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Abstract: This work employs the Extended Direct Algebraic Method (EDAM) to solve quadratic
and cubic nonlinear Klein—-Gordon Equations (KGEs), which are standard models in particle and
quantum physics that describe the dynamics of scaler particles with spin zero in the framework of
Einstein’s theory of relativity. By applying variables-based wave transformations, the targeted KGEs
are converted into Nonlinear Ordinary Differential Equations (NODEs). The resultant NODEs are
subsequently reduced to a set of nonlinear algebraic equations through the assumption of series-
based solutions for them. New families of soliton solutions are obtained in the form of hyperbolic,
trigonometric, exponential and rational functions when these systems are solved using Maple. A few
soliton solutions are considered for certain values of the given parameters with the help of contour
and 3D plots, which indicate that the solitons exist in the form of dark kink, hump kink, lump-like
kink, bright kink and cuspon kink solitons. These soliton solutions are relevant to actual physics,
for instance, in the context of particle physics and theories of quantum fields. These solutions are
useful also for the enhancement of our understanding of the basic particle interactions and wave
dynamics at all levels of physics, including but not limited to cosmology, compact matter physics and

nonlinear optics.

Keywords: Klein-Gordon equations; nonlinear partial differential equations; extended direct
algebraic method; kink solitons; explicit solutions

MSC: 33B15; 34A34; 35A20; 35A22; 44A10

1. Introduction

A more generalised form of the nonlinear Klein-Gordon Equation (KGE) with different
nonlinearities can be articulated as follows:

Uy — viyy + P'(u) =0, (1)

where u = u(x,t), v is a constant and P(u) is a suitable nonlinear function that is fre-
quently selected as the potential energy [1]. Choosing P’(u) results in the generation of
a number of equations that can be used to simulate a wide range of physical processes,
from quantum physics to wave motion, including sine-Gordon, Landau-Ginzburg-Higgs,
PHI-4 and reaction Duffing equations [2]. Kragh discusses the KGE’s inception, stating
that prominent physicists such as Klein, Fock and Schrédinger were involved in revealing
the connection between general relativity theory and some of the older forms of the KGE,
which is one of the most significant equations, from which the canonical version of the
nonlinear Schrodinger equation can be derived [3,4]. Galehouse [5] used suitable gauge
transformations to obtain the KGE geometrically. Moreover, Schechter provided proof
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of the scattering theory for the more general form of the KGE [6]. The KGE’s equivalent
theory is created by adhering to the traditional process comprising a comparable equation
in a certain finite-energy normed Hilbert space that contains first-order time [7]. In this
article, Weder also provided evidence for the invariance principle, interweaving relations
and the existence and completeness of the wave operators. Thus, similar eigenfunction
expansions can be applied to a certain field case in order to construct the spectral and
scattering theory of the KGE, and the strong results are similar to the Schrodinger case [8].
Tsukanov discusses the translation motion of a KGE in an external field [9].

Since its introduction, the KGE has yielded a wide range of solutions that describe
many physical phenomena, including kinks and solitary waves. Tariq et al., in [10], devel-
oped a new plethora of exact solutions such as bright and dark solitary wave solutions,
kink solitary wave solutions, anti-kink solitary wave solutions, periodic solitary wave
solutions and hyperbolic function solutions using the Sardar sub-equation and extended
Fan sub-equation methods with stability analysis of the observed solutions. Onyenegecha
constructed analytical solutions of a D-dimensional KGE with modified Mobius squared
potential [11]. By using the reduced differential transform method, Belayeh et al. found
approximate analytic solutions to a two-dimensional nonlinear KGE [12]. Ahmadov et
al. used the Nikiforov—Uvarov method to construct analytical solutions for the KGE
with combined exponential-type and ring-shaped potentials [13]. Abdeljabbar et al. ex-
plored bright and dark soliton solutions in the realm of quadratic KGEs [14]. Applying
the extended first kind elliptic sub-equation approach, certain bell- and kink-type soli-
tary wave solutions produced by applying some hyperbolic functions for the KGE were
constructed [15]. Using the modified simple equation method, Akter and Akbar derived
similar solutions [16]. Adomian applied the decomposition technique to the KGE’s initial
boundary value problems [17]. Kudryavtsev [18] studied the interaction of two solitons that
are weakly oscillatory, self-localised and damped for a specific form of the KGE. In addition
to the analytical solutions previously outlined, a range of numerical techniques have been
used to solve KGE-related problems. A few difficulties based on the KGE were resolved
by Strauss and Vazquez [19] using the most straightforward central second difference
approach. The energy-saving scheme is better suited to model the long-term behaviour
of the solutions than the other two, according to the numerical integration of the problem
using four explicit finite-difference methods [20]. Another way to solve the KGE numeri-
cally is via a collocation method based on radial basis functions of thin plate splines [21].
Integrated radial basis function network methods and multi-quadratic quasi-interpolation
are used to approximate the solutions of the non-homogenous version of the KGE [22].
In order to generate numerical solutions of the KGE, classical polynomial cubic B-spline
functions have also been adapted for the collocation method [23-27].

Motivated by the ongoing research on KGEs, in this work, we use the EDAM to
construct and analyse new families of kink soliton solutions for two KGEs, i.e., the quadratic
KGE and the cubic KGE. These models are articulated as follows:

a. Whenv = 1and P'(u) = mu — nu? are substituted into (1), where m and 1 are
non-zero constants, then the quadratic KGE takes the following shape [28]:

Upt — Uy + mu — nu? = 0. (2)

b. When P'(u) = mu — nu® is substituted into (1), then the cubic KGE takes the
following shape [29]:
Ut — VlUyy + mu — nu® = 0. 3)

KGEs are prominent models in particle and quantum physics which articulate the
dynamics of scaler particles (particles with spin zero) in the context of special relativity.
The unfinished task of the current study is to use the EDAM to generate kink soliton
solutions for (2) and (3). The KGEs are converted into NODEs using variables-based wave
transformation. From the resultant NODEs, numerous soliton solutions can be obtained
by further reducing them into an assortment of nonlinear algebraic equations under the
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presumption that they have a series-based solution. With the use of illustrated contour
and 3D graphs, the dynamics of a few soliton solutions are investigated for certain values
of the supplied parameters. This shows that the solitons take on the structures of several
kink wave types, including dark, hump, lump-like, bright and cuspon kink solitons. These
graphics also confirm the presence of kink waves in both KGE models. The found soliton
solutions have significant physical implications, especially in the context of quantum field
theories and particle physics.

The format of the rest of the article is as follows: The Section 2 goes into further detail
about the EDAM’s methodology. For its induction to the KGEs, we present Section 3.
In Section 4, we provide illustrations of particular kink soliton solutions along with an
explanation, while the Section 5 summarises our investigation.

2. The Working Methodology of EDAM

In this section, we present a general description of the EDAM [30-32]. Look into the
general Nonlinear Partial Differential Equation (NPDE) in the following form:

E(0,0t,001,00,,000y,---) =0, (4)

where 0 = o(t,01,02,03,...,04). In order to solve Equation (4), the following steps are
followed:

Step 1. Equation (4) is first subjected to a variable transformation of the form
o(t,o1,02,03,,04) = I1(), where 1 = #(t, 01,02, 03,,0,), which may be expressed in a
many ways. This transformation converts (4) into an NODE with the following structure:

F(ILIT,TI IT,...) =0, 6)

where [T = %.
Step 2. Next, we suppose the subsequent series-based solution for (5):

N N
() = Z_:OCm(G(U))m or II(n) = ;Ncm(G(ﬂ))m- (6)

Here, C,, symbolises parameters which need to be estimated, while G(#) satisfies the
Ricatti equation of the following form:

G'() = p+aG(n) +1(G(m))? 7)
where p, g, r are constants.

Step 3. We obtain a positive integer N (as expressed in Equation (6)) whenever we try
to find a homogeneous balance between the dominant nonlinear term and highest-order
derivative in Equation (5). By using the ensuing formulae, we obtain the balance number
N more precisely:

N+s=N{+r(s+N),

such that
d'T1
D dns )=N+ts,
d°T1
DT (G)) = NE+r(s+N),

where D shows the degree of I1(7) and s, { and r are positive integers.
Step 4. We then substitute (6) into (5) or integrate (5), developing the equation, and
place all the terms in order of G(#) to form a polynomial in G(77). When all the coefficients
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of the derived polynomial are set to zero, an algebraic system of equations for C;;s and
other parameters are generated.

Step 5. Then, Maple is utilised to solve this system of nonlinear algebraic equations.

Step 6. The travelling wave solutions, which can be obtained from Equation (4), are
found by solving for the unknown parameters and substituting the resultant solution into
Equation (5) together with the appropriate G(7) solution from Equation (7). Using the
general solution of Equation (7), we can generate the families of travelling soliton solutions
shown below:

Family 1. For A < Qandr # 0,

q \/jtan(% Mq)

Gi(n) = o T o7 /
Ga(17) = *% - mmtgf Mn),
Gl = _% . m(tan(mn)zr+ (sec(ﬂq))) ,
. 9 \/j(cot(\/jiy) + (csc(ﬂq)))
4ln) = 2r 2r ’

and
Gs(n7) = _% n \/j(tan(% MZB —cot(% \/j,?))

Family 2. For A > Qandr # 0,

Ge(17) = —% - \/Xtanhz(ré \/XU) ,
Grly) =~ - ﬁmthz(f Vi),
c g \/K(tanh(\/xiy) +i(sech(\/K17))>
s(1) = 2r 2r ’
c g \/K(coth<\/K17) + (csch(\/xn)))
o(1) = =5, 2r '

and
g VA (tanh ($v/A7) — coth(} VAT) )
10(17) = o 4r .

Family 3. For pr > 0and q =0,

Gu(y) = \/ftan(\/ﬁn),

Gualn) =~/ £ cotlypr),

Ga(i7) = 4/ = (tan(2 /prip) + (sec(2 /pr1))),

=
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Gial) = 2 (cot(2 vF) + (eselz ).
and

Grs() = 3/ (tan (5 vin) = cor(5 v ) )

Family 4. For pr < 0and q =0,

Go(n) = =/~ tanh (/5.
Giz(n7) = _\/_»’:C(’th(\/_ipr”)’

Gr) = /= tann 2 y =) + (isech (2 =),

Gio) = ==L (coth(2 =) + (esch(z =),

and

G(n) = —;ﬁ(tanh<; \/ﬁn> —l—coth(i \/—7]91’17>>

Family 5. Forr = pand q =0,
G (17) = tan(pr),

G (1) = — cot(pn),
Gas(n) = tan(2 pny) + (sec(2pn)),
Gos(17) = —cot(2pn) + (esc(2py)),

1 1 1
Gos(n) = 2tan( p17> — = cot( p17>.

Family 6. Forr = —pandq =0,

and

Gae (1) = — tanh(py),

Ga7(n) = — coth(pn),
Gag(n) = — tanh(2py) + (isech(2 py)),
Gao(17) = — coth(2pny) + (csch(2 pry)),

and

1 1
Gso(17) = —ztanh< pﬂ) - = COth< pq).

Family 7. For A =0,
plan +2)
G -2 —.
31(77) q 7

Family 8. Forr =0, = Aand d = sA (withs # 0),
G32(77) = e)‘” —S.

Family 9. Forg =r =0,
Ga3(17) = p1-
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Family 10. Forq=p =0,

1
Gaa(n) = T
Family 11. Forq # 0,7 #0and p =0,
Gss(n7) = 1

~ r(cosh(qy) —sinh(qy) + 1)’

and
q(cosh(qy) + sinh(q7))

cosh(qn) + sinh(gn) +1)

Gae(17) = T

Family 12. Forq = A, r = sA (withs # 0)and p =0,

eM

Gaz (1) = T e
In the above solutions, A = g% — 4rp.

3. Construction of Soliton Solutions for KGEs

In this section, we evaluate soliton solutions using the EDAM for the nonlinear KGEs.

3.1. Example 1

First, we evaluate soliton solutions for the quadratic KGE stated in (2) as follows:
Ut — Uy + mu — nu> = 0. (8)
Taking the travelling wave transformation of the form
u(x,t) =U(y),n = bx —at, )

where 2 and b denote non-zero constants, we obtain the following by the chain rule:
ur(x, 1) = S U(p) = U () o = —all ()
Ay - at 77 - 17 atrl - 77 4
0 d
un(x,t) = = (=all’ () = —al” () 51 = a*U" (1),
d 7/ i o !
5740 = W) zon = bU(y),
0

arl,8) = (0L (7)) = DU () g = 020" ().

uy(x,t) =

Equation (2) can be transformed into the following NODE:
(a® = v*)U" + mU — nU?* = 0. (10)

To find the balance number N presented in (7), we balance the highest-order derivative
term U” with the highest-power nonlinear term U? in the above equation, which determines
N +2 = 2N. Thus, N = 2. Putting N = 2 into (7), starting from N = 0, suggests the
following closed-form solution for (10):

U(ny) = Co + C1G(17) + C2(G(1))* (11)

The arbitrary constants Cy, C; and C, are placeholders that need to be found. A substi-
tution of (11) with (10) yields an expression in G(7). After gathering terms with the same
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powers of G(17) and equating the coefficients to zero, we obtain the following system of
nonlinear algebraic equations:

— b2C1qp — 26*Cop® + mCy — nCy? + a*Crgp +2a°Cop? = 0,
a*C14* + mCy — b*C14* — 6 b*Capq + 2a*Cyrp + 6 a*Capq — 2b*Cyrp — 2nCoCy = 0,
3a2Cyqr — 4b2Cog® + 402 Cog* + 8a*Copr — 86> Cypr — 30*C1qr — 2nCyCa + mCy — nCy% =0,
—10b*Coqr — 2nC1Cy + 24>Cyr* + 10 a*Coqr — 2b*Cyr* = 0,
and
—nCy% — 6b?Cor® + 64>Cor* = 0.

When this system is solved using the Maple tool, it leads to the following three cases
of solutions:

Case 1.
2*b2
Co=Co Gy = M Cz—C]gr,a:a,b:b,m:(b2—a2)A,n:6r(aC )v (12)
0
Case 2
2 202 12
nglcz(q izpr),cl:%,Q:Cz,aza,b:b,m:(aszz)A,n=6r (>~ %) (13)
6 r r Cz
Case 3
C0:C0,C1:Cl,Cz:C2,a:ib,b:b,m:0,n:0. (14)

Considering Case 1 and utilizing Equations (11), (9) and the corresponding general
solution of (7), we construct the ensuing families of soliton solutions for the quadratic KGE
in (2):

Family 13. For A < Qandr # 0,

2
Cog 14 .1 V=Atan(3vV=An)\ o 14 1V-Atan(iv=Ay)
u1(x,t) =Co+ —— -1+ + 0 Ty , (15)
" p 2r 2 r p 2r 2 r
2
Coq 1 q 1V —ACOt( Vi ) Cor 1 q 1V —ACOt( 2V —Ai’])
upg(x,t) =Co+—[-5-—-3 +—|-z1-=z , (16)
" 2r 2 r 2r 2 r
p p

ui13(xt) =

r r

pq< 1y, 1 V=A(tan(v=A7) +sec(m;7)))

Cor
+7 —
p(

(17)

+

S

N =
I\J\P—‘

r

SN/
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Coq 1g 1 \/—A<cot(\/ —An) +csc(\/—A17)>
upia(x,t) =Co+—| —5-—=
p 2r 2 r
2 (18)
Cor{ 1q 1 \/—A(cot(\/—Aiy) +csc(\/j;7))
T T2 2 p :
coal 14 1 \/j(tan(% \/—An) _Co’f(zli mﬂ)
up15(x,t) =Co+ — | —s -+ =
p 2r 4 r
. ) ; (19)
Cor ( 19 1 \/j<tan(4 V—Aiy) +C0t(1 \/—Ary)>)
+ - -51+7 :
p 2r 4 r
Family 14. For A > Oandr # 0,
1 1 2
y (x,1) =C JrM 71ﬂ71\/xtanh(§\/X17> +@ 71ﬂ71\/Xtanh(§\/X17> 20)
LL63E 0 p 2r 2 r p 2r 2 r !
2
B Coq 1 q 1 \/KCOth(% \/X?]) C()T’ 1 q 1 \/KCOth(% \/Kﬂ) (21)
ur17(x,t) =Co+— | —5-—= I U (. )
P 2r 2 r p 2r 2 r
N —C Coq 1g 1 \/K(tanh(\/xio —i—isech(ﬁ;y))
ul,l,g(xl >_ 0+7 _E;—E p
2 (22)
Cor[ 1q 1 \/K(tanh(\/Xq> +isech(\/X17))
T2 2 ; :
C 1 1 \/K(mth(\/xﬂ) +csch(\/K17))
ui9(xt) =Co+ — [ =T 2
o % 2r 2 r
2 (23)
Cor ( 1q 1 \/K(COth(\/Ki]) —i—csch(\/K;y)))
+—1—-5-—-5 ’
p 2r 2 r
Coq[ 1q 1 \/X(tanh(% \/Xﬁ> —COth(% \/Xq)>
w6t =Co+—=| -5 -7
r 4 r
1 1 2 (24)
Cor 1q 1 ﬁ(tanh(l \/Xi’]) —COth(1 \/Ki’]))
T T2 s ; :
Family 15. For pr > 0and q =0,
u111(x,t) = Co + Co(tan(,/7p1))?, (25)
u11,12(x, 1) = Co + Co(cot(y/prn))?, (26)
u113(x,t) = Co + Co(tan(2 /pryp) + sec(2 /pryp))?, 27)
t1124(5,1) = Co + Co(<ot(2 ) + cse(2 /) 28)
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1 1 1 2
u1,1/15(x,t) =Co+ 1 Co| tan 5 \/ﬁﬂ — cot 5 \/ﬁi’] . (29)
Family 16. For pr < 0and q =0,
ulrlllé(x, f) =Cy—Cy (tan(\/ﬁn))z, (30)
u11,17(x,t) = Co — Co(coth(,/7p1))?, (31)
u1118(x, t) = Co — Co(tanh (2 \/—pry) + (isech(2 1/—pr77)))2, (32)
u11,19(x, £) = Co — Co(coth(2 \/—pry) + (csch(2 \/—pm)))z, (33)
1 1 1 2
ui100(x,t) = Co — 1< (2 tanh(\/—rpy) + 5 coth(\/—rpiy)) . (34)
Family 17. Forr = pand q =0,
u1,1,1(x,t) = Co + Co(tan(pn))?, (35)
u11,22(x,t) = Co + Co(cot(py))?, (36)
u11,23(x,t) = Co + Co(tan(2 py) + sec(2 pny))?, (37)
u11,.24(x, ) = Co + Co(— cot(2 py) + csc(2 p;y))z, (38)
1 1 1 1 2
i) =Gt o gan(3m) = or(5m) ) )
Family 18. Forr = —pand g =0,
u1,1,26(x, t) = CO — CO (tanh(pry))z, (40)
u1,1,27(x,t) = Co — Co(coth(py))?, (41)
u1128(x, ) = Co — Co(— tanh(2 py) + isech(2 pny))?, (42)
u1,1,09(x,t) = Cop — Co(— coth(2 pr) + csch(2 p;y))2, (43)
1 1 1 1 2
uy130(x,t) = Cop — Co (—2 ’canh(2 p17> ~5 coth(2 pn)) . (44)
Family 19. For A =0,
Cop(qn+2)  , Corp(qn +2)°
u x,t)=Cy—2 +4 . (45)
1131(%,t) = Co pr o
Family 20. Forr =0, = Aand p = sA(s #=0),
Ay _
u s t) = G+ =9, (46)

In the above solutions, 7 = bx — at.

Considering Case 2 and utilizing Equations (11), (9) and the corresponding general
solution of (7), we construct the ensuing families of soliton solutions for the quadratic KGE

in (2):

Family 21. For A < Qandr # 0,
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Cyg 1q 1 Mtan(%\/—Aiy) 1q 1 \/—Atan(% \/—An) 1 Ca(q?+2pr) @)
Ui (x,t) - _§;+§ p +C _§;+§ p +6r72,
2
wq( 1gq 1V _ACOtG 1% _A’Y) g 1V _ACOt(% 1% _A’7) 1 Ca(q?+2pr) (48)
a2t ==71 =35 72 p TGl 5573 p te T

ui3(x,t) % (—; g + % M(tan(\/j;yr) +Sec(m’7)>)
> (49)
G (—;24'; \/j(tan(\/jnr) —i—sec(\/j’?))) +écz(q2;2pr)’
Cag ( 1g 1 VoA(cot(v=An) *CSC(”’?)))
maalnt) === =57 73 ;
(50)
( 1g 1 F(COt(Mﬂ) —|—CSC(MI]))) 1 Cz(q2+2pr)
el : e
st <511 ) i)
2 (51)
+C2(—;Z+i\/7(tan( Miyr)—cot( MU))) +é(qr42-2pr)
Family 22. For A > Oandr # 0,
2
R L i e R G SN RS =S
2
() _% (_;z_; \/Kcothr(é x/Kn)) Lo (_;Z_ % \/Kcothr(é ﬁﬂ)) +2C2(qz;zr2m)' -
Czq( 19 1 \/K(tanh(\/xﬂ) +isech(\/K17)>)
u2s(n ) =71 737 7 2 ;
2 (54)
(173 ) i), st o
Tl 7373 ; teT
C, ( 1g 1 f(coth(x/Kn) —I—csch(fﬂ)))
e b .
2 (55)

2r 2 r
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1 1
ws ey 2Cot (101 VA(an(3 VA) —cotn(} Viy) )
1,2,10(X, . 571 p
\/7 nh(1 \/> h(1 \/> 2 (56)
v (a1 YA (3 VAY) —cot(3VAY))\ " g cafge )
2\ 2r 4 r 6 2
Family 23. For pr > 0and g =0,
2
1 tan r
man(xt) =3 Gp | Cop (tan(v/p71)) , (57)
r r
1 Cp  Cop(cot 7
1/[1,2,12(3(, t) — 5 i _|_ ZP( (\/?77)) , (58)
r r
1C Cop(tan + sec
w1 213(x,t) = 5 ip 2p(tan (2 /p7 ) (2 \Fﬂ)) (59)
1 Cp  Cop(cot(2 \/ﬁn) + csc(2 \/ﬁq))z
u2u(mt) =3 ="+ ; : (60)
1 2
1 G 1 Cp(tan(1/2ypm) —cot(3 vpm) ) 1)
mas(xt) =3 ==+ . .
Family 24. For pr < 0and g =0,
1C Cop(tanh(y/—pry))?
ui16(x,t) = 3 %p - 2p( (r Pr1)) , (62)
1C Cop(coth(y/=pr))?
u1217(x,t) = 3 %P _ Gl (7\/777)) , (63)
1C Cop(coth(2 /=prn) + csch(2 /=prn))?
ul,2,18(xr t) = g %P — 2P( ( \/777)1, ( \/7’7)) , (64)
1C Cop(tanh(2 \/=pry) + isech(2 /= pry))?
ul,2,19(xrt) = g %P — ZP( ( \/7’7)7 ( \/777)) , (65)
2
1Gp 1 Czp(tanh(%\/—ipm) +coth(%\/—7pr17)) (66)
u1220(x, ) = 35 1 '
r 4 r
Family 25. Forr = pand q =0,
1
u1p01(x, 1) = 3 Cy + Cy(tan(ry))?, (67)
1
u1pm(x,t) = 3 G+ Cz(cot(r;y))z, (68)
1
u123(%,t) = 3 Cy + Cy(tan(2ry) 4 sec(211))?, (69)
1
11204(%,£) = 3 Co + Ca(— cot(2r) + cse(2 m))?, (70)
2
u1025(x, 1) = 2 Cz + Cz<1 t.am(1 1’77) 1 cot(l r;7>> . (71)
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Family 26. Forr = —pand g =0,
1
u1226(x, 1) = =3 G+ Ca(tanh(pr))?, (72)
1
227 (xt) = —3 G+ Ca(coth(py))?, (73)
1
t128(x,1) = = Co + Ca(— tanh(2 py) +isech(2 py))’, (74)
1
U109 (x, t) = ~3 Cy + Ca(— coth(2 pyp) + csch(2 py))?, (75)
1 1 1 1 1 2
uyp30(x, t) = —3 Cr+C (—2 tanh<2 p;y) —5 coth(2 p;y)) . (76)
Family 27. For A =0,
Co(? +2 2
was(xt) = ¢ 2 2P (@ 5 P, = (—2 P(qui;r 2)> +C (—2 P(quzgr 2)> . @)
Family 28. Forq=p =0,
C
u1232(x,t) = ﬁ (78)
Family 29. Forq #0,vr #0and p =0,
1 Czqz Czqz Czqz
u x,t) = — — - + . 79
12300 8) = & =3~ 2 {cosh(gy) — smh(y) + 1) 72 (cosh(qn) — sinh(g) +1)2 @)
and
irasa(x ) = L G2, Cog (qlcosh(qy) +sinh(gn) \, o ( alcoshigy) +sinh(gn) \* g
23 6 r2 r r(cosh(gn) + sinh(qy) + 1) r(cosh(qn) +sinh(gy) +1) )
Family 30. Forq = A, r = sA (withs # 0)and p =0,
2
1 CA? Cor et Cy(eMh)
) = — . 81
u235(x 1) = ¢ A2 A (1—seM) | (1—setn)’ (81)

In the above solutions, #7 = bx — at.
Considering Case 3 and utilizing Equations (11), (9) and the corresponding general

solution of (7), we construct the ensuing families of soliton solutions for the quadratic KGE
in (2):

Family 31. For A < Oandr # 0,

uiz1(x,t) =Co +Cq (—

uiz2(x,t) =Co +Cy (—

2
1q+1”‘Ata“(%”_A">)+cz(—”+l _Atanem”)), ®2)
2r 2 r 2r 2 r

2
1g 1 VAC‘”(%VA”)) +C (_W_l VACOt(%ﬂﬂ) . ®d)
2r 2 r 2r 2 r
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1.3 Aol )

(84)
LG (_; g +% F(tan(\/jnr) +sec(ﬂq))) ,
M1,3/4(x, t) =Co+C; (_; g B % F(COt(MWr) "‘CSC(MT])))
(85)
( 1g 1 \/7(C0t<\/j17) +CSC(M}7)>)
@l p ,
iy 35(x,£) =Co + Cy (_;q+ir(tan(M17r) cot(}I \/j;y)))
(86)
o 41 b))
r 4 r
Family 32. For A > Qandr # 0,
2
iae(xt) = Cot G (_; ; _% \/Ktanf;(\/Kq)> +c2< %g % \/Ktam:(\/x”)) / (87)

2

1
1 1 VAcoth %\/KW 1 1 VA coth 5 \Fﬂ
u37(x,t) = Co+ Cq (—q— r( ) +C _Eg_i r( ) , (88)

i 38(x,8) =Co + Cy (_1 g 1 \/K(tanh(\/xﬂ) +isech(\/K;7)))

2r 2 r
)
1g 1 \/K(tanh<\/xi7> —l—isech(\/Kq)) ? (89
IR T . ,

u139(x,t) =Co + Ci (_1 g 1 \/X(mth(\/XU) —l—csch(\/Xq)))

2r 2 r

> (90)
( 1g 1 f(coth(fﬂ) —i—csch(\/Xq)))
Tl 72 g ,
uis10(x, t) =Co+ C (_; g _ % \/K(tanh@ \/KUZ — coth(% \/Kq)))
1)
1qg 1 ﬁ(tanh(% \/Kﬂ) _Coth(% \/KU)) 2 91
Ml B T ; .

Family 33. For pr > 0and q =0,
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2
u1,3,11(x, t) =Co+(C \/?tan(\/ﬁn) + C2P<tan(ﬁﬂ)) , (92)
r r
2
u1,3,12(x, £)=Co—C \/>C0t(\/717) CZP(COt(\/ﬁﬂ)) , (93)
r
2
u1313(x,t) = Co+ C ﬁ(tan(z VTP +sec(2/tpy)) + Cap(tan(2 W’?)r+ sec(2 yp1)) , (94)
2
1314(x,1) = Co - clﬂ (cot(2 ) + csc(2 i) + 2Pt \/W); cse(2y/rpn))” (95)

p 1 Cop(tan(} V) —cot(3 7)) (96)
uy315(x,t) =Co+ = Cl\/>(tan< \/ﬁq)—cot< fﬁ)) .

r

Family 34. For pr < 0and q =0,

2
u1316(x,1) = Co - clﬁ tanh (y/—rpy) — 2PUanh(V=rpm)” o7

r

ui317(x,t) = Co — Cl\/—icoth(\/in) Cop COth(\/jﬂ)) 98)

uy318(x,t) =Co — C14/ —g (tanh(2/—pry) +isech(2\/—pry))

(99)
_ Gyp(tanh(2\/—pry) + isech(2/=pry))?
r 7
u1/3,19(x, t) =Cp — CM [ — (COth( \/ =T 77) + CSCh(Z\ / —pi’iy))
(100)
_ Gyp(coth(2/=rpn) + csch(2w/—pr17))
r 7
1 p 1 1
uy320(x,t) =Co — 5 C - tanh SV P )+ coth 5 VP
2 (101)
1 Czp(tanh(% J—pm) + coth(% \/—pm))
4 r '
Family 35. Forr = pand q =0,
113,01 (x,t) = Co + C1 tan(ry7) + Ca(tan(ry))?, (102)
u1,3,22(x, £)=Co—C COt(Ti]) + Cz(COt(T’ﬂ))z, (103)
u1303(x, ) = Cop+ Cy(tan(2ry) + sec(2ry)) + Co(tan(2ry) + sec(2 m))?, (104)
t1,324(x,F) = Co + C (— cot(2 ) + csc(2ry)) + Co(— cot(2ry) + cse(2r))?, (105)

1 1 1 1 2
uy305(x,t) = Cp+ C1< tan( r77> - = cot( >> +C2< tan( r;y) - = cot( r;y)) . (106)

Family 36. Forr = —pandq =0,

u1,3,26(x, t) =Co—C tanh(piy) + Cz(tanh(piy))Z, (107)
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uy307(x,t) = Cop — Cy coth(pn) + Ca(coth(py))?, (108)
u1308(x,t) = Co + C1(— tanh(2 py) +isech(2 py)) + Co(— tanh(2 py) + isech(2 py)) (109)
u13029(x,t) = Cp+ C1(— coth(2 py) + csch(2 py)) + Co(— coth(2 py) + csch(2 pn)) (110)
1 1 1 1 1 1 1 1 2
u1330(x,t) =Co + Cq (—2 ’ranh(2 piy) -3 co’ch(2 pn)) +C <—2 ‘ranh(2 p17> -3 co’ch(2 p;y)) : (111)
Family 37. Forr =0,9 = Aand p = sA (with s # 0),
2
351 (x,t) = Co+ Gy ( -2 ’“(q:z; ) ) +C, ( okl +2) (112)
Family 38. Forr = 0,9 = Aand p = sA (with s #0),
2
M1,3,32(X, i’) =Cy+(C (e)‘A — S) +Cy (e)‘A — S) . (113)
Family 39. Forg =r =0,
u1333(x,t) = Co + C1pyy + Cop?n*. (114)
Family 40. Forqg=p =0,
C C
u334(x, 1) = Co — 7}; + ﬁ (115)
Family 41. Forq #0,7r #0and p =0,
Ciq Cag?
u x,t) =Cp— . + , 116
1330 ) = Co r(cosh(qy) —sinh(qn7) +1) * y2(cosh(gy) — sinh(gqy) + 1) (116)
and
_ . Gq(__(cosh(qn) + sinh(qr)) Coq® (_ (cosh(qn) +sinh(qr)) 117
st = €0 S (ot £17) A~ oshian) i) o
Family 42. Forq = A, r = sA (withs # 0) and p = 0,
Cier Co (eM)?
U 337(x, 1) = Co + —1 2(e") (118)

In the above solutions, 7 = b(x F ).

3.2. Example 2

1—set (1- seA’7)2'

Now, we evaluate the soliton solutions for the cubic KGE stated in (3) as follows:

Ut — VUyy + MU — nud = 0.
Taking the travelling wave transformation of the form

u(x, t) =un, n=x+uwt,

(119)

(120)
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where w is a non-zero constant, we obtain the following by the chain rule:
(e 1) = SEU(p) = U' () oy = ' ()
t\ A, - at 17 - 17 at 77 - 77 4
d
un(x,1) = 5 (wl' (7)) = wU" () 5.7 = 0?U" (1),
_ a _ ! _ !
el t) = S-UGp) = U 5oy = U' (),
0
e (x,8) = == (U' () = U" () 5z = U" (1)
The above transformation reduces (3) to the ensuing nonlinear NODE:
(w? —v)U" +mU — nU® = 0. (121)

To find the balance number N presented in (7), we balance the highest-order derivative
term U” with the highest-power nonlinear term U? in the above equation. Putting N = 1
into (7), starting from N = —1, suggests the following closed-form solution for (121):

U(n) = C1G(y) "+ Co + C1G(n). (122)

The arbitrary constants C_;, Cp and C; are placeholders that need to be found. The
substitution of (122) into (121) yields an expression in G(#). After gathering terms with the
same powers of G(77) and equating the coefficients to zero, we obtain the following system
of nonlinear algebraic equations:

—nC3 = 2vCr* +2w?Ci? =0,

3a)2C1qr —3vCigr — 3nCyC1% =0,
—3nCy2Cy +mCy —3nC_1C1% —2v Cirp — 1/C1q2 + szclrp + w2C1q2 =0,
—6nC_1CoC; —vCigp + wzc_lqr —vC_qqr + wzClqp —nCy> +mCy =0,
2 wzc,lpr —3nC_12Cy —2v C_ypr+ wzc,lqz —3nC_1C*> —v C,lqz +mC_1 =0,
~3nC_12Co —3vC_1pq+3w?C_1pq =0,
and
—2v C,lp2 —nC_1> + 2w2C,1p2 =0.

When this system is solved using the Maple tool, it leads to the following two cases of
solutions:

Case 4.
1 Cig —wW?A+2m mr?
C1=0C=z—0C0=Cuw=wv=—"-"—"—n=—-4——. 123
1 0=5—G=0 A CAIC2 (123)
Case 5.
—w? 2
C_1:C_1,C0:1qc_1,C1:O,w:w,v:w,n:—éle. (124)
2 P —A (—A)C_l

Considering Case 4 and utilizing Equations (120), (122) and the corresponding general
solution of (7) we construct the ensuing families of soliton solutions for the cubic KGE in

3):
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Family 43. For A < Oandr # 0,
s 1 /—x
1 Cl 1 q 1 Atan 3 —Ai])
= - 21 —— 14 12
uz1,1(x,t) 5 G ( 57,15 . , (125)
s 1 /—x
u (x t) = 1 i + _1 ﬂ — 1 _ACOt(? _AU) (126)
21235 2 r ! 2r 2 7 !
1¢G 1g 1 V- (tan(\/—Aq) +sec(\/—A17))
uz,1,3(x, t) >, tGl—5,13 p . (127)
1 1g 1 V- (cot(\/—Aﬂ) —i—csc(\/—A;y))
ugpa(xt) =5 == +Ci| =5 - =5 . , (128)
1¢ 1g 1 V= (tan( \/—AU) —cot( \/—Aﬂ))
w5t =5 —=+C| -5+ . (129
r 2r 4 r
Family 44. For A > Oandr # 0
1C 14 1 VAtanh(3VAy
Uup1,6(x,t) 5%4‘(:1 (-22—2 r( ) , (130)
1¢ 14 1 VAcoth(3VAy
u21,7(x/t) - E%—i_cl <_22_2 E ) 7 (131)
10 1gq 1 \F(tanh(\/Xq) —i—zsech(xﬁn))
up8(x,t) §7+C1 57 2 p , (132)
u (x t) 1 & +C _1 ﬂ _ 1 \/X(COth(\/Xﬂ) + CSCh(\/KU)) (133)
219 2 r 1 2r 2 r !
16 14 1 VA(tanh(}vAy) —coth(} VA7)
up,00(x,t) = 5 +C 5,71 p . (134)
Family 45. For pr > 0and q =0,
uz1,11(x, t) = Cl\/ftan(ﬁﬁ)/ (135)
12l 0) = Coy [ (ot /) 2 (136
u2,1,13(x, i’) = Cl ﬂ(tan(Z \/ﬁﬂ) + sec (2 \/@17)), (137)
u2,1,14(x, t) —C \/7(C0t(2 \/717) + CSC(Z \/717)) (138)
1
uy115(x,t) = = Cl\/?<tan< \/ﬁiy) - co’r(2 ﬁn)) (139)
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Family 46. For pr < 0and q =0,

uz116(x, ) = —Cry/ —g tanh(\/—rpn), (140)
uz117(x, 1) = _C“/_g coth(y/=rpy), (141)

up18(x, t) = —C”/—g(tanh(Z\/—irpiy) +isech(2\/—rpy)), (142)
uz109(x,t) = —Cry [/ — (coth( V/=rpn) + esch(2/=rpn)), (143)

Uy 100(x,t) = —Cl\/i< ( \/717)+coth< \/—71’;?17>> (144)

Family 47. Forr = pand q =0,

uy101(x,t) = Cy tan(ry), (145)

u1,22(x, 1) = —Cy cot(ry), (146)

Up123(x,t) = Cy(tan(2ry) + sec(2rn)), (147)

up124(x,t) = Cy(—cot(2ry) + csc(2ry)), (148)

up105(x,t) = Cq (1 tan(1 r}y) 1 cot(1 r;y) > (149)
Family 48. Forr = —pand g =0,

uz,1,26(x,t) = —Cy tanh(pr), (150)

up1.07(x,t) = —Cyq coth(pry), (151)

up128(x,t) = Ci(—tanh(2 pry) + isech(2 py)), (152)

u21,29(%,t) = Cy (= coth(2 piy) + esch(2 pry)), (153)

uz130(x,t) = C <—1 tanh( Pﬂ) ! COth< PU))- (154)

Family 49. Forq #0,r #0and p =0,

Gig Ciq

1
3% 1) = 2 7 r(cosh(gn) — sinh(qn) + 1)’ (155)
and
_1Gq  Ggq (cosh(gy) +sinh(gy))

u21,52(%,t) = 2 r r ((cosh(qiy) +sinh(gy) +1) )" (156)

Family 50. Forq = A, r = sA (withs # 0)and p =0,

1C CyeM

U1 33(x,t) = 5 — 1€ (157)

2 s | 1—set

In the above solutions, 7 = x + wt.
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Considering Case 5 and utilizing Equations (120), (122) and the corresponding general
solution of (7) we construct the ensuing families of soliton solutions for the cubic KGE in

(3):

Family 51. For A < Oandr # 0,

-1

A 1 /X
1 1 —Atan|( 5 *Aﬂ 1 gC_
upp1(x,t) =Cq (—2 g + 5 (rz ) + 3 1 ; 1, (158)
19 1 vV —Acot<% V4 —Aq) ! 14C_,
uppp(x,t) = Cq ) , Jri _— (159)

B _1 q 1 v -— (tan(x/—Aﬂ) +sec(\/—A17)) 161(1—1 (160)
uz3(x,t) =Coy| =5 -+ 5 . T,
-1
AT O Ve EE e N R P TR
uz24(x,8) = Coq| =5 45 ; +5 -
-1
1 1 V—A(tan( 3z vV—A7n) —cot( 1 V—Ay 1aC_
up5(x,t) = Cq (—2 g +t1 ( ( r) ( )) +5 q ; L (162)
Family 52. For A > Oandr # 0,
1g 1 \/Ktanh(% \/Kﬂ) o 149C_4 (163)
Uppe(x,t) = C_4 5772 » +§ v
lg 1 */XCOth(% ﬁ”) T 9C_1 (164)
uzp7(x,t) = Cy 5,725 p + 2
. -1
upps(nt) =Cq| 291 VA(tanh(VAn) +isech(VAL))) T 10
- 2r 2 r 2 p’
-1
trao(t) = Cq [ —2 41 VA (coth(VAy) + esch(VAy) ) LLaC (166
229X, -1l 75773 p 2
. -1
uapno(xt) = C oy -2 1-1 VA(tanh(} vAy) - coth(} VA1) ) LLaCa ey
22,10(%, = . TR
Family 53. For pr > 0and q =0,
uz21(x,t) = Cq \/z(tan(\/@n))_l, (168)

uzlzrlz(x, t) = —C,l \/Z(COt(Wﬂ))l, (169)
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1z013(x, 1) = C_4 \/z (tan(2 \/7p1) +sec(2\/ipy)) ", (170)
Up214(x,t) = —C_4 \/Z (cot(2 \/rpn) + cse(2/rpy)) (171)
upo15(x,t) =2 C_1\/Z<tan<; \/ﬁq) — cot(i \/%7) ) 71. (172)
Family 54. For pr < 0and q = 0,
o 16 (%, 1) = —clﬁ (tanh(y/=7py)) ", (173)
12 217(x, ) = —clﬁ (coth(/=rpy)) ", (174)

upp18(x,t) = —C_q, /—% (2 tanh( \/—rpy) + 2isech (w/—rpﬂ))_l (175)
upp19(x, 1) = —C_1,/ —% (coth(2/—rpn) + csch(2 w/—rpn))*l, (176)

-1
uzrz,zo(x, i’) = -2 C*M / —% <tanh<; \/ —rp17> + COth(i \/ —rp11>) . (177)

Family 55. Forr = pand q =0,

C_
Uz 221 (X, t) = tan(rlq)’ (178)
C_
uppm(x,t) = T’E(lﬂy)' (179)
_ C
U2223(%,1) = tan(277) + sec(2ry)’ (180)
_ Ca
uppa(x,t) = — cot(2r) + csc2r)’ (181)
C_
t2025(% ) = 5 1 11 1, (182)
5 tan(z r17) -3 COt(j 1’17)
Family 56. Forr = —pand g =0,
C_
Uz 226(x,t) = —m, (183)
C_
Uz27(x,t) = —W, (184)
_ C
U2228(%,t) = — tanh(2 pn) +isech(2 py)’ (185)
_ C
Uap29(%, 1) = = coth(2 pn) + csch(2 py)’ (186)
C_
2030(x, 1) = ! (187)

~} tanh(4py) = coth(§ py)
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Family 57. Forr =0,9 = Aand d = sA (withs # 0),
C_1 1C_4
po_C1  1Ca 188
u2,2,31(x/ ) A g + 7 s (188)

In the above solutions, 7 = x + wt.

4. Discussion and Graphs

In this section, numerous kink soliton structures discovered in the framework of the
two KGEs under investigation are visually displayed. Using the EDAM, we were able to
identify and then demonstrate wave patterns in contour as well as in three-dimensional
plots. The soliton solutions developed for the cubic and quadratic KGEs mostly include
kink soliton profiles. When studying NPDEs associated with fluid dynamics, quantum
field theory and optics, it is beneficial to examine solitons which are travelling waves that
keep moving at a constant speed and formation. Such waveforms explain how scalar fields
act within relativistic quantum physics when the KGEs are considered, like in vacuum
state transition, kink solitons and sharp interfaces delineating fields with stable boundaries
within scalar zones of different phases or amplitudes. By researching solitons to the KGEs,
one is able to understand the basic characteristics of relativistic quantum mechanical
systems and particles and the features of vacuums. Figure 1, The 3D and contour graphics
of the bell-shaped dark soliton solution 7 1 ¢ given in (20) are plotted for g := 5, p :=1,
r:=4,Cp:=10,a := 2 and b := 4. Figure 2, The 3D and contour graphics of the bright
kink soliton solution u1 1 17 given in (31) are plotted for g := 0, p := —0.003, r := 0.005,
Cp := 0.001, a := 0.00005 and b := 0.00007. Figure 3, The 3D and contour graphics of
the bell-shaped kink soliton solution u; 7 14 given in (62) are plotted for g := 0, p :=4,
r:= —1,Cy := 10, a := 0.005 and b := 0.005. Figure 4, The 3D and contour graphics of
the bright kink soliton solution u; 5 3; given in (77) are plotted for q := 2, p := 1,7 :=1,
Cy := 70, a := 50 and b := 100. Figure 5, The 3D and contour graphics of the bright
kink soliton solution u311 given in (92) are plotted for q := 0, p := 1, r := 4, Cy := 10,
Cy :=7,C:=8,a:=2and b := —2. Kink soliton solutions, such as bright, dark,
bell-shaped, cuspon and lump-like kink solutions, indicate different localised solutions or
stimulations that result from nonlinear field concepts, corresponding to phenomena like
topological deformity or particle-like structures in the context of KGEs and related fields
like quantum field theory and quantum mechanics. Dark kinks show a localised dip in
their profile, possibly signifying robust soliton-like features, whereas bright kinks show
peaks or humps in their profile, possibly suggesting transitory or meta-stable excitations.
Lump-type kinks compress on the field in pliable zones like lumps, whereas cuspon kinks
have sharp cusp-like structures and frequently exhibit interesting dynamical behaviour.
Bell-shaped kinks feature bell-like curves and can exhibit a range of behaviours depending
on the circumstances. Such kinks are fascinating because of their ability to build robust
or meta-stable localised frameworks, offer insight into the theory of field dynamics and
play a role in breaking symmetry and phase shifts. Ultimately, these kinks will aid in
our understanding of field theory, nonlinear interactions and the behaviour of physical
systems in both the classical and quantum realms. Figure 6, The 3D and contour graphics
of the twinning bright kink soliton solution u; 327 given in (108) are plotted for 4 := 0, p :=
10,7 := —10,Cp := 5,C; := 0.8,C; := 0.100, 2 := 0.0080, b := 0.00110. Figure 7, The 3D and
contour graphics of the lump-like kink soliton solution u; ; 3 given in (127) are plotted for
g:=1,p:=2,r:=3,C; :=0.25and w := 0.0010. Figure 8, The 3D and contour graphics
of the bright kink soliton solution u5 1 19 given in (134) are plotted for g := 4, p := 1,7 := 1,
Cy := 040 and w := 0.020. Figure 9, The 3D and contour graphics of the kink soliton
solution uy 7 9 given in (166) are plotted for g := 5, p := 2,7 :=2,C_; :=40 and w := 10.
Figure 10, The 3D and contour graphics of the cuspon kink soliton solution u; 7 31 given in
(188) are plotted for g :==5,p:=10,7:=0,C_; :=4, w := 20,5 :=2,A :=5.

Furthermore, several analytical methods have been established in the literature to
study soliton phenomena in nonlinear phenomena [33-37]. It is crucial to acknowledge that,



Mathematics 2024, 12, 3433

22 of 29

while these approaches greatly advance our comprehension of soliton dynamics and assist
in linking them to the theories that explain phenomena, they may also have limitations
and shortcomings (like the seven common mistakes) [38,39]. Moreover, several methods
of this kind depend on the Riccati equation [40,41]. A general class of exact solutions to
the Riccati equation (7) was systematically presented by [42]. Moreover, expression (6), for
determining travelling waves, is precisely a rational function of the solution to the Riccati
equation. Thus, the entire solution procedure of the study exemplifies the application
of the transformed rational function method [43]. While there exist solitary solutions
for the Riccati equation, these techniques are useful for examining soliton occurrences
in nonlinear models [44]. Motivated by the above applications of the Riccati hypothesis,
the present study used the EDAM, which incorporates the Riccati equation, to build and
investigate soliton dynamics in two KGEs. This incorporation is helpful since it produces
a large number of additional kink soliton solutions in five families of solutions, periodic,
hyperbolic, rational, rational-hyperbolic and exponential, for the selected models. The
solutions proposed here greatly expand our knowledge of soliton dynamics and allow us
to relate the phenomena in the focused model to the underlying theories.

1_

0.8+

0.6+

0.2

Figure 1. The 3D and contour graphics of the bell-shaped dark soliton solution u1 1 ¢ given in (20) are
plotted for g :=5,p:=1,r:=4,Cy:=10,a:=2and b := 4.
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Figure 2. The 3D and contour graphics of the bright kink soliton solution u; 1 17 given in (31) are
plotted for g := 0, p := —0.003, r := 0.005, Cy := 0.001, a := 0.00005 and b := 0.00007.

T T T T
-400 =200 0

X

a. b.

Figure 3. The 3D and contour graphics of the bell-shaped kink soliton solution 1 5 16 given in (62)
are plotted for g := 0, p := 4,7 := —1, C; := 10, a := 0.005 and b := 0.005.
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Figure 4. The 3D and contour graphics of the bright kink soliton solution u; 5 3; given in (77) are
plotted forg:=2,p:=1,r:=1,Cy := 70, a := 50 and b := 100.

100+

20

204

Figure 5. The 3D and contour graphics of the bright kink soliton solution u3 11 given in (92) are
plotted forg:=0,p:=1,r:=4,Cy:=10,C; :=7,Cp:=8,a:=2and b := 2.
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Figure 6. The 3D and contour graphics of the twinning bright kink soliton solution u1 3 57 given in (108)
are plotted for g := 0, p := 10,7 := —10, Cp := 5, C; := 0.8, C; := 0.100, a := 0.0080, b := 0.00110.

06

0.4

0.2

Figure 7. The 3D and contour graphics of the lump-like kink soliton solution u; ; 3 given in (127) are
plotted for g :=1, p :== 2, r := 3, C; := 0.25 and w := 0.0010.
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Figure 8. The 3D and contour graphics of the bright kink soliton solution u; ; 19 given in (134) are
plotted for g :=4, p:=1,r:=1, C; := 040 and w := 0.020.

a.

Figure 9. The 3D and contour graphics of the kink soliton solution u 7 9 given in (166) are plotted for

g:=5p:=2r:=2,C_y:=40and w := 10.
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Figure 10. The 3D and contour graphics of the cuspon kink soliton solution u; 5 31 given in (188) are
plotted for g :=5, p:=10,r:=0,C_1 :=4, w := 20,5 :=2,A := 5.

5. Conclusions

We employed the proposed EDAM to construct and analyse the transmission of kink
solitons within the quadratic and cubic KGEs, two models that are frequently used in
solid-state physics, nonlinear optics and quantum field theory. Several soliton solutions
such as the dark kink, hump kink, lump-like kink, bright kink and cuspon kink soliton
solutions were obtained in terms of trigonometric, hyperbolic, exponential and rational
functions by converting the targeted models into NODEs under the circumstance where
solutions are assumed to be of closed form. The contour and 3D plots helped us compre-
hend the behaviour of the transmitting soliton processes along with various kink soliton
solutions. These graphs are directly linked to areas associated with the models discussed.
As a result, these results enhanced our comprehension of nonlinear dynamics and tem-
poral evolution processes and have implications for the comprehension of some related
physical phenomena. While the EDAM contributed significantly to our comprehension of
soliton dynamics and their linking with the targeted models, it is important to state that
the proposed method fails when the greatest derivative and the nonlinear terms are not
homogenously balanced. Despite this limitation, the present research demonstrates that the
method employed in this study is very effective, adaptable and useful for nonlinear models
across a variety of scientific fields. Furthermore, the future goal of this study is to delve
into the stability analysis of solitons and the incorporation and impact of the fractional
derivatives on solitons in the realm of targeted models.
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