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This talk gives a brief review of the calculation of the expectation value of a magnetic Wilson 
loop in the transverse plane of ultra-relativistic heavy-ion collisions. The average of the Wilson 
loop is determined in the first moments after the impact. 

1 Introduction 

A complete description of high-energy collisions requires a precise understanding of the initial 
conditions. The initial conditions are given by the nuclear structure of the participants in the 
collision, as well as by the structure of the matter formed in the first moments after the impact. 
How the system evolves at later times depends on the fluctuations in these first two stages. These 
conditions are the point of interest of many recent works attempting to explain the transition 
of the collision system from a quantum state far from equilibrium, before the interaction, to the 
Quark Gluon Plasma that is believe to be formed in experiments at the Large Hadron Collider 
and the Relativistic Heavy Ion Collider. 

In this talk we present the calculation of the expectation value of a spatial Wilson loop in the 
initial time of heavy-ion collisions. The computations are based on the Color Glass Condensate 
(CGC) theory for nuclear structure at high energies. The starting concept in the CGC theory 
is the classical description of the gauge fields, i.e. the McLerran-Venugopalan (MV) model for 
a large nucleus 1 .  The form of the classical field of the individual nuclei before the collision and 
of the resulting field 2, as well as the form of the chromo-electric and chromo-magnetic fields 
formed at early times3, have been calculated previously. We place a non-Abelian magnetic Wil­
son loop in the transverse plane normal to the longitudinal component of the chromo-magnetic 
field and compute its average. The numerical result gives an area law behaviour of the loop and 
indicates a presence of positive and negative domains of chromo-magnetic flux in the plane of 
the loop 4. The fluctuations of the chromo-magnetic flux may be viewed as uncorrelated vortices 
with a typical radius � 0.8/Q5• Qs denotes the saturation momentum which is the scale where 
the gluon field exhibits non-linear dynamics 5 . A perturbation theory without screening gives a 
leading non-trivial term proportional to the square of the area of the loop 6 . 

In the MV model one assumes a momentum scale that separates the partons in the wave 
function of the nucleus: the partons with large longitudinal momentum act as static sources for 
the degrees of freedom with a small longitudinal momentum fraction x. The color charge squared 



per unit transverse area, µ2, scales as µ2 � A�cvA113,  where A is the nucleon number. The 
momentum µ drives the running of the strong coupling constant, a8(µ2) ,  so for a nucleus with 
large A the coupling is small and parton distribution functions can be calculated perturbatively. 
The transverse gluon density in a large, Lorentz contracted, ultra-relativistic nucleus is high 
and the gauge fields are approximated as classical fields. Their form is obtainable from the 
classical Yang-Mills equations of motion. Quantum corrections are implemented by including a 
non-linear small-x evolution of the wave function of the nuclei. 

In the picture of classical fields, the solutions of the Yang-Mills equations for a collision 
of two nuclei are the following. Before the impact, both, the gauge fields of the target and 
the projectile are a (different) gauge transformation of the vacuum. They are the non-Abelian 
analogue of the Weizsacker-Williams field and in light-cone gauge their form is: 

a; = i_ u fiut m g m m (1) 

The subscript m, with values 1 and 2, denotes the projectile and the target respectively. Intro­
ducing the gauge potential as 

the solution to (1) can be written as 2 : 

g <Pm = - \72 Pm , 
_]_ 

(2) 

(3) 

In the forward light cone one needs to solve the equations of motion with two color currents 
representing the sources in the two nuclei, and with boundary conditions on the light cone. 
Analytical solution has been found only at proper time T = Jt2 - z2 = 0 2 . The resulting 
transverse field is a sum of two pure gauge fields: Ai = at +  a�. 

At T = 0 the transverse components of the chroma-magnetic and chroma-electric fields are 
zero. The longitudinal components are 3: 

where Eij is the antisymmetric tensor. 

2 Magnetic Wilson loop in the classical field of heavy-ion collisions 

(4) 

The non-Abelian Wilson loop is gauge invariant and is defined as an exponential of an integration 
of the gauge field matrices, Aµ, ordered along the path. The magnetic Wilson loop is given by: 

M(R) = P exp (ig f dxiAi) = 'P exp [ig f dxi (at + a�)] , (5) 

with R the radius of the loop. Note that M(R) = l1 if evaluated in the field of a single nucleus (at or a�) as those are pure gauges. 
In 4 it was shown that the expectation value of the magnetic Wilson loop in the field Ai 

produced in a collision of two nuclei is proportional to the exponent of the area A of the loop: 

1 
WM(R) = Ne (tr M(R)) � exp (-aMA) . (6) 

Here, aM is the magnetic string tension. For the SU(2) gauge group its value was estimated 
to be aM c:= 0.12Q� from the fit to the lattice data. The result (6) was obtained for areas 
A ;2'.; 2/Q;. It indicates that the structure of the chroma-magnetic flux at such scales corresponds 
to uncorrelated vortex fluctuations. This is shown in fig. 1 for proper time T = 0. For comparison, 
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Figure 1 - Expectation value of the magnetic flux loop right after a collision of two nuclei (time T = +O) as 
a function of its area A' = A Q;.  We define Q; = (CF/27r) g4µ,2. Symbols show numerical results for SU(2) 
Yang-Mills on a 40962 lattice; the lattice spacing is set by g2 µL = 0.0661. The solid and dashed lines represent 
fits over the range 4 2 A' 2 2. The short dotted line shows cos 2A' for A' < 0.3. 

in the same figure we plot he expectation value of the Z (Ne) part of the loop. The two fits have 
a similar behaviour, confirming the independent domain structure of the flux. 

The expectation value in (6) refers to averaging over the color charge distributions in each 
nucleus. For large nuclei the color sources are treated as random variables with Gaussian 
probability distribution, Physical observables are then averaged with a Gaussian (McLerran­
Venugopalan) action: 

S [ a] - � !d2x [Pi(x)phx) + p�(x)p�(x) ] d P  - 2 � � , (7) 

where µ2 is the color charge squared per unit area, related to the saturation scale via Q; � g4 µ2 . 
To obtain WM(R) we need to determine the deviation of Ai from a pure gauge: 

(8) 

where: 
(9) 

rbc are the structure constants of the special unitary group and h2 corresponds to a four gluon 
vertex of the fields, In addition, we expand the fields ai from eq. (3) perturbatively in terms of 
the coupling constant: 

i - i ig ( ij i 1 ·) [ . l ( 3 ) am - -8 <l?m + 2 6 - 8 V'}_
ffl <l?m, ffl<l?m + 0  <l?m .  (10) 

A non-trivial result for the Wilson loop gives the term of quadratic order: ai,a � gfabccpbf}i<l?c: 
The expectation value (h2) that enters in the expression for the magnetic loop involves the 

fields of both nuclei. The leading diagram is shown in fig. 2 corresponds to two sources, for both 
projectile and target, whose field is evaluated at second order in the gauge potential. The final 
result we obtain for the expectation value of the magnetic Wilson loop for classical fields ai: 7r2 Ng Q!1 Q!2 2 WM(R) c:e 1 - 64(N� - 1)3 A4 A . (11)  

In this result, A is  the area of the loop, and Q81 and Q82 are the saturation scales of the projectile 
and the target, respectively, We use the relation: 

Q2 _ g4Cp 2 
s - 27r µ ' where : (12) 



Pl � y..J p,;;��p, a 
_tr� P2 

Figure 2 - Classical contribution to the expectation value of the magnetic Wilson loop. 

The cut-off A regulates the infrared divergence of the integrals over the gluon momentum k 
shown in diagram 2. It sets the mass scale for the gluon propagator. 

The perturbative result for the expectation value of the magnetic Wilson loop gives a first 
non-trivial contribution that is proportional to the square of the area, and therefore does not 
reproduce the numerical result . The analytical expansion of the magnetic loop holds only for 
small areas, and not in the onset of area law behaviour. A term proportional to the area of the 
loop would involve single powers of the target's and projectile's saturation scales: � A Q81 Q82 4 . 
However, Gaussian contractions can only give powers of Q;1 and Q;2: 

(13) 

and therefore a term � A 2. Area law scaling of the Wilson loop presumably requires resumma­
tion of screening effects 7. "Naive" perturbation theory cannot capture the presence of screening 
corrections. 

In summary, the magnetic Wilson loop at proper time zero in heavy-ion collisions shows an 
area law behaviour which indicates a presence of independent domains of magnetic flux. The 
perturbative result for the average of the loop gives a term proportional to the area squared. 
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