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ABSTRACT

Various examples of supersymmetric quantum mechanical problems are
presented, for which the scattering amplitudes behave in a non-generic

way. Critical potentials include &-potentials, PBschl-Teller potentials

2.

and intermediate range potentials falling off like |x Conditions

for the appearance of those critical potentials are established,

I. INTRODUCTION

Supersymmetric quantum mechanics (Susy Q.M.) originally set-up by

Witten [1], is well established by now [2], [3]. 1In the one-dimensional

case, the only one we shall consider in this paper, it affords a pairing
of states of the same energy between two hamiltonians, with the possible
exception of the ground state, which might have no partner. While most
authors consider mainly the bound state problem, interesting results in

Susy Q.M. are also obtained for the scattering states [4].

*
Presented at the "XVI Colloquium on Group Theoretical Methods in
Physics." Varna, Bulgaria, June 1987.
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In this paper we review some scattering problems in one-dimensional
Susy Q.M., pointing out the non-generic character of the scattering
amplitude for the chosen examples. Our selection includes a class of
intermediate range potentials for which the phase shift behaviour exhibits
pecularities.

The organization of this paper is as follows: in §2 we review briefly
Susy Q.M.; in §3 we set the formalism of one-dimensional scattering in
order to establish the generic low-energy and high-energy behaviour of
the (only two) scattering amplitudes. Examples are treated thereafter,
including the delta potentials (§4) and the P8schi-Teller potential (§5);
some slowly-falling potentials (decaying as lx['2 at infinity) are worked
out in §6. In §7 we establish some general conditions for the existence
of intermediate range critical potentials, and in §8 we put forward our

conclusions.

II. SUPERSYMMETRIC QUANTUM MECHANICS

Supersymmetric quantum mechanics deals essentially with two hermitian

anticommuting operators, Q and C, with known squares, namely [5]
{G,Ct =0 (11.1)
tc=1, Q- =H (11.2)

where H is the hamiltonian of the system; Q is called the supercharge.
(I1.1) implies that the spectrum of Q is symmetrical around zero, namely
if A is in the spectrum of Q so is -A; this is the crucial property of
any supersymmetric theory, [5].

One of the simplest realizations of the supercharge is to write
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Q = a,p + oyH(x) (11.3)

where oy are the Pauli matrices. The real function W(x) is called the super-
potential, and x labels a single space dimension. (I1.3) gives rise to
the most general one-dimensional Susy Q.M. problem [2], [3]. As our

operator C we can take just a3. The hamiltonian is

H= Q% = p% + WP(x) - ok’ (x) (11.4)
which splits in two unidimensional hamiltonians H, = p2 + we 7 W' making
up a Susy pair.
If the eigenvalue equations are
.). - -
Hyu (x) = epu (x) 5 Hov(x) = ekvk(x) (11.5)
we have positive semidefinite energies and
e: = e =g for ei >0  strictly (11.6)

but the zero-energy eigenstates need not exist nor be paired. We choose
the u's and v's eigenvectors of C also, namely Cuk = +uk, Cvk = =Vys SO

that Q interchanges them; from the explicit form (I1.3) we obtain

[' adsz ¥ W(X)]uk(x) =V, v (x) (11.72)
{+ ad§ + W(X)} Vk(X) =/?k uk(x) (H_?b}

as relation between the wavefunctions.
Both bound states and scattering states are paired by Susy. In
particular, as (II.7) are local equations, the asymptotic values of the

superpotential W(t=) would relate the phase shifts for uk(x) and vk{x).
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For example if we deal with even potentials, which implies odd super-
potential, W(x) = ~W(-x), and describe the scattering by the even and odd

phase shifts Gi(k) (see §III for details), we have the asymptotic behaviour

u (x) 2= Ny, cos(k, + 89,)  or Np_sin(k, + 6;) (11.8a)
v (x) 22 Ny, coslk, + 6,,)  or N, sin(k, +5,) (111.8b)

that is, the relation between the phase shifts are, due to (II.7),

8, (k) = 8, (k) - a (11.9)
8,0(k) = 8, _(K) - a (11.9b)
tg, = Wi+=)/k . (11.10)

We shall make ample use of these relations later.

III. GENERIC BEHAVIOUR OF UNIDIMENSIONAL SCATTERING

We consider the unidimensional Schrédinger equation
200+ KE(x) = V(x)u(x) (111.7)

for a decaying potential V(x) » 0 for |x| large. The normal scattering

Wave function is
i X2, ik fe(k)eikiXI, g=m (111.2)

Where the scattering amplitudes are f (k) = f
f+(k) = f

forward’ and

backward" If the incident wave comes from the right, we have

Ardo scattering with wavefunction
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ox) X2 e ikx L etklxl (111.2a)

€

The S-matrix in the in-out representation is

1+ f (k) f (k)
S(k) = . (111.3)
f (k) 1+ 7 (k)

“

For a local potential V = V{x) time reversal invariance is automatic
and implies f (k) = ?»(k); if we restrict ourselves for simplicity to even
potentials, V(x) = +y(-x), we also have f_(k) = ?+(k). Unitarity of §
limits furthermore the amplitudes to two real numbers, namely we have the

conditions

o(k) = tf*(k)tz + {f+(k)lz = -2Re f_(k) (111.4)

(which is the unidimensional optical theorem), and
*ooy L . 1.5)
Re(1 + f (k))f (k) =0 (phase relation) . (111.

The total scattering coefficient o (k) is dimensionless and bounded by 4,
0 < o(k) < 4. See [6], [7].

We can also introduce parity waves (the orthogonal group in one
dimension is just parity, 0(1) = 22), with even and odd phase shifts

6i(k) [8]. The relations are

£(k) = £, (k) + (k) »  f (k) = f(k) - F_(K) (111.6)
f, (k) = jet8* (k) g4 8, (k) (III-”
2 (1118

o = 2(sin? &, + sin® ) .
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To study the dependence of the scattering amplitudes on the energy

kz, we consider separately the low- and the high-energy regions.

1) Low energy region. The odd wave phase shift §_(k) is the same

as the s-wave phase shift Go(k) of the corresponding three dimensional

problem, for which we know the effective range approximation is & good

One; consequently

k cot 6 (k) = c+dkZ +0(kY) , (low k) ; (I11.9b)

but we can derive an analogous formula for § (k) by just changing the
boundary conditions in the classical derivation of (II1.9b) due to

Bethe [9]. We obtain in this way

ktg 6,(k) =a+bk2+0(k") . (lowk) . (111.9a)

In (I11.9) a, b, ¢ and d are constants. The generic behaviour would

be characterized by normal values of the Oth order terms:
0# (a,c) # = .
In particular, generically
§,(k =0) = 1/2 mod 7 (IT1.11+4)

§ (k=0)=0 mod (111.11-)

The mod = ambiguity is of course resolved by the convention
si(k + =) = 0, and then the zero energy limit of &, just counts the

Number of even or odd bound states; still in the generic situation

8,(0) = (n, - #)v (I11.12+)

s_(0) (111.12-)

[}
o
=
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where n, (n_) is the number of even {odd) bound states, which is

Levinson's theorem in one dimension.

2) High energy region. It can be easily deduced from the integral

equation for scattering [10]

1 (™ k|x-x']
s = e e g [ ety pyxyaxe (111.13)

-0

through the Born approximation, which gives

+oo
£,00) 2 B - f V(x)dx = So0S- (111.142)
+co ,
f0 22 B = e [ vl ac=ofy) L (i

a4

so the rapidly oscillating term exp(2ikx) damps f_(k) with respect to f, (k)
at large k.

So we have the following generic behaviour of the amplitudes in one

dimensional scattering:

a) isotropy at low k , (III.15-m

because 6_(k) ~ O means f_ = f,, see (III.6); this is the same as in three

dimensional scattering, which is dominated by the s-wave at low k.

b) transparency at high k , (111.15f)

because fé(k + @) ~ 0, the high-energy behaviour is dominated by the forward
amplitude; this is also true in three dimensions ("forward diffraction

peak"; see e.g. [11]).
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Without being too precise, we shall call critical a potential whose
scattering amplutides do not behave 1ike {II1.15). We next present some

examples of supersymmetric critical potentials.

IV. THE DELTA POTENTIAL

To illustrate a simple case of critical potential, let us Took at the

well-known case of the delta potential in one dimension
V(x) = gé(x) . (Iv.1)

The Susy aspect of the delta potential has been established already
[3]; namely

W(x) = (g/2) sign(x) (1v.2)
is the appropriate superpotential. Supersymmetry just interchanges g with
~g. Besides the bound state wavefunction, solution of (-d/dx + w)u0 = 0:

ug(x) = v-g/Z exp(+g|x|/2) (1v.3)

(valid for g < 0 only), there are scattering states, which might be
Obtained by solving directly the spectral equation for Q = opp + c]w of
(II.3), namely

u (g sign{x))/2 A y
d
ax [ } = (1v.4)
X v . v
- A ~-(g sign(x))/2)
With 32 = 2 + ¢2/4- . )
A k® + g°/4; the scattering amplitudes are [3]
- =
(k) = f (k) ?Tiﬂ?‘a (Iv.5)

35 expected, cfr. Lapidus [8], [12].
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So we see that the scattering is isotropic for all k, and in this

sense the §-potential is critical: the expected low energy isotropy

persists at all energies. For the phase shifts we obtain

tg 6,(k) = -g/2k , s_(k) =0 . (Iv.6)

The effective range approximation is exact for &, ,(k), with quadratic
coefficient ("effective range," cfr. (1I1.9a)) equal to zero; the odd
phase shift is zero; also the scattering amplitude is given in full by
the pole of the bound state, at kb = -ig/2.
0f course, the critical nature of the delta potential is easy to under-
stant: 1its "zero" range means that the isotropy condition is always
valid (i.e., for all k).
The relations (11.9) are of course satisfied, but in a
peculiar way: as the odd phase is zero, we obtain just

= -8y, = -arctg(g/2k), and the exactness of the effective range

6]+
formula can be understood: it is a consequence of zero range potential

(6_ = 0) and supersymmetry &, - 6, = “W(=)/k.

V. THE POSCHL-TELLER POTENTIAL

The potential

V(x) = g sech? x (v.1)

is a particular case of the so-called Bargmann potentials [13]. Solu-
tions for arbitrary g can be found easily [14]. The critical case occurs
for g = -2{2 + 1), 2 = 0,1,2,-++; in this case the solution can be

obtained completely by algebraic methods. The superpotential is
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W(x) = -2 tanh x (v.2)

and connects g, with g,_4 as Susy pairs, see [15] and also [3]; for

% = 0 we connect therefore the free equation u"(x) + k2 u(x) = 0 with

the equation v"{x) + kz v{x) = —ZSechZ(x)- v(x), hence the partner of

the incoming wave solution uk(x) = exp(ikx) gives the exact scattering
wave for v{x); and by iteration the solution for arbitrary & is obtained;

the result is [3]

f (k) =0 (reflectionless, transparent potential) (V.3%)
_ ik -1 ik - 2 ik - &
BN T BT A (i (v.3)

i.e. we obtain a beautiful factorizable S-matrix of transparent type.

As the potential is attractive and even, there are also bound states

{for ¢ > 0) [3] at energies

e(m) = -u’ 3 M= 1,2,3,000,0 . (v.4)

So the -2(2 + 1)sech2(x) potential is critical in a way complementary
to the delta potential: the latter is isotropic (6_(k) = 0), the former
transparent (f (k) = 0).

The P-T potential for g, = -2(2 + 1) is critical because 9, is

Critical: namely we have a zero energy resonance each time g crosses

the value -2(2 + 1). This produces a shift of =/2 in the corresponding
8's, and makes 6,(0) = 6_(0) possible (this is a well-known phenomenon,
See e.g. Newton [16]); then Susy maintains the equality to any k, and
8.(k) = 6_(k) of course implies f (k) = 0 (transparency condition),

¢fr. (111.6,7). For example for £ = 1 we just have a zero energy resonance



136

[14] of odd parity, because the unique true bound state is of course even,

at e = -1; therefore §_(0) = +n/2 instead of being zero, so §_(0) = 6,(0).

This causes f (0) = -2, and o(0) = 4, a typical resonance maximum, cfr. (1v.4).
The anomalous behaviour alternates: for ¢ = 2 we get 6+(0) = q

instead of 7/2 because the rescnance is now in even wave, so o{0) = 0

although it can again be considered as a resonant behaviour, the generic

value would be ¢(0) = §-1|2 + |-1i2 = 23 etc.
The scattering amplitude is again given in full by a rational

function with poles at the bound states: the scattering is just additive

in the angles ¢{m) = arctg k/m, m = 1,«++,%, that is to say

%
1+ f (k) = exp[-2i Z] arctg(k/m)] (v.5)
m:

Finally, as it can be also deduced from (II.9,10), the effective
range approximation is exact for the first regular phase shift, namely
6,(s_) for & = 1(2), to wit

ktgs,(k) =1 (2=1), keoto.(k) =5+2k% (x=2) (V.6)

wiry

For £ 2 3 the effective range approximation is not exact.

The form {V.3) of the scattering amplitude is equivalent to a product
of two gamma functions divided by the conjugates (note that {1 + f | =1
as f_=0); in fact, the solution for non-critical g can be also expressed
in this way, see [14]. This is reminiscent of the Veneziano amplitude,
or of the factorizable S-matrix in some soluble two dimensional models;
in fact, a relation between the sech2 x potential and the sine-Gordon

equation has already been made, see [17].*

* We thank Dr. B. Rosenstein (UT Austin) for discussion of this point.
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VI. INTERMEDIATE RANGE PQTENTIALS

We studied in [18] the partner potentials

2
O I R ey (v1.1)
1+ x {1+ x%)
coming from the superpotential W(x) = 2x/(1 + xz}. As here W{=) = 0,
the general equations (II.9) give
62+(k) = 61_(k) ’ 62_(k) = 6]+(k) (VI.Z)

which imply, of course, that all &'s cannot be generic. To calculate the
§'s one has to resort to numerical integration.

Here the culprit of non-genericity is the long range character of
the interaction, which introduces extra n/2 factors. For example

x>>

v, (x) 5= 2}x2 = 2{2 + 1)/x2 for £ = 1, which introduces a value of -n/2

at kx = 0 in both 6] and 6}_ because of the centrifugal term; hence both

+
81's are anomalous; as for V_(x), the long range behaviour is

= 6/x2 = 2(% + 1)/x2 for & = 2, and this introduces an extra - value at
k=0 in both 85,5 S0 they are anomalous, too. This makes (VI.2) possible
for k = 0, and again Susy takes care of the equality for arbitrary k. A
detajled discussion is in [18].

1t could happen that only one of the partner members is anomalous,
for example, starting from the function
1 (V1.3)
v+ x2

s the (unnormalized) Susy-exact ground state, we obtain from the equation

Uo(x) =

Us(x) = exp - [ w dx the superpotential W(x) and the ordinary potentials

V, = W2 4 W', namely
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W(x) = —2 5 (v1.4)
1+ X
V. (x) = — s vV (x) = _EEE_:_l_ (V1.4')
+ (0 + )2’ - (02

V,(x) represents a repulsive barrier, and decreases like Ix|"4 for
large |x|; hence is not critical in any sense; in particular 61+(0) = /2
(see I11.12+) and 6]_(0) = 0. Now however V_(x) represents a craterlike
potential which supports a zero energy true even bound state, not just
a zero energy resonance, namely the state (VI-3) we started from! Also

xl'z for large |x|; hence its phase shifts acquire

V_(x) decreases like 2|
both an extra -n/2 at k = 0, but 62+(0) also has a +7/2 value from the

bound state, (III.12+); therefore
I S S - -
5,000 = -5+ 2=0=25_(0), 6, (0) = -n/2 =85 ,(0) (v1.5)

in agreement with (I1.9) for W(=) = 0, which is the case.

The wave function (VI.3) is inspired in some vortex functions [19].

when W(x) = cons., and then §_=0. For the -g(2 + 1)sech2 X case,
both &,, and 6, are either normal or anomalous, so the difference is

still n/2 mod 7 at k = 0; the same is true for 6]_ and 62+.

VIII. CONCLUSIONS

We have made a fairly detailed study of some Susy potentials; most
of them are critical, that is to say, their phase shift behave non
generically. For the three cases: zero range or delta potential,

transparent sech® x potential and intermediate range or V(x) « |x|72, we



139

think we understand the critical behaviour: in particular a zero energy
resonance must be counted as a "half-bound" [16] state, and a centrifugal
term r(r + 1)/x2 contributes an additional -rw/2 to the phase shifts
D8],

As another critical potential we should consider the Coulomb
Potential in one dimension, with superpotential W(x) = v- lx['l; we

Propose to study this in a future paper.

VII. GENERALIZATIONS

We consider now some generalizations of (VI.3); e.g. if the wave
function of the ground state uo(x) decreases like a power -r at |x|

large, W{x) = -u'(x)/u{x) decreases like ]xl'], therefore W{=) = 0, and

either of v, = w2 + W' (or both) are critical. In fact both are critical,

except when uy(x) ~ ]xf'1, because

up() BL2 [ oy iy IX2, s

X

(VII.1)

Which implies also a connection between the number of bound states; namely,

because
(O I O O (R D I N (*) L LS R D .
65000 = (0% = d)w - vz, 5, (0) = (0D - vus2

"e obtain, from (11.9), 8;,(k) = §,_(k), 8,,(k) = &,_(k), or

Which holds independently of r.

(viI.2.1)

(VII.2.2)

(VII.3)
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For W(=) # 0 we do not obtain, in general, critical potentials,

for (I1.9) gives

52_(0) - 6]+(0) £x/2 mod w

62+(0) - 61_(0) = tq/2 mod w

which is to be expected, as the even phase shifts start at /2, the odd

at 0 (both mod 7). The exceptional case of the delta potential obtains

1]
(2]

(3]
[4]

[5]

(6]
7]

(8]
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