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ABSTRACT 

Various examples of supersymmetricquantum mechanical problems are 

presented, for which the scattering amplitudes behave in a non-generic 

way. Critical potentials include a-potentials, P6schl-Teller potentials 

and intermediate range potentials fal l ing off like Ixl "2. Conditions 

for the appearance of those cri t ical potentials are established. 

I. INTRODUCTION 

Supersymmetric quantum mechanics (Susy Q.M.) originally set-up by 

Witten [ l ] ,  is well established by now [2], [3]. In the one-dimensional 

case, the only one we shall consider in this paper, i t  affords a pairing 

of states of the same energy between two hamiltonians, with the possible 

exception of the ground state, which might have no partner. While most 

authors consider mainly the bound state problem, interesting results in 

Susy Q.M. are also obtained for the scattering states [4]. 

Presented at the "XVI Colloquium on Group Theoretical Methods in 

Physics." Varna, Bulgaria, June 1987. 
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In this paper we review some scattering problems in one-dimensional 

Susy Q.M., pointing out the non-generic character of the scattering 

amplitude for the chosen examples. Our selection includes a class of 

intermediate range potentials for which the phase shi f t  behaviour exhibits 

pecularities. 

The organization of this paper is as follows: in §2 we review brief ly 

Susy Q.M.; in §3 we set the formalism of one-dimensional scattering in 

order to establish the generic low-energy and high-energy behaviour of 

the (only two) scattering amplitudes. Examples are treated thereafter, 

including the delta potentials (§4) and the P~schl-Teller potential (§5); 

some slowly-fall ing potentials (decaying as Ix1-2 at in f in i ty)  are worked 

out in §6. In §7 we establish some general conditions for the existence 

of intermediate range cr i t ical  potentials, and in §8 we put forward our 

conclusions. 

I I .  SUPERSYMMETRIC QUANTUM MECHANICS 

Supersymmetrfc quantum mechanics deals essent ia l ly  with two hermitian 

anticommuting operators, Q and C, with known squares, namely [5] 

{Q,C} = 0 

C 2 : I , Q2 = H 

where H is the hamiltonian of the system; Q is called the supercharge. 

( I I . I )  implies that the spectrum of Q is symmetrical around zero, namely 

i f  ~ is in the spectrum of Q so is -~; this is the crucial property of 

any supersymmetric theory, [5] .  

One of the simplest real izat ions of the supercharge is to wri te 

(11.1) 

(11.2) 
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Q = o2p + OlW(X) ( I I .3) 

where o i are the Pauli matrices. The real function W(x) is called the super- 

potential, and x labels a single space dimension. ( I I .3) gives rise to 

the most general one-dimensional Susy Q.M. problem [2], [3]. As our 

operator C we can take just o 3 . The hamiltonian is 

H = Q2 = p2 + W2(x) _ o3W,(x ) 

which splits in two unidimensional hamiltonians H± 

up a Susy pair. 

I f  the eigenvalue equations are 

+ 
H+Uk(X) = ~kUk(X) , 

we have positive semidefinite energies and 

+ Ek : ~k f o r  + E k = c~ > 0 

H_Vk(X) = ~kVk(X) 

(ii.4) 

= p2 + W 2 • W' making 

(Ii.5) 

st r ic t ly  (II.6) 

but the zero-energy eigenstates need not exist nor be paired. We choose 

the u's and v's eigenvectors of C also, namely Cu k = +Uk, Cv k = -Vk, so 

that Q interchanges them; from the explicit form (I I .3) we obtain 

 Ix lu (x  =G 

I + ~x + W(x) 1Vk(X)=V~-~ k Uk(X) 

(ii.7 ) 

(iI.Tb) 

as relation between the wavefunctions. 

Both bound states and scattering states are paired by Susy. In 

particular, as (If .7) are local equations, the asymptotic values of the 

superpotential W(±-) would relate the phase shifts for Uk(X ) and Vk(X). 
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For example i f  we deal with even potentials, which implies odd super- 

Potential, W(x) = -W(-x), and describe the scattering by the even and odd 

Phase shifts 6±(k) (see §III for details), we have the asymptotic behaviour 

Uk(X ) x>>+ " Nl+ cos(k x + al+) 

Vk(X ) x>> - N2+ cos(k x + ~2+) 

or Nl_ sin(k x + al_) 

or N2_ s in(k x + ~2_) 

that is, the relation between the phase shifts are, due to ( I I .7) ,  

62_(k) = 61+(k) - a 

~2+(k) = al_(k) - 

tge : W(+~)/k 

We shall make ample use of these relations later. 

(II.Sa) 

(III .8b) 

( l l .9a) 

( l l .gb) 

(II . lO) 

I I I .  GENERIC BEHAVIOUR OF UNIDIMENSIONAL SCATTERING 

We consider the unidimensional Schr~dinger equation 

¢"(x) + k2¢(x) = V(x)@(x) 

for a decaying potential V(x) ÷ 0 for Ixl large. 

Wave function is 

¢(x)_IX i>~ ; e ikx + fE(k)e i k l x l ,  

The normal scattering 

Where the scattering amplitudes are f÷(k) = fforward' and 

f,(k) = fbackward" I f  the incident wave comes from the right, we have 

scattering with wavefunction 

( I l l . l )  

( I I I .2)  
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@(x)]X >> , e-ikx + # (k)eiklxl 

The S-matrix in the in-out representation is 

S(k) : 

l + f÷(k) ~+(k) 

f+(k) 1 + ~+(k) 

For a local  po ten t ia l  V = V(x) time reversal  invar iance is  automatic 

and impl ies f÷ (k )  = f÷ (k ) ;  i f  we r e s t r i c t  ourselves fo r  s i m p l i c i t y  to even 

po ten t ia l s ,  V(x)  : +V(-x) ,  we also have f÷(k )  : ~÷(k) .  U n i t a r i t y  of  S 

l i m i t s  fur thermore the ampli tudes to two real  numbers, namely we have the 

cond i t ions  

~(k) ~ i f ÷ ( k ) l  2 

(III.2a) 

(i i I .3) 

+ i f ÷ ( k ) l  2 = -2Re f+(k)  (III.4) 

(which is the unidimensional optical theorem), and 

Re(l + f+(k))f÷(k) = 0 (phase relation) . 

The total scattering coefficient o(k) is dimensionless and 

0 ~ o(k) ~ 4. See [ 6 ] ,  [ 7 ] .  

We can also in t roduce p a r i t y  waves ( the orthogonal group in one 

dimension is  j u s t  p a r i t y ,  0 ( I )  = Z2), wi th  even and odd phase s h i f t s  

6±(k) [ 8 ] .  The r e l a t i o n s  are 

f÷ (k )  = f+ (k )  + f . ( k )  , f÷ (k )  : f+(k)  - f_ (k )  

f± (k )  = ie ia±(k)  s in 6±(k) 

a = 2(s in  2 a+ + s in 2 ~.)  . 

(i I.5) 

bounded by 4, 

(iiI.6) 
( ii.7) 

(ill. S) 
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TO study the dependence of the scattering amplitudes on the energy 

k 2, we consider separately the low- and the high-energy regions. 

l) Low energy region. The odd wave phase shi f t  6.(k) is the same 

as the s-wave phase shi f t  ao(k) of the corresponding three dimensional 

problem, for which we know the effective range approximation is a good 

one; consequently 

k cot am(k) = C + dk 2 + O(k 4) , (low k) ; ( I I I .9b) 

but we can derive an analogous formula for ~+(k) by just changing the 

boundary conditions in the classical derivation of ( I I I .gb) due to 

Bethe [9]. We obtain in this way 

k tg ~+(k) = a + bk 2 + O(k 4) , (low k) . 

In ( I I I .9 )  a, b, c and d are constants. 

be characterized by normal 

( I I I .9a) 

The genericbehaviour would 

values of the 0 th order terms: 

0 ~ (a,c) ~ o0. 

In particular, generically 

6+(k = O) = ~/2 mod 

6 (k = O) = 0 mod 
m 

( I I I . l l + )  

( I I I . l l - )  

The mod ~ ambiguity is of course resolved by the convention 

am(k ÷ -) = O, and then the zero energy l imi t  of 6± just counts the 

number of even or odd bound states; s t i l l  in the 9eneric situation 

a+(O) : (n+ - ½)~ (I l l .12+) 

a_(O) = n_x ( I I I . 1 2 - )  
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where n+ (n_) is the number of even (odd) bound states, which is 

Levinson's theorem in one dimension. 

2) High energy region. I t  can be easily deduced from the integral 

equation for scattering [lO] 

l I +~ e ik jx 'x ' j  V(x')@(x')dx' ( I l l .13) @(x) = e ikx + 2Tk 

through the Born approximation, which gives 

l I +~ f÷(k) k>> ~ f (k) = ~ V(x)dx - cons. k (III.14~) 

f÷(k) k>> ~ fB(k ) =2Tk V(x)e 2ikx dx = o , (111.14÷) 

so the rapidly oscillating term exp(2ikx) damps f÷(k) with respect to f÷(k) 

at large k. 

So we have the following generic behaviour of the amplitudes in one 

dimensional scattering: 

a) isotropy at low k , (III.15 .0) 

because 6_(k) ~ 0 means f÷ : f÷, see ( I l l . 6 ) ;  this is the same as in three 

dimensional scattering, which is dominated by the s-wave at low k. 

b) transparency at high k , ( I I I . I  5'~) 

because f+(k + ~) - O, the high-energy behaviour is dominated by the forward 

amplitude; this is also true in three dimensions ("forward d i f f rac t i on  

peak"; see e.g. I l l ] ) .  
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Without being too precise, we shall call critical a potential whose 

scattering amplutides do not behave like (III.15)o We next present some 

examples of supersjnnmetric critical potentials. 

IV. THE DELTA POTENTIAL 

To illustrate a simple case of critical potential, let us look at the 

Well-known case of the delta potential in one dimension 

V(x) : g~(x) (IV.l) 

The Susy aspect of the delta potential has been established already 

[3]; namely 

W(x) = (9/2) sign(x) (IV.2) 

is the appropriate superpotential. Supersymmetry just interchanges g with 

"9. Besides the bound state wavefunction, solution of (-d/dx + W)u 0 = O: 

Uo(X ) = /-Eg'7~-exp(+g(xl/2) (IV.3) 

(valid for g < 0 only), there are scattering states, which might be 

obtained by solving directly the spectral equation for Q = o2p + Ol W of 

(II.3), namely 

__d i u i = (g sign(x))/2 ~ i u I (IV.4) 
dx v - ~ -(g sign(x))/2) v 

With x2 = k 2 + g2/4; the scattering amplitudes are [3] 

f÷(k) = f÷(k) = 2ik 9 (IV.B) -g  

as expected, cfr. Lapidus [8], [12]. 
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So we see that the scattering is isotropic for all k, and in this 

sense the a-potential is c r i t i ca l :  the expected low energy isotropy 

persists at all energies. For the phase shif ts we obtain 

tg ~+(k) = -g/2k , a.(k) = 0 (IV.6) 

The effective range approximation is exact for a+(k), with quadratic 

coefficient ("effective range," cfr .  ( I I I .9a) )  equal to zero; the odd 

phase sh i f t  is zero; also the scattering amplitude is given in fu l l  by 

the pole of the bound state, at k b = - ig/2.  

Of course, the c r i t i ca l  nature of the delta potential is easy to under- 

stant: i ts  "zero" range means that the isotropy condition is always 

valid ( i . e . ,  for all k). 

The relations ( I I .9 )  are of course sat isf ied, but in a 

peculiar way: as the odd phase is zero, we obtain just 

61+ = -a2+ = -arctg(g/2k), and the exactness of the effective range 

formula can be understood: i t  is a consequence of zero range potential 

(6_ = O) and supersymmetry al+ - a2_ = -W(=)/k. 

V. THE P~SCHL-TELLER POTENTIAL 

The potential 

V(x) : g sech 2 x ( v . l )  

is a particular case of the so-called Bargmann potentials [13]. Solu- 

tions for arbitrary g can be found easily [14]. The c r i t i ca l  case occurs 

for g = -~(~ + l ) ,  ~ = 0 , I , 2 , - - - ;  in this case the solution can be 

obtained completely by algebraic methods. The superpotential is 
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W(x) : -~ tanh x 

and connects g~ w i th  g~-I  as Susy p a i r s ,  see [15]  and a lso [ 3 ] ;  f o r  

: 0 we connect the re fo re  the f ree equat ion u " ( x )  + k 2 u(x)  = 0 w i th  

the equat ion v " ( x )  + k 2 v (x )  = -2sech2(x)  • v ( x ) ,  hence the par tner  o f  

the incoming wave s o l u t i o n  Uk(X) = exp ( i kx )  g ives the exact  s c a t t e r i n g  

wave f o r  v ( x ) ;  and by i t e r a t i o n  the s o l u t i o n  f o r  a r b i t r a r y  ~ is  ob ta ined;  

the r e s u l t  i s  [3 ]  

f÷(k) = 0 (reflectionless, transparent potential) 

ik - 1 ik - 2 ik - 
1 + f÷(k) = ~k~......+ 1 ~ " '" ik 2 ik + ' 

i .e. we obtain a beautiful factorizable S-matrix of transparent type. 

As the potential is attract ive and even, there are also bound states 

(for £ > O) [3] at energies 

(V.2) 

(V.3 ÷) 

(V.3÷) 

E(m) : -m 2 ; m : 1 , 2 , 3 , . . . , ~  . (V.4) 

So the -~(~ + l)sech2(x) potential is c r i t i ca l  in a way complementary 

to the delta potential: the lat ter  is isotropic (a_(k) = 0), the former 

transparent (f÷(k) = 0). 

The P-T potential for g~ = -~(~ + l )  is c r i t i ca l  because g~ is 

c r i t i ca l :  namely we have a zero energy resonance each time g crosses 

the value -~(~ + l ) .  This produces a sh i f t  of ~/2 in the corresponding 

a's, and makes a+(O) = a (0) possible (this is a well-known phenomenon, 

See e.g. Newton [16]); then Susy maintains the equality to any k, and 

a+(k) = a_(k) of course implies f÷(k) = 0 (transparency condition), 

Cfr. ( I I I . 6 , 7 ) .  For example for ~ = l we just have a zero energy resonance 
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[14]  o f  odd p a r i t y ,  because the unique t rue  bound s ta te  is  of  course even, 

at  ~ = - l ;  t he re fo re  6_(0) = +~/2 ins tead of  being zero,  so 6_(0) = 6+(0) .  

This causes f÷(O) = -2 ,  and o(0) = 4, a t y p i c a l  resonance maximum, c f r .  

The anomalous behaviour a l t e r n a t e s :  f o r  ~ = 2 we get 6+(0) = 

ins tead o f  ~/2 because the resonance is  now in  even wave, so o(0) = 0 

a l though i t  can again be considered as a resonant behav iour ,  the gener ic  

value would be o(0) = } - l l  2 + 1-112 = 2; e tc .  

The s c a t t e r i n g  ampl i tude is  again given in  f u l l  by a r a t i o n a l  

f unc t i on  wi th  poles at  the bound s ta tes :  the s c a t t e r i n g  is  j u s t  a d d i t i v e  

in  the angles ~(m) = arc tg  k/m, m = ] , - . - , ~ ,  t h a t  i s  to say 

1 + f+ (k )  = exp [ -2 i  Z a r c tg ( k /m) ]  (Vo5) 
m = ] 

F i n a l l y ,  as i t  can be also deduced from ( I I . g , l O ) ,  the e f f e c t i v e  

range approx imat ion is  exact  f o r  the . f . i rs t  r egu la r  phase s h i f t ,  namely 

5+(6_) for ~ = I (2) ,  to wit 

k tg 6+(k) : l (~ : l )  , k cot 6_(k) : ~ + ½ k 2 (L : 2) (V.6) 

For ~ ~ 3 the effective range approximation is not exact. 

The form (V.3) of the scattering amplitude is equivalent to a product 

of two gamma functions divided by the conjugates (note that II + f÷I = l 

as f÷ = 0); in fact, the solution for non-crit ical g can be also expressed 

in this way, see [14]. This is reminiscent of the Veneziano amplitude, 

or of the factorizable S-matrix in some soluble two dimensional models; 

in fact, a relation between the sech 2 x potential and the sine-Gordon 

equation has already been made, see [17]. 

(IV.4). 

* We thank Dr. B. Rosenstein (UT Austin) for discussion of this point. 
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VI. INTERMEDIATE RANGE POTENTIALS 

We studied in [18] the partner potentials 

V + ( x )  - 2 V (x )  - . 6x2 - 2 
1 + x 2 ' - ( I  + x2)  2 

coming f rom the  s u p e r p o t e n t i a l  W(x) = 2 x / ( l  + x 2 ) .  As here  W(~) = O, 

the general equations ( I I .9) give 

62+(k  ) = ~ l _ ( k )  , a2_(k) = 61+(k) 

which imply, of course, that all ~'s cannot be generic. To calculate the 

a's one has to resort to numerical integration. 

Here the culpr i t  of non-genericity is the long range character of 

the interaction, which introduces extra x/2 factors. For example 

V+(x)~X>~ 2/x 2 = ~(~ + l ) /x  2 for ~ = l ,  which introduces a value of -~/2 

at k = 0 in both al+ and al- because of the centrifugal term; hence both 

al'S are anomalous; as for V_(x), the long range behaviour is 

6/x 2 = ~(~ + l ) /x  2 for ~ = 2, and this introduces an extra -~ value at 

k : 0 in both 62±, so they are anomalous, too. This makes (VI.2) possible 

for k = O, and again Susy takes care of the equality for arbitrary k. A 

detailed discussion is in [18]. 

I t  could happen that only one of the partner members is anomalous, 

for example, starting from the function 

= l u0(x) 

(Vl. l )  

(VI.2) 

(VI.3) 

as the (unnormalized) Susy-exact ground state, we obtain from the equation 

Uo(X) = exp - [ w dx the superpotential W(x) and the ordinary potentials 

= W 2 V ± W', namely 
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w(x)  : x 
1 + x  2 

= l V.(x) - 2x2 - l 
V+(x) (l + x2) 2 ' (l + x2) 2 

(vI.4) 

(VI.4') 

V+(x) represents a repulsive barrier, and decreases l ike Ixl "4 for 

large Ixl; hence is not c r i t i ca l  in any sense; in part icular al+(O) = -~/2 

(see I l l ,12+) and 61_(0) = O. Now however V_(x) represents a crater l ike 

potential which supports a zero energy true even bound state, not just  

a zero energy resonance, namely the state (VI-3) we started from! Also 

V_(x) decreases l ike 21x1-2 for large Ixl ;  hence i ts phase shif ts acquire 

both an extra -7/2 at k = O, but a2+(O) also has a +7/2 value from the 

bound state, ( I l l .12+) ;  therefore 

a2+(O) : _ ~  + ~ : 2 2 0 = 61.(0) , a2_(O) = -~/2 = ~i+(0) 

in agreement with ( I I .9)  for W(®) = O, which is the case. 

The wave function (VI.3) is inspired in some vortex functions [19]. 

when W(x) = cons., and then ~ = O. For the -~(L + l)sech 2 x case, 

b ot h 61+ and 62_ are either normal or anomalous, so the difference is 

s t i l l  ~/2 mod ~ at k = O; the same is true for al_ and a2+. 

( v l . 5 )  

v i i i .  CONCLUSIONS 

We have made a f a i r l y  de ta i l ed  study of  some Susy p o t e n t i a l s ;  most 

o f  them are c r i t i c a l ,  t ha t  i s  to say, t h e i r  phase s h i f t  behave non 

g e n e r i c a l l y .  For the three cases: zero range or de l ta  p o t e n t i a l ,  

t ransparen t  sech 2 x p o t e n t i a l  and in te rmedia te  range or V(x) ~ Ix1-2 ,  we 
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think we understand the c r i t i c a l  behaviour: in p a r t i c u l a r  a zero energy 

resonance must be counted as a "hal f -bound" [16] s ta te ,  and a cen t r i fuga l  

term r ( r  + 1) /x  2 cont r ibutes an addi t ional  - r~ /2  to the phase sh i f t s  

[18]. 

As another cr i t ica l  potential we should consider the Coulomb 

POtential in one dimension, with superpotential W(x) = y - I x I ' l ;  we 

propose to study this in a future paper. 

VII. GENERALIZATIONS 

We consider now some generalizations of (Vl.3); e.g. i f  the wave 

function of the ground state u0(x ) decreases like a power -r at [x] 

large, W(x) = -u'(x)/u(x) decreases like Ixl - l ,  therefore W(-) = O, and 

either of V± = W 2 ± W' (or both) are c r i t i ca l .  In fact both are c r i t i ca l ,  

except when u0(x ) ÷ Ixl - l ,  because 

Ixl>> r ( r  ~ 1) ( v i i . l )  Uo(X) , Ixl - r  -> v ± ( x ) l x l > >  -2  
X 

Which impl ies also a connection between the number of bound s ta tes ;  namely, 

because 

= 7T 61+(0) = (n (l - ½)~ - (r - l)x/2 , 61_(0 ) n(Ix. - (r - I) -~ 

62+(0) : (n~ 2 - ½)~ - r~/2 , 62_(0) : (n!2)~ - r~/2 

(VII.2.1) 

(VII.2.2) 

We obtain, from ( I I .9 ) ,  61+(k ) : 62_(k),62+(k ) = 61.(k), or 

n~ 1 : n (2_ , n~ 2 = n (I. + 1 ( V l l . 3 )  

Which holds independently of  r .  
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For W(~) ~ 0 we do not obtain, in general, cri t ical potentials, 

for (II.9) gives 

a2.(O) - al+(O) = ±x/2 mod 

62+(0) - 61_(0) = ±7/2 mod 

which is to be expected, as the even phase shifts start at 7/2, the odd 

at 0 (both mod x). The exceptional case of the delta potential obtains 
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