
Thesis submitted for the degree of

Master of Philosophy (Mixed)

Application of Importance Sampling for

Point Source Analysis with the IceCube

Neutrino Observatory

RyanThomas Burley

February 2020

Supervisors:

Assoc. Prof. Gary Hill

Prof. Gavin Rowell

Faculty of Sciences

School of Physical Sciences

Department of Physics

The University of Adelaide



ii



Principal Superviso: Assoc. Prof. Gary Hill
Co-Supervisor: Prof. Gavin Rowell
Date of Submission: 7th February 2020



Abstract

The IceCube Neutrino Observatory observes astrophysical neutrinos produced by the
most energetic processes in the Universe. To date, the exact sources of these neutrinos,
particles with no electric charge and almost negligible mass, are still a mystery. In an
attempt to identify the sources of the highest energy neutrinos, the IceCube Collaboration
uses likelihood analysis to search for clustering of neutrino events in the sky. An import-
ant part of this analysis is knowing how often neutrinos randomly cluster on the sky to
replicate what an astrophysical neutrino source would look like. However, numerous
simulations are required to properly understand this, and hence so are excessive compu-
tational resources.

In this thesis, importance sampling is used to force rare clusters of neutrinos to occur on
simulated skies. Two methods of importance sampling have been created to force these
clusters to occur, a Gaussian weighting method and a binomial weighting method. Once
these events are clustered, an appropriate weight can be applied to the sky the cluster
is created on, and a likelihood analysis can be performed. We demonstrate how these
methods can be used to identify the frequency at which rare clusterings of neutrinos
occur, without the requirement of exhaustive computational time. We find that these rare
clusters can be forced to occur on a sky with importance sampling, as can appropriate
weights indicating the frequency the cluster would appear at a fixed point in space. How-
ever, further investigation is required to understand how to correctly apply sampling
weights to the results when we perform the likelihood analysis over a full sky.

The result of using importance sampling to identify rare clusters of neutrinos is used to
investigate the effectiveness of a new test statistic for hypothesis testing in point source

analysis. The most powerful test statistic for this analysis is the maximum likelihood, ̂ℒ.
This is obtained by maximising a likelihood function relative to the maximum number
of signal events, 𝑛̂𝑠, from some position on the sky. We construct a new statistic using a

combination of the ̂ℒ and 𝑛̂𝑠 values, which has been suggested to be a more powerful

test statistic than ̂ℒ on its own. Using distributions obtained with importance sampling,

we find that there is no evidence to indicate that a test statistic constructed using ̂ℒ and

𝑛̂𝑠 is more powerful than ̂ℒ on its own. Furthermore, we find that it simply replicates the

results of ̂ℒ by itself, due to the strong correlation between the ̂ℒ and 𝑛̂𝑠 combinations in
the null and alternate hypotheses tested.
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1 Neutrinos

Neutrinos, commonly denoted by the Greek letter 𝜈, are subatomic particles in the Stand-
ard Model of particle physics. They are almost massless and have no electric charge,
making them an ideal cosmic messenger to study the Universe at extragalactic distances.
However, due to their unique properties, they have extremely small interaction rates
and require large volumes for detection. Of particular interest are the mysterious high
energy astrophysical neutrinos, produced in some of the most energetic processes in the
Universe.

1.1 History

In 1896, Henri Becquerel discovered that uranium emitted rays similar to recently dis-
covered x-rays. This phenomenon, later named “radioactivity” by Marie Curie in 1897,
became an important focus of research in physics over the following decades. Within this
research, alpha decay and gamma decay were discovered to release particles with discrete
energies. Beta (𝛽) decay however, released electrons and positrons with a continuous
spectrum of energy. This was an issue, as it was well established that there should be
a conservation of energy and angular momentum in these radioactive decays. In 1930,
Wolfgang Pauli postulated the existence of the neutrino in response to this dilemma. [1]
The imbalance between the total energy and angular momentum of the initial nucleus
and the particles it emitted prompted Pauli to suggest another neutral particle that carried
away these unaccounted for quantities. Pauli called this invisible particle a “neutron”.
This idea was not widely accepted until Enrico Fermi included the particle in his theory of
𝛽-decay in 1934. [2]. By this point, the name “neutron” referred to the neutron we know
today when James Chadwick proved its existence in 1932. [3] As such, Fermi gave Pauli’s
invisible particle the name “neutrino”, meaning “little neutral one” in Italian. Fermi
illustrated his theory of 𝛽-decay by considering the decay of the neutron to a proton,
electron, and antineutrino.

𝑛 → 𝑝 + 𝑒− + ̄𝜈𝑒 (1.1)

Unfortunately, due to the unique properties of the neutrino and the difficulty involved in
detecting it, it was not experimentally observed until appropriate technological devel-
opments were made years later. In the 1950s, Clyde L. Cowan Jr and Frederick Reines
realised that if the theory of 𝛽-decay is correct, then atomic weapon tests should produce
massive neutrino fluxes. [4] As it would be logistically very difficult to observe the neut-
rino flux from one of these tests, they opted to use a nuclear reactor to observe the flux
instead. The electron anti-neutrinos produced in the reactor could interact with protons
in some detector to produce a neutron and a positron.

1



1 Neutrinos

̄𝜈𝑒 + 𝑝 → 𝑛 + 𝑒+ (1.2)

The positron would then undergo an annihilation when it collides with an electron to pro-
duce gamma-rays, which could then be detected using scintillators and photomultipliers.
Cowan and Reines understood that this would not be enough to solidify the neutrino’s
existence, so they decided the neutron in this reaction would have to be observed too.
This could be achieved by placing cadmium in the detector, which when hit by a neutron,
enters an excited state and decays through the emission of a photon. This process in
known as “neutron capture”.

𝑛 + 108Cd → 109Cd∗ → 109Cd + 𝛾 (1.3)

By measuring the photon from the cadmium decay 5𝜇s after measuring the characteristic
photons from the electron-positron annihilation, definitive proof for the existence of the
neutrino could be obtained. In 1956, Cowan and Reines successfully performed this
experiment by detecting an average of 3 neutrino events per hour over 1371 hours. [5]
This produced the first conclusive proof of the neutrino, for which Reines was awarded a
Nobel Prize in 1995. Unfortunately, Cowan was ineligible for the award due to his death
in 1974.

1.2 The Standard Model

Neutrinos are just one of many particles in the Standard Model of particle physics (Fig-
ure 1.1). The Universe consists of fundamental particles which are all moderated by four
fundamental forces (gravity, electromagnetic, weak, and strong). The Standard Model has
been carefully constructed throughout the 20th century, and describes the relationship
between each of these particles and all of the forces, excluding gravity.

All the matter in the Universe is made of elementary particles from one of two groups,
quarks or leptons, both of which are fermions (they have half integer spin and follow
Fermi-Dirac statistics). Within these groups there are three generations; the most stable
particles belong in the first generation, with particle instability increasing as the gener-
ation increases. For quarks, the first generation includes the up and down quark, the
second has the charm and strange quark, and the third holds the top and bottom quark.
Each quark has a color charge which can either be red, green, or blue. For leptons, the
first generation consists of the electron (𝑒) and electron neutrino (𝜈𝑒), the second has the
muon (𝜇) and the muon neutrino (𝜈𝜇), and the third holds the tau (𝜏) and the tau neutrino
(𝜈𝜏). Each of these particles have a corresponding antiparticle. These are particles with
the same mass but opposite physical charge (electric or color). This results in a total of 6
types, or 3 “flavours”, of neutrino.

The electromagnetic, strong, and weak forces are mediated by force-carrier particles
called bosons (particles with integer spin that follow Bose-Einstein statistics). Interactions
between fermions occur through the exchange of discrete amounts of energy transferred

2
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Figure 1.1: Visual depiction of the Standard Model of particle physics.

by these bosons. The electromagnetic force has infinite range and occurs through the
exchange of photons (𝛾). The strong force is only effective at subatomic levels, and is me-
diated by gluons. The weak force is carried by W and Z bosons, and is also only effective
at subatomic distances. Each of these bosons are their own antiparticle. There is also the
Higgs boson, which accompanies the Higgs mechanism, a model which describes how
the W and Z bosons have mass. This boson’s existence was confirmed in 2012 by CERN,
in which the particle was discovered to have a mass around 126 GeV/c2 [6]. The force of
gravity is notably absent here, as it is still not understood how this force fits into the Stand-
ard Model. [7] This arises from the complication of combining aspects of the quantum
world with the general theory of relativity. However, as the force of gravity is almost negli-
gible at microscopic scales, the StandardModel performs adequately without its inclusion.

In addition to the previously mentioned lack of gravity in the Standard Model, it also
fails to include many other physical phenomena and theoretical predictions. Notably, the
Standard Model predicts that neutrinos have zero mass, although neutrino oscillations
(more on this in the next section) indicate that they are in fact massive particles. Themodel
can be adjusted for this fact, but it brings further problems to the model, particularly
how their mass arises compared to the other particles. Additionally, the current model
fails to include dark matter [8] and dark energy, nor the imbalance between matter and
antimatter in the Universe [9].
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1 Neutrinos

1.3 Neutrino Physics

1.3.1 Neutrino Interactions

As neutrinos have no electric charge they do not interact through the electromagnetic
force, and as they have no color charge, they cannot interact through the strong force
either. Additionally, as they have almost no mass, the force of gravity is negligible where
neutrinos are concerned. This leaves the weak force as the only way for neutrinos to
interact, which they achieve through the exchange of W± bosons in charged current
interactions and Z0 bosons in neutral current interactions, as shown in Figure 1.2.02/02/2020 TwoDiagrams.png (1024×768)

inspirehep.net/record/1236362/files/TwoDiagrams.png 1/1

Figure 1.2: Feynman diagrams for an electron neutrino undergoing a charged current
interaction (left) and a neutral current interaction (right). [10]

When neutrinos undergo charged current (CC) interactions, the W± boson induces the
absorption of a neutrinowhich leaves the neutrino’s corresponding lepton from its fermion
generation (𝑒 → 𝜈𝑒 , 𝜇 → 𝜈𝜇 , 𝜏 → 𝜈𝜏). The W

± boson that mediates the interaction is
the opposite charge of the charged lepton involved. For example, a W+ boson would be
exchanged in an interaction with an electron, while a W− boson would be exchanged
during a positron interaction. Overall, the CC interaction involves a transfer of charge,
momentum, spin, and energy. Neutrino neutral current (NC) interactions involve the
transfer of a Z0 boson to a target particle. Here, the boson transfers energy, momentum,
and spin, while the neutrino continues with the same flavour. [11]
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1.3 Neutrino Physics

1.3.2 Neutrino Oscillation

As previously mentioned, neutrinos come in one of three flavours: electron, muon, or
tau. While neutrinos propagate through a medium, they are able to change flavour in
a process referred to as “neutrino oscillation”. The phenomenon of neutrino oscillation
was first predicted by Bruno Pontecorvo in 1957 [12], and has been confirmed in mul-
tiple experiments since, most notably by the Super-Kamiokande Observatory in 1998
[13]. This discovery is especially important as it confirms that neutrinos have a finite mass.

Neutrino flavours are understood to be the result of a superposition ofmass eigenstates, 𝜈1,
𝜈2, and 𝜈3, which all travel at different frequencies. As the neutrino propagates, the phase
of the combined wave changes and a different neutrino flavour can be observed. The
probability at which a neutrino with some flavour will be observed with another flavour
depends on the degree of mixing between the mass eigenstates, the mass difference of
the eigenstates, the energy of the neutrino, and the length it travelled. [14] An example of
how this probability changes is shown in Figure 1.3.

CHAPTER 3. VACUUM NEUTRINO OSCILLATIONS 42
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Figure 3.2: In this plot we consider an electron neutrino of 3MeV that
propagates for several kilometers. For each fixed distance, the probability
that the electron neutrino becomes a muon (or tau) neutrino in the course
of the propagation is given by the blue (or green) region. The probability
that it remains an electron neutrinos is given by the red region. The plot
emphasizes that the sum of the three probabilities is one, i.e., there is no
loss of probability.

3.2.1 Why two flavor formulae are so useful

Two flavor oscillation formulae in vacuum allow us to discuss the main facts
concerning the observed neutrino oscillations. In order to see how, recall
that: 1. electron antineutrinos are produced in nuclear fission reactors and
then detected; similarly 2. muon neutrinos are produced by charged pion
decays (either naturally or artificially) and then detected.

In both cases, we are interested in the probability of survival. Let us
consider,

|⌫ei = Uei|⌫̄ii and |⌫µi = U
⇤
µi|⌫ii (3.50)

When the distances are not too large, as quantified below, only the third neu-
trino, the one that has the larger mass difference with the other two states,
causes oscillations. The other two neutrinos mass states have effectively the
same mass. In other words, the discussion of Section 3.1.2 applies to the real
situations, due to the value of the oscillation parameters given in Table 2.1.
Let us recall the amplitudes of oscillations of interest, namely,

h⌫e|⌫e, ti =
3X

i=1

|Uei|
2
e
�iEit ⇡ e

�iE1t
h
1 � |Ue3|

2 + |Ue3|
2
e
i(E3�E1)t

i
(3.51)

where we used the above assumption, along with unitarity. The two flavor

Figure 1.3: The probability of observing a 3 MeV electron neutrino as either an electron,
muon, or tau neutrino after a given length. Blue indicates the electron neutrino is
observed as a muon neutrino, green indicates it is observed as a tau neutrino, and red
indicates it is observed with its original flavour. Note that the sum of probabilities at
any given length is always one. [14]
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1 Neutrinos

1.4 Neutrino Astronomy

An incredible amount of neutrinos arrive at Earth every second, and the energy that each
of these neutrinos have can vary over magnitudes of electron volts (eV). Unsurprisingly,
this is due to a multitude of methods responsible for the production of these particles.
Some of these neutrinos are nearly as old as the Universe, while others are produced only
fractions of a second before hitting the Earth’s surface.

1.4.1 Relic Neutrinos

Initially the Universe consisted of neutrinos, electrons, positrons, and photons, all in
thermal equilibrium. In its first few seconds of existence, the Universe’s temperature
dropped below 2.5 MeV, resulting in the decoupling of neutrinos from the rest of the
baryonic matter. These relic neutrinos remained at the same temperature as the photons
while the rest of the Universe expanded, resulting in a cosmic neutrino background (C𝜈B)
with an approximate energy range between 0.1 meV and 1 𝜇eV. When the temperature of
the Universe dropped below the temperature of the mass of the electron, electron-positron
annihilation occurred which caused an increase in the energy of the photons, resulting
in the cosmic microwave background (CMB) that we observe today. [15] As the ratio of
temperature of the C𝜈B (T𝜈) and the CMB (T𝛾) have remained the same since, we can
consider entropy to find that these temperatures are related by:

𝑇𝜈 = ( 4
11

)
1
3

𝑇𝛾 (1.4)

The recorded value of T𝛾 is 2.725 ± 0.001 K, resulting in an approximate value of T𝜈 ∼
1.945 K [16]. Due to the intense complexities of detecting neutrinos at this energy, no
relic neutrinos have been detected, or may ever be directly observed. [17] Regardless, the
detection of these neutrinos would provide a unique view into the beginning stages of
the Universe.

1.4.2 Solar Neutrinos

The Sun is essentially an enormous nuclear reactor, housing trillions of particles constantly
undergoing nuclear fusion. In turn, this produces the bulk of the neutrinos received at
Earth. The beginning of the Sun’s nuclear fusion cycle starts with the burning of hydrogen
to helium, which is possible due to the intense pressure and heat inside the star. First,
proton-proton reactions produce deuterium (𝑑), a positron, and an electron neutrino. This
process produces approximately 86% of the solar neutrinos we receive at Earth.

𝑝 + 𝑝 → 𝑑 + 𝑒+ + 𝜈𝑒 (1.5)

This deuterium reacts with another proton to produce helium-3 and a photon.

𝑑 + 𝑝 → 3He + 𝛾 (1.6)

Next, helium-3 nuclei can react with each other to yield helium-4 and protons.

6



1.4 Neutrino Astronomy

3He + 3He → 4He + 2𝑝 (1.7)

Then, this helium-4 can react with helium-3 to produce beryllium and a photon.

3He + 4He → 7Be + 𝛾 (1.8)

This beryllium can undergo electron capture, absorbing an electron which transforms
one of its protons into a neutron. This reaction produces a lithium atom and releases
an electron neutrino in the process. Neutrinos released through this process make up
approximately 14% of the solar neutrino flux at Earth.

7Be + 𝑒− → 7Li + 𝜈𝑒 (1.9)

The lithium atom can interact with a proton to produce two helium-4 nuclei, which can
continue on according to Equation 1.8.

7Li + 𝑝 → 4He + 4He (1.10)

Otherwise, the beryllium nuclei can interact with a proton to create a boron atom, while
releasing a photon.

7Be + 𝑝 → 8B + 𝛾 (1.11)

Here, the boron will undergo 𝛽+ decay, resulting in a beryllium-8 nuclei, positron, and
electron neutrino. The solar neutrino flux at Earth comprises of about 0.02% of these
neutrinos. [18]

8B → 8Be + 𝑒+ + 𝜈𝑒 (1.12)

This beryllium-8 nuclei then splits into two helium-4 nuclei. The resultant nuclei from
many of these reactions can participate in many of the other reactions listed, continuing
the cycle. The majority of the neutrinos produced leave the Sun and travel through the
solar system, resulting in a solar neutrino flux at Earth of around 7 × 1010 cm−2s−1 with
energies between 100 keV and 18 MeV [19]. Notably, each of the neutrinos produced in
the above reactions are electron neutrinos. This was important in providing evidence for
neutrino oscillations, which involved measuring solar neutrino flavour compositions at
Earth and comparing them to the expected amount of neutrinos produced in the Sun.

1.4.3 Supernova Neutrinos

A supernova is an explosion which occurs at the end of the life of particular massive
stars. During the lifetime of a star, it continually burns through its nucleic fuel, gradually
increasing the atomic number of the nuclei, until only iron remains. At this point, if the
stellar core has a mass larger than 1.44M⊙, it will collapse under its own gravitational
force. As the star collapses, deleptonization occurs in which the electrons in the star are
forced into protons, producing a burst of electron neutrinos and neutrons.
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𝑒− + 𝑝 → 𝑛 + 𝜈𝑒 (1.13)

Additional neutrinos are produced due to thermal photons producing electron-positron
pairs, which are immediately absorbed due to the intense density of matter during the
collapse. As this occurs, virtual Z bosons are exchanged which can decay into neutrino
and antineutrinos of any flavour.

𝑒− + 𝑒+ → 𝑍 → 𝜈𝛼 + ̄𝜈𝛼 (1.14)

An immense amount of neutrinos produced in these reactions are released during the
supernova. A notable example involves supernova SN 1987a, which was observed on
February 24𝑡ℎ, 1987. On this day, the Kamiokande II detector, the Irvine-Michigan-
Brookhaven (IMB) detector, and the Baksan Neutrino Observatory (BNO) detected 25
antineutrino events between them, all within 13 seconds [20, 21, 22]. Following this
detection, SN 1987a was observed in visible light. The amount of neutrinos from this
event matched the theoretical prediction that this supernova would have produced 1058

neutrinos with a total energy of 1046 J [23].

Similar to the cosmic neutrino background, the diffuse supernova neutrino background
(DSNB) is a theorised flux of neutrinos and antineutrinos caused by all past supernovae
events across the Universe. This flux has not been directly observed, but does have upper
limits based on experimental results. Many different factors and models have been used
to get an estimate for this flux, which currently has an upper limit of 1.9 cm−2s−1 [24].

1.4.4 Atmospheric and Astrophysical Neutrinos

Atmospheric and astrophysical neutrinos are produced as a result of some of the highest
energy processes in the Universe. Astrophysical neutrinos are produced at the sources of
these high energy processes and propagate astronomical distances to reach Earth. Cosmic
rays (charged particles) are also produced at these sources. When cosmic rays reach the
Earth, they interact in the atmosphere and produce a shower of particles which travel
down to the Earth’s surface. Neutrinos produced in these showers are called atmospheric
neutrinos. Both of these concepts are covered in detail in Chapter 2.

1.4.5 Cosmogenic Neutrinos

Cosmogenic neutrinos are produced due to the interactions of cosmic rays with ener-
gies greater than 100 EeV. These ultra-high energy cosmic rays (UHECR) are limited in
their travel by the Greisen-Zartsepin-Kuzmin (GZK) cut-off, where UHECR with energy
greater than 60 EeV are prone to interactions with photons from the cosmic microwave
background (CMB). [25] In this reaction, cosmic ray protons interact with CMB photons
to produce pions, 𝜋, through a delta resonance, 𝛥+, along with a proton or neutron which
continues travelling with a lower energy. A similar process occurs for UHECR nuclei
above this energy.
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𝑝 + 𝛾𝐶𝑀𝐵 → 𝛥+ → 𝑝 + 𝜋0 (1.15)

𝑝 + 𝛾𝐶𝑀𝐵 → 𝛥+ → 𝑛 + 𝜋+ (1.16)

The 𝜋+ pions then go on to decay into cosmogenic neutrinos, with energies in the range
of 100 PeV to 10 EeV.

𝜋+ → 𝜇+ + 𝜈𝜇 → 𝑒+ + 𝜈𝑒 + ̄𝜈𝜇 + 𝜈𝜇 (1.17)

To date, no neutrinos within this range have been detected. Observing these particles will
be useful for UHECR studies, as the GZK limit constrains the travel of these high energy
cosmic rays to approximately 200 Mpc before they are below the GZK energy. Therefore,
cosmogenic neutrinos are important to better understand the highest energy cosmic ray
sources within 200 Mpc.

1.5 Summary

Neutrinos have a rich but relatively recent history, with many mysteries and unanswered
questions. Their unique neutral charge and negligible mass combination make them the
ideal cosmic messengers, which can assist in understanding a multitude of processes
throughout the Universe. However, their low interaction probability make them hard
to detect, with large volumes required to see them at the highest energies. The current
advancements in observatories and particle detectors make this an exciting time for
neutrino physics, and specifically, neutrino astronomy.
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2 High Energy Astrophysics

2.1 Cosmic Rays

Charged cosmic rays are energetic protons and nuclei produced in a number of processes
throughout the Universe. These particles propagate the interstellar medium at almost
the speed of light. Many of the cosmic rays we receive at Earth are due to solar flares
and coronal mass ejections from the Sun. The origin of the highest energy cosmic rays,
however, is shrouded in mystery, although there are a number of proposed acceleration
methods and sources for these particles.

2.1.1 Production of High Energy Cosmic Rays

There are two primary models to explain the production of high energy cosmic rays:
Fermi’s original theory and diffusive shock acceleration (DSA). Fermi’s original theory
of cosmic ray acceleration describes the energy change of cosmic rays within magnetic
clouds. The magnetic field of these molecular gas clouds arises from the individual
magnetic contributions of the ions it is comprised of. In Fermi’s original theory, also
referred to as the Fermi mechanism of the 2nd order, cosmic rays undergo collisionless
scattering within these molecular clouds. That is, they don’t collide with the atoms or
ions in the cloud. In doing so, the cosmic rays exit the cloud with an energy which on
average is greater than the energy it entered with. The average fractional energy gain of
the cosmic rays depends on the angle at which the particle enters the cloud relative to the
direction of propagation of the cloud, as well as the angle it exits the cloud. As a result,
the average fractional energy gain, 𝛥𝐸/𝐸, of the particle is proportional to the square of
the ratio of the speed of the cloud to the speed of light, 𝛽, such that:

𝛥𝐸
𝐸

= 4
3

𝛽2
cloud (2.1)

The resulting energy gain of particles through this acceleration mechanism is relatively
small due to there almost being as much energy lost in these collisions as there is energy
gained. To explain high energy cosmic rays, Fermi’s original theory was adapted to
describe cosmic ray acceleration in supernova shocks. This process is known as both
diffusive shock acceleration and the Fermi mechanism of the 1st order. Diffusive shock
acceleration describes how cosmic rays can be accelerated to high energies due to passing
back and forth across the shock wave of a supernova. As the particles cross the shock
wave, they can interact with magnetised plasma much like the interactions within the
clouds of Fermi’s original theory. Following this, they can pass back through the shock
front and interact in the same way. As the particle makes this passage multiple times, it
can increase its energy exponentially. The average fractional energy gain, 𝛥𝐸/𝐸, of this
mechanism is:
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𝛥𝐸
𝐸

= 𝑉𝑆
𝑐

(2.2)

where 𝑉𝑆 is the speed of the shock front. As the particle could escape this cycle at any
given crossing, cosmic rays produced in this process span multiple orders of magnitude
in energy. Cosmic rays can also be produced in the intense magnetic fields of pulsars
[26], and in binary star systems as matter is transferred from one star to the accretion
disk of the other [27]. Additionally, it is theorised that the highest energy cosmic rays are
produced in the relativistic jets through a diffusive shock acceleration process powered
by super-massive black holes at the centre of active galactic nuclei (AGN) [28].

2.1.2 Energy Spectrum

The cosmic ray energy spectrum spans multiple orders of magnitude in electron volts
and has an interesting but not well understood structure. Multiple experiments currently
observe the highest energy cosmic rays, and have already documented much of their
extensive energy range. A graph showing recent high energy cosmic ray flux results from
assorted experiments is show in Figure 2.1.

Rapporteur: Cosmic Ray Indirect Frank G. Schröder

Figure 1: Energy spectrum of high-energy cosmic rays obtained from air-shower measurements [1, 2, 3, 4, 5,
6, 7, 8, 9, 10]. Different measurement techniques are used by the experiments, and systematic uncertainties
have been investigated in varying detail. The effect of an uncertainty of the absolute energy scale is shown
exemplary for the Pierre Auger Observatory [11].

2. Energy Spectrum

Many collaborations provided new [2, 5, 7] or updated measurements on the cosmic-ray energy
spectrum [8, 9, 10]. In several cases, the energy range was extended towards lower energies by
dedicated analysis methods, and the quality of the measurement improved, e.g., by accumulating
additional statistics and by a thorough study of systematic uncertainties. Naturally, the spectra have
different quality, reaching from a simple proof-of-principle that an experiment works as expected,
to hybrid measurements featuring low systematic uncertainties. In particular, hybrid measurements
using fluorescence telescope have the advantage that the absolute energy scale relies on external
calibration measurements and features minimal dependence on hadronic interaction models. In
future, also radio measurements may provide an independent calibration of the absolute scale [12,
13].

Figure 1 shows energy spectra presented in the cosmic-ray indirect session and a selection of
spectra published earlier since not all experiments provided updates at this ICRC. Generally, the
spectra are in agreement with each other when taking into account statistical, systematic, and scale
uncertainties. Only at the very highest energies above the cut-off, there is some tension between
the flux measured by Telescope Array and the Pierre Auger Observatory that can only partly be
explained by the observation of different parts of the sky [14]. It also remains open to what extent
the cut-off is due to the GZK effect, i.e., energy-loss due to interactions of protons and nuclei with

2

Figure 2.1: Energy spectra of high-energy cosmic rays frommultiple experiments around
the world. All measurements were obtained from cosmic ray air shower observations.
[29]

It can be seen from Figure 2.1 that there are notable changes in the slope at energies of
approximately 4 × 1015 eV, 1 × 1017 eV, and 1 × 1019 eV. These regions are referred to as
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the “first knee”, the “second knee”, and the “ankle”, respectively. The presence of the
first knee has been known for many years and is thought to occur due to the maximum
energy that supernova remnants, within our galaxy, can accelerate cosmic rays to. [30] The
energy of the cosmic rays either side of this region can then be explained by considering
magnetised winds, or similar extra acceleration processes, influencing cosmic rays when
they exit supernova remnants. The second knee was identified much more recently and
there are no clear theories on the cause of this feature. [31] The ankle has also been
known about for years, and is proposed to be due to a purely extragalactic component,
meaning that any cosmic ray above this energy is produced outside of our galaxy. [32]
The spectrum then cuts off due to the GZK limit involving cosmic ray interactions with
the cosmic microwave background, as described in Section 1.4.5.

2.2 Neutrinos

2.2.1 Astrophysical Neutrinos

The origin of the highest energy cosmic rays can be quite difficult to trace due to ex-
tragalactic magnetic fields altering their paths. However, neutrinos produced at cosmic
ray production sites can assist in understanding the mysterious processes these particles
are created in. When these cosmic rays are released, they can interact with other cosmic
rays, atomic nuclei, or photons, and result in the production of neutrinos. There are two
main reactions for neutrino production, hadronic collisions and pion photo-production.
In hadronic collisions, protons collide with other protons to create charged or neutral
pions. Each of these pions are produced with equal probability.

𝑝 + 𝑝 → 𝜋± (2.3)

𝑝 + 𝑝 → 𝜋0 (2.4)

These charged pions then decay to a chargedmuon and neutrino, with the muon decaying
to its respective electron or positron and two neutrinos.

𝜋+ → 𝜇+ + 𝜈𝜇 → 𝑒+ + 𝜈𝑒 + ̄𝜈𝜇 + 𝜈𝜇 (2.5)

𝜋− → 𝜇− + ̄𝜈𝜇 → 𝑒− + ̄𝜈𝑒 + 𝜈𝜇 + ̄𝜈𝜇 (2.6)

The neutral pion decays into two photons, each with approximately the same energy.

𝜋0 → 𝛾 + 𝛾 (2.7)

In pion photo-production, a proton collides with a photon to produce either a proton and
neutral pion, or a neutron and positively charged pion.

𝑝 + 𝛾 → 𝑝 + 𝜋0 (2.8)

𝑝 + 𝛾 → 𝑛 + 𝜋+ (2.9)
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The pions then decay along the same chain as described for hadronic collisions. [33]
Together, the hadronic and pion photo-production collisions produce multiple neutrinos
that can be detected at the IceCube Neutrino Observatory, which is discussed in great
detail in Chapter 3.

2.2.2 Atmospheric Neutrinos

When a cosmic ray penetrates the Earth’s atmosphere, it can interact with an air molecule
to produce a shower of particles. This interaction typically occurs around 15 kilometres
above the Earth’s surface, and results in the production of numerous particles which can
be broken into three components: muonic, electromagnetic, and hadronic, as illustrated
in Figure 2.2. This shower of particles is referred to as an extensive air shower (EAS),
and follows a conical shape as particles are gradually produced and travel towards the
Earth’s surface. [34]

2. KCDC in a Nutshell
The KASCADE/KASCADE-Grande experiment was a large-area detector for the measurement
of cosmic ray air showers financed by taxes. The aim of KCDC is the installation and
establishment of a public data centre for high-energy astroparticle physics. In the research
field of astroparticle physics, such a data release is a novelty, whereas the data publication in
astronomy has been established for a long time. Therefore, there are no completed concepts,
how the data can be treated and processed so that they are reasonably usable outside the
collaboration. The first goal of KCDC is to make the data from the KASCADE experiment
available to the community.
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Figure 2. Photograph of the KASCADE experiment (left panel); Schematic view of an
extensive air shower (EAS), where KASCADE is measuring the hadronic, muonic, and electron
components (right panel).

A concept for this kind of data centre (software and hardware) is meanwhile developed,
implemented, and already released as a public beta version to external users. However, the
project faces thereby still open questions, e.g. how to ensure a consistent calibration, how to
deal with data filtering and how to provide the data in a portable format as well as how a
sustainable storage solution can be implemented. In addition, access rights and license policy
play a non-negligible role and are considered in details. Readers are invited to visit KCDC under
https://kcdc.ikp.kit.edu.

Already with the first release, KCDC provides e↵orts to fulfill following three basic
requirements:

• KCDC as data provider: There is free and unlimited open access to KASCADE cosmic
ray data, where a selection of fully calibrated and reconstructed quantities per individual
air shower is provided. The access has to rely on a reliable data source with a guaranteed
data quality.

• KCDC as information platform: For a meaningful usage of KCDC, a detailed
experiment description as well as su�cient meta information on the provided data is needed
for any kind of data analysis. This is accompanied by a reasonable description of the physics
background as well as tutorials, which are focused on a level for teachers and pupils (in the
present version of KCDC the tutorials are provided in German, only).

• KCDC as long-term digital data archive: To constitute a sustainable piece of work,
KCDC serves also as archive of software and data for the collaboration as well as for the
public.

Figure 2.2: Diagram showing the three components (muonic, electromagnetic, hadronic)
of secondary particles produced due to the interaction of a cosmic ray in the Earth’s
atmosphere. [35]

The muonic component consists of neutrinos and muons that are produced by the decay
of charged kaons and pions created by the initial collision of the cosmic ray. Charged
kaons can either decay to their corresponding charged muon and a muon neutrino, or to
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a corresponding charged pion and a neutral pion.

𝐾+ → 𝜇+ + 𝜈𝜇 (2.10)

𝐾− → 𝜇− + ̄𝜈𝜇 (2.11)

𝐾± → 𝜋± + 𝜋0 (2.12)

These pions andmuons can then decay in the same processes as described in Equations 2.5
and 2.6. The neutrinos produced here are the atmospheric neutrinos, and are important
to understand for experiments attempting to detect astrophysical neutrinos. This concept
will be expanded on further in Chapter 3.

The electromagnetic component of these air showers is due to the interactions of electrons,
positrons, and photons. The photons, produced by the decay of neutral pions, can interact
with atomic matter through pair production, where the photon’s energy is converted into
an electron-positron pair. However, this only occurs if the energy of the photon is greater
than the rest mass energy of an electron/positron, 1.022 MeV.

𝛾 → 𝑒− + 𝑒+ (2.13)

These electrons and positrons, as well as the electrons and positrons produced in the
initial muon decays, can collide with their corresponding antiparticle to cause an electron-
positron annihilation where two photons with equal energy are produced.

𝑒− + 𝑒+ → 𝛾 + 𝛾 (2.14)

The resulting particles, in both pair production and electron-positron annihilation, go on
to continuously repeat these processes until the relevant particles are below the produc-
tion threshold energy.

The hadronic component is due to the primary cosmic ray producing other hadrons,
such as protons and neutrons, with lower energy. These hadrons can produce their own
particle showers and electromagnetic cascades, continuing on the cycle of the initial
cosmic ray. Any of the particles produced due to the initial cosmic ray’s interaction are
referred to as secondary particles.

2.3 Gamma Rays

Gamma rays (𝛾-rays) are another particle which can help us understand the highest
energy processes in the Universe. As explained in Section 2.2.1, high energy photons
are produced in hadronic and pion photo-production collisions of cosmic rays at their
sources. The photons produced in these reactions are called hadronic 𝛾-rays. There is
another category for these particles, called leptonic 𝛾-rays, which are produced when
relativistic electrons undergo leptonic processes. Namely, these processes are inverse
Compton scattering, synchrotron radiation, and bremsstrahlung radiation.

15



2 High Energy Astrophysics

Inverse Compton Scattering

Inverse Compton scattering (ICS) is the process in which relativistic electrons scatter off
low energy photons, boosting the photon’s energy and reducing the electron’s energy.
The rate of electron energy loss can be found by considering a Lorentz transformation for
the scattering of the photon off the electron in both the laboratory frame and the electron’s
rest frame. The resulting relation for the electron energy loss rate is:

𝑑𝐸𝑒
𝑑𝑡

∼ −4
3

𝑈𝑟𝑎𝑑𝜎𝑇𝑐𝛾2 (2.15)

Here, 𝑈𝑟𝑎𝑑 is the radiation energy density of the photons, 𝜎𝑇 is the Thomson cross section
(the cross section for the elastic scattering of radiation from a free electron), and 𝛾 is the
Lorentz factor.

Synchrotron Radiation

Synchrotron radiation is produced by the spiralling of relativistic electrons as they propag-
ate through magnetic fields while under the effects of relativistic beaming. To obtain a
relation for the rate at which electrons lose energy due to this process, both the relativistic
beaming and a Lorentz transformation between the laboratory frame and the rest frame
of the electron must be taken into account. This results in an electron energy loss rate of:

𝑑𝐸𝑒
𝑑𝑡

∼ −4
3

𝜎𝑇𝑐𝑈𝐵𝛽2𝛾2 (2.16)

Where 𝑈𝐵 denotes the energy density of the magnetic field and 𝛽 is the velocity of the
electron with respect to the speed of light. The synchrotron radiation emitted can range
in energy over the entire electromagnetic spectrum, and its detection helps us understand
the magnetic fields in different interstellar environments.

Bremsstrahlung Radiation

Bremsstrahlung radiation is the radiation produced when a charged particle is accelerated
by passing through the electric and magnetic fields surrounding a nucleus. Cosmic ray
electrons can produce relativistic bremsstrahlung radiation in the form of 𝛾-rays as they
undergo collisions with the constituent particles of interstellar gas. The relationship for
energy loss rate of an electron per unit distance travelled due to this process is:

𝑑𝐸𝑒
𝑑𝑙

= −𝐸𝑒
𝑛𝑧𝑍(𝑍 + 1.3)𝑒6

16𝜋3ℏ𝜖3
0𝑐5𝑚2

𝑒
[𝑙𝑛 (183

𝑍 1
3

) + 1
8

] (2.17)

Here,𝑍denotes the atomic number of the scattering atom considered, while𝑛𝑧 is that same
atom’s number density and 𝑚𝑒 is the mass of an electron. Measuring bremsstrahlung,
while considering the effect of different molecules on its production, helps us to under-
stand the composition of the elements within our galaxy.
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2.4 Detection Methods

The detection of the aforementioned particles can be complex and quite often requires large
areas or volumes to view them at their highest energies. Currently, multiple experiments
around the globe utilise different methods to observe cosmic rays, neutrinos, and 𝛾-rays.
Three types of detection methods frequently used to detect these particles are Cherenkov
detectors, imaging atmospheric Cherenkov telescopes, and scintillation detectors.

2.4.1 Cherenkov Detectors

Cherenkov detectors rely on a specific type of electromagnetic radiation produced by
charged particles as they propagate through the detector, and are the primary type of
instrument used for neutrino detection. This radiation is Cherenkov radiation, and is
caused when a charged particle moves faster than the phase velocity of light in the
medium it is traversing. As the charged particle passes through the medium, it excites the
atoms and molecules surrounding it. These atoms and molecules then instantly return to
their ground state through the emission of a photon. These photons are the Cherenkov
radiation, which are in the visible light range of the electromagnetic spectrum and peak
at a characteristic blue colour. The angle at which Cherenkov radiation is emitted due to
a moving charge can be easily found by considering the geometry of this situation. This
angle is given by:

cos𝜃 = 1
𝑛𝛽

(2.18)

Here, 𝜃 is the emission angle, 𝑛 is the refractive index of the medium, and 𝛽 is the ratio of
the speed of the particle to the speed of light. This is also shown graphically in Figure 2.3.
These detectors are typically volumetric and consist of a material which allows minimal
absorption of the visible light that is Cherenkov radiation. The detector also consists of, or
is surrounded by, photomultipliers that receive the radiation. The information from the
photomultipliers can be pieced together to find the direction and energy of the original
particle. This type of detector is typically used for neutrino detection. Notable examples
of neutrino Cherenkov detectors include the IceCube Neutrino Observatory (discussed
in detail in Chapter 3), Kamiokande II [37], and the Sudbury Neutrino Observatory [38].

2.4.2 Imaging Atmospheric Cherenkov Telescopes

Imaging atmospheric Cherenkov telescopes (IACTs) also use Cherenkov radiation to
detect high energy particles, and are primarily used for high energy 𝛾-ray detection.
When high energy 𝛾-rays interact in the Earth’s atmosphere, they undergo pair produc-
tion resulting in an electron and positron, which begins an electromagnetic cascade as
described in Section 2.2.2. The electrons and positrons in the cascade travel at almost
the speed of light and produce Cherenkov radiation. These resulting photons can be
seen by the IACTs on the ground, which typically consist of mirrors with large surface
areas that reflect the light onto a photomultiplier. As the base of the air shower for these
high energy 𝛾-rays can stretch over quite a large area, extending up to one kilometre in
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Figure 2.3: Graphical representation of the angle of Cherenkov emission, 𝜃, as a particle (red
arrow) moves faster than the phase velocity of light in the medium it is traversing. [36]

radius, multiple separate IACTs can be used to view the same air shower. Each individual
IACT views some of the air shower, and together the data can be used to reconstruct
the original energy and direction of the 𝛾-ray. Many IACTs are currently used for high
energy 𝛾-ray astronomy, including H.E.S.S. [39], MAGIC [40], and VERITAS [41], while
the next generation 𝛾-ray detector, the Cherenkov Telescope Array (CTA), is currently
under construction [42].

2.4.3 Scintillation and Fluorescence Detectors

For high energy cosmic ray observatories, a combination of scintillation detectors and
fluorescence detectors are commonly used. Both of these detectors work concurrently
to measure an extensive air shower and determine the nature of the original cosmic
ray. These air showers also spread over a large area on the Earth’s surface, so multiple
scintillation detectors can be spread out to detect the secondary particles produced. A
scintillator contains a luminescent material, which when struck by an incoming particle,
can absorb its energy, and then return to ground state by emitting this energy as a photon.
The scintillation detector also contains a photomultiplier, which detects the resulting light.
Multiple scintillation detectors like this can be spread over some area to gather as much
information about the air shower as possible. [43] This set-up is often accompanied by
fluorescence detectors. As the electrons and positrons produced in these air showers
propagate, they undergo inelastic collisions with nitrogen molecules in the air, causing
their excitation. As a result, these molecules emit photons in the range between 290 and
430 nm to return to ground state, producing ultraviolet fluorescent light. [44] As such,
telescopes that watch for this characteristic light can track the evolution of the air shower

18



2.5 Summary

as it moves through the atmosphere. Additionally, having more than one of these fluores-
cence telescopes observing the same air shower can greatly improve the reconstruction of
the cosmic ray’s arrival direction. Current experiments that implement these methods to
detect ultra high energy cosmic rays include the Pierre Auger Observatory [45] and the
Telescope Array Project [46].

2.5 Summary

The Earth is continuously bombarded by high energy cosmic rays, neutrinos, and 𝛾-rays
created in assorted processes throughout the Universe. Although clear sources for the
majority of these particles are not currently known, understanding the processes that
create them and the relationships between the different particles can help us narrow down
their origins. Additionally, the use of multiple telescopes and experiments around the
world to detect these particles can assist in identifying their sources. Observing these
particles is especially vital to find themysterious ultra high energy cosmic ray acceleration
sites in the Universe.
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3 The IceCube Neutrino Observatory

The IceCube Neutrino Observatory is a cubic kilometre Cherenkov telescope located
within the ice at the Admunsen-Scott South Pole Station, Antarctica. The primary goal of
the IceCube Neutrino Observatory, colloquially referred to as IceCube, is to observe astro-
physical neutrinos produced in the most energetic processes in the Universe. Currently,
52 institutions over 12 countries make up the IceCube Collaboration [47], all of which
work on the scientific goals, design, and construction of the detector.

3.1 Design

The forefather for the IceCube Neutrino Observatory was the Antarctic Muon and Neut-
rino Detector Array (AMANDA), which was located at the same location. This detector
collected data between 1997 and 2007, and provided the important result that the glacial
ice of Antarctica could facilitate a Cherenkov detector suitable for neutrino detection. [48]
IceCube instruments a cubic kilometre of this ice for Cherenkov detection. Construction
on the detector began in 2004, and ran over seven austral summers until completed in 2010.
The major component of this construction involved deployment of the “strings” which
hold the digital optical modules (DOMs). Each DOM contains a ten-inch photomultiplier
tube for Cherenkov radiation collection, which views this light with 2 nanosecond time
resolution. They also contain other related electronics and calibration devices, while the
string itself sends the information from each DOM to the IceCube laboratory located
on top of the detector. To deploy a string, which holds 60 DOMs each separated by 17
metres, a hot water drill was used to melt a hole in the ice down to a depth of 2450
metres. The string is then quickly deployed down the borehole such that the DOMs
are positioned between a depth of 1450 and 2450 metres, and the water is left to freeze
over the string. This process was performed for all 86 strings over a hexagonal grid such
that each string was separated by 125 metres. The finished product results in the cubic
kilometre detector that is IceCube, as shown in Figure 3.1. The reason for the depth of
the IceCube detector is to significantly reduce the background signal. Specifically, at this
depth, only the interactions of neutrinos and muons are seen, as other charged particles
cannot penetrate this distance from any direction around IceCube. The majority of the
muons observed are due to cosmic ray interactions in the atmosphere. [49]

IceTop

IceTop is a cosmic ray detector array which spreads across a square kilometre over the top
of the IceCube Neutrino Observatory. This surface array consists of 80 stations separated
by a mean distance of 125 metres. Each of these stations contains two tanks filled with
clear ice, separated by 10 metres, and both contain two regular DOMs. These DOMs
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3 The IceCube Neutrino Observatory

Figure 3.1:Ascale diagram of the IceCubeNeutrinoObservatory. The locations of the IceCube
Laboratory, IceTop, and the DeepCore array are also shown. The coloured string locations at
the surface of the detetor indicate the summer season in which the strings were deployed.
[49]

detect the Cherenkov radiation produced by the secondary particles in a cosmic ray’s
extensive air shower. Measuring these cosmic ray air showers above the detector can
also act as a veto system for IceCube’s operations. If an air shower is detected coincident
with a neutrino detection, it can be identified as an atmospheric neutrino rather than an
astrophysical neutrino. IceTop allows detection of cosmic rays between the energies of
1014 and 1017 eV, which covers both the first and second knee of the cosmic ray energy
spectrum. [50]

DeepCore

DeepCore is a dense region of instrumentation at the centre of the IceCube Neutrino
Observatory designed to detect neutrinos at energies as low as 10 GeV, an order of
magnitude less than the detectable energy of the rest of the detector. An additional 8
strings with multiple DOMs are used in this configuration. Of these strings, six are
positioned around a central IceCube string and use DOMs containing photomultiplier
tubes with a higher quantum efficiency than that of the regular IceCube DOMs. The six
strings have 50 of these high quantum efficiency DOMs (HQE-DOMs) separated vertically
by 7 metres between a depth of 2100 and 2450 metres. The reason for this depth is a
highly absorbing and scattering dust layer located between 2000 and 2100 metres under
the Antarctic ice sheet. Directly above this dust layer, each string holds another 10 of
these HQE-DOMs, separated by a spacing of 10 metres. This region above the dust layer
acts as an extra veto region for the DeepCore instrumentation below it. The remaining
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3.1 Design

two strings are comprised of a mix of both DOMs and HQE-DOMs, which are similarly
positioned above and below the dust layer. These strings, named the DeepCore Infill
strings, are horizontally separated by 42 metres. DeepCore also utilises 7 of the regular
IceCube strings, totalling 15 strings. The DeepCore region of the detector is primarily used
to measure atmospheric neutrino oscillations and is used to search for sterile neutrinos, a
hypothesised type of neutrino which only interacts via the gravitational force. [51]

IceCube Upgrade and IceCube-Gen2

The IceCube Upgrade is the planned addition of 7 strings to the IceCube Neutrino Ob-
servatory over the 2022/2023 Antarctic Summer season. There will be seven hundred
different optical sensors spread over these strings, which will be concentrated within
the DeepCore array with a horizontal string spacing of 20 metres and vertical sensor
spacing of 3 metres, as shown in Figure 3.2. Two new types of DOMs will be used in this
region, the Multi-PMT Digital Optical Module (mDOM) and the Dual optical sensors in
an Ellipsoid Glass for Gen2 (D-Egg). Both of these optical modules have improved photon
detection efficiencies and advanced calibration capabilities. Also on these strings will be
a number of devices used for updated calibration of the Antarctic ice. This region of the
detector will primarily be used for advanced neutrino oscillation studies and investigating
the neutrino mass hierarchy. [52]

IceCube Upgrade Aya Ishihara

1. What’s the IceCube Upgrade?

The IceCube Neutrino Observatory was completed at the South Pole in 2011. IceCube has
led to many new findings in high-energy astrophysics, including the discovery of an astrophysical
neutrino flux and the temporal and directional correlation of neutrinos with a flaring blazar [1].
It has defined a number of upper-limits on various models of the sources of ultra-high energy
cosmic rays, as well as measurements on the fundamental high-energy particle interactions, such
as neutrino cross sections in the TeV region [2].

IceCube uses glacial ice as a Cherenkov medium for the detection of secondary charged par-
ticles produced by neutrino interactions with the Earth. The distribution of Cherenkov light mea-
sured with a 1 km3 array of 5160 optical sensors determines the energy, direction, and flavor of
incoming neutrinos. Although the South Pole is considered one of the world’s most harsh envi-
ronments, the glacial ice ⇠2 km below the surface is a dark and solid environment with stable
temperature/pressure profiles ideal for noise sensitive optical sensors. IceCube has recorded de-
tector uptime of more than 98% in the last several years. While it has been 15 years since the
first installation of the sensors, an extremely low failure rate of the optical modules has also been
observed, demonstrating that the South Pole is a suitable location for neutrino observations.

The IceCube Upgrade will consist of seven new columns of approximately 700 optical sensors,
called strings, embedded near the bottom center of the existing IceCube Neutrino Observatory. As
illustrated in Fig. 1, the "Upgrade" consists of a 20 m (horizontal) ⇥ 3 m (vertical) grid of photon

Figure 1: The Upgrade array geometry. Red marks on the left panel shows the layout of the 7 IceCube
Upgrade strings with the IceCube high-energy array and its sub-array DeepCore. The right panel shows
the depth of sensors/devices for the IceCube Upgrade array (physics region). The different colors represent
different optical modules and calibration devices. The Upgrade array extends to shallower and deeper ice
regions filled with veto sensors and calibration devices (special calibration regions).

2

Figure 3.2: The left diagram shows the geometry of the IceCube Upgrade’s position within the
DeepCore array and the IceCube detector itself. The right diagram shows the position of the
multiple assorted types of sensors being included in the IceCube Upgrade strings. [52]

The IceCube Upgrade, and hence the deployment of these prototype DOMs, is the first
step towards the planned IceCube-Gen2 upgrade. This upgrade involves increasing the
volume of the detector from one cubic kilometre to eight cubic kilometres. New strings
for this configuration will be deployed with a horizontal spacing of 250 metres, rather
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3 The IceCube Neutrino Observatory

than 125 metres, to reduce costs for the upgrade. This large increase in instrumented
volume will lead to a magnitude increase in neutrino detection rates. [53]

3.2 Detection

As mentioned in Chapter 2.4, Cherenkov detectors such as the IceCube Neutrino Obser-
vatory do not detect neutrinos directly, but rather the Cherenkov radiation produced
by the particles the neutrinos create when they interact. A detection of a neutrino in
IceCube is classified as an “event”, and the properties of this event depend on the flavour
of the neutrino and how it interacts. There are three classifications of events that IceCube
observes. The first is the “track” event, which occurs if a muon neutrino interacts via a
charged current interaction inside or just before entering the detector. The charged current
interaction produces a muon which travels through the detector, creating a track-like path,
as shown in Figure 3.7. Events of this signature have approximately 1º of angular resolu-
tion. The second type of event is a “cascade” event. This occurs when an electron neutrino
undergoes a charged current interaction, or if any flavour of neutrino undergoes a neutral
current interaction. The result is a shower of particles with each particle producing its
own Cherenkov radiation, also in Figure 3.7. As the cascade event looks the same for both
current interactions, it is not possible to resolve the flavour of neutrino which caused the
signal. Additionally, these events have a much worse angular resolution, between 10º
and 15º, than the track events due to their geometry. The final type of event is a “double-
bang” event, also depicted in Figure 3.7, which occurs when a tau neutrino undergoes a
charged current interaction within the detector. Here, a tau particle is produced along
with a hadronic shower. The tau particle has an extremely short lifetime of 2.9 × 10−13

s, and travels a short distance before decaying and creating a second hadronic shower,
hence the double-bang. Due to the proximity of the two showers, this type of event is
almost indistinguishable from a cascade event, and so far no double-bang signatures have
definitively been seen in IceCube. [54]

Figure 3.3: Simulations for the three types of event signatures seen in IceCube: cascade (left),
track (middle), and double-bang (right). The dot in each figure represent a DOM in the de-
tector, while the coloured sphere sizes are proportional to the amount of Cherenkov radiation
received by the respective DOM. The colour indicates the arrival time of the radiation, red
for an earlier time through to blue for a later time. [55]
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3.3 Results

3.3 Results

Since IceCube began taking data in 2005 with the deployment of the first string, there
has been a variety of science performed across high energy astrophysics and neutrino
physics. The first noteworthy example is the observation of an astrophysical neutrino flux,
announced three years into IceCube’s full-volume operations. Since then, a through-going
astrophysical muon neutrino flux has also been identified. Another important result is
the recent localisation of high energy neutrinos to blazar TXS 056+0506, making it the
first known likely source of ultra high energy cosmic rays.

3.3.1 Evidence for High Energy Extraterrestrial Neutrinos

In 2013, the IceCube Collaboration reported the detection of two neutrinos with PeV
energies [56]. Following this announcement, an improved sensitivity full sky search for
high energy neutrinos was performed using the data from IceCube’s first two years of
operations. This analysis identified a further 26 high energy neutrino events, account-
ing formore neutrinos than expected from a purely atmospheric neutrino background [57].

In this analysis, the atmospheric neutrino background-only flux was constructed by
considering a model of atmospheric neutrinos produced relative to the best estimates of
the cosmic ray energy spectrum at the PeV energy range, as well as neutrinos produced
due to a charm component. This charm component refers to the neutrinos produced due
to the “prompt” decay of charmed mesons created in cosmic ray air showers. The flux for
this type of neutrino production is much less steep than that due to regular atmospheric
neutrino production, sometimes referred to as the “conventional” flux, but can become the
dominant source of atmospheric neutrino flux depending on the energy being considered
[58]. In total over these first two years of operations, there was an expected atmospheric
neutrino and muon contribution of 10.6+5.0

−3.6 events between the energies of 30 and 1200
TeV. The 28 high energy neutrino events identified during this time had a significance of
3.6𝜎 and 4.5𝜎, relative to two different models for the atmospheric neutrino flux due to
the charm neutrino production. Under both models, more neutrinos were identified than
expected due to a purely atmospheric background, and as such some of these must have
an astrophysical origin. A likelihood analysis (more on likelihood analysis in Section
4.1) was performed in an attempt to identify the sources of these neutrinos, however no
significant clustering hence no sources were found. The positions of these 28 events in
the sky are shown in Figure 3.4.

These 28 events are also the first sample of high energy starting events (HESE) in IceCube.
For an event to be classified in the HESE selection it must obey two requirements. First,
the event must begin within the fiducial volume of the detector, which is surrounded
by a veto region of DOMs, as shown in Figure 3.5. Specifically, no more than 2 of the
first 250 observed photoelectrons (the electrons produced when the Cherenkov radiation
hits a photomultiplier) can appear in the veto region. Secondly, there must be a large
amount of light deposited within the detector to combat the background due to muons.
The amount of photoelectrons produced must be more than 6000. The HESE selection
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6

FIG. 5. Skymap in equatorial coordinates of the Test Statistic
value (TS) from the maximum likelihood point-source anal-
ysis. The most significant cluster consists of five events—all
showers and including the second-highest energy event in the
sample—with a final significance of 8%. This is not su�cient
to identify any neutrino sources from the clustering study.
The galactic plane is shown as a gray line with the galactic
center denoted as a filled gray square. Best-fit locations of
individual events (listed in Table I) are indicated with verti-
cal crosses (+) for showers and angled crosses (⇥) for muon
tracks.

relatively small or unevenly distributed through the sky.
This discussion can be quantified by a global fit of

the data to a combination of the ⇡/K atmospheric neu-
trino background, atmospheric neutrinos from charmed
meson decays, and an isotropic equal-flavor extraterres-
trial power-law flux. With the normalizations of all com-
ponents free to float, this model was fit to the two-
dimensional deposited energy and zenith distribution of
the data (Fig. 2) in the range 60 TeV < Edep < 2 PeV,
above the majority of the expected background (Fig. 4).
The data are well described in this energy range by an
E�2 neutrino spectrum with a per-flavor normalization of
E2�(E) = (1.2±0.4)·10�8 GeV cm�2 s�1 sr�1. Although
it is di�cult to substantively constrain the shape of the
spectrum with our current limited statistics, a flux at this
level would have been expected to generate an additional
3-6 events in the 2-10 PeV range; the lack of such events
in the sample may indicate either a softer spectrum (the
best fit is E�2.2±0.4) or the presence of a break or cut-
o↵ at PeV energies. When limited to only atmospheric
neutrinos, the best fit to the data would require a charm
flux 4.5 times larger than current experimental 90% CL
upper bounds [9] and even then is disfavored at 4� with
respect to a fit allowing an extraterrestrial contribution.

SEARCH FOR NEUTRINO SOURCES

In order to search for spatial clustering, indicating pos-
sible neutrino sources, we conducted a maximum likeli-
hood point source analysis [15]. At each point in the
sky, we tested a point source hypothesis based on full-

sky uncertainty maps for each event obtained from the
reconstruction. This yields a skymap of Test Statistic
values (TS = 2 log(L/L0), where L is the maximized like-
lihood and L0 the likelihood under the null hypothesis),
which reflects any excess concentration of events relative
to a flat background distribution (Fig. 5). To account
for trials due to searching the whole sky, we estimate the
significance of the highest TS observed by performing
the same analysis on the data with the right ascension
of the events randomized. The final significance is then
the fraction of these randomized maps that have a TS
value anywhere in the sky as high or higher than that
observed in data. The chance probability calculated this
way is independent of Monte Carlo simulation. There-
fore, the significance obtained is against the hypothesis
that all events in this sample are uniformly distributed
in right ascension, rather than the significance of a clus-
ter of events above predicted backgrounds. Note that
because muon tracks have much smaller angular uncer-
tainties than showers, their presence can skew the high-
est TS values and overshadow clusters of shower events.
To correct for this e↵ect, and because muon events are
more likely to be atmospheric background, every clus-
tering analysis described here was repeated twice: once
with the full 28 events and once with only the 21 shower
events.

When using all events, the likelihood map reveals no
significant clustering compared to randomized maps. For
the shower events, the coordinates with the highest TS
are at RA=281�, dec=�23� (galactic longitude l = +12�,
latitude b = �9�). Five events, including the second
highest energy event in the sample, contribute to the
main part of the excess with two others nearby. The
fraction of randomized data sets which yield a similar or
higher TS at this exact spot is 0.2%. (At the exact lo-
cation of the Galactic Center, the fraction is 5.4%.) The
final significance, estimated as the fraction of random-
ized maps with a similar or higher TS anywhere in the
sky, is 8%. This degree of clustering may be compatible
with a source or sources in the galactic center region but
the poor angular resolution for showers and wide distri-
bution of the events do not allow the identification of any
sources at this time.

Two other spatial clustering analyses were defined a
priori. We performed a galactic plane correlation study
using the full directional reconstruction uncertainty for
each event to define the degree of overlap with the plane.
The plane width was chosen to be ±2.5� following TeV
gamma-ray observations [16]. A multi-cluster search us-
ing the sum of log-likelihood values at every local maxi-
mum in the likelihood map was also conducted. Neither
of these analyses yielded significant results.

In addition to clustering of events in space, we per-
formed two tests for clustering of events in time that cal-
culate significances by comparing the actual arrival times
to event times drawn from a random uniform distribution
throughout the live time. Because many sources [17–19]
are expected to produce neutrinos in bursts, identifica-

Figure 3.4: The 28 high energy neutrino events identified in the first two years of IceCube
data. Their positions are shown on a sky map in equatorial coordinates, where the curved
line is the galactic centre. Track events are indicated with a × while a + indicates a shower
event. A colour map showing the test statistic from the likelihood analysis performed to
identify clustering is also shown. [57]
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FIG. 1. Drawing of the IceCube array. Results here are from
the complete pictured detector for 2011-2012 and from a par-
tial detector missing the dark gray strings in the bottom left
corner for the 2010-2011 season. The side view (right) shows a
cross-section of the detector indicated in the top view (left) in
blue. Events producing first light in the veto region (shaded
area) were discarded as entering tracks (usually from cosmic
ray muons entering the detector). Most background events
are nearly vertical, requiring a thick veto cap at the top of
the detector. The shaded region in the middle contains ice
of high dust concentration [1]. Because of the high degree of
light absorption in this region, near horizontal events could
have entered here without being tagged at the sides of the
detector without a dedicated tagging region.

source [4]. Although that analysis had some sensitiv-
ity to neutrino events of all flavors above 1 PeV, it was
most sensitive to ⌫µ events above 10 PeV from the region
around the horizon, above which the energy threshold in-
creased sharply to 100 PeV. As a result, it had only lim-
ited sensitivity to the type of events found, which were
typical of either ⌫e or neutral current events and at the
bottom of the detectable energy range, preventing a de-
tailed understanding of the population from which they
arose and an answer to the question of their origin.

Here we present a follow-up analysis designed to char-
acterize the flux responsible for these events by conduct-
ing an exploratory search for neutrinos at lower energies
with interaction vertices well contained within the de-
tector volume, discarding events containing muon tracks
originating outside of IceCube (Fig. 1). This event se-
lection (see Materials and Methods) allows the resulting
search to have approximately equal sensitivity to neutri-
nos of all flavors and from all directions. We obtained
nearly full e�ciency for interacting neutrinos above sev-
eral hundred TeV, with some sensitivity extending to
neutrino energies as low as 30 TeV; see Fig. 7 in Ma-
terials and Methods. The data-taking period is shared
with the earlier high-energy analysis: data shown were
taken during the first season running with the completed
IceCube array (86 strings, between May 2011 and May
2012) and the preceding construction season (79 strings,
between May 2010 and May 2011), with a total combined
live time of 662 days.
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FIG. 2. Distribution of best-fit deposited energies and decli-
nations. Seven of the events contain muons (crosses) with an
angular resolution of about 1�, while the remainder are either
electromagnetic or hadronic showers (filled circles) with an
energy-dependent resolution of about 15�. Error bars are 68%
confidence intervals including both statistical and systematic
uncertainties. Energies shown are the energy deposited in
the detector assuming all light emission is from electromag-
netic showers. For ⌫e charged-current events this equals the
neutrino energy; otherwise it is a lower limit on the neutrino
energy. The gap in Edep between 300 TeV and 1 PeV does not
appear to be significant: gaps of this size or larger appear in
28% of realizations of the best-fit continuous power-law flux.

RESULTS

In the two-year dataset, 28 events with in-detector
deposited energies between 30 and 1200 TeV were ob-
served (Fig. 2, Table I) on an expected background of
10.6+5.0

�3.6 events from atmospheric muons and neutrinos;
see Materials and Methods. The two most energetic
of these were the previously reported PeV events [4].
Seven events contained clearly identifiable muon tracks,
whereas the remaining twenty-one were shower-like, con-
sistent with neutrino interactions other than ⌫µ charged-
current. Four of the low energy track-like events started
near the detector boundary and are downgoing, consis-
tent with the properties of the expected 6.0 ± 3.4 back-
ground atmospheric muons, as measured from a control
sample of penetrating muons in data. One of these—
the only such event in the sample—had hits in the Ice-
Top surface air shower array compatible with its arrival
time and direction in IceCube (event 28). The points at
which the remaining events were first observed were uni-
formly distributed throughout the detector (Fig. 3). This
is consistent with expectations for neutrino events and in-
consistent with backgrounds from penetrating muons or
with detector artifacts, which would have been expected
to trace the locations of either the fiducial volume bound-
ary or the positions of the instrumentation.
As part of our blind analysis, we tested a pre-defined

fixed atmospheric-only neutrino flux model [6] includ-
ing a benchmark charm component [7], reevaluated using

Figure 3.5: The layout of the IceCube detector including the fiducial volume and the veto region
used forHESE selection. Note that the previouslymentioned dust layer, where there is an increased
level of light scattering and absorption, is part of the veto region. [57]
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criteria is an efficient way to identify promising astrophysical neutrino eventswhile saving
computational time by immediately excluding events caused by down-going muons.

3.3.2 Through-going Astrophysical Muon Neutrino Flux

Measurements of the diffuse astrophysical neutrino flux is another important IceCube
result. This flux is similar to the HESE selection in that it has particular constraints which
suppress the effect of atmospheric neutrinos when searching for astrophysical neutri-
nos. The particular restriction here is that the diffuse flux only considers through-going
muons events which come from the Northern Hemisphere, such that the Earth can absorb
muons produced by atmospheric neutrinos. Although themajority of these through-going
muons were due to the atmospheric neutrinos, the highest energy neutrinos in the first
diffuse flux analysis were found to be inconsistent with a purely terrestrial origin at 3.7𝜎
significance, providing further strong evidence for an astrophysical neutrino flux [59].
This diffuse flux estimate is constantly being updated as the runtime of IceCube increases,
as so does the amount of events seen.

The current diffuse astrophysical neutrino flux is calculated according to the approx-
imate 650,000 events fitting the criteria described above detected between May 2009 and
December 2018. This 10 year analysis assumes a single power-law in energy and provides
an updated diffuse flux of astrophysical muon neutrinos and anti-neutrinos, 𝑑𝜙𝜈+ ̄𝜈/𝑑𝐸,
of:

𝑑𝜙𝜈+ ̄𝜈
𝑑𝐸

= (1.44+0.25
−0.24) ( 𝐸

100TeV
)

−2.28+0.08
−0.09

⋅ 10−18GeV−1cm−2s−1sr−1 (3.1)

The contributions taken into account for this estimate are conventional atmospheric
neutrinos, prompt atmospheric neutrinos, and an isotropic flux of astrophysical neutrinos.
[60]

3.3.3 Correlation of Neutrinos with Gamma Rays from Blazar TXS 0506+056

On September 22nd, 2017, IceCube detected a track-like neutrino event with an approxim-
ate reconstructed energy of 290 TeV and a best fit arrival direction with a right ascension of
77.43+0.95

−0.65 degrees and declination of +5.72
+0.50
−0.30 degrees. The event, consequently called

IceCube-170922A, resulted in a real-time alert being sent out to other multimessenger
experiments to observe the arrival direction of the neutrino. The event was found to be
coincident with a known 𝛾-ray blazar, TXS 0506+056, by about 0.1º, shown in Figure 3.6.
The follow up observations by the 𝛾-ray instruments, the Fermi Large Area Telescope
(Fermi-LAT) and theMajorAtmospheric Gamma Imaging Cherenkov (MAGIC) telescopes,
observed TXS 0506+056 to be in a flaring state of enhanced 𝛾-ray emission at the time.
[61]

To determine whether this neutrino was connected to the flaring blazar, a chance coincid-
ence probability was calculated. This probability indicates whether the IceCube-170922A
neutrino was correlated by chance with TXS 0506+056 while it was in a flaring 𝛾-ray
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RESEARCH ARTICLE SUMMARY
◥

NEUTRINO ASTROPHYSICS

Multimessenger observations of a
flaring blazar coincident with
high-energy neutrino IceCube-170922A
The IceCube Collaboration, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S.,
INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift/NuSTAR,
VERITAS, and VLA/17B-403 teams*†

INTRODUCTION: Neutrinos are tracers of
cosmic-ray acceleration: electrically neutral
and traveling at nearly the speed of light, they
can escape the densest environments andmay
be traced back to their source of origin. High-
energy neutrinos are expected to be produced
in blazars: intense extragalactic radio, optical,
x-ray, and, in somecases, g-ray sources
characterized by relativistic jets of
plasma pointing close to our line of
sight. Blazars are among the most
powerful objects in the Universe and
are widely speculated to be sources
of high-energy cosmic rays. These cos-
mic rays generate high-energy neutri-
nos and g-rays, which are produced
when the cosmic rays accelerated in
the jet interact with nearby gas or
photons. On 22 September 2017, the
cubic-kilometer IceCube Neutrino
Observatory detected a ~290-TeV
neutrino from a direction consistent
with the flaring g-ray blazar TXS
0506+056. We report the details of
this observation and the results of a
multiwavelength follow-up campaign.

RATIONALE:Multimessenger astron-
omy aims for globally coordinated
observations of cosmic rays, neutri-
nos, gravitational waves, and electro-
magnetic radiation across a broad
range of wavelengths. The combi-
nation is expected to yield crucial
information on the mechanisms
energizing the most powerful astro-
physical sources. That the produc-
tion of neutrinos is accompanied by
electromagnetic radiation from the
source favors the chances of a multi-
wavelength identification. In par-
ticular, a measured association of
high-energy neutrinos with a flaring
source of g-rays would elucidate the
mechanisms and conditions for ac-
celeration of the highest-energy cos-

mic rays. The discovery of an extraterrestrial
diffuse flux of high-energy neutrinos, announced
by IceCube in 2013, has characteristic prop-
erties that hint at contributions from extra-
galactic sources, although the individual sources
remain as yet unidentified. Continuously mon-
itoring the entire sky for astrophysical neu-

trinos, IceCube provides real-time triggers for
observatories around the world measuring
g-rays, x-rays, optical, radio, and gravitational
waves, allowing for the potential identification
of even rapidly fading sources.

RESULTS: A high-energy neutrino-induced
muon trackwas detected on22 September 2017,
automatically generating an alert that was

distributed worldwide
within 1 min of detection
and prompted follow-up
searchesby telescopesover
a broad range of wave-
lengths. On 28 September
2017, theFermiLargeArea

Telescope Collaboration reported that the di-
rection of the neutrino was coincident with a
cataloged g-ray source, 0.1° from the neutrino
direction. The source, a blazar known as TXS
0506+056 at a measured redshift of 0.34, was
in a flaring state at the time with enhanced
g-ray activity in the GeV range. Follow-up ob-
servations by imaging atmospheric Cherenkov
telescopes, notably the Major Atmospheric

Gamma ImagingCherenkov (MAGIC)
telescopes, revealed periods where
the detected g-ray flux from the blazar
reached energies up to 400GeV.Mea-
surements of the source have also
been completed at x-ray, optical, and
radio wavelengths. We have inves-
tigated models associating neutrino
and g-ray production and find that
correlation of the neutrino with the
flare of TXS 0506+056 is statistically
significant at the level of 3 standard
deviations (sigma). On the basis of the
redshift of TXS 0506+056, we derive
constraints for the muon-neutrino
luminosity for this source and find
them to be similar to the luminosity
observed in g-rays.

CONCLUSION: The energies of the
g-rays and the neutrino indicate that
blazar jetsmay accelerate cosmic rays
to at least several PeV. The observed
association of a high-energy neutrino
with a blazar during a period of en-
hanced g-ray emission suggests that
blazarsmay indeed be one of the long-
sought sources of very-high-energy
cosmic rays, andhence responsible for
a sizable fraction of the cosmic neu-
trino flux observed by IceCube.▪
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Multimessenger observations of blazar TXS 0506+056.The
50% and 90% containment regions for the neutrino IceCube-
170922A (dashed red and solid gray contours, respectively),
overlain on a V-band optical image of the sky. Gamma-ray sources
in this region previously detected with the Fermi spacecraft are
shown as blue circles, with sizes representing their 95% positional
uncertainty and labeled with the source names. The IceCube
neutrino is coincident with the blazar TXS 0506+056, whose
optical position is shown by the pink square. The yellow circle
shows the 95% positional uncertainty of very-high-energy g-rays
detected by the MAGIC telescopes during the follow-up campaign.
The inset shows a magnified view of the region around TXS 0506+056
on an R-band optical image of the sky. IM
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Figure 3.6: The position of the blazar TXS 0506+056 in the sky. Additionally shown are the
containment regions for IceCube-170922A with 50% and 90% confidence, as well as the
positional uncertainty to 95% for the 𝛾-observations from Fermi-LAT and MAGIC. [61]

state. To study this, different models comparing the neutrino event to the assorted 𝛾-ray
production methods and observed fluxes were taken into account. All of these models in
some way assumed that the hadronic interactions at the blazar that may produce the high
energy neutrino could also produce the observed 𝛾-ray flux. A likelihood ratio test was
then performed with these models to identify the chance coincidence probability. This
resulted in a chance coincidence that the neutrino was incorrectly associated with the
flaring blazar of 3𝜎, under the requirement that the original neutrino production can be
related to 𝛾-ray production at the source or with the observed 𝛾-ray flux. Although this
was not irrefutable evidence that these observations were correlated, it was enough to
prompt a study which looked at IceCube’s archived data in the direction of the blazar.

Motivated by this correlation between IceCube-170922A and TXS 0506+056, the IceCube
Collaboration looked back through archival data to see if there was any notable activity
from the direction of this blazar in the past. A time-dependent likelihood analysis was
performed over the 9.5 years of IceCube data which identified an increased period of
neutrino activity from this direction between September 2014 and March 2015. This
method utilised two different time windows to identify clustering, a Gaussian shape and
a box-shape, which both independently identified the same significant period of neutrino
activity. Specifically, 13 ± 5 events were found in excess during this period, compared to
the expected atmospheric background rate. The significance of each of these events were
dependent on their energies, their proximity to TXS 0506+056, and their clustering in time.
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3.4 Summary

These events and the importance of these factors are shown according to their weights
in Figure 3.6. To identify the significance of this time clustered selection of neutrinos, a
time-dependent analysis was also performed on random datasets at the coordinates of
TXS 0506+056. This resulted in a significance of 3.5𝜎 that the neutrino clustering would
incorrectly be associated with the blazar [62]. This result, accompanied by the detection
of a high energy neutrino while the source was in a flaring state, suggests that blazars,
such as TXS 0506+056, are likely sources of astrophysical neutrinos, and hence localised
the first possible source of high energy cosmic ray acceleration.

is 1.4s. If the IceCube-170922A event is removed,
no excess remains during this time period. This
agrees with the result of the rapid-response anal-
ysis (31) that is part of the IceCube alert program,
which found no other potential astrophysical
neutrinos from the same region of the sky during
±7 days centered on the time of IceCube-170922A.
We performed a time-integrated analysis at

the coordinates of TXS 0506+056 using the full
9.5-year data sample. The best-fitting parameters
for the flux normalization and the spectral index
areF100 = 0:8þ0:5

"0:4 # 10"16 TeV–1 cm–2 s–1 and g =
2.0 ± 0.3, respectively. The joint uncertainty on
these parameters is shown in Fig. 4A. The P value,
based on repeating the analysis at the same co-
ordinates with randomized datasets, is 0.002%
(4.1s), but this is an a posteriori significance
estimate because it includes the IceCube-170922A
event, whichmotivated performing the analysis at
the coordinates of TXS 0506+056. An unbiased

significance estimate including the event would
need to take into account the look-elsewhere effect
related to all other possible directions in the sky
that could be analyzed. It is expected that there
will be two or three directions somewhere in the
northern sky with this significance or greater,
resulting from the chance alignment of neutri-
nos (12). Here, we are interested in determining
whether there is evidence of time-integrated neu-
trino emission from TXS 0506+056 besides the
IceCube-170922A event.
If we remove the final data period IC86c, which

contains the event, and perform the analysis
again using only the first 7 years of data, we find
best-fitting parameters that are nearly unchanged:
F100 =0:9þ0:6

"0:5 # 10"16 TeV–1 cm–2 s–1 and g = 2.1 ±
0.3, respectively. The joint uncertainty on these
parameters is shown in Fig. 4B. The P value, using
only the first 7 years of data, is 1.6% (2.1s), based
on repeating the analysis at the same coordinates

with randomized datasets. These results indicate
that the time-integrated fit is dominated by the
same excess as found in the time-dependent
analysis above, having similar values for the
spectral index and total fluence (E2J100 = 2.0 ×
10–4 TeV cm–2 at 100 TeV over the 7-year period).
This excess is not significant in the time-integrated
analysis because of the additional background
during the rest of the 7-year period.

Blazars as neutrino sources

The signal identified during the 5-month period
in 2014–2015 consists of an estimated 13 ± 5
muon-neutrino events that are present in addi-
tion to the expected background. The analysis is
unbinned, but the mean background at the dec-
lination of TXS 0506+056 is useful for compar-
ison purposes; it is 5.8 events in a search bin of
radius 1° during a 158-day time window. (We use
the duration of the box-shaped time window re-
sult for convenience to calculate averages during
the flare.) The significance of the excess is due to
both the number of events and their energy
distribution, with higher-energy events increasing
the significance and leading to the best-fitting
spectral index of 2.1, in contrast to the lower-
energy atmospheric neutrino background with
spectral index ~3.7. At this declination in the sky,
the 68% central energy range inwhich IceCube is
most sensitive to point sources with E–2.1 spectra
is between 32 TeV and 3.6 PeV. Assuming that
the muon-neutrino fluence (E2J100 = 2:1þ1:0

"0:7#
10"4 TeV cm–2) is one-third of the total neu-
trino fluence, then the all-flavor neutrino energy
fluence is 4:2þ2:0

"1:4 # 10"3 erg cm–2 over this
energy range. With the recent measurement (32)
of the redshift of TXS 0506+056 as z = 0.3365 ±
0.0010, this energy fluence implies that the iso-
tropic neutrino luminosity is 1:2þ0:6

"0:4 # 1047 erg s–1

averaged over 158 days. This is higher than the
isotropic gamma-ray luminosity during the same
period, which is similar to the long-term luminosity
between 0.1 GeV and 100 GeV of 0.28 × 1047 erg
s–1 averaged over all Fermi-LAT observations of
TXS 0506+056 (20). Gamma rays are expected to
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Fig. 2. Time-independent weight of individual events during the IC86b period. Each vertical line
represents an event observed at the time indicated by calendar year (top) or MJD (bottom).
Overlapping lines are shifted by 1 to 2 days for visibility. The height of each line indicates the event
weight: the product of the event’s spatial term and energy term in the unbinned likelihood analysis
evaluated at the location of TXS 0506+056 and assuming the best-fitting spectral index g = 2.1
(30).The color for each event indicates an approximate value in units of TeVof the reconstructed muon
energy (muon energy proxy), which the analysis compares with expected muon energy distributions
under different hypotheses. [A distribution for the true neutrino energy of a single event can also
be inferred from the event’s muon energy (30).] The dashed curve and the solid bracket indicate the
best-fitting Gaussian and box-shaped time windows, respectively. The distribution of event weights
and times outside of the best-fitting time windows is compatible with background.

Fig. 3. Time-dependent analy-
sis results for the IC86b data
period (2012–2015).
(A) Change in test statistic,
DTS, as a function of the spectral
index parameter g and the fluence
at 100 TeV given by E2J100. The
analysis is performed at the
coordinates of TXS 0506+056,
using the Gaussian-shaped time
window and holding the time
parameters fixed (T0 = 13
December 2014, TW = 110 days).
The white dot indicates the best-
fitting values. The contours at
68% and 95% confidence level
assuming Wilks’ theorem (36) are
shown in order to indicate the statistical uncertainty on the parameter
estimates. Systematic uncertainties are not included. (B) Skymap showing
the P value of the time-dependent analysis performed at the coordinates of
TXS 0506+056 (cross) and at surrounding locations.The analysis is

performed on the IC86b data period, using the Gaussian-shaped time window.
At each point, the full fit for (F, g, T0, TW) is performed.The P value shown
does not include the look-elsewhere effect related to other data periods. An
excess of events is detected, consistent with the position of TXS 0506+056.
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Figure 3.7: The time-independent weights of events during the IC86b period (IceCube data taken
from 2012 to 2015). The weights are given according to the neutrino’s energy, its proximity to
the coordinates of TXS 0506+056, and its clustering in time relative to the other neutrinos. In this
study, 13 ± 5 events were identified in excess to atmospheric backgrounds by a time-dependent
likelihood analysis which utilised both a Gaussian time window and a box-shaped time window.
[62]

3.4 Summary

The IceCube Neutrino Observatory is a Cherenkov radiation detector which instruments
a cubic kilometre of ice beneath the Admunsen-Scott South Pole Station in Antarctica.
It implements 5160 digital optical modules (DOMs), each containing photomultipliers
and associated electronics, for detection of Cherenkov radiation produced by secondary
particles resulting from neutrino interactions. Careful consideration is also implemented
to reduce the background signal caused by atmospheric neutrinos produced in cosmic
ray air showers. The success of IceCube over the last decade has lead to the first observed
flux of astrophysical neutrinos and observation of a through-going astrophysical muon
neutrino flux. Additionally, recent studies have identified the first known likely source of
such a neutrino, blazar TXS 0506+056, and hence provided strong evidence for the first
likely source of high-energy cosmic ray acceleration.
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4 Likelihood Analysis and Importance Sampling

Likelihood analysis is a statistical method used by the IceCube Collaboration. After
neutrino events are seen by the IceCube detector, likelihood analysis can be used to identify
whether these events are clustered in a way that would indicate a single source produced
them. In this chapter, we deconstruct the likelihood function and demonstrate how it can
be used alongside neutrino sky simulations to search for astrophysical neutrino sources.
An important piece of this analysis is understanding howoften neutrinos randomly cluster
together and imitate what neutrinos from a real source would look like. This involves
numerous simulations where neutrino event data is scrambled and observing how often
event clustering occurs as a result. The amount of simulations that have to be performed
to view how often large numbers of these events cluster randomly increases dramatically,
and as such the correct frequency for the random occurrence of large neutrino clusters
cannot be obtained within any reasonable computing time. In this chapter, we introduce
the concept of importance sampling, and how it can be implemented into these sorts of
analyses to obtain the frequencies for these sought after rare clusters without the need of
excessive computational resources.

4.1 Likelihood Analysis

Likelihood analysis involves estimating parameter values for some probability distri-
bution using already gathered data. This can be achieved by maximising a likelihood
function, which returns the parameter or parameters of a statistical model that best de-
scribe some data. In order to describe the likelihood function, first consider some random
variable 𝑋, which can be obtained from a continuous probability density function, 𝑓𝜃,
defined by some parameter 𝜃. The likelihood function, ℒ(𝜃 | 𝑥), is then a function of the
parameter 𝜃 given some outcome where 𝑋 = 𝑥, as drawn from 𝑓𝜃.

ℒ(𝜃 | 𝑥) = 𝑓𝜃(𝑥) (4.1)

Although ℒ(𝜃 | 𝑥) is equal to 𝑓𝜃(𝑥) for 𝑥 when the parameter 𝜃 is true, these two functions
overall are not equivalent. A probability density function uses fixed parameters with
some already known probability in order to predict any possible outcome of some model.
The likelihood function uses one set of fixed data in order to find the set of parameters
which would best describe the data. For example, consider a set of data, which could
be obtained with two different parameter values, 𝜃1 and 𝜃2. If we find that ℒ(𝜃2 | 𝑥) >
ℒ(𝜃1 | 𝑥), we would conclude that the data would bemore likely to have occurred if 𝜃 = 𝜃2.
If we were to find the likelihood at each parameter 𝜃, there would be some 𝜃 where the
likelihood reaches a maximum value. This value is then the best fit likelihood, ̂ℒ, which
is given by the best fit parameter value, ̂𝜃, the parameter value which best describes
the observed data. For convenience, the negative logarithm of the likelihood function,
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4 Likelihood Analysis and Importance Sampling

logℒ(𝜃 | 𝑥), can be taken [63]. Minimising the negative logarithm of the likelihood is
equivalent to maximising the original likelihood and can greatly assist for computational
purposes.

The likelihood function can then be used for hypothesis testing. This is performed by
testing a null hypothesis, 𝐻0, against an alternate hypothesis, 𝐻1. The null hypothesis,
𝐻0, says that there is nothing statistically significant about the relationship between some
variables, although some varying degree of real effects can be expected. This hypothesis
is assumed to be true until proven otherwise. For a typical IceCube point source case, the
null hypothesis would describe that there is no significant relationship between some
neutrinos and a source in the sky. The alternate hypothesis,𝐻1, suggests that the observed
data of the experiment may indicate a relationship between some phenomena, and as
such arises due to some other factor. For example, in IceCube, that neutrinos can be
associated to some point source. Once these hypotheses are constructed, some data can
be tested against them by constructing a test statistic, a singular value which characterises
the dataset. In this case, consider that the null hypothesis and the alternate hypothesis
are described by the parameter 𝜃0 and 𝜃1 respectively. A test statistic, 𝜆, can be calculated
by taking twice the negative logarithm of the ratio of the likelihood functions for these
cases, which is primarily used in likelihood ratio tests. This test statistic is used for
nested models, where the ℒ(𝜃0 | 𝑥) in question is in a simpler form compared to ℒ(𝜃1 | 𝑥).
Specifically, 𝜃0 is a set value which is also a possible value for 𝜃1 in ℒ(𝜃1 | 𝑥).

𝜆 = −2logℒ(𝜃0 | 𝑥)
ℒ(𝜃1 | 𝑥)

(4.2)

The test statistic can then be used to identify how significant a result is based on the
difference of the ratio from, in this case, a value of zero, where ℒ(𝜃0 | 𝑥) = ℒ(𝜃1 | 𝑥). A
useful result of the test statistic constructed according to Equation 4.2 is that it may, under
certain conditions, follow Wilks’ theorem. This theorem states that if the null hypothesis,
𝐻0, is true for some amount 𝑛 of data, then as 𝑛 → ∞, the distribution of 𝜆 will follow
a 𝜒2 distribution with a number of degrees of freedom equal to the difference between
the dimensionality of free parameters in 𝐻1 and 𝐻0. This theorem applies under the
assumption that the estimated parameters are within the possible parameter space of the
likelihood functions. [64] This is a useful relationship, as if all appropriate conditions are
met, a statistical significance for the hypothesis can then be calculated by considering the
𝜒2 distribution. Unfortunately, it is unknown whether Wilks’ theorem can be directly
applied to the likelihood distributions we investigate in this project. As such, we cannot
simply extend a 𝜒2 distribution and hence must use importance sampling to forcefully
obtain desired likelihood values.

4.2 Likelihood Fitting for Neutrino Data

The previously described likelihood analysis is frequently used by the IceCube Collabora-
tion. Particularly relevant to this project is how the analysis is used to identify “hotspots”
on the sky. That is, searching for points on the sky which correlate to increased amounts
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4.2 Likelihood Fitting for Neutrino Data

of neutrino emission, which may relate to a high energy neutrino source. The likelihood
function typically used by IceCube in this type of analysis is given by:

ℒ(𝜃 | 𝑥) = ℒ(𝑛𝑠 | ⃗𝑥𝑠) =
𝑁

∏
𝑖=1

[𝑛𝑠
𝑁

𝑆𝑖( ⃗𝑥𝑠) + (1 − 𝑛𝑠
𝑁

)𝐵( ⃗𝑥𝑠)] (4.3)

In this function, the value to be fitted is 𝑛𝑠, the number of signal neutrino events which
may have originated from a point source at position, ⃗𝑥𝑠, on the sky. The number of
events in the dataset is 𝑁, and each of these events are described by their probability
density function, 𝑆𝑖(𝑥), which gives the expected distribution around a point in space
according to the resolution of the IceCube detector. The likelihood function then accounts
for the contribution of each event at the position in consideration, ⃗𝑥𝑠. Finally, 𝐵(𝑥) is
the background probability density of the neutrinos, which details the chance that the
neutrino event could have randomly occurred at any point across some space. In a typical
IceCube analysis, the background probability density is estimated from experimental
data [65]. Now, taking the negative logarithm of this function, we obtain:

− logℒ(𝜃 | 𝑥) = −logℒ(𝑛𝑠 | ⃗𝑥𝑠) = −
𝑁

∑
𝑖=1

log [𝑛𝑠
𝑁

𝑆𝑖( ⃗𝑥𝑠) + (1 − 𝑛𝑠
𝑁

)𝐵( ⃗𝑥𝑠)] (4.4)

The hypothesis testing in this situation usually goes as follows: the null hypothesis pre-
dicts that the neutrinos in some data are purely a result of the background probability
density (𝑛𝑠 = 0), and the alternate hypothesis indicates the neutrinos in that same data
are a combination of both signal and background neutrinos.

The signal probability density function of an event is often represented by a two-dimensional
Gaussian function with the form:

𝑆𝑖( ⃗𝑥𝑠, ⃗𝑥𝑖, 𝜎𝑖) = 1
2𝜋𝜎2

𝑖
exp [−| ⃗𝑥𝑠 − ⃗𝑥𝑖|2

2𝜎2
𝑖

] (4.5)

Data taken by the IceCube detector gives the reconstructed position, ⃗𝑥𝑖, of the event
with coordinates of right ascension and declination. The uncertainty, 𝜎𝑖, indicates the
resolution error in the reconstruction. Using this information, we can create neutrino
skies by distributing events over some region with the properties described by their
relative probability density function. After the events are distributed, a likelihood fit
can be performed across the region to identify the best number of neutrino events, 𝑛̂𝑠,
at each position on the sky. The speed at which this likelihood fit is performed can
be greatly increased by incorporating a minimising package such as MINUIT, which
was incorporated into all likelihood analyses in this project. This is used rather than
calculating likelihood values for all possible values of 𝑛𝑠 to identify which value returns
the maximum likelihood, which requires much more computational resources.

MINUIT

MINUIT is a package which performs the minimisation of a specified multi-parameter
function. In doing so, it can take in a likelihood function and return the parameter which
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4 Likelihood Analysis and Importance Sampling

minimises the function, in our case, 𝑛̂𝑠. To do this, MINUIT receives an input from the
user of upper and lower value limits, an initial guess of the best fit parameter value, and a
step size with which the minimiser tests parameter values. Here, we utilise the MIGRAD
minimisation subroutine to compute the minimum of the function. In this subroutine,
MIGRAD finds the numerical first derivative of the likelihood function at some point
as calculated by MINUIT to determine the gradient of the function and hence which
direction to calculate its next point. The subroutine continues to do this until a function
minimum is reached, and the corresponding parameters are returned [66].

Performing the Likelihood Fitting

The process of performing a likelihood fit on neutrino data is shown henceforth on a
Cartesian grid for simplicity. Over this space 2000 neutrino events have been randomly
positioned, as shown in Figure 4.1.
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Figure 4.1: Skymap for 2000 events, each with an uncertainty of 1 unit and indicated by a black
dot, randomly positioned on a 200 × 200 unit Cartesian grid.

The aforementioned likelihood fit can be performed to analyse the sky in Figure 4.1 with

each position indicating its relative maximum likelihood value, ̂ℒ, or corresponding best
fit number of signal events, 𝑛̂𝑠, which we also refer to as the maximum signal events.
As the likelihood values calculated within the work in the remainder of the thesis are
extremely small values, the values are given as the logarithm of the likelihood. These
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4.2 Likelihood Fitting for Neutrino Data

results are illustrated in Figure 4.2 and 4.3.
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Figure 4.2:Maximum likelihood values using the 2000 events from Figure 4.1, where the colour

plot shows the maximum likelihood ̂ℒ value at each 0.5 unit interval on the sky. The hottest spot

on this sky occurs at (39.5,75), where ̂ℒ = -21186.9 and 𝑛̂𝑠 = 4.63.

After this fit is performed, the maximum of the maximum likelihood values corresponds
to the hotspot on the sky. The above process can be repeated multiple times on randomly
generated skies to view how often clusters of neutrinos will form. Specifically, a new sky
is repeatedly created, the same events are randomly placed on the sky, and the likelihood
fit is performed. For each sky, the maximum of all the best fit likelihood values on the

sky, ̂ℒ, and its corresponding 𝑛̂𝑠 is kept. This is referred to as a full sky likelihood ana-
lysis, which we perform in Chapter 6 after we build the following machinery. This is an
important aspect of neutrino point source analysis, as to calculate the significance for a
real observation of neutrino clustering, we need to know how often we would expect to
see the same cluster of neutrinos if a background only hypothesis is true.

First, we look at how often neutrino events will randomly cluster by considering some
point on the map as the position of a potential astrophysical neutrino source. The above

process is then performed, and we calculate ̂ℒ relative to this source position. Here, we
do this on the same Cartesian grid with a test source position at the origin, (0, 0). This
procedure has been performed 105 times, such that the 2000 events have been randomly

positioned each time. The maximum ̂ℒ and 𝑛̂𝑠 values at the origin are kept each time,
and the distribution of these values are presented in Figure 4.4 and 4.5 respectively. In
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Figure 4.3:Maximum signal event values for the 2000 events from Figure 4.1, where the colour
plot now shows the maximum signal events 𝑛̂𝑠 at each 0.5 unit interval on the sky.

addition, Figure 4.6 shows the two-dimensional distribution of each ̂ℒ value and its
corresponding 𝑛̂𝑠 from each simulation. In these figures, and for all the further figures in
Chapter 4, “counts” indicates the number of skies with the indicated best fit parameter
values.

From Figure 4.4 and 4.5, as expected, the majority of simulations provide us with the

minimum possible ̂ℒ for this scenario and an 𝑛̂𝑠 value of zero, implying that in most
of the simulations where events are randomly positioned on the sky, no event overlaps

significantly with the test source position. The minimum ̂ℒ which can be obtained for
this scenario is found by simply setting 𝑛𝑠 to zero in Equation 4.4. Here, the minimum

̂ℒ is approximately -21193.3. As we scan through the distributions, it is clear that as
the number of best fit neutrinos that randomly cluster increases, their frequency de-

creases. In Figure 4.6, which contains the combination of ̂ℒ and 𝑛̂𝑠 from each trial, it
is also apparent that there are many combinations of the best fit parameters not seen
during the 105 trials. For example, the largest 𝑛̂𝑠 value obtained out of these trials was
7, so there is no indication as to how often we would expect a number of signal events

greater than 7 to occur in this simulation. It is also important to notice that the ̂ℒ and

𝑛̂𝑠 values do not have a linear relationship. Specifically, ̂ℒ can correlate to a number
of different 𝑛̂𝑠 values, and vice versa. This relationshipwill be exploredmore in Chapter 5.
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Figure 4.4: Distribution of the ̂ℒ values found from a likelihood fit at the test source position (0, 0)
for 105 skies with 2000 randomly distributed events.
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Figure 4.5: Distribution for the 𝑛̂𝑠 values found from a likelihood fit at the test source position (0,
0) for 105 skies with 2000 randomly distributed events.
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Figure 4.6: A colour plot for the combinations of ̂ℒ and 𝑛̂𝑠 from each simulation depicted in
Figure 4.2 and Figure 4.3, where a likelihood fit is performed at the origin for 105 trials where
2000 events are placed randomly on a 200 × 200 Cartesian grid.
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4.3 Importance Sampling

The parameters, ̂ℒ and 𝑛̂𝑠, obtained from each of the trials have a count of one, such
that when we enter their information from each of the 105 trials into the histograms in
Figures 4.4, 4.5, and 4.6, the integral for each of the distributions will equal 105. These
distributions then provide an indication for how often we expect some result when the
simulation is performed. For example, the total number of counts related to an approxim-
ate 𝑛̂𝑠 value of zero in Figure 4.5 is around 68000. This value is also the “total count” of
this bin. This implies that if this simulation is performed for 105 trials, an estimated 68000
of these trials will have a best fit parameter 𝑛̂𝑠 of zero. By normalising the distribution,
we can also say that if the simulation is performed just once, there is an approximately
68% chance we will obtain an 𝑛̂𝑠 of zero. The issue with this process is that we are not
obtaining large 𝑛̂𝑠 values as the clustering which produces them is rare. The number of
simulations that are run can be increased to identify these rare clusters, but vast amounts
of extra simulations can be required simply to obtain a frequency for a given number of
best fit neutrino events. This can be extremely computationally exhaustive. In addition,

for ̂ℒ and 𝑛̂𝑠 values which are getting very small frequencies, we are also getting large
error values as this process follows Poisson statistics (also referred to as particle counting
statistics). Here, the error, 𝜎, for some histogram bin is the ratio of the total count of the
bin, 𝑋, to the square root of number of counts in the bin, 𝑁.

𝜎 = 𝑋√
𝑁

(4.6)

Here, the total count of the bin is equal to the number of counts in the bin, so the error is
simply the square root of the total count of the bin,

√
𝑋. As we are considering Poisson

statistics, we ideally want large numbers of entries in some bin to obtain minimal error.
As large signal events are unable to be observed in a limited number of the trials, and
without an appropriate number of counts to return a small error, we can implement the
method of importance sampling to obtain the desired frequencies for rare clustering in
significantly less time.

4.3 Importance Sampling

As previously mentioned, it can be computationally exhaustive to understand how often
rare clusters of neutrinos will appear on the sky. The approach taken in this project to
combat this problem relies heavily on the concept of importance sampling. Importance
sampling involves estimating values of some region in a distribution which would other-
wise be difficult to obtain. This is done by creating some other distribution or distributions
to sample values from, and applying an appropriate sampling weight, which indicates
how often the value would be observed in the original distribution to the sampling distri-
bution.

Suppose that the distribution of best fit likelihood values that was produced in Fig-
ure 4.4 could be represented by a probability density function 𝑓(𝑥). This is justified as we
previously explained how the trials provide us with an idea of the chance that a given
type of clustering would occur. The procedure previously used to obtain 𝑓(𝑥) is unfortu-
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4 Likelihood Analysis and Importance Sampling

nately limited by its inability to produce rare outcomes of neutrino clustering. In order to
combat this issue, we can utilise importance sampling. We do this by constructing another
sampling distribution, 𝑝(𝑥), which would reproduce the desired distribution, 𝑓(𝑥), after
an infinite amount of trials. The sampling distribution 𝑝(𝑥) focuses on a particularly
important region of interest of 𝑓(𝑥). In our case, 𝑝(𝑥) would be used to return likelihood
values in the tail of 𝑓(𝑥), where we originally obtained no information due to a lack of
statistics. As we do not naturally acquire this information, we must assign any values
gathered with this method an appropriate sampling weight, 𝑊. This weight is simply the
ratio of the desired distribution to the sampling distribution, evaluated at the value 𝑥:

𝑊 = 𝑓(𝑥)
𝑝(𝑥)

(4.7)

Using this relationship, we now aim to construct appropriate sampling distributions in
order to extend the tails of the distributions seen in Figures 4.4 and 4.6. This can be done
by creating a sampling distribution, 𝑓(𝑥), which describe how neutrino events would
be uniformly distributed over some space. Then, another sampling distribution, 𝑝(𝑥),
is constructed such that it concentrates neutrino events around a desired point on that
same space. Once the positions of the events are determined for some sky, the sampling
weight, 𝑊, is then calculated and allocated to the sky. We subsequently demonstrate
this process with two types of sampling distributions. The first, the Gaussian weighting
method, uses a sampling distribution to concentrate the events around a set position. The
second, the binomial weighting method, involves distributing events uniformly within a
desired region according to a binomial probability.

4.4 GaussianWeighting Method

The firstmethodwe have constructed for the importance sampling is aGaussianweighting
method. This process involves obtaining an event’s position on the sky from a sampling
function that concentrates events artificially about a desired point, and allocating each
event an appropriate weight. This individual event weight is related to the sampling
function used and provides an indication of how biased this forced clustering is. As the
weighting method name suggests, we use a Gaussian function as the sampling function.
The total weight, 𝑊, of the sky is then the multiplicative of each individual event weight.
Any property of this sky will then have a weight of 𝑊. For example, the maximum best

fit likelihood ̂ℒ and best fit number of events 𝑛̂𝑠 would have weight 𝑊. This weight
is obtained through importance sampling and will indicate how often we expect some
result in the original simulation if were able to run it for an infinite amount of time. To
illustrate this method, we will apply it to the same 2000 events on a Cartesian grid sky
used to create the skymaps in Figures 4.1, 4.2, and 4.3, in order to extend the distributions
in Figures 4.4 and 4.6.

We begin by considering a flat normalised function, ℎ(𝑥, 𝑦), across the grid, such that
ℎ(𝑥, 𝑦) is the same value at any (𝑥, 𝑦). Then, we construct a normalised two-dimensional
Gaussian function, 𝑔(𝑥, 𝑦), which extends over the space.
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4.4 Gaussian Weighting Method

𝑔(𝑥, 𝑦) = 1
2𝜋𝜎2 exp [− ((𝑥 − 𝑥𝑜)2 + (𝑦 − 𝑦𝑜)2

2𝜎2 )] (4.8)

We could sample the positions for all of the events according to the Gaussian, however this
would concentrate all of the events around the position in consideration. This would not
replicate the situation we want to observe, where some amount of events are distributed
around a set position and the remaining events are distributed uniformly across the space.
Due to this, we construct a sampling function, 𝑝(𝑥), which is a combination of both the flat
function, ℎ(𝑥, 𝑦), and the Gaussian function, 𝑔(𝑥, 𝑦). As such, the next step is to consider
how many of the total events 𝑁, we bias to come from the test source position. This
amount of events, 𝑛, sets a limit to whether an event’s position is sampled according
to ℎ(𝑥, 𝑦) or 𝑔(𝑥, 𝑦). For each 𝑖th event, a random number on (0, 1), 𝜙, is generated. If
𝜙 < 𝑛/𝑁, then we sample its position from 𝑔(𝑥, 𝑦). The sampled position of an event
according to the Gaussian function can be obtained using the Box-Muller transform, which
is described in Appendix A. Otherwise, if 𝜙 > 𝑛/𝑁, we sample from ℎ(𝑥, 𝑦). Either way,
the event’s position, (𝑥𝑖, 𝑦𝑖), is returned. After the random number has been generated
for an individual event and its position has been sampled from the respective distribution,
we allocate the event a weight, 𝑤𝑖. As we are using importance sampling, the weight is
the ratio of the desired function, 𝑓(𝑥), to the sampling function, 𝑝(𝑥):

𝑤𝑖 = 𝑓(𝑥)
𝑝(𝑥)

= ℎ(𝑥𝑖, 𝑦𝑖)
(1 − 𝑛

𝑁)ℎ(𝑥𝑖, 𝑦𝑖) + 𝑛
𝑁𝑔(𝑥𝑖, 𝑦𝑖)

(4.9)

This process is performed for all 𝑁 events on the sky, with each event allocated its own
weight 𝑤𝑖. The total weight of the sky, 𝑊, is then the multiplicative of each of the events’
weights:

𝑊 =
𝑁

∏
𝑖=1

𝑤𝑖 (4.10)

This weight 𝑊 is now given to any property of the sky, such as ̂ℒ or 𝑛̂𝑠. There are
two important parameters that can be changed throughout this process in order to see
rarer clustering of events. The first is the number of events we bias to come from the
source position, 𝑛. By increasing this value, more events on average will be sampled
from 𝑔(𝑥, 𝑦) in their relative simulation than from ℎ(𝑥, 𝑦). This occurs as the larger the
biased number of events, the greater the random number limit 𝜙. The second is the
value of 𝜎 in 𝑔(𝑥, 𝑦). Decreasing 𝜎 in this function creates a “tighter” Gaussian spread,
so a position sampled from it will be closer to the function’s centre. As 𝑤𝑖 is inversely
proportional to the combination of ℎ(𝑥, 𝑦) and 𝑔(𝑥, 𝑦), if 𝜎 is small, 𝑔(𝑥, 𝑦) values near its
centre will be large and the resulting 𝑤𝑖 will be small. Consequently, 𝑊 can then become
very small, representing a clustering of events that would be near impossible due to
random clustering. On the contrary, if 𝜎 is sufficiently large, 𝑔(𝑥, 𝑦) will essentially be
flat over the space. This will result in an equal probability for events to be positioned
anywhere on the space, regardless if their position is drawn from ℎ(𝑥, 𝑦) or 𝑔(𝑥, 𝑦). As
such, the resulting 𝑤𝑖 values will all be approximately 1, resulting in a total weight 𝑊 of
approximately 1, essentially reproducing the case that all the events are randomly placed
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4 Likelihood Analysis and Importance Sampling

without any sampling method applied. This is important as the resulting distribution
from the large 𝜎 case can be used to check that an appropriate distribution is being created.

This method can be applied to the original scenario presented in Section 4.2 in order
to extend the distributions in Figures 4.4 and 4.6. In this case, as the grid is 200 × 200,
ℎ(𝑥, 𝑦) = 1/40000. As we are considering the origin, (0, 0), as the test source position, we
centre the Gaussian at these coordinates and it takes the form:

𝑔(𝑥, 𝑦) = 1
2𝜋𝜎2𝐴

exp [− (𝑥2 + 𝑦2

2𝜎2 )] (4.11)

The new factor, 𝐴, in this function is required as depending on the 𝜎 chosen, the function
may not be normalised on the Cartesian space under consideration. In this case, A is
the double integral of 𝑔(𝑥, 𝑦) over the 200 × 200 grid, and ensures that the function is
appropriately normalised. Additionally, when in combination with ℎ(𝑥, 𝑦), the entire
sampling distribution 𝑝(𝑥) is normalised across the space.

𝐴 =
100

∫
−100

100

∫
−100

1
2𝜋𝜎2 exp [− (𝑥2 + 𝑦2

2𝜎2 )] 𝑑𝑥 𝑑𝑦 (4.12)

Furthermore, our total number of events, 𝑁, is 2000. To demonstrate the above method,
we will first take the number of events we bias from the test source position, 𝑛, to be 4. For
the Gaussian function, 𝑔(𝑥, 𝑦), a 𝜎 value of 500 is used to show that the “flat” Gaussian
function reproduces a similar distribution as seen in Figures 4.4 and 4.6. The result of
using these parameters is shown in Figures 4.7 and 4.8.

As seen, using this biasing method with the appropriate parameters returns the original

distribution of ̂ℒ and 𝑛̂𝑠 values with no biasing applied. Next, the same simulation
was performed 105 times for three different Gaussian 𝜎 values of 2, 1, and 0.5, all with
a bias number of events from the source of 4. Histograms of the ̂ℒ values from each
of these simulations, including errors according to Equation 4.6, are shown in Figure

4.9, while the histograms of ̂ℒ and 𝑛̂𝑠 combinations for each simulation are inAppendix B.

We can see in Figure 4.9 that this method is returning extremely small counts, down to a
minimum of 10−19. As this likelihood value appeared with a count of 10−19 in 105 trials,
this means we would expect this result in 1 in 1024 of the original trials with no sampling
method applied. This is just an extreme example of the rare clustering that can be observed
utilising this method. As each of the distributions in Figure 4.9 show different regions of
the same distribution, we can combine them to create an overall distribution for likelihood
values and their associated frequencies. This is done by constructing an average weighted
mean of each bin for the overall distribution using the counts and associated errors from
the relative bin of each individual bias simulation. For some number of simulations, 𝑖,
which each produce a region of the overall distribution with 𝑗 bins, each with a count
value of 𝑥𝑗 and error 𝜎𝑗, the value of the 𝑗th bin in the overall distribution, 𝑋𝑗, is:
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4.4 Gaussian Weighting Method
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Figure 4.7: A comparison of the ̂ℒ values from 105 simulations with the Gaussian weighting

method applied for 4 biased events and a sampling 𝜎 of 500 against the ̂ℒ from 105 of the same
randomly generated skies with no biasing method applied. The two distributions are almost
identical, demonstrating that the given Gaussian weighting parameters reproduce the original
simulation.
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Figure 4.8:Acolour plot for the combinations of ̂ℒ and 𝑛̂𝑠 from 105 simulations with the Gaussian
weighting method applied for 4 biased events and a sampling 𝜎 of 500. This plot replicates the
result of the original case in Figure 4.6 where no biasing is applied.
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Figure 4.9: The resulting ̂ℒ using the Gaussian weighting method with parameters of 4 biased
events from a test source position at (0, 0) with a sampling 𝜎 of 500, 2, 1, and 0.5. Each individual
𝜎 value simulation was performed 105 times. The purple distribution is notably beneath the other
distributions, due to how tight the Gaussian sampling function is.
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4.4 Gaussian Weighting Method

𝑋𝑗 =

∑
𝑖

𝑥𝑗
𝑖

𝜎𝑗
𝑖

2

∑
𝑖

1

𝜎𝑗
𝑖

2

(4.13)

This process has been adapted to the two-dimensional histograms produced with the
Gaussian weighting, and has been applied to combine the simulations with the paramet-
ers of 4 biased events from the source position with assorted sampling 𝜎 values of 500, 2,
1, and 0.5, as shown in Figures 4.10 and 4.11.
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Figure 4.10: The combination of ̂ℒ values from simulations run using the Gaussian weighting
method with parameters of 4 biased events from a test source position at (0, 0) with a sampling 𝜎
of 500, 2, 1, and 0.5, each performed 105 times. These simulations were combined according to
Equation 4.13.

So far, the Gaussian weighting method has allowed us to obtain rare clustering and assign
appropriate weights for clusters of neutrino events for which simulations would have had
to run for unjustifiable amounts of time to occur naturally. However, from inspection of
Figure 4.10, we see that as we move along the tail of the likelihood distribution, the slope

becomes steeper above an approximate ̂ℒ value of -21170. The cause of this is explicitly
seen in Figure 4.9, as the distribution due to a sampling 𝜎 of 0.5 is considerably below the
distributions produced by the other 𝜎 values. This noticeably brings down the weights
of the large likelihood values in the tail of Figure 4.10. A change of behaviour is also
apparent in Figure 4.11, where the spread of the distribution becomes narrower as we

increase in ̂ℒ and 𝑛̂𝑠. Both of these occurrences are caused by the “tight” clustering that
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Figure 4.11:The combination of ̂ℒ and 𝑛̂𝑠 pairs from simulations run using theGaussianweighting
method with parameters of 4 biased events from a test source position at (0, 0) with a Gaussian 𝜎
of 500, 2, 1, and 0.5, each performed 105 times. These simulations were combined according to
Equation 4.13.

occurs due to the sampling of event positions. As the Gaussian becomes narrower, the
event positions we sample are forced close together around the test source position. This

results in ̂ℒ and 𝑛̂𝑠 combinations which closely follow the “sawtooth” pattern along the
bottom of possible values on the histogram in Figure 4.11, which indicates the maximum

̂ℒ possible for a given 𝑛̂𝑠. To obtain the currently absent lower values of ̂ℒ for a given 𝑛̂𝑠,
we want to consider large amounts of events randomly clustered around some region,
without being forced towards the centre of said region. To assess this, a similar weighting
method was created which we refer to as the binomial weighting method.

4.5 BinomialWeighting Method

The purpose of the binomial weighting method is to obtain large signal event values for
a given maximum likelihood not observed with the Gaussian weighting method. As
the limitations of the Gaussian method resulted from the sampled events being tightly
clustered towards the centre of some region, this method allows for uniform positioning
of the events over a specified region and gives the entire sky an appropriate weight, 𝑊.
To perform the binomial weighting method, we begin by considering some number of
events, 𝑁. We then choose some closed region, 𝑈, on a space where the events are to be
clustered. After this region is chosen, the base probability, 𝑝, is found, which indicates the
probability that if an event were randomly placed over the entire space, its position would
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4.5 Binomial Weighting Method

be inside 𝑈. This probability is simply equal to the ratio of the area 𝑈 to the area of the
entire space. Next, a bias probability, 𝑝′, is chosen. This is used to determine how many
of the 𝑁 events are placed within the closed region. We choose the number of events
in the region by sampling an integer from a binomial distribution, which is a discrete
probability distribution of the form:

𝑃(𝑘 | 𝑛, 𝑝) = (𝑛
𝑘) 𝑝𝑘(1 − 𝑝)𝑛−𝑘 (4.14)

where:

(𝑛
𝑘) = 𝑛!

𝑘!(𝑛 − 𝑘)!
(4.15)

Here, 𝑘 indicates the number of successes, whether a trial is “in” or “out”, in a series of 𝑛
independent trials where 𝑝 is the probability that a trial will be successful. In our case, 𝑘
indicates the number of events which will be placed inside the closed region. By inputting
our number of events,𝑁, and our bias probability 𝑝′, we are returned some integer number
which we use as the number of events placed in the closed region. The remaining events
are then randomly placed outside of the closed region, and the previously used likelihood
fit can be performed. The weight, 𝑊, given to this sky, and hence to any property of
the sky, is a ratio of the value of the probability mass function such that we obtained 𝑘
successes for𝑁 trials with the base probability 𝑝, to the value of the same probability mass
function with the same values except that the probability is the bias probability 𝑝′. Once
again, we can relate this to the importance sampling such that the base probability is the
desired distribution 𝑓(𝑥), and the bias probability is the sampling distribution, 𝑝(𝑥):

𝑊 = 𝑓(𝑥)
𝑝(𝑥)

= 𝑃(𝑘 | 𝑁, 𝑝)
𝑃 (𝑘 | 𝑁, 𝑝′)

(4.16)

Using this process and the allocated weight, we are now able to simulate the rare neutrino
clustering of a large number of neutrinos equally distributed over some region of interest.
By choosing a large 𝑝′ (relative to 𝑝), the denominator of𝑊will typically be larger than the
numerator, as sampling from a binomial distribution with probability 𝑝′ will on average
return a larger integer than if sampled with 𝑝. In turn, by forcing an increased number of
events into the closed region, it will be given an appropriately smaller weight. By drastic-
ally increasing 𝑝′, we can force extremely rare clusters of events to occur. It is important
to be able to generate these cases as they can identify assortments of clusters that the
Gaussian weighting method cannot. In the binomial method, if a large number of events
are forced to cluster, they are evenly distributed within the desired region. However,
because of how the Gaussian weighting method works, if a large number of events are
forced to cluster, their positions will be biased towards the centre of the region of interest
due to how the event positions being sampled according to a Gaussian distribution. For
some set-up, we can also check that this method returns the same outcome as would be
expected with no biasing applied by simply setting 𝑝′ = 𝑝. Here, events are naturally
randomly distributed over the entire space and the weight of the sky would be one.
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4 Likelihood Analysis and Importance Sampling

Once again, to demonstrate this method, it is applied to the same 2000 events each
with a resolution error of 1 on a 200 × 200 unit Cartesian grid. This is performed to force

rare clusters of neutrinos to occur, which correspond to ̂ℒ values not seen in Figure 4.11,
with appropriate weights applied. Here, we choose a circular closed region with an area
of 1/2000 of the entire space’s area such that the base probability, 𝑝, is 0.0005. Once again,
we consider the origin (0, 0) as our test position. As such, events that are positioned within
the closed region then have their coordinates (𝑥, 𝑦) sampled according to the process
described in Appendix B. This process returns a random position within a circle of radius
𝑅. As the closed region under consideration is 𝑈 = 1/2000 of the entire 200 × 200 grid, we
use an 𝑅 of √20/𝜋. We begin by setting our bias probability, 𝑝′, to the base probability, 𝑝,
to check that this method returns a similar distribution to those seen naturally in Figures
4.4, 4.5, and 4.6. The result of performing this simulation 105 times with 𝑝′ = 𝑝 is shown
in Figures 4.12 and 4.13.
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Figure 4.12: A comparison of the ̂ℒ values from 105 simulations with the binomial weighting

method applied for a base probability 𝑝 and bias probability 𝑝′ of 0.0005 against the ̂ℒ from 105

of the same randomly generated skies with no biasing method applied. Both of these simulations

produce similar ̂ℒ distributions.

We see from Figure 4.12 that applying this biasing method under the correct conditions
returns the natural distribution expected when no biasing is applied. Following the
process of the Gaussian weighting method, the sampling parameters in the binomial
weighting method are changed in order to extend the distributions depicted in Figures
4.4 and 4.6. To demonstrate this, the bias probability, p’, is set to be 0.001, 0.0025, and

0.005. The results for the ̂ℒ values from each of these simulations with appropriate errors

48



4.5 Binomial Weighting Method

21192− 21190− 21188− 21186− 21184− 21182− 21180−
Maximum Likelihood

0

1

2

3

4

5

6

7

8

9

10

M
ax

im
um

 S
ig

na
l E

ve
nt

s

1

10

210

310

410

C
ou

nt
s

Figure 4.13: A colour plot for the combinations of ̂ℒ and 𝑛̂𝑠 from the 105 simulations with the
binomial weighting method applied for a base probability 𝑝 and bias probability 𝑝′ of 0.0005.
Again, this plot replicates the result of the original case in Figure 4.6 where no biasing is applied
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4 Likelihood Analysis and Importance Sampling

using Equation 4.6 are shown in Figure 4.14, while the ̂ℒ and 𝑛̂ combination plots are in
Appendix D.
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Figure 4.14: The resulting ̂ℒ using the binomial weighting method with parameters of a base
probability 𝑝 of 0.0005 around a test source position at (0, 0) with a bias probability p’ of 0.0005,
0.001, 0.0025, and 0.005. Each individual p’ value simulation was performed 105 times.

Again, the application of importance sampling has extended the original likelihood distri-
bution, this time with the binomial weighting method. Now, we can again use Equation
4.13 to combine the distributions from each of these simulations. The result of combining

the ̂ℒ distributions is presented in Figure 4.15, while the combination of the ̂ℒ and 𝑛̂𝑠
pairs from each simulation is depicted in Figure 4.16.

It is clear from Figure 4.16 that the application of the binomial weighting method returns

a different sample of the possible ̂ℒ and 𝑛̂𝑠 combinations than that seen with the Gaus-
sian weighting method. However, it does have the inverse effect in that even though it
has a wider spread as the distribution extends to include more of the possible combina-
tions, it fails to obtain the values which created the clear “sawtooth” pattern previously
seen in Figure 4.11. An explicit example of the difference between the regions mapped
out by the Gaussianweightingmethod and the binomial weighted is shown in Figure 4.17.

This shows that while neither weighting method is able to fill out the entire space of

possible ̂ℒ and 𝑛̂𝑠 pairs, a combination of the two methods should be able to map out the
entire parameter space.
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Figure 4.15: The combination of ̂ℒ values from simulations run using the binomial weighting
method with parameters of a base probability 𝑝 of 0.0005 around a test source position at (0, 0)
with a bias probability p’ of 0.0005, 0.001, 0.0025, and 0.005, each performed 105 times. These
simulations were combined according to Equation 4.13.
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Figure 4.16: The combination of ̂ℒ and 𝑛̂𝑠 pairs from simulations run using the binomial weighting
method with parameters of a base probability 𝑝 of 0.0005 around a test source position at (0,0)
with a bias probability p’ of 0.0005, 0.001, 0.0025, and 0.005, each performed 105 times. These
simulations were combined according to Equation 4.13.
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Figure 4.17:An explicit example of the different regions of the space of possible ̂ℒ and 𝑛̂𝑠 combin-
ations obtained using the Gaussian and binomial weighting methods. The dark blue region shows
combinations obtained using Gaussian weighting with 4 biased events and a sampling 𝜎 of 0.5,
the green region shows combinations obtained using binomial weighting with a bias probability
𝑝′ of 0.005, and the yellow region shows combinations obtained in both weighting methods.

4.6 CombiningWeighting Methods

The Gaussian weighting method and the binomial weighting method have been con-
structed to force rare clusters of neutrinos to form, which then have appropriate weights
applied to quantify the probability of observing that cluster naturally. However, as the

results in each simulation are mapping out different regions of the possible ̂ℒ and 𝑛̂𝑠
combinations on the same parameter space, they need to be combined appropriately to
construct full distribution that includes all possible parameter combinations and their
relative weights that can be used for other analyses. Much like how different simulations
with varying sampling parameters were combined within the Gaussian weighting and the
binomial weighting, the results from the Gaussian weighting and the binomial weighting
can also be combined for some sky. We are able to do this as we expect that for either the
Gaussian or the binomial method, any set of sampling parameters will, after an infinite
amount of time, return the same distribution. To demonstrate this we apply the previ-
ously described weighting methods to the same 2000 events with a 1 unit resolution error
over a 200 × 200 region formerly used to illustrate the processes. A number of different
parameters have been used with the weighting methods and are listed in Table 4.1. The

combination of the ̂ℒ and 𝑛̂𝑠 pairs from these simulations is shown in Figure 4.18, while

the combination of all ̂ℒ values is depicted in Figure 4.19 due to a combination of the
Gaussian and binomial methods against a 𝜒2 distribution with one degree of freedom.
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4.6 Combining Weighting Methods

Once again, Equation 4.13 was used to combine the distributions produced by each of
these simulations. In addition, when the results from each simulation are combined, we
choose not to include the results from bins which have less than three entries in them
before the average weighted mean is calculated. This was done because bins with small
numbers of entries carry large errors due to the inverse proportionality between the error
and sample size as described in Equation 4.6. In turn, this can drastically affect the final
result as calculated with Equation 4.13.

Table 4.1: Sampling parameters used to create Figure 4.18 and 4.19.

Weighting Biased Events Gaussian 𝜎 Base Probability 𝑝 Bias Probability 𝑝′

Gaussian 4 500 - -
Gaussian 4 2 - -
Gaussian 4 1 - -
Gaussian 4 0.5 - -
Gaussian 10 2 - -
Gaussian 10 1 - -
Gaussian 20 1 - -
Binomial - - 0.0005 0.0005
Binomial - - 0.0005 0.001
Binomial - - 0.0005 0.0015
Binomial - - 0.0005 0.002
Binomial - - 0.0005 0.0025
Binomial - - 0.0005 0.003
Binomial - - 0.0005 0.0035
Binomial - - 0.0005 0.004
Binomial - - 0.0005 0.0045
Binomial - - 0.0005 0.005
Binomial - - 0.0005 0.01

As seen on inspection of Figure 4.18, by combining the Gaussian and binomial weighting
methods with assorted sampling parameters, we have effectively extended the distribu-

tion of possible ̂ℒ and 𝑛̂𝑠 pairs and their respective weights for the previously defined
neutrino events on the simulated sky. This is in comparison to the combination ofGaussian
method simulations in Figure 4.11 and the combination of binomial method simulations
in Figure 4.16. We expect that much like the parameter pairs along the sawtooth edge

of the distribution which indicate the minimum 𝑛̂𝑠 for a given ̂ℒ, the cut-off of values
along the “top” of the distribution indicate the maximum 𝑛̂𝑠 for a given ̂ℒ. That is, a
combination of parameter pairs above this region would not be seen in any simulation,
as the likelihood function would never fit any of these values for this specific number of
events on this specified region.

This distribution could also be extended further, notably by increasing the bias probability
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Figure 4.18: The average weighted mean of the ̂ℒ and 𝑛̂𝑠 pairs from the simulations described in
Table 4.1. These simulations were combined according to Equation 4.13. This distribution has
been drastically extended compared to the combination of Gaussian method simulations in Figure
4.11 and the combination of binomial method simulations in Figure 4.16.
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Figure 4.19: The average weighted mean of the ̂ℒ values from the simulations described in Table
4.1 is shown in blue, plotted against a 𝜒2 distribution with one degree of freedom shown in red.
These simulations were combined according to Equation 4.13.

for the binomial weighting or increasing the biased number of events for the Gaussian
weighting. However, this may not be necessary depending on the analysis being per-
formed. For example, clustering described by the parameters pairs indicated by the green
bands in Figure 4.18 identify clustering with a probability between around 10−15 and
10−20 of occurring, which would be more than sufficient for most analyses.

It is also interesting to note that by taking the ̂ℒ values and creating their respective
test statistic, 𝜆, as described by Equation 4.2, the distribution of test statistic values fits to
a 𝜒2 distribution with one degree of freedom, shown in Figure 4.16. A degree of freedom
of one is used as this is the difference in dimensions of parameters between a case of 𝑛𝑠
set to zero, a fixed values, and a case of varying 𝑛𝑠, one free parameter. As previously
described, Wilks’ theorem says that if the null hypothesis is true, then the distribution of
𝜆 should follow a 𝜒2 distribution. This result may indicate that the combination of the
weights created using importance sampling are returning the correct weights for how
often these clusters would occur naturally, if we were to assume that Wilks’ theorem
describes the expected answer. Additionally, it can provide a comparable significance
from a 𝜒2 test to the significance calculated from the test statistic of these results, which
will be explored more in Chapter 5. This is only useful however if we were sure that our
hypotheses can be considered under Wilks’ theorem, which as previously mentioned, we
are unsure whether it can.
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4 Likelihood Analysis and Importance Sampling

4.7 Summary

Likelihood analysis is an extremely useful and frequently utilised method applied to
many different analyses by the IceCube Collaboration. This method is heavily used for
point source analysis, where we need to understand how often we would expect to see
clustering of neutrino events due to random background to compare to real neutrino
event clustering seen in IceCube. This process is limited by the amount of neutrino
sky simulations required to find the frequency of this clustering and the computational
resources required to perform them. Here, we have used the method of importance
sampling to force rare clustering of neutrinos to appear, and allocated them weights
which indicate how often they would appear in the background-only events simulation.
Specifically, we have introduced two new methods for this importance sampling, a
Gaussian weighting method and binomial weighting method, and demonstrated how
a combination of the two can effectively obtain weights for any given clustering of a
number of events on a specified region. Specifically, we were able to identify very rare
clusters of neutrinos which have probabilities of less than 10−28 of occurring.
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5 Application of Importance Sampling for Parameter Pair

Constructed Test Statistics

We introduced the concept of test statistics in Chapter 4. Often denoted with 𝜆, test
statistics are a singular value which characterises a dataset. These values can then be
used to identify how significant a result is, and are used in hypothesis testing. In this

chapter, we investigate the effectiveness of combining the maximum likelihood, ̂ℒ, and
its corresponding best fit maximum signal events, 𝑛̂𝑠, into a new single test statistic. We
do this by performing likelihood analyses on skies created according to a null hypothesis

and an alternate hypothesis. Two-dimensional histograms containing the ̂ℒ and its 𝑛̂𝑠
are created, and a ratio of the frequency of each ̂ℒ and 𝑛̂𝑠 pair in both hypotheses can
be taken as the test statistic. However, importance sampling is required to use the test

statistic correctly, as we require knowledge of the frequency of the rare ̂ℒ and 𝑛̂𝑠 pairs,
corresponding to rare clusterings of neutrinos. This new test statistic is then compared to

̂ℒ using a power versus significance analysis, which according to the Neyman-Pearson
Lemma, is the most powerful test statistic.

5.1 Test Statistics

5.1.1 Neyman-Pearson Lemma

TheNeyman-Pearson Lemmadescribes the best test statistic that can be used in hypothesis
testing. First, consider some hypothesis test, where the null hypothesis 𝐻0 and the
alternate hypothesis 𝐻1 are described by the parameters 𝜃0 and 𝜃1 respectively. Now
consider a test statistic, 𝜆(𝑥), which is a likelihood ratio of 𝐻0 to 𝐻1, where 𝐻0 is rejected
by 𝐻1 at some threshold 𝜆(𝑥) ≤ 𝜉 with a significance of 𝛼. This significance is then:

𝛼 = 𝑃(𝜆(𝑥) ≤ 𝜉 | 𝐻0) (5.1)

with:

𝜆(𝑥) = ℒ(𝜃0 | 𝑥)
ℒ(𝜃1 | 𝑥)

(5.2)

The Neyman-Pearson Lemma states that the test statistic, 𝜆(𝑥), is then the most powerful
test statistic at the significance level 𝛼 [67], and applies to fixed hypotheses. This is similar
the test statistic used for the likelihood ratio test described in Chapter 4, apart from
applying twice the negative logarithm. In this chapter, we investigate a new test statistic,

based on a combination of the maximised likelihood ̂ℒ and best fit 𝑛̂𝑠, and compare how

powerful it is to only using the maximum likelihood ̂ℒ as the test statistic.
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5 Application of Importance Sampling for Parameter Pair Constructed Test Statistics

5.1.2 Power and Significance

Statistical power and significance are important concepts used in hypothesis testing.
Significance, 𝛼, indicates the probability that the null hypothesis is rejected when it is
in fact true. This outcome is also referred to as a type I error. A type II error is then the
probability of correctly rejecting the null hypothesis when the alternate hypothesis is
true, and has probability 𝛽 of occurring. As such, the statistical power is then 1 − 𝛽, and
describes the probability of accepting the alternate hypothesis when it is true. For some
given distributions of test statistics constructed for a null hypothesis and an alternate
hypothesis, we can calculate the statistical power and significance for any given test
statistic in either distribution. We can then compare this to a test statistic from some
experimental result to conveniently find its statistical power and significance. A graphical
example of this is illustrated in Figure 5.1, where likelihood values are considered as the
test statistic in some null and alternate hypothesis.

	

a	

1	-	b	

Figure 5.1: An example of distributions describing the probability of obtaining some likeli-
hood value for a null hypothesis and alternate hypothesis. An observed likelihood value
at the indicated point will have some statistical significance 𝛼 and statistical power 1 − 𝛽.
These values are equal to the area under the null hypothesis distribution (red) and alternate

hypothesis distribution (blue and red) for ̂ℒ greater than the critical value indicated.

If the ratio between the 𝑃( ̂ℒ) for the null hypothesis to the 𝑃( ̂ℒ) for the alternate hypo-
thesis is taken for any given ̂ℒ, the smallest likelihood ratio value indicates the likelihood
value which, if observed, provides the strongest indication that the alternate hypothesis
is better than the null hypothesis. This minimum likelihood ratio indicates the likelihood
value at which we begin the rejection region, 𝛼, of rejecting the null hypothesis, which
for the likelihood ratios, increases as the likelihood ratio value increases. For the distri-
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butions in Figure 5.1, the significance increases from right to left for a given likelihood
value as the likelihood ratio is smallest at the larger likelihood values. As an example,
consider the null and alternate hypothesis distributions of likelihood values in Figure

5.1, and an experiment that produced the likelihood ̂ℒ at approximately 0.8. At this
point, consider that the area under the null hypothesis distribution from this observed
likelihood to any greater likelihood value is 0.1. This value indicates a significance, 𝛼, of
0.1, and implies that there is a 10% chance that the likelihood value would be observed if
the null hypothesis were true. Now, at the same experimental likelihood, consider the
area under the alternate hypothesis distribution between this likelihood value and any
greater value is 0.9. This value is the statistical power, 1 − 𝛽, and indicates that there is a
90% chance that the likelihood value would be observed if the alternate hypothesis were
true. Ideally, the distributions should be separated as much as possible to obtain a small
significance with a large power, such that we can predominantly accept an experimental
likelihood value according to the alternate hypothesis with little chance that the null
hypothesis also explains it. This same procedure can be performed at every likelihood
value to obtain a power and significance for any given likelihood that could result from
the experiment. This information can then be plotted to create a power versus significance
plot. An example of applying this process to the distributions in Figure 5.1 is shown in
Figure 5.2. Each point on Figure 5.2 shows some possible likelihood value observable
in either hypothesis, and the power and significance for that value if it was observed.
Ideally, the power vs. significance would be pushed up into the top left corner, such that
there is a large probability of accepting any result if the alternate hypothesis is true, and a
small chance it would be observed if the null hypothesis is true.

Graphing the power and significance in this manner due to different null and alternate
hypothesis combinations can be extremely useful to understand the best test statistic to
test some hypothesis, as it conveniently shows how the significance changes with power
for a tested hypothesis. Ideally, we desire the highest attainable power for a required
level of significance.
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Figure 5.2: A power versus significance plot created by integrating the null and alternate
likelihood value distributions fromFigure 5.1. Each point indicates the power and significance
of a given likelihood which may be observed due to either hypothesis.

5.2 Creating Test Statistics and Comparing Power and Significance

In this section we investigate the effectiveness of using a test statistic which is a com-

bination of ̂ℒ and 𝑛̂𝑠. This is created by producing a two-dimensional plot of ̂ℒ and
its corresponding 𝑛̂𝑠 for a number of trials representing both a null hypothesis and an
alternate hypothesis. The counts in the two-dimensional plot indicate the frequency that

a given ̂ℒ and 𝑛̂𝑠 pair occurs in the relative hypothesis. We can then take a ratio of the
frequency due to both hypotheses, and use it as our new test statistic, which we refer to
as the “parameter pair ratio” test statistic or “ratio” for short. To accurately investigate
this, we require the use of the Gaussian and binomial importance sampling methods to

obtain rare clusters and hence represent all relevant ̂ℒ and 𝑛̂𝑠 pairs. This test statistic is

then compared, via a power vs. significance analysis, to the maximum likelihood, ̂ℒ, on
its own.

5.2.1 Maximum Likelihood and Maximum Signal Events as a Test Statistic

In order to explore this concept, we once again consider the distribution of 2000 neutrino
events with resolution error of 𝜎 = 1 across a 200 × 200 Cartesian space. For this, we
create test statistics from a null hypothesis, 𝐻0, where we expect zero signal events from
a possible source position, and from an alternate hypothesis, 𝐻1, where we expect three
signal events from the source position. We set the origin of the Cartesian grid, (0, 0),
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as our test source position and perform a likelihood fit at this point, to find the best fit

parameters ̂ℒ and 𝑛̂𝑠. To investigate the null hypothesis, we create a neutrino sky by
randomly positioning the 2000 events across the space. For the alternate hypothesis,
where we expect three signal events at the test source position, we must distribute three
of the total number of events around this point. We treat the positions of these source
events as normally distributed around the origin, and as such their coordinates can be
obtained using the Box-Muller transform described in Appendix A. The remaining events
are then placed randomly on the sky. Here we have performed both the null hypothesis
and the alternate hypothesis simulation for 106 trials. Specifically, random neutrino skies
have been simulated and a likelihood fit has been performed at the origin for both the

null hypothesis and alternate hypothesis cases to obtain the best fit parameters ̂ℒ and 𝑛̂𝑠.

The distribution of ̂ℒ values from both hypotheses are plotted in Figure 5.3, while the ̂ℒ
and 𝑛̂𝑠 pairs from each hypothesis are shown in Figures 5.4 and 5.5. Again, the “counts”
in each of the figures in Chapter 5 indicate the number of skies with the indicated best fit
parameter values, or indicated ratio values.

Maximum Likelihood
21190− 21185− 21180− 21175− 21170− 21165−

C
ou

nt
s

1

10

210

310

410

510

610

0
Null Hypothesis H

1
Alternate Hypothesis H

Figure 5.3: Themaximum likelihood ̂ℒ values from 106 trials for both the null hypothesis
(blue) and the alternate hypothesis (red). As expected, the majority of null hypothesis
trials fit to the minimum possible likelihood of -21193.3, while the majority of alternate
hypothesis trials fit to a greater likelihood, indicating the presence of at least one neutrino
event near the origin.

Upon inspection of Figure 5.3, both hypotheses clearly produce different ̂ℒ distributions.

Furthermore, the alternate hypothesis plot for ̂ℒ and 𝑛̂𝑠 pairs in Figure 5.5 shows the
expected peak of 𝑛̂𝑠 values at three, as this is the amount we forced to be distributed
around the origin. Any values that are larger than this are due to some number of the
remaining background events on the sky overlapping with this position. Any values that
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Figure 5.4: A colour plot for the ̂ℒ and 𝑛̂𝑠 pairs from each of the 106 null hypothesis
trials where 2000 events are randomly positioned on a 200 × 200 Cartesian grid and
a likelihood fit is performed at (0, 0). The majority of trials fit to an 𝑛̂𝑠 of 0, and there
is a notable lack of counts above an approximate 𝑛̂𝑠 of 3, which is expected due to no
biasing of events.

are less this occur due to the Box-Muller transform distributing the three events away

from one another relative to the origin, resulting in a smaller fitted 𝑛̂𝑠. The ̂ℒ distributions
can now be used to produce a power vs. significance plot which can be compared to a
given test statistic from experimental data.

5.2.2 Parameter Pair Ratios as a Test Statistic

The idea of combining ̂ℒ, and its best fit signal events, 𝑛̂𝑠, into a single test statistic has

previously been suggested to provide a more powerful test statistic than ̂ℒ on its own
[68]. This may seem counter-intuitive, as we have already detailed the Neyman-Pearson
Lemma and its consequences, but it sounds plausible that if a test statistic parametrises

a trial to both the ̂ℒ and 𝑛̂𝑠 value it fits to, we may be able to construct a test statistic

more useful than using the ̂ℒ value alone. As mentioned in Chapter 4, the parameter

pairs do not follow a one to one relationship, such that ̂ℒ can correspond to multiple
assorted 𝑛̂𝑠 values and vice versa. This relationship can possibly used to our advantage

to create a new test statistic. This test statistic is the ratio of how often ̂ℒ and 𝑛̂𝑠 pairs are

observed for the alternate hypothesis to how often the same ̂ℒ and 𝑛̂𝑠 pairs are observed
for the null hypothesis. We can describe the histograms in Figure 5.4, the null hypothesis,

and Figure 5.5, the alternate hypothesis, as having bins with total counts 𝑥𝑗𝑘
𝐻0

and 𝑥𝑗𝑘
𝐻1

respectively where each histogram has 𝑗 rows and 𝑘 columns. The 𝑗 rows then separate
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Figure 5.5:Acolour plot for the ̂ℒ and 𝑛̂𝑠 pairs from each of the 106 alternate hypothesis
trials where 3 events are distributed according to a Box-Muller transform around (0, 0)
and the remaining 1997 events are randomly positioned on a 200 × 200 Cartesian grid.
The likelihood fit is then performed at (0, 0). As expected, the 𝑛̂𝑠 counts peak at 3 due
to how the alternate hypothesis was constructed. There is also a slightly smaller peak at
4, indicating that in a numerous trials, one of the background neutrinos has also been
positioned close to the origin.
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5 Application of Importance Sampling for Parameter Pair Constructed Test Statistics

the 𝑛̂𝑠 values into a discrete range, while the 𝑘 columns do the same for the ̂ℒ values. The
ratio value for each respective bin, 𝑋𝑗𝑘, is then calculated with:

𝑋𝑗𝑘 =
𝑥𝑗𝑘

𝐻1

𝑥𝑗𝑘
𝐻0

(5.3)

The result of these calculations is shown in Figure 5.6. There are however a number of ̂ℒ
and 𝑛̂𝑠 pairs in the alternate hypothesis plot (Figure 5.5) which do not have a correspond-
ing value in the null hypothesis plot (Figure 5.4), so the respective bins in the ratio plot,
Figure 5.6, have been left empty, as we cannot divide the entry by zero.
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Figure 5.6: A colour plot indicating the ratio value of the frequency of an alternate hypothesis ̂ℒ
and 𝑛̂𝑠 pair to the frequency of a null hypothesis ̂ℒ and 𝑛̂𝑠 pair. All bins which correlate to a ̂ℒ
and 𝑛̂𝑠 pair of zero for the null hypothesis but have a value for the alternate hypothesis have been
given a value of zero.

The next step is to allocate each of the hypothesis trials its corresponding ratio value, to
create a new distribution of null and alternate hypothesis test statistics. We do this by

allocating each of the trials with a ̂ℒ and 𝑛̂𝑠 pair in Figures 5.4 and 5.5 to its correspond-
ing ratio value in the Figure 5.6 plot. As there are numerous alternate hypothesis trials
without a null hypothesis trial value to divide by, we put the trial skies in this situation
into an “overflow bin”, such that they are still represented and are taken into account
when considering the power and significance. As the ratio values vary over orders of
magnitude, their distribution according to the null and alternate hypothesis is shown as
a logarithmic plot in Figure 5.7, with the overflow bin set at a value of 6. Out of the 106

trials performed for the test hypothesis, 204190 of these have no corresponding ratio due

to a lack of ̂ℒ and 𝑛̂𝑠 pairs in the null hypothesis trials, which as over 20% of trials, is a
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particularly large portion.
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Figure 5.7: The ratio distributions where each trial with some ̂ℒ and 𝑛̂𝑠 pair from the null
and alternate hypothesis has been allocated a ratio value equal to the ratio of the frequency
that the parameter pair was observed in the test hypothesis trials to the null hypothesis trials.
The overflow bin at 6 consists of the trials from the alternate hypothesis whose parameter
pairs were not observed in the null hypothesis, hence a ratio could not be taken.

We can now create a power and significance plot for the ratio values due to the ratio
distributions and compare it to the power and significance due to themaximum likelihood

̂ℒ, the best test statistic according to the Neyman-Pearson Lemma. This is shown in Figure
5.8. Both distributions stop at an expected significance of -6 as this indicates the one null

hypothesis trial of the 106 trials with the greatest ̂ℒ value in Figure 5.3 and greatest ratio
value in Figure 5.7.

As seen in Figure 5.8, a useful power vs. significance graph for the distributions cannot
be constructed as the ratio power only reaches a value of 0.2 due to the presence of the
overflow bin. The reason for this cut-off is the approximately 20% of trials which were
placed in the overflow bin. As the power vs. significance plot is created by integrating
the null and alternate hypothesis distributions bin by bin, the point at a power of 0.2
represents 20% of the alternate hypothesis trials and none of the null hypothesis trials.
This currently suggests that the ratio test statistic is an improvement over the maximum
likelihood on its own, as for significance values lower than where log10𝛼 is approximately
-3, the power (1 - 𝛽) is higher than that for the maximum likelihood. Although, we cannot
say that this is definitively any better without testing this case where no overflow bin
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Figure 5.8: Apower and significance for the distributions of test statistics for the null hypo-

thesis and alternate hypothesis due to the maximum likelihood ̂ℒ (red) and due to a ratio of
the frequency of their parameter pairs (blue), created by integrating the distributions from
Figure 5.3 and 5.7 respectively. It appears that using the parameter pair ratio is a better test
statistic, however this could be an artefact of using the overflow bin.

required. Fortunately, we can utilise importance sampling to force rare clustering in the

null hypothesis to occur, enabling us to obtain correct ratios for every ̂ℒ and 𝑛̂𝑠 pair. A
distribution for the null hypothesis parameter pairs of interest is shown in Figure 5.9,
which is constructed using the same Gaussian sampling and binomial sampling simula-
tions listed in Table 4.1, as this was created for the same number of events on the same
size Cartesian grid.

Seen clearly in Figure 5.9, using importance sampling has provided frequencies for all
parameter pairs which are seen for the test hypothesis, and we can now create appropriate
test statistics from the ratio values without requiring an overflow bin. The result of taking
the ratio of the alternate hypothesis with importance sampling frequencies to the null
hypothesis is again calculated with Equation 5.3, with these values shown in Figure 5.10.
To be exact, Figure 5.10 is then just the ratio of counts in each bin in Figure 5.5 to the
corresponding bin in Figure 5.9.

Now that we have ratio values for each of the ̂ℒ and 𝑛̂𝑠 pairs observed in the alternate
hypothesis, we can allocate each trial from each hypothesis its relative ratio value and use
this as our new test statistic. In this case, we now have multiple trials which contributed
to the null hypothesis that have no corresponding weights for parameters pairs in the
alternate hypothesis. However, as we divide by the frequency of the null hypothesis, the
ratios allocated to these trials are simply zero. Additionally, as previously mentioned,
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Figure 5.9: A colour plot for the ̂ℒ and 𝑛̂𝑠 pairs for the null hypothesis trials using the
importance sampling methods from Chapter 4. Again, 2000 events are randomly positioned
on a 200 × 200 Cartesian grid and a likelihood fit is performed at (0, 0). Both the Gaussian
and binomial sampling methods have been used to extend the distribution.
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Figure 5.10:Acolour plot indicating the ratio value of the frequency of an alternate hypothesis
̂ℒ and 𝑛̂𝑠 pair to the frequency of a null hypothesis ̂ℒ and 𝑛̂𝑠 pair. All bins correlating to a

filled bin for the alternate hypothesis now have a respective ratio value, due to the use of
importance sampling in the null hypothesis simulation.
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5 Application of Importance Sampling for Parameter Pair Constructed Test Statistics

when we use importance sampling to obtain the weight of a sky, the weight applies to
any property of the sky. This includes the ratio statistics created here, such that when
creating the ratio value distribution for the null hypothesis, the weight for a given trial is
also given to the respective parameter pair ratio value. The resulting distributions from
allocating each of the trials from the null and alternate hypothesis is shown in Figure 5.11,
where each ratio value expectedly has contributions from both hypotheses’ trials. The
logarithm of the ratio values is shown due to the range in orders of magnitude of possible
values.
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Figure 5.11: The ratio distributions where each trial with a calculated ̂ℒ and 𝑛̂𝑠 pair from
the null and alternate hypothesis has been allocated a ratio value equal to the ratio of the
frequency that the parameter pair was observed in the alternate hypothesis trials to the null
hypothesis trials. Each trial from both the null and alternate hypothesis now has a ratio value.

The effect of the overflow bin, and how it has been mitigated, is shown in Figure 5.12.
Here, the distribution of parameter pair ratios with the overflow bin from Figure 5.7 is
plotted against the results with the use of importance sampling from Figure 5.11. In addi-
tion to these plots, the green distribution indicates where the trials that originally went in
the overflow bin are put when they now have a corresponding ratio value. The green
distribution shows that the overflow bin trials were distributed throughout likelihood
value bins covered by both the hypothesis distributions when no importance sampling
was applied. This clearly indicates that the trials which originally had no ratio value
cannot be placed in the overflow bin located at a greater test statistic than any of the others
obtained in the simulations. Additionally, this indicates that the power vs. significance
plot in Figure 5.8 does not accurately portray the performance of the test statistic we have
constructed here.
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Figure 5.12: The null (red) and alternate (blue) hypothesis for parameter pair ratio distributions
using importance sampling from Figure 5.11 against the null (purple) and alternate (orange)
hypothesis for the parameter pair ratio distributions using an overflow bin from Figure 5.11. The
green distribution indicates where the trials which were originally in the overflow bin were placed
once importance sampling was used to provide them with ratio values. These overflow bin trials
have been placed before and after the cut off of value covered by the original null hypothesis
distribution without importance sampling.
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5 Application of Importance Sampling for Parameter Pair Constructed Test Statistics

Now, we create a power vs. significance plot using the null and alternate hypothesis
parameter pair ratio value distributions after having used importance sampling to extend

the null hypothesis distribution. As we compare this to the maximum likelihood ̂ℒ power

and significance, we must also construct the ̂ℒ power vs. significance plot using the null
hypothesis likelihood values with importance sampling weights applied. Additionally,
the use of importance sampling now results in a much lower significance than -6 for the
maximum likelihood, the value at which it ended in Figure 5.8. As a result, the power and

significance for the test and null hypothesis due to the maximum likelihood ̂ℒ and due to
a ratio of the frequency of the parameter pairs is shown in Figure 5.13, with a closer look
in Figure 5.14.
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Figure 5.13: Apower vs. significance plot for the distributions of test statistics for the null

hypothesis and alternate hypothesis using the maximum likelihood ̂ℒ (green) and using a
ratio of the frequency of their parameter pairs this time using importance sampling (pink).
Again, these plots are created by integrating over the null and alternate hypothesis distribution
to values higher than a given test statistic. These are compared to the power vs. significance

in Figure 5.8 due to ̂ℒ (red) and the ratio values (blue), both without importance sampling.

The first primary result to observe from Figure 5.14 is that using importance sampling
greatly increases both the power and significance levels that these test statistics can be
tested at, compared to the power vs. significance plots produced in Figure 5.8. However,
both Figure 5.13 and 5.14 also indicate that there is no overwhelming difference in the
power and significance due to a test statistic constructed from the maximum likelihood
compared to one constructed from a ratio of the frequency of parameter pairs. Figure 5.14
shows that the deviation between these points occurs below an approximate log10𝛼 value
-6. This difference is not relatively large however, and could be some artefact of using
the importance sampling method in one of the hypotheses and not the other. Explicitly,
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Figure 5.14: Acloser look at the region of interest in Figure 5.13, where the power vs. signific-
ance plots separate. The plots notably move away from each other below a significance of -6.
The power for the ratio test statistic here is slightly larger, although at this small significance
this not a useful result.

not extending the alternate hypothesis distribution with importance sampling. Even if
this difference is real, for this case at least, it only provides the slightest improvement.
To clarify further, consider the significance at a log10𝛼 value of -10. At this level, the
power only improves from 6 × 10−6 to 7 × 10−5, which is only an improvement in that the
relevant test statistic would occur in 0.0007% of trials if the alternate hypothesis were true,
rather than in 0.00006% of trials. Altogether, this is not a particularly useful improvement
on the significance. Additionally, this adds unnecessary and time-consuming steps to
the procedure in order to obtain the power and significance for a given experimental test
statistic. Either way, this phenomenon would have to be investigated further to obtain a
definitive answer for the difference in these test statistics.

We can look at this effect in more detail by considering how the 𝑛̂𝑠 values change for a

set of fixed ̂ℒ values in both the null and alternate distributions. This can be checked
by taking “slices” along fixed ̂ℒ bins of the two-dimensional ̂ℒ and 𝑛̂𝑠 plots for the null
hypothesis, Figure 5.9, and the alternate hypothesis, 5.5. A set of these slices taken from
Figures 5.5 and 5.9 is shown, normalised, in Figure 5.15.

Each of the slice distributions have been normalised so that the shape between the hypo-
theses can be compared. We see that the shapes of the distributions are similar, particularly
for the distributions representing the slice of a lower likelihood value. If these shapes
are the same, this is an indication that constructing a ratio test statistic, based off the
parameter pair, will not be useful as it will not provide new information with which the
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Figure 5.15: Assorted distributions showing how the maximum signal events 𝑛̂𝑠 changes

for a given discrete range of ̂ℒ values. The range of ̂ℒ for each distribution is stated in the

respective boxes. The shape of these distributions is very similar for the lower ̂ℒ values,

while the shapes seem to become different between the hypothesis as ̂ℒ increases.

hypotheses can be compared. At the lower ̂ℒ values, there are numerous counts for the

relative slice in both hypotheses. At the larger ̂ℒ values, the alternate hypothesis lacks
counts and hence has a notably different shape to the corresponding null hypothesis slice.
In this case, a beneficial exercise may be to apply the importance sampling methods to the
alternate hypothesis, such that we force rare clustering to occur and obtain the weights
these parameters values in this hypothesis would be observed with.

Another way to look at the lack of difference between using ̂ℒ and the ( ̂ℒ, 𝑛̂𝑠) ratio
value as the test statistic is by considering the correlation between these test statistics
for each hypothesis. This is compared by creating a two-dimensional histogram for

each hypothesis where a trial is placed according to its ̂ℒ value and its ( ̂ℒ, 𝑛̂𝑠) ratio
value. The result of this process is shown for the null hypothesis in Figure 5.16 and for
the alternate hypothesis in Figure 5.17. Note that there are millions of counts in Figure

5.16, as this includes all trials used to extend the ̂ℒ distribution with importance sampling.

Both of these two-dimensional plots between the ̂ℒ value and the ratio value for the null
and alternate hypotheses indicate that there is a high level of correlation between the
values. Furthermore, this correlation implies there is no benefit to constructing a test
statistic according to the ratio of the frequency of parameter pairs, as the ratio value is
just be representing its respective likelihood value. If the new test statistic constructed

in this chapter is in fact no more powerful than ̂ℒ on its own, this may just be further
indication that the Neyman-Pearson Lemma is true.
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Figure 5.16: A two-dimensional plot for the null hypothesis where each count indicates a

trial and its corresponding ̂ℒ and ratio value. As the null hypothesis was extended with

importance sampling, the histogram contains all trials used to extend the ̂ℒ distribution. The

resulting distribution seems to indicate there is a high degree of correlation between the ̂ℒ
and ratio values.
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Figure 5.17: A two-dimensional plot for the alternate hypothesis where each count indicates

a trial and its corresponding ̂ℒ and ratio value. The resulting distribution also indicates a

high level of correlation between the ̂ℒ and ratio values.
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5 Application of Importance Sampling for Parameter Pair Constructed Test Statistics

5.3 Summary

Test statistics are an important part of hypothesis testing and are vital to obtain the
significance of potential neutrino clustering observed with IceCube. Here, we have
described test statistics and how they can be used in hypothesis testing, and in particular
detailed the Neyman-Pearson Lemma, which says that using the maximum likelihood
in likelihood analysis provides the most powerful test statistic. This theory has been
implemented to construct our own test statistics to test a null hypothesis and an alternate
hypothesis of simulated neutrino events on some space. We also utilised the ratio of
frequency of best fit parameter combinations from both hypotheses to approach this
problem differently, which required the assistance of the importance sampling method to
generate the rare backgrounds. We were unable to find any significant difference between
using the maximum likelihood as a test statistic compared to using one constructed by

taking a ratio of frequency of best fit parameter pairs of ̂ℒ and 𝑛̂𝑠. Further investigation

showed that there is a high correlation between the ratio values and the ̂ℒ values. We

also found that the distributions of 𝑛̂𝑠 values for a fixed ̂ℒ look very similar in both the
null and alternate hypothesis. In conclusion, the ratio test statistic seems to just replicate

the use of the ̂ℒ test statistic, and as such indicates that as the Neyman-Pearson Lemma

suggests, ̂ℒ is the most powerful test statistic.
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6 Application of Importance Sampling for Rare Cluster

Generation in a Full Sky Likelihood Analysis

The ideal application for the importance sampling methods detailed in Chapter 4 is to use
them in the real likelihood analyses performed within the IceCube Collaboration. In this
chapter we show how we can translate the Gaussian and binomial sampling methods
to force clusters of simulated neutrino events to occur on actual skies that resemble the
full sky seen by IceCube. Again, this is demonstrated by extending the distribution of
maximum likelihood values and their corresponding weights for clustering of neutrinos
which would otherwise rarely occur if a background only hypothesis is true, and the
clusters and are naturally sampled.

6.1 Likelihood Fitting on the Full Sky

To emphasise the usefulness of the importance sampling methods for likelihood analyses,
we need to demonstrate how they work with the actual sky observed by IceCube. This
means that the space we are considering is one that resembles the Universe around us,
and any events on it have positions described in right ascension and declination coordin-
ates. It is important to note that likelihood analyses in IceCube are also often maximised
according to the energy of the neutrino, however here we will only focus on how the
importance sampling methods are used to manipulate the spatial positions of events to
create rare background clusterings. The IceCube Collaboration uses both binned [69] and
unbinned [70] likelihood analyses to search for astrophysical neutrino sources. Unbinned
likelihood analyses follow the same process already used to obtain the best fit likelihood
values in this thesis. Specifically, we find the best fit likelihood by considering the con-
tinuous point spread function due to each neutrino event on the space. By maximising the
likelihood using these point spread functions, the neutrino information incorporated into
the likelihood functions represents each neutrino as accurately as possible, hence being
unbinned. Binned likelihood analyses on the other hand involve fitting the likelihood
with the neutrino information binned. For example, the maximisation of the likelihood
at each point on the space may on the amount of neutrinos which have a significant
contribution at that point of space. A histogram of information obtained using a binned
likelihood analyses approaches the same result as an unbinned likelihood analysis as the
bin size is reduced. As such, using an unbinned likelihood analysis produces a much
more accurate result.

Again, the previously used logarithmic likelihood function, Equation 4.4, applies for
the full sky likelihood analysis, albeit with some slight changes.
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Analysis

− logℒ(𝑛𝑠 | ⃗𝑥𝑠) = −
𝑁

∑
𝑖=1

log [𝑛𝑠
𝑁

𝑆𝑖( ⃗𝑥𝑠) + (1 − 𝑛𝑠
𝑁

)𝐵( ⃗𝑥𝑠)] (6.1)

The first difference is that we now consider our background probability density, 𝐵( ⃗𝑥𝑠), as
one that describes the entire 4𝜋 steradians of the sky that IceCube observes. In previous
chapters, that background probability density depended on the Cartesian grid under
consideration. For our full sky case, we use:

𝐵( ⃗𝑥𝑠) = 1
4𝜋

(6.2)

Another difference is that when we consider the spatial coordinates of an event, or any
position ⃗𝑥𝑠 on the sky, they are now in celestial coordinates instead of Cartesian coordin-
ates which were used previously. Celestial coordinates consist of right ascension, 𝛼,
and declination, 𝛿. Right ascension corresponds to the longitude of the Earth, and runs
between 0 and 2𝜋 radians or 0 and 360º. Declination corresponds to the latitude of the
Earth. It begins at the zenith of the North Pole as 𝜋

2 radians or 90º, and goes to −𝜋
2 radians

or -90º at the zenith of the South Pole.

Following the same procedure of Chapter 4, we aim to create randomly generated skies
of neutrino events and find how often the background events naturally form neutrino
clusters. Previously, a likelihood fit was performed at a singular point on the sky to obtain
the best fit parameters. This time, to replicate a typical process performed by IceCube, the
likelihood fit is performed over the entire sky. This means that the likelihood fit on any
given randomly generated sky will locate the position with the greatest likelihood value,
which is then the “hotspot” on the sky, indicating the most likely position where neutrino
emission occurs along the line of sight to these coordinates. Creating numerous random
skies and performing this process then gives us an indication for how often clustering of
neutrino events on the real sky occurs due to random chance. To randomly distribute
such events on a sky, we must sample their positions from an evenly distributed region.
This can be achieved by sampling right ascension, 𝛼, and declination, 𝛿, according to:

𝛼 = 2𝜋𝜂1 (6.3)

𝛿 = cos−1[2𝜂2 − 1] − 𝜋
2

(6.4)

where 𝜂1 and 𝜂2 are uniformly distributed random numbers between 0 and 1. The signal
probability density function, 𝑆𝑖( ⃗𝑥𝑠), for each 𝑖th event is still described by:

𝑆𝑖( ⃗𝑥𝑠, ⃗𝑥𝑖, 𝜎𝑖) = 1
2𝜋𝜎2

𝑖
exp [−| ⃗𝑥𝑠 − ⃗𝑥𝑖|2

2𝜎2
𝑖

] (6.5)

The error resolution, 𝜎𝑖, must be in the same units that are used for the coordinates. The
angular separation in radians between ⃗𝑥𝑠 and ⃗𝑥𝑖, with coordinates (𝛼𝑠, 𝛿𝑠) and (𝛼𝑖, 𝛿𝑖)
respectively, can be obtained with:
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6.1 Likelihood Fitting on the Full Sky

| ⃗𝑥𝑠 − ⃗𝑥𝑖| = cos−1[sin(𝛿𝑠)sin(𝛿𝑖) + cos(𝛿𝑠)cos(𝛿𝑖)cos(𝛼𝑠 − 𝛼𝑖)] (6.6)

where 𝛼 ∈ [0, 2𝜋] and 𝛿 ∈ [−𝜋
2 , 𝜋

2 ]. All of this information can now be used to create
random neutrino skies. As we aim to obtain the hotspot on the sky (the largest likelihood
value) we must scan across the sky and maximise the likelihood at uniformly separated
positions across the space. The largest likelihood value will then correspond to such a
hotspot. For the following demonstrations and examples, we will distribute 2000 events
over the artificial sky. Each of these events have a resolution error of 0.01 radians, which
is approximately 0.573º. An example of the likelihood fit performed uniformly across the
sky for 2000 events is depicted in Figure 6.1.
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Figure 6.1: An example skymap showing the sky created for each trial, containing 2000

events each with an error resolution of 0.01 radians. The maximum likelihood ̂ℒ is
calculated at each one degree interval in both right ascension and declination. The

hotspot, indicated by the absolute maximum ̂ℒ value, occurs at (158º,-62º) with an

approximate ̂ℒ value of -5054.9.

In this case, the maximum likelihood is calculated at each 1 degree interval in both right
ascension and declination, such that there is a total of 64800 likelihood maximisations
that occur per sky, of which the greatest value signifies the hotspot on the sky. This is
already a significant increase in the work required to obtain a test statistic for the sky,
compared to one maximum likelihood fit per sky in Chapter 4 and 5. Adistribution of the

greatest ̂ℒ value from 105 of these trials is shown in Figure 6.2, while a plot showing each

greatest ̂ℒ value and its corresponding 𝑛̂𝑠 value is shown in Figure 6.3. Again, “counts”
in these figures and the rest of the figures in Chapter 6 indicate the number of skies with
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the indicated best fit parameter values.
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Figure 6.2: Distribution of the maximum ̂ℒ values found from a likelihood fit over the
full sky for 105 trials with 2000 randomly distributed events.

On inspection of Figure 6.2 and 6.3, it is clear that the best fit parameter observed most
frequently is not the minimum possible parameter value, as it was for the simulations

in Chapter 4 ( ̂ℒ ∼ -21193.3, 𝑛̂𝑠 = 0). Amost frequent 𝑛̂𝑠 of greater than zero is expected
as the minimum 𝑛̂𝑠 value for a hotspot on the full sky is larger than the minimum 𝑛̂𝑠
value observed when only calculating the likelihood at a fixed point. Thus, if the events
were evenly distributed across the space, with no overlap of events, we know that the
minimum possible 𝑛̂𝑠 value in any of these trials is slightly less than one. This is because
the likelihood function in Equation 6.1 will never fit to exactly one, even if only one
event is being considered. This is due to the background probability density component
always adding some contribution to the likelihood value. From Figure 6.3, the minimum
𝑛̂𝑠 observed in the 105 trials is approximately 2.7, which indicates that in each of the
trials there was some level of clustering occurring, with a peak of approximately 3.6 best
fit signal events. The maximum 𝑛̂𝑠 value observed is around 8.2, although trials with
𝑛̂𝑠 values between this value and 6 are generally sparse and provide little information
about how often clustering with these numbers of signal events would occur randomly.
Specifically, the 105 trials performed here mean we can only consider any of the results
to a significance of 10−5. Desirably, we want to understand the rare clusters to a much
lower significance than this, for which the increase in trials needed would require an
exponential increase in computational time. Once again, to combat this dilemma, we
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Figure 6.3: Distribution of the maximum ̂ℒ values and their corresponding 𝑛̂𝑠 found
from a full sky likelihood fit for the 105 trials in Figure 6.2.

apply the previously constructed importance sampling methods to now observe biased
clustering on the full sky likelihood analysis.

6.2 Application of Importance Sampling

6.2.1 GaussianWeighting Method for Full Sky

To reiterate, the Gaussian weighting method relies on concentrating event positions
around some point and allocating each event a weight. This weight value is a combin-
ation of the two possible sampling distributions that the position, in right ascension
and declination, could be sampled from. The first distribution, ℎ(𝛼, 𝛿), describes the
probability that an event has an equal chance of being placed anyway on the sky. As the
total area of the sky is 4𝜋 steradians, this distribution is simply:

ℎ(𝛼, 𝛿) = 1
4𝜋

(6.7)

The second distribution, 𝑔(𝛼, 𝛿), concentrates events around some position (𝛼0, 𝛿0), for
which a Gaussian function is used. The spread of the Gaussian, 𝜎, can be altered to
“tighten” the function, causing the events to be concentrated closer together. This distri-
bution then takes the form:
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𝑔(𝛼, 𝛿) = 1
2𝜋𝜎2 exp [− ((𝛼 − 𝛼𝑜)2 + (𝛿 − 𝛿𝑜)2

2𝜎2 )] (6.8)

As we did in Chapter 4, we require a combination of the flat and Gaussian distributions
to create our new sampling distribution. If all event positions were selected according
to the Gaussian function, they would all be artificially placed around the desired point.
However, we only want a select amount of events around the desired position. Again, we
also choose a biased number of events, 𝑛, which have their positions chosen according
to 𝑔(𝛼, 𝛿) by using the Box-Muller transform described in Appendix A. For each of the
𝑁 total events, we choose a random number 𝜙 on (0,1). If 𝜙 < 𝑛/𝑁, the event position
is sampled from 𝑔(𝛼, 𝛿). Otherwise, if 𝜙 > 𝑛/𝑁, we sample from ℎ(𝛼, 𝛿), such that the
right ascension and declination are found with Equation 6.4. This method produces some
“flat” distribution of events across the sky, while there will be some bump (abundance of
events) due to the Gaussian component. The weight of each 𝑖th event is then obtained
by dividing the natural probability density function by the biased probability density
function:

𝑤𝑖 = ℎ(𝛼𝑖, 𝛿𝑖)
(1 − 𝑛

𝑁)ℎ(𝛼𝑖, 𝛿𝑖) + 𝑛
𝑁𝑔(𝛼𝑖, 𝛿𝑖)

(6.9)

The total weight for the entire sky is then the multiplicative of each individual event’s
weight.

𝑊 =
𝑁

∏
𝑖=1

𝑤𝑖 (6.10)

Aside from the transformation of this process from Cartesian coordinates to celestial
coordinates, when adapting this process from Chapter 4, we also change the position,
(𝛼0, 𝛿0), that the Gaussian function, 𝑔(𝛼, 𝛿), is centred on for each individual sky trial.
This must be done as we are now performing a maximum likelihood search across the
entire sky, and so we must construct the simulation such that the cluster of events could
occur at any point on the space. Furthermore, the biased hotspot can then occur anywhere
on the sky.

6.2.2 BinomialWeighting Method for Full Sky

The binomial weighting method must also be adjusted for celestial coordinates and a
full sky likelihood analysis. However, this change is much simpler than that required
for the Gaussian weighting method. Again, the binomial weighting method focuses on
distributing some number of the total events, 𝑁, within some closed circular region, 𝑈,
on the sky, which is just some portion of the total 4𝜋 steradians of the sky. The base
probability, 𝑝, again describes the probability that if an event was placed randomly on
the sky, it would be within 𝑈. This probability is then found by taking the ratio of the
area of the closed region to the area of the entire sky:

𝑝 = 𝑈
4𝜋

(6.11)
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Abias probability, 𝑝′, is then selected to determine how many of the 𝑁 events are placed
within 𝑈 with a random position. An integer, 𝑘, is then sampled from a binomial distribu-
tion according to the chosen bias probability 𝑝′, which has the form:

𝑃(𝑘 | 𝑁, 𝑝′) = (𝑁
𝑘 ) 𝑝′𝑘(1 − 𝑝′)𝑁−𝑘 (6.12)

where:

(𝑁
𝑘 ) = 𝑁!

𝑘!(𝑁 − 𝑘)!
(6.13)

Here, the integer 𝑘, obtained by sampling this distribution, indicates the number of events
which are in 𝑈. The weight, 𝑊, for this sky is then the ratio of the probability 𝑘 was
obtained from the probability mass function with 𝑁 events and base probability 𝑝, to
the probability 𝑘 was obtained from the same probability mass function with 𝑁 and bias
probability 𝑝′.

𝑊 = 𝑃(𝑘 | 𝑁, 𝑝)
𝑃 (𝑘 | 𝑁, 𝑝′)

(6.14)

Again, this method is now applied to a full sky likelihood analysis, and so the position at
which 𝑈 is centred at for each trial is sampled uniformly in cos(𝛿). The effect of observing
a biased cluster of events due to the binomial weighting method at any point on the
sky can then be investigated. Once we have our number of events 𝑘, which are placed
within 𝑈, we must randomly distribute them with this region. For each of the 𝑘 events,
we provide them with a random position on a spherical surface according to Equations
6.3 and 6.4, and if this position is within 𝑈, we allocate the event these coordinates. If the
coordinates are not within 𝑈, we can simply sample a new position until it is in the closed
region. The remaining 𝑁 − 𝑘 background events then also have their coordinates chosen
according to Equations 6.3 and 6.4. The position for each of these remaining events is
accepted provided that they are not within 𝑈. Using all of this information, we can now
force rare clusters of neutrinos to appear on the sky, according to both the binomial and
Gaussian weighting methods.

6.2.3 Results

The Gaussian and binomial importance sampling weighting methods are used with the
parameters described in Table 6.1 to demonstrate forced neutrino clustering in the full sky
maximum likelihood analysis. Each of these simulations are performed with 105 trials.
As both the Gaussian and binomial weighting methods involve choosing a position at
which the biased neutrino events are clustered around, we perform a finer likelihood
search around this biased position in addition to the full sky likelihood search. Once
this position is identified, the finer search scans over approximately ±5.73º in both right
ascension and declination of the hotspot position in 0.0573º intervals, and adds an extra
40000 likelihood maximisations per sky. We do this to obtain a more accurate value of the
absolute maximum likelihood value, as due to the clustering, we expect the hotspot will
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occur around this position.

Table 6.1: Sampling parameters used to create Figures 6.4 and 6.5.

Weighting Biased Events Gaussian 𝜎 Base Probability 𝑝 Bias Probability 𝑝′

Gaussian 4 0.01 - -
Gaussian 4 0.005 - -
Binomial - - 0.0005 0.001
Binomial - - 0.0005 0.0025
Binomial - - 0.0005 0.005

Figure 6.4 shows the absolute maximum likelihood, ̂ℒ, distributions acquired from each
trial in each simulation. Each of the bins for a discrete range of likelihood values from
each simulation is combined as an average weighted mean (Equation 4.13), with the
results of this combination shown in Figure 6.5. More trials and a greater assortment of
sampling parameters are desirable to construct each of these plots, however the number
of likelihood maximisations required per sky impose a severe limit on the number of
trials which can be performed within some computational time.

It is immediately obvious that the shape of the distributions in Figure 6.4 show some
unusual behaviour. In particular, the distributions from each of the simulations seem to

have their counts reduced by several orders of magnitudes around an approximate ̂ℒ of
-5047. This is clarified by comparing the average weighted mean of these distributions to
the original distribution from Figure 6.2 where no importance sampling has been used,

which is shown in Figure 6.5. We see here that the shape of the ̂ℒ distribution creates a
significantly different distribution to what we expect to obtain, that is, the distribution
seen in Figure 6.2. This behaviour of the one-dimensional distributions in Figure 6.4
implies there is some other unaccounted for factor impacting these biasing methods.
Upon closer inspection of the data which describes how the neutrino events are clustered,
it turns out that this method does possibly have a flaw. Specifically, we have constructed
these simulations such that we expect the absolute maximum likelihood to occur in the
immediate vicinity of the position where the biased events are clustered. What is actually
occurring in many of trials is that the full sky likelihood search identifies an absolute
maximum likelihood value correlated to a hotspot position not near where the neutrino
events are forced to cluster. To be explicit, the background neutrino events are randomly
clustering together elsewhere on the sky and creating the hotspot. Note that the counts of
likelihood values in Figure 6.4 below a likelihood of -5050 have approximately the same
value as the counts for the same likelihood in the natural background trial distribution.
This region indicates where the full sky likelihood analysis identifies a hotspot not due to
biased events. As these clusters form due to randomly placed background events on the
sky, this region of the distribution replicates the background-only event distribution. The
remaining distribution then predominantly describes likelihood values acquired due to
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Figure 6.4: The distribution of ̂ℒ values from each of the simulations performed with the sampling
parameters described in Table 6.1 against the background-only simulation from Figure 6.2. Each
simulation was performed with 105 trials. There is a notable change in slope of the distributions

at an approximate ̂ℒ of -5047.
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Figure 6.5: The resulting distribution due to creating an average weightedmean for discrete ranges

of ̂ℒ values from Figure 6.4. This is shown against the background-only simulation from Figure

6.2. Once again, there is a change in slope seen at an approximate ̂ℒ of -5047, and the combination
of the distributions notably does not follow the distribution seen due to the background-only
trials.
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the biased clusters. As such, this technique will produce two different distributions, one
for clusters which are caused due to the biased events, and the other which is simply a
background event clustering distribution.

To further investigate the difference between these regions of the distributions, we look at
the regions separately. For this, we separate out the trials where we believe the absolute

maximum ̂ℒ value on the sky is caused due to the importance sampling biasing. To
determine this limit, we calculate the angular separation between the position on the
sky the biased events were forced to cluster about and the position which the likelihood
search identifies as the hotspot. This calculation is made using Equation 6.6. We now de-
termine the maximum distance from the biasing position such that if the hotspot occurred
within this distance, it was due to the biased events. This distance is quite subjective,
as it depends on the sampling parameters used for a given distribution, and how one
determines whether a cluster was caused due to biased events. For example, a hotspot in
a trial could occur near the edge of the region where the biased events are placed, and

hence the largest ̂ℒ may occur due to a combination of biased events and background
events. Because of this, we set the maximum distance the hotspot can occur relative to
the clustering position as approximately 3º or 0.05 radians. With this requirement set, we
can look at the separate components of one of the distributions from Figure 6.4. Figure
6.6 shows the distribution of likelihood values for the binomial weighting simulation
where 𝑝′ = 0.005. The “on hotspot” distribution indicate the trials where the hotspot
occurred within 3º of the point biased events are positioned about, while the “off hotspot”
distribution consists of trials where the cluster occurs outside of this limit. These are
plotted against the original background trials from Figure 6.2.

Figure 6.6 shows that the using importance sampling in the full sky likelihood does indeed
create two separate likelihood distributions according to whether a hotspot occurs due to
the biased events or not. The largest likelihood values in the “off hotspot” distribution
for the hotspots away from the biasing point, have counts which would suggest they are
due to biased events. This agrees with the previous statement that the angular separation
chosen which determines whether the hotspot is due to the biasing of events or not is a
subjective choice. Although the counts for the distribution of likelihoods for hotspots due
to the biasing is orders of magnitude below the the natural background distribution, it
does seem to have the same shape. This may be an indication that the sampling paramet-
ers we have used to create the importance sampling simulations have caused events to be
too compactly clustered such that they are not identified in a full sky likelihood analysis.
The sampling parameters here were chosen as their relative size on the full sky case is
similar to those we used in Chapter 4, where the likelihood was calculated always at a
fixed point. The scenario of clustering events according to sampling parameters on the
same scale between a likelihood analysis at a fixed point and over a full sky may have
been an incorrect step to take. As a result, our simulations have produced distributions
where the biased clusters we are looking for have been severely under-sampled, and
overall the counts for each of these likelihoods have been heavily reduced. Ideally, we
would run these simulations with sampling parameters that make progressively small
changes to how we would expect events to be placed naturally, and find whether there

85



6 Application of Importance Sampling for Rare Cluster Generation in a Full Sky Likelihood
Analysis

5056− 5054− 5052− 5050− 5048− 5046− 5044− 5042− 5040− 5038− 5036−
Maximum Likelihood

10−10

9−10

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1

10

210

310

410

510

C
ou

nt
s

Natural Background Skies

''On Hotspot'' Bias Weights 

''Off Hotspot'' Bias Weights

Figure 6.6: The distribution of trials from the binomial 𝑝′ = 0.005 simulation where trials are
considered to be “on hotspot” if the hotspot occurred within 3º of the biasing position (green),
or “off hotspot” if the hotspot was greater than 3º away (red), both with weights applied. Also

plotted is the natural background skies distribution from Figure 6.2 (blue), which at lower ̂ℒ
values has a similar shape to the “off hotspot” distribution.
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is no split in the distribution between the regions for hotspots due to the biased events
and those that are not. Unfortunately, time limitations of this project prevent this further
investigation.

Although we have found that the distributions have not produced the expected res-
ults, we saw that the distribution in Figure 6.6 considering clusters that are due to the
biased events follows a similar shape to the background trials distribution. This same
behaviour also occurs in each of the other simulations when we separate the trials ac-
cording to whether the hotspot occurs within 3º of the the biasing position. As such, we
consider the trials which fit this criteria from each simulation. With this requirement set,

we once again create a distribution of each of the ̂ℒ values from each simulation in Table
6.1. As each simulation loses a different number of trials due to maximum distance of
the hotspot restriction, the distribution for each simulation has been normalised so that
they are comparable. Table 6.2 is a reduced version describing the sampling parameters
used in each simulation from Table 6.1, which now also contains the number of trials
for which the hotspot distance was within 3º of the biasing position. The individual

normalised distribution of ̂ℒ values from each simulation is shown in Figure 6.7 against a

normalised version of the background-only events ̂ℒ distribution from Figure 6.2. Each of
these simulations are then combined as an average weighted mean, again with Equation
4.6. The resulting distribution is shown in Figure 6.8 against a normalised distribution of
the background trials from Figure 6.2, as well as a normalised unweighted distribution of
the trials which were not within 3º of the biasing position.

Table 6.2: Sampling parameters used to create Figures 6.7 and 6.8. The final column
indicates how many trials produced a hotspot within the maximum allowed angular
separation of 3º of the biasing position.

Weighting Gaussian 𝜎 Bias Probability 𝑝′ Number of Trials

Gaussian 0.01 - 56543
Gaussian 0.005 - 65653
Binomial - 0.001 549
Binomial - 0.0025 21270
Binomial - 0.005 89424

The individual ̂ℒ distributions in Figure 6.7 all now have a very similar slope at an

approximate ̂ℒ value of -5052 and higher. Although there is no expectation that these
distributions should decrease at the same rate, it already indicates the combination of the
simulations will produce a closer distribution to the background trials than the resultant
distribution in Figure 6.5. The result of taking an average weighted mean of each of

the simulations in Figure 6.7 returns the total distribution of ̂ℒ values expected if the
background-only simulation could be run for a much larger amount of trials than the
trials ran here. This is shown in Figure 6.8. Although this distribution is much more
similar in shape and slope to the original distribution, there is still a lot of inconsistencies
between the bin values of the average weighted mean and the original trials. Assuming
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Figure 6.7: The normalised distribution of ̂ℒ values from each of the simulations performed with
sampling parameters described in Table 6.2 against the normalised background-only simulation
from Figure 6.2. Each distribution seemingly follows a shape similar to that of the background-only
simulation, however at different scales.
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Figure 6.8: The resulting distribution due to making an average weighted mean for discrete ranges

of ̂ℒ values from Figure 6.7. This is shown against the normalised background-only simulation
from Figure 6.2. The result of combining the simulation which fit the 3º angular separation
criteria now looks a lot similar to the background only trials distributions, however there is still
notable disagreement between the bin values of each distribution. Also plotted is the normalised
distribution of the remaining trials which did not fit the 3º angular separation cut, which closely
follow the natural background skies distributions.
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that the selection criteria placed on the trials was the correct step to take, there is a notable
lack of trials overall that are used to create the distribution, as described in Table 6.2. It is
possible that if these simulations were performed for a greatly increased number of trials,
and as such a lot more trials fit the criteria to be included, the resulting final distribution
would “smooth out” out due to the increased amount of statistics. We can also observe
that there are a number of bins around the peak which hold a lot of the total counts of
the distribution. Again, if more trials were included, these peaks may be reduced with
some of their contributing counts being distributed throughout the rest of the distribution,
increasing the overall height of the rest of the distribution and perhaps fitting a lot closer
to the original background distribution. Of course, it would also be ideal to perform
multiple more simulations with different sampling parameters to those described in Table
6.1. Unfortunately, due to the time taken to run these simulations, this was not able to be
investigated.

Another check we can consider is observing the distribution of the trials which did
not fit the 3º angular separation criteria. These trials are shown without the weights
obtained from importance sampling, and normalised for comparison, in Figure 6.8. We
show them in this way to understand what likelihood values are obtained from hotspots
not due to biased events. The unweighted distribution of the trials which indicate the
hotspot occurring away from the biased events looks quite similar to the distribution
produced by the original background-only events trials, except that it seems to be shifted

slightly towards larger ̂ℒ values. Specifically, when considering the peak of the natural

background skies distribution at an approximate ̂ℒ of -5054, the respective counts in the

remaining unweighted skies distribution are smaller for ̂ℒ less than -5054, but have larger

counts values for greater ̂ℒ values. We expect that the natural background and remain-
ing unweighted skies distributions should be identical, as the remaining unweighted
trials should essentially also just be identifying hotspots due to purely background event
clustering. A potential reason for this dissimilarity is that some of the clusters which
create the hotspot in these trials are sometimes still being created due to the influence of
biased events. This may imply that the 3º angular separation cut on where we consider
clusters to be due to the biased events or only background events may not be appropriate,

overall increasing the ̂ℒ values obtained in these trials. Another issue may be due to the
region around the biasing position we perform a finer likelihood search over, in addition
to the full sky likelihood analysis. As there is a difference in the size of this region and
that where we consider our cut on whether clusters are formed due to biased events, the
hotspot which forms above this cut but due to background only events may occur in the

finer search region. In this case, the ̂ℒ values obtained due to background events can on

average have a greater ̂ℒ value than the original background only events trials which did
not have an as fine incremental likelihood search. To investigate this further, we would
have to recreate the background sky trials with a likelihood search with searches at the
same detail across the entire sky. Again, due to computational limits, this check is unable
to be performed within the constraints of this investigation. Another likely reason for an

increase in the average ̂ℒ of the remaining unweighted skies distribution compared to

the natural background skies ̂ℒ values is because the remaining unweighted sky trials
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represent hotspots which occur away from the biasing position. We expect that as we
bias events close to each other, there should be some clustering with a larger likelihood
associated with this orientation, although a hotspot due to the remaining background

events can occur with a larger likelihood, producing the maximum likelihood ̂ℒ. Overall,
the remaining unweighted skies distribution then has a greater average ̂ℒ as the trials

which are in it relate only to trials which had a ̂ℒ for background hotspots large enough
to exclude the biased only cluster distribution. Altogether, the results do seem to indicate
that the importance sampling methods can be used to force rare clusters in the full sky
likelihood analysis. However, further checks and simulations are required to ensure
that correct weights due to importance sampling are being applied. Finally, it may be
appropriate to trial the full sky likelihood analysis in Cartesian coordinates much like the
simulations in Chapter 4. In this way, it would most likely be easier to identify any issues
with using importance sampling in the full sky likelihood analysis.

6.3 Summary

The Gaussian and binomial weighting methods described in Chapter 4 have been adapted
to force rare clusterings of neutrinos to occur on a full sky replicating the coordinate
system that the IceCube Neutrino Observatory observes. Demonstrations of likelihood
analyses over the full sky have then been performed to obtain the maximum likelihood

value, ̂ℒ, which correspond to these rare neutrino clusters, for which appropriate weights
are then applied. Obtaining this information can then extend the distributions of the

̂ℒ values that would be seen if background-only events simulations were performed
for a number of trials which would otherwise be computationally exhaustive. This
investigation found that there are some unpredicted flaws to this current method, as a
full sky likelihood analysis does not always identify the absolute maximum likelihood of
a sky at position where the biasing of neutrino events occurs. An attempt to mitigate this
effect has been trialled by only considering hotspots due to biased events. This identified
rare clusters which would naturally occur with a 10−10 probability. However, additional
improvements to the analysis have been suggested. Further consideration of this analysis
and more statistics and computational resources are required to properly identify and
resolve any current issues, which is unfortunately not possible due to the time restrictions
of this project.
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7 Conclusion

7.1 Results

In this work, we investigated two concepts closely related to the likelihood analysis
performed for astrophysical neutrino point source analysis by the IceCube Collaboration.
The first of these involved using importance sampling to extend the level of significance
which experimental results can be compared at. Specifically, when a likelihood analysis
identifies a cluster of neutrinos on the sky which replicates a neutrino source, we need to
understand how often neutrinos would randomly be positioned together to mimic this
same orientation. Typically to understand this, real neutrino data is scrambled over the
sky multiple times to see how often it randomly clusters together. This process does not
identify how often the rarest clusters of neutrinos occur naturally. To combat this, we
have used importance sampling to force these rare clusters of neutrinos to happen on a
sky. A sampling weight is then calculated for this sky, which indicates how often the rare
cluster would occur naturally. In order to identify all types of clusters that would happen,
we constructed two sampling methods for this: the Gaussian weighting method and the
binomial weighting method. We have shown that these methods correctly force different
types of neutrino clusters to occur on a coordinate system replicating that observed by
IceCube. However, although likelihood values were obtained for rare clustering of events
on the real sky coordinate system, the weights calculated for these values did not follow
the expected likelihood value distribution when compared to our background only trials
simulation. The cause of this issue may have been due to the sampling parameters chosen
for the importance sampling simulations, which could have caused events to be too tightly
clustered and as such were not identified in the full sky likelihood search.

The second major component of this work was investigating the usefulness of a new test
statistic for hypothesis testing in point source analysis. It is known from the Neyman-

Pearson Lemma that the maximum likelihood, ̂ℒ, is the most powerful test statistic in
hypothesis testing. However, it has been previously suggested that a test statistic con-

structed as a combination of ̂ℒ and the maximum signal events, 𝑛̂𝑠, it maximises to could
be even more powerful [68]. We investigated this by running multiple trials of null and
alternate hypothesis, and constructed the test statistic as the ratio of the frequency that a

̂ℒ and 𝑛̂𝑠 combination occurs in the alternate hypothesis to that same pair occurring the
null hypothesis. To fully understand this, we required the previously created importance

sampling methods to extend the distribution of the null hypothesis ̂ℒ and 𝑛̂𝑠 values. By

considering a power versus significance analysis between using ̂ℒ on its own compared

to the ratio value due to ̂ℒ and 𝑛̂𝑠, we found no improvement in the ratio test statistic.

Through further investigation, we found that ̂ℒ and 𝑛̂𝑠 ratio values simply correlate to

the ̂ℒ values, and as such the ratio test statistic reproduces the power and significance of
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the ̂ℒ test statistic.

7.2 FutureWork

The obvious next step for the work is to completely understand why forcing neutrino
clustering through importance sampling on the full sky did not return the expected

maximum likelihood, ̂ℒ, distributions. Ideally, this issue would already be resolved,
however this was not possible due to time limitations of this work. Once this issue is
resolved, it would also be extremely beneficial to investigate further improvements to
reduce the computational time of these simulations. This would be particularly useful
as we would preferably be able to calculate the likelihood over an entire sky at a much
finer scale than done in this work. This would also drastically increase the time taken for
these simulations, so a solution to this may involve additional minimisation techniques
in overall method.

Of course, if the previously listed issues are resolved, we would like to test the im-
portance sampling methods on real neutrino data obtained with IceCube. By applying
these methods on real data, we can compare the test statistics we obtain with importance
sampling to those obtained with natural simulations of scrambling event data in other
research. If there is an agreement between these two distributions of test statistics, this is
an ideal test to check whether the importance sampling methods do indeed work with
real neutrino data. This would further indicate that the importance sampling methods
constructed in this work correctly identify the frequency of rare neutrino clusters which
would be seen if natural simulations were run for long enough. As the typical likelihood
analysis used in point source analysis incorporates the energy of the neutrino as well, it
would also be useful to investigate whether importance sampling can be applied to the
energy too. Overall, there is a lot more promising work to be done with the concept of
importance sampling for rare cluster generation in point source analysis.
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A Box-Muller Transform

The Box-Muller transform returns a pair of independent, normally distributed random
numbers, 𝑥 and 𝑦 [71]. This is done by obtaining a length, 𝑅, and an angle, 𝜃, according
to some uniformly distributed random numbers. The connection between these sets of
numbers is shown in Figure A.1.
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Figure A.1: Two normally distributed random numbers, 𝑥 and 𝑦, which are obtained
according to two uniformly distributed random numbers.

We obtain 𝑅 and 𝜃 by taking a set of random numbers 𝜂1 and 𝜂2 on (0, 1), such that:

𝑅 = √−2ln𝜂1 (A.1)

𝜃 = 2𝜋𝜂2 (A.2)

The coordinates, (𝑥, 𝑦), are then:
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A Box-Muller Transform

𝑥 = 𝑅 × cos(𝜃) (A.3)

𝑦 = 𝑅 × sin(𝜃) (A.4)

If we desire coordinates (𝑥1, 𝑦1), such that they are distributed according to a Gaussian
function which is centred at (𝑥𝜇, 𝑦𝜇) and has a standard deviation 𝜎, the coordinates
obtained through the Box-Muller transform are then modified according to:

𝑥1 = (𝑥 × 𝜎) + 𝑥𝜇 (A.5)

𝑦1 = (𝑦 × 𝜎) + 𝑦𝜇 (A.6)
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B GaussianWeighting Plots

B.1 Gaussian ̂ℒ and 𝑛̂𝑠 Plots

The following graphs show the results used to create Figure 4.9. Each simulation contains
105 trials which biased 4 events of 2000 from a test source position at the origin, (0,0), on
a 200 × 200 unit Cartesian grid. The sampling 𝜎 values used for each simulation are 500,
2, 1, and 0.5.
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Figure B.1: The ̂ℒ and 𝑛̂𝑠 pairs with generated weights for the Gaussian weighting
method with 4 biased events and a sampling 𝜎 of 500.

99



B Gaussian Weighting Plots
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Figure B.2: The ̂ℒ and 𝑛̂𝑠 pairs with generated weights for the Gaussian weighting
method with 4 biased events and a sampling 𝜎 of 2.
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Figure B.3: The ̂ℒ and 𝑛̂𝑠 pairs with generated weights for the Gaussian weighting
method with 4 biased events and a sampling 𝜎 of 1.
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B.1 Gaussian ̂ℒ and 𝑛̂𝑠 Plots
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Figure B.4: The ̂ℒ and 𝑛̂𝑠 pairs with generated weights for the Gaussian weighting
method with 4 biased events and a sampling 𝜎 of 0.5.
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C Sampling Uniformly within a Circle

Apair of random numbers, 𝑥 and 𝑦, sampled uniformly within a circle with radius 𝑅, can
be foundwith the following procedure. The position is found by obtaining a length, 𝑟, and
an angle, 𝜃, according to some uniformly distributed random numbers. The connection
between these sets of numbers is shown in Figure C.1.
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Figure C.1: Two random numbers, 𝑥 and 𝑦, which are obtained according to two uni-
formly distributed random numbers.

We obtain 𝑟 and 𝜃 by taking a set of random numbers 𝜂1 and 𝜂2 on (0, 1), such that:

𝑟 = 𝑅 × √𝜂1 (C.1)

𝜃 = 2𝜋𝜂2 (C.2)

The coordinates, (𝑥, 𝑦), are then:

𝑥 = 𝑟 × cos(𝜃) (C.3)

𝑦 = 𝑟 × sin(𝜃) (C.4)
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D BinomialWeighting Plots

D.1 Binomial ̂ℒ and 𝑛̂𝑠 Plots

The following graphs show the results used to create Figure 4.14. Each simulation contains
105 trials using the binomial weighting method with a base probability 𝑝 of 0.0005 that
any of the 2000 events are randomly positioned around a test source position at the origin,
(0,0), on a 200 × 200 unit Cartesian grid, within a radius of √20/𝜋 units. The sampling
bias probability values used for each simulation are 0.0005, 0.001, 0.0025, and 0.005.
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Figure D.1: The ̂ℒ and 𝑛̂𝑠 pairs with generated weights for the binomial weighting
method with a sampling bias probability 𝑝′ of 0.0005.
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D Binomial Weighting Plots
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Figure D.2: The ̂ℒ and 𝑛̂𝑠 pairs with generated weights for the binomial weighting
method with a sampling bias probability 𝑝′ of 0.001.
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Figure D.3: The ̂ℒ and 𝑛̂𝑠 pairs with generated weights for the binomial weighting
method with a sampling bias probability 𝑝′ of 0.0025.
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D.1 Binomial ̂ℒ and 𝑛̂𝑠 Plots

21190− 21180− 21170− 21160− 21150− 21140−
Maximum Likelihood

0

5

10

15

20

25

M
ax

im
um

 S
ig

na
l E

ve
nt

s

23−10

21−10

19−10

17−10

15−10

13−10

11−10

9−10

7−10

5−10

3−10

1−10

10

310
410

C
ou

nt
s

Figure D.4: The ̂ℒ and 𝑛̂𝑠 pairs with generated weights for the binomial weighting
method with a sampling bias probability 𝑝′ of 0.005.
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