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ABSTRACT

From the analyticity properties of the nucleon propagator and the improper

7NN vertex function a new upper bound is established for Z_, the wave renormal-

2,
ization constant of the nucleon, in terms of the pion-nucleon coupling constant

g and the P11 and S11 elastic 7N phase shifts. The result is:

725t -1 > 0.096(g%/4m); Z,, < 0.42,

representing improvements by factors of 8 and 2 respectively over a previous
bound obtained by Drell, Finn and Hearn. In addition the phase of the one-
nucleon-irreducible Pll 7N partial-wave amplitude, in the elastic region, is
calculated in an N/D approximation. The result of this calculation strongly
suggests the existence of a zero of the nucleon propagator function, the

possibility of which has been widely discussed in connection with the validity

of an upper bound on gz/ 4m,
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I. INTRODUCTION
In this paper we consider what may be learned about the renormalization
constant of the nucleon and the nucleon propagator from analyticity and
unitarity. The starting points for our investigations are the lower bound for
the nucleon spectral function given by nN intermediate states, and the phase
of the improper vertex function, given in certain regions by elastic unitarity.
Our principal results are a new rigorous upper bound of 0.42 for Zz, the
nucleon wave function renormalization constant, and a very strong suggestion
of a zero in the nucleon propagator function, which if present invalidates an
upper bound for the strong coupling constant given by Geshkenbein and Ioffe. (1)
The renormalization constant, Zz, is necessarily a field-theoretic
quantity. In a world in which both nucleon and pion are elementary,with their

fields appearing in the underlying Lagrangian, Z_, measures the extent to which

2
the nucleon field is renormalized by the interaction. It may be interpreted as
the probability for finding a "bare'' nucleon in the dressed, physical particle.
There are, however, many indications that the m_lcleon may not be elementary,
but rather, composite. We cite what are perhaps the three most obvious
intimations of compositeness: The taxbnomic success of the quérk model in
describing the spectrum of hadrons, the continued observation of falling
nucleon electromagnetic form factors, and the intuitive understanding of deep-
inelastic electron scattering (DIES) afforded by parton models. Since
constituents (quarks and/or partons, for example) have, if they exist, success-
fully eluded all attempts at direct observation, it becomes a question of

importance to decide to what degree and with what rigour we can determine

the compositeness or elementarity of the nucleon.



In the case of the deuteron,the low energy features of the NN interaction
argue strongly in favour of Z = 0, relegating the deuteron to the level of a
bound state, as discussed by Weinberg. (2) Unfortunately such an analysis
has not proved feasible for the nucleon itself - essentially because of the absence
of observable candidates for its constituents. A general classification of
particles has been given by Ida( 3) in terms of the asymptotic behaviour of
Green's functions, but this does not readily permit a decision on the status
of the nucleon.

Gell-Mann and Z achariasengl) argued that in a renormalizable field
theory, taken to all orders in perturbation theory, the asymptotic value of the
nucleon's charge form factor is given by Zz. Thus the observed rapidly falling
nucleon electromagnetic form factors suggest a very small and possible zero
value for Zz. It is difficult, however, to transla?e this result into a rigorous
upper bound for Zz, given the form factors at finite momentum transfer and no
knowledge of the underlying field theory.

There remains the réle of Z 5 in DIES. The condition Z 9 = 0 is part of
the input to Drell, Levy and Yan"s‘:’z)arton model and is interpreted by them as
representing an entirely composite nucleon. Cooper and Pagelé&ﬁ) West(7) and
more recently(S) one of the present authors (D.J. B.) have attempted to set
bounds on Zz, given information about the structure functions in DIES and the
asymptotic behaviour of the nucleon form factors. It was shown in reference
(8) that upper bounds for Zz between 0 and 0.3 result from a variety of
assumptions about possible subtraction constants in the sideways dispersion
relations for the nucleon form factors and about the behaviour of R(w) in the
Bjorken limit. (R(w) is the ratio of longitudinal to transverse photoabsorption
cross sections for a virtual photon of energy v and four momentum g, incident

on a nucleon, mass m, at rest, in the limit v — o, w = ~2mv/q2, fixed.)
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Subsequently it has been claimed by Hirayama and Ishida(g) that Z_ =0, if

2
R(=9 = 0, given certain restrictions on the subtraction constants and on the
structure functions near w = 1. Unfortunately all these attempts to bound 22
from DIES information involve high energy regions which we are at present
only on the verge of exploring and require assumptions which owe more to the
necessity for mathematical precision than they do to physical intuition. They
are also very weak applications of unitarity since they involve inequalities in
terms of only the J7 = %-F contributions to DIES.

There does exist, however, one rigorous, non~trivial bound for Z

(10)

derived by Drell, Finn and Hearn

2’

z;' > 1+ (g%/4n) / 85.65 2, < .86 . (1.1)
Our principal new result is
-1 2

Z, > 1+ (g"/4m) /10.4; Z, < .42, (1.2)

with the only assumption being that the improper 7N vertex function of

(11)

Bincer is free of a particularly vicious class of essential singularities at
infinity. Whilst our new result may not appear spectacular in the light of the
suspicion that Z2 = 0 it represents an improvement by a factor of 8 in the
lower bound for the continuum contributions to the sum rule for Z;o

An interesting by-product of our search for an improved rigorous bound
on Z2 is a very strong indication that the nucleon propagator function has a zero,
corresponding to a pole of the proper 7N vertex function. The existence of
such a zero, and, a fortiori, the validity of upper bounds on gz/ 41 which assume
the absence of zeroes, have been a subject of considerable discussion in the

past. A very clear review is given by Okubo.,(lz)



(1,13) (14)

Geshkenbein and Ioffe, and Meiman

proved that in the absence
of zeroes gz/ 4w < 85.6. They also assumed that the propagator at least

(12) has recently

satisfies a once~subtracted dispersion relation, but Okubo
shown this to be an inessential restriction. We improve the bound to

g2/41r < 57.6, in the absence of zeroes. Much more significantly we have
obtained the approximate bound gz/ 41 < 15.3 using an N/D model of 1da{1®

to calculate the phase of the one-nucleon-irreducible P_. #N partial-wave

11
amplitude, in the elastic region. We believe this calculation to be relatively
reliable, in the absence of zeroes, and argue that the near saturation of our
bound is a very strong indication of at least one zero, thereby invalidating the
Geshkenbein-Ioffe bound on the strong coupling constant. We find further
support for the existence of a zero by reexamining a model-dependent bound on
Z2 given by Ida. (1)

The paper is organized as follows: In Section II we develop the requisite
formal preliminaries, defining the nucleon propagator and vertex functions,
deducing the basic unitarity bound, and using elastic unitarity to determine
phases of the vertex functions. In Section III we deduce a set of bounds on Z 93
our only assumption being the absence of certain essential singﬁlarities at
infinity in the improper vertex function. The previous result of Drell et al. (10)
is a particular case of our work and is appreciably improved by a knowledge

of the P 1 and S11 elastic phase shifts. We also consider whether an approximate

1
current algebra result of Suura and Simmons(16) helps in bounding Z2, but find
it to be of negligible value when used in conjunction with the phase shifts.

Finally in Section IV we develop two sets of bounds, one for gz/ 47 and one for
ZZ’ assuming the absence of zeroes of the propagator. After an N/D calculation

we show that these bounds are so restrictive as virtually to require a zero.

Certain purely mathematical details are contained in the Appendix.
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1I. FORMAL PRELIMINARIES

In this Section we define the nucleon propagator function A(W) and the
proper and improper 7N vertex functions I'(W) and K(W) and deduce a unitarity
inequality by considering the contribution of 7N intermediate states to the
nucleon spectral function p(W). In addition we relate the phases of K(W) and
T'(W), on their elastic cuts, to the phases of the éomplete and one-nucleon-
irreducible P11 and S11 oN partial-wave amplitudes.

We define the propagator function A(W) in terms of the renormalized

!
nucleon Feynman propagator SF(p), with p2 = W2, by
i S:F_.(p) =3 [(1+ B/W)AW) + (1 - /W) A(-W)], (2.1)
so that for real, positive W

fim , Tm A (W €)= 7 (2 Wp (WD) + p,(WH), (2.2)
€~—0

where Py 2(Wz) are the conventional renormalized nucleon spectral
t4

(10)

functions, which satisfy

w? Py W9 > W;oz(Wz)l° (2.3)
Combining Eq. (2.2) and Inequality (2.3), we obtain

p(W) = = ImA(W + i€) > 0, (2.4)
for all real W.

If A(W) is bounded by some negative power of W as [W[— « it satisfies

the unsubtracted dispersion relation,

()
A(W)=ml_w+{s + j }—‘1-‘%—',39%) (2.5)
e m

where m and p are the nucleon and pion masses.



Given the dispersion relation (2.5), Z, may be evaluated in terms of

2
p(W). We have

et

< 0lb(x)lps > = (22)2 <0lw(x)lps > , (2.6)

A
where ¥(x) and ¥(x) are the unrenormalized and renormalized nucleon

interpolating fields. Z 9 is then given by the sum rule(17)
—(mtp) o
z;' -1 = { 5 + AWp(W) . (2.7)
So (mw)

If the integral of Eq. (2.7) fails to converge, we have the formal result
Z2 = 0, which has been interpreted as indicating compositeness or the absence
of the field from the underlying Lagrangian,(ls) In Section 111 we adopt
Eq. (2.7) as a definition of ZZ and are able to deduce a nonzero upper bound
without assuming the validity of an unsubtracted dispersion relation for A(W).
This is achieved by finding a lower bound for p(W) in terms of the improper
off-shell 7N vertex function K(W), as defined by Bincero(ll)

Consider the coupling of a nucleon (momentum p', spin s} and pion

(momentum q, isopin @) to an off-shell nucleon:

<0in(0)Ip's, qu > =

30(1+ B/WIKW) + (1 - B/WIK(-W) ] igy’ 7 u(p's), (2.8)
where

n(x) =(d+m¥(x), p=p' + g, p°=W> and we

normalize K(m) =1 so that g is the strong coupling constant.(lg)



The nucleon spectral function is given by

W-m? oW = (2n° ze%p-n) o
.9)
X Trace[<0[7n(0)[n><nln(0)[0 >(g + W)/4IWI],

for IWI > m +p. Keeping only 7N intermediate states we find

W~ mImp(W) > (g%/4m) IK(W) | h(W), (2.10)
where 3 1

W) = 3LW-m)? -p%)? [wrm® - 4?1, @.11)

8§ W (W - m)

and we have equality for m + 2u > [W| > m + pu.

Inequality (2.10) is the basis of previous bounds on Z 9 and g. To it we
add information about the phase of K(W) on its elastic cuts. As shown by
Bincer,(ll) K(W) is a real analytic function of W with cuts (-, -(m+u) ) and
(m+, ) and for m+2p >|W| > m+u its phase on the cuts is given by elastic unit~-

arity:

Im K(+(W + i€)) = [T@EW)]* KW + i€)), (2.12)
where

T(W) = sincSP(W) exp(iéP(W)) , (2.13)
and

6P(W) = GS(-W), (2.14)

with 5P S(W) the P11 and S 7N phase shifts. Thus if we define §(W) to be

. 11
the phase of K(W) on the upper lips of the cuts:

K(W + i€) = exp(is(W))IK(W)I, (2. 15)



then

6p(W) = 5(W), 84W) = -o(-W), (2.16)

modulo 7w, for m+ 2u > W > m + .

Equations (2.7), (2.16) and Inequality (2. 10) are sufficient for our
rigorous bound on Zz, proved in Section I11.

In Section IV we address ourselves to the question of the existence of
zeroes in the propagator function. The absence of zeroes permits one to deduce
new bounds on Z_, and bounds on gn(lz’ 15) It will be useful to consider the

2

function
Z(W) = [(m-w)amwi™?t, (2.17)

which satisfies Z(m) = 1 and has the same cut structure as A(W). If we assume

the validity of the dispersion relation (2.5),

l4

Z, = lim  Z(W). (2.18)

Moreover on the cuts
Im Z(W + ie) = mp(W) (W ~ m) lZ(W)Iz, . (2.19)

and zeroes of A(W) correspond to poles of Z(W). There can be at most two
poles, located on the real line m + p > W > -(m + p) and if both poles are pi‘esent
they lie on either side of the point W = m. This follows from the positivity of

dA(W)/dW on the real line, implied by Eq. (2.5). Hence

o
= - 1 :
Z(W)y = 1 + (W ~m) izw"—”“*i-w +
-(mtp) (2.20)
dW' (W' "2
{g - }_W.,%_szm)l



and the residues Ci are positive and, at most, two in number. From Eq. (2.18)

~(mp) e

1-2, = j + j }de(W)lZ(W)l2+ zC. (2.21)
1
e ()

Equation (2.21) and Inequaltiy (2.10) allow us to give an upper bound on

Zz given information about the proper vertex function
W) = K(W) Z (W), (2.22)
which satisfies I'(m) = 1.

As shown by Ida,(zo,) n (W), the phase of I'(W) on the upper lips of its
cuts, is given, in the elastic regions, by the phases of the P 11 and S 17 one-
nucleon-irreducible 7N partial-wave amplitudes. For simplicity consider the

P-wave cut, m + 24 > W>m + . We have

T(W) = Tp(W)+ T o (W)
(2.23)
= sin 6,(W) exp(i6 ,(W)),
and the reducible part is given by
TRW) = =(g”/4mh(W)K(W)Z(W)K(W)
(2. 24)

~-sinB(W)exp(i[ 26 5 (W) + B(W)1) ,

where 3(W) is the phase of Z(W) on the upper lips of its cuts and we have used

(2.10) as an equality. Solving for T (W) we find

T W) = sinm p(Wexp(in ,(W)) , | (2.25)
and n(W) = nP(W), modulo w. The proof for negative W is similar.

=10~



Thus in analogy with Eq. (2.16) we have

TIP(W) = n(W)! ns(w) = =N (—W)’ (2°26)

modulo 7, for m + 2u > W> m + [,

This result is the basis for our improved bounds in Section IV,

I1I. BOUNDS FOR Z2

In this Section we use the experimental value of the strong coupling
constant and approximate information about the elastic P11 and S11 phase shifts
to obtain the bound Z2 < 0.42 to be compared with the previous result of Drell,
Finn and Hearn,( 10) Z2 < 0,86, In addition we consider what improvement
results from assuming the validity of the current algebra sum rule of Suura

and Simmons ,(1 6)

K(-m) ~1/g,(0), (3.1

where g A(t) is the nucleon axial-vector form factor. This sum rule results
from assuming simple equal-time commutation relations for the weak currents
and the nucleon field. Even if these assumptions are valid the éum rule is only
exact in the limit of zero pion mass. One might, however, hope that the
corrections are small, as in the case of the Goldberger-Treiman relation
where they are only about 8%. It turns out that the current algebra result (3.1)
by itself gives some improvement over the result of Drell et al., but is of
negligible value when combined with phase-shift information. Our final bound

does not assume the current algebra result.

-11-



The problem we solve here, stated in its generality, is to find an upper

bound on Z2 given the values K(Wi) for some real Wi’ such that
—(m+u)<Wi<(m+u) i=1,n

and information about the phase of K(W) on its cuts in the regions
a>W>m+py and b >-W> (m+p).

(Inourcasea, b<m+2y and n =1 or 2 with W1=m and W2=—m.)

To solve this problem we perform the mapping(lz)
1

2
1-z\ _ |(a-W) (b+ m)
<1+ z> [(a- ) (b+W)} ’ (3.2)

which takes the points W = -b, m, ato z = -1, 0,1, respectively, and maps the

upper lips of the cuts (-~, -b) and (a, =) to the upper half of the unit circle,

7 = ele, T> 6 > 0, and the lower lips to the lower half.

Now consider the function

- KW)
F(2) = 3W,a sW.p) ° (3.3)
where
a
P(W,a) = exp{ %j W—% 6 p(W") } , (3.4)
(m-tu)
b
S(W,b) = exp{%f -w—?w;'was(w')'} . (3.5)
(m+p)

-12~



By construction the phases of K(W) and P(W, a) are equal (modulo 7) on the

cut (m + %, a) and the phases of K(W) and S(W, b) are equal (modulo 7) on the
cut (-b, ~(m + u)), by Eq. (2.16). In addition, neither P(W, a) nor S(W, b)
have zeroes igside the unit circle. (Note that 5P, S (W) vanish like

[W-(m + w12 % as W—m + p.) Hence F(z) is analytic inside the unit circle.

From Eq. (2.7) and Inequality (2.10) we have

Z

2 2
(g7/4m) 3= Z, = /1 (3.6)
where
_b [
1 dW 2
I == / + / W - ml IK(W)lI "h(W) & (3.7)
—00 a

We rewrite the integral as

T

I = 51;/ as 17 %) 1%0) (3.8)

=T

where, from Egs. (3.3) and (3.7),

1
2
g(6) = B(W)PX(W, 2)S%(W, D) [2%] : (2.9
for W >a and W < -b, and we have used
2
AW w2 (W a) (W +b)
<d9) (W= m) (a - m){b + m) ’ (3.10)

which follows from the mapping (3.2) with z = e19 .

For the integral (3.7) to be finite it is sufficient that |K(W)I| be bounded

by some negative power of (W[ as [W[—«, Im W = 0. In what follows we merely

13~



require that |K(W)| grows more slowly than exp(€ IW]), for any positive €,

as |W|—=in an arbitrary direction. With this restriction we may deduce a
finite lower bound for the integral, if it exists, giving a nonzero upper bound
for Z o If the integral diverges, Z2

The problem has thus been reduced to finding a lower bound for I given

= 0 in any case.

the values F(Zi) at the real points Zss i=1, n. The phases no longer appear
explicitly, since they have been absorbed into the weight function g(8). This
problem has been solved by one of us (V.B.) in reference (21). An outline of
the method is sketched in the Appendix. Here we merely state the result for
n=1andn=2.

Forn=1

1> 3% (z,) (3.11)

and forn = 2

1 2
2 12
Jz) - |1-a |%3z,)
I> g? (z)+ 2 [ 12} P (3.12)
%12

where

@y = (z1 - zz)/(l ~ lez) , (3.13)

L

3z) = [1 - zz} 2F() D) (3. 14)
with

D(z) = exp Z% do ei@ *Z ) In g(6) . (3.15)

T e - Z s

-14-



Finally we express our general result in terms of convenient functions

of W. We find

1
2

Do f—

- [(a - Wb Wz)] . (3.16)

[a - W) + wl)jl 24 [(a - W )b + WZ)J 2

a12 - \i(a - Wz)(b + Wl)]

jr=
=

The evaluation of D(z) by Egs. (3.15), (3.9) and (2.11) is straightforward and

is outlined in the Appendix. We find

-1
1 1
_ 2 Mot 2
3(z) = 2K(W) G(W,a,b)AS(W,a,b)AP(W,a,b)(_[%_-%] + [bﬁ:‘ > ,
(3.17)
where
2 1
' _ 2
Aﬁw,a,bpexp{% "o e } o

(m-+p)

b 2

= 1 daw' n | (a-WHb+W
AS (W, a,b) = exp { T f W+W GS(W ) [(;ﬁ%ﬁ{l \% H (3. 19)
(m-H)

‘ 1
2 3 |
(W, a,b) = (s/3] [%)(w, 0)® [c(w,m) -,
C(W,m+p) C (W, m—u)} 2 [C(W, -(m+p))C (W, ~(m-~p) )] 2
(3. 20)
with
1 1
C(W,¢) = [(a—W)(b+c)] 2 4 [(a—c)(b+W)] z (3.21)

for a>c>-b.

-15-



These regrettably extended expressions constitute the general solution
of our problem. We remark some simple properties of our auxiliary functions
which will simplify the deriviation of bounds in Section IV and may help to
render our present result more transparent. Firstly, C(W,c) is a real
analytic function of W, with cuts (- «,-b) and (a, =), has o zeroes, and

satisfies

lc(W,c)l 2 _ | W-cl(a+b) (3.22)

on the cuts. From this it follows that G(W, a,b) enjoys the same analyticity

properties, and on the cuts
l&(W,a,b) 172 = hw) , (3.23)

by comparison of Egs. (3.20) and (2.11). Secondly, the function

[AS(W,a,b) AP(W,a,b)] has unit modulus on the cuts (-~,-b) and (a,~) and

its phase on the cuts (-b, -(m+u) ) and (m+u, a) is equal to the phase of K(W),

modulo 7. |
We now consider special cases of the result, Egs. (3.11) to (3.21).
First we restrict ourselves to the use of the normalization condition

K(m) = 1. Combining Inequalities (3. 6) and (3.11) with Equation (3.17),

we have

s

1—Z2

(&2/4m) < G¥m,a,b) A‘; (m, a, b) A% (m,a,b) . (3.24)

Let us suppose we are only given upper bounds on the phases:

GP(W)S_a,for a>W>m+pu ,

(3.25)
5S(W)§/3,for b>W>m+u ,

-16-



then from Egs. (3.18) and (3.19) we obtain
In Ap (m, 2, b) < (a/7) In (1/2 ", b)), (3.26)
In Ag (m, a, b) < (8/7) In (/2 (a, b)), (3.27)

where the points z = % zi(a, b) correspond to v*v =#(m + u), and we have
equality if and only if 6P, S(W) are everywhere equal to their upper bounds.

In Fig. 1 we have plotted the elastic P11 and S11 phases as given, in
parametric form, by Roper et al. (22) This is a best fit to the data with
W < m + 3u and agrees well, in the elastic region, W < m + 2u, with the single-
energy determinations tabulated by Almehed and Lovelace in the CERN Sept.
1971 analysis. (23) We seta =0 and g = 10° and evaluate the bound (3.24) in

the four cases of interest:

for a=b=m+u,

29

1—Z2

(g2/41r) < Gz(m, m+u, m+pu) = 85.6 , (3.28a)

for a=m+u, b=m+ 2u,

2 ZZ 23/
(g°/4m) 75— <82.2[1.14]%™ = 83,4, (3. 28b)
2

for a=m+2u, b=m-+u,

Y/

(g2/47r)-1—-_3§— < 11.1 [5033](201/“) =11.1 , (3.28¢)
2
for a=b=m+ 2u
Z
%/ 25— < 105 [1.10] %™ [5.36]%/™ = 10,7, (3.280)

2
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Inequality (3.28a) is the old result of Drell et ala,(lo) which has been

rederived by Okubo. (12)

It can be seen that little improvement comes from the
inclusion of the S11 phase shift; it is the smallness of the P 1 phase shift which
gives the large improvement of bound (3. 28c) upon bound (3.28a). The sensi-
tivity to the P 11 phase shift may be readily understood by the closeness of our
datum point, W = m, to the elastic P-wave cut.

Next we use the parametrized phase shifts in Inequality (3.24). Setting
a=b=m+ 2u, we find

Z
2 2
(g /4“) 1= ZZ

< 10.4 . (3.28e)

. . . . (24) ~
Finally, we experiment with using K(-m) = 1/g 4(0), Where g4 (0)=(1.226%0.011).
If we set K(-m) = 1/1.226, and a =b = m + u, so that the phase shifts are not
required,

Z

2 2 .3, 3.
(g%/am—2— = 4T (3.280)
1 Z2

whereas with a =b = m + 2u and the parametrized phase shifts,

Zg < 10.0 . ' (3. 28g)

1-Z2

(g2/4w)

It can be seen that the current algebra result, by itself, gives a significant
improvement over the old result (compare bounds (3. 28a) and (3. 28f) ), but is
of little value when combined with the phase shifts (compare bounds (3.28e) and
(3.28g)). Accordingly we state our final result without any assumption about
K(-m).

From (3.28e) we obtain

z, < 413700, (3. 29)

~-18-



as against the previous best rigorous bound,(lo’ 12) (3.28a),

7 < .sp3 T-006

2 < -.004 (3.30)

The errors given arise from three sources. First there are the experi-
mental errors in g. We take(25) g2/47r = (14.73+£0,29). Second there are the phase
shifts. We allow for variations comparable to the small discrepancies between
references (22) and (23). Lastly, there is the appropriate value for the pion to
nucleon mass ratio. Here we have to consider isospin breaking, since our
result is only valid in the limit of exact isospin symmetry, which presumably
corresponds to ignoring the electromagnetic interaction. Isospin assumptions
are necessary to determine the coupling constants and phases involving .

For the numerical results given in Inequalities (3.28a) to(3.28g) we made the

somewhat arbitrary choice

T T
(3.31)
m = Lm +m
2 )
but the errors given above allow for the whole range
7 +/mp > p/mzp /mo, (3.32)

T T
which should adequately represent the sensitivity of our result to isospin
breaking.

In conclusion, we have improved the rigorous upper bound on Z2 from .86
to .42 using 7N elastic phase shifts. We considef this a radical improvement,
since it corresponds to an improvement by a factor of 8 in the lower bound for
Zél—l. Our only assumption is that IK(W)I<exp(€ IWl), for any € >0, as [W|— «.
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IV. ZEROES OF THE PROPAGATOR »

In this Section we improve the upper bound for gz/ 4w originally given by
Geshkenbein and Ioffe,(l) assuming the absences of zeroes of A(W). This is
done by including the phases of the proper vertex function, I'(W), on its elastic

cuts, which are given by the phases of the one-nucleon-irreducible P1 and S1 1

1

partial-wave amplitudes. These phases are, of course, not experimentally

accessible. We calculate nP(W), the phase of the P1 irreducible amplitude

1
in the elastic region, using an N/D approximation of Ida.(15) In addition we
critically reexamine the Lehmann-Symanzik-Zimmermann (LSZ) sum rule,

Eq. (2.21), which was considered by Ida. Our conclusion is that A(W) has a

Zero.

First consider the function

2
R(z) = — (g”/4mK(W) (W) (4.1
- G (W,a,b)AS(W,a,b)AP(W,a,b)HS(W,a,b)HP(W,a,b)

where, in analogy with Egs. (3.18) and (3. 19),

a 1
3
B 1 aw T ewow P |
Hp(W,2,b) = exp ;J wi-w Tp (W) [é—u?ﬁm%] [»
(m-+u)
b 1
_ 1 AW n | (2a=-W)(btW)
H(W,a,b) = exp ) & J wiew 1s (W) [(a+W')(b—W‘)} > (4.3)
(m+p)

and m+2u >a,b >m+u. We are using the same mapping as before, given by
Eq. (3.2). Then R(z) is meromorphic inside the unit circle, having poles

corresponding to the zeroes of A(W) (if any). By virtue of Eq. (3.23),

IR(eiB) | = (g2/41r) | K(W)[(W) | h(W) (4.4)

’
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and the unitarity inequality (2.10) takes a particularly simple form:

lR(eiB)l = |r(W)sing(W)| < 1 , (4.5)

where r(W) is the fraction of the nucleon spectral function contributed by N
intermediate states and 3(W) is the phase of Z(W) on the upper lips of its cuts.
If we now assume A(W) has no zeroes, R(z) is analytic inside the unit circle.
We now invoke the generalized maximum modulus theorem (see, for example,

ref. (12)) which requires

R(z)l <1, (4. 6)
inside the unit circle, provided that K(W) does not grow like
| K(W) |« exp chIV} (4.7)

with ¢ > 0 and y > 1, as W— < along any straight radial direction. Rejecting
such a pathological essential singularity as (4.7) we conclude that, in

particular,
IR(0) < 1, (4.8)

or, by Eq. (4.1),
g%/4x < G¥m,a,b)Adm, 8, b)Ay(m, 8, D)H(m, 8, b)Hp(m, a,b) . (4.9)

Inequality (4.9) should be compared with Inequality (3.24). The former
involves the phase (W) but not Z,, and for the latter vice versa.

Setting a =b =m + i we obtain the old result of Geshkenbein and Ioffe,(l)

g2/41r5 Gz(m, m+u, m+y) = 85.6 . - (4.10)
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There is a third class of inequalities, involving both n(W) and Zz,
which follows from the LSZ sum rule (2.21) and the unitarity inequality. We
have

Tv%%l'T IT(W) 12 h(W) , (4.11)

-
A\
p—t
1
N
Do
v
R
J— e,
1
[=n
+
LSy
8
e .

which, by the same arguments as in Section 111, yields

&’ /41:)1_122 < G%(m, 8, b)HA(m, a,b)Hp(m,a,b) , (4.12)

provided A(W) has no zeroes. Setting a =b = m + u we obtain

1 (4.13)
—5— < 85.6 ,

2

(g2/4m)

which is more restrictive than the bound of Drell et al., Inequality (3.28a), but
has been obtained with much more restrictive assumptions.

We now concentrate on Inequality (4.9), which, in general, involves the
phases 7 P, S(W) o

Our first new result comes from the fact that the phases @P’ S(W) =

nP,S(W) - 6P,S(W) satisfy
T > Bp S(W)ZO for m+2u > W>m+up,
’

using the fact that the p(W) is positive, and assuming that the propagator has
neither poles nor zeroes on the elastic cuts.

Hence

Hp g(m,a,b) < Ap f(m,a,b) [—;—1———:] (4.14)
z (a,b) .
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We combine Inequalities (4.12) and (4.14) and use the parametrized
phase shifts 5P S(W)., The optimal values of a and b turn out to be m + 1.8 u
4

and m + u, respectively, giving
2
g“/4ar < 57.6, (4.15)

which is some small improvement on the Geshkenbein-~Ioffe result. However,
we consider bounds on g of little interest (since g is well determined experi-
mentally) unless they are violated or else perilously close to saturation,
thereby forcing us to examine one of our assumptions (such as the absence of
zeroes). Accordingly we resort to a model for the first time, enabling a
calculation of 7 P(W) in the elastic region. Yet again in this Section we assume

the absence of zeroes so that the irreducible partial-wave amplitude

Tir(W) = sinn (W) exp (in 5(W))
(4.16)

N(W)/D(W)

has the same analyticity properties as the full amplitude T(W), apart, of course,
from having lost the direct channel nucleon pole. (If A(W) had zeroes, TIR(W)
would have poles.) To calculate 7 P(W) we use Ida's N/D mode'l,(15) in which
the dynamical left~hand singularities of N are approximated by two poles,
representing nucleon and P33 exchange; Details are given by Ida and by

(26)

Frautschi and Walecka.

The result may be given compactly as follows:

cot 7 5(W) = ReD(W)/N(W) , | (4,17)
~ W-m AW N(W")
D(W) =1- i—'ﬂ'—)—j (Wt_m)(wl__w) ’ (4"° 18)
(m+u)

-923~



N(W) = (g%/47) h(W) [1+8D(w1) <—V§’—,V——V-Vl—n—>] /o . (4.19)
1

The first term in Eq. (4.19) 1approximates the short cut from
W = (mz—uz)/m to W= (m2+2u2) —2-, coming from nucleon exchange. (Note
that h(W) has a pole at W = m.) The second pole term approximates the short
cut from W= .59 m to W = .76 m, coming from P33 exchange. We take(26)
W1 = ,68 m and the effective resonance coupling has been taken from dispersion

theory. (27)

The evaluation of the principal value integral presents no
difficulty, since we deform the contour to one parallel to the imaginary W axis.
The output, nP(W), is plotted in Fig. 2.

It is important to realize that we are using Ansatz (4.19) quite circum-
spectly. We require 7 P(W) in the region m + 24 > W > m + u, which is very
close to the approximated short cuts. We attempt no calculation of nS(W),
where p exchange is important. (15) Setting a =m + 24, b = m + u in Inequality

(4.9), we obtain

g2/471 < Gz(m,m+2u, m+u)AP(m, m+2p, mtup) HP(m, m+2u, mu) (4.20)

~11,1x0.99x1.39 = 15.3,

to be compared with the experimental value, gz/ 47 = (14.73 £ . 29).

Whilst Inequality (4.20) is not actually violated it almost certainly requires
at least one zero in the propagator, since in obtaining it we have neglected all
contributions to the nucleon spectral function except 7N, and have ignored the

real part of the propagator. By way of illustration we consider the inequality

11- -
In |R(0)| 5%f a6 m[Re!?)| (4.21)
0
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of which the maximum modulus theorem is a weakened version. It can be seen
that requiring the absence of essential singularities such as (4. 7) ensures that
the upper semicircle at infinity in the W plane does not contribute to the integral.
Also (4.21) becomes an equality if K(W) has no zeroes away from the cuts.
Combining Inequality (4.21) with Eq. (4.5), and accepting the phase

calculation, we obtain

W
S dé In|r (W) sin B(W)] , (4.22)
0

g2/47r < 15.3 exp j

2 |

where Fig. 3 illustrates the relation between W and 6. Inequality (4.22) requires
that the mean value, < r sin 8 >, as weighted by the integral, must exceed .95,
even allowing the smallest experimentally acceptable value of gz/mr., This

seems overwhelmingly unlikely. For example, in the range W = (1470 + 100) MeV
(6 ~(80 % 10)0) where the Roper resonance is important for #N scattering we
would also expect it to be the dominant contribution to the nucleon spectral
function, suggesting r (W) =0.6, the elasticity of the Roper. This, by itself,

is sufficient to violate Inequality (4.22). Even more, there is no good reason

to suppose r(W) will be any larger for larger values of W (6 = 90° - 1400) or

that A(W) will be so predominantly imaginary.

If the N/D calculation is reliable in the absence of zeroes, it seems very
difficult to escape the conclusion that A(W) has at least one zero. The only
plausible way out would be to maintain that we have considerably ux?}derestimated
n P(W)o However, n P(W) is constrained to vanish like [W—(m+p)]2- at threshold
and in our calculation already has a large value (7 60) at inelastic threshold.

Geshkenbein and Ioffe(l) originally argued against the existence of a zero

of A(W) on the grounds that it corresponds to a pole in the reducible 7N scattering
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amplitude and the full amplitude may not have such a pole. However, Goebel
and Sakita(ZS) were the first to point out that such a pole is ghost-like and must
be cancelled by higher order Feynman diagrams. In fact Drell et a1°(10)
demonstrated the existence of a zero in a generalized Lee model, with two
fermions, V and W, coupling to N and 6 and a suitable choice of coupling
constant for the unstable W particle. In conclusion, there appears to be no
compelling argument against zeroes. They merely correspond to ghost poles
in the reducible partial-wave amplitude, which are cancelled by the irreducible
partial-wave amplitude.

Finally we consider our LSZ inequality (4.12). Setting a =m + 2u,

b =m + u, we obtain

(g2/47r)1_lz < 11.1 x [1.39])° (4.23)
2

which gives Z2 < .81, in the absence of zeroes, and using the N/D approxima-

tion. Of course we do not now believe this bound, but it is instrwtive to compare

it with the result of Ida, Z_, < .20, which was obtained from the more restrictive

2
LSZ inequality (4.11) (setting a =b = m + p). Now Inequality (4.11) is valid in

the presence of zerces. It merely assumes that A(W) satisfies an unsubtracted
dispersion relation (in which case it is a Herglotz function).(29) Ida's method was

to assume that both A(W) and K(W) are free of zeroes, so that I'(W) has an Omnes
representation in terms of its phase, n (W). He then set n(W) equal to nP(W), as cal-
culated in the N/D approximation, for m+2.5 u> W> m+pu. This, we have suggested,
is probably reliable, at least for m + 2u > W. waever, he then chose a form

for n(W) in the regions -(m+pu) > W> - and «© >W > m + 2.5 p such as to

give the least restrictive upper bound for Zz, giving the justification that other-

wise there was a danger of deducing a negative upper bound for Zz, which is
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impermissible. We consider his arbitrary determination of (W) outside the
elastic P-wave region as unjustified and are relatively unconcerned about an
apparent violation of the LSZ inequality in his model, since it proceeds from
an assumption (the absence of zeroes of A(W)) which we have shown to be
scarcely tenable, merely by the much more trustworthy determination of n (W)
in the elastic P-wave region.

That we are able to conclude Z 9 < .31 from Inequality (4.11), assuming
no zeroes, is further suggestive of the existence of zeroes, since we actually
neglect even the 7N contributions in the elastic region, where, according to
Ida, a major contribution to the LSZ sum rule is to be found. The smallness
of our upper bound is therefore highly suspicious and would have cast doubts
on our assumptions even if we had not been able to give the much cleaner
argument based on our more restrictive version of the Geshkenbein and Ioffe
bound on gz/ 47

It is interesting that the improvement of the upper bound for g2/47r (in the
absence of zeroes) that results from including the phase n (W) is akin to the
improvements of bounds on 77 sqattering amplitudes obtained by ukaszuk and

MartinC%

who also use phase information,

In conclusion, at least one of the following situations obtains:

(i) K(W) has an essential singularity at infinity of the form of Eq. (4.7);

(il) A(W) is predominantly imaginary over a large range of W, its
-imaginary part is given predominantly by 7N intermediate states over a large
range of W and the N/D calculation considerably underestimates the phase of

the irreducible partial~wave amplitude on the elastic P11 cut;

(iii) A(W) has a zero.
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We decide in favour of (iii), knowing of no compelling physical argument
to the contrary. This conclusion invalidates all bounds on g or _Z2 derived in

this Section. It in no way affects our rigorous bound on Z 9 derived in Section HI.
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APPENDIX

Here we find a lower bound for
T

1= %J a0 17! §12

0

given the values X; =F(zi), for the real points Zgs i =1, n. Further details

gy < e

are given in reference (21).
We expand F(z) in terms of the orthogonal polynomials gbv(z), defined
by the weight function g(0):
F(z) = 2 F 9,2,
T

g 04 0 = o
-7

v ?
so that
Xi = § FV¢V (zi) ’
1= YF2,
7V
It is now required to find the extremum of I for fixed values of X;o This

is easily done using Lagrange multipliers. Solving the equation
5 .

s I- 2 N%) =0
v i
we obtain
FV - Zij}\iq)v(zi)
giving
2 ; A% (A.1)
where
X, = jzaijhj (A.2)
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and

®
I

5= D9,2)9,(2)

il

-1
[(1 - 22) Diz)) D(zj)] (A.3)
with D(z) the characteristic function for the set of polynomials, given by

F 0
i
D(z) = exp -‘ﬁ-sd9<ew+ Z>1n g(0)}y . (A.4)
e

- Z

-T

Combining Eqs. (A.1) to (A.3) we have

I > 2d(z) Mij J(zj) ,

i,j
where
1
- 2|2
J(z) = [1 -Z ]— F(z)D(z) , (A.D)
and M is a matrix whose inverse is given by
1
2 2.12 1
-1 [(1 - Zj_) (1- ZJ)] 212
M., = =11- o,
ij (1-2z.z) ij
1]
where
ai] = (zi - Zj)/(l - Zizj) . (A. 6)
For n =1, M is just unity, so that
2
I>3%z) (A.T)

and for n = 2,
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so that

Do

I _>[J2(z1) +3%z,) - 2 [1 - ai‘z]

J(zl) J(zz)]/oziz
1 2
2

_ 2 I(zy) - [1 ) °‘12]2J(Z1)
= J(z) a,

(A.8)

Equations (A.4)to (A.8) are those used in Section I1I.

In deriving these bounds it is necessary to assume that InlF(z)! is
integrable on lzl= 1, which corresponds to our restriction that
IK(W)! < exp(€|WI), for any positive €, as [W|— e,

Finally we sketch the evaluation of D(z) in terms of g(f0). X we write

g(f) =1 g, (9)
1

D(z)

1 D, (z)

i 1

then the various gi(B)which occur in our case are of the form
g, (&) =K > 0,

gi(e) = |[W=-cl, a>c>-b,

Q
daw'

g (0) = exp%'[—w—r—-_—vv- 6(W'), where o =a, 6(-8) =0, or 8 =b, é6(a) =0,

B

for which the corresponding Di(z) are

-

D, (z) = K2 |

Dof

= (a-Wib+c
oo - [nsmpe]
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o

1

2
_ 1 dw' ' _ e =W)b+ W)

Di(z) = exp {5- J - O(WH {1 [ ):]

W - W (a - Wb+ W

In each case Di(z) is a real analytic function of z inside the unit circle, has no

zeroes inside the unit circle and satisfies

IDi(ele)lz

g.(9)

1

on the unit circle.
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‘FIGURE CAPTIONS

The P11 and S11 7N phase shifts in the elastic region, as given in
solution 24, table II1 of reference (22).

The phase np of the irreducible P 1 wN partial-wave amplitude, as

1
calculated from Eqs. (4.17) to (4.19).
The unit circle with values of (W-m)/p given by the mapping (3.2) with

a =m+2u, b = m+u. The shaded area corresponds to the range of 6 for

W = (1470+100) MeV.
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