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Abstract: The laminar constant-velocity superflow of a physical vacuum modelled by

logarithmic quantum Bose liquid is considered. We demonstrate that this three-dimensional

non-relativistic quantum flow generates a four-dimensional relativistic quinton system,

which comprises the dilaton and quintom (a combination of the quintessence and tachyonic

phantom fields); all three fields are thus shown to be projections of the dynamical evolution

of superfluid vacuum density and its fluctuations onto the measuring apparatus of a

relativistic observer. The unified model describes the transition from the inflationary period

in the early universe to the contemporary accelerating expansion of the universe, commonly

referred to as the “dark energy” period. The quintessence and tachyonic scalar components

of the derived model turn out to be non-minimally coupled, which is a hitherto unexplored

generalization of cosmological phantom models.

Keywords: quantum gravity; cosmology; superfluid vacuum; inflation; dark energy

PACS: 95.36.+x; 98.80.Bp; 04.60.Bc

1. Introduction

The period of cosmological inflation, which occurred in the early universe, was char-

acterized by the expansion of space at an exponential rate. Most popular theories of this

inflation are constructed by non-minimal coupling of the scalar field, called dilaton (inflaton,

in cosmological terminology), to Einstein gravity [1]. It was believed that the accelerated

expansion of the universe ended a long time ago and was replaced by the non-accelerated

expansion, commonly referred to as the Big Bang, during which all known elementary

particles, including baryons and cosmic microwave background photons, were formed.

However, it was discovered relatively recently that after the inflationary period has

ended, and all known elementary particles have been formed, the universe is still continuing

to expand with acceleration, only at a slower rate [2,3]. This re-acceleration period is

commonly referred to as the dark energy (DE) epoch. Following this discovery, various

theories were proposed to solve the dark energy and dark matter (DM) problems, the

ΛCDM model being probably the most popular among them.

A number of low-redshift observations later revealed that there are discrepancies

between the values of the Hubble parameter at the present time from observations of

Cepheids in the Large Magellanic Cloud, the gravitational lensing of quasar measurement,

and the value predicted by the ΛCDM model using Planck CMB data [4]. This phenomenon,

commonly referred to as Hubble tension, posed additional challenges for the ΛCDM model,

and some of them have not yet been resolved, to the best of our knowledge.

This left the question of a complete cosmological model open once again, not to

mention that the ΛCDM model alone does not explain the nature and origin of dark
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matter per se but serves as a phenomenological approach and a curve-fitting summary of

astronomical data. Another currently open question is how to explain the transition from

inflation to the DE period, because they are usually described by very different theories:

scalar–tensor gravities on the inflation side and a plethora of models on the DE side. If the

dilaton/inflaton field did exist in the early universe, then what happened to it at later times?

If it was “used up” to produce the conventional matter, then how did the fields, which

generate the “dark energy” and “dark matter” phenomena we currently observe, appear?

Is it possible to construct a cosmological model which would not only be a unified model of

inflationary and dark epochs but also originated from a theory of quantum gravity itself?

In this paper, we propose to answer these questions by using the superfluid vacuum

theory (SVT), which is the theory of physical vacuum, and a theory of quantum gravity at

the same time.

This paper is organized as follows. In the next section, we give a brief review of

the superfluid vacuum theory based on the logarithmic liquid model. In Section 3, we

consider a cosmological model which arises from the logarithmic superfluid vacuum theory,

assuming a simple superflow (laminar and constant velocity) of the physical vacuum. In

Section 4, we demonstrate a transition from the dilaton-driven inflation to the cosmological

expansion driven by one of the candidates for the dark energy, quintom. We show that even

the simplest laminar superflow generates the quinton system, which unifies the inflaton

and quintom (quintessence field coupled to tachyonic phantom) models. In Section 5,

we propose the generalized quinton model of dark energy and study its basic properties.

Conclusions are drawn in Section 6.

2. Superfluid Vacuum Theory

According to the SVT paradigm, a physical vacuum is a quantum liquid with sup-

pressed dissipative fluctuations (superfluid) “living” in three-dimensional Euclidean space,

whereas four-dimensional curved spacetime and Lorentz symmetry are induced phenom-

ena, occurring through so-called superfluid–spacetime correspondence. This theory is, in

fact, a framework for constructing models of superfluid vacuum by assuming one or the

other structure and dynamics thereof [5,6].

Logarithmic nonlinearity naturally occurs in the theory of laboratory quantum liquids,

such as Bose–Einstein condensates of alkali atoms and helium superfluid, where it provides

a more accurate fitting of experimental curves and even resolves certain puzzles [7–9]. This

motivates us to use this nonlinearity to describe the background superfluid as well, some

landmark works being [10–12].

Let us introduce the state vector |Ψ⟩ and the wavefunction in a position representation,

Ψ = Ψ(x, t) = ⟨x|Ψ⟩, which obeys the normalization condition

∫

V
|Ψ|2dV =

∫

V
ρdV = M = mN > 0, (1)

where M and V are the total mass and volume of the system, and m and N are the mass

and number of constituent particles; here and in what follows, angle brackets indicate

Dirac’s bra–ket notation.

We assume that the liquid is described by the vector |Ψ⟩ whose dynamics obey the

logarithmic Schrödinger equation, which reads in a position representation as

i∂tΨ =

[

−K
2
∇

2 +
1

h̄
Vext(x, t)− b ln(|Ψ|2/ρc)

]

Ψ, (2)

where b, ρc, and K = h̄/m are real-valued parameters, and Vext(x, t) is external potential.

For brevity, we assume Vext ≡ 0.
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One can show that the inviscid flow of the logarithmic liquid (2) is observed as

four-dimensional curved spacetime by an observer who can operate only with the small-

amplitude low-momentum fluctuations in this fluid (in what follows, referred to as small

fluctuations). In other words, Lorentz symmetry is not an exact symmetry in superfluid

vacuum theory, but an induced effect and approximation. The mapping which relates

these two pictures, quantum three-dimensional Euclidean and classical four-dimensional

relativistic, is the superfluid–spacetime correspondence mentioned at the beginning of this

section; see [11] for technical details.

These small fluctuations are observed by the above-mentioned observer as relativis-

tic particles, transforming according to the irreducible representations of the Poincaré

group, for which reason this observer is referred to as the R(elativistic)-observer. The

approach thus has two types of observers: the F(ull)-observer who can “see” the vac-

uum as three-dimensional quantum fluid, and the R-observer who is unable to observe

any underlying Euclidean objects or processes, but observes four-dimensional relativistic

phenomena instead.

In particular, the matter observed by the R-observer is defined, up to an overall factor,

by the induced stress–energy tensor [10]:

T
(ind)
µν ∼ Rµν −

1

2
gµνR, (3)

where Rµν and R are, respectively, the Ricci tensor and scalar curvature derived from the

induced metric gµν, whereas the latter comes about as a result of superfluid dynamics via

the superfluid–spacetime correspondence. The right-hand side of the definition (3) depends

on a theory of gravity which one assumes; here, we adhere to the canonical GR-type one,

without higher-order Riemannian terms, topological invariants, torsion, et cetera.

Apart from explaining the occurrence of the Lorentz symmetry and relativistic phe-

nomena in nature, superfluid vacuum theory is a well-defined quantum theory (with

respect to the F-observer); therefore, it can be regarded as a theory of quantum gravity ob-

served by the R-observer. The consistent workflow is not to regard Lorentz-covariant

gravity as an effective theory for macroscopic measurements by the R-observer, but

to quantize the underlying Euclidean superfluid, and then use the above-mentioned

superfluid–spacetime correspondence as a “dictionary” to translate the outcomes into

the R-observer’s language.

In most cases, however, one does not know the wavefunction of the vacuum but

does know the energy–momentum tensor; therefore, one must reverse-engineer it from

the energy–momentum tensor. In this reverse workflow, the inverse superfluid–spacetime

correspondence acts as a gravity quantization procedure, because it delivers a transition

from the (classical) metric to the (quantum-mechanical) wavefunction.

One of the predictions of the logarithmic SVT is the formula for the speed of light:

c2
(0) ∼

h̄

2m
(ω − b), (4)

where ω is the eigenfrequency of a given quantum state of the physical vacuum (notations

can be found in Section 4 of [11]). Logarithmic nonlinearity plays a crucial role here, because

if one starts not with Equation (2), but with any other nonlinear Schrödinger equation

from the class i∂tΨ +
[

h̄
2m∇

2 + F(|Ψ|2)
]

Ψ = 0, then the speed of light would no longer

have a constant (independent of density) limit because function ρF′(ρ), which occurs in

the derivation of the speed of light, is constant if and only if F(ρ) is a logarithm; see [11]

and Section 3 of [13] for technical details. Such a limit is necessary for the compatibility of
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SVT with relativity postulates in the small-fluctuations regime, and also for defining the

fundamental constant of the speed of light in vacuum, c ≈ c(0).

3. SVT Cosmology

Within the framework of superfluid vacuum theory, let us consider the global flow

of superfluid vacuum absent of any distortions, and its observational consequences for

R-observers.

In the simplest possible case, the phase of a superfluid wavefunction is a linear

function with respect to spatial coordinates and time. This corresponds to a laminar

constant-velocity flow in Euclidean space along one of directions, if viewed by F-observers.

The R-observers, however, would see a totally different picture, according to superfluid–

spacetime correspondence. They will discover themselves, by measuring the trajectories

of probe particles, as “living” in a conformally flat four-dimensional spacetime. In the

leading-order approximation with respect to K, their metric can be written as

gµν ∼ ρ ηµν ∼ |Ψ|2 ηµν, (5)

where ηµν is a metric of Minkowski spacetime, and the conformal factor depends on the

superfluid wavefunction squared. For the R-observer, this metric is defined up to an

overall factor, which determines the choice of physical frame, but here we assume for

simplicity that this factor is one. The logarithmic nonlinearity is crucial for this conformal

flatness—basically, due to a constant value of the velocity c(0) from Equation (4).

According to the Petrov classification, the class of conformally flat spacetimes includes

all universes with acceleration, where they differ from each other by their conformal factors;

there is an approach to the study of cosmology in these coordinates alone [14–17]. For

example, de Sitter spacetime can be written in the form of (5) with

ρ = ρdS ∼ (τ − τ0)
−2, (6)

where τ is conformal time (in this case coinciding with the Euclidean time of the F-observer).

In this case, R-observers find themselves inside a four-dimensional de Sitter spacetime

which expands exponentially, whereas the F-observer “sees” the homogeneous three-

dimensional superfluid with quadratically decreasing density as time passes. Note that sin-

gularity exists for the R-observer, when the metric’s conformal factor vanishes or diverges,

but not for the F-observer because the infinite value of superfluid density is disallowed by

the normalization condition (1), whereas the zero value is regular and asymptotic. This

illustrates our earlier remarks about superfluid vacuum theory being well defined as a

theory of gravity: spacetime singularities menace its small-fluctuation (relativistic) limit,

but not the full underlying theory.

From the metric (5), using definition (3) and Formula (A10) in one of the intermediate

steps, one can reverse-engineer the basic Lorentz-invariant action functional describing

the gravitational interaction experienced by R-observers; see [10,11] for details. One then

obtains the following action (in Planck units):

Sd =
1

2

∫

dDx
√

−g eD̃Φ

[

R + D̃(D̃ + 1)(∂Φ)2
]

−
∫

dDx
√

−gV0

=
1

2ρ2
c

∫

d4x
√

−g
[

ρ2R + 3!(∂ρ)2 − 2ρ2
c V0

]

, (7)

where (∂ f )2 ≡ gµν∂µ f ∂ν f , R is the Ricci scalar with respect to the metric gµν, Φ = ln(ρ/ρc)

is a function of superfluid background density ρ = |Ψ|2, V0 = const, and D̃ = D − 2 = 2

in four dimensions. The topological term with the constant V0 can always be added to a
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scalar field action; the physical meaning of this constant is the reference value for counting

the energy of a scalar field.

One can see that the background superfluid induces, in the R-observer’s picture, not

only spacetime but also the scalar field.

4. The Transition

Model (7) can be directly applied to early-universe cosmology because it can describe

exponential expansion during the inflationary epoch, for instance of the de Sitter type (6);

it also explains the origin of the dilaton field from superfluid vacuum density.

Let us assume that the R-observer is in the middle of the inflation era, say, described

by the de Sitter universe. Then, recalling the remark after Equation (6), the F-observer

observes during the same period of time that the background density of the superfluid

vacuum decreases as time passes.

This means that at some stage of evolution, fluctuations in density (i.e., the wave-

function’s amplitude), which are always present in a quantum realm, become no longer

negligible, although still small if compared to the background value. From the viewpoint

of the R-observer, it means that the Lagrangian (7) acquires small corrections, which can

break the original symmetry (5).

We thus assume the perturbation

ρ = ρ̄ + δρ, |δρ| ≪ ρ̄, |∂ δρ|/|∂ρ̄| ∼ 1, (8)

which means that the fluctuations δρ are much smaller than the background value ρ̄, but

derivatives ∂ δρ and ∂ρ̄ have the same order of magnitude. In this approximation, in the

leading order, the perturbation of model (7) yields

Sq =
1

2ρ2
c

∫

d4x
√

−g
[

ρ̄2R + 3!(∂ρ)2 − 2ρ2
c V0

]

=
1

2

∫

d4x
√

−g
[

e
√

2/3 φR + (∂σ)2 − 2V0

]

, (9)

where we denote

φ =
√

3! ln(ρ̄/ρc), σ =
√

3! ρ/ρc =
√

3! (ρ̄ + δρ)/ρc. (10)

Due to the explicitly covariant form of the action (9), values φ and σ can be interpreted as a

new set of relativistic scalar fields.

Furthermore, to extract more physical information from action (9), let us rewrite it in

the Einstein frame. Under the conformal transformation

gµν = (ρ̄/ρc)
−2 ǧµν = e−

√
2/3 φ ǧµν, (11)

and using Formula (A15) in Appendix A, action functional (9) transforms into

Sq =
1

2

∫

d4x
√

−ǧ
[

Ř − (∂̌φ)2 + e−
√

2/3 φ(∂̌σ)2 − 2V0e−2
√

2/3 φ
]

, (12)

where (∂̌ f )2 = ǧµν∂µ f ∂ν f and other checked values are computed with respect to the

Einstein-frame metric ǧµν.

In this form, induced gravity action reveals an important feature of the model: the

kinetic couplings for scalars φ and σ have opposite signs, indicating that if one of them is

bradyonic then the other one must be tachyonic.
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The tachyon occurrence cannot be explained within the framework of the “orthodox”

theory of relativity, because it would require drastic changes to its postulates and mathe-

matical structure [18,19]. Within the SVT framework, the explanation is rather natural: at a

certain stage of evolution, when superfluid vacuum fluctuations became sufficiently large,

the original scalar field Φ decayed into the quintessence φ and phantom σ fields with the

latter being tachyonic.

Whereas the original dilaton field is instrumental in the inflationary models of the

early universe, the combination of the quintessence and phantom fields, often referred to as

the quintom, can be used to describe the accelerated expansion occurring nowadays, and is

regarded as a form of “dark energy” [20–23]. Quintom cosmology is also instrumental in

explaining the Hubble tension mentioned in the Introduction, cf. [24].

One can notice the crucial difference between the conventional quintom cosmology,

where kinetic couplings of the scalars are postulated to be constant, and action (12), where

the kinetic coupling of the phantom field is a function of the quintessence field. This

coupling ensures that at large positive values of quintessence (in the F-observer’s picture,

it corresponds to the background density ρ̄ becoming much larger than the critical value

ρc), the phantom decouples from the system, thus making the latter purely quintessential.

At small values of φ, one recovers the plain quintom cosmological model.

Another effect is the transition between the conformal and Einstein frames during

the dilaton–quintom transition. In scalar–tensor theories of gravity, the question of which

physical frame is physical is always a good one. In this model, the Einstein-frame metric

ǧµν minimizing action (12) is more instrumental because it explicitly takes into account

the tachyonic nature of σ, whereas the conformal-frame metric gµν minimizing action (7)

is more suitable when dealing with the dilaton-driven inflationary period. Both frames

momentarily coincide in the instant point Φ = φ = 0 where induced spacetime becomes

empty in the R-observer picture; in the F-observer picture, this corresponds to the non-

perturbed superfluid density reaching a critical value ρc.

5. Quinton Model of Dark Energy

Using action (12) as a starting point, let us formulate a general model of a current-epoch

cosmology motivated by superfluid vacuum theory. Restoring the Einstein gravitational

constant and omitting the checked notations for brevity (while remembering that we are

working in a different frame from that in the inflation phase, as discussed in the previous

section), we write

S =
∫

d4x
√

−g

[

1

2κ2
R − 1

2
(∂φ)2 +

1

2
e−λφ(∂σ)2 − V0e−2λφ − ∆V(φ, σ)

]

+ S(M), (13)

where the term S(M) =
∫

d4x
√−gLM is added to account for the other matter and radiation

content of the universe which was generated during the inflaton–quinton transition. In

this action, we added the scalar potential perturbation ∆V(φ, σ), which can be chosen ad

hoc, as is common in cosmological models involving scalar fields. We also relaxed the

non-minimal coupling’s rate constant
√

2/3 to λ, a free scale parameter of the model. These

generalizations are expected to account for self- and mutual interactions of scalar fields and

spacetime geometry with quantum matter and radiation, which inevitably occur. For the

same reason, we also assume that Lagrangian density LM can depend, in general, not only

on the matter’s fields but also on the quinton fields φ and σ.

Note that the quintessence and phantom fields are now non-minimally coupled, for

which reason their effects cannot be separated from each other as clearly as before. In the

limit φ → 0, one obtains the conventional quintom cosmology action, but otherwise the
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system’s dynamics become more complicated. To begin with, scalar field equations turn

out to be significantly entangled:

□ φ − 1

2
λe−λφ(∂σ)2 − ∂V

∂φ
= −∂LM

∂φ
, (14)

□ σ − λ∂µφ ∂µσ + eλφ ∂V

∂σ
= eλφ ∂LM

∂σ
, (15)

where we denote

V = V0e−2λφ + ∆V(φ, σ). (16)

Notice that the non-minimal coupling couples the quintessence field component to the

non-quinton matter if the latter interacts with the tachyonic component, cf. the right-hand

side of Equation (15).

Furthermore, by varying the action with respect to the metric, we obtain the equations

of motion

Rµν −
1

2
gµνR = κ2

(

T
(M)
µν + T

(Q)
µν

)

, (17)

where T
(M)
µν is the stress-energy tensor of the non-quinton matter and radiation, and

T
(Q)
µν = ∂µφ ∂νφ − 1

2
gµν(∂φ)2 − e−λφ

[

∂µσ ∂νσ − 1

2
gµν(∂σ)2

]

− gµνV (18)

is the stress–energy tensor of the quinton.

Let us resort now to a special case of the spatially flat Friedmann–Lemaître–Robertson–

Walker (FLRW) geometry

ds2 = −dt2 + a2(t)dx
2, φ = φ(t), σ = σ(t), (19)

for which equations of motion (14)–(17) reduce to the following system of ordinary differ-

ential equations:

H2 =
1

3
κ2
(

ρM + ρQ

)

, (20)

Ḣ = −1

2
κ2
(

ρM + PM + ρQ + PQ

)

, (21)

φ̈ + 3Hφ̇ − 1

2
λe−λφσ̇2 +

∂V

∂φ
=

∂LM

∂φ
, (22)

σ̈ + 3Hσ̇ − λφ̇σ̇ − eλφ ∂V

∂σ
= −eλφ ∂LM

∂σ
, (23)

where the dot denotes a derivative with respect to time, and densities ρ and pressures P

are defined via diagonal components of their respective stress–energy tensors, such that

ρQ =
1

2

(

φ̇2 − e−λφσ̇2
)

+ V =
1

2

(

φ̇2 − e−λφσ̇2
)

+ V0e−2λφ + ∆V, (24)

PQ =
1

2

(

φ̇2 − e−λφσ̇2
)

− V =
1

2

(

φ̇2 − e−λφσ̇2
)

− V0e−2λφ − ∆V, (25)

and H = ȧ/a is the Hubble parameter per usual.

In this model, dark energy is attributed to the quinton,

ρDE = ρQ, PDE = PQ (26)
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and its equation of state is given by

wDE =
PDE

ρDE
=

1
2

(

φ̇2 − e−λφσ̇2
)

− V0e−2λφ − ∆V
1
2

(

φ̇2 − e−λφσ̇2
)

+ V0e−2λφ + ∆V
, (27)

in the perfect-fluid approximation ∂P/∂ρ ≈ P/ρ; an exact form of the equation of

state f (PDE, ρDE) = 0 can be obtained by substituting the found solutions (19) into

formulae (26) and eliminating the time variable from the resulting equations.

Further study of this model depends on specifying properties of the non-quinton

matter in LM and its interaction with the quinton; which is an extensive topic on its own.

6. Discussion and Conclusions

In this report, we considered the laminar flow with constant velocity of the physical

vacuum modelled by logarithmic superfluid. We demonstrated that this three-dimensional

non-relativistic quantum flow generates a four-dimensional Lorentz-symmetric “quinton”

system, which consists of the dilaton and the quintom, a combination of the quintessence

and tachyonic phantom fields, and explains a transition between them.

All three fields were shown to be projections of the Euclidean dynamical evolution of

superfluid vacuum density and its fluctuations onto the measuring apparatus of a relativis-

tic observer; their four-dimensional action functionals were not postulated but derived from

a single quantum mechanical theory. This unified cosmological model describes the transi-

tion from the inflationary period in the early universe to the contemporary accelerating

expansion of the universe, commonly referred to as the “dark energy” period.

It should be emphasized that the model (7), and even its “perturbed” generaliza-

tion (12), is obviously the simplest possible one, because it neglects any large distortions in

the laminar flow of the background superfluid (in the F-observer picture), which would

otherwise induce and introduce additional fields and terms in a Lagrangian. Nevertheless,

even such a simple kind of flow is already capable of resolving, in a unified way, at least

three important problems in the modern theory of gravity and cosmology: the emergence

of spacetimes with large-scale accelerated expansion leading to the occurrence of the infla-

tionary period in the early universe, a generation mechanism for long-range scalar fields

(which are not otherwise predicted by the Standard Model of particle physics), and the

transition from the inflationary era to the current “dark energy” epoch.

One can also recall that the logarithmic model in the weak-gravity limit with inho-

mogeneous and rotationally symmetric superfluid density (which is another limit of SVT

different from a homogeneous laminar flow) quantitatively explains the non-Keplerian

behaviour of rotating curves in galaxies: the fittings closely correspond with observational

data, even for those galaxies whose rotation velocity profiles do not have flat asymp-

totics [25]. These effects are usually attributed to the phenomenon known as “dark matter”.

To conclude, we showed that the dilaton-driven inflation and the effects attributed to

“dark energy” can be viewed as different manifestations of the same object and a kind of

matter, superfluid vacuum.
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Appendix A. Conformal Transformations, et Cetera

Here, we present various formulae useful when dealing with the induced space-

times occurring in the small-fluctuation (relativistic) limit of the logarithmic superfluid

vacuum theory.

Conformal transformations. Let us transform the metric tensor by multiplying it with a

function of coordinates Ω = Ω(x):

ds̄2 = Ω
2ds2, ḡµν = Ω

2gµν, ḡµν = Ω
−2gµν, ḡ ≡ det(ḡµν) = Ω

2Ddet(gµν), (A1)

where D is the number of manifold dimensions. The Christoffel symbols, assuming the

definition Γ
α
µν = 1

2 gαβ
(

∂µgνβ + ∂νgµβ − ∂βgµν

)

, transform as

Γ̄
α
µν = Γ

α
µν +

(

2δα
(µ∇ν) − gµνgαβ∇β

)

ln Ω; (A2)

the Ricci tensor, assuming the conventions Rµν = Rα
µαν and Rα

µβν = ∂βΓ
α
µν − ∂νΓ

α
µβ +

Γ
α
βσΓ

σ
µν − Γ

α
νσΓ

σ
βµ, transforms as

R̄µν = Rµν −
(

D̃∇µ∇ν + gµν□
)

ln Ω + D̃∇µ ln Ω∇ν ln Ω − D̃gµν(∇ ln Ω)2; (A3)

the scalar curvature transforms as

R̄ = ḡµνR̄µνΩ
−2
[

R − 2(D̃ + 1)□ ln Ω − D̃(D̃ + 1)(∇ ln Ω)2
]

; (A4)

and the Einstein tensor transforms as

Ḡµν = Gµν + D̃

{

∇µ ln Ω∇ν ln Ω −∇µ∇ν ln Ω + gµν

[

□ ln Ω +
1

2
(D̃ − 1)(∇ ln Ω)2

]}

, (A5)

where D̃ = D − 2.

Conformally flat spacetime. The metric tensor for the conformally flat pseudo-Riemannian

manifold has the form

gµν = Ω
−2ηµν, (A6)

where ηµν is a metric of Minkowski spacetime and Ω is a function of coordinates.

To calculate the tensors necessary to write Einstein equations and the stress–energy

tensor for such a metric, one can use the conformal transformation formulae above,

where, assuming

ḡµν ≡ ηµν, (A7)

hence R̄µν = 0 and R̄ = 0. We then immediately obtain the Ricci tensor

Rµν =
(

D̃∇µ∇ν + gµν□
)

ln Ω − D̃∇µ ln Ω∇ν ln Ω + D̃gµν(∇ ln Ω)2, (A8)

scalar curvature

R = 2(D̃ + 1)□ ln Ω + D̃(D̃ + 1)(∇ ln Ω)2, (A9)
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and Einstein tensor

Gµν = D̃

{

∇µ∇ν ln Ω −∇µ ln Ω∇ν ln Ω − gµν

[

□ ln Ω +
1

2
(D̃ − 1)(∇ ln Ω)2

]}

, (A10)

which is equal to the stress–energy tensor up to a multiplicative constant, cf. Equation (3).

The last formula can be interpreted as Einstein equations in which the function Ω is

postulated at the beginning; then, their solutions can always be written in the form (A7).

Scalar-tensor theories of gravity. Absent additional matter, their action is written in

the form

S =
1

2κ2

∫

d4x
√

−gA
[

R − B(∂Φ)2 − 2W
]

, (A11)

where we use the shorthand notation (∂Φ)2 = gµν∂µΦ ∂νΦ. Here, A = A(Φ) and B = B(Φ)

define, respectively, the non-minimal coupling between the metric and the scalar field Φ

and the kinetic coupling, and W = W(Φ) describes the self-interaction of the scalar field in

the frame with the gµν metric.

Varying this action with respect to the metric tensor, one obtains Einstein equa-

tions [26]:

Gµν =

(

B +
A′′

A

)

∇µΦ∇νΦ − A′

A

(

gµν□−∇µ∇ν

)

Φ − gµν

[(

B

2
+

A′′

A

)

(∂Φ)2 − W

]

, (A12)

whereas the variation with respect to Φ yields

□Φ +
A′

2AB
R +

1

2

(

A′

A
+

B′

B

)

(∂Φ)2 − 1

B

(

W ′ +
A′

A
W

)

= 0, (A13)

where prime denotes a derivative with respect to Φ.

Furthermore, using the conformal transformation

ǧµν = Agµν, (A14)

action (A11) can be written in the Einstein frame:

S =
1

2κ2

∫

d4x
√

−ǧ

[

Ř −
(

B +
3(A′)2

2A2

)

( ˇ∂Φ)2 − 2
W

A

]

, (A15)

where ( ˇ∂Φ)2 = ǧµν∂µΦ ∂νΦ and other checked values are those computed with respect

to the Einstein-frame metric ǧµν; we also omitted terms which can be absorbed into a

divergence and transformed into boundary terms.
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