SLAC-TN-81-3
June 1981

A Floating Point Softwvare Package for Use om LSI-11
Computers at SLAC*

Raymond G. Hendra
Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305

Chapter 1: Introduction

A floating point software package has been devised to allow
full use of the floating point hardware of the LSI-11 and MODEL40
computers. The procedures are wvritten for the most part in the
PL-11 language. The package may be run under the RT-11 operating
system, or in RAM or EPROM as part of the KERNEL package (note 1).
The current set of fprocedures has been run successfully im all three
modes.

LS1I-11 computers to be used with this package must be egquiped
with the EIS/FIS 1Integrated Circuit (BGM) supplied by Digital
Equipment Corporation. The hardware floating point instructiomns
FADD, FSUB, FMUL, and FDIV are available for use with this IC. This
package of procedures allows the user to do the following:

1) Convert binary integers to DEC-conmpatible floatimng point
format.

2) Read ASCli character strings from the conscle device, and
convert the strings into floating point numbers.

3) Convert floating point numbers into ASCII character
strings.

*§ork supported by the Department of Energy, coantract DE-AC03-76SF00515.



4) <Convert floating point numbers intoc ASCII character
strings, and print the strings at the conscle device.

5) Move a floating point number from cne location to another.

6) Compare two floating point numbers and determine if the
second number is greater than, less than, or equal to the first
number.

7) Perform floating point arithmetic: add, subtract, =multiply,
and divide.

8) Convert floating point numbers into binary integers.
Chapter 2: Description of the Floating Point Package
The procedures contained in this package are:

FLCAT -- INTEGER 70 FLOATING PCINT CCNVEBTER
FPREAD =-- READ FLOATING POINT NUMBER FECM CONSCLE
FPASC ~-- FLOATING PCINT NUMBER TO ASCII STRING CONVERTER
FPPRINT -~ FLOATING POINT NUMBER PRINTER

FPMOVE —-— FLOATING POINT MOVE PROCEDURE

FPCCHPABE -— FLOATING POINT COMPARE

FPADD -- FLOATING POINT ADD PROCEDURE

FPSUB -- FLOATING PCINT SUBTRACT PEOCELURE

FPMUL ~- FLOATING POINT MULTIPLY PEOCEDURE

FPDIV -- FLOATING PCINT DIVIDE PBOCELUEE

IFIX == FLOATING POINT TO INTEGER CCNVEBTER

These procedures are described below, with information on how
to call each procedure.

The procedure FLOAT converts an integer word imto its floating
point equivalent; the result occupies two words. The procedure is
passed the reference of the integer in RO, and the referemce of the
resulting floating point number in R1. The registers are preserved.

Sample call:

2XTERNAL PROCEDURE FLOAT;
INTEGER I;
REAL X;

REE {I) => R1;

REF (X) => RO;

FLCAT;

The procedure FPREAD reads a character string from the console
device using the system stack for buffer space. The character string

is converted to floating point by a call to the RCI routine. The
reference of the 4-byte answer must be passed to FPREAD in RO.

-2=-



The routine RCI is an entry point to KEEMAC. It converts a
string of characters to PDP-11 floating point format. The calling
arguments and parameters are on the stack in the followiang order:

Top == RETURN PC

2nd -- P FACTOR

3rd == D FACTOR

4th -- FI1ELD WIDTH

5th -- OUTPUT EUFFER START ADDRESS

On return from RCI, RO, R1, and R2 are destroyed, R5 and R6 are
preserved. R3 will be equal to zero if the conversion was
successfully performed, and will not egqual zero otherwise. The
resultant double-precision floating point birary nusber is on the
stack, with the most significant word at the top.

Since we are only interested in single-precision floating point
representation at this time, only the top twc words are of interest.
Upon entry into FPREAD, these words are moved to the location
pointed-at by the value of RO. On return from FPREAD, RO, R1, R2,
and R3 are preserved.

Lf the conversion was not performed correctly, ERRPLAG is set
upon return. CRFLAG 1is set if a carriage return was the only thing
in the string; NFLAG is set if an 'N' is received; and XFLAG is set
if an %X' is received. If the conversion was successful, the result
is in the two words pointed-at by RO.

The procedure FPASC converts a floating point number to an
ASCII character string. The procedure is passed the reference of the
floating point number in RO, and the reference of the holding buffer
in R1. The registers are preserved.

The procedure performs the conversion by calling the routine
GCO, which is an entry point of KERMAC. The routine produces the
character string in the FORTBAN G12.6 format.

The procedure FPPRINT prints a floating point number in FORTRAN
G12.6 tormat at the console device. The procedure is passed the
reference of the flcating point number to be printed im RO. The
procedure priuts a variable-length string whose length is determined
by whether or not the exponent ('E-12' for example) is present. The
string 1is printed with leading and trailing blanks.

The conversion from DEC floating point representation to an
ASCII character string is performed by a call to the procedure
FPASC.

Sample call:



BEF (X)=>R0; FPPRINT;

The procedure FPMOVE is passed references for floating point
numbers in RO and R1. It then moves the REAL number refered-to by RO
into the REAL number refered-to in BR1. The registers are preserved.

Samgple call:

EXTERNAL PROCEDURE FPMOVE;
REAL X,Y;

REF (X) => BO; REF(Y) => R1; FPMOVE;

The procedure FECOMPARE compares two floating fpoint numbers,
determining whether cne is greater than the cther or whether they
are equal. The method is accurate within the accuracy of the DEC
floating point format, which is one part in (2*%-22),

The procedure is passed the address of the first floating point
number in RO, and of the second in R1. The first floating point
number is compared to the second: 1f the first number is greater
than the second, the GREATFLAG bit flag is set; if the first number
is less than the second, the LESSFLAG bit flag is set; neither flag
is set if the two numbers are equal. The flags are cleared upon
entry; the register contents are preserved.

Sample call:

LXTEBENAL PROCEDURE FPCCMPARE;

REF (<fl1. pt. number 1>) => RO;

BEF (<fl. pt. number 2>) => R1;

FPCCMPARE;

{results 1in bit flags GREATFLAG and LESSFLAG)

The gprocedures FPADD, FPSUB, FPMUL, and FPDIV call the hardware
floataing point operators located in the EIS/FIS ROM on the LSI-11
processor board. The REF (address) of the first operand is passed in
RO, the BEF of the second operand is passed in R1, and the REF of
the result is passed in R2.

Sapple calls:



EXTERNAL PROCEDURE FPADD, FPSUB, FEMUL, FPDIV;
REAL X,Y,ANS;

REF(X) => RO;
REF(Y) => R1;
REF (ANS) => R2;
TANS = X+Y!?
FPADD;

TANS = X-Y!
FPSUB;

TANS = L*Y?
FPHUL;

tANS = X/X¢
FPDIV;

The procedure FPOPEEATCRS is called by each flcating point
operator procedure. RO refers to the stack setup statements and to a
case statement, selecting the hardware floating point operator.

The procedure FPADD performs a floating point addition of the
contents of the addresses RO and R1. The result is returned in the
address pointed—-at by R2.

The procedure FPSUB performs a flcating point subtraction of
the contents of the address in R1 from the contents of the address
in RO. The result is returned in the address pointed-at by R2.

The procedure FPMUL performs a floating point sultiplication of
the contents of the addresses in RO and R1. The result is returned
in the address pointed-at by R2.

The procedure FPDIV performs a floatimg point division of the
contents of the address in RO by the cantents of the address in R1.
The result is returned in the address pointed-at by R2.

The procedure IFIX converts a floating point number into a
binary number, truncating toward zero.

In case of numeric overflow, 32,767 w¥will be returned if the
overflow is positive, —-32768 if negative. The OVERFLOW bit will be
set in either case. R1 is used to store the exponent, RO and R2 are
used to rotate the fraction into the right position, and R3 is used
to store the high word to determine if the number is negative. For
more information, se€¢ the floating point representation used by DEC
in the LSI-11.

Samplie Call:

EXTEBRNAL PROCEDURE IFIX;



REF (<floating fpoint number>) => R1;

REF (<integer answer>) => RO;

IFIX;

cin

Chapter 3 Imrliementing the Floatin
Chapter 3 mrlement g the rloati1l

F 4 hidataded =3

The floating point package is not a stand-alone module. The
external procedures SAYREG, RSTREG, GCC, and RCI must be avaible at
linking time. The fprocedures SAVREG and KSTREG are located in the
PL-11 module WYL.PX.PLE.LSILIB#KERPL11. The procedures GCO and RCI
are iocated in the MACKO-11 module WYL.FX.PLE.LSILIE#FPCONV.

Additionally, the external procedures KEAD and PRINT must be
available at linking time. If the floating point package is linked
under RI-11, use the module WYL.PX.PLE.LSILIB#FPPACKR. This module
expects to find the procedures BREAD and PRINT as external calls anmnd
not as EMT calls. The EMT fprocedures READ and PRINT will be
available if the module is linked for use in RAM or EPROM. Module
WYL.PX. ELE.LSILIB#FPPACKR should be used in this case.

The global segment WYL.PX.PLE.LSILIB#FESEGMNT must be used in
every module that is linked with FPPACK and uses its procedures. The
segment is shown below:

GLOBAL SEGMENT FPSEGMENT;

BYTE BMEM SYN MEMORY;

LOGICAL FLAGWORD;

BIT KEYCOHD SYN O OF FLAGWORD, OSACTIVE SIN 1 OF FLAGWORD,
GREATFLAG SYN 2 OF FLAGWORD,
LESSFLAG SYN 3 OF FLAGWORD, MILTFLAG SYN 5 OF FLAGHWORD,
CUTFLAG SYN 7 OF FLAGWORD,
CRFLAG SYN 9 GF FLAGWORD, XFLAG SYN 10 OF FLAGWORD,
NFLAG SYN 11 CF FLAGWORD, YFLAG SYN 12 OF FLAGWORD,
BFLAG SYN 13 OF FLAGWORD, ERRFLAG SYN 14 OF FLAGWORD;

The global segment is readily used in the modules of an
applications or systems program that is written in the PL-11
language. For FORTEAN or MACRO-11 modules, implementation as .GLOBL
or COMMCN elements is necessary.

The procedures of the floating point module are compiled on the
SLAC TRIPLEX facility and downloaded to the LSI-11 computers as
object modules. The exec file WYL.PX.PLE.LSILIB#X11 may be used to
create a job to comfpile the PL-11 modules. The MACERO-11 module,
FPCONV, must be assembled within the RT-11 environment.

The following is an example of the X11 EXEC file used to
compile the FPPACKR module described, and of how to download the
resulting load module to the computer. 1In the example, the user's
replies to the prompts are shown in lower case:

exec from wyl.px.ple.lsilib#x11



X11 - Version 1.8 (17-Jul-79) - (<KCR>="NC"™ ; "?% for more info)

COMPILE/ASM ACTIVE FILE ? Y/N/C c
MULTIPLE/SINGLE MODE ? ({(<CR>=SINGLE) s
ENTER THE NAME OF EACH MEMBER TO EE USED
COPY FRCM wyl.px.ple.lsilib#fppackr
COPY FROM <carriage return>
ARE CM'S TC GO TO RT-11 (Y/N) ¥
*k&%k* pew version for MILTEN V6.0+
DATA SET NAME FOR OBJ MGDS (<CR>=NC SAVE) wyl.fx.ple.fpobj
VERIFY OBJECT DSN : WYL.PX.PLE.FPOBJ Y/N ¥y
ENTER VOLUME FCE NEW DSN (<KCR> => Abort and regroapt for OM
LIB)
VOLUME? workO1
~->READY TO RUN
~> EXEC PAUSE
> run h

-

>use Wwyl.px.ple.fpobj

><escape>tra fpobj.cbj fro wyl

446 LINBES WILL BE TEANSFERRED TO DK:FPCEJ.CBJ
>

At this point, the object module DK:FPOEJ.OBJ exists on the
scratch disc. The MACRO-11 module, FPCCNV, must be downloaded and
assenbled. The following example shows how to download and asseable
all three modules. Again, the user's responses are shown in lower
case:

>use Wyl.px.ple.lsilib#fpconv
><escape>tra ficonv.mac fro wyl
123 LINES WILL EE TRANSFERRED TO DK:CCNVF, MAC

><escape C: to get into RT-11>
.mac fpconv

All of the needed object modules now exist on the scratch disc.
The easiest way tc link these modules to the usert's programs is to
convert the modules into an object library, as in the following
example:

.libs/cre fplib.cbj fpobj,fpconv

The library is them linked to any cther object module in the
usual manner. The fcllowing example shows how the library FPLIB
just createda, may be linked to a dummy fprogram called DUMMY, and to
another library called OBJLIB:



LINK/T:1000/L1iB:FPLIB.CBJ/LIB:0BJLIE.CEJ/MAP:DUMMY. AP DUMMY

The command string also creates a .MAP file, which is always a
good idea while developing programs.

Link, run, and library creation commands may always be combined
into .CCH coammand files for quick applicaticn during program
developenent.

Chapter 4: Acknowledgments

Many thanks to Connie Logg for her work on the LSI-11 KERNEL,
which is the background work of this package. My thanks also to Les
Cottrell for his work on the CONVF (part of KERMAC) group of
MACRO-11 routines.



