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ABSTRACT 

From the analyticity properties of the nucleon propagator and the improper 

KNN vertex function a new upper bound is established for Z2, the wave renormal- 

ization constant of the nucleon, in terms of the pion-nucleon coupling constant 

g and the Pll and Sll elastic nN phase shifts. The result is: 

-1 
z2 - 1 2 0. 096(g2,‘4x); Z2 I_ 0.42, 

representing improvements by factors of 8 and 2 respectively over a previous 

bound obtained by Drell, Finn and Hearn. In addition the phase ‘of the one- 

nucleon-irreducible PII KN partial-wave amplitude, in the elastic region, is 

calculated in an N/D approximation. The result of this calculation strongly 

suggests the existence of a zero of the nucleon propagator function, the 

possibility of which has been widely discussed in connection with the validity 

of an upper bound on g2/4n. 
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I. INTRODUCTION 

In this paper we consider what may be learned about the renormalization 

constant of the nucleon and the nucleon propagator from analyticity and 

unitarity. The starting points for our investigations are the lower bound for 

the nucleon spectral function given by nN intermediate states, and the phase 

of the improper vertex function, given in certain regions by elastic unitarity. 

Our principal results are a new rigorous upper bound of 0.42 for Z2, the 

nucleon wave function renormalization constant, and a very strong suggestion 

of a zero in the nucleon propagator function, which if present invalidates an 

upper bound for the strong coupling constant given by Geshkenbein and Ioffe. (1) 

The renormalization constant , Z 2, is necessarily a field-theoretic 

quantity. In a world in which both nucleon and pion are elementary,with their 

fields appearing in the underlying Lagrangian, Z2 measures the extent to which 

the nucleon field is renormalized by the interaction. It may be interpreted as 

the probability for finding a “bare” nucleon in the dressed, physical particle. 

There are, however, many indications that the nucleon may not be elementary, 

but rather, composite. We cite what are perhaps the three most obvious 

intimations of compositeness: The taxonomic success of the quark model in 

describing the spectrum of hadrons, the continued observation of falling 

nucleon electromagnetic form factors, and the intuitive understanding of deep- 

inelastic electron scattering (DIES) afforded by parton models. Since 

constituents (quarks and/or partons, for example) have, if they exist, success- 

fully eluded all attempts at direct observation, it becomes a question of 

importance to decide to what degree and with what rigour we can determine 

the compositeness or elementarity of the nucleon. 

-2- 
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In the case of the deuteron,the low energy features of the NN interaction 

argue strongly in favour of Z = 0, relegating the deuteron to the level of a 

bound state, as discussed by Weinberg. (2) Unfortunately such an analysis 

has not proved feasible for the nucleon itself - essentially because of the absence 

of observable candidates for its constituents. A general classification of 

particles has been given by Ida (3) in terms of the asymptotic behaviour of 

Green’s functions, but this does not readily permit a decision on the status 

of the nucleon. 

Gell-Mann and Zachariase A4’ argued that in a renormalizable field 

theory, taken to all orders in perturbation theory, the asymptotic value of the 

nucleon’s charge form factor is given by Z2. Thus the observed rapidly falling 

nucleon electromagnetic form factors suggest a very small and possible zero 

value for Z 2. It is difficult, however, to translate this result into a rigorous 

upper bound for Z2 , given the form factors at finite momentum transfer and no 

knowledge of the underlying field theory. 

There remains the r6le of Z2 in DIES. The condition Z2 = 0 is part of 

the input to Drell, Levy and Yan’ Lb 
5 arton model and is interpreted by them as 

(6) representing an entirely composite nucleon, Cooper and Pagels, West(7) and 

more recently (8) one of the present authors (D. J. B. ) have attempted to set 

bounds on Z2, g iven information about the structure functions in DIES and the 

asymptotic behaviour of the nucleon form factors. It was shown in reference 

(8) that upper bounds for Z2 between 0 and 0.3 result from a variety of 

assumptions about possible subtraction constants, in the sideways dispersion 

relations for the nucleon form factors and about the behaviour of R(w) in the 

Bjorken limit 0 (R(w) is the ratio of longitudinal to transverse photoabsorption 

cross sections for a virtual photon of energy v and four momentum q, incident 

on a nucleon, mass m, at rest, in the limit v -. 00, w = -2mv/qz, fixed.) 
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Subsequently it has been claimed by Hirayama and Ishida (9) that Z2=0, if 

W-9 = 0, given certain restrictions on the subtraction constants and on the 

structure functions near w = 1. Unfortunately all these attempts to bound Z2 

from DIES information involve high energy regions which we are at present 

only on the verge of exploring and require assumptions which owe more to the 

necessity for mathematical precision than they do to physical intuition. They 

are also very weak applications of unitarity since they involve inequalities in 

terms of only the Jn = +$+ contributions to DIES. 

There does exist, however, one rigorous, non-trivial bound for Z2, 

(10) derived by Drell, Finn and Hearn 

“2’ 1 1 -I- (g2,‘4Q / 85.6 ; Z2 5 .86 . 

Our principal new result is 

z;l 1 l+(g2/41r)/10c.4; Z2 5 042, 

(l-1) 

(10 2) 

with the only assumption being that the improper xN vertex function of 

Bincer(ll) * is free of a particularly vicious class of essential singularities at 

infinity. Whilst our new result may not appear spectacular in the light of the 

suspicion that Z2 = 0 it represents an improvement by a factor of 8 in the 

lower bound for the continuum contributions to the sum rule for Zi10 

An interesting by-product of our search for an improved rigorous bound 

on Z2 is a very strong i&i&ion that the nucleon propagator function has a zero, 

corresponding to a pole of the proper nN vertex function. The existence of 

such a zero, and, a fortiori, the validity of upper bounds on g2/4x which assume 

the absence of zeroes, have been a subject of considerable discussion in the 

past. A very clear review is given by Okubo. (12) 
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Geshkenbein and Ioffe, (1913) and Meiman(14) proved that in the absence 

of zeroes g2/4n 5 85.6. They also assumed that the propagator at least 

satisfies a once-subtracted dispersion relation, but Okubo (12) has recently 

shown this to be an inessential restriction. We improve the bound to 

g2/4n 5 5’7.6, in the absence of zeroes, Much more significantly we have 

obtained the approximate bound g2/4n 5 15.3 using an N/D model of Ida (15) 

to calculate the phase of the one-nucleon-irreducible Pll TN partial-wave 

amplitude, in the elastic region, We believe this calculation to be relatively 

reliable, in the absence of zeroes, and argue that the near saturation of our 

bound is a very strong indication of at least one zero, thereby invalidating the 

Geshkenbein-Ioffe bound on the strong coupling constant. We find further 

support for the existence of a zero by reexamining a model-dependent bound on 

Z2 given by Ida. (15) 

The paper is organized as follows: In Section II we develop the requisite 

formal preliminaries, defining the nucleon propagator and vertex functions, 

deducing the basic unitarity bound, and using elastic unitarity to determine 

phases of the vertex functions. In Section III we deduce a set of bounds on Z2, 

our only assumption being the absence of certain essential si@gularities at 

infinity in the improper vertex function. The previous result of Drell et al. (10) 

is a particular case of our work and is appreciably improved by a knowledge 

of the PI1 and sll elastic phase shifts. We also consider whether an approximate 

current algebra result of Suura and Simmons (16) helps in bounding Z2, but find 

it to be of negligible value when used in conjunction with the phase shifts. 

Finally in Section IV we develop two sets of bounds, one for g2/4n and one for 

Z2, assuming the absence of zeroes of the propagator. After an N/D calculation 

we show that these bounds are so restrictive as virtually to require a zero. 

Certain purely mathematical details are contained in the Appendix. 
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II. FORMAL PRELIMINARIES 

In this Section we define the nucleon propagator function A(W) and the 

proper and improper nN vertex functions I’(W) and K(W) and deduce a unitarity 

inequality by considering the contribution of nN intermediate states to the 

nucleon spectral function p(W). In addition we relate the phases of K(W) and 

I’(W), on their elastic cuts, to the phases of the complete and one-nucleon- 

irreducible Pll and SI1 IAN partial-wave amplitudes D 

We define the propagator function A(W) in terms of the renormalized 

nucleon Feynman propagator Sk(p), with p2 = W2, by 

i Sk(p) = & [(l + $/W)A(W) f (1 - $/W)A(-W)l , (2.1) 
so that for real, positive W 

Qim Im A (&(W + ie)) = T (+Wpl(W2) + p2(W2)), 
E-+ 0+ 

where pl ,(W2) are the conventional renormalized nucleon spectral 

’ (10) functions, which satisfy 

w2 PI 04 2 I Wp2(W2) I. 

Combining Eq. (2 D 2) and Inequality (2.3), we obtain 

p(W) = i ImA(W + ie) 2 0, 

(2.2) 

(2.3) 

(2.4) 

for all real W. - 

If A(W) is bounded by some negative power of W as I W I - 00 it satisfies 

the unsubtracted dispersion relation, 

-(m+M 00 

(2.5) 

where m and 1-1 are the nucleon and pion masses. 
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Given the dispersion relation (2,5), Z2 may be evaluated in terms of 

P(W). We have 

1 
< O&x) Ips > = (Zd2 < 0 M(x) Ips > ) (2.6) 

h 
where q(x) and Q(x) are the unrenormalized and renormalized nucleon 

interpolating fields. Z2 is then given by the sum rule (17) 

“2’ - 1 = { j + L, ) dWp(W. 

-co 

(2.7) 

If the integral of Eq. (2.7) fails to converge, we have the formal result 

z2 = 0, which has been interpreted as indicating compositeness or the absence 

of the field from the underlying Lagrangian. (18) In Section I I I we adopt 

Eq. (2.7) as a definition of Z2 and are able to deduce a nonzero upper bound 

without assuming the validity of an unsubtracted dispersion relation for A(W). 

This is achieved by finding a lower bound for p(W) in terms of the improper 

off-shell ?rN vertex function K(W), as defined by Bincer. (11) 

Consider the coupling of a nucleon (momentum p’ , spin s) and pion 

(momentum q , isopin a) to an off-shell nucleon: 

<0l7-/(0)Ip’s, qa > = 

%[ t 1+ $/WK(W) + (1 - ti/W)K( -W) 1 igr5 T~U(P’ s) , 

where 

7)(x) =(iP+mW(x), P = p’ + 4, p2 =W2 andwe 

normalize K(m) = 1 so that g is the strong coupling constant. (19) 

(20 8) 
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The nucleon spectral function is given by 

tw - mj2 P(W) = (2~9~ z A4(p - n) 

xTrace[~Ol~(0)ln~~nl7j(O)lO >($+w)/4lWll, 
(2.9) 

for IWI 2 rn+p. Keeping only nN intermediate states we find 

IW- mlnp(W) ~(g~/4@ IK(W)l 2h(W), (2.10) 

where 3 I. 
h(W) 

2 2 22 
= 3[(W-m) -/J 2]2 [(W+m) -p ] , 

8 W3 
(2011) 

(W - m) 

andwe have equality form+ 2)~ 2 IWI zrn+pO 

Inequality (2.10) is the basis of previous bounds on Z2 and g. To it we 

add information about the phase of K(W) on its elastic cuts, As shown by 

Bincer, (11) K(W) is a real analytic function of W with cuts (-03, -(m+p) ) and 

(m+p, 9 and for m+2p 21 WI 2 rn+p its phase on the cuts is given by elastic unit- 

arity: 

Im K(*(W + ie) ) = [ T(kW)] * K(&(W + ie) ), (2.12) 

where 

T(W) = ~in6~tw) exp( iS,(W) ) , 

and 

dp(Y = s,t-WI, 

(2.13) 
_ 

(2.14) 

with 6 p ,(W) the Pll and Sll nN phase shiftso Thus if we define 6(W) to be 
, 

the phase of K(W) on the upper lips of the cuts: 

K(W + ie) = exp( i6(W) ) I K(W) I , (2.15) 
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then 

6pW) = wf?, S,(W) = - 6(-W), (2.16) 

modulon, for m+ @kW)rn+p. 

Equations (2.7), (2.16) and Inequality (2.10) are sufficient for our 

rigorous bound on Z 2 , proved in Section III. 

In Section IV we address ourselves to the question of the existence of 

zeroes in the propagator function. The absence of zeroes permits one to deduce 

new bounds on Z2 and bounds on g. (12,15) It will be useful to consider the 

function 

Z(W) = [(m-W) A(W)]-‘, (2,17) 

which satisfies Z(m) = 1 and has the same cut structure as A(W) D If we assume 

the validity of the dispersion relation (2.5), 
8 

z2 = lim Z(W). 
IWI-=J 

(2.18) 

Moreover on the cuts 

Im Z(W + ie) = no(W) (W - m) lZ(W) 12, (2.19) 

and zeroes of A(W) correspond to poles of Z(W). There can be at most two -- 

poles, located on the real line m + /J > W > -(m + p) and if both poles are present 

they lie on either side of the point W = m. This follows from the positivity of 

dA(W)/dW on the real line, implied by Eq. (2.5). Hence 

Z(W) = 1 + (W-m) 2 ‘i + 
i W‘i- W 

-(m+lu) 00 

{ j + \ I& IZ(W’)12 

-Co (m+iJ) 1 
(20 20) 
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and the residues Ci are positive and, at most, two in number. From Eq. (2,18) -- 

I- z2 = { pm:’ ip, )dWp(W)IZ(W)12+ TCia (20 21) 

Equation (2 D 21) and Inequaltiy (2,lO) allow us to give an upper bound on 

Z2 given information about the proper vertex function 

WW = K(W) Z (W, 

which satisfies I’(m) = 1. 

(2.22) 

As shown by Ida, (20) , n (W), the phase of l?(W) on the upper lips of its 

cuts, is given, in the elastic regions, by the phases of the P 11 and S l1 one- 

nucleon-irreducible nN partial-wave amplitudes. For simplicity consider the 

P-wave cut, m+ 2p,WLrn+p. We have 

T(W) = TR(w) + Tm(w) 

= sin BP(W) exp(isP(W)) , 

(2.23) 

and the reducible part is given by 

TRtW) = -tg2/4~)h(W)K(W)ZtW)K(W) 
(2,24) 

= -si~tYexp(i[26pW) + p(W)1 ) , 

where p(W) is the phase of Z(W) on the upper lips of its cuts and we have used 

(2.10) as an equality. Solving for TIR(W) we find 

T&W) = sin7 p(W)ew?(i~p(W) ), (2.25) 

and 77 (W) = n .(W) , modulo T. The proof for negative W is similar. 
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Thus in analogy with Eq. (2.16) we have 

(2.26) 

modulo x, form+ 2p ,WL m+pO 

This result is the basis for our improved bounds in Section IV, 

III. BOUNDS FOR Z2 

In this Section we use the experimental value of the strong coupling 

constant and approximate information about the elastic Pll and Sll phase shifts 

to obtain the bound Z2 2 0,42 to be compared with the previous result of Drell, 

Finn and Hearn, (10) Z2 < 0 0 86. In addition we consider what improvement _ 

results from assuming tk validity of the current algebra sum rule of Suura 

and Simmons, (16) 

U-m) = l/g*P) 9 (3.1) 

where gA(t) is the nucleon axial-vector form factor D This sum rule results 

from assuming simple equal-time commutation relations for the weak currents 

and the nucleon field. Even if these assumptions are valid the sum rule is only 

exact in the limit of zero pion mass0 One might, however, hope that the 

corrections are small, as in the case of the Goldberger-Treiman relation 

where they are only about 8%. It turns out that the current algebra result (3. I ) 

by itself gives some improvement over the result of Drell et al,, but is of 

negligible value when combined with phase-shift information, Our final bound 

does not assume the current algebra result. 
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The problem we solve here, stated in its generality, is to find an upper 

bound on Z2 given the values K(Wi) for some real Wi, such that 

-(m + p) < Wi < (m +/A) i = 1, n 

and information about the phase of K(W) on its cuts in the regions 

azWLm+p and bL-WL(m+p), 

(In our case a, b ( m + 2~ and n=lor 2 with W 1 =m and W2=-m.) 

To solve this problem we perform the mapping (12) 

which takes the points W = -b, m, a to z = -1, 0,1, respectively, and maps the 

upper lips of the cuts (--03, -b) and (a, od) to the upper half of the unit circle, 

i0 z=e , r 2 0 2 0, and the lower lips to the lower half. 

Now consider the function 

K(W) 
F(z) = P(W,a) S(W,b) ’ 

where 

a 
dW’ 

wt _ w 6pV’) , 

b 

(3.3) 

(3*4) 

(305) 
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By construction the phases of K(W) and P(W , a) are equal (modulo 8) on the 

cut (m + p, a) and the phases of K(W) and S(W, b) are equal (modulo T) on the 

cut (-b, -(m + h)), by Eq. (2.16). In addition, neither P(W, a) nor S(W, b) 

have zeroes inside the unit circle. (Note that 6p, s (W) vanish like 

as W -, m + pa) Hence F(z) is analytic inside the unit circle. 

From Eq. (2 ., 7) and Inequality (2.10) we have 

z2 
(g2/W 1 _ z 5 l/I , 

2 

where 

I = $( /b + / ) ,wdWm, IK(W)12h(W) o 

-* a 

(3.6) 

(3.7) 

We rewrite the integral as 

I l =- 
2n / 

de IF(eie)12g(e) , (3.3) 
-7T 

where, from Eqs, (3.3) and (3,7), 

fide) = h(W)P2(W, a)S2(W,b) , (3.9) 

for W 2 a and W 2 -b, and we have used 
2 
= twsmj2 W-aW+b) 

(a - m)(b + m) ’ 
(3.10) 

which follows from the mapping (3.2) with z = e i0 
. 

For the integral (3 o 7) to be finite it is sufficient that I K(W) I be bounded 

by some negative power of I W I as I W I- =, Im W = 0. In what follows we merely 
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require that IK(W) I grows more slowly than exp( E I W I), for any positive E , 

as I W I -+m in an arbitrary direction. With this restriction we may deduce a 

finite lower bound for the integral, if it exists, giving a nonzero upper bound 

for Z2” If the integral diverges, Z 2 = 0 in any case. 

The problem has thus been reduced to finding a lower bound for I given 

the values F(zi) at the real points zi, i = 1, n. The phases no longer appear 

explicitly, since they have been absorbed into the weight function g( 0). This 

problem has been solved by one of us (V. B.) in reference (21). An outline of 

the method is sketched in the Appendix, Here we merely state the result for 

n=landn=2. 

Fern= 1 

1 L J2 (z,) (3.11) 

and for n = 2 

where 

92 = (Zl - z2m - z1z2) 9 

, 

with 

D(Z) = exp 1 2 [de @,:I:) hg(e)/ . 

(3.12) 

(3.13) 

(3.14) 

(3 D 15) 
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Finally we express our general result in terms of convenient functions 

ofW. Wefind 

1 
- W2)(b + Wl) 1 [ 2 - 

Y2 = 
(a - Wl)(b f W2) 1 1 

- Wz)(b + WI) 1 [ 2 + (a - WI)@ + W2) 1 
The evaluation of D(z) by Eqs. (3.15), (3.9) and (2.11) is straightforward and 

is outlined in the Appendix. We find 

L 
2 

0 (3.16) 
1 
2 

r 
JW = 2WV GW, a,WA&w, a,WpWr ah) ([$+ [f$) , 

(3:17) 

(3.18) 

, (3.19) 

I 

where 

a A. 

AdW,a,b) = exp J g&- $,W) 
[ 
;;:;!;;;+w;t, 2 

(m+cl) Ii 
s 

A, (W, a,b) = exp 

G(W, a,b) = 

with 

1. 

1 II 
I 

C(W,c) = l(a-W)(b+c) 
2 + (a-c)(b+W) 2 , 1 r 

I , 
2 

CW, m+r-l) C (W, , - m- ( 1 1.4 ) 

(3.20) 

(3.21) 

for aLc?-b. 
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These regrettably extended expressions constitute the general solution 

of our problem. We remark some simple properties of our auxiliary functions 

which will simplify the deriviation of bounds in Section IV and may help to 

render our present result more transparent. Firstly, C(W,c) is a real 

analytic function of W, with cuts (- m, -b) and (a, 00)) has no zeroes, and 

satisfies 

IC(W,c)12 = I W-c I (a+b) (3.22) 

on the cuts. From this it follows that G(W, a, b) enjoys the same analyticity 

properties, and on the cuts 

]G(W,a,b)lD2 = h(W) , (3.23) 

by comparison of Eqs. (3.20) and (2.11). Secondly, the function 

[AS(W,a,b) Ap(W,a,b)] has unit modulus on the cuts (-m,-b) and (a,m) and 

its phase on the cuts (-b, -(m+p) ) and (m+b, a) is equal to the phase of K(W), 

modulo r. 

We now consider special cases of the result, Eqs. (3.11) to (3.21). 

First we restrict ourselves to the use of the normalization condition 

K(m) = 1. Combining Inequalities (3-6) and (3.11) with Equation (3-l?‘), 

we have 

2 G’(m,a,b) Ai (m,a,b) Ai (m,a,b) 0 (3.24) 

Let us suppose we are only given upper bounds on the phases: 

tjp (W) 5 Q! , for a,WLrn+p , 

(3.25) 
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then from Eqs. (3.18) and (3.19) we obtain 

In Ap (m, a, b) 5 (a/a) In (l/z +(a, b) ) , (3.26) 

III As (m, a, b) 5 (P/n) In (l/z-(a, b) 1, (3.27) 

where the points z = & z*(a, b) correspond to W = rt(m + cl), and we have 

equality if and only if dp ,(W) are everywhere equal to their upper bounds. 
, 

In Fig. 1 we have plotted the elastic Pll and Sll phases as given, in 

parametric form, by Roper et al. (22) This is a best fit to the data with 

W 5 m + 3y and agrees well, in the elastic region, W 5 m f 2~, with the single- 

energy determinations tabulated by Almehed and Lovelace in the CERN Sept. 

1971 analysis. (23) We set cz = 0 and p = 10’ and evaluate the bound (3.24) in 

the four cases of interest: 

for a=b=m+p, 

z2 
tg2/4Jo 1 _ z 5 G2(m, m-+-p, rn+p) = 85.6 , 

2 

for a=m+p, b=m+2p, 

5 82.2 [ 1.141 t2P@ = 83.4 , 

2 

for a=m+2p, b=m+p, 

z2 
(g2/4rJ 1 _ z < 11.1 [5.331 (2d-r) 

2 - 
=ll.l ) 

for a=b=m+2p 

(3.28a) 

(3028b) 

(3.28~) 

( 10.5 [x9] (‘@“) [5. 36](2a’lr) = 10.7. (3.28d) 
2 
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(10) Inequality (3.28a) is the old result of Drell et al., which has been 

rederived by Okubo. (12) It can be seen that little improvement comes from the 

inclusion of the SII phase shift; it is the smallness of the P 11 phase shift which 

gives the large improvement of bound (3.28~) upon bound (3.28a). The sensi- 

tivity to the PII phase shift may be readily understood by the closeness of our 

datum point, W = m, to the elastic P-wave cut. 

Next we use the parametrized phase shifts in Inequality (3.24). Setting 

a=b=m+2p, wefind 

z2 
(g2/47r) 1 _ z 5 loo4 l 

2 

(3.28e) 

Finally, we experiment with using K(-m) M l/gA(0), where t24) gA(0) = (1.226&O. 011). 

If we set K(-m) = l/l. 226, and a = b = m + /.L, so that the phase shifts are not 

required, 

z2 
(g2/43Q1- z 5 47*3’ 

2 

whereas with a = b = m + 21.~ and the parametrized phase shifts, 

tg2/43 ,““z 2 10.0 . 

2 

(3.28f) 

(3 l 24%) 

It can be seen that the current algebra result, by itself, gives a significant 

improvement over the old result (compare bounds (3.28a) and (3.28f) ), but is 

of little value when combined with the phase shifts (compare bounds (3.28e) and 

(3.28g) ) 0 Accordingly we state our final result without any assumption about 

K(-m). 

From (3.28e) we obtain 

z2 I .413 +. 010 
-,007 ’ (3.29) 
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as against the previous best rigorous bound, (‘OS 12) (3.28a), 

3 5. .853 -I-. 006 
-.004 l 

(3.30) 

The errors given arise from three sources. First there are the experi- 

mental errors in g. We take(25) g2/47r = (14.73&O. 29). Second there are the phase 

shifts. We allow for variations comparable to the small discrepancies between 

references (22) and (23). Lastly, there is the appropriate value for the pion to 

nucleon mass ratio. Here we have to consider isospin breaking, since our 

result is only valid in the limit of exact isospin symmetry, which presumably 

corresponds to ignoring the electromagnetic interaction. Isospin assumptions 

are necessary to determine the coupling constants and phases involving r”. 

For the numerical results given in Inequalities (3.28a) to(3.28g) we made the 

somewhat arbitrary choice 

(3.31) 
1 m z-m +m 
2 P ( n i 

, 

but the errors given above allow for the whole range 

I-L +/mp2dm2po/mn , 
‘IT ?r 

which should adequately represent the sensitivity of our result to isospin 

breaking. 

In conclusion, we have improved the rigorous upper bound on Z2 from .86 

to 0 42 using TN elastic phase shifts. We consider this a radical improvement, 

since it corresponds to an improvement by a factor of 8 in the lower bound for 

Z,‘-1. Our only assumption is thatIK(W)I<exp(e IWI), for any E >O, as IWI- 00. 
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I 

IV. ZEROES OF THE PROPAGATOR 

In this Section we improve the upper bound for g2/4r originally given by 

Geshkenbein and Ioffe, ( 1) assuming the absences of zeroes of A(W). This is 

done by including the phases of the proper vertex function, I’(W), on its elastic 

cuts, which are given by the phases of the one-nucleon-irreducible P 11 and S 11 
partial-wave amplitudes D These phases are, of course, not experimentally 

accessible. We calculate qp(W), the phase of the PlI irreducible amplitude 

in the elastic region, using an N/D approximation of Ida. (15) In addition we 

critically reexamine the Lehmann-Symanzik-Zimmermann (LSZ) sum rule, 

Eq. (2.21), which was considered by Ida, Our conclusion is that A(W) has a 

zero. 

First consider the function 

R(z) = tg2/4WW) WV 

G2(W, a,b)A&W, a,b)Ap(W, a,b)H&W, a,b)Hp(W, a,b) ’ 
(4.1) 

where, in analogy with Eqs. (3.18) and (3.19), 

1 1 

a 1 

Hp(W, a,b) = exp a & r7 p W’) 
1 

2 
,:;;;;;;!,I 

‘) 

I 
, (4.2) 

tm+i-O 
b 

HS(W, a, b) = exp , (403) 

(m+N 
and rn+2pz a,bL m+p. We are using the same mapping as before, given by 

Eq. (3,2). Then R(z) is meromorphic inside the unit circle, having poles 

corresponding to the zeroes of A(W) (if any). By virtue of Eq. (3.23), 

IR(eie) I = (g2/4n) 1 wvw) IhW’) , (40 4) 
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and the unitarity inequality (2.10) takes a particularly simple form: 

lR(eie) I = lr(W)sir@(W) I L 1 3 (4.5) 

where r(W) is the fraction of the nucleon spectral function contributed by nN 

intermediate states and p(W) is the phase of Z(W) on the upper lips of its cuts. 

If we now assume A(W) has no zeroes, R(z) is analytic inside the unit circle. 

We now invoke the generalized maximum modulus theorem (see, for example, 

ref 0 (12) ) which requires 

{R(z)/ 5 1 , (4.6) 

inside the unit circle, provided that K(W) does not grow like 

IK(W) I”exp(clWI’\ (4.7) 

with c > 0 and y 2 1, as W --L 05 along any straight radial direction. Rejecting 

such a pathological essential singularity as (4.7) we conclude that, in 

particular, 

IR(O)l 2 1, 

or, by Eq. (4.1), 

(4.8) 

g2/4x 5 G2(m, a,b)A&m, a,b)Ap(m, aSb)RS(m, a,b)Rp(mS a,b) o (4.9) 

Inequality (4.9) should be compared with Inequality (3.24) 0 The former 

involves the phase dW> but not Z2, and for the latter vice versa. 

Setting a = b = m + ~1 we obtain the old result of Geshkenbein and Ioffe, (1) 

g2/4n 2 G2(m, m+p, m+p) = 85.6 . (4.10) 
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There is a third class of inequalities, involving both n(W) and Z2, 

which follows from the LSZ sum rule (2.21) and the unitarity inequality. We 

have 

(4.11) 

which, by the same arguments as in Section III, yields 

kc2 /4& 2 G2(m, a, b)H$m, a,b)Hi(m, a, b) , (4.12) 
2 

provided A(W) has no zeroes. Setting a = b = m + p we obtain 

tg2/4Q &- ( 85.6 , 
2 

(4.13) 

which is more restrictive than the bound of Drell et al., Inequality (3,28a), but 

has been obtained with much more restrictive assumptions. 

We now concentrate on Inequality (4.9), which, in general, involves the 

phases rl p, &W) o 

Our first new result comes from the fact that the phases Pp, s(W) = 

77 p &W - ep, ,tW satisfy 
, 

71 2 pp s(W) 2 0 for m + 2~ 2 W 1 m + p , 
, 

using the fact that the p(W) is positive, and assuming that the propagator has 

neither poles nor zeroes on the elastic cuts. 

Hence 

~~ &m, a,b) 5 Ap, ,(m,a,b) ’ , [ 1 z*(a,b) 0 
(4.14) 
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We combine Inequalities (4.12) and (4.14) and use the parametrized 

phase shifts 6 p 
, 
s(W)e The optimal values of a and b turn out to be m f 1.8 ~1 

and m + p, respectively, giving 

g2/4n 5 57,6 , (4.15) 

which is some small improvement on the Geshkenbein-Ioffe result. However, 

we consider bounds on g of little interest (since g is well determined experi- 

mentally) unless they are violated or else perilously close to saturation, 

thereby forcing us to examine one of our assumptions (such as the absence of 

zeroes). Accordingly we resort to a model for the first time, enabling a 

calculation of n.(W) in the elastic region. Yet again in this Section we assume 

the absence of zeroes so that the irreducible partial-wave amplitude 

TIRtW) = sin 17 ptW) w? (iv ptV ) 
(4.16) 

= N(W) /D(W) 

has the same analyticity properties as the full amplitude T(W), apart, of course, 

from having lost the direct channel nucleon pole. (If A(W) had zeroes, TIR(W) 

would have poles. ) To calculate n .(W) we use Ida’s N/D model, (15) in which 

the dynamical left-hand singularities of N are approximated by two poles, 

representing nucleon and P33 exchange, Details are given by Ida and by 

Frautschi and Walecka.(“) 

The result may be given compactly as follows: 

cot 7 p(w) = ReD(W)/N(W) , (4.17) 

D(W) = 1 - 7 dW’N(W’) 
(WI-m)(W’-W) ’ (4.18) 

tm+N 
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N(W) = (g2/4n) h(W) 1+8D(W ) 
[ 1(q)] ig l 

(4.19) 

The first term in Eq. (4.19) approximates the short cut from 
1 

22 W = (m2-p2)/m to W = (m2+2p ) , coming from nucleon exchange. (Note 

that h(W) has a pole at W = mO) The second pole term approximates the short 

cut from W = .59 m to W = 0 76 m, coming from P33 exchange. We take(26) 

W1 = .68 m and the effective resonance coupling has been taken from dispersion 

theory, (27) The evaluation of the principal value integral presents no 

difficulty, since we deform the contour to one parallel to the imaginary W axis. 

The output, r) .(W) , is plotted in Fig. 2. 

It is important to realize that we are using Ansatz (4.19) quite circum- 

spectly. We require n,(W) in the region m + 2~ 2 W 2 m + cc, which is very 

close to the approximated short cuts. We attempt no calculation of ns(W), 

where p exchange is important. (15) Settinga=m+@, b=m+pinInequality 

(4,9), we obtain 

g2/4n 5 G2(m,m+2p, m-+)Ap(mr m+2p, m-&) Hp(m, m+2p, m+p) (4.20) 

~ll.lXO.99 x 1.39 = 15.3, 

to be compared with the experimental value, g2/4n ,= (14.73 & 0 29) D 

Whilst Inequality (4.20) is not actually violated it almost certainly requires 

at least one zero in the propagator , since in obtaining it we have neglected all 

contributions to the nucleon spectral function except ti, and have ignored the 

real part of the propagator. By way of illustration we consider the inequality 

lnIR(O)j 5; l’de lnlR(eie)I , 

0 

(4.21) 
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of which the maximum modulus theorem is a weakened version. It can be seen 

that requiring the absence of essential singularities such as (4.7) ensures that 

the upper semicircle at infinity in the W plane does not contribute to the integral. 

Also (4.21) becomes an equality if K(W) has no zeroes away from the cuts. 

Combining Inequality (4.21) with Eq. (4.5), and accepting the phase 

calculation, we obtain 

1 5 
lr 

2 g/4x 5 15,3exp + de lnlrtw) sj.nPtw)I 
i 

, (4.22) 

0 

where Fig. 3 illustrates the relation between W and 8 0 Inequality (4.22) requires 

that the mean value, < r sin p >, as weighted by the integral, must exceed .95, 

even allowing the smallest experimentally acceptable value of g2/4n. This 

seems overwhelmingly unlikely. For example, in the range W = (1470 f 100) MeV 

(0 e(80 * 10)‘) where the Roper resonance is important for xN scattering we 

would also expect it to be the dominant contribution to the nucleon spectral 

function, suggesting r(W) x0.6, the elasticity of the Roper. This,, by itself, 

is sufficient to violate Inequality (4.22). Even more, there is no good reason 

to suppose r(W) will be any larger for larger values of W (0 = 90’ - 140’) or 

that A(W) will be so predominantly imaginary. 

If the N/D calculation is reliable in the absence of zeroes, it seems very 

difficult to escape the conclusion that A(W) has at least one zero, The only 

plausible way out would be to maintain that we have considerably 9derestimated 

n ,(W) 0 However, n .(W’) is constrained to vanish like [W-(m+p)]’ at threshold 

and in our calculation already has a large value (76’) at inelastic threshold. 

Geshkenbein and Ioffe(‘) originally argued against the existence of a zero 

of A(W) on the grounds that it corresponds to a pole in the reducible nN scattering 
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amplitude and the full amplitude may not have such a pole. However, Goebel 

and Sakita(‘*) were the first to point out that such a pole is ghost-like and must 

be cancelled by higher order Feynman diagrams, In fact Drell et al, (10) 

demonstrated the existence of a zero in a generalized Lee model, with two 

fermions, V and W, coupling to N and 8 and a suitable choice of coupling 

constant for the unstable W particle. In conclusion, there appears to be no 

compelling argument against zeroes. They merely correspond to ghost poles 

in the reducible partial-wave amplitude, which are cancelled by the irreducible 

partial-wave amplitude o 

Finally we consider our LSZ inequality (4.12). Setting a = m + 2~, 

b =mfp, we obtain 

tg2/m 1: z < 11.1 x [l.3912 
2 - 

(4.23) 

which gives Z 2 5 .31, in the absence of zeroes, and using the N/D approxima- 

tion, Of course we do not now believe this bound, but it is instrtctive to compare 

it with the result of Ida, Z 2 < D 20, which was obtained from the more restrictive 

LSZ inequality (4.11) (setting a = b = m + 1). Now Inequality (4., 11) is valid in 

the presence of zeroes. It merely assumes that A(W) satisfies an unsubtracted 

dispersion relation (in which case it is a Herglotz function).(2g) Ida’s method was 

to assume that both A(W) and K(W) are free of zeroes, so that I’(W) has an Omnes 

representation in terms of its phase, n (W). He then set n(W) equal to r,(W), as cal- 

culated in the N/D approximation, for m-t 2.5 ~2 Wl m+p. This, we have suggested, 

is probably reliable, at least for m + @ 1 W. However, he then chose a form 

for 7 (W) in the regions -(m + CL) 2 W_> - m and ~0 >W >m+2.5psuchasto - - 

give the least restrictive upper bound for Z 2, giving the justification that other- 

wise there was a danger of deducing a negative upper bound for Z2, which is 
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impermissible. We consider his arbitrary determination of 77 (W) outside the 

elastic P-wave region as unjustified and are relatively unconcerned about an 

apparent violation of the LSZ inequality in his model, since it proceeds from 

an assumption (the absence of zeroes of A(W) ) which we have shown to be 

scarcely tenable, merely by the much more trustworthy determination of q (W) 

in the elastic P-wave region. - 

That we are able to conclude Z2 5 O 3.1 from Inequality (4,11), assuming 

no zeroes, is further suggestive of the existence of zeroes, since we actually 

neglect even the ‘IAN contributions in the elastic region, where, according to 

Ida, a major contribution to the LSZ sum rule is to be found. The smallness 

of our upper bound is therefore highly suspicious and would have cast doubts 

on our assumptions even if we had not been able to give the much cleaner 

argument based on our more restrictive version of the Geshkenbein and Ioffe 

bound on g2/& D 

It is interesting that the improvement of the upper bound for g2/4a (in the 

absence of zeroes) that results from including the phase n (W) is akin to the 

improvements of bounds on r--71 scattering amplitudes obtained by Eukaszuk and 

Martin(“) who also use phase information. 

In conclusion, at least one of the following situations obtains: 

(i) K(W) has an essential singularity at infinity of the form of Eq. (4.7); 

(ii) A(W) is predominantly imaginary over a large range of W, its 

imaginary part is given predominantly by nN intermediate states over a large 

range of W and the N/D calculation considerably underestimates the phase of 

the irreducible partial-wave amplitude on the elastic Pll cut; 

(iii) A(W) has a zero. 
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We decide in favour of (iii), knowing of no compelling physical argument 

to the contrary. This conclusion invalidates all bounds on g or 22 derived in 

this Section. It in no way affects our rigorous bound on Z2 derived in Section HI. 
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APPENDIX 

Here we find a lower bound for 

x 

d6 IF(ei e, l’g(S) < m 
0 

given the values xi =F(zi), for the real points zi, i = 1, n. Further details 

are given in reference (21). 

We expand F(z) in terms of the orthogonal polynomials +,(z) , defined 

by the weight function g( 6) : 

so that 

It is now required to find the extremum of I for fixed values of xi’ This 

is easily done using Lagrange multipliers. Solving the equation 

-&- (I - c hiXi) = 0 
V i 

we obtain 

FV = C ‘i~v(‘i) 
i 

giving 

11 ChiXi 
i (A. 1) 

where 

X i = C aijhj 
j 

(A.9 
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and 

a ij = E$p&(z5) 
V 

[ 
(1 - zizj) D(zi) D(zj) 

3 
-’ = (A.31 

withD(z) the characteristic function for the set of polynomials, given by 

D(Z) = exp { 2 [de($-$lng(Q] l (A.4) 

-7r 

Combining Eqs. (A. 1) to (A. 3) we have 

I 2 xJ(zi) Mij J(zj) , M 
where 

J(z) = [ T 
l-z2i F(z) D(z) 9 

and M is a matrix whose inverse is given by 

M-l = [II- = [1 _ a21a 

ij (1 - ZiZj) ij 

where 

(A-5) 

a.. = (Zi - z.)/(l- Z.Z.) . 
1J 3 1 I 

For n = 1, M is just unity, so that 

I _> J2tzl) 

and for n = 2, 

(A.6) 

(A. 7) 

c 
1 

M= 

[ 
l- 1 

L 
2 2 

Y2 

1 1 
1 z - 92 2 1 

1 i 
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so that 

+ J2(z2) - 2 [l - &j’J$, JF2@yt, 

2 

[ 
al2 1 

L 
1 - 2 2 

J2(zl) + 
J(y) 

= . 
92 

(A, 8) 

Equations (AD 4) to (A. 8) are those used in Section I I I. 

In deriving these bounds it is necessary to assume that In l F(z) I is 

integrable on lz l= 1, which corresponds to our restriction that 

lK(W)l < exp(eIWI), foranypositive E, as IWI-m. 

Finally we sketch the evaluation of D(z) in terms of g(8), If we write 

gte ) = ~ gi te) 

= ‘II Di (z) 
-I 

D(z) i 

then the various gi(B ) which occur in our case are of the form 

gi (0) = K > 0, 

gi(0) = IW - cl, ale?-b, 

cl! 

gi(B)=em$ 
i 

dW’ w, -w 6(W’), where a!=a, S(-p)=O, or /3=b, s(a)=O, 

-P 
for which the corresponding Di(z) are 

Di (z) = K2 , 
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In each case Di(z) is a real analytic function of z inside the unit circle, has no 

zeroes inside the unit circle and satisfies 

IDi(eie) I2 = gi(e) 

on the unit circle O 
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I 

FIGURE CAPTIONS 

1. 

2. 

3. 

The Pll and Sll xN phase shifts in the elastic region, as given in 

solution 24, table III of reference (22). 

The phase 7 p of the irreducible Pll TN partial-wave amplitude, as 

calculated from Eqs. (4.17) to (4.19). 

The unit circle with values of (W-m)/,u given by the mapping (3.2) with 

a = m+2p, b = m+p. The shaded area corresponds to the range of 8 for 

W = (147OctlOO) MeV. 
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