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Abstract: The laminar constant-velocity superflow of a physical vacuum modelled by
logarithmic quantum Bose liquid is considered. We demonstrate that this three-dimensional
non-relativistic quantum flow generates a four-dimensional relativistic quinton system,
which comprises the dilaton and quintom (a combination of the quintessence and tachyonic
phantom fields); all three fields are thus shown to be projections of the dynamical evolution
of superfluid vacuum density and its fluctuations onto the measuring apparatus of a
relativistic observer. The unified model describes the transition from the inflationary period
in the early universe to the contemporary accelerating expansion of the universe, commonly
referred to as the “dark energy” period. The quintessence and tachyonic scalar components
of the derived model turn out to be non-minimally coupled, which is a hitherto unexplored
generalization of cosmological phantom models.
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1. Introduction

The period of cosmological inflation, which occurred in the early universe, was char-
acterized by the expansion of space at an exponential rate. Most popular theories of this
inflation are constructed by non-minimal coupling of the scalar field, called dilaton (inflaton,
in cosmological terminology), to Einstein gravity [1]. It was believed that the accelerated
expansion of the universe ended a long time ago and was replaced by the non-accelerated
expansion, commonly referred to as the Big Bang, during which all known elementary
particles, including baryons and cosmic microwave background photons, were formed.

However, it was discovered relatively recently that after the inflationary period has
ended, and all known elementary particles have been formed, the universe is still continuing
to expand with acceleration, only at a slower rate [2,3]. This re-acceleration period is
commonly referred to as the dark energy (DE) epoch. Following this discovery, various
theories were proposed to solve the dark energy and dark matter (DM) problems, the
ACDM model being probably the most popular among them.

A number of low-redshift observations later revealed that there are discrepancies
between the values of the Hubble parameter at the present time from observations of
Cepheids in the Large Magellanic Cloud, the gravitational lensing of quasar measurement,
and the value predicted by the ACDM model using Planck CMB data [4]. This phenomenon,
commonly referred to as Hubble tension, posed additional challenges for the ACDM model,
and some of them have not yet been resolved, to the best of our knowledge.

This left the question of a complete cosmological model open once again, not to
mention that the ACDM model alone does not explain the nature and origin of dark
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matter per se but serves as a phenomenological approach and a curve-fitting summary of
astronomical data. Another currently open question is how to explain the transition from
inflation to the DE period, because they are usually described by very different theories:
scalar—tensor gravities on the inflation side and a plethora of models on the DE side. If the
dilaton/inflaton field did exist in the early universe, then what happened to it at later times?
If it was “used up” to produce the conventional matter, then how did the fields, which
generate the “dark energy” and “dark matter” phenomena we currently observe, appear?
Is it possible to construct a cosmological model which would not only be a unified model of
inflationary and dark epochs but also originated from a theory of quantum gravity itself?

In this paper, we propose to answer these questions by using the superfluid vacuum
theory (SVT), which is the theory of physical vacuum, and a theory of quantum gravity at
the same time.

This paper is organized as follows. In the next section, we give a brief review of
the superfluid vacuum theory based on the logarithmic liquid model. In Section 3, we
consider a cosmological model which arises from the logarithmic superfluid vacuum theory,
assuming a simple superflow (laminar and constant velocity) of the physical vacuum. In
Section 4, we demonstrate a transition from the dilaton-driven inflation to the cosmological
expansion driven by one of the candidates for the dark energy, quintom. We show that even
the simplest laminar superflow generates the quinton system, which unifies the inflaton
and quintom (quintessence field coupled to tachyonic phantom) models. In Section 5,
we propose the generalized quinton model of dark energy and study its basic properties.
Conclusions are drawn in Section 6.

2. Superfluid Vacuum Theory

According to the SVT paradigm, a physical vacuum is a quantum liquid with sup-
pressed dissipative fluctuations (superfluid) “living” in three-dimensional Euclidean space,
whereas four-dimensional curved spacetime and Lorentz symmetry are induced phenom-
ena, occurring through so-called superfluid—spacetime correspondence. This theory is, in
fact, a framework for constructing models of superfluid vacuum by assuming one or the
other structure and dynamics thereof [5,6].

Logarithmic nonlinearity naturally occurs in the theory of laboratory quantum liquids,
such as Bose-Einstein condensates of alkali atoms and helium superfluid, where it provides
a more accurate fitting of experimental curves and even resolves certain puzzles [7-9]. This
motivates us to use this nonlinearity to describe the background superfluid as well, some
landmark works being [10-12].

Let us introduce the state vector |'¥) and the wavefunction in a position representation,
Y = ¥(x,t) = (x[¥), which obeys the normalization condition

2 _ _ _
/V|‘I’|dV—/VpdV—M—mN>O, (1)

where M and V are the total mass and volume of the system, and m and A are the mass
and number of constituent particles; here and in what follows, angle brackets indicate
Dirac’s bra—ket notation.

We assume that the liquid is described by the vector [¥) whose dynamics obey the
logarithmic Schrodinger equation, which reads in a position representation as

, K 1
0¥ = V24 ZVext(x,t) —bIn(|[¥[*/pc) | ¥, )

2 i

where b, p., and K = 11/ m are real-valued parameters, and Vext(x, t) is external potential.
For brevity, we assume Vext = 0.
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One can show that the inviscid flow of the logarithmic liquid (2) is observed as
four-dimensional curved spacetime by an observer who can operate only with the small-
amplitude low-momentum fluctuations in this fluid (in what follows, referred to as small
fluctuations). In other words, Lorentz symmetry is not an exact symmetry in superfluid
vacuum theory, but an induced effect and approximation. The mapping which relates
these two pictures, quantum three-dimensional Euclidean and classical four-dimensional
relativistic, is the superfluid-spacetime correspondence mentioned at the beginning of this
section; see [11] for technical details.

These small fluctuations are observed by the above-mentioned observer as relativis-
tic particles, transforming according to the irreducible representations of the Poincaré
group, for which reason this observer is referred to as the R(elativistic)-observer. The
approach thus has two types of observers: the F(ull)-observer who can “see” the vac-
uum as three-dimensional quantum fluid, and the R-observer who is unable to observe
any underlying Euclidean objects or processes, but observes four-dimensional relativistic
phenomena instead.

In particular, the matter observed by the R-observer is defined, up to an overall factor,
by the induced stress—energy tensor [10]:

(ind) 1
T;w ~ Ryv - ngR, 3)
where R, and R are, respectively, the Ricci tensor and scalar curvature derived from the
induced metric g;,, whereas the latter comes about as a result of superfluid dynamics via
the superfluid—spacetime correspondence. The right-hand side of the definition (3) depends
on a theory of gravity which one assumes; here, we adhere to the canonical GR-type one,
without higher-order Riemannian terms, topological invariants, torsion, et cetera.

Apart from explaining the occurrence of the Lorentz symmetry and relativistic phe-
nomena in nature, superfluid vacuum theory is a well-defined quantum theory (with
respect to the F-observer); therefore, it can be regarded as a theory of quantum gravity ob-
served by the R-observer. The consistent workflow is not to regard Lorentz-covariant
gravity as an effective theory for macroscopic measurements by the R-observer, but
to quantize the underlying Euclidean superfluid, and then use the above-mentioned
superfluid-spacetime correspondence as a “dictionary” to translate the outcomes into
the R-observer’s language.

In most cases, however, one does not know the wavefunction of the vacuum but
does know the energy—-momentum tensor; therefore, one must reverse-engineer it from
the energy-momentum tensor. In this reverse workflow, the inverse superfluid-spacetime
correspondence acts as a gravity quantization procedure, because it delivers a transition
from the (classical) metric to the (quantum-mechanical) wavefunction.

One of the predictions of the logarithmic SVT is the formula for the speed of light:

h
C%O) ~ %(w -D), 4)

where w is the eigenfrequency of a given quantum state of the physical vacuum (notations
can be found in Section 4 of [11]). Logarithmic nonlinearity plays a crucial role here, because
if one starts not with Equation (2), but with any other nonlinear Schrédinger equation
from the class i0;¥ + [%VZ +F (|‘I’\2)} Y = 0, then the speed of light would no longer
have a constant (independent of density) limit because function pF’(p), which occurs in
the derivation of the speed of light, is constant if and only if F(p) is a logarithm; see [11]
and Section 3 of [13] for technical details. Such a limit is necessary for the compatibility of
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SVT with relativity postulates in the small-fluctuations regime, and also for defining the
fundamental constant of the speed of light in vacuum, ¢ = ¢(q).

3. SVT Cosmology

Within the framework of superfluid vacuum theory, let us consider the global flow
of superfluid vacuum absent of any distortions, and its observational consequences for
R-observers.

In the simplest possible case, the phase of a superfluid wavefunction is a linear
function with respect to spatial coordinates and time. This corresponds to a laminar
constant-velocity flow in Euclidean space along one of directions, if viewed by F-observers.
The R-observers, however, would see a totally different picture, according to superfluid—
spacetime correspondence. They will discover themselves, by measuring the trajectories
of probe particles, as “living” in a conformally flat four-dimensional spacetime. In the
leading-order approximation with respect to I, their metric can be written as

Suv ~ Py ~ k{5 Nuvs ()

where 77, is a metric of Minkowski spacetime, and the conformal factor depends on the
superfluid wavefunction squared. For the R-observer, this metric is defined up to an
overall factor, which determines the choice of physical frame, but here we assume for
simplicity that this factor is one. The logarithmic nonlinearity is crucial for this conformal
flatness—basically, due to a constant value of the velocity ¢(g) from Equation (4).

According to the Petrov classification, the class of conformally flat spacetimes includes
all universes with acceleration, where they differ from each other by their conformal factors;
there is an approach to the study of cosmology in these coordinates alone [14-17]. For
example, de Sitter spacetime can be written in the form of (5) with

p=pas~ (T—1)% (6)

where T is conformal time (in this case coinciding with the Euclidean time of the F-observer).
In this case, R-observers find themselves inside a four-dimensional de Sitter spacetime
which expands exponentially, whereas the F-observer “sees” the homogeneous three-
dimensional superfluid with quadratically decreasing density as time passes. Note that sin-
gularity exists for the R-observer, when the metric’s conformal factor vanishes or diverges,
but not for the F-observer because the infinite value of superfluid density is disallowed by
the normalization condition (1), whereas the zero value is regular and asymptotic. This
illustrates our earlier remarks about superfluid vacuum theory being well defined as a
theory of gravity: spacetime singularities menace its small-fluctuation (relativistic) limit,
but not the full underlying theory.

From the metric (5), using definition (3) and Formula (A10) in one of the intermediate
steps, one can reverse-engineer the basic Lorentz-invariant action functional describing
the gravitational interaction experienced by R-observers; see [10,11] for details. One then
obtains the following action (in Planck units):

S; = dPx eP® R+ D(D +1)(09)? dPx/—gVy
-8

- ﬂ / d'xy *8 P2R +31(3p)% — ZP,:VO]/ )

where (9f)? = g""9,,f 9, f, R is the Ricci scalar with respect to the metric g,v, ® = In(p/pc)
is a function of superfluid background density p = |¥|2, Vi = const,and D = D —2 =2
in four dimensions. The topological term with the constant Vj can always be added to a
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scalar field action; the physical meaning of this constant is the reference value for counting
the energy of a scalar field.

One can see that the background superfluid induces, in the R-observer’s picture, not
only spacetime but also the scalar field.

4. The Transition

Model (7) can be directly applied to early-universe cosmology because it can describe
exponential expansion during the inflationary epoch, for instance of the de Sitter type (6);
it also explains the origin of the dilaton field from superfluid vacuum density.

Let us assume that the R-observer is in the middle of the inflation era, say, described
by the de Sitter universe. Then, recalling the remark after Equation (6), the F-observer
observes during the same period of time that the background density of the superfluid
vacuum decreases as time passes.

This means that at some stage of evolution, fluctuations in density (i.e., the wave-
function’s amplitude), which are always present in a quantum realm, become no longer
negligible, although still small if compared to the background value. From the viewpoint
of the R-observer, it means that the Lagrangian (7) acquires small corrections, which can
break the original symmetry (5).

We thus assume the perturbation

p=p-+dp, |6p] < p, [96p|/]0p| ~1, ®)

which means that the fluctuations Jp are much smaller than the background value g, but
derivatives d 6p and dp have the same order of magnitude. In this approximation, in the
leading order, the perturbation of model (7) yields

1 _
S = 52 /d4xw /=3[pPR +31(3p)* — 202V

= % / d4x,/—g[em¢1z + (90)? — 2v0}, )
where we denote
¢ =3!In(p/pc), o=3lp/pc = V3! (p+3p)/pc. (10)

Due to the explicitly covariant form of the action (9), values ¢ and ¢ can be interpreted as a
new set of relativistic scalar fields.

Furthermore, to extract more physical information from action (9), let us rewrite it in
the Einstein frame. Under the conformal transformation

Suv = (p/pf)izgvyv = eimq)gyyv/ (11)

and using Formula (A15) in Appendix A, action functional (9) transforms into
Sy = % /d4x\/—g[1§ — (3)2 + e V239 (30)2 — 2Vpe 2V2/39 |, (12)

where (9f)% = "0, f dyf and other checked values are computed with respect to the
Einstein-frame metric ¢

In this form, induced gravity action reveals an important feature of the model: the
kinetic couplings for scalars ¢ and ¢ have opposite signs, indicating that if one of them is
bradyonic then the other one must be tachyonic.
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The tachyon occurrence cannot be explained within the framework of the “orthodox”
theory of relativity, because it would require drastic changes to its postulates and mathe-
matical structure [18,19]. Within the SVT framework, the explanation is rather natural: at a
certain stage of evolution, when superfluid vacuum fluctuations became sufficiently large,
the original scalar field ® decayed into the quintessence ¢ and phantom ¢ fields with the
latter being tachyonic.

Whereas the original dilaton field is instrumental in the inflationary models of the
early universe, the combination of the quintessence and phantom fields, often referred to as
the quintom, can be used to describe the accelerated expansion occurring nowadays, and is
regarded as a form of “dark energy” [20-23]. Quintom cosmology is also instrumental in
explaining the Hubble tension mentioned in the Introduction, cf. [24].

One can notice the crucial difference between the conventional quintom cosmology,
where kinetic couplings of the scalars are postulated to be constant, and action (12), where
the kinetic coupling of the phantom field is a function of the quintessence field. This
coupling ensures that at large positive values of quintessence (in the F-observer’s picture,
it corresponds to the background density p becoming much larger than the critical value
0c¢), the phantom decouples from the system, thus making the latter purely quintessential.
At small values of ¢, one recovers the plain quintom cosmological model.

Another effect is the transition between the conformal and Einstein frames during
the dilaton—quintom transition. In scalar-tensor theories of gravity, the question of which
physical frame is physical is always a good one. In this model, the Einstein-frame metric
&uv minimizing action (12) is more instrumental because it explicitly takes into account
the tachyonic nature of o, whereas the conformal-frame metric g;,, minimizing action (7)
is more suitable when dealing with the dilaton-driven inflationary period. Both frames
momentarily coincide in the instant point ® = ¢ = 0 where induced spacetime becomes
empty in the R-observer picture; in the F-observer picture, this corresponds to the non-
perturbed superfluid density reaching a critical value p..

5. Quinton Model of Dark Energy

Using action (12) as a starting point, let us formulate a general model of a current-epoch
cosmology motivated by superfluid vacuum theory. Restoring the Einstein gravitational
constant and omitting the checked notations for brevity (while remembering that we are
working in a different frame from that in the inflation phase, as discussed in the previous
section), we write

5= / d'x\/—g [ (09)% + e M (30)? — Voe M — AV(¢,0)| + M), (13)

where the term S(M) = [ dx,/=gL ) is added to account for the other matter and radiation
content of the universe which was generated during the inflaton—quinton transition. In
this action, we added the scalar potential perturbation AV (¢, o), which can be chosen ad
hoc, as is common in cosmological models involving scalar fields. We also relaxed the
non-minimal coupling’s rate constant v/2/3 to A, a free scale parameter of the model. These
generalizations are expected to account for self- and mutual interactions of scalar fields and
spacetime geometry with quantum matter and radiation, which inevitably occur. For the
same reason, we also assume that Lagrangian density £, can depend, in general, not only
on the matter’s fields but also on the quinton fields ¢ and .

Note that the quintessence and phantom fields are now non-minimally coupled, for
which reason their effects cannot be separated from each other as clearly as before. In the
limit ¢ — 0, one obtains the conventional quintom cosmology action, but otherwise the
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system’s dynamics become more complicated. To begin with, scalar field equations turn
out to be significantly entangled:

e a2V _ _9Lm
O¢ 2)\e (90) 56~ " op (14)
A% oL
_ Iz A2V A TEM
Oo—Adu¢pdio+e =€ T (15)
where we denote
V = Voe M 1 AV (¢, 0). (16)

Notice that the non-minimal coupling couples the quintessence field component to the
non-quinton matter if the latter interacts with the tachyonic component, cf. the right-hand
side of Equation (15).

Furthermore, by varying the action with respect to the metric, we obtain the equations
of motion 1

M
Ry — 5gmR = (T +1,7), (17)

(M)
v

where Ty, is the stress-energy tensor of the non-quinton matter and radiation, and

1 _ 1
T}(,g) = Oupdvg — ngv(&i?)z —e ’\‘P[auaavﬂ - 28w(30)2} — 8wV (18)

is the stress—energy tensor of the quinton.
Let us resort now to a special case of the spatially flat Friedmann-Lemaitre-Robertson—
Walker (FLRW) geometry

ds2 = —dP + a()dx>, ¢ = ¢(t), o = o (t), (19)

for which equations of motion (14)—(17) reduce to the following system of ordinary differ-
ential equations:

1
H2 = ng(pM + pQ)’ (20)
. 1
¢ +3Hep — %Ae’)“l’(fz + aa‘qf = aaﬁqf‘ (22)
. A% oL
. . . )\4;7 _ /\‘PiM
F+3Ho — Apo —e Py e 5 (23)

where the dot denotes a derivative with respect to time, and densities p and pressures P
are defined via diagonal components of their respective stress—energy tensors, such that

pQ = %(e’bz —e M) 4V = %(452 —eM62) 4 Ve 2 4 AV, (24)
Py = M- M) v =l oe M) ve Ay, @)

and H = 4/a is the Hubble parameter per usual.
In this model, dark energy is attributed to the quinton,

PDE = pQ, PpE = Pg (26)
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and its equation of state is given by

oo o _ M- e M) e — v o
ppE (P2 — e Me2) + Ve 20 + AV’

in the perfect-fluid approximation dP/dp ~ P/p; an exact form of the equation of
state f(Ppg, ppe) = 0 can be obtained by substituting the found solutions (19) into
formulae (26) and eliminating the time variable from the resulting equations.

Further study of this model depends on specifying properties of the non-quinton
matter in £y and its interaction with the quinton; which is an extensive topic on its own.

6. Discussion and Conclusions

In this report, we considered the laminar flow with constant velocity of the physical
vacuum modelled by logarithmic superfluid. We demonstrated that this three-dimensional
non-relativistic quantum flow generates a four-dimensional Lorentz-symmetric “quinton”
system, which consists of the dilaton and the quintom, a combination of the quintessence
and tachyonic phantom fields, and explains a transition between them.

All three fields were shown to be projections of the Euclidean dynamical evolution of
superfluid vacuum density and its fluctuations onto the measuring apparatus of a relativis-
tic observer; their four-dimensional action functionals were not postulated but derived from
a single quantum mechanical theory. This unified cosmological model describes the transi-
tion from the inflationary period in the early universe to the contemporary accelerating
expansion of the universe, commonly referred to as the “dark energy” period.

It should be emphasized that the model (7), and even its “perturbed” generaliza-
tion (12), is obviously the simplest possible one, because it neglects any large distortions in
the laminar flow of the background superfluid (in the F-observer picture), which would
otherwise induce and introduce additional fields and terms in a Lagrangian. Nevertheless,
even such a simple kind of flow is already capable of resolving, in a unified way, at least
three important problems in the modern theory of gravity and cosmology: the emergence
of spacetimes with large-scale accelerated expansion leading to the occurrence of the infla-
tionary period in the early universe, a generation mechanism for long-range scalar fields
(which are not otherwise predicted by the Standard Model of particle physics), and the
transition from the inflationary era to the current “dark energy” epoch.

One can also recall that the logarithmic model in the weak-gravity limit with inho-
mogeneous and rotationally symmetric superfluid density (which is another limit of SVT
different from a homogeneous laminar flow) quantitatively explains the non-Keplerian
behaviour of rotating curves in galaxies: the fittings closely correspond with observational
data, even for those galaxies whose rotation velocity profiles do not have flat asymp-
totics [25]. These effects are usually attributed to the phenomenon known as “dark matter”.

To conclude, we showed that the dilaton-driven inflation and the effects attributed to
“dark energy” can be viewed as different manifestations of the same object and a kind of
matter, superfluid vacuum.
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Appendix A. Conformal Transformations, et Cetera

Here, we present various formulae useful when dealing with the induced space-
times occurring in the small-fluctuation (relativistic) limit of the logarithmic superfluid
vacuum theory.

Conformal transformations. Let us transform the metric tensor by multiplying it with a
function of coordinates () = Q(x):

ds? = O%ds?, S = ngw, g = szg’”, g =det(g) = QZDdet(gW), (A1)

where D is the number of manifold dimensions. The Christoffel symbols, assuming the
definition I'},, = 1¢*B(a,, g+ 9vgup — dp8uv ), transform as

I, =T%, + (25'@1%) — g g"‘ﬁvﬁ)ln o (A2)

the Ricci tensor, assuming the conventions Ry, = Rj,, and R";lﬁv = dgly, — 81,1”‘;5/5 +
re¢ 19, — T4, I , transforms as

po= uv VoS pu’
Ry = Ry —(DV,Vy + g00)InQ + DV, InQV, InQ — Dgyp (VIn 0)?; (A3)
the scalar curvature transforms as

R = gVVRWQ’z[R —2(D+1)0InQ - DD +1)(V 1n0)2}; (A4)

and the Einstein tensor transforms as

Cuv = G + D{vﬂlnavv InQ - V,V,In0 —|—gw[D1nQ + %(D - 1)(Van)2} } (A5)

where D = D — 2.
Conformally flat spacetime. The metric tensor for the conformally flat pseudo-Riemannian
manifold has the form

v = 0_27’];41// (A6)

where 77, is a metric of Minkowski spacetime and () is a function of coordinates.

To calculate the tensors necessary to write Einstein equations and the stress—energy
tensor for such a metric, one can use the conformal transformation formulae above,
where, assuming

Suv = Myuv, (A7)

hence Ry, = 0 and R = 0. We then immediately obtain the Ricci tensor
Ryw = (DV,Vy+guwd)inQ—DV,InQV,InQ+ Dg,(VInQ)?, (A8)

scalar curvature
R=2(D+1)0InQ+D(D+1)(VInQ)?, (A9)
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which is equal to the stress—energy tensor up to a multiplicative constant, cf. Equation (3).

The last formula can be interpreted as Einstein equations in which the function () is
postulated at the beginning; then, their solutions can always be written in the form (A7).
Scalar-tensor theories of gravity. Absent additional matter, their action is written in
the form

S— 21? /d4x\/TgA[R — B(O®)? —2W], (A11)

where we use the shorthand notation (09)? = ¢#'9,,® 9, P. Here, A = A(P) and B = B(P)
define, respectively, the non-minimal coupling between the metric and the scalar field ®
and the kinetic coupling, and W = W(®) describes the self-interaction of the scalar field in
the frame with the g, metric.

Varying this action with respect to the metric tensor, one obtains Einstein equa-
tions [26]:

A// A/ B A// 2
B+ A)V},CDVVQD - X(gHVD - VuV,)® — gWKZ + A)(BCD) - W] , (A12)
whereas the variation with respect to ® yields
Od + A,R+1 A—/+B—/ (a<1>)tl W’+£W =0 (A13)
2AB 2\ A B B A -
where prime denotes a derivative with respect to ®.
Furthermore, using the conformal transformation
gyv = Agyv/ (A14)

action (A11) can be written in the Einstein frame:

3(A)?Y, . w]’ (A15)

N T - O 2_ N
S—2K2/dxw/ g[R <B+ o >(aq>) 2

where (9®)? = "9, ® d,® and other checked values are those computed with respect
to the Einstein-frame metric §,,; we also omitted terms which can be absorbed into a
divergence and transformed into boundary terms.
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