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Abstract. We write down a Robin boundary term for general relativity. The construction
relies on the Neumann result of arXiv:1605.01603 in an essential way. This is unlike in mechanics
and (polynomial) field theory, where two formulations of the Robin problem exist: one with
Dirichlet as the natural limiting case, and another with Neumann.

1. Introduction
The Dirichlet boundary term for general relativity was found by York and Gibbons-Hawking][1]
long ago, but the Neumann term was only written down recently [2]. See [3, 4] for follow-ups.
In this contribution, we will further develop the result of [2] to construct a well-defined Robin
variational problem and construct the general Robin boundary term for general relativity. The
Neumann term turns out to be essential for the Robin construction in gravity in a way that
it is not, in mechanics and field theory. To clarify this, we outline the various constructions
systematically. We also briefly comment on aspects of such a term in asymptotically flat and
asymptotically AdS spacetimes.

This contribution is a small application of the results in [2, 3, 4]. But the existence of a Robin
term for general relativity does not seem to have been appreciated in the literature, so we hope
it will be of some use to someone somewhere sometime.

2. Robin Mechanics
Let us start by looking at boundary terms in the simplest setting: particle mechanics. Consider
the usual Newton action

Shldl Z/Tdt L(q,q) Z/Tdt (;QQ—V(Q)) (1)

The superscript p indicates the action is that of a particle, and the subscript D denotes that
it leads to a well defined variational problem with Dirichlet boundary condition (in the time
direction). To restate the well-known, the variation of the action gives

o5ty = [ ar (i+ V(@) + (@on )

T
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If one sets ¢ = any fived quantity at the endpoint! T, the variational problem becomes well
posed, and since we are setting dg|7 = 0 we call it a Dirichlet problem.

Note that setting ¢|7 = 0 in 657, is another way to define a valid variational problem, while
not demanding? that 6g = 0. We will call this the Special Neumann boundary condition.

We would like to find a variational principle where holding d¢ = 0 is well-defined. This is the
natural General Neumann boundary condition, and to accomplish this we add a boundary term
to the action:

T
—/Tdt ((’1’ + V'(Q))<5q — (g6q)

We could restate it in terms of conjugate quantities at the boundary, which leads to a more
useful notation later, as

= 05K

(4)

T

5S?
= 7p qr, where mp = —2. (5)
T dqr

(¢ 4)

Note that General Neumann boundary conditions basically mean fixing ¢ = any fized value,
while Special Neumann boundary condition allows only the possibility ¢ = 0.

Now, let us consider another boundary term that we could add to S7,, namely S} = %q2|T.
This generalizes the Special Neumann boundary condition and leads to what we will call the
Special Robin boundary condition. Upon varying S% + S} we get

5(8p + 50 =~ [ dt (4+V'@)sa+ (146 a)aa]. ()

If we set dg = 0, this is still the Dirichlet variational problem. But we can also set (¢+&q)|r = 0,
which is the Special Robin boundary condition: holding a linear combination of the position
and velocity fixed at the boundary. When £ = 0, this reduces to the Special Neumann boundary
condition.

What is the Robin analogue of the General Neumann boundary condition? Lets consider
adding one more piece to our General Neumann action?:

Sk = /Tdterf — V(q)> - (ciq - qu) ‘T, (7)

which upon varying gives
P _ . / _ .
o5 =~ [ at (i+V'@)sa - as(i+ )|, (s)

The variational problem is well defined by setting ¢+ &£q = any fized value. This is the General
Robin boundary condition. Again, we could phrase the whole thing as

P
(55’% = eoms — qp 0(7mp + qr) = eoms — g7 § (CZ’D + qu> ) (9)
T
! 'We keep track of only one boundary, as it is suffices to make our point.
2 Demanding both g = 0 = ¢ fixes both the function and its derivative at the boundary, constraining dynamics
uniquely. This is not what we want from a theory: it should allow dynamics, not uniquely fix it.
3 Tt is possible to set up a General Robin boundary problem for particle mechanics, by starting with the Dirichlet
action and never going through the Neumann action. However, this approach does not work for gravity and we
find that the Neumann action is crucial for the construction of the Robin action for general relativity. We discuss
these matters in Appendix A.
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The Dirichlet problem can be understood as a variational problem with the position of the
particle held arbitrary and fixed at T, and the General Neumann problem to be a variational
problem with the momentum at T held arbitrary and fixed. The General Robin boundary
condition is analogously to be thought of as holding some linear combination of the position and
momentum held arbitrary and fixed at 7. The Dirichlet [1] and General Neumann problem [2]
for general relativity are solved, here we would like to fill the gap and formulate the General
Robin problem for gravity. There is a bit of a subtlety in this compared to the particle mechanics
case (see footnote 3).

But before getting to gravity, we consider the field theory case which is essentially just a
fancy rewriting of the particle mechanics case.

3. Robin Field Theory

We will start with the action for a scalar field living in a D-dimensional manifold (M, g), which
again is automatically a Dirichlet action, where we hold the field to be at some fixed value at
the boundary

sofe) = [ aPev=g (~50000,6 - V(9)). (10)
= sl = [ a%s (0uvmaeae) - T Y s [ ab ey Rlnga,se ()

where « is the metric on the boundary OM of M, and n, is the outward drawn normal to
the boundary. The standard procedure, as mentioned earlier is to set the Dirichlet boundary
condition d¢ = 0, which leads to a well defined variational problem. The Special Neumann case
is obtained from the same action while setting the directional derivative 0,¢ = n,g""0,¢ = 0
instead. As before, if we work with

Splél+ [ aPay/ §o° (12

it leads to the Special Robin variational problem with 9,¢ + £&¢ = 0 at the boundary. To get
the General Neumann action, we take by direct analogy

Sxlows] = Solel+ [ e/ Rling00)0 (13)
= 6SN[0n¢] = eom + /8 MdD—lxm 5(0np) . (14)

The variational problem here is well defined by holding 6(9,¢) = 0. The scalar field theory can
also be well posed as a General Robin boundary problem:

_ 3 - £

Srl¢] = Splg] + / AP la/Jn] <¢an<z> +50° ) =Snlol+ [ APyl Se? (15)
oM 2 oM 2

which will lead to holding 0,¢ + £¢ = any fized value at OM. We worked with the scalar for

simplicity, but this generalizes trivially to the gauge field as well.

4. Robin Gravity

We can now proceed to look for a boundary term that gives a consistent Robin boundary problem
for gravity. Let us, as usual, start with the Einstein-Hilbert action on a D-dimensional manifold
(M, g) along with the Gibbons-Hawking York boundary term, which leads to Dirichlet gravity

1 1
Sp = Sen + Scry = 2/ dPz/=g(R —2A) + / dPy /|| €O, (16)
K Jm R Jom
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where k = 87Gy, R is the Ricci scalar and A is a Cosmologlcal constant. Also, %J = guele Y s
Ho_ Bz

the induced metric on the boundary OM and e;

boundary coordinates y*. The extrinsic curvature of the boundary is given by
1 ey
O = §(V,my + Vyn,)e; ey, (17)

where n, is the outward drawn unit normal to the boundary, and ¢ = %1 distinguishes the
boundary between time-like and space-like boundaries respectively.
The variation of Dirichlet action yields

0Sp = 6Sgn + 6ScHY
1

v 1 - ij ij
= 5 dPz /=g (G + Aguw) 69" —/ dPy\/1v]e (09 — ©~7) 6v;5,  (18)
K Jm 2K oM

where G, = R, — %QWR is the Einstein tensor. The variational problem is well defined
with the boundary metric held fixed, and we can think of Sp = Sp[v;;] as a functional of the
boundary metric.

We can define a canonical conjugate of the boundary metric as

08 1 Y y
=50 = =g Vhle (07 - 097), (19)
1]

using which we can rewrite the variation of Sp in a simpler form

1 y
0Sp = — dD:c V=9 (G + Agu) 66" + / dD_ly T 675 (20)
2K oM

We also note that holding 7/ = 0 here leads to the Special Neumann boundary condition for
gravity. This is sometimes described as the Neumann problem for gravity in the literature, even
though it is a special case of the general situation.

As was discussed in [2, 3, 4], an action which is well defined in terms of General Neumann
boundary condition can be defined as

Sy = SEH+SGHy—/ dDilyTFij’yij (21)
oM
4 D
= / dPz/=g(R —2A) + o AP~y \/|v|eO, (22)
oM

the variation of which is given by

1 ..
5Sy = — / APz /=g (G + Agu) 59" + / dP~y i 0w (23)
2K M oM

Here, instead of holding the boundary metric fixed, the quantity 7%/ is held fixed, letting
the boundary metric fluctuate. The quantity 7% is termed boundary stress tensor density
(also, sometimes as quasi-local stress tensor density[5]). The Neumann boundary condition
can be thought of as looking at solutions holding the boundary stress tensor density fixed, i.e.
Sy = Sn[r¥].

Now we turn to Special Robin. Adding a boundary term S, = 2¢ [ dely\m to the Dirichlet
action, it is straightforward to again check that we will have a variational problem well defined
under the Special Robin boundary condition, 7%/ + ¢/]y[y¥ = 0.
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In order to have the action be a well defined variational problem under General Robin
boundary condition, we need to add a boundary term which will ensure that 7% + &/]y|y¥
held arbitrary and fixed* leads to a consistent variational problem. To get such an action, we
go through the Neumann action like we did in the mechanics and field theory cases. Note that
unlike in those cases, in gravity we cannot get to Robin from Dirichlet bypassing Neumann®. In
other words, going through Neumann is not an option but a necessity in the case of gravity.

In any event, the result is

Srp = 1//\4 dPx/=g(R — 2A)

2K
4—D _ _
s 2 [ aryhle-gn-3) [ PRl ey
K oM oM

Varying the action, and using the key relation

(D = 3)/ vy 6vi5 = 26(V/ 1717 i (25)
we can show that
1 v - ij ij
55p = - / 4P v/ =5 (G + Agy) 9™ — / Py 6 + /) . (26)
2K M oM

The action (24) is what we call the Robin action for gravity.

5. Comments

Hamiltonian Formulation

We will now write down the Robin Gravity action in the Hamiltonian formulation. Using the fact
that the action in (24) is the same as that of Neumann gravity, except for an additional boundary
cosmological constant term, we can directly write down the action in terms of canonical variables
for Robin gravity [3]:

Sp = /M dPz (p“bha,, _ NH - NaHa)

+/BdD1y\/5 (N (g —&(d— 3)) — N%q, + ];[Sabo'ab> - (27)

We will not elaborate on the (completely standard) notations here, they can be found in, eg.
[3].

Asymptotically Flat Space-times

If one goes about naively computing the classical action for any asymptotically flat space-
time(AFS), its bound to run into divergences. The usual procedure to deal with in AFS is to
do a background subtraction, which involves holding the induced metric at the boundary the
same for the background and the datum. For (24), this means that the boundary cosmological
constant term drops off and we end up with the same result as what one would get from a pure
Neumann boundary term, see [3]. This means that various discussions there on thermodynamics,
horizons, etc [6] also immediately apply to the background subtracted case here.

4 The explicit presence of +/ |v] is not of much worry, as one can see, 7% is also defined implicitly with the same
factor.
5 See discussion in the Appendix for some elaboration on this.
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AdS
We will now look at asymptotically AdS,1 spaces®. We follow the notations of [4].
The renormalized Neumann action is given by

Spen = S — /8 ey, (28)

where %, is the renormaized boundary stress tensor density.

The boundary stress tensor is related to 7% as”
T = 2 i = l(@ij — 04Y), (29)

and the renormalized stress tensor TyZ, is obtained from %, in the same way. The variation of
renormalized Neumann action gives

IS = eq. of motion —/ d%x 72-]-671;];”
oM
1 ..
= eq. of motion + 2/ d%z go ii0(vV—=90T"), (30)
oM

where 7% is the true renormalized stress tensor (of the boundary CFT) and is given by][7]

1 2 §8yen 2 85
7., = lim T"A] ) = lim [ ———— 2 ) = — D_. 31
o= (s mn) Ho< Ve 59”) VeTRr R

We can write down the Robin gravity action specific to AdS as

(d—2)

5 £ de/=qgo, (32)
oM

g i
s = s - [ e+
oM
which upon variation gives

Sk = eq. of motion + % / A%z go 5(\/_%(7@‘ + §géj)>, (33)
oM
with the variational principle well defined by holding /=go(T% + &g ) = any fized quantity.
The essential difference between flat space and AdS is that here the variational principle is
best formulated in terms quantities that are intrinsic to the field theory: in other words, in terms
of a combination of the gp and the g4 in the Fefferman-Graham expansion (see [4, 7]) instead of
induced metric . Note that 7% is determined in terms of them [7].
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Appendix A. Another Path to Robin?
In the particle mechanics and field theory cases, there exists a direct path from the Dirichlet
action to the General Robin action. Let us start with the particle mechanics problem. To the

Dirichlet action in (1), add a boundary term S%, = gq'Q T, the variation of the sum of two gives

5(Sh + ) = — /T at (i +V'(@)da+3o(&i+aq)] . (A1)

This is clearly a well-defined General Robin variational principle. This sort of thing extends
trivially to the field theory case as well. Simply consider the following addition to the Dirichlet
field theory action:

Svo= [ aPev=a (g 0000 -ve) -5 [ aevRloer (a2

A R G T B P
- /8 APV R10,6 66+ €0,0) (A3)

For the case of gravity, one might think that an analogous boundary piece can be added to the
Dirichlet (Gibbons-Hawking-York) action to produce the General Robin action. This however
does not seem to work: for gravity, we find that going through the Neumann action seems to be
essential to obtain the Robin action. We describe why this is so, below.

There are two possible terms that could be constructed out of m;;’s that are quadratic, namely,
(7%7;;)? and 7% yjkwklm. Also, one has to remember that 7%/ internally contains a \/W factor,
so it would be more advisable to write boundary terms using 7%, the boundary stress tensor®.
Let us look at the variation of the first candidate, modulo the constants

59, = / Pz 6[\/ 7] [Te(T)]?]
oM
3 1 p y y
= [P e B (P s+ 2T (T 4 90T) ) ()
This can be written in terms of 7%’s as

1 .
6S) = 4/ dP7 e § | ——= (7 ;5)?
oM VIl ’

_ 1 1, .. . |
= 4/ dD 11‘ T (—(WZJ’)/ij)Z')/klé’Ykl + Q(le’yij)ﬂklé’}/kl + Q(TFZJ’}/ij)")/kl(STFkl) . (A5)
oM

Vil \ 2

The variation of the second candidate term gives,
58y = = / dPz §[\/|v] Te(T?)]
oM
1 g . .
— /W dP /]| <2Tr(T2)wé%-j +2T"8T;; + 2 T”Tj’f&m> : (A.6)

¥ In the following we use the defintions [Tr(T)]? = (T"~;;)* and Tr(T?) = T~ T ;.
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This can be written in terms of 7’s as

1 y
0Sy = 4/ dP 1z 6 | —— (W’J*y-kwklwi)
oM Vhl o
1 1
= 4 / 4P —= (=5 (T i) 0
oM Vhiv 2o v

—|—27rij’yjk7rkl5’yli + 27Tij’yjk’yli(57rkl>. (A7)

To allow the most general possibility, let us consider adding a combination of these two candidate
terms with arbitrary coefficients to the Dirichlet action:

Sr=5Sp+¢ Pz (T97i)2 + ¢ dP—1y

1
oM Ak oM ikl

Upon variation this yields

T ey, (A.8)

- 1
) (LT WERSp—)
oM

+

s g

1
(—§7Tm”’nm7jn’ykl + 27r”’7jn5f)] 5Yki

vl

For this to reduce to a General Robin variation, we need the coefficient of 67* to be some
number times the coefficient of d+y;. This is clearly impossible for any choice of ¢ and &.

The essential difference between mechanics/field theory and gravity is that here, the \m
term shows up, which is essentially non-polynomial. This makes the Neumann term an essential
intermediate step in our path to Robin: there does not seem to be direct path to it from the
Dirichlet (Gibbons-Hawking) boundary term.

Another way to state the same observation is that one can view both Dirichlet and Neumann
boundary conditions as limits of Robin in mechanics and field theory, but in general relativity
only the Neumann boundary condition can be viewed as a limit of Robin. At the technical level,
the problem is that for -, the key relation (25) holds, but for 7 there is no such relation.

2
+— [i’nﬂkz + C%mﬂ] 57Tkl} (A.9)
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