1)ϵ2

2 (ω − 2S) + J3q1q2(S − 1)ϵ2

4 (ω − 2S)
G24 = J23 (S − ω) ϵ3

G25 = 2J25ωϵ4 + 1
2J28ω (ω + S) ϵ3 + 2J21ω (ω − S − 1) ϵ3

ω − S + 2 + J23ω (7S − 5ω) ϵ3

2 (ω − 2S) +

J14ωϵ2 + J20ωSϵ2 + J27ωSϵ2 + J2ωSϵ2

ω − S + 2 + J22ω (−ω + S + 1) ϵ2

ω − S + 2 +

J6 (ω − 1) (3ω + S − 2) ϵ2

4 (ω − S + 2) + J24ω
(
−Sω + ω + S2) ϵ2

ω − 2S
−

J7 ((3ω − S + 5) ω + S − 2) ϵ2

2 (ω − S + 2) − J1 (ω − S) (ϵ − 1)ϵ2

ω − 2S
−

J4ω(S − 1)ϵ2

2 (ω − 2S) − J3ω(S − 1)ϵ2

4 (ω − 2S)
G26 = J28q1q2 (S − ω) ϵ3

G27 = J25 (S − ω) ϵ4

G28 = J26 (S − ω) ϵ3

G29 = J29S(T − 1)ϵ3 − J30Sϵ3

G30 = J30STϵ3

G31 = J31(S + T )ϵ4

G32 = J32(−TS + S + T )ϵ3

G33 = J33S (T − ω) ϵ4

G34 = J33ωSϵ4 + J34Sϵ4 + J31Tϵ4

G35 = J24q1
(
ω(S − 1) − S2) ϵ2 (ω)3/2

(ω − 2S) (ω − 2T ) − J14q1ϵ2 (ω)3/2

ω − 2T
− J20q1Sϵ2 (ω)3/2

ω − 2T
−

J27q1Sϵ2 (ω)3/2

ω − 2T
− J28q1 (ω + S) ϵ3 (ω)3/2

2 (ω − 2T ) + J34q1q2Sϵ4

ω − 2T
+ J19q1q2 (ω − T ) ϵ4

ω − 2T
+

J33q1q2S (2ω − T ) ϵ4

ω − 2T
+ J31q1q2(S + 3T )ϵ4

2 (ω − 2T ) + J32q1q2(−TS + S + T )ϵ3

4 (ω − 2T ) +

J35q1q2S
(
ω(T − 1) − T 2) ϵ3

ω − 2T
+ J17q1q2 (T − ω) ϵ3

2 (ω − 2T ) +

J29q1q2S(T − 1)ϵ3

6 (ω − 2T ) + J30q1q2S(3T − 1)ϵ3

6 (ω − 2T ) + J23q1q2
(
2ω2 − 2Sω − S2) ϵ3

(ω − 2S) (ω − 2T ) +

J1q1q2 (11ω − 16S) (ϵ − 1)ϵ2

6 (ω − 2S) (ω − 2T ) + J15q1q2(T − 1)ϵ2

8 (ω − 2T ) + J2 (1 − 3ω) q1q2Sϵ2

3 (ω − S + 2) (ω − 2T )+

J22q1q2 (ω − S − 1) (7ω − S) ϵ2

6 (ω − S + 2) (ω − 2T ) + J7q1q2
(
3ω2 + ω + 3 (ω + 1) S − 10

)
ϵ2

6 (ω − S + 2) (ω − 2T ) +

J4q1q2 (2 (ω + 1) S − 3ω) ϵ2

4 (ω − 2S) (ω − 2T ) + J3q1q2(S − 1) (3ω − 2S) ϵ2

8 (ω − 2S) (ω − 2T ) − J25q1q2 (ω + S) ϵ4

ω − 2T
−

J21q1q2 ((2ω − 2S − 3) ω + S) ϵ3

(ω − S + 2) (ω − 2T ) − J6 (ω − 1) q1q2 (9ω + 3S − 10) ϵ2

12 (ω − S + 2) (ω − 2T ) − J16q1q2ϵ2

4ω − 8T

G36 = J36 (ω)3/2 q1ϵ2
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G37 = J36ϵ2ω2 − J14ϵ2ω + J37ϵ2(2ϵ − 1)ω + 1
4J6 (ω − 1) ϵ2 + 1

2J7 (ω − 1) ϵ2+
1
2J1(ϵ − 1)ϵ2

G38 = J38q1q2Tϵ2

G39 = 2J39ωϵ4 + 1
2J42ω (ω + T ) ϵ3 + 2J9ω (ω − T − 1) ϵ3

ω − T + 2 +

J17ω (7T − 5ω) ϵ3

2 (ω − 2T ) + J14ωϵ2 + J38ωTϵ2 + J41ωTϵ2 + J8ωTϵ2

ω − T + 2+

J10ω (−ω + T + 1) ϵ2

ω − T + 2 + J6 (ω − 1) (3ω + T − 2) ϵ2

4 (ω − T + 2) + J18ω
(
−Tω + ω + T 2) ϵ2

ω − 2T
−

J7 ((3ω − T + 5) ω + T − 2) ϵ2

2 (ω − T + 2) − J1 (ω − T ) (ϵ − 1)ϵ2

ω − 2T
− J16ω(T − 1)ϵ2

2 (ω − 2T ) − J15ω(T − 1)ϵ2

4 (ω − 2T )
G40 = J42q1q2 (T − ω) ϵ3

G41 = J39 (T − ω) ϵ4

G42 = J40 (T − ω) ϵ3

G43 = J43 (S − ω) ϵ4

G44 = J11q2STϵ3

q1
+ J44q2ST (2ϵ − 1)ϵ3

q1

G45 = J45 (S − ω) Tϵ4

G46 = J45ωTϵ4 − J31Tϵ4 + J46Tϵ4

G47 = J18q1
(
ω(T − 1) − T 2) ϵ2 (ω)3/2

(ω − 2S) (ω − 2T ) − J14q1ϵ2 (ω)3/2

ω − 2S
− J38q1Tϵ2 (ω)3/2

ω − 2S
−

J41q1Tϵ2 (ω)3/2

ω − 2S
− J42q1 (ω + T ) ϵ3 (ω)3/2

2 (ω − 2S) + J46q1q2Tϵ4

ω − 2S
+ J45q1q2 (2ω − S) Tϵ4

ω − 2S
+

J31q1q2(3S + T )ϵ4

2 (ω − 2S) + J43q1q2 (ω − S) ϵ4

ω − 2S
+ J47q1q2

(
ω(S − 1) − S2)Tϵ3

ω − 2S
+

J12q1q2(S − 1)Tϵ3

6 (ω − 2S) + J13q1q2(3S − 1)Tϵ3

6 (ω − 2S) + J32q1q2(−TS + S + T )ϵ3

4 (ω − 2S) +

J17q1q2
(
2ω2 − 2Tω − T 2) ϵ3

(ω − 2S) (ω − 2T ) + J23q1q2 (S − ω) ϵ3

2 (ω − 2S) +

J10q1q2 (ω − T − 1) (7ω − T ) ϵ2

6 (ω − 2S) (ω − T + 2) + J8 (1 − 3ω) q1q2Tϵ2

3 (ω − 2S) (ω − T + 2)+

J7q1q2
(
3ω2 + ω + 3 (ω + 1) T − 10

)
ϵ2

6 (ω − 2S) (ω − T + 2) + J15q1q2(T − 1) (3ω − 2T ) ϵ2

8 (ω − 2S) (ω − 2T ) +

J1q1q2 (11ω − 16T ) (ϵ − 1)ϵ2

6 (ω − 2S) (ω − 2T ) + J3q1q2(S − 1)ϵ2

8 (ω − 2S) +

J16q1q2 (2 (ω + 1) T − 3ω) ϵ2

4 (ω − 2S) (ω − 2T ) − J39q1q2 (ω + T ) ϵ4

ω − 2S
− J4q1q2ϵ2

4ω − 8S
−

J9q1q2 ((2ω − 2T − 3) ω + T ) ϵ3

(ω − 2S) (ω − T + 2) − J6 (ω − 1) q1q2 (9ω + 3T − 10) ϵ2

12 (ω − 2S) (ω − T + 2)
G48 = J33ωSϵ4 + J45ωTϵ4 + J48ωSTϵ4
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G49 = J49Tϵ2

G50 = J50 (T − ω) ϵ3

G51 = J51 (T − ω) ϵ3

G52 = J52 (T − ω) ϵ3

G53 = J53 (T − ω) ϵ3

G54 = −2J51 (ω − T )2 ϵ3 − 2J52 (ω − T )2 ϵ3 − 2J53 (ω − T )2 ϵ3 + J5ω (ω − T ) ϵ2−
J54ω (ω − T − 1) (ω − T ) ϵ2 + J49 (ω − T ) Tϵ2 + J7ω (T − ω) ϵ2

G55 = J55 (−ω + S + T ) ϵ4

G56 = J56(S − 1)Tϵ3

G57 = J57 (T − ω) ϵ3

G58 = J58 (T − ω) ϵ3

G59 = J59Tϵ3

G60 = 3J23 (ω − S) (ω − 2T ) ϵ3

2 (ω − 2S) + J24
(
ω(S − 1) − S2) (ω − 2T ) ϵ2

ω − 2S
+

J4(S − 1) (ω − 2T ) ϵ2

2 (ω − 2S) + J3(S − 1) (ω − 2T ) ϵ2

4 (ω − 2S) + J1 (ω − 2T ) (ϵ − 1)ϵ2

2 (ω − 2S) −

J60
(
ω(T − 1) − T 2

)
(2ϵ − 1)ϵ2

G61 = J61(−TS + S + T )ϵ3

G62 = −J62(T − 1)Tϵ2

T + 1 − J1(ϵ − 1)ϵ2

T + 1 − 3J49Tϵ2

2(T + 1)
G63 = J63 (T − ω) ϵ3

G64 = −J64(T − 1)T 2ϵ2

T + 1 − J8Tϵ2

T + 1
G65 = J65T (T − ω) ϵ3

G66 = J66Tϵ4

G67 = −J56q8ϵ3 + 2J61q8ϵ3 + J67q8ϵ3

G68 = −J69T 2ϵ4 − J68(T − 1)Tϵ4 + 1
2J56 (ω − S) (T − 1)ϵ3 − 1

2J67 (ω − S) (T − 1)ϵ3−
1
2J32Tϵ3 + J61 (−Tω + ω + S(T − 1) + T ) ϵ3

G69 = J69T (−TS + S + T )ϵ4

G70 = J70T (T − ω) ϵ4

G71 = J71Sϵ2

G72 = −J72(S − 1)Sϵ2

S + 1 − J1(ϵ − 1)ϵ2

S + 1 − 3J71Sϵ2

2(S + 1)
G73 = J73Sϵ3

G74 = J74Sϵ4

G75 = −J75(S − 1)S2ϵ2

S + 1 − J2Sϵ2

S + 1
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G76 = J76 (S − ω) ϵ3

G77 = J77 (S − ω) ϵ3

G78 = J78 (−ω + S + T ) ϵ4

G79 = J79S(T − 1)ϵ3

G80 = J81S(S(T − 1) − T )ϵ3

−Sω + ω + S2 + S
− 3J73S2ϵ3

−Sω + ω + S2 + S
−

3J17 (ω(S − 1) − 2S) (ω − S) (ω − T ) ϵ3

2 (ω(S − 1) − S(S + 1)) (ω − 2T ) − J80 (ω − S)
(
ω(S − 1) − S2) (2ϵ − 1)ϵ2

ω(S − 1) − S(S + 1) −

J18 (ω(S − 1) − 2S) (ω − S)
(
ω(T − 1) − T 2) ϵ2

(ω(S − 1) − S(S + 1)) (ω − 2T ) −

J16
(
(S − 1)(T − 1)ω2 + S(−TS + S + 3)ω + 2S(S(T − 1) − T (T + 2))

)
ϵ2

2 (ω(S − 1) − S(S + 1)) (ω − 2T ) −

J1
(
(S − 1)ω2 − S(S + 3)ω + 2S(S + 2T )

)
(ϵ − 1)ϵ2

2 (ω(S − 1) − S(S + 1)) (ω − 2T ) −

J15(T − 1)
(
(S − 1)ω2 − S(S + 3)ω + 2S(S + 2T )

)
ϵ2

4 (ω(S − 1) − S(S + 1)) (ω − 2T )
G81 = J81(−TS + S + T )ϵ3

G82 = −J79q11ϵ3 + 2J81q11ϵ3 + J82q11ϵ3

G83 = J83S (S − ω) ϵ3

G84 = J84 (S − ω) ϵ4

G85 = −J86S2ϵ4 − J85(S − 1)Sϵ4 − 1
2J32Sϵ3 + 1

2J79(S − 1) (ω − T ) ϵ3−
1
2J82(S − 1) (ω − T ) ϵ3 + J81 (−Sω + ω + S + (S − 1)T ) ϵ3

G86 = J86S(S(T − 1) − T )ϵ4

G87 = J87S (S − ω) ϵ4

G88 = J88 (S − ω) ϵ3

G89 = J89 (S − ω) ϵ3

G90 = J90(S − 1)Tϵ3

G91 = J91(−TS + S + T )ϵ3 − J90Sϵ3

G92 = J92S(T − 1)ϵ3

G93 = J93(−TS + S + T )ϵ3 − J92Tϵ3

G94 = J94 (−ω + S + T ) ϵ2

G95 = 2J96ϵ2 + J95 (−ω + S + T + 1) ϵ2

G96 = J96 (−ω + S + T ) ϵ2

G97 = J97T (−ω + S + T ) ϵ3

G98 = J99Tϵ3 + J98T (−ω + S + T + 1) ϵ3

G99 = J99T (−ω + S + T ) ϵ3

G100 = J100q1q2 (−ω + S + T ) ϵ2
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G101 = −6J101(S + T )ϵ3

S + T + 2 + 2J94 (−ω + S + T ) ϵ2

S + T + 2 − 2J6 (ω − 1) ϵ2

S + T + 2 +

2J7 (ω + 2) ϵ2

S + T + 2 − J102(S + T − 1)(S + T )ϵ2

S + T + 2
G102 = J101(S + T )ϵ3

G103 = 3J103q1q2(S + T )ϵ3

2 (ω − 2(S + T )) + J104q1q2
(
ω(S + T − 1) − (S + T )2) ϵ2

ω − 2(S + T ) + J1q1q2(ϵ − 1)ϵ2

2 (ω − 2(S + T ))+

J96q1q2 (ω − S − T − 1) ϵ2

2 (ω − 2(S + T )) + J95q1q2 (ω − S − T − 1) ϵ2

4 (ω − 2(S + T ))
G104 = J103(S + T )ϵ3

G105 = −2J105ωϵ4 + 1
2J108ω (−2ω + S + T ) ϵ3 + J103ω (2ω − 7(S + T )) ϵ3

2 (ω − 2(S + T )) −

2J101ω(S + T − 1)ϵ3

S + T + 2 − J14ωϵ2 + J100ω (−ω + S + T ) ϵ2 + J107ω (−ω + S + T ) ϵ2+

J94ω (−ω + S + T ) ϵ2

S + T + 2 + J6 (ω − 1) (−4ω + S + T + 2) ϵ2

4(S + T + 2) +

J104ω
(
(S + T )2 − ω(S + T − 1)

)
ϵ2

ω − 2(S + T ) + J7 ((2ω + S + T + 6) ω − S − T − 2) ϵ2

2(S + T + 2) +

J102ω(S + T − 1)ϵ2

S + T + 2 − J1(S + T )(ϵ − 1)ϵ2

ω − 2(S + T ) + J96ω (−ω + S + T + 1) ϵ2

2 (ω − 2(S + T )) +

J95ω (−ω + S + T + 1) ϵ2

4 (ω − 2(S + T ))
G106 = J108q1q2(S + T )ϵ3

G107 = J105(S + T )ϵ4

G108 = J106(S + T )ϵ3

G109 = J110 (ω − S − T ) ϵ3 + J109(T − 1) (−ω + S + T ) ϵ3

G110 = J110T (−ω + S + T ) ϵ3

G111 = J111 (S − ω) ϵ4

G112 = J112
(
−Tω + ω + T 2 + S(T − 1)

)
ϵ3

G113 = J113 (ω − T ) (ω − S − T ) ϵ4

G114 = −J111Tϵ4 + J113ω (−ω + S + T ) ϵ4 + J114 (−ω + S + T ) ϵ4

G115 = J108q1 (2ω − S − T ) ϵ3 (ω)3/2

2 (ω − 2T ) + J104q1
(
ω(S + T − 1) − (S + T )2) ϵ2 (ω)3/2

(ω − 2T ) (ω − 2(S + T )) +

J14q1ϵ2 (ω)3/2

ω − 2T
+ J100q1 (ω − S − T ) ϵ2 (ω)3/2

ω − 2T
+ J107q1 (ω − S − T ) ϵ2 (ω)3/2

ω − 2T
+

J105q1q2 (2ω − S − T ) ϵ4

ω − 2T
+ J19q1q2 (T − ω) ϵ4

ω − 2T
+ J114q1q2 (−ω + S + T ) ϵ4

ω − 2T
+

J101q1q2 (2(S + T − 1)ω − S − T ) ϵ3

(ω − 2T ) (S + T + 2) + J112q1q2 ((T − 1)ω + S − T (S + T )) ϵ3

4 (ω − 2T ) +

J17q1q2 (ω − T ) ϵ3

2 (ω − 2T ) + J6 (ω − 1) q1q2 (12ω − 3S − 3T − 10) ϵ2

12 (ω − 2T ) (S + T + 2) +
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J96q1q2 (ω (2ω − 2S − 2T − 1) − 2(S + T )) ϵ2

4 (ω − 2T ) (ω − 2(S + T )) +

J7q1q2 ((−6ω + 3S + 3T − 4) ω + 3S + 3T + 10) ϵ2

6 (ω − 2T ) (S + T + 2) + J94 (3ω − 1) q1q2 (ω − S − T ) ϵ2

3 (ω − 2T ) (S + T + 2) +

J16q1q2ϵ2

4ω − 8T
+ J95q1q2 (ω − S − T − 1) (ω + 2(S + T )) ϵ2

8 (ω − 2T ) (ω − 2(S + T )) −

J102q1q2(S + T − 1) (6ω + S + T ) ϵ2

6 (ω − 2T ) (S + T + 2) − J113q1q2 (2ω − T ) (ω − S − T ) ϵ4

ω − 2T
−

J115q1q2 (ω − S − T )
(
ω(T − 1) − T 2) ϵ3

ω − 2T
− J111q1q2 (ω − S + 2T ) ϵ4

2 (ω − 2T ) −

J109q1q2 (ω − S − T ) (T − 1)ϵ3

6 (ω − 2T ) − J110q1q2 (ω − S − T ) (3T − 1)ϵ3

6 (ω − 2T ) − J15q1q2(T − 1)ϵ2

8 (ω − 2T ) −

J103q1q2
(
ω2 − 4(S + T )ω + (S + T )2) ϵ3

(ω − 2T ) (ω − 2(S + T )) − J1q1q2 (5ω − 16(S + T )) (ϵ − 1)ϵ2

6 (ω − 2T ) (ω − 2(S + T ))
G116 = J116(S + T )ϵ4

G117 = J97q2T (−ω + S + T ) ϵ3

q1
+ J117q2T (−ω + S + T ) (2ϵ − 1)ϵ3

q1

G118 = J118T (S + T )ϵ4

G119 = J118ωTϵ4 − J111Tϵ4 + J119Tϵ4

G120 = J18q1
(
ω(T − 1) − T 2) ϵ2 (ω)3/2

(ω − 2T ) (ω − 2(S + T )) − J14q1ϵ2 (ω)3/2

ω − 2(S + T ) − J38q1Tϵ2 (ω)3/2

ω − 2(S + T ) −

J41q1Tϵ2 (ω)3/2

ω − 2(S + T ) − J42q1 (ω + T ) ϵ3 (ω)3/2

2 (ω − 2(S + T )) + J119q1q2Tϵ4

ω − 2(S + T )+

J116q1q2(S + T )ϵ4

ω − 2(S + T ) + J118q1q2T (ω + S + T ) ϵ4

ω − 2(S + T ) + J111q1q2 (3ω − 3S − 2T ) ϵ4

2 (ω − 2(S + T )) +

J120q1q2T
(
ω(S + T − 1) − (S + T )2) ϵ3

ω − 2(S + T ) + J112q1q2
(
−Tω + ω + T 2 + S(T − 1)

)
ϵ3

4 (ω − 2(S + T )) +

J98q1q2 (ω − S − T − 1) Tϵ3

6 (ω − 2(S + T )) + J99q1q2T (3ω − 3S − 3T − 1) ϵ3

6 (ω − 2(S + T )) +

J17q1q2
(
2ω2 − 2Tω − T 2) ϵ3

(ω − 2T ) (ω − 2(S + T )) + J1q1q2 (11ω − 16T ) (ϵ − 1)ϵ2

6 (ω − 2T ) (ω − 2(S + T )) +

J95q1q2 (ω − S − T − 1) ϵ2

8 (ω − 2(S + T )) + J8 (1 − 3ω) q1q2Tϵ2

3 (ω − T + 2) (ω − 2(S + T ))+

J10q1q2 (ω − T − 1) (7ω − T ) ϵ2

6 (ω − T + 2) (ω − 2(S + T )) + J7q1q2
(
3ω2 + ω + 3 (ω + 1) T − 10

)
ϵ2

6 (ω − T + 2) (ω − 2(S + T )) +

J16q1q2 (2 (ω + 1) T − 3ω) ϵ2

4 (ω − 2T ) (ω − 2(S + T )) + J15q1q2(T − 1) (3ω − 2T ) ϵ2

8 (ω − 2T ) (ω − 2(S + T )) − J39q1q2 (ω + T ) ϵ4

ω − 2(S + T ) −

J103q1q2(S + T )ϵ3

2 (ω − 2(S + T )) − J96q1q2ϵ2

4 (ω − 2(S + T )) − J9q1q2 ((2ω − 2T − 3) ω + T ) ϵ3

(ω − T + 2) (ω − 2(S + T )) −

J6 (ω − 1) q1q2 (9ω + 3T − 10) ϵ2

12 (ω − T + 2) (ω − 2(S + T ))
G121 = −J118ωTϵ4 + J113ω (−ω + S + T ) ϵ4 + J121ωT (−ω + S + T ) ϵ4
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G122 = J122Sϵ4

G123 = J123T (−ω + S + T + 1) ϵ3

G124 = −3J103 (ω − 2T ) (S + T )ϵ3

2 (ω − 2(S + T )) − J124
(
ω(T − 1) − T 2

)
(2ϵ − 1)ϵ2−

J104 (ω − 2T )
(
ω(S + T − 1) − (S + T )2) ϵ2

ω − 2(S + T ) − J96 (ω − 2T ) (ω − S − T − 1) ϵ2

2 (ω − 2(S + T )) −

J1 (ω − 2T ) (ϵ − 1)ϵ2

2 (ω − 2(S + T )) − J95 (ω − 2T ) (ω − S − T − 1) ϵ2

4 (ω − 2(S + T ))
G125 = J125

(
−Tω + ω + T 2 + S(T − 1)

)
ϵ3

G126 = −J123q12ϵ3 + 2J125q12ϵ3 + J126q12ϵ3

G127 = −J128T 2ϵ4 − J127(T − 1)Tϵ4 − 1
2J112Tϵ3 + 1

2J123(T − 1)(S + T )ϵ3−
1
2J126(T − 1)(S + T )ϵ3 − J125(S(T − 1) + (T − 2)T )ϵ3

G128 = J128T
(
−Tω + ω + T 2 + S(T − 1)

)
ϵ4

G129 = J129T (T − ω) ϵ4

G130 = J130S (−ω + S + T ) ϵ3

G131 = J132Sϵ3 + J131S (−ω + S + T + 1) ϵ3

G132 = J132S (−ω + S + T ) ϵ3

G133 = J134 (ω − S − T ) ϵ3 + J133(S − 1) (−ω + S + T ) ϵ3

G134 = J134S (−ω + S + T ) ϵ3

G135 = J135 (T − ω) ϵ4

G136 = J136
(
−Sω + ω + S2 + (S − 1)T

)
ϵ3

G137 = J137 (ω − S) (ω − S − T ) ϵ4

G138 = −J135Sϵ4 + J137ω (−ω + S + T ) ϵ4 + J138 (−ω + S + T ) ϵ4

G139 = J108q1 (2ω − S − T ) ϵ3 (ω)3/2

2 (ω − 2S) + J100q1 (ω − S − T ) ϵ2 (ω)3/2

ω − 2S
+

J107q1 (ω − S − T ) ϵ2 (ω)3/2

ω − 2S
+ J104q1

(
ω(S + T − 1) − (S + T )2) ϵ2 (ω)3/2

(ω − 2S) (ω − 2(S + T )) +

J14q1ϵ2 (ω)3/2

ω − 2S
+ J105q1q2 (2ω − S − T ) ϵ4

ω − 2S
+ J138q1q2 (−ω + S + T ) ϵ4

ω − 2S
+

J43q1q2 (S − ω) ϵ4

ω − 2S
+ J133q1q2(S − 1) (−ω + S + T ) ϵ3

6 (ω − 2S) + J134q1q2(3S − 1) (−ω + S + T ) ϵ3

6 (ω − 2S) +

J101q1q2 (2(S + T − 1)ω − S − T ) ϵ3

(ω − 2S) (S + T + 2) + J136q1q2 ((S − 1)ω + T − S(S + T )) ϵ3

4 (ω − 2S) +

J23q1q2 (ω − S) ϵ3

2 (ω − 2S) + J6 (ω − 1) q1q2 (12ω − 3S − 3T − 10) ϵ2

12 (ω − 2S) (S + T + 2) +

J96q1q2 (ω (2ω − 2S − 2T − 1) − 2(S + T )) ϵ2

4 (ω − 2S) (ω − 2(S + T )) +
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J7q1q2 ((−6ω + 3S + 3T − 4) ω + 3S + 3T + 10) ϵ2

6 (ω − 2S) (S + T + 2) +

J4q1q2ϵ2

4ω − 8S
+ J94 (3ω − 1) q1q2 (ω − S − T ) ϵ2

3 (ω − 2S) (S + T + 2) +

J95q1q2 (ω − S − T − 1) (ω + 2(S + T )) ϵ2

8 (ω − 2S) (ω − 2(S + T )) − J137q1q2 (2ω − S) (ω − S − T ) ϵ4

ω − 2S
−

J139q1q2
(
ω(S − 1) − S2) (ω − S − T ) ϵ3

ω − 2S
− J135q1q2 (ω + 2S − T ) ϵ4

2 (ω − 2S) − J3q1q2(S − 1)ϵ2

8 (ω − 2S) −

J102q1q2(S + T − 1) (6ω + S + T ) ϵ2

6 (ω − 2S) (S + T + 2) − J103q1q2
(
ω2 − 4(S + T )ω + (S + T )2) ϵ3

(ω − 2S) (ω − 2(S + T )) −

J1q1q2 (5ω − 16(S + T )) (ϵ − 1)ϵ2

6 (ω − 2S) (ω − 2(S + T ))

G140 = J130q2S (−ω + S + T ) ϵ3

q1
+ J140q2S (−ω + S + T ) (2ϵ − 1)ϵ3

q1

G141 = J141S(S + T )ϵ4

G142 = J141ωSϵ4 − J135Sϵ4 + J142Sϵ4

G143 = J24q1
(
ω(S − 1) − S2) ϵ2 (ω)3/2

(ω − 2S) (ω − 2(S + T )) − J14q1ϵ2 (ω)3/2

ω − 2(S + T ) − J20q1Sϵ2 (ω)3/2

ω − 2(S + T ) −

J27q1Sϵ2 (ω)3/2

ω − 2(S + T ) − J28q1 (ω + S) ϵ3 (ω)3/2

2 (ω − 2(S + T )) + J142q1q2Sϵ4

ω − 2(S + T ) + J116q1q2(S + T )ϵ4

ω − 2(S + T ) +

J141q1q2S (ω + S + T ) ϵ4

ω − 2(S + T ) + J135q1q2 (3ω − 2S − 3T ) ϵ4

2 (ω − 2(S + T )) +

J143q1q2S
(
ω(S + T − 1) − (S + T )2) ϵ3

ω − 2(S + T ) + J136q1q2
(
−Sω + ω + S2 + (S − 1)T

)
ϵ3

4 (ω − 2(S + T )) +

J131q1q2S (ω − S − T − 1) ϵ3

6 (ω − 2(S + T )) + J132q1q2S (3ω − 3S − 3T − 1) ϵ3

6 (ω − 2(S + T )) +

J23q1q2
(
2ω2 − 2Sω − S2) ϵ3

(ω − 2S) (ω − 2(S + T )) + J1q1q2 (11ω − 16S) (ϵ − 1)ϵ2

6 (ω − 2S) (ω − 2(S + T )) +

J95q1q2 (ω − S − T − 1) ϵ2

8 (ω − 2(S + T )) + J2 (1 − 3ω) q1q2Sϵ2

3 (ω − S + 2) (ω − 2(S + T ))+

J22q1q2 (ω − S − 1) (7ω − S) ϵ2

6 (ω − S + 2) (ω − 2(S + T )) +

J7q1q2
(
3ω2 + ω + 3 (ω + 1) S − 10

)
ϵ2

6 (ω − S + 2) (ω − 2(S + T )) + J4q1q2 (2 (ω + 1) S − 3ω) ϵ2

4 (ω − 2S) (ω − 2(S + T )) +

J3q1q2(S − 1) (3ω − 2S) ϵ2

8 (ω − 2S) (ω − 2(S + T )) − J25q1q2 (ω + S) ϵ4

ω − 2(S + T ) −

J103q1q2(S + T )ϵ3

2 (ω − 2(S + T )) − J96q1q2ϵ2

4 (ω − 2(S + T ))−

J21q1q2 ((2ω − 2S − 3) ω + S) ϵ3

(ω − S + 2) (ω − 2(S + T )) − J6 (ω − 1) q1q2 (9ω + 3S − 10) ϵ2

12 (ω − S + 2) (ω − 2(S + T ))
G144 = −J141ωSϵ4 + J137ω (−ω + S + T ) ϵ4 + J144ωS (−ω + S + T ) ϵ4

G145 = J145Tϵ4
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G146 = J146S (−ω + S + T + 1) ϵ3

G147 = −J147 (ω − S) ϵ3(2ϵ − 1)

G148 = J148
(
−Sω + ω + S2 + (S − 1)T

)
ϵ3

G149 = −J146q7ϵ3 + 2J148q7ϵ3 + J149q7ϵ3

G150 = −J151S2ϵ4 − J150(S − 1)Sϵ4 − 1
2J136Sϵ3 + 1

2J146(S − 1)(S + T )ϵ3−
1
2J149(S − 1)(S + T )ϵ3 − J148(S(S + T − 2) − T )ϵ3

G151 = J151S
(
−Sω + ω + S2 + (S − 1)T

)
ϵ4

G152 = J152S (S − ω) ϵ4

G153 = J153Sϵ4

G154 = J154(S + T )ϵ4

G155 = J155Tϵ4

G156 = J156 (Sω + T − S(S + T )) ϵ3

G157 = J157Sϵ4

G158 = J158 (S(T − 1) + T (T − ω)) ϵ3

G159 = J159q10q3ϵ4

G160 = 3J135 (ω − T )2 ϵ4

4S
+ 1

2J153 (ω − T ) ϵ4 − 1
2J159 (ω − 2T ) (ω − S − T ) ϵ4+

1
2J157 (T − ω) ϵ4 + J160 (T − ω) ϵ4 + J116 (ω − T ) (S + T )ϵ4

2S
+

J31
(
3T 2 + 3 (S − ω) T + S (ω + 4S)

)
ϵ4

4S
− J19 (ω − T )2 ϵ4

2S
+ J17 (ω − T )2 ϵ3

4S
+

J32 (ω − T ) (S(T − 1) − T )ϵ3

8S
+ J136 (ω − T )

(
−Sω + ω + S2 + (S − 1)T

)
ϵ3

8S
−

J103 (ω − T ) (S + T )ϵ3

4S
+ J16 (ω − T ) ϵ2

8S
+ J15(T − 1) (T − ω) ϵ2

16S
+ J96 (T − ω) ϵ2

8S

− J95 (ω − T ) (−ω + S + T + 1) ϵ2

16S

G161 = J153q1 (ω − T ) ϵ4

q2
+ J157q1 (T − ω) ϵ4

q2
+

2J160q1 (T − ω) ϵ4

q2
+ J116q1 (ω − T ) (S + T )ϵ4

q2S
+ J31q1 (ω − T ) (S − 3T )ϵ4

2q2S
+

J135q1 (ω − T ) (3ω − 2S − 3T ) ϵ4

2q2S
− J19q1 (ω − T )2 ϵ4

q2S
+

J17q1 (ω − T ) (ω − 2S − T ) ϵ3

2q2S
+ J158q1q2 (−TS + S + (ω − T ) T ) ϵ3

2 (ω − 2) +

ϵ3J136 q1

(((
−Sω + ω + S2 − 2

)
ω + 4S

)
ω + (ω − (ω + 2) S − 2) T 2

4 (ω − 2) q2S
+(

−2 (ω − 2) ω − (ω + 2) S2 + 2
(
ω2 + ω − 2

)
S
)

T

4 (ω − 2) q2S

)
+
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ϵ3J32 q1

(
S (−ω + 2S + 2) ω + (ω − (ω + 2) S − 2) T 2

4 (ω − 2) q2S
+

(ω ((S − 1)ω + S(3 − 2S) + 2) − 2S) T

4 (ω − 2) q2S

)
+ J161q1

(
Sω2 − 4(S + T )ω + 4T (S + T )

)
ϵ3

2 (ω − 2) q2
+

J159q1
(
(S + 2T )ω − 2

(
ω2 − (2S + 3T + 2)ω + 2(T + 1)(S + T )

)
ϵω − 2T (S + T )

)
ϵ3

2 (ω − 2) q2
−

J103q1 (ω − T ) (S + T )ϵ3

2q2S
+ J16q1 (ω − 2S − T ) ϵ2

4q2S
+ J96q1 (T − ω) ϵ2

4q2S
+

J15q1(T − 1) (−ω + 2S + T ) ϵ2

8q2S
+ J7q1ϵ2

2q2
− J6 (ω − 1) q1ϵ2

4q2
−

J95q1 (ω − T ) (−ω + S + T + 1) ϵ2

8q2S

G162 = J162Tϵ4

G163 = −J163q5(S + T )3/2ϵ4

G164 = J164q4q9ϵ4

G165 = 1
2J162 (ω − S) ϵ4 + 1

2J155 (S − ω) ϵ4 + J165 (S − ω) ϵ4−

1
2J164 (ω − 2S) (ω − S − T ) ϵ4 + J116 (ω − S) (S + T )ϵ4

2T
+

J31
(
7T 2 + (ω + 6S) T + 3S (S − ω)

)
ϵ4

4T
− J43 (ω − S)2 ϵ4

2T
+ 3J111 (ω − S)2 ϵ4

4T
+

J23 (ω − S)2 ϵ3

4T
− J103 (ω − S) (S + T )ϵ3

4T
+ J32 (ω − S) (S(T − 1) − T )ϵ3

8T
−

J112 (ω − S) ((T − 1)ω + S − T (S + T )) ϵ3

8T
+ J4 (ω − S) ϵ2

8T
+ J96 (S − ω) ϵ2

8T
+

J3(S − 1) (S − ω) ϵ2

16T
+ J95 (ω − S) (ω − S − T − 1) ϵ2

16T

G166 = J162q1 (ω − S) ϵ4

q2
+ J155q1 (S − ω) ϵ4

q2
+

2J165q1 (S − ω) ϵ4

q2
+ J116q1 (ω − S) (S + T )ϵ4

q2T
+ J111q1 (ω − S) (3ω − 3S − 2T ) ϵ4

2q2T
−

J43q1 (ω − S)2 ϵ4

q2T
− J31q1 (ω − S) (3S − T )ϵ4

2q2T
+ J23q1 (ω − S) (ω − S − 2T ) ϵ3

2q2T
+

J112q1
(
(ω − 2) (ω − S)2 − (ω + 2) (ω − S − 2) T (ω − S) +

(
ω2 − (ω + 2) S

)
T 2
)

ϵ3

4 (ω − 2) q2T
+

J32q1
(
−2ω(S − 1)T 2 + (ω − S) (−ω + (ω + 2) S + 2) T + (ω − 2) S (S − ω)

)
ϵ3

4 (ω − 2) q2T
+

J166q1
(
Tω2 − 4(S + T )ω + 4S(S + T )

)
ϵ3

2 (ω − 2) q2
+ J156q1q2 (Sω + T − S(S + T )) ϵ3

2 (ω − 2) +

J164q1
(
(2S + T )ω − 2

(
ω2 − (3S + 2T + 2)ω + 2(S + 1)(S + T )

)
ϵω − 2S(S + T )

)
ϵ3

2 (ω − 2) q2
−

J103q1 (ω − S) (S + T )ϵ3

2q2T
+ J3q1(S − 1) (−ω + S + 2T ) ϵ2

8q2T
+ J4q1 (ω − S − 2T ) ϵ2

4q2T
+
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J7q1ϵ2

2q2
− J6 (ω − 1) q1ϵ2

4q2
+ J96q1 (S − ω) ϵ2

4q2T
+

J95q1 (ω − S) (ω − S − T − 1) ϵ2

8q2T

G167 = J154ωϵ4 + J170 (−ω + S + T ) ϵ4 + J159ωS (−ω + S + T ) ϵ4

S + T
+

J162T (−ω + S + T ) ϵ4

S + T
+ 2J169T (−ω + S + T ) ϵ4

S + T
+ J113T (T − ω) (−ω + S + T ) ϵ4

S + T
+

J153S (2ω + S + T ) ϵ4

2(S + T ) + J168T (−ω + S + T ) (S − 2T )ϵ4

S + T
+ 1

4J31

(8(S − T )ω
S + T

− S + 3T

)
ϵ4+

J135
(
6ω2 + 7(S + T )ω − 4S2 − 13T 2 − 11ST

)
ϵ4

4(S + T ) + J164 (ω − S − T ) T (ω − 2(S + T )) ϵ4

S + T
+

J163 (−ω + S + T )
(
− ((S + 3T )ω) + 2S2 + T 2 + 5ST

)
ϵ4

2(S + T ) + 1
2J116

(
3S + T

( 4ω

S + T
− 1

))
ϵ4+

J43 (ω − S)2 ϵ4

S + T
− 4J105ωTϵ4

S + T
+ J155 (ω − S − T ) Tϵ4

S + T
+ 2J165 (ω − S − T ) Tϵ4

S + T
+

J137 (ω − S) (ω − S − T ) Tϵ4

S + T
− J167(S(T − 1) − T )T (−ω + S + T ) ϵ4

S + T
−

J160S (2ω + S + T ) ϵ4

S + T
− J157S (2ω + S + T ) ϵ4

2(S + T ) − 3J111 (ω − S) (ω − S − 2T ) ϵ4

2(S + T ) −

J19
(
2ω2 + Sω − 2S2 + T 2 − 3 (ω + S) T

)
ϵ4

2(S + T ) + 3
8J32(S(T − 1) − T )ϵ3 − J106Tϵ3+

J108ωT (−2ω + S + T ) ϵ3

S + T
+ J133(S − 1)T (−ω + S + T ) ϵ3

3(S + T ) + J109(T − 1)T (−ω + S + T ) ϵ3

3(S + T ) +

J136 (2ω + S + 3T )
(
−Sω + ω + S2 + (S − 1)T

)
ϵ3

8(S + T ) +

J112 (−ω + S + 2T )
(
−Tω + ω + T 2 + S(T − 1)

)
ϵ3

4(S + T ) −

J23 (ω − S)2 ϵ3

2(S + T ) + J110 (ω − S − T ) Tϵ3

3(S + T ) + J134 (ω − S − T ) Tϵ3

3(S + T ) +

J17 (ω − T ) (2ω + S − T ) ϵ3

4(S + T ) − 2J101T (2(S + T − 1)ω + (S + T − 5)(S + T )) ϵ3

(S + T )(S + T + 2) −

J103
(
8Tω2 − (S + T )(3S + 43T )ω + 6(S + T )2(S + 5T )

)
ϵ3

4(S + T ) (2(S + T ) − ω) + 2J100ωT (−ω + S + T ) ϵ2

S + T
+

2J107ωT (−ω + S + T ) ϵ2

S + T
+ J7T ((6ω − 3S − 3T − 8) ω + 6S + 6T − 16) ϵ2

3(S + T )(S + T + 2) +

J94T (−ω + S + T ) (6ω + 9S + 9T + 4) ϵ2

3(S + T )(S + T + 2) + J102T (S + T − 1) (6ω + 7(S + T )) ϵ2

3(S + T )(S + T + 2) +

2J104ωT
(
(S + T )2 − ω(S + T − 1)

)
ϵ2

(S + T ) (ω − 2(S + T )) +

J96
(
−16Tω2 + (T (64T − 25) + S(64T + 3))ω − 2(S + T )(3S(8T + 1) + T (24T − 17))

)
ϵ2

8(S + T ) (2(S + T ) − ω) +

J1T (ω + 4(S + T )) (ϵ − 1)ϵ2

3(S + T ) (2(S + T ) − ω) − 2J14ωTϵ2

S + T
+ J4 (S − ω) ϵ2

4(S + T ) + J3 (ω − S) (S − 1)ϵ2

8(S + T ) +
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J16 (2ω + S − T ) ϵ2

8(S + T ) + J15(T − 1) (−2ω − S + T ) ϵ2

16(S + T ) − J6 (ω − 1) T (6ω + 3S + 3T − 8) ϵ2

3(S + T )(S + T + 2) −

J95 (−ω + S + T + 1) ((25T − 3S)ω + 2(S + T )(3S − 17T )) ϵ2

16(S + T ) (2(S + T ) − ω)

G168 = −1
2J159S (−ω + S + T ) ϵ4 + 1

2J163(S − T ) (−ω + S + T ) ϵ4−
1
2J168(S − T ) (−ω + S + T ) ϵ4 + J167(S(T − 1) − T ) (−ω + S + T ) ϵ4−
1
2J164T (−ω + S + T ) ϵ4

G169 = 3
4J111 (ω − S) ϵ4 + 1

2J153Sϵ4 − 1
2J157Sϵ4−

J160Sϵ4 + 1
2J43 (S − ω) ϵ4 + 3

4J135 (ω − T ) ϵ4 + 1
2J163 (ω − 2S) (ω − S − T ) ϵ4−

1
2J155Tϵ4 + 1

2J162Tϵ4 − J165Tϵ4 + 1
2J19 (T − ω) ϵ4−

1
2J31(S + T )ϵ4 + J169 (−ω + S + T ) ϵ4 + 1

2J159S (−ω + S + T ) ϵ4+
1
2J168(S − T ) (−ω + S + T ) ϵ4 + 1

2J164T (−ω + S + T ) ϵ4 + J116 (ω + S + T ) ϵ4+
1
4J23 (ω − S) ϵ3 + 1

4J17 (ω − T ) ϵ3 + 1
4J32(S(T − 1) − T )ϵ3 − 1

2J103(S + T )ϵ3+

1
8J136

(
−Sω + ω + S2 + (S − 1)T

)
ϵ3 + 1

8J112
(
−Tω + ω + T 2 + S(T − 1)

)
ϵ3 + J16ϵ2

8 +

J4ϵ2

8 − 1
16J3(S − 1)ϵ2 + 1

8J95 (ω − S − T − 1) ϵ2 − 1
16J15(T − 1)ϵ2 − J96ϵ2

4
G170 = J163ωq5q6ϵ4 + J159q5q6Sϵ4 − J164q5q6Tϵ4 + J168q5q6 (−ω + S + T ) ϵ4

G171 = −J171(S − 1)Sϵ4

G172 = J172Sϵ4

G173 = 1
2J159S (2(S + T ) − ω) ϵ4 + J174

(
−Sω + ω + S2 + (S − 1)T

)
(2ϵ − 1)ϵ4+

1
2J146

(
−Sω + ω + S2 + (S − 1)T

)
ϵ3 + J81

(
−Sω + ω + S2 + (S − 1)T

)
ϵ3+

1
2J82

(
−Sω + ω + S2 + (S − 1)T

)
ϵ3 + J148 ((S − 1)ω + T − S(S + T )) ϵ3+

1
2J149 ((S − 1)ω + T − S(S + T )) ϵ3 + 1

2J79 ((S − 1)ω + T − S(S + T )) ϵ3

G174 = 1
2J159ωSϵ4 − J145Sϵ4 − 1

2J153Sϵ4 + 1
2J157Sϵ4+

J160Sϵ4 + 1
2J19 (ω − T ) ϵ4 + 3

4J135 (T − ω) ϵ4 − 1
2J116(S + T )ϵ4−

1
4J31(S − 3T )ϵ4 + J174S(2ϵ − 1)ϵ4 + J175S(2ϵ − 1)ϵ4+
1
4J17 (T − ω) ϵ3 + 1

4J103(S + T )ϵ3 + 1
8J32(−TS + S + T )ϵ3+

J146S
(
(−ω + S + 1) S2 + ((−ω + S + 2) ω − 2S + 2) TS + ((S − 1)ω − 3S + 1) T 2) ϵ3

2S2 (−ω + S + 1)2 + 2(S − 1)2T 2 + 4S (−Sω + ω + S2 + 1) T
+
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J148S
(
(ω − S − 1) S2 +

(
ω2 − (S + 2)ω + 2(S − 1)

)
TS + (−Sω + ω + 3S − 1) T 2) ϵ3

S2 (−ω + S + 1)2 + (S − 1)2T 2 + 2S (−Sω + ω + S2 + 1) T
+

J149S
(
(ω − S − 1) S2 +

(
ω2 − (S + 2)ω + 2(S − 1)

)
TS + (−Sω + ω + 3S − 1) T 2) ϵ3

2S2 (−ω + S + 1)2 + 2(S − 1)2T 2 + 4S (−Sω + ω + S2 + 1) T
+

1
8J136 ((S − 1)ω + T − S(S + T )) ϵ3+

ϵ3J81

(
ω3 −

(
S2 + ((S − 3)S + 3)T

)
ω2 +

(
S3 + (4S − 5)TS2 − (S − 1)((S − 3)S + 3)T 2)ω

ω2 + 2(S − 1)Tω + T ((T − 4)S2 − 2TS + T ) +

T
(
−3S4 + S3 + (S − 3)(S − 2)TS2 + (S − 1)3T 2)
ω2 + 2(S − 1)Tω + T ((T − 4)S2 − 2TS + T )

)
+

ϵ3J82

(
ω3 −

(
S2 + ((S − 3)S + 3)T

)
ω2 +

(
S3 + (4S − 5)TS2 − (S − 1)((S − 3)S + 3)T 2)ω

2 (ω2 + 2(S − 1)Tω + T ((T − 4)S2 − 2TS + T )) +

T
(
−3S4 + S3 + (S − 3)(S − 2)TS2 + (S − 1)3T 2)

2 (ω2 + 2(S − 1)Tω + T ((T − 4)S2 − 2TS + T ))

)
+

ϵ3J79

(
−(S − 1)3T 3 +

(
ω(S − 1)((S − 3)S + 3) − (S − 3)(S − 2)S2)T 2

2 (ω2 + 2(S − 1)Tω + T ((T − 4)S2 − 2TS + T )) +(
((S − 3)S + 3)ω2 + S2(5 − 4S)ω + S3(3S − 1)

)
T − ω

(
ω2 − S2ω + S3)

2 (ω2 + 2(S − 1)Tω + T ((T − 4)S2 − 2TS + T ))

)
+

J96ϵ2

8 + 1
16J15(T − 1)ϵ2 + 1

16J95 (−ω + S + T + 1) ϵ2 − J16ϵ2

8
G175 = J172(S − 1)Tϵ4 − 1

2J159 ((ω − 2) S − 2T ) ϵ4+

J174(−TS + S + T )(2ϵ − 1)ϵ4 + J173(S − 1)(−TS + S + T )(2ϵ − 1)ϵ4+

2J148(S(T − 1) − T )ϵ3 + 1
2J149(S(T − 1) − T )ϵ3 + 1

2J136(−TS + S + T )ϵ3+
1
2J146(−TS + S + T )ϵ3 − 1

2J79(−TS + S + T )ϵ3 + J81(−TS + S + T )ϵ3 + 1
2J82(−TS + S + T )ϵ3

G176 = −J176(T − 1)Tϵ4

G177 = J177Tϵ4

G178 = 1
2J164 (ω − 2S) Tϵ4 + J179(−TS + S + T )(2ϵ − 1)ϵ4 + 1

2J123(S(T − 1) − T )ϵ3+

J61(S(T − 1) − T )ϵ3 + 1
2J67(S(T − 1) − T )ϵ3 + J125(−TS + S + T )ϵ3+

1
2J126(−TS + S + T )ϵ3 + 1

2J56(−TS + S + T )ϵ3

G179 = 1
2J116 (S − ω) ϵ4 − J55Tϵ4 + J179T (2ϵ − 1)ϵ4+

J180T (2ϵ − 1)ϵ4 + J165 (ω − S) Tϵ4

S + T
+ J43 (ω − S)2 ϵ4

2(S + T ) +

J164ω (ω − S) Tϵ4

2(S + T ) + J155 (ω − S) Tϵ4

2(S + T ) +

J162 (S − ω) Tϵ4

2(S + T ) − J111 (ω − S) (3ω − 3S − 2T ) ϵ4

4(S + T ) −
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J31
(
2T 2 + (ω + S) T + 3S (S − ω)

)
ϵ4

4(S + T ) + 1
4J103 (ω − S − 2T ) ϵ3+

J61T
(
(ω − 1) (ω − S)2 + (ω(S − 1) − 3S) T (ω − S) − (ω − 4) ST 2

)
ϵ3

(ω − S)2 + 2ST (ω − S) + (S − 4)ST 2
+

J67T
(
(ω − 1) (ω − S)2 + (ω(S − 1) − 3S) T (ω − S) − (ω − 4) ST 2

)
ϵ3

2
(
(ω − S)2 + 2ST (ω − S) + (S − 4)ST 2

) +

J112 (ω − S − 2T ) ((T − 1)ω + S − T (S + T )) ϵ3

8(S + T ) +

ϵ3J123

S3(T − 1)3 − T 3 (−ω + T + 1)2 + S2T (((5 − 2T )T − 3)ω + T (2(T − 2)T + 3) − 3)
2
(
S2(T − 1)2 + T 2 (−ω + T + 1)2 + 2ST (−Tω + ω + T 2 + 1)

) +

ST 2 ((T − 2)ω2 − 2(T − 2)Tω + ω + (T − 3)
(
T 2 + T + 1

))
2
(
S2(T − 1)2 + T 2 (−ω + T + 1)2 + 2ST (−Tω + ω + T 2 + 1)

)
+

ϵ3J125

(
−S3(T − 1)3 + T 3 (−ω + T + 1)2 + S2T ((T − 1)(2T − 3)ω + T (−2(T − 2)T − 3) + 3)

S2(T − 1)2 + T 2 (−ω + T + 1)2 + 2ST (−Tω + ω + T 2 + 1)
−

ST 2 ((T − 2)ω2 − 2(T − 2)Tω + ω + (T − 3)
(
T 2 + T + 1

))
S2(T − 1)2 + T 2 (−ω + T + 1)2 + 2ST (−Tω + ω + T 2 + 1)

)
+

ϵ3J126

−S3(T − 1)3 + T 3 (−ω + T + 1)2 + S2T ((T − 1)(2T − 3)ω + T (−2(T − 2)T − 3) + 3)
2
(
S2(T − 1)2 + T 2 (−ω + T + 1)2 + 2ST (−Tω + ω + T 2 + 1)

) −

ST 2 ((T − 2)ω2 − 2(T − 2)Tω + ω + (T − 3)
(
T 2 + T + 1

))
2
(
S2(T − 1)2 + T 2 (−ω + T + 1)2 + 2ST (−Tω + ω + T 2 + 1)

)
−

J23 (ω − S) (ω − S − 2T ) ϵ3

4(S + T ) − J32 (ω − S − 2T ) (S(T − 1) − T )ϵ3

8(S + T ) +

J56T
(
−
(
(ω − 1) (ω − S)2

)
− (ω(S − 1) − 3S) T (ω − S) + (ω − 4) ST 2

)
ϵ3

2
(
(ω − S)2 + 2ST (ω − S) + (S − 4)ST 2

) +

J4 (−ω + S + 2T ) ϵ2

8(S + T ) + J96 (ω − S − 2T ) ϵ2

8(S + T ) −

J95 (ω − S − 2T ) (ω − S − T − 1) ϵ2

16(S + T ) − J3(S − 1) (−ω + S + 2T ) ϵ2

16(S + T )
G180 = −J177

(
−Tω + ω + T 2 + S(T − 1)

)
ϵ4 + J164 (ω − S(T + 1)) ϵ4+

J178(T − 1)
(
−Tω + ω + T 2 + S(T − 1)

)
(2ϵ − 1)ϵ4 + J179

(
−Tω + ω + T 2 + T

)
(2ϵ − 1)ϵ4−

1
2J123

(
−Tω + ω + T 2 + T

)
ϵ3 + J125

(
−Tω + ω + T 2 + T

)
ϵ3+

1
2J126

(
−Tω + ω + T 2 + T

)
ϵ3 + 1

2J32
(
−Tω + ω + T 2 + T

)
ϵ3+

1
2J56

(
−Tω + ω + T 2 + T

)
ϵ3 − 2J61

(
−Tω + ω + T 2 + T

)
ϵ3+

1
2J67 (ω(T − 1) − T (T + 1)) ϵ3,
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where {qi} are the following square roots:

q1 =
√

4 − ω (C.92)
q2 =

√
ω (C.93)

q3 =
√

S (C.94)
q4 =

√
T (C.95)

q5 =
√

−S − T + 4 (C.96)
q6 =

√
S + T (C.97)

q7 =
√

2ST (−ωS + ω + S2 + 1) + S2(−ω + S + 1)2 + (S − 1)2T 2 (C.98)

q8 =
√

2ST (ω − S) + (ω − S)2 + (S − 4)ST 2 (C.99)

q9 =
√

4(ω − S)(S + T ) − ω2T (C.100)

q10 =
√

4(ω − T )(S + T ) − ω2S (C.101)

q11 =
√

ω2 + 2ωST − 2ωT + S2T 2 − 4S2T − 2ST 2 + T 2 (C.102)

q12 =
√

2ST (−ωT + ω + T 2 + 1) + T 2(−ω + T + 1)2 + S2(T − 1)2. (C.103)
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