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Abstract

Quantum scale estimation, as introduced and explored here, establishes the most precise
framework for the estimation of scale parameters that is allowed by the laws of quantum
mechanics. This addresses an important gap in quantum metrology, since current practice focuses
almost exclusively on the estimation of phase and location parameters. For given prior
probability and quantum state, and using Bayesian principles, a rule to construct the optimal
probability-operator measurement is provided. Furthermore, the corresponding minimum mean
logarithmic error is identified. This is then generalised as to accommodate the simultaneous
estimation of multiple scale parameters, and a procedure to classify practical measurements into
optimal, almost-optimal or sub-optimal is highlighted. As a means of illustration, the new
framework is exploited to generalise scale-invariant global thermometry, as well as to address the
estimation of the lifetime of an atomic state. On a more conceptual note, the optimal strategy is
employed to construct an observable for scale parameters, an approach which may serve as a
template for a more systematic search of quantum observables. Quantum scale estimation thus
opens a new line of enquire—the precise measurement of scale parameters such as temperatures
and rates—within the quantum information sciences.

1. Introduction

Quantum estimation theory is typically envisioned as a toolbox to design highly precise measurements [1-5].
Discovered over half a century ago [1, 6-13], this framework is currently attracting a great deal of attention
due to its central role in ‘the second quantum revolution’ [14]—an application of the principles of quantum
mechanics to sensing, metrology, communication, computation, nano and space technologies [15-21]. But,
beyond its unquestionable value as a practical tool, estimation theory may be attributed a more prominent
role within the foundations of physics: it enables the means to connect, in a clear and systematic fashion, the
variables that we measure in the laboratory with the variables appearing in our theories of nature. Indeed, if
x represents one of the possible outcomes that a given measurement could generate, one can often postulate
the existence of a map x — 6(x) from the outcome x to an estimate f(x) for a theoretical variable © [1,
22-24]. To find such map in practice, an elegant and neat approach is to minimise a mean error

€= (D[f(x),8]) over the estimator function f(x), where 6 is a hypothesis about the true value of ©, D gauges
the deviation of f(x) from 6, and the brackets indicate a weighted average over (x,6). An instance of D is the
familiar square error D(6,6) = (6 — 6)? [1, 24].

Estimation-theoretic quantities can, in addition, transcend their purely statistical role to acquire a new
function within physics. For example, mean errors are known to enable the derivation of generalised
uncertainty relations [1, 22, 25-29] such as those for phase-number [1, 25, 30], time-energy [25, 31] and
temperature-energy [32, 33] variables, and they appear to lead to a more detailed account of the notion of
compatibility in quantum mechanics [4, 34—40]. Moreover, estimators provide the means to construct
quantum observables such as those for phase [9, 41] and time [22] parameters. Perhaps more importantly,
estimation theory offers the possibility of treating dynamical variables and parameters alike in an unified
manner [1, 22]; this is demonstrated by the estimation-theoretic study of position variables in [1, chapter 8].

© 2022 The Author(s). Published by IOP Publishing Ltd
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In light of this fundamental outlook, selecting a deviation function D(é7 ) cannot be purely a matter of
choice or convenience, but should instead be informed by physical reasoning. This is apparent in phase
estimation [3, 42], where the periodic nature of optical phases imposes certain constraints on which
functions D are consistent in that context [3, 22]. The sine error D(6,0) = 4sin[(§ — ) /2], in particular, is
often employed for this purpose [1, 43—46], and while there are other functions D that are appropriate for
phase estimation [22, 43], it is instructive to appreciate that the square error D(6,0) = (0 — 0)? is generally
not one of them'.

In thermometry [33, 48—57], the unknown parameter, temperature, can sometimes be seen as
establishing the relevant energy scale [48, 58]. Such a scenario calls for an estimation technique that preserves
scale invariance [24, 59, 60], and this idea has be shown to lead to a logarithmic deviation function
D(6,6) = log*(A/0) [33]. The implications and scope of this tool within quantum thermometry are currently
under analysis [55-57], including the role of adaptive measurements [55] and its connection with the notion
of thermodynamic length [56]. However, the logarithmic error transcends its thermometric origin, in the
sense that it is also valid for other quantities playing the role of a scale [33]. For example, to estimate Poisson
rates [24, 59], kinetic parameters [61-66], and decay rates [67]. We may then ask: how can quantum
mechanics enable, on the basis of logarithmic errors, the most precise estimation of scale parameters?

The present work provides a definite answer by establishing a quantum framework for the estimation
scale parameters. Once section 2 formulates the problem, section 3 derives an analytical expression for the
true minimum mean logarithmic error. Not only does this recover the optimal estimator found in [33], but,
notably, it further provides a rule to calculate the associated probability-operator measurement (POM)? that
is optimal for a given quantum state. Moreover, this framework can incorporate prior knowledge, as it is
built on Bayesian principles [24, 60].

To illustrate these results, section 4 considers two applications: thermometry, and the estimation of the
lifetime of an atomic state. Within the context of equilibrium thermometry [51, 69], and assuming discrete
but otherwise arbitrary spectra, the question of whether energy measurements are generally optimal—i.e. for
an arbitrarily large prior temperature range—is answered in the affirmative. This is not only of independent
interest’, but it also shows that the abstract POM which is optimal for quantum scale estimation can
correspond to a practical measurement strategy.

Section 5 proceeds then to explore some implications of the new toolbox. Sections 5.1 and 5.2 construct a
quantum observable for scale parameters, and the procedure leading to it is highlighted as a systematic
method to construct other observables. Section 5.3 rewrites the true minimum as an inequality statement to
assess whether a given practical POM is optimal, almost-optimal or sub-optimal. Section 5.4 applies the new
framework to the simultaneous estimation of multiple scale parameters, identifying a lower bound on a
multiparameter mean logarithmic error. Section 5.5 closes with a discussion of invariance arguments in
estimation theory.

To conclude, section 6 argues that quantum scale estimation, when taken together with phase estimation
and those results based on the mean square error, completes a trio of estimation theories for three of the
most elementary quantities that one could possibly measure: phases, locations and scales.

2. Formulation of the problem

Let an experiment be described by the following quantities: a measurand x, an unknown parameter ©, and a
collection of known parameters y = (y1, 2, ... ). Construct the vector z = (x,y). We say that © scales z,—the
ith component of z—if, for fixed ©, z; is considered ‘large’ when z;/© >> 1 and ‘small’ when z;/0 < 1,
provided that © and z; are positive and measured in the same units. The key aspect of this definition is its
invariance under transformations {z; — z/ = 7z;,© — ©' = y0O}, with positive v, since z;/© = z/ /©’. This
is the notion of scale parameter—referring to ©—employed in this work. We shall then call scale estimation
to any procedure aimed at retrieving an unknown scale parameter.

Now suppose we wish to estimate O, under the following assumptions: (a) knowledge of y does not
inform the plausibility of the possible values for ©; (b) © scales all the parameters y, but not the measurand
x, which is dimensionless; and (c) © is encoded within a quantum state.

To proceed, we first construct a prior probability p(f|y) encoding what is known about © irrespective of
the measurement process, where it is recalled that € denotes a hypothesis about the true value of ©.

1 The square error can be used as an approximation to the sine error when the estimator 6 and the values for the hypothesis 6 are close
3, 47].

2 Also known as positive operator-valued measure (POVM) [68].

3 In particular, this endows the error bound for energy measurements on a gas of spin-1/2 particles in [33] with a fundamental character,
provided that adaptive measurements are excluded [55].
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Assumption (a) allows us to take p(8|y) — p(6) [24]. The form of p(6) is determined either by
context-specific prior knowledge or, should this not be available, by imposing maximum ignorance on the
basis of assumption (b) [4, 24], which leads to Jeffreys’s prior p(6) x 1/6 [59, 70].

The next step is to find a likelihood model p(x|¢, y) linking the measurand x with the unknown parameter
©. Assumption (b) can be enforced by imposing p(x|0,y) = p(x|6’,y’). This leads to p(x|6,y) = p(x|70,~vy),
which is a functional equation with solution p(x|0,y) = h(x,y/6) [71, chapter 3], for some function h. That
is, the likelihood for a given measurement outcome is an arbitrary function of the ratios (y1/0,y,/0,...).

At the same time, assumption (c), together with the Born rule, implies p(x|6,y) = Tr[M,(x)p,(8)], where
py(0) is a density operator and M, (x) is a POM. Hence, the likelihood function is

plxl6.y) = Tr{M, (x)py (0)] = h (%, %) M

with the specific shape of / given by detailed knowledge of the experimental design. As we can see,
equation (1) imposes a constraint on both the state and the POM, and it defines a broad class of models for
which the framework of quantum scale estimation in this work applies. For a discussion of other scale
estimation problems that can arise when assumptions (b) and (c) are relaxed, see section 4.1.5.

Equipped with the prior probability and the likelihood function above, we can invoke Bayes theorem [24,
60] to calculate the posterior probability

p(O]x.y) o p(O)TrM, ()p, (6)] = p(8) h(x. %) @

which fully solves the problem of estimating ©. Although we could stop here, it is often useful to summarise
the key features of equation (2) via a point estimator 6,,(x) with measurement-dependent uncertainty* [57,
72-74]

6x) = [ d0p(61.) DIF )0 )

for some deviation function D. In this way, the unknown parameter O can, for fixed estimator and POM, be
assigned a single empirical number which quantifies its value’. We thus need a procedure to identify which
estimator best captures the essential information of equation (2).

Since such a task is to be carried out without knowledge of a specific measurement outcome, one
proceeds by demanding the overall uncertainty

= / dxp(aly) 6, (x), @)

as opposed to using just &,(x), to be minimal [1, 3, 4, 24], where p(x|y) = [ d0p(0)p(x|6,y). This implies
that the notion of ‘optimal strategy’ crucially depends on the chosen measure of uncertainty [75, 76], thus
reinforcing the idea that deviation functions must be carefully justified.

The fact that © is a scale parameter leads to the logarithmic deviation function D(6,6) = log?(6/6) [33].
This is a type of relative error which is suitable for scale estimation as it satisfies the following properties:
symmetry, D(6,6) = D(6,0); scale invariance, D(v0,~v0) = D(f,6); and having its absolute minimum at
0 = 0, from (towards) where it grows (decreases) monotonically when 0> 0 (0 < 0). Its derivation, available
in [33], will be revisited in section 5.4 while addressing the multiparameter case. By inserting
D(6,6) = log*(A/0) into equation (4), and using the identity p(x|y) p(0]x,y) = p(x,6]y), one finds the mean
logarithmic error

& Gymle = / dxdf p(x,0ly) log’ leyﬂ : (5)

this is the uncertainty quantifier that we will use.

If an experimental platform is already built, the associated joint probability p(x, f|y) can be fixed, so that
the search for a good estimate amounts to minimising equation (5) with respect to 0~y(x) [33]. However,
quantum-mechanical probabilities allow for this minimisation to be performed while the experimental

4 For a discussion of this type of errors in quantum metrology, see [72].

> Nevertheless, note that failing to consider the full posterior density (equation (2)) might leave potentially valuable information unused
[60].
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design is itself optimised. Specifically, using p(x,8|y) = p(0) p(x|0,y), together with the first equality in
equation (1), we can rewrite equation (5) as

6o = Tr{ [ bty ) w8, | ©

where the operator W, [0, (x)] reads [1]

9, (x)] . -

W8, = [ d0p(6) ,(6) 1o’ [9

Provided that p(#) and p, () are known, we can then search for the estimator and the POM that together
minimise equation (6). In other words, we seek the solution to the optimisation problem

min Tr{ / de M, () W, [0, )]} E— (8)

M, (x), 0, (%)

Once found, the optimal POM informs how the measurement protocol should be designed as to extract
maximum information about O, while the associated estimator provides a rule to optimally process
measurement data into an estimate.

3. Quantum estimation of scale parameters

3.1. Fundamental minimum
Our first task is to calculate the minimum in equation (8). Start by expanding W, [f,(x)] in equation (7) as

) 6, (x 0. (x
Wyl0,(x)] = 05,0 + gy0log’ [ }’9( )] - ZQy,llogl }’0( )] ’ )
where the operator g, ; is defined as

@y,k:/dﬁp( )py(0) log* (i) (10)

and 6, is an arbitrary constant, with the same units as 6, introduced to guarantee that the argument of
logarithmic functions is dimensionless [77], i.e.

log Vyéx)] ~1lo [G;xﬂ “log (;) (11)

Inserting equation (9) into equation (6) further gives

0
g}’,mle = /d@p(@) logz (9) +TI'(Qy70.A 2 2@;,71 },71)7 (12)

where we have introduced the operator

(13)

Ay = /dxMy(x) log® l%g(:c)] .

Since the first term of €, . in equation (12) is estimator- and POM-independent, we only need to minimise
the trace term.
Next, define a new estimator function @, (x) as

. ,(x
wy(x) :=log[ {0( )], (14)
so that equation (13) becomes

Ay = / M, (x) @y ()" (15)
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One then sees that

2
Aa— A = /dxMy(x) @y(x)* — [/dxMy(x) ch(x)} >0 (16)

due to Jensen’s operator inequality [78, 79], which in turn implies the inequality
Tr(oy,0Ay2 —20p1A451) = Tf(@y,oA;l —20,14,1) (17)

for the trace in equation (12). The inequality in equation (16)—and thus that in equation (17)—is saturated
when the POM is projective, i.e.

M,(x) = Py(x), (18)

with Py (x) Py(x") = d(x — x") Py (x"). Therefore, we can restrict our calculation to the set of projective
measurements without loss of optimality®.

From these considerations we see that minimising the mean logarithmic error €, e amounts to
minimising the right hand side of equation (17). Given that both the estimator and the POM appear inside
the operator A, ;, we can proceed as

I}‘}inTr(Qy,OAiy - 2:Qy,1v4y,l) = _Tr(Qy,OS§)7 (19)
y,1

where the operator S, is solution to the Lyaponuv equation
Syy.0 + 0508y = 20y (20)

and the minimum is achieved when A, ; = S,. The details of this calculation, which is based on the calculus
of variations in operator form [9, 80, 81], can be found in appendix A.

By combining equation (12) with the equality in equation (17) and the minimum in equation (19), we
finally arrive at the minimum mean logarithmic error

0
Ey,min = /d&p(&) logz (9) _Tr(Qy,OS;)~ (21)

u

The practical importance of this result is apparent: for given prior density p(#) and density operator p,(f), it
provides the means to calculate fundamental limits to the precision in quantum scale estimation’.

3.2. Optimal quantum strategy

The next step is to identify the estimator function and the POM reaching the minimum in equation (21).
That is, we seek the optimal quantum strategy. To find it, first recall that equation (21) relies on fulfilling
equation (18) and the condition A, ; = S,. Using equation (15) and the eigendecomposition

Sy = [ dsPy(s)s, these can be combined into a single condition as

/WR@@@zfﬁﬂwg (22)

which leads to Py (x) dx = Py(s)ds and &y (x = s) ='s.
According to the first of these constraints, the optimal POM is given by the projectors associated with
Sy, ie.

My(x) = Py(x) = My(s) = Py(s)- (23)

To identify the meaning of the second constraint, we need to revert the transformation in equation (14), i.e.

by(x) = O, exp [y (x)] - (24)

The optimal estimator function is then found to be

0,(x) > Uy (s) = O, exp(s). (25)

6 An analogous argument for the minimisation of the mean square error has been considered before [79, appendix A].
7 Note that since 6, does not appear in equation (6), subsequent manipulations of the mean logarithmic error—including the minimum
in equation (21)—are also independent of its specific value.
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Two consistency checks are in order. First, one may confirm [appendix B] that equations (23) and (25)
satisfy the conditions for the optimal quantum strategy laid out by Holevo [12, 13] and Helstrom [1, 10].

Secondly, equation (25) can be shown to recover the probability-based version of the optimal estimator
that was derived in [33], as follows. Consider the quantity Tr[P,(s)o,.1] and insert 0,1 = (S,0y,0 + 0y,0Sy)/2,
which is true by virtue of equation (20); then

Tr[Py(S)QyJ] = Re{Tr[Py(s) SyQy,O]}
_ / d53Re{ T [P, ()P, () 2y}

= /d??é(s —35) Tr[Py(3) 0y,0]

= sTr[Py(s)oy.0], (26)
so that
~ Tr[Py(s)oy1]
TP eyl 27

By introducing the expressions for p, o and p,,; (equation (10)) in equation (27), we see that

TP el = / a9 p(0) Tr[Py(s)py ()] = p(sly) (28)
and
: 0

— [ daop(61s.y)10g ( eu). ”

Finally, using equation (25) leads to

i1 =tuexp | [ aoptolsios (7). (30)

in agreement with the result in [33].

We have thus identified a transparent and straightforward procedure—solving equation (20) for §,—to
construct the optimal POM (equation (23)) and estimator (equations (25) and (30)) for any prior
probability and density operator, when the error is logarithmic and squared. This, together with the
minimum in equation (21), fully solves the optimisation problem in equation (8). For an alternative
derivation using the method in [30], see appendix C.

4. Examples

Two applications of quantum scale estimation are illustrated in the following: thermometry, and the
estimation of the lifetime of an atomic state.

4.1. Global quantum thermometry

In [33], global quantum thermometry was formulated for a given likelihood model. Within this framework,
optimising the design of a thermometric experiment can only be achieved by assessing, one by one, the
uncertainty associated with different likelihood functions. However, such a procedure does not guarantee
that the optimal design will be found. One way of addressing this problem is to optimise the estimation error
with respect to either the state, the POM, or both. In sections 4.1.1-4.1.4, quantum scale estimation is shown
to enable such a possibility for Bayesian thermometry. Furthermore, even if the likelihood model is assumed
at the outset, the formalism in this work still provides a useful language to describe different thermometric
protocols in a unified way; we will see this in section 4.1.5. The following example thus demonstrates that
quantum scale estimation, when applied to thermometry, generalises the framework in [33].

6
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4.1.1. Probability law for thermal states

Let H= )", |n)(n|e, be the Hamiltonian for a quantum probe—the ‘thermometer’—which is in weak
thermal contact with another system whose temperature © = T we wish to estimate [69, 82]. When the
probe is fully equilibrated, it can be described by a thermal state

py(e):Trzzl[)[HIé/ki oy Z' (nlh (). (1)

where kg is Boltzmann’s constant,

h, (z exp(—ya/0) (32)

5) = S o

and y = (g9,€1,...)/kp is a vector of temperatures. That is, the energy spectrum gives rise to the set of known
parameters.
Consider, in addition, an arbitrary POM

Z\ | My (x) (33)

where both M, ,,,,(x) = (n|M,,(x)|m) and x are dimensionless. Then, the Born rule reads

p(xly,0) ZM}' un ( ) : (34)

Here, h,, is trivially invariant under transformations {y’ — vy, 6’ — ~0}. But the same must hold true
for M, ,» due to dimensional consistency, since y is dimensioned. Consequently, p(x[y, ) = h(x[y/0)
(section 2), and so the formalism for quantum scale estimation in section 3 applies.

4.1.2. Measurement strategy
For an arbitrary prior density p(6), we wish to find the POM that is optimal given the state in equation (31).
The first step is to insert equations (31) and (32) into equation (10), which gives

Opk = EI nlxg*, (35)

with each coefficient X;’k defined as

exp(—y,/0)log"(0/6,
- oo e

|

(36)

Next, using Sy = |1) (m|S,, ym, where Sy =
the Lyaponuv equation (20) becomes

y|m), and taking o, o and g, from equation (35),

Z | Xy + Xy )Sy,nm - ZX;’lénm] =0. (37)

Solving for each component S, ,,,,,, we find

S}’ = Z‘n><n|§§707 (38)

which is diagonal in the energy basis {|n)(n|}. We can further rewrite equation (38) in the language of
continuous variables as S, = [ dsP,(s) s by using the projective measurement

= Z|n>(n\(5(s—sy,n), (39)

where we have defined s, := X}’ /x}"’. Hence, the optimal POM is M, (x) > M, (s) = Py (s).
Let us now examine the probability density associated with this POM. By inserting the latter into
equation (34), and noticing that h,(y/60) = p(n|0,y) is a discrete probability, we have

p(sl0,y) = 25 —s5,n)p(nl6,y). (40)
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Then, the optimal strategy effectively consists in measuring energy. Note that equation (40) is invariant
under changes in the scale of temperature—since both s, , and p(n|6,y) are—in consistency with the initial
premise.

From a practical perspective, this result teaches us two important lessons. First, it demonstrates that S,
can give rise to a realisable measurement protocol—in this case, energy measurements. This is crucial as it
implies that quantum scale estimation will be applicable at least in some experiments.

Secondly, this is valid ‘globally’ [2], in the sense that it holds for an arbitrarily large prior temperature
range. In contrast, local’ thermometry assumes—often implicitly—a prior temperature range [@min, Omax)
such that €,ax /O imin ~ 1. Performing energy measurements on the state in equation (31) was known to be
optimal in local estimation [49, 51, 69]; our discussion shows this to hold also in scale-invariant global
thermometry [33], which was an open question.

4.1.3. Estimate and experimental error
We next identify the optimal estimator. From equation (30),

p(sly)log [“g(j) ] — [ awpto)ptopios (5 ) ()

Using equation (40), we see that

plsly) = /dﬁp (s16,y)
_25 — Sy /dep p(nl6,y)
—25 — Sy p(nly). (42)

Inserting equations (40) and (42) into equation (41), integrating over s, and rearranging, we get > - F, =0,
where

u

Dy(Sy.n 6
Fy 1= plnly)log H)] - [ v ptuio.poe (5 ). )
Taking each addend as F,, = 0, and solving for ﬁy(syﬁn), finally renders

@y(sy,n) =0, exp [/d@p(@n,y) log (i)} , (44)

where p(0|n,y) o< p(0) exp(—yu/0)/[>_,,exp(—ym/0)). This is the optimal estimator for thermal quantum
states.

To calculate the measurement-dependent error gssociated with this estimator, we first introduce the
optimal POM 7P, (s) and the deviation function D(6,6) = log”(6/6) in equation (3), that is,

€y,mie(s /d@p 0)s,y) log [19}:9(5)‘| ) (45)

Next, we rewrite this expression as

p(sly) &,mie(s) = / d9p(6) p(s/6,y)log* lﬁye(s)] . (46)

We can then proceed, mutatis mutandis, as with equation (41), finding

Gyl = [ 0p(0In.p)log [“;)] . @)

By inserting equation (44), we finally arrive at

0 AR
omelsyn) = [ doptolny)togt () = | [ anpioimpioe (5 )] - (a8

8



10P Publishing

Quantum Sci. Technol. 8 (2023) 015009 J Rubio

Given a thermometric experiment described by equation (31)—even if only effectively—equations (44)
and (48) allow us to report optimal temperature estimates as

ﬁy(sy,n) + Aﬁy(sy,n)v (49)

where Aﬁy(sym) = 5},(5},,”) \/ €y,mle(Sy,n) plays the role of an error bar [33].

4.1.4. Theoretical optimum and energy spectrum
We have so far assumed that the energy spectrum in equation (31) is given a priori. However, one may also be
interested in searching for the energy spectrum which leads to the greatest precision on average. In local
thermometry [69, 82], this is done by maximising the quantum Fisher information [2, 3]. Here, the task is
instead to minimise equation (21) over y. The key advantage of this approach is the possibility of including
prior information—via p(6)—in an exact and controlled fashion.

By inserting equation (38) into equation (21), we have

2
&omin = / d9p(0)log’ (;) -> (Xyl> (50)

n,0
n Xy

Since the first term is spectrum-independent, minimising this uncertainty amounts to maximising the
quantity

2
ZM (51)

n,0
n Xy

over y, for given p(0).

According to equation (51), the form of the optimal energy spectrum will generally depend on the prior
temperature range. One may thus expect an emergence of different phases for the associated probes as the
temperature range is increased—this was first noted by Mok et al [53] by using a global version of the
Cramér—Rao bound [83]. Given that quantum scale estimation offers a more accurate control of which prior
information enters our temperature estimates, the search of optimal energy spectra for thermal states should
be revisited via equation (51). This is left for future work.

4.1.5. Other probability laws in thermometry
Previous sections have relied on the class of probability models in equation (2). We have seen that
equation (2) emerges from assumptions (a)—(c) in section 2, and that these provide one way of formulating
scale estimation at the level of quantum operators. Nevertheless, in cases where working with probability
functions suffices—e.g. when both the state and the measurement have already been chosen in a given
experiment—one can relax these assumptions to find other scale-invariant laws in thermometry. For the sake
completeness, this is now illustrated. The functional equations in this section are solved as indicated in [71,
chapter 3].

Suppose we admit assumption (a), so that the prior probability is still constructed as in section 2. We also
keep assumption (b) for a single parameter y, but we drop assumption (c). Unlike in section 2, here we only
need to impose p(x|0,y) = p(x|v0,vy), which leads to

pxl0.y) = h(x%). (52)

where h is a free function. Equation (52) was recognised by Jaynes [59] as a scale-invariant likelihood in the
context of Poisson processes.

The following thermometric models belong to the family in equation (52). If we have a noninteracting
gas of n spin-1/2 particles, the probability that x of them are found in the excited state is® [33, 50, 55],

(o) = () o 9

8 In denoting likelihood functions, we shall omit the dependency on dimensionless parameters which, as # here, hold no relevance from
the point of view of scale invariance.
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where y = fiw/kg, T is the reduced Planck’s constant, w is an angular frequency, and
Z(y/0) = [1 + exp(—y/0)]". Similarly, the probability that, for a quantum harmonic oscillator in thermal
equilibrium, the dimensionless position coordinate x lies between x and x + dx is written as [33, 84]

VY o= ORI /2007/00]}
h(x,g) dx = ——r dx, (54)

where y = hw/(2kg) and 20 (y/0)* = coth(y/f). Analogous considerations apply to the likelihood model for
qubit thermometry in [57].

The class of models (52) can be generalised by considering a collection of dimensionless measurands
x = (x1,...,%,), so that

plxlfy) =h(x.7). (55)

Collisional thermometry, as formulated in [54], falls under this category. This is because the probability that
(locally) measuring a block of n ancillas generates a particular string of zeros and ones—i.e. x; = 0 or 1 for
the ith ancilla—has the form of equation (55), with y = h)/kg. Here, {2 is the resonant frequency associated
with both the ancillas and an auxiliary system which connects the former with the system whose temperature
is to be found; see [54] for details.

Now imagine that we further drop assumption (b). Instead, let x be a dimensioned measurand which is
scaled by T, and assume that no other dimensioned parameters are involved. The condition to construct the
likelihood function reads, in this case, p(x|0) dx = p(x’|0") dx’ = p(~yx|y0)~ydx. This leads to the functional
equation p(x|0) = vp(vx|v8), whose solution is

p(10)=h(3) 5 (56)

for some function h. Equation (56) formalises the notion of scale parameter traditionally employed in
statistics [85]. Yet, we have seen that equation (56) is not the only probability type leading to scale estimation
problems.

Thermal states with a continuous energy spectrum can be expressed as in equation (56). Indeed, the
probability that the energy E given in units of temperature as x = E/kg lies between x and x + dx can be
written as [33, 48],

p(x|0)dx:f(g) UOOO d&f(’;f)] e
:f(g) {6/000 dtf(t)]ldx
()%

where f is an arbitrary function,

() =) [T &7

and we have employed the change of variables t = /6.

While seemingly different, all these models are invariant under transformations § — 6’ = ¢ and either
y+>y' =7yorx— x’ =~x, and so temperature can here be interpreted as a scale parameter (section 2).
Therefore, even when the operator-based results in section 3 do not apply for fixed likelihoods, temperature
estimation based on either of these probability functions should arguably employ the formalism of global
quantum thermometry in [33], since the latter is a probability-based version of scale estimation theory.

4.2. Quantum estimation of a lifetime

Now we turn to a different example illustrating the potential of quantum scale estimation beyond
thermometry. Consider a two-level atom initially prepared in a superposition |1)) = /1 — alg) + v/ale),
where |g) and |e) denote its ground and excited states, respectively. Due to the spontaneous emission of a
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photon, the excited state will decay to the ground state, a process whose statistics can be described by the
density matrix [67, chapter 4]

pu(r) = (1= ani(7)]Ig) gl + am(r)le}el + [a(1 = a)ni()]* (Ig) (el + e} (g])- (58)

Here, n,(7) := exp(—t/7), t is the elapsed time, and 7 is the lifetime. That is, the decay takes place at a rate
1/7.

Imagine that the lifetime is unknown, i.e. © = 7, and that we wish to estimate it by observing whether
or not a photon is emitted. Following [67, chapter 4], this is captured by a POM with elements
My, = [1—nd70)]]e)(e| (‘Yes’) and MY, = |g)(g| +1:(70)|e) (e] (‘N0’). To use this POM, we need an initial
‘hint, denoted by 7,, at the true lifetime 7 [3, 33]. By combining such a physically-motivated measurement
scheme with the state in equation (58) via the Born rule, one arrives at the likelihood model
p(Y|7,70,t) = an(7)[1 — n,(70)] and p(N|7,70,t) = 1 — p(Y|7, 70, t). We then see that this is a scale estimation
problem, since p(Y|7,79,t) — p(Y]0,y) = hy(y/0), with y = (79, t) and 6 playing the role of a hypothesis
about the true value of 7. As such, if the photon is detected, the optimal lifetime estimate is given by

0} =0, exp [/d@p(€|Y,y)log (;ﬂ : (59)

where p(]Y,y) o« p(8) p(Y|6,y). Otherwise, it is given by ¥, with expression analogous to that in
equation (59). Furthermore, the overall uncertainty is calculated as

gy gN
_ _ 2 (Y 2 [ Y
e},,mle—/dﬁp(Y,9|y)log <0 > +/d9p(N,9|y)log (0 ) (60)

To assess the quality of this strategy, equation (60) must be compared against two benchmarks: the
uncertainty prior to performing the measurement, which we may denote as €,, and the fundamental limit to
the precision associated with the state p;(7) in equation (58). The latter can be found by evaluating the
quantum minimum €, i, in equation (21) using p(7) = p, (), with y = t. As for the prior uncertainty, this

is given as [33]
&= /d@p(&)logz (;) , (61)
p

0, = 0, exp U dfp(6)log (:)} (62)
is the optimal prior estimate.

For the sake of example, suppose we prepare the atom such that a = 0.9. Furthermore, consider the prior
lifetime range 6/t € [0.01,10], so that the maximum-ignorance prior probability reads p(6) = 0.145/6.
Given the dependence of the chosen POM on the initial hint 7, it is natural to examine how the error
changes as the ratio 7/t takes different values within the prior range. We shall perform this calculation
numerically. The evaluation of equations (21), (60) and (61) lead, respectively, to the solid green line in
figure 1 establishing the fundamental limit to the precision for the atomic state in equation (58), the dashed
blue curve for the error associated with the physical POM, and the dotted purple line for the prior
uncertainty.. Note that both the prior uncertainty and the fundamental limit are independent of 7, which is
only relevant for the physical measurement, and so they appear as horizontal lines.

Figure 1 shows that the physical POM is informative to some extent; indeed, the prior uncertainty
(dotted purple) is above its error (dashed blue) for the range of 7 /t. However, we also see that the scheme
extracts more information when 7/t < 1 than when 79/t >> 1. That is, it is easier to determine the lifetime
in a regime where the decay is likely to have already happened, in consistency with our intuition. At the same
time, the error for the physical POM becomes close to the fundamental limit (solid green) when 79/t < 1,
implying that the physical POM is almost-optimal in this regime, but this ceases to be the case as 7/t grows.
We thus conclude that the physical POM, while useful, is generally sub-optimal.

We have seen that the framework in this work allows us to further determine which POM reaches the
fundamental limit. Specifically, by calculating the eigenstates of the operator S,. Solving the
Lyaponuv equation (20) with the numerical values of this example leads to
Sy = —1.887|g) (g + 0.967|e) (e| + 0.271(|g) (e| + |e) (). Therefore, the optimal POM reaching the solid

where
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Figure 1. Quantum estimation of the lifetime of an atomic state. The mean logarithmic errors of three measurement schemes are
compared: one based on the optimal POM as predicted by quantum scale estimation (solid green), one using a physical POM
representing whether or not a photon is detected (dashed blue), and one based on the POM predicted by local quantum
estimation theory [2, 3], hence referred to as ‘local POM’ (dash-dotted black). The latter two require an initial hint 7¢ at the true
value of the unknown lifetime [3, 33], and this motivates examining the error as a function the ratio 7o /¢, where t is the time at
which the measurement is performed. The dotted purple line indicates the amount of knowledge available prior to performing
the measurement. As can be seen, the physical POM is informative in the sense that its associated error is below the prior
uncertainty for the range of 79 /1, and it even becomes close to the fundamental limit when 7y /¢ < 1. Yet, this is no longer the
case when 79/t > 1, implying that it is not optimal in general. The local POM leads to a substantially smaller uncertainty in this
regime, but it is still above the fundamental limit. See section 4.2 for the details of this calculation.

green line in figure 1 is given by M.\ = [, ) (¢4 | and M, = [¢_) (4|, where [¢)4) = 0.094|g) 4-0.996]e)
and [¢_) = 0.996]g) — 0.094|e). This demonstrates that quantum scale estimation can inform the design of
optimal metrology schemes whenever the quantity to be estimated—in this case, a lifetime—is a scale
parameter.

Finally, it is natural to ask whether the fundamental limit can be reached via a POM given by the more
familiar framework of local quantum estimation theory. Specifically, by choosing the POM elements
M; =X (Xl i=1,2, where |\ | ) is the ith eigenstate of the symmetric logarithmic derivative L;(7o)
which is given by the Lyaponuv equation L,(7) p;(7) + p¢(7)L(T) = 207 p+(7) [2, 3]. Using this local POM, a
numerical calculation based on an error analogous to that in equation (60) renders the black dash-dotted
curve in figure 1. As can be seen, the uncertainty associated with the local POM is close to the fundamental
limit (solid green) when 7o/t < 1, and it reaches it when 74/t ~ 1. However, it becomes sub-optimal for
larger values of 75/, indicating that only quantum scale estimation can provide generally optimal POMs in
the presence of finite prior knowledge.

5. Discussion

5.1. The meaning of the operator S,

We have seen that, in quantum scale estimation, the operator S, is the key to find both the optimal quantum

strategy and the associated minimum uncertainty. It is thus desirable to identify its physical meaning.
Motivated by the exponential map in equation (25), which connects the spectrum of S, with the optimal

estimates for O, consider the related construction

O, :=0,exp(S,)

ai;, [amd]

zeuz %/dspy(s)sm
zﬁu/dspy(s) exp(s)
= / ds M, (s) 3, (s), (63)

where {19},(5) ,M,(s)} denotes the estimation strategy identified as optimal in section 3.2. We then recognise

©, as the optimal operator-valued estimator for the scale parameter ©, and S, is simply its log-transformed
version S, = log(éy/Hu).

12
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5.2. A quantum observable for scale parameters

The operator-valued estimator (:)), plays, in addition, a more suggestive role. Let an ideal measurement
process be represented by the POM P, (s). The operator S, is, in that case, a valid quantum observable [9,
22]. Since one can construct new observables by taking functions over existing ones, the fact that S, is an
observable implies that so is @y. Recalling that the eigenvalues of @y are the values that can be experimentally
assigned to the unknown parameter ©—indeed, they are estimates—it is then reasonable to treat @y asa
quantum observable for scale parameters.

This interpretation is in line with standard practice in quantum estimation theory [1, 22]. Nevertheless,
the physical implications of estimation-theoretic observables are not always fully appreciated. Recall that
S,—and thus @y—depends on: (a) the initial state and the parameter encoding, both captured by p,(6); (b)
the prior information as represented by p(6); and (c) the fact that scale uncertainties are quantified using the
mean logarithmic errors. Then, the scale observable C:)y serves to model scenarios where what we can observe
may depend not only on the preparation of the experimental arrangement, as indicated by p,(#), but also on
what information is either available to us a priori or simply deemed logically possible, which is what both
p(0) and €, e allow to quantify in a precise manner. The logarithmic uncertainty €, e, in particular, is a
type of noise-to-signal ratio mimicking the physics of scale parameters [33].

An appealing aspect of observables such as éy is that a well-defined procedure for their construction
exists. Namely, the optimisation of error functionals such as €, .. One could then take the notion of error
functional as a primitive, search for the form of the deviation function which best suits the type of parameter
of interest, find the estimation strategy which optimises such functional, and use it construct an observable
for the aforementioned parameter. This procedure could in principle be applied to any quantity in physics,
provided that one can frame it within an estimation problem.

5.3. Fundamental error bounds

We now focus on the fundamental minimum in equation (21). While knowledge of such a minimum renders
a discussion of bounds on € . superfluous, rephrasing equation (21) as an inequality statement is useful to
quantify the relative performance of measurements which are feasible in practice but different from the
optimal POM in equation (23). For example, as illustrated in section 4.2 for the estimation of an atomic
lifetime. More generally, consider the chain of inequalities

& mie = min& (0y, M,) > Ar;m; £(0,,M,), (64)
where
€16, (x), M, (x)] := Tr { / dx M, (x) W},[é},(x)]} . (65)
From [33] we know that

n%iné'(éy,My) =& — Ky, (66)

where €, is given in equation (61),
Ky = / dxp(xly)log’ V%( x)] (67)

p

represents the information gained via the (not necessarily optimal) measurement M, (x), and ﬁy(x) and 1§p
are given in equations (30) and (62), respectively.
Similarly, the minimum uncertainty found in this work, equation (21), can be expressed as

0
oo = [ 0p(0)l0g (9) Tr(gy08?)

_ /d&p(ﬁ)logz <:u> —Tr [Qy,olog2 (%)]

6
=€ —Tr [gy’olog2 (1{')] =6 —Jy; (68)
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this stems from the operator-valued estimator @y in equation (63) plus choosing, without loss of generality,
0, =v,’. Hence,
min £(0,,M,) = & — J,. (69)

7y

Given equations (66) and (69), the chain of inequalities in equation (64) can finally be written as
Emle = & — Ky 2 €, — T, (70)

The first inequality is saturated by processing the outcome x with the optimal estimator 1§y (x), and in
principle there is no reason to choose any other estimator'?. The real advantage of equation (70) lies in its
second inequality: given p(6), p,(#) and a practical POM M, (x), we can determine whether M, (x) is
optimal, almost-optimal [43] or manifestly sub-optimal by evaluating and comparing K, and J,,.
Importantly, such a procedure offers a computationally similar but more widely applicable alternative to the
usual practice of comparing the classical Fisher information with its quantum counterpart.

It must be noted that this comparative study, while practical in scope, is generally theoretical in nature.
This is because €, 1 does not depend on a specific measurement outcome (section 2), and so results based
on it are to be understood as general statements about the class of schemes under analysis, rather than taking
€y,mle as an error that must be measured in the laboratory. €, e can of course be ‘measured” if all the
probabilities involved in its construction happen to correspond to known distributions of relative
frequencies; Li et al [86] examines this for errors of the same nature as €, .. However, by no means needs
the role of €, e be restricted in such a way, neither does an empirical €, . negate the necessity of reporting
data processing errors via equation (3) [24].

5.4. Multiparameter schemes

This work has focused on single-parameter estimation, but realistic sensing schemes typically involve several
unknown quantities [4, 87]. In our context, this type of scenario is illustrated, for example, by the family of
probability models

PLs10.9) = TeM, )0y O] = (7. 5 ) @
where 8 = (6,,...,0,) denote hypotheses for the unknown parameters © = (0y,...,0,), and each y; is
scaled by ©;. While a general formulation is left for future work, it is interesting to explore—using
equation (71)—a first approach to multiparameter scale estimation. As in section 2, we assume that
knowledge of y does not inform the plausibility of the possible values for ©.

First, one should arguably be sceptical about the existence of relationships between different parameters
unless there is a reason (i.e. further information) to think otherwise. If we accept this viewpoint, any form of
maximum ignorance in multiparameter estimation may be represented by a separable prior probability, i.e.
p(0) =11;p(6:).

We further see that, as per equation (71), maximum ignorance about each parameter amounts to
imposing invariance under transformations y; — y/ = 7;y; and 0; — 0/ = ~;0; [59, 60], with 0 < ; < c0.
Then, the condition p(6)d0 = p(68')d6’ leads to the functional equation [].p(6;) = [1.7ip(7i6:). Its
solution, p(@) o [[;(1/6;) [appendix D], is simply the product of Jeffreys’s prior [70] for each parameter.

Next, the transformation ¢; = a;log(6;/6,.;), with constant «; and 6,, ;, connects the estimation of
a set of location parameters ® = (®,,...,®,), for which maximum ignorance is represented as
(@) =11,p(¢i) x 1, to our multiparameter scale estimation problem, in the sense that p(¢)d¢ = p(6)d6
implies p(¢) oc 1+ p(0) o< [ [,(1/6;). Then, given a figure of merit for ®, we may construct the figure of
merit for © by transforming the former.

For a single location parameter ¢;, the correct deviation function is the translation-invariant distance
|§i(x) — ¢i¥ [24, 33]. For multiple location parameters, current practice considers the sum of distances

Dio(x), o] = Zle |pi(x) — ¢i|%i /d [88, 89], where the 1/d factor indicates that all of them are taken to be
equally important [89, 90]. By transforming D(¢, ¢) we thus find

9 Note that choosing 0, = 1§p for the expression of the minimum is consistent with the definition of 1§p. Indeed, inserting 0, = 1§p
into equation (62) gives 0 = [ d@p(G)log(G/ﬁp) = —log(ﬁp/él,) +f d@p(G)log(@/éu), with arbitrary 6, from where equation (62)
reemerges.

10 Admittedly, there may be cases where the numerical computation of 15,, (x) is challenging. If so, then it might be reasonable to work
with a simpler estimator, provided that we also assess how close to the first bound in equation (70) the associated uncertainty €y is.
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a-log<§i>
AN

which is scale invariant. To recover a sum of noise-to-signal ratios in the limit of local prior knowledge, we
take o; = 1 and k; = 2, for all i [33].

Having found a deviation function for several scale parameters, we can now use it to upgrade the notion
of mean logarithmic error as

ki
) (72)

_ 1 _
€y,mle = g Z €y,mle,i; (73)
i

where

Oy,i
€y7mle,iZ/dxdep(x’e‘y)logZ [yg(x)] ”

and p(x,0|y) = p(0)Tr[M,(x)p,(0)]. Note that this is consistent with the definition in [33], as the new €, e
reduces to equation (5) for d=1.

An immediate consequence of the new definition for €, . is that we can lower bound this error by
finding the minimum value of each individual error €, e i, Since €, me ; = 0. Start by upgrading the
definitions in equations (10) and (13) to

0;
o= [ a0p(O)0,(6)10¢" () 75

and

u,i

é X
Ay ki = / dx My () log" [’9()] , (76)
respectively. Note that g, ; = [ d0p(0)p,(0) for all i. Each error € ye,; can then be rewritten as

_ 0;

€y,mle,i = /d@p(@) log2 (01> + Tr(p},’o,,'.Ay’z’i — 2[)},’1’,'.,4},’1’,‘). (77)
u,i

We see that minimising equation (77) with respect to §y7i(x) and M, (x) is formally identical to the

minimisation performed in section 3.1. Consequently, €, . is lower-bounded as

_ 1 0;
€y,mle = a zl: |:/ dep(9> logz (eu,i> - Tr(py707i8ii):| ) (78)

where each operator S, ; solves the associated Lyapunov equation Sy ipy.0,i + py,0,iSy,i = 2py,1,i-

Equation (78) is a useful starting point to assess the overall uncertainty in the estimation of multiple scale
parameters. An analogous result for the mean square error has in fact been proven informative in quantum
sensing networks and quantum imaging [30, 91]. Yet, one can anticipate the inability to saturate the bound
in equation (78) whenever [S, ;,S, ;] # 0 for i #j [4, 30]. How is this incompatibility to be assessed and
quantified is precisely the focus of current efforts in multiparameter quantum estimation [4, 34—39], as this
is expected to shed new light on our understanding of the quantum-to-classical transition [4]. In that sense,
bounds such as equation (78) and that in [30] may help to frame the question of quantum compatibility
such that its dependency on the prior information and the measure of uncertainty—which has been noted
before [92]—is manifest.

5.5. The role of invariance arguments
We close on a conceptual note. In this work, probability theory is understood as an extension of the
propositional calculus [93-95] capable of relating a set of propositions with the evidence that supports them
[96]. This approach, which we may call objective inference, is one of the so-called Bayesian varieties of
probability theory [24, 96]. Within physics, this view gives rise to a notion of consistency such that two
observers holding the same information must assign the same probability [24, 59]. In turn, this leads to
constraints that our probability functions must satisfy [59, 60].

Invariance arguments [22, 97-99] offer one way of finding these constraints. The estimation problem of
interest is first enunciated as done at the beginning of section 2. The set of propositions involved in this step
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Table 1. A basic prescription to develop quantum estimation theories for three of the most elementary notions in physics: phase,
location and scale. The justification may be found, e.g. in [1, 3, 22] for phases, [24, 97] for locations, and [33, 48, 59] for scales.

Type of parameter Phase Location Scale

General support o<od<2r —00 < 0 < oo 0<f<o0o

Symmetry 0— 0 =0+2ym,y€Z 00" =0+~,veR 00" =~0,yERy1
Maximum ignorance p(0)=1/2m p(0) x1 p(0) x1/0

Deviation function D(6, 6) 4sin*[(0 — 0) /2] (6—0)* log?(6/6)

constitute our state of information [24, 95]. The task is then to identify which parameter transformations
leave this state of information unaltered. Once a relevant symmetry is identified—in our case, scale
invariance—it can be used to construct, or at least constrain, the required probabilities. This is the origin of
the functional equations in sections 2, 4.1.5 and 5.4.

If a likelihood model is available, its functional form may reveal which parameter transformations are
important. These can then be used to calculate ignorance priors [59, 60]. Such a procedure—which has been
exploited in temperature estimation [33, 48] as well as in section 5.4—is often interpreted as if invariance
arguments could only be made with reference to a pre-existing likelihood model [98, chapter 10]. Yet,
section 2 challenges this view by defining scale invariance before a likelihood model—and even a quantum
state—has been specified. In general, our state of information, and thus its associated symmetries, precedes
the probability functions employed to represent it [24, chapter 12].

States of information may sometimes satisfy no relevant symmetry. In that case, all potential
reparametrisations—i.e. estimating some function f{©) rather than ©—could be seen as equally legitimate,
motivating a demand for invariance under all reparametrisations. That is, a principle of indifference [24].
This lack of symmetry might emerge, for instance, in temperature estimation with some non-equilibrium
states; the generally-invariant version of global thermometry put forward by Jergensen et al [56] could
provide a suitable framework there. Notwithstanding this, note that enforcing such a strong requirement on
thermometric protocols which explicitly display simple symmetries—e.g. scale invariance in protocols based
on equation (31)—would overconstrain our estimates, and this should be avoided for the sake of economy.

It is also noted that the desideratum of invariance under all reparametrisations further leads to Jeffreys’s
general rule, upon which the prior probability p(6) is taken as proportional to the square root of the Fisher
information for a likelihood model [97, 100]. Using this rule has been suggested, for example, as a way to
address ‘uninformed’ thermometry [57]. While superficially appealing, an immediate difficulty with this rule
is that it violates the so-called likelihood principle [24, 97]. Even if this is ignored, or bypassed by using the
quantum Fisher information—which only depends on the density operator [3]—]Jeffreys’s general rule still
has a strong and potentially unrealistic implication: that we know, a priori, that the most likely values for the
unknown parameter happen to be those for which the experimental setup is more sensitive. This may be the
case for exceedingly well-calibrated protocols, which are realisable as per having abundant measurement data
[2, 3]. Yet, for limited-data protocols [47, 73, 74], the aforementioned approach of analysing which specific
symmetries are at play [59, 97], so that p(6) is based on minimal assumptions, appears as a safer path to
calculate truly uninformative priors.

The reasoning in this section can be challenged by switching to a different system of probability; the
alternatives include subjective inference [96, 101, 102], pure frequency interpretations [96], and the abstract
random-variable formulation [103]. Yet, objective inference offers two advantages that together justify
having advocated it in this work.

First, not only does objective inference accommodate probabilities without a frequency interpretation,
but it also recovers the usual correspondence with statistical frequencies whenever large numbers limits hold
[24, 103]. Hence, use of this system of probability renders the widespread ‘Bayesian vs frequentist’ divide
unnecessary, both practically and conceptually. Secondly, the logical—in the sense of taking propositions as a
primitive—and impersonal language associated with this approach is arguably the most appropriate to
search for mathematical principles that, on the basis of empirical data, account for natural phenomena and
their laws—the aim of physics.

6. Concluding remarks: phases, locations and scales

This work has addressed an important gap in quantum metrology. Namely, current efforts gravitate around
the estimation of phase and location parameters [3, 4], using either periodic or square errors, but these are
not appropriate when dealing with scale parameters [33]. In contrast, the framework of quantum scale
estimation allows for the most precise measurement of scale parameters—as defined in section 2—in a
consistent manner, by following the optimal strategy in equations (23) and (25). Moreover, the minimum in
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equation (21) enables the search of fundamental limits to this precision, while the inequalities in
equation (70) give the means to assess how close to these limits can practical POMs be.

Since this framework has been formulated in a single-shot fashion, the next natural step is to consider
multi-shot protocols and explore their asymptotic limits. Some results in this direction have been reported
in [33, 55] within the context of thermometry. In [33], for example, the mean logarithmic error was shown
to recover the quantum noise-to-signal ratio [2] in the limit of many measurement trials, establishing a
connection with the classical Fisher information. One would thus expect a similar link between the new
framework and the quantum Fisher information to exist. On a related note, it would be interesting to explore
the potential connection between scale estimation as formulated here and the minimax approach [104].

The most immediate use of the results in this work is to bridge the gap between the Bayesian approach to
quantum thermometry currently under development [33, 54—57] and the full power of quantum estimation
theory. To that purpose, the study of thermal states in section 4.1, together with the discussion of invariance
principles in section 5.5, provides a starting point. This could help, for instance, to clarify the link between
Bayesian thermometry and other approaches to temperature estimation [105-109] that may rely on
non-equilibrium states.

Nonetheless, we have seen that quantum scale estimation is not restricted to thermometry. Namely,
section 4.2 has shown how the framework can be exploited to improve the measurement of the lifetime of an
atomic state [67]. Furthermore, the multiparameter extension in section 5.4 may prove to be useful for the
simultaneous estimation of multiple kinetic parameters—key in the biosciences [61-64]—when these are set
to be measured using quantum states of light [65, 66].

Beyond its applicability, quantum scale estimation offers a wider theoretical perspective. When the focus
is mainly—and perhaps inadvertently—placed on square errors, one is tempted to believe that results based
onD(6,0) = (A — 0)? are applicable to any possible parameter of interest. Although consideration of phases
alleviates this to some extent, the approximation D(6,6) = 4sin*[(6 — 0) /2] ~ (§ — 0)* [3] encourages the
idea that square errors may still suffice in a somehow wide range of cases. The need for relative errors, as is
D(6,0) =1log(A/0) [33, 56], manifestly reduces such range, and it suggests a more attractive viewpoint: that
three of the most elementary concepts in physics—phase, location and scale—should each have a dedicated
quantum estimation theory, in accordance with table 1.

Data availability statement

No new data were created or analysed in this study.

Acknowledgments

The author gratefully thanks M R Jorgensen, J Glatthard, ] Dunningham, S Moore, and D Porras for
insightful exchanges on the notions of scale parameter and quantum observable, and F Cerisola, ] Anders, K
Burrows, L A Correa, S Scali, G Alves, ] Boeyens, S Nimmrichter, and O Kyriienko for helpful discussions and
comments. The author also acknowledges support from the United Kingdom EPSRC (Grants Nos.
EP/T002875/1 and EP/R045577/1).

Appendix A. Minimisation of Tr(gy,o.Ai1 —20,1A,1) over A,

This appendix uses the calculus of variations in operator form to find

Iﬂyiyfllf(Ay, D, (A1)

where f(Ay 1) = Tr(Qy,OA;zl,l —20y14y1).
The condition for a given A, ; to give rise to an extremum is [9, 80]

df(Ay,l + aF)

Jo =0 (A2)

9

a=0

where I' denotes a Hermitian but otherwise arbitrary operator variation. Given that the first variation of

f(Ay,1) reads

df( Ay, +al)

T = TI‘[(A},JQ},,() + Qy,O-A 1 zQy,l)F]’ (A3)

a=0
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Equation (A2) amounts to impose
Tr[(Ay,10y.0 + 0y0Ay1 —20,1)T] =0 (A4)
for all I'. This is satisfied when
Ay10y0 + 0y0A4y1 =201, (A5)

which is a Lyaponuv equation for A, ;. For the sake of clarity, we may denote the operator A, ; that is
solution to such equation by S, i.e.

SyQy,O + Qy,OSy = 29y,1~ (A6)
So far we have that A, ; = S, makes the quantity f{.A, ;) extremal. Given that

dzf(.AyJ + Ozl—‘)

e =2Tr(gy0I?) >0, (A7)

a=0

we can conclude that, in fact, A, ; = S, gives rise to a minimum. To see the validity of equation (A7), first
consider the eigendecomposition I' = [ dyP(7)~. In that case,

Tr(gyal”) = [ d1dyTrlg,aP()P()] 5
— [ 556D TP gyl
= / dyTr[P(7)0y.0l 7
= / dyp(vly) 7, (A8)

so that equation (A7) holds. The last equality in equation (A8) is found as in equation (28).
Finally, by inserting A, ; = S, into f{\A, ), and using the fact that S, 0,0 + 0y,0S, = 20,1 implies
Tr(0y0S;) = Tr(0y,1S,), we find the minimum to be

I;‘linf(Ay,l) =f(S,) = _Tr(Qy,OS;>; (A9)

as stated in the main text.
Appendix B. The fundamental equations of the optimal quantum strategy

Upon adapting it to scale estimation, a fundamental result given by Holevo [12, 13] and Helstrom [1, 10] is
as follows: if M, (z) is the POM that minimises the overall uncertainty €, nie—hence called optimal—and
Yy(2) is the associated estimator, then there exists an operator

1, = [ my @ Wi, (0)] = [ Wi, @ M) (B1)
satisfying
Wy[ﬁy(z)] —1,20 (B2)

and leading to the minimum uncertainty €, mi, = Tr(Y,).
Section 3.2 showed that the optimal strategy for quantum scale estimation is given by

My(2) = My(s) = Py (s) (83)

and

¥(z) — 9(s) = 0,exp(s), (B4)

where P, (s) is the projector associated with the eigendecomposition S, = [ dsP,(s)s. To see that this
strategy does indeed verify equation (B2), we now follow the steps of the related proof for the mean square
error in [1, chapter 8].
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By inserting equations (B3) and (B4) into equation (7), we find that
W, [9,(s)] = Wy [0uexp(s)] = 05,2 + 0y,08* — 20,15 and so
Ty = 0y2+8;000 = 25,051 = 05,2 + 0,05, — 205,15y

Using equation (20) and the two forms of Y, in equation (B5), we can write

Wyl0y(s)] = 0y,2 + 505,05 — Sy0y,05 — 505,05y
and

Ty = 0y2 = 50005y

so that W, [0y(s)] — T, = (S, — 5)0y,0(S, — 5). By using this and the fact that S = Sy, we find that

(V{WIO,(s)] = Ty }v) = (VI(Sy — 5)0y0(Sy — 5)|)
= (v'|gy0lv") >0,

J Rubio

(B5)

(B6)

(B7)

(B8)

where |v') = (S, —s)|v) and |v) is an arbitrary ket. Equation (B8) is equivalent to equation (B2), as required.
Moreover, note that Tr(Y,) = Tr(o,,> — S,0,,0S,) leads to the minimum mean square error in equation (21).

Appendix C. Alternative proof of equations (21), (23) and (25)

This appendix recovers the results in section 3 using a different method—that in [30]. Start by minimising
€y mle = E[0,(x), M, (x)] over the estimator 6,(x) while keeping the POM M, (x) fixed. Here, & is defined as in

equation (65). As per [33], this gives

Ién(ij)lg[éy(x)a M,(x)] = A = B,[M,(x)],

where

A= /dap(o)logz (;)

is a measurement-independent quantity, the POM enters in B,[M,(x)] as

B M) = [ dep(aly)log [ﬁy;f)] 7

and ﬁy(x) is the optimal estimator given by

Jy(x) = 0, exp Udop(mx,y)log (:)] .

Next, use the Born rule p(x|6,y) = Tr[M,(x)p,(0)] to write p(x[y) = Tr[M,(x) oy 0

_ Tr[M,(x)0y,1]
Oy(x) = 9ueXP{Tr[Z\/I;(x)gz,o}}

and, as a consequence,

B

y (M,

y

(x>]:/der[My(x)Qy,l}

Tr[M,(x)0y.0] °

where g, ¢ and g, ; have been defined in section 3.1.
Equation (C6) is formally equivalent to the starting point for the proof of the celebrated

(C1)

(C2)

(C3)

(C4)

(C5)

(Ce)

Braunstein—Caves inequality [110, 111], as well as of its Bayesian analogue [30, 73]. Following the structure
of such proofs, redefine the operator o, as 0,1 = (X,0,,0 + 0y,0;)/2. At this point, the meaning of X, is

unknown. However, to simplify the notation we may rename such A&j, as S, in anticipation to the label
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employed in the main text. If we use this to rewrite equation (C6), then we can upper-bound B, [M,(x)], for
any p(6) and p, (), as
2
/d<Rdﬁ ()&mdg
VT [My (%) py.0]

2
g/%“W(Mmd
o

Tr[ ( )py O]
:/dx Tr —Tr[My(x)py’O]M},(x)ES},Q;’O

oMy(x)%
g/der[My(x)SyQy,oSy]

= Tr(g},,OSZ), (C7)

where we have used the Cauchy—Schwarz inequality [7]

ITr(YTZ)]> < Tr(Y'Y) Tr(Z72), (C8)
with
M, (x )%QE, o 1o 4
'Tr[—()py,] = M,(x)2S,05- (C9)

The combination of equations (C1), (C2) and (C7) thus leads to

6
Eymle = / d0 p(60)log® (0) — Tr(0,05?). (C10)

A real-valued Tr[M, (x)S, 0y,0] saturates the first inequality in equation (C7). The Cauchy—Schwarz
inequality is saturated when Y o< Z [7], which implies that

M,(x )%Q%o My(x)%SyQ;%o
= . Cl1
T, (X gy]  TrIM, (95,0, (1Y)

By choosing
My (x) = My (s) = Py(s), (C12)

where P, (s) is the projector associated with S, both saturation conditions are fulfilled at once [30, 111].
Furthermore, inserting equation (C12) into equation (C5) allows us to write the optimal estimator as

Tr[Py(s)oy.1]

5),(5) =60,exp { Te[P,(5)2y.0]

} =0 exp(s), (C13)
where the second inequality stems from equation (27).

Given that the equality in equation (C10) can be reached by using the measurement in equation (C12)
and the estimator in equation (C13), we identify it as the minimum associated with our original
optimisation problem in equation (8). As expected, it is identical to that in equation (21), as are
equations (C12) and (C13) to equations (23) and (25) in the main text, respectively.

Appendix D. A multiparameter prior density

To have a notion of maximum ignorance in multiparameter scale estimation, section 5.4 identifies the
constraint [ [, p(6;) = [ [,7ip(7i¢;). This functional equation may be solved as follows. Rewrite it as

mp(mb) =p(6h) H p (D1)
17$1
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and take the derivative with respect to 7y, [24]; this transforms equation (D1) into
P(1161) + 701 p(1161) = 0, where p(z) := dp(z)/dz. In turn, this leads to the ordinary differential equation
p(z) +2zp(z) =0 (D2)

whose solution can be found straightforwardly as

x —. (D3)

Choosing z — 0 leads to Jeffreys’s prior p(6;) o< 1/6; for the first parameter. Since the same reasoning
applies to the other parameters, we recover the result in the main text, i.e. p(6) o< [[;(1/6;).
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