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Prolegomena

Jets are used to probe the quark-gluon plasma (QGP) that is created in heavy-ion collisions, by
using the fact that medium-induced parton energy loss from elastic and radiative interactions
between partons and the QGP lead to a modification of the measured jet spectrum. The
dependence of the energy loss on the in-medium path-length provides insight into the energy-
loss mechanisms and can be studied by measuring jet production relative to the orientation of the
second-order symmetry plane Ψ2. The azimuthal asymmetry in the jet production is quantified
as vch jet

2 , the second-order coefficient of the Fourier expansion of the azimuthal distribution of
jets relative to Ψn, the orientation of the symmetry axes of the initial nucleon distribution of
the collision overlap region.

In this dissertation, measurements of vch jet
2 of R = 0.2 charged jets, reconstructed with

the anti-kT jet finder algorithm in Pb–Pb collisions with 0–5% and 30–50% collision centrality
are presented. Jets are reconstructed at mid-rapidity (|ηjet| < 0.7) using charged constituent
tracks with momenta 0.15 < pT < 100 GeV/c, and are required to contain a charged hadron
with pT ≥ 3 GeV/c. The underlying event energy is subtracted jet-by-jet using a description
which takes into account dominant hydrodynamic flow harmonics v2 and v3. The coefficient
vch jet
2 is obtained from pT-differential jet yields measured with respect to the experimentally
accessible event plane ΨEP, 2, which is reconstructed at forward rapidities (2.8 < η < 5.1 and
−3.7 < η < −1.7).

The reported vch jet
2 has been corrected back to the azimuthal anisotropy with respect to

the underlying symmetry plane Ψ2 by applying an event plane resolution correction. The jet
pT spectra are corrected for fluctuations in the background transverse momentum density and
detector effects through an unfolding procedure which is applied for different azimuthal orien-
tations independently. The detector corrections correct back to particle level jets consisting of
only primary charged particles from the collision.

Significant non-zero vch jet
2 is observed in peripheral collisions for 20 < pjetT < 90 GeV/c. The

observed vch jet
2 in central collisions is of similar magnitude, but the uncertainties are larger and

therefore the results are not significantly different from zero. The azimuthal dependence of the
jet production is similar to suppression observed in measurements of v2 of single charged particles
at high pT and vjet2 of jets comprising both charged and neutral fragments. Good agreement
between the data and predictions from JEWEL, an energy-loss model simulating parton shower
evolution in the presence of a dense QCD medium, is found in peripheral collisions.
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Part I

Introduction and theory
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1 | A brief introduction

1.1 The Standard Model

The Standard Modela is a relativistic quantum field theory which describes the interactions
between elementary particles (particles which have no known substructure) by the exchange
of force carriers called gauge bosons. Interactions in the Standard Model are classified into
two fundamental sectors: strong and electroweak. Electroweak interactions are mediated by
the charged W+ and W− bosons, and the neutral Z0 and γ bosons. At low energies (< 100
GeV/c), the symmetry of the electroweak SU(2)×U(1) group is spontaneously broken by the
Higgs mechanism and the weak and electromagnetic force manifest themselves as two distinct
phenomena: the weak force, affecting all fermions (spin 1/2 particles), and the electromagnetic
force, working on all charged particles via γ exchanges (although it should be noted that the
electromagnetic interaction between quarks is very small compared to the strong interaction).
The recent discovery of the Higgs boson [3, 4], predicted as early as 1964 but due to its large
mass experimentally out of reach until the LHC era, has been of key importance, as without a
mechanism for spontaneous electroweak symmetry breaking, fermions, as well as the W± and
Z0 bosons that govern the weak interaction, remain massless in the Standard Model. Both the
weak and electromagnetic interaction are well-understood and can be described by Quantum
Electrodynamics (QED) and Electroweak Theory (EWT).

1.2 Quantum Chromodynamics

The third interaction described by the Standard Model is that of massive, color-charged quarks
via the exchange of massless bosons called gluons. This strong force is described by quantum
chromodynamics (QCD), a non-abelian quantum field gauge theory, based on local symmetry
of the SU(3) group. The strong interaction is mediated by the exchange of color , the QCD
analogue of electrical charge, with ‘charges’ red, green and blue (opposed by anti-red, anti-green
and anti-blue). Each quark carries a single color charge. Gluons however, carry not one, but two
charges (color and anti-color). The key difference between the electroweak and strong interaction
is that as a result of this, gluons can self-interact [5], giving rise to QCD phenomena of color
confinement and asymptotic freedom.

The contribution of self interactions between gluons in QCD dynamics is evident from the

aA full description of the Standard Model is beyond the scope of this work; extensive texts, which have served
as the basis for this chapter, can e.g. be found in [1, 2].
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Chapter 1 – A brief introduction

Figure 1.1: Left: a virtual qq pair screens color charges, analogous to QED screening via the
creation of a virtual e+, e− pair. Right: three point gluon interactions allow for the creation
of virtual gg pairs, which augment (anti-screen) color charges at large distances. From [6].

gauge invariant QCD Lagrangian,

LQCD = q(iγµdµ −m)q − g(qγµλaq)A
a
µ −

1

4
GaµνG

µν
a . (1.1)

in which q denote quark fields, Aaµ represent the vector gluon fields, γµ are the Dirac matrices
and m corresponds to mass. In order to achieve gauge invariance, the field strength tensor is
constructed as

Gaµν = ∂µA
a
ν − ∂νAaµ − gfabcAbµAcν (1.2)

with fabc the structure constant. Expressing Eq. 1.2 and Eq. 1.1 in ‘symbolic’ form, the quark
(q), gluon (g) dynamics are clearly recognizable,

LQCD = “qq”︸︷︷︸
q propagation

+ “A2”︸ ︷︷ ︸
g proparation

+ g“qqA”︸ ︷︷ ︸
qg interaction

+ g“A3”︸ ︷︷ ︸
ggg interaction

+ g2“A4”︸ ︷︷ ︸
gggg interaction

. (1.3)

The first three terms of Eq. 1.3 describe free propagation of quarks and gluons in vacuum, and
quark-gluon interactions. The remaining two terms signal the presence of three- and four-point
gluon self interactions.

Gluon self interactions are unique to QCD and cause anti-screening effects. In both QCD
and QED, loop diagrams as in the left panel of Fig. 1.1 are allowed, which effectively decrease
the coupling strength at increasing distances as the pair of virtual particles in the loop briefly
polarizes the vacuum (an effect called screening). In QCD, diagrams as on the right panel of
Fig. 1.1 are also allowed since gluons, in contrast to electroweak bosons, can self interact. As
gluons are charged, these loops anti-screen (and thus augment) the color fields. As a result of
anti-screening, the QCD coupling strength, governed by the coupling constant αs, rises increas-
ingly for interactions with low momentum transfer as a result of strong anti-screening, whereas
at high energies it asymptotically decreases to zero. The value of αs as function of energy
transfer is shown in Fig. 1.2.

The effect of anti-screening on particle dynamics in QCD can most easily be illustrated by
looking at the effective QCD potential V at separation distance x between a qq pair, which is
parametrized as the sum of a Yukawa potential (a screened Coulomb term) and the potential of
a string with tension κ,

V (x) ∝ −αs
x

+ κx. (1.4)

The potential increases monotonically as function of x, until at some point the qq pair is sepa-
rated so far that it becomes energetically favorable to create a new qq pair from vacuum rather

16
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QCD αs(Mz) = 0.1185 ± 0.0006

Z pole fit  
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Figure 1.2: Evolution of coupling constant αs as function of momentum transfer Q, experi-
mental data (points) and predictions from QCD (bands). From [8].

than to extend the string, which leads to the QCD phenomenon of color confinement : quarks
are confined to colorless bound states called hadrons. A colorless state is created by either com-
bining two quarks with equal color and anti color into a meson, or by combining three quarks
of configuration red, green blue (or their anti-colors) into a baryonb. Conversely, at very short
distances or high energy transfers, color screening effects become negligible and αs decreases
asymptotically, a property of QCD called asymptotic freedom. The potential V vanishes and
quarks and gluons can exist as free particles.

The behavior of the coupling constant αs defines the unique properties that govern QCD
dynamics (confinement and asymptotic freedom), but at the same time precludes direct theoret-
ical predictions for many QCD processes as perturbation theory cannot be applied. Perturbation
theory relies on finding an approximate solution A, by reducing the problem to a perturbation
of a well-known and exactly solvable problem with solution A0. A can then be expressed as
deviations from the exactly known solution in terms of an asymptotic series

A = A0 + εA1 + ε2A2 + ...+ εnAn. (1.5)

The precision of the solution depends on at which point series Eq. 1.5 is truncated, where A0 is
generally called ‘leading order (LO)’, A1 ‘next to leading order (NLO)’, etc. When parameter
ε � 1 it is sufficient to solve only the first few terms of the right-hand side of Eq. 1.5 to
find A with reasonable precision. Systems in quantum field theory are generally expressed as a
perturbation series where parameter ε is proportional to the coupling constant α. For QED, with
a coupling constant of 1

137 , perturbation theory is applicable. The coupling constant αs for QCD
however rises asymptotically at low Q (see Fig. 1.2), meaning that only at large Q perturbative
solutions can be found. At energy regimes in which perturbative calculations fail to describe
QCD dynamics, effective theories have to be applied, which use phenomenological approaches,
or discretized non-perturbative modeling (lattice QCD calculations [9]), the precision of which
is limited by computing power.

bRecent results [7] from the LHCb collaboration report the discovery of a pentaquark - a colorless bound state
of five quarks. At the time of writing however it is not clear whether this is a state of a tightly bound meson and
baryon or a true pentaquark state.
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Chapter 1 – A brief introduction

Figure 1.3: Sketch of the QCD phase diagram (from [11]), the green line depicts current knowl-
edge on the evolution of the universe [12]. The LHC is expected to cover the top left corner of
the phase diagram, of very high temperature but low density.

1.3 The Quark-Gluon Plasma

As discussed in the previous section, the coupling between quarks and gluons is not constant,
meaning that at very high color charge densities, quarks and gluons are no longer confined to
bound hadronic states. The phase of matter that is composed of deconfined quarks and gluons,
which can move over long distances, is called the quark-gluon plasma (QGP). The dynamics
of free quarks and gluons is poorly understood from first principles, as the large value of αs
precludes using perturbative calculations. Estimates from lattice QCD calculations currently
predict that the phase transition from ‘bound’ nuclear matter to the QGP phase occurs at
temperatures of ≈ 155 MeV or a density of 1 GeV/fm3 [10] (a schematic view of the QCD phase
diagram is given in Fig. 1.3). Temperatures exceeding these critical values are thought to only
have existed in nature during the first microseconds after the Big Bang (see the green curve
in Fig. 1.3). QGP matter as result of extreme net baryonic density may exist at the core of
extremely dense neutron stars.

The QGP can be created and studied in the laboratory by colliding heavy-ions which have
been accelerated to relativistic energies in a particle accelerator. The first relativistic heavy-ion
collisions (carried out in a fixed target configuration) took place in the Bevalac accelerator at
the Lawrence Berkeley National Laboratory in 1974 [13]; however the first indirect evidence for
a QGP creation was claimed at the European Organization for Nuclear Research (CERN) in
2000 [14], and the Relativistic Heavy-Ion Collider (RHIC, New York, USA) in 2005 [15]. The
most powerful heavy-ion collider currently in operation is the Large Hadron Collider (LHC)
located at CERN, Geneva, which has accelerated lead (Pb) nuclei to a center-of-mass energy
per nucleon pair of

√
sNN = 2.76 TeV in 2010 and 2011, and will operate at an energy of

√
sNN

18
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= 5.02 TeV between 2015 and 2017.
This dissertation will describe in detail the measurement of azimuthal anisotropy of charged

particle jets, vch jet
2 , performed using collisions of Pb nuclei accelerated by the LHC and recorded

with the ALICE detector in 2010 and 2011. The vch jet
2 measurement is aimed at understanding

the properties of the QGP by penetrating it with a well-understood probe (a highly energetic
parton), and observing how this probe is modified by the QGP, thereby deducing the plasma’s
properties and dynamics.

The text is structured as follows: Chapter 2 gives in an introduction to concepts of in-
medium parton energy loss, connects measurements to QGP dynamics and motivates vch jet

2 as
observable. Chapters 3, 4 and 5 explain in detail how the vch jet

2 measurement is carried out,
starting with an overview of the ALICE experiment and data taking (Ch. 3), after which the
data analysis is covered (Ch. 4) and concluding with closure tests that are used to validate
the analysis (Ch. 5 and Ch. 6). Final results are presented and placed in a broader context in
Chapter 7. An outlook for future prospects is finally given in Chapter 8.

Natural units (c = ~ = kB = 1) are used throughout this dissertation, with the exception of
descriptions of detector geometry (which are given in système international units). Unless oth-
erwise indicated, matrices are represented as boldface capitals, whereas boldface non-capitalized
letters denote vectors. Scalars and four-vectors are given in italics, the latter with indices in
Greek when relevant. Parts of the text have appeared in [16–18].
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2 | Parton energy loss

The heavy-ion program at ALICE (see Ch. 3) is aimed at studying strongly interacting matter
in ultra-relativistic nuclear collisions where the formation of a quark gluon plasma (QGP) is
expected. As explained briefly in the introduction, properties of the QGP can be inferred by
quantifying how a highly energetic probe is modified while traversing the QGP. These highly
energetic probes are quarks and gluons, collectively called partons, emitted in the early stage
(prior to QGP formation) of nucleus-nucleus collisions, which lose energy as they traverse the
QGP medium. In this chapter, energy loss mechanisms and the dependence on the parton’s
trajectory through the QGP are explained (§ 2.2). Experimental evidence for parton energy
loss is discussed (§ 2.3) and the connection to other measurements of QGP properties (§ 2.4)
is examined, and finally, the vch jet

2 measurement, which is directly sensitive to the length of a
parton’s trajectory through the QGP, is motivated (§ 2.5).

2.1 QGP formation in heavy-ion collisions

A space-time diagram of the evolution of a nucleus-nucleus collision is sketched in Fig. 2.1. The
left-hand side of the diagram depicts the evolution of a collision in which no QGP is formed.
Particles, e.g. protons, collide at the origin of the axes. After the initial scattering, hadrons
are quickly formed. A short hadron gas phase is possible during which the gas composition can
change as a result of interactions between particles. Finally, the system becomes so dilute that
it freezes out into final state particles that can be observed in a detector.

In the case of the formation of a QGP (the right hand side of the figure), the initial pre-
equilibrium phase is rapidly followed by a QGP phase, in which deconfined quarks and gluons
can undergo multiple interactions and form a system which is in local thermal equilibrium as
the mean free path of in the system is small compared the total system size. In this stage,
the plasma dynamics are well described phenomenologically using dissipative relativistic fluid
dynamics ([19, 20], see § 2.2.3). The collision system rapidly expands in the vacuum and cools
down, until the temperature of the plasma reaches the critical temperature of the QGP phase
transition and quarks are bound into color-confined states. The formed hadrons can still interact
as long as the mean free path of the gas is short, but eventually the chemical composition of the
system is fixed and the final state particles are recorded by the detector.

2.1.1 Tomography: studying the QGP via parton energy loss

As explained in § 1.2, the cross section σij→k for the parton scattering ij → k can be calculated
using perturbative QCD (pQCD) calculations if the momentum transfer Q is large enough. To
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Figure 2.1: Space-time evolution of a nucleus-nucleus collisions without QGP formation (left)
compared to the evolution with QGP formation (right).

describe from theory which final state particles (or jet) x will be produced in a collision when
hadrons h1, h2 scatter, this cross section needs to be convoluted with the probability of finding
partons ij inside the colliding hadrons, and with a description of how state x is produced out
of k. Under the assumption that scattering and fragmentation are independent long- and short
distance processes, the cross-section can be factorized (the factorization theorem) and written
as [21–23]

σh1h2→x = fh1
i (x1, Q

2)fh2
j (x2, Q

2)︸ ︷︷ ︸
(n)PDF

⊗σij→k(x1p1, x2p2, Q
2)︸ ︷︷ ︸

pQCD

⊗Dk→x(z,Q2)︸ ︷︷ ︸
fragmentation

(2.1)

where f(x,Q2) are the parton distribution functions, which give the likelihood of finding parton i
carrying momentum fraction x of the hadron at momentum transfer Q2, and D(z,Q2) represent
the fragmentation function, which describes how parton k fragments to final state object x,
which carries fraction z of the original quark momentum, at energy scale Q2. The factorization
assumption, evaluated using NLO partonic cross sections, has been shown [24–27] to predict
measured cross sections well for transverse momenta of pT > 5 GeV/c.

PDFs are obtained from measured cross sections in e.g. Deep Inelastic Scattering (DIS)a of
leptons off nucleons. At low Q2, PDFs are constrained by data; at higher Q2 where low coupling
strength allow for pQCD calculations, PDFs are evaluated beyond the experimental range using
the DGLAP evolution equations [28–30], so that the experimentally obtained PDFs can be used
for a wide range of center-of-mass energies.

After the initial scattering, produced partons undergo fragmentation by radiation of gluons
which in turn can split to qq pairs, leading to a collimated shower of fragmented particles

aAt large Q2, inelastic scattering of a lepton off a proton can be viewed as elastic scattering of the electron
off a ‘free’ quark within the proton.
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Figure 2.2: Jet production in a heavy-ion collision (from [35]). A hard scattering takes place
within the nucleus-nucleus overlap region. A parton shower forms, and its fragments hadronize
into a collimated spray of particles: a jet. Jet production is calculable from nPDFs and the
hard scattering cross-section. The QCD branching and hadronization are modified with respect
to the vacuum case by the presence of the hot and dense QGP.

emitted under shallow angles with respect to the original parton. These radiation patterns
can be implemented in Monte Carlo generators by using the Sudakov form factor [31, 32],
which describes the survival probability of a parton at a given energy scale. At some point
fragmentation enters the non-perturbative regime, and showered partons eventually hadronize
(non-perturbatively) into colorless, final state particles. Although hadronization is not fully
understood, it can be phenomenologically modeled using e.g. the Lund model [33, 34]. The
collimated bunches of colorless hadrons that originate from a hard scattering are called ‘jets’ .

Jets are modified by the QGP, and can thus be used to study it; an idea already proposed in
the early 1980s [36] and illustrated in Fig. 2.2. Initial hard parton interactions occur instanta-
neously at the moment of the collision between nuclei, whereas the formation time of the QGP
is finite as a system in (local) thermal equilibrium needs to be formed. The jet production itself
can therefore be calculated using arguments similar to those given in Eq. 2.1, using nuclear
PDFs (nPDFs) which are known experimentally. The parton shower following the hard scatter-
ing however is modified by the QGP, as partons lose energy in the QGP medium via (multiple)
scattering on medium constituents and additional medium-induced gluon radiation [37]. The
resulting energy loss of the jet can be measured and constrains QGP properties.

2.2 Energy loss mechanisms

Partons traversing the QGP medium lose energy via collisional and radiative processes. Both
energy loss mechanisms contribute to the total energy loss of the initial hard partons. The rel-
ative importance of the two mechanisms and the explicit dependence on the parton’s trajectory
through the QGP is studied via e.g. the vch jet

2 measurement.
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2.2.1 Collisional energy loss

The dense QGP can, when considering energy loss, be modeled as (light) constituents that serve
as scattering centers for the propagating, highly energetic quarks or gluons. Consider a parton -
e.g. quark Q - of energy E that transfers energy to a medium constituent via elastic scattering.
These scatterings have the form of Qq → Qq or Qg −→ Qg, where q, g represent a medium quark
or gluon respectively. The energy loss −dE

dz that Q suffers per unit length can be described as
[36]

− dE

dz
=
∑
p=q,g

∫
d3kρp(k)

∫
dq2Jω

dσQp→Qp

dq2
(2.2)

where p denotes the plasma constituent (quark or gluon), q2 is the invariant four-momentum
transfer, ω = E − E′ is the energy transfer (with E the energy of the incoming Q and E′ the
energy of the outgoing parton), dσ/dq2 is the differential cross-section, J represents the flux
factor, and ρp(k) is the density of plasma constituents of momentum k which, in a thermalized
system, is given by Bose-Einstein and Fermi-Dirac statistics,

ρq(k) =
4NcNf
(2π)3

nF (k), ρg(k) =
2(N2

c − 1)

(2π)3
nB(k) (2.3)

where Nf is the number of quark flavors, and nF , nB are the Fermi-Dirac and Bose-Einstein
distributions which give the probability of finding a parton at given energy state k. Assuming
that most momentum transfers q2 are small, the cross differential cross section is

dσQp→Qp

dq2
' Cp

2πα2
s

q4
(2.4)

where color factors C are defined for Nc colors as

Cq =
N2
c − 1

2N2
c

, Cg = 1. (2.5)

When parton momenta E,E′ greatly exceed the plasma constituent momentum k, Jω ' q2/2k b.
Using expressions 2.3, 2.4, and 2.5, Eq. 2.2 can be integrated [38] to find a (somewhat qualitative)
expression of the differential energy loss (where the logarithm results from integration of q−2

bThis expression is found when all partons are considered to be massless (i.e. in the limit chosen limit of
E,E′ � ω, k). The flux factor is [36]

J = 1− cos θ (2.6)

where θ is the laboratory angle between the incident partons. For elastic processes, Bjorken x equals one so that
the quark, parton scattering kinematics obey

x =
q2

2k·ω
= 1 (2.7)

with k·ω as the scalar product of the four-vectors representing the medium constituent and energy loss of the
incoming quark. Rewriting this expression, one finds

q2 = 2k·ω ' 2kω − kω cos θ ' 2kω(1− cos θ) ' 2kωJ. (2.8)
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Figure 2.3: In-medium energy loss through gluon radiation. An incoming parton radiates off
a gluon, after which the gluon undergoes multiple inelastic scatterings with the medium. The
outgoing parton-gluon system no longer forms a color singlet state. From [43].

dq2),

−dE

dz
= πα2

s

∑
p

Cp

∫
d3k

k
ρp(k) ln

(
q2max

q2min

)

' 4πα2
sT

2

3

(
1 +

Nf
6

)
ln

(
cE

αsT

)
(2.9)

where c is a numerical constant O(1), Nc = 3 and T is the plasma temperature. The choice of
minimum and maximum momentum transfer q2min and q2max is somewhat ambiguous; in Eq. 2.9,
screening mass µ = O(αsT

2) is used as qmin and
√
dTE as qmax [39], with d a constant O(1).

A consistent treatment of qmin is given by the Braaten-Pisarski method [40]; the expression in
the second line of Eq. 2.9 however suffices for the heuristic description in this section.

Because of the T 2 dependence of Eq. 2.9, the collisional energy loss per unit length is pro-
portional to

√
ε, the square root of the energy density of the QGP [38]. The magnitude of

the energy loss however is very sensitive to the effective coupling strength αs of Q to the low
momentum constituent.

Contrary to the behavior that will be shown for radiative energy loss, average collisional
energy loss per unit distance has no dependence on the size of the QGP, and integrating Eq. 2.9
over z, using finite plasma size

∫ L
0
dz = L leads to the observation that average energy loss

〈∆E〉 of a parton as a result of elastic scattering in the medium is proportional to in-medium
path length L.

Expression 2.9 is derived for quarks; the collisional energy loss for gluons, can be determined
following the same argumentation and is 9

4 times larger [41].

2.2.2 Radiative energy loss

The dominant [42] parton energy-loss mechanism is sketched in Fig. 2.3. An incoming parton
radiates a gluon (either before or after the parton enters the medium), which subsequently
undergoes multiple inelastic scatterings with the medium.

The average energy loss for a highly energetic parton as a result of gluon radiation can be
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written as

〈∆E〉 =

∫
dωdz ω

d2I

dωdz
(2.10)

where dI
dω is the single gluon spectrum, which represents the rate at which a parton radiates

gluons of energy ω, and z is a coordinate along the parton’s trajectory.
Radiated gluons have a finite formation time τf [44–46]

τf '
ω

k2⊥
(2.11)

where k⊥ is the gluon momentum perpendicular to the initial parton trajectory. τf can be
seen as the time that passes until the initial parton and gluon no longer form a coherent object,
meaning that the relative phase of the gluon and radiating parton is in the order of unity. During
this time, the gluon can undergo further elastic rescatterings and acquire additional momentum
(see Fig. 2.3) but further gluon emission off the initial parton is suppressed. For highly energetic
gluons, ω � k⊥ and τf > λ (with λ the mean free path length of the gluon in the medium)
meaning that multiple scattering centers will act as one coherent source for radiation.

As a result of this finite formation time, the single gluon spectrum can be divided into three
distinct energy regimes [42, 47],

ω
d2I

dωdz
'


αs
λ ω < ωBH

αs
λ

√
λµ2

ω ωBH < ω < ωfact
αs
L ωfact < ω < E

. (2.12)

which depend on ω and differ in how the propagating parton resolves scattering centers within
the medium.

At low gluon energies (the Bethe-Heitler energy regime with τ < λ and ω < ωBH), all
scattering centers in the medium act as single sources of radiation. At intermediate gluon
energies (ωBH < ω < ωfact, the Landau-Pomeranchuk-Migdal (LPM) [48–50] regime) multiple
scattering centers act as a coherent scattering source, leading to a suppression of gluon emissions.
At very high gluon energies (ω > ωfact, the factorization regime) the entire medium acts as one
single scattering source.

The total average energy loss 〈∆E〉 can be obtained, in the limit that E →∞, by integrating
Eq. 2.10 over dω and dz, using appropriate boundary conditions [47]

ωBH ∼ λµ2 � ω � ωfact ∼
µ2L2

λ
≤ E. (2.13)

Heuristically, the boundary conditions in Eq. 2.13 can be derivedc by introducing the coherence
length lcoh as

lcoh '
ω

〈k2⊥〉lcoh
. (2.14)

Assuming that the gluon follows a random walk pattern through the medium, its accumulated
transverse momentum can be expressed in terms of the number of scattering centers in the
medium N , and the screening radius µ, via the standard equivalence

〈k2⊥〉 ≡ Nµ2 ' L

λ
µ2. (2.15)

cFor details, see [47, 51].
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The coherence length lcoh can now be used to introduce the reduction – caused by the finite
formation time – of the effective number of scatterings,

〈k2⊥〉lcoh ≡ Ncohµ
2 ' lcoh

λ
µ2 (2.16)

where Ncoh (≤ N) is the number of effective scattering centers. With Eqs 2.14 and 2.16, lcoh
can be expressed as

lcoh '

√
ωλ

µ2
, (2.17)

so that
Ncoh '

√
ω

λµ2
≡
√

ω

ELPM
, (2.18)

where newly introduced parameter ELPM serves the purpose of explicitly connecting the different
regimes of the gluon spectrum (Eq 2.12) to the number of coherent scattering centers (i.e.
Ncoh ' N,Ncoh < N,Ncoh ' 1), thereby defining the different regimes of Eq. 2.12.

In the Bethe-Heitler regime, incoherent radiation takes place on N = L/λ scattering centers,
lcoh ≤ λ and ω ≤ ELPM. Using the single scattering spectrum,

ω
dI

dω
' αs (2.19)

the differential energy spectrum per unit length is

ω
d2I

dωdz

∣∣∣∣
BH

=
ω

L

dI

dω

∣∣∣∣
L

' αs
λ
. (2.20)

In the LPM regime, multiple scattering centers act as one coherent source of scattering, so the
coherence length is larger than the average mean free path λ, but smaller than total length L
(i.e. λ < lcoh < L). With Eqs 2.17 and 2.19, the differential energy spectrum per unit length
can be expressed as

ω
d2I

dωdz

∣∣∣∣
lcoh

=
ω

lcoh

dI

dω

∣∣∣∣
lcoh

' αs
λ

√
λµ2

ω
, (2.21)

which means that the suppression of radiation in the LPM regime compared to that of the
Bethe-Heitler regime is of magnitude

√
ELPM/ω.

Finally, in the factorization regime, only one scattering center is active (lcoh ≥ L). This
regime is entered at ωfact ' µ2

λ L
2, so that (following Eqs 2.16 and 2.17 with L ' λ), Ncoh ' 1

and

ω
d2I

dωdz
' αs

L
. (2.22)

To obtain the total average energy loss that a parton suffers along a trajectory of length L,
Eq. 2.10 is integrated, using the conditions summarized in Eq. 2.13, to find

〈∆E〉(L) ∼ c1αsE + c2αs
µ2L2

λ
(2.23)

with ci constants ofO(1). The first term on the right-hand side of the Eq. 2.23 is the contribution
of the factorization regime, which is independent of L. The second term shows that total energy
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loss from induced gluon radiation increases quadratically with in-medium length L and is, in
the high energy limit, independent of parton energy E, meaning that relative parton energy loss
from radiative processes is expected to decrease with increasing parton momenta (as is visible
in e.g. Fig. 2.4).

Calculations in which the interactions of the virtual gluons that are emitted into the medium
are described using the AdS/CFT correspondence [52] suggest an even stronger (L3) dependence
of radiative energy loss on the path length [53].

2.2.3 Modeling the medium: initial geometry and hydrodynamics
The previous subsections gave a (heuristic) description of energy loss of hard partons in a QGP
medium. A meaningful comparison between observed energy loss and energy loss formalisms
however can only be made when the medium itself, in which energy is lost, is modeled (e.g.
to extract information on the QGP density along the trajectory of the parton). (Viscous)
relativistic hydrodynamics is the most widely used theory to model medium dynamics, and has
been suggested already over half a century ago [54]. The hydrodynamic ansatz can be justified
when realizing that the mean free path of particles in the collision system is much smaller than
the characteristic system size, suggesting a description of the medium as a liquid. As input to
hydrodynamics the equation of state

P = P (ε, n) (2.24)

is defined as pressure P as function of energy density ε and baryon density n, which can ex-
perimentally be tuned to the number of produced particles at a given collision configuration.
The most notable difference between relativistic and non-relativistic hydrodynamics lies in the
four-velocity extension of the classic velocity v

uµ =

(
1√

1− |v|2
,

v√
1− |v|2

)
(2.25)

the first component of which is the Lorentz contraction factor. Dynamics of the system itself are
fully defined from conservation laws, e.g. energy-momentum conservation and baryon number
conservation,

∂µT
µν = 0 ∂µj

µ
b = 0 (2.26)

where Tµν is the energy-momentum tensor and jµb baryon number current. In the case of ideal
hydrodynamics,

Tµν = (ε+ P )uµuν − gµνP jµb = nbu
µ (2.27)

where nb is the net baryon density, ε is the energy density, gµν represents the Minkovski metric
and P is the pressure in the local rest frame which moves with four-velocity uµ in the global
frame. In case of viscous hydrodynamics, additional (macroscopic) transport coefficients need
to be defined, such as shear viscosity η. Transport coefficients depend directly on the microscopic
scattering dynamics within the system and govern the time delay between the appearance of
thermodynamic gradients and dissipative currents in response to these gradients (see § 2.4.1).
Transport coefficients are taken into account by extending Tµν with an additional shear stress
tensor πµν ,

Tµν = (ε+ P )uµuν − gµνP + πµν (2.28)

the relative importance of which is governed by shear viscosity η as

πµν = 2η〈∇µuν〉 ∇µ = ∆µν∂ν (2.29)
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Hydrodynamic equations are generally solved in 3+1 or 2+1 dimensions; in the latter case,
longitudinal boost invariance is assumed (i.e. neglecting dependence of the evolution in the
longitudinal direction, commonly expressed in rapidity ηd). For a comprehensive overview of
relativistic hydrodynamics, see [55, 56].

2.2.3.1 The Glauber Model

Any (expanding) system must have an initial configuration. In nuclear collisions this initial
geometry (the distribution of nucleon-nucleon scatterings in the overlap region) is not accessible
experimentally. A widely used approach for modeling the initial geometry is the Glauber model
[57], in which two nuclei are arranged with at impact parameter be, which is sampled randomly
from a linearly decreasing distribution. The nucleon density is generally parametrized by a
Fermi distribution

ρ(r) = ρ0

(
1 + ω(r/R)2

1 + exp r−R
a

)
(2.30)

where ρ0 is the nucleon density at the center of the nucleus, a represents skin depth, R is the
nuclear radius and w quantifies deviations from a spherical shape; the latter three parameters
are extracted in low-energy electron scattering. Eq. 2.30 can either be used as a continuous nu-
cleon density (the optical Glauber approach) or at specific spatial coordinates (the Monte Carlo
approach)f. Soft particle production in the Glauber model is generally taken to be proportional
to the number of nucleons that undergo at least one interaction (Npart), high pT-processes scale
with the number of binary nucleon-nucleon collisions (Ncoll). Initial energy density is calculated
from a linear combination of Npart and Ncoll densities.

A second, frequently used approach in modeling initial conditions is the Color Glass Con-
densate (CGC) [58] ansatz, in which saturated gluon structure functions inside the target and
projectile nuclei are parametrized and initial gluon production in the overlap region is calcu-
lated using perturbative techniques, implemented e.g. in the Monte Carlo Kharzeev-Levin-Nardi
(MC-KLN) model [59].

2.3 Experimental signatures of parton energy loss

The most direct approach of measuring parton energy loss is via the nuclear modification factor
RAA [60, 61], of highly energetic single hadrons, defined as

RAA =
d2NAA/dpTdη

〈TAA〉· d2σpp/dpTdη
(2.31)

where d2NAA/dpTdη represents the differential particle yield in nucleus-nucleus collisions and
d2σpp/dpTdη is the differential cross-section in proton-proton collisions. The nuclear overlap
function 〈TAA〉 is derived from a Glauber model [57, 62, 63] and proportional to the number of

dSee Eq. 3.1 for a definition of rapidity η.
eThe impact parameter b is a vector connecting the center of the two nuclei and not a measurable quantity.

To distinguish experimentally between collisions with small or large impact parameters, heavy-ion collisions are
classified into centrality classes, which are determined from the number of particles that are produced in a
collisions. 0% collision centrality refers to the most central (largest multiplicity) events (at very small b). See
§ 3.3.2 for a full discussion.

fFor details, see [57].
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binary collisions 〈Ncoll〉. In the absence of the formation of a system in which partons lose energy,
a Pb–Pb collision can be seen as an independent superposition of nucleon nucleon collisions. The
nuclear overlap function is directly proportional to the number of independent proton proton
collisions within the overlap region of the colliding nuclei. At high pT the RAA is expected to be
1 if no QGP is formed; at low momenta, the particle production is dominated by soft processes
and the TAA scaling is not expected to hold [64]. The validity of these assumptions has been
tested by measuring the RAA of particles which are not sensitive to QCD dynamics, such as the
(γ, W±, Z0), which is found to be 1 within uncertainties [65, 66].

Figure 2.4 shows the RAA measured in central collisions for several collision energies (
√
sNN

= 17.3 GeV, 200 GeV, and 2.76 TeV). At RHIC and LHC energies, the RAA is below unity,
suggesting strong suppression of highly energetic partons in the medium. The suppression
decreases with increasing pT, indicating that the relative strength of the energy loss decreases
with increasing pT. Similar measurements in proton-lead collisions [67], where QGP formation
is not expected, confirm that the observed suppression is truly an effect of energy loss in the
plasma rather than a ‘cold’ nuclear effectg.

2.3.1 Extracting transport coefficients
In addition to shear viscosity η (briefly introduced in § 2.2.3), material dynamics can be
parametrized by transport coefficients which are more directly related to parton energy loss.
In the context of radiative energy loss, the medium dependence of the energy loss is controlled
by the jet transport coefficient q̂ [46], which quantifies the transverse momentum diffusionh in
a given material as the average squared momentum transfer 〈q2⊥〉 between a parton and the
medium per unit length λ, where ⊥ denotes the momentum component perpendicular to the
partons’ trajectory,

q̂ =
〈q2⊥〉
λ

= ρ

∫
dq2⊥q

2
⊥

dσ

dq2⊥
. (2.32)

As q̂ is a function of medium density ρ and parton-medium interaction cross section σ (as given
as the right most term of equality 2.32), it is expected to have a dependence on local temperature
T and the energy of the parton along which trajectory q̂ is evaluated. It can be shown [77] that
the average energy loss of the parton (again for the limit E → ∞) has a dependence on the
medium size L

∆E ' αsq̂L2. (2.33)

Model predictions of the RAA of single hadrons from five models, which take different approaches
to parton energy loss in a non-uniform, hydrodynamically expanding medium, have been com-
pared [78] to extract a common q̂ value as function of temperature T . For details on the modeling
of parton energy loss, the reader is referred to [78] and references therein. Briefly summarizing,
in the CUJET [79] a scattering potential is modeled which is governed by tuning the strong
coupling constant, the Debye screening mass and the density of scattering centers; the HT-BW

gIt should be noted that at the time of writing, discussion on collectivity in small systems is still ongoing,
and the dynamics of the system created in p–Pb collisions is not well understood, especially in light of recent
measurements on flow and long-range correlations in p–Pb systems. A wealth of publications has recently come
available on this subject, e.g. [68–72].

hIn literature, the coefficient ê, ‘longitudinal drag’ [74] is often associated with collisional energy loss in the
longitudinal direction. In the following discussion however, only q̂ will be considered. The relative importance
of radiative and elastic energy loss can possibly be disentangled by measuring the quenching of jets originating
from heavy quarks, as radiative energy loss is expected to be suppressed for heavy quarks (the so-called ‘dead
cone’ effect’ [75, 76]).
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Figure 2.4: RAA of charged particles and neutral pions measured at central collisions for several
collision energies (

√
sNN = 17.3 GeV, 200 GeV, and 2.76 TeV). At RHIC and LHC energies,

the RAA is strongly suppressed for transverse momenta where the Ncoll scaling is expected to
be valid. From [73].

[80] and HT-M [81] approaches use q̂ as the only free model parameter; and the MARTINI [82]
and McGILL AMY [83], based on hard-thermal-loop resummed thermal field theory, have as
only free parameter the strong coupling constant. For medium parametrization, the HT-BW
model uses a 3+1 ideal hydrodynamic medium, whereas CUJET, HT-M, and McGILL AMY
use 2+1 viscous hydrodynamics, tuned to RHIC and LHC data. The results of the models are
summarized in Fig. 2.6 as q̂ of a pT = 10 GeV/c quark, originating at the origin of a central
collision at a set temperature T . These q̂ values are found by making variations in the free
parameters of the models, and minimizing the difference between the model predictions and the
RHIC and LHC single hadron RAA, as illustrated in Fig. 2.5 for variations in αs for the CUJET
model. In this figure, the two panels on the left show measurements (points) of the RAA at
RHIC (far left) and the LHC, and curves corresponding to model predictions at different values
of αs. The right-most panel shows the difference between the model predictions and data in
terms of the reduced χ2 as function of αs for both RHIC and LHC data. When the spread of
the outcomes of the different models is considered as a ‘theoretical uncertainty’, q̂ at an initial
time of τ0 = 0.6 fm/c for the same pT = 10 GeV/c quark is 1.2 ± 0.3 GeV2/fm at T = 370
MeV and 1.9 ± 0.7 GeV2/fm at T = 470 MeV (the maximum temperatures considered for RHIC
and the LHC in the most central collisions respectively). To illustrate the importance of the
medium description for the evaluation of q̂, the right hand side of Fig. 2.6 shows q̂ along a parton
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Figure 2.5: Two panels on the left show measurements (points) of the RAA at RHIC (far left)
and the LHC, and curves corresponding to model predictions at different values of αs. The
right most panel shows the difference between the model predictions and data in terms of the
reduced χ2 as function of αs for both RHIC and LHC data. From [78].
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Figure 2.6: Left (from [78]): q̂/T 3 as function of T at the origin of a central collision. Right
(from [84]) q̂ along parton trajectory ξ for different medium parametrizations, using the ASW
[85] model for medium induced radiative energy loss in pQCD.

trajectory ξ for different medium models (these trajectories are not the trajectories used in [78],
but rather come from [84]).

2.4 A broader context

To further understand the properties of the medium that is created in heavy-ion collisions, but
also to understand the experimental difficulties that will be described in detail in Chapter 4, a
few words have to be dedicated to ‘soft’ observables. So far, the discussion of medium dynamics
has limited itself to (observations sensitive to) the modification of a highly energetic probe by
the collision medium. Medium properties can however also be derived by direct study.
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Figure 2.7: The collision overlap region at finite impact parameter has an approximately el-
liptic shape. In a non-thermalized system (left) particle emission is isotropic. A thermalized
system (right) expands anisotropically. This anisotropy can be quantified by amplitudes vn.
Figures from [56].

2.4.1 Flow: quantifying azimuthal anisotropy
At finite impact parameter, Pb–Pb collision systems are anisotropic and have a (roughly) elliptic
shape, its eccentricity determined by the impact parameter. Fig. 2.7 sketches the geometry of
a semi-central heavy-ion collision. If the collision system does not exhibit collective behavior,
particles will be emitted without a preferred direction. If the system thermalizes however, the
pressure gradient along the minor axis of the overlap ellipse will be larger than the gradient
along the major axis, resulting in a larger net momentum production along the minor axis of
the ellipse. The efficiency with which the initial deviations from a spherical overlap region,
that cause the pressure gradients in the plasma, are transferred momentum space anisotropy,
are governed by the shear viscosity. This anisotropy in momentum space (anisotropic flow)
manifests itself (at low transverse momenta) as azimuthal modulation of energy density. This
modulation is generally quantified using a Fourier expansion [86–88],

dN

d[ϕ−Ψn]
∝ 1 +

∑
n

2vn cos(n[ϕ−Ψn]) (2.34)

where ϕ is the azimuthal angle of a track and Ψn represents the orientation of the n-th order
symmetry axis of the system in the transverse plane, with pT-dependent harmonic coefficients
[89, 90]

vn(pT) = 〈〈cos(n[ϕ−Ψn])〉〉. (2.35)

where 〈〈. . . 〉〉 denotes an average over all particles per event, and all collisions in a data sample.

The picture given in 2.7 is rather simplified, as it presents a scenario where matter is dis-
tributed smoothly within the colliding nuclei, and the only symmetry plane orientation is defined
by the beam axis and impact parameter. In reality however, fluctuations in the distribution of
participating nucleons within the nuclei lead to a deviation between the reaction plane and the
participant plane Ψpp [91], which is defined as the symmetry axis of the distribution of partici-
pating nucleons. The left panel of figure 2.8 illustrates this effect: the reaction plane (defined by
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Figure 2.8: Fluctuations lead to a deviation between the reaction plane (horizontal) and the
participant plane Ψpp [91] (left). Fluctuations also generate additional odd harmonic symmetry
planes Ψn (right).

Figure 2.9: Left: vn harmonics, generated mainly by fluctuations, in 0–2% central collisions.
Right: vn harmonics in 30–40% central collisions, with predictions from ideal and viscous
hydrodynamics for v2 and v3, using Glauber initial conditions. From [91].

the beam axis and the impact parameter) is a horizontal line; the 2nd-order symmetry plane of
the participant distribution Ψ2 however is tilted. In addition to this, event-by-event fluctuations
of the nucleon geometry generate additional odd harmonic symmetry planes Ψn, as illustrated
in the right panel of Fig. 2.8, which give rise to odd harmonics v3, v5, etc [91]. Measurements of
vn harmonics in semi-central collisions are shown Fig. 2.9 (right) together with predictions from
viscous hydrodynamics. Higher harmonic vn coefficients are more sensitive to η/s than v2 [92].
The same figure shows vn harmonics in very central collisions, which confirms the importance
of fluctuations in the initial nucleon distribution.

2.4.2 vn and insights from viscous hydrodynamics
Detailed information on the macroscopic plasma parameters, as well as hadronization mech-
anisms, can be extracted from measurements of vn harmonics for identified particles, taking
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Figure 2.10: Elliptic flow coefficient v2 for different hadron species (π±, p+p,Λ+Λ,K, φ,Ξ−+

Ξ
+
) in various centrality classes [93]. At low momentum, v2 is described reasonably well by

VISHNU [94–96] predictions.
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Figure 2.11: Elliptic flow (v2) measured by ALICE and STAR, pT-integrated as function of
centrality (left) and pT-differential in 30-40% collision centrality (right) together with predic-
tions from viscous hydrodynamics at different η/s. From [97, 98].

advantage of the mass differences between different particle species, as a common velocity boost
from the expanding plasma will affect different masses differently. In Fig. 2.10 the v2 mea-
surement [93] of identified hadrons (π±, p + p,Λ + Λ,K, φ,Ξ− + Ξ

+
) in two centrality classes

(10–20% and 30–40%) is shown. The measurement is compared to predictions from VISHNU
[94–96] which uses a 2+1d viscous hydrodynamic medium description, which transitions into
a hadronic evolution cascade via elastic, semi-elastic and inelastic scatterings, at a ‘switching
temperature’ of 165 MeV. The MC-KLN [59] model is used as initial condition, after which
hydrodynamic evolution begins at an initial time of τ0 = 0.9 fm/c and using a fixed (no temper-
ature dependence) value of η/s = 0.16. The model predictions describe qualitatively the mass
ordering of the pT-differential v2 that is observed. For a full discussion of these results, see [93].

To test whether the QGP has the same shear viscosity at RHIC energies as it does at LHC
energies - a question similar to the T dependence of q̂ as shown in Fig. 2.6 - the left panel of
Fig. 2.11 shows predictions for pT-integrated v2 as function of collision centrality for different
values of η/s. The predictions for the LHC are shown as dashed curves, that for RHIC as a
solid line. The figure also shows results from the corresponding v2 measurementsi performed
by ALICE and STAR. The comparison between model and data suggests an increase of η/s
between LHC and RHIC.

The right-hand side of Fig. 2.11, shows measurements and model predictions of pT-differential
v2 in 30-40% collision centrality. The system evolution is modeled with the VISHNU [94–96]
model of viscous hydrodynamics, using two temperature-dependent parameterizations (marked
a and b) of η/s. Both forms (a and b) can simultaneously describe the ALICE and STAR data,
therefore neither shape can be excluded.

2.4.3 Shear viscosity and parton energy loss
In the collision medium (or more generally, in any medium) interactions between constituents
are responsible for generating (shear) viscosity. In principle, these interactions have the same
strength as the interactions between a hard parton and the medium. From a microscopic point

ipT-integrated for 0.15 < pT < 2.0 GeV/c at |η| < 1 for RHIC and 0.2 < pT < 5 GeV/c at |η| < 0.8 for the
LHC.
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Figure 2.12: Parton energy loss manifests itself as in-cone radiation, leading to a modification
of the distribution of energy within the jet (jet broadening) or out-of-cone radiation, quantified
by a jet RAA < 1.

of view, shear viscosity is determined by the mean free path λ, typical momentum 〈p〉, and the
density of medium constituents ρ, as [99]

η ' ρ〈p〉λ, (2.36)

from which, for a weakly coupled plasma, the connection [100]

η

s
≈ 1.25

(
T 3

q̂

)
(2.37)

can be derived, implying that a large value of q̂ corresponds to small values of η/s.
Best estimates of q̂ and η/s as extracted for RHIC and LHC energies in Figs 2.6 and 2.11

show that the proportionality as suggested in Eq. 2.37 holds reasonable well: η/s is found to be
to be slightly larger at the LHC than at RHIC, while the best fit values of q̂/T 3 favor a slightly
lower value at the LHC as compared to RHIC. [94–96]

2.5 Jets

In the previous sections, parton energy loss mechanisms have been explained and connected to
experimental signatures of in-medium parton energy loss (namely theRAA of single hadrons). Jet
measurements, in which the kinematic properties of an entire parton shower are measured rather
than that of one single hadron, are experimentally more challenging but remove the theoretical
uncertainties that arise from the ill-understood physics of hadronization, thus allowing for a
more direct comparison to theoretical predictions.

Figure 2.12 shows schematically how parton energy loss is connected to jet observables. An
experimentally defined jet cone, drawn in orange, defines the jet: the summed four-momenta
of all particles reconstructed within this cone should equal the energy of the initial incoming
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Figure 2.13: Lower panels: ratio ρ(∆r)Pb−Pb/ρ(∆r)pp. An excess of energy at high ∆r is
visible in Pb–Pb collisions, whereas the distribution of tracks close to the jet axis remains
approximately unmodified. Upper panels: pp (left) and Pb–Pb jet composition, split into
pT-intervals of constituent tracks. From [101, 102].

parton. The opening angle of the jet is determined by the cone radius Rj. An incoming parton
radiates gluons, prior to and during the partonic showering. If radiation occurs at shallow angles
(in-cone radiation), the gluon’s energy remains within the jet cone, resulting in a change of the
pT distribution of constituent tracks within the jet cone.

Changes in the composition of the jet as a result of shallow-angle radiation of gluons can
e.g. be investigated by looking at the pT-distribution of tracks around the jet axis (both in- and
outside of the jet cone) [101, 102], defined as

ρ(r) =
1

δr

1

Njets

∑
tracks∈[ra,rb) pT

pjetT

(2.38)

where the first two fractions serve as normalization factors (
∫
ρ(r) dr is normalized to 1). ρ(r)

is extracted by integrating momentum distributions in η, ϕ in annuli with radial width δr =
0.05, where each ring has an inner radius of ra = r− δr/2 and an outer radius of rb = r− δr/2.
pT represents single track transverse momentum and pjetT represents the momentum of the jet.

jThe exact meaning of jet resolution parameter R depends on the algorithm that is used for jet reconstruction.
A formal definition of R is given in § 4.2, for a qualitative appreciation of results at this point this definition
suffices. Besides fragments of an incoming parton, tracks emitted from the medium itself will also be included in
the jet cone. Chapter 4 will describe in detail how jet energy from the initial hard parton can be separated from
the energy of the medium itself.
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Figure 2.14: Left: RAA of jets in 0–10% and 10–30% collision centrality, derived from scaled
jet yields in pp and Pb–Pb collisions (shown right). Jet production is strongly suppressed,
indicating out-of-cone radiation. From [120].

Figure 2.13 shows ρ(r) as function of radius ∆r, as measured in pp collisions (top left panel)
where the stacked, different colors represent a splitting of the jet structure in pT intervals of
constituent tracks. The panels on top middle and top right show the same observable measured
in Pb–Pb collisions at 50-100% and 0-30% centrality. Figures are made for the most energetic
jet in the event, with 120 < pT < 300 GeV/c. The figures indicate that jets in the Pb–Pb
medium have a composition different than that in pp; a larger number of tracks with low pT are
measured. The lower panels show the ratio ρ(∆r)Pb−Pb/ρ(∆r)pp. An excess of energy at high
∆r is seen in Pb–Pb collisions, whereas the distribution of tracks close to the jet axis remains
approximately unmodified, indicating strong transverse broadening of the parton shower shape
as a result of the QCD medium.

If, on the other hand, a gluon is radiated at a sufficiently large angle, its energy will not
be reconstructed within the jet cone, and the radiation is considered to be out-of-cone, leading
to a jet RAA < 1. Out-of-cone jet energy loss is shown in Fig. 2.14, where on the right panel
pT-differential cross sections of jets measured in proton-proton collisions (black markers) and
Pb–Pb collisions at different collision centralities are given, and on the left-hand panels the jet
RAA, as given by Eq. 2.31. In both centrality classes, an RAA < 1 is observed over the full
pT range, meaning that jets lose a significant fraction of their energy in the QGP medium,
indicating strong out-of-cone radiation. The two lines (black and dashed green) represent model
predictions for two different models, JEWEL [103, 104] and YaJEM [105–107], which employ
the energy loss mechanisms as given earlier to model jet quenching (more detailed information
will be given in Ch. 7). Similar observations have been made [108] using the RCP, defined as

RCP =
〈TAA〉·d2σpp/dpTdη|central
〈TAA〉·d2σpp/dpTdη|peripheral

(2.39)

in which the ratio of scaled spectra in central to peripheral collisions is taken rather than the
ratio of scaled pp to Pb–Pb collisions. The RCP is found to be < 1, consistent with out-of-cone
radiationk.

kA complete overview of observables sensitive to jet energy loss would take up a dissertation of its own, for
further reading see e.g. [109–119].
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2.5.1 Path-length dependence of energy loss : vch jet
2

To constrain the underlying physics mechanisms that govern energy loss in the QGP medium,
measurements as e.g. shown in Figs 2.14 and 2.13 are used as input to constrain theoretical
models. As has been discussed in § 2.2, different energy loss mechanisms are expected to have a
different dependence on the length L of the parton trajectory through the QGP. The observable
that will be measured in this dissertation, vch jet

2 , is directly sensitive to the dependence of
energy loss on the length of the parton trajectory.

Jets from initial hard scatterings are emitted without a preferred direction in the x–y plane,
so the differential jet yield in vacuum (without QGP formation) is distributed uniformly in
azimuth ϕ. In non-central Pb–Pb collisions, the initial overlap region of the colliding nuclei in
the transverse plane has an approximately elliptic shape (as shown in Fig. 2.7). Jets emitted
along the minor axis of the ellipse (defined as the in-plane direction) on average traverse less
medium - and are therefore expected to lose less energy - than jets that are emitted along the
major axis of the ellipse (the out-of-plane direction).

The dependence of jet production on the angle relative to the second-harmonic symmetry
plane Ψ2 can be used to probe the path-length dependence of jet energy loss. This dependence
is quantified by the parameter vch jet

2 (as for the vn harmonic that quantifies anisotropic flow),
the coefficient of the second term in a Fourier expansion of the azimuthal distribution of jets
relative to symmetry planes Ψn,

dN

d[ϕjet −Ψn]
∝ 1 +

∞∑
n=1

2vjetn cos(n[ϕjet −Ψn]), (2.40)

where ϕjet denotes the azimuthal angle of the jet.
In central collisions, the distance that a parton travels through the plasma is approximately

equal in the in-plane and out-of-plane directions, therefore a small vch jet
2 is expected from simple

geometric arguments. In semi-central collisions the average in-medium distance is shorter, while
the relative difference between the average distances in-plane and out-of-plane is larger, hence a
non-zero vch jet

2 is expected. Fluctuations in the initial distribution of nucleons within the overlap
region however can lead to additional contributions to vch jet

2 and higher harmonic coefficients
in the Fourier decomposition (similar to the generation of higher order vn coefficients as shown
in Fig. 2.9).

The observable vch jet
2 is different from the (jet) RAA or RCP as it directly connects jet

energy loss to path length at fixed medium temperatures and densities by probing different path
lengths within the same event rather than e.g. comparing energy loss in different centrality
classes; thereby it allows for a more precise quantification of the path-length dependence of
parton energy loss.
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3 | Experimental setup

The work, presented in this dissertation, is based on data collected by the ALICE experiment
at CERN, Geneva. This chapter will briefly outline the process of data taking, starting from
accelerating lead ions (§ 3.1), followed by an explanation of ALICE (§ 3.2), focusing on the
detector elements that are used in this work, and ending at the data selection (§ 3.3), Monte
Carlo modeling (§ 3.4) and computation (§ 3.5).

3.1 CERN accelerator complex

Lead nuclei, which are collided to create the QGP in the laboratory, are accelerated to relativistic
velocities in the Large Hadron Collider (LHC, for a detailed description see [121]), located at
depths between 50 and 175 m underneath the Swiss-French border near Geneva. The LHC
lies within a 27 km annular cave (used previously for the LEP accelerator) and contains two
beam pipes to allow for bunches of identically charged particles to be accelerated in opposite
directions.

A schematic overview of the CERN accelerator complex is given in Fig. 3.1. Lead ions are
initially accelerated in LINAC 3 (a linear accelerator). During this initial acceleration electrons
are removed from the nucleus. LINAC 3 injects its ions into the Low Energy Ion Ring (LEIR)
which splits each long pulse of ions into dense bunches of 2.2× 108 ions per bunch; the bunches
are subsequently injected into the Proton Synchrotron (PS), where all remaining electrons are
stripped, after which the nuclei are accelerated to

√
sNN = 450 GeV by the Super Proton

Synchrotron and injected into the LHC, which finally accelerates the nuclei to an energy of√
sNN = 2.76 TeV. Protons start their acceleration in LINAC 2, after which they are accelerated

up to 1.4 GeV by the Proton Synchrotron Booster to be injected in the PS and from there follow
the same path as lead ions.

Particles can collide at the four points where the beam pipes cross, at each of the four
points a detector is situated: two general purpose detectors (ATLAS [122], CMS [123]), and two
dedicated detectors (ALICE, running a dedicated heavy-ion program; LHCb [124], running a
dedicated b-physics program).

3.2 ALICE

ALICE (A Large Ion Collider Experiment) consists of 18 subsystems (see Fig. 3.2) which
can (roughly) be divided into three sections: the forward muon spectrometer (comprising the
muon filter and trigger chambers, and the muon tracking chambers), A COsmic Ray DEtec-
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Figure 3.1: The accelerator complex as currently in operation at CERN, Geneva. Lead ions
are initially accelerated and stripped of their electrons in LINAC 3, subsequent acceleration
and bunching is done by the PS and SPS system. Protons acceleration starts at LINAC 2,
after additional acceleration in the BOOSTER ring. The PS and SPS serve as injectors for
the LHC. Collisions take place at the four points of the LHC where the beams cross (ATLAS,
ALICE, CMS, and LHCb).

tor (ACORDE), and the central barrel detectors which are located within the L3 solenoid. A
detailed overview of the design of the ALICE experiment and its performance can be found in
[125–128], this section will only focus on the detectors which are directly used to gather the
data necessary for this dissertation: the Inner Tracking System (ITS, § 3.2.1), Time Projection
Chamber (TPC, § 3.2.2), V0 system (V0, § 3.2.3) and Electromagnetic Calorimeter (EMCal,
§ 3.2.4a).

All subsystems use a common coordinate system to indicate the trajectories of particles
within the detector. ALICE uses a right-handed Cartesian coordinate system in which the
positive x-axis points towards the center of the LHC. The z-axis lies along the beam axis, the
muon spectrometer is situated at negative z. Particle kinematics are commonly expressed in
terms of transverse momentum pT (the magnitude of the projection of momentum vector p in
the x−y plane), azimuthal angle ϕ (opened in the x−y plane) and pseudorapidity η, as measure
of the polar angle θ (opening in the y − z plane) with respect to the z-axis, defined as

η = − ln

(
tan

θ

2

)
= ln

(
|p|+ pL
|p| − pL

)/
2. (3.1)

For relativistic particles, η approximates rapidity y as total energy E ≈ |p|. Charged particles
trajectories are curved in the x–y plane as a result of the 0.5 T magnetic field provided by the
L3 solenoid; the direction of the field lines (positive or negative z) depends on the polarity of
the magnet and can be flipped. The radius of curvature r, is directly proportional to the ratio of
pT to the field strength B, where the sign of the curvature is determined by charge q, meaning

aNo information from the electromagnetic calorimeter was used for the results presented in Ch. 7. Exploratory
studies, presented in Ch 8, do use information from this system however.
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Figure 3.2: Schematic view of the ALICE detector and its most important components. Taken
from [129].

that pT can be determined from
pT ∝ qrB. (3.2)

As the field strength is known to high precision, the pT resolution of tracks depends largely on
the precision of the determination of r; the track selection (see § 3.3.3) is therefore aimed at
maximizing track length.

3.2.1 ITS

The detector system located most closely to the nominal collision point is the ITS [130] (see
Fig. 3.2, details in top-right corner). The ITS consists of three pairs of concentric cylindrical
detector layers (with a maximum diameter of 87.2 cm, see the left panel of Fig. 3.3), each pair
forming a subsystem employing different technologies, with the innermost layers Silicon Pixel
Detectors (SPD), the middle layers using Silicon Drift Detectors and the outermost layers using
Silicon Strip Detectors. The different techniques provide appropriate resolution at the six radii
where track density differs. The ITS is a semiconductor detector: charged particles traversing
the silicon pads free charges in the doped semiconductor material (silicon) which cause small
ionization currents.

The ITS is used primarily for locating the primary interaction vertex (the point of collision)
and for the reconstruction of particle trajectories (tracking), as explained briefly in § 3.3.3. It
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Figure 3.3: Design of the ITS detector (left, from [130]). Design of the TPC detector (right,
from [131].

covers |η| < 0.9 and full azimuth (ϕ).

3.2.2 TPC

The TPC [131] is a cylindrical detector filled with a mixture of Neon (90%) and CO2(10%). It
is placed symmetrically around the nominal interaction vertex, its inner radius at 84.1 cm (the
ITS is placed within the inner radius) and its outer radius at 246.6 cm, extending 2.5 m in both
longitudinal directions. The gas volume is divided by a central high voltage (100kV) electrode
at η = 0, which induces an electric field with a gradient of 400 V cm−1 parallel to the beam
line (see Fig. 3.3, right side). As charged particles traverse the gas volume, gas molecules are
ionized and freed electrons drift towards wire chambers that are mounted at the end plates of the
gas volume. Near the high-voltage anode wires of readout chambers, electrons are accelerated
and locally ionize the gas mixture, leading to an amplification of the signal. The cloud of free
electrons is absorbed by the anode wire, while ionized gas molecules recombine with electrons
emitted from cathode: the positive ions induce an electric signal, directly proportional to the
energy loss of the original particle in the gas mixture, which is recorded in readout pads. The
TPC readout is divided into 18 trapezoidal sectors at each cap, which are subdivided into two
sections: the inner readout chambers (IROC) and outer readout chambers (OROC).

Unlike the ITS, which has sensors recording the x, y and z coordinates of ionizations, the
TPC only has segmentation in the x–y plane (in which the end plates are mounted). The radial
distance r and azimuthal angle ϕ of tracks are therefore measured directly, the trajectory of
tracks along the z-direction is calculated from the drift time of the electrons within the gas
volume. The TPC covers a pT range of 0.1 GeV/c ≤ pT ≤ 100 GeV/c (at higher momenta the
pT resolution is too limited for analysis) over a pseudo-rapidity range of |η| ≤ 0.9 for tracks
which are fully contained in the gas volume.

3.2.3 V0 system

The V0 system consists of two arrays of scintillators located at opposite sides (2.8 < η < 5.1 and
-3.7 < η < -1.7) of the interaction point. The position of the V0 detectors with respect to the
ITS and TPC is shown in the left panel of Fig. 3.4. The V0 system is divided into an A (-η) and
C (+η) side. Both sides consist of four concentric rings, each ring divided into eight segments of
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Figure 3.4: The V0 system consists of two arrays of scintillators located at opposite sides of
the interaction point (left). It is divided into an A (-η) and C (+η) side. Both sides consist of
four concentric rings, each ring divided into eight segments of equal azimuthal width (right).
Figure from [132].

equal azimuthal width (see Fig. 3.4). The scintillating BC404 plastic of the segments emits light
when subjected to ionizing radiation; this light is guided by optical fibers to photo-multiplier
tubes from which the V0 signals can be read.

The V0 signal strength is directly proportional to the multiplicity of charged particles incident
on the detector. A coincidence of signals of the V0 and ITS is used as an online trigger system,
which fires when a given threshold signal is exceeded. Additionally, the V0 system is used to
determine event centrality in Pb–Pb collisions, and, making use of its segmentation in azimuth,
to determine the event plane orientation (see § 3.3.1 and 4.3).

3.2.4 EMCal

The EMCal [133] is an electromagnetic lead-scintillator sampling calorimeter. It is placed
in between the TPC and the inner wall of the L3 magnet and has limited acceptance (|η| <
0.7, 1.4 < ϕ < π) but high granularity (∆η × ∆ϕ = 0.014 × 0.014). Incoming particles at
sufficient energies interact with the lead, which leads to alternating sequences of e−, e+ pair
creation and Bremsstrahlung for electrons and photons (and (in)elastic scatterings for hadronic
processes), forming a particle shower in the detector. The recorded multiplicity that is seen
by the scintillator material is proportional to the energy of the original incoming particle. The
spatial configuration of the EMCal (comprising alternating layers of 1.44 mm Pb and 1.76 mm
polystyrene) is optimized to fully reconstruct electromagnetic showers; hadronic showers are
only partially contained.

The EMCal in this work is used only in § 8.2.1 and not to obtain the results presented in
Ch. 7. Its information complements TPC and ITS data, as it can detect particles which have
no charge (e.g. neutrons and neutral pions). In addition, the EMCal can be used as a trigger
detector, recording an event only when a (partial) shower, surpassing a given threshold in energy,
is detected, effectively selecting events in which a hard scattering has occurred. This will be
further discussed in § 8.2.1.

3.3 Data sample

The data presented in this dissertation were recorded in the Pb–Pb data taking periods in 2010
and 2011 at

√
sNN = 2.76 TeV and consist of a total of 6.8×106 events with 0–5% centrality
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Figure 3.5: The EMCal is an electromagnetic lead-scintillator sampling calorimeter. It lies in
between the TPC and the inner wall of the L3 magnet and has limited acceptance (|η| < 0.7,
1.4 < ϕ < π). Picture from [133].

Figure 3.6: Event display, of collision recorded during the 2015 Pb–Pb data-taking period.
Colored lines represent charged particle tracks (where different colors correspond to different
particle species). The orange rectangles show energy depositions in the EMCal and DCal
calorimeters (where the volume of the rectangle is proportional to the amount of energy de-
posited).
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and 8.6×106 events with 30–50% centrality, corresponding to integrated luminosities of L = 18
µb−1 and L = 5.6 µb−1, respectively. All events that are used in the analysis are subjected to
event selection criteria and are classified into centrality classes.

3.3.1 Event selection

Collisions occur when highly focused bunches of ions cross at the origin of the detector. The
majority of interactions of the ions however are not hadronic nucleus–nucleus interactions, but
rather electromagnetic processes or interactions with the accelerator itself. The aim of event
selection is to select hadronic interactions (events) with high efficiency, rejecting all other pro-
cesses which lead to (observable) particle production. Event selection is generally divided into
two steps: online selection, performed instantaneously at the moment of collision, and offline
selection, performed on a recorded data set.

Online event selection is based on collecting information from multiple detectors and record-
ing an event when a specified set of detectors simultaneously record a signal exceeding a pre-
defined threshold (a trigger). The trigger conditions [132] used in the 2010 Pb–Pb data taking
are at least two out of the following three signals

Two pixel chips hit in the outer layer of the SPD;
A signal in the V0A;
A signal in the V0C;

with the V0 threshold approximately equal to the mean energy deposited by one minimum ion-
izing particle. For the high luminosity runs in 2010, a coincidence between SPD, V0A and V0C
is required, to suppress signals from electromagnetic processes. These trigger conditions corre-
spond to the minimum bias event selection, which comprises the full hadronic cross sectionb. In
the 2011 data taking period a coincidence of the SPD requirement and a multiplicity-dependent
V0 threshold is used (the effect of which is shown in Fig. 3.8). The trigger is fully efficient in
the centrality ranges used in Ch. 4 through Ch. 7. Centrality estimation using the V0 system
does not bias the ΨEP, n determination [134] (see Ch. 4).

After triggering, the event sample is still contaminated by events which pass the trigger
conditions but are not part of the hadronic cross section. These comprise mainly scatterings of
ions with residual gas molecules in the beam pipe, and ions from the beam halo which interact
with the accelerator itself. Timing information from the V0 system is used to reject these events.
Satellite collisions, which are incidental collisions that can occur when an ion moves from one
bunch to another and then collides with ions from the opposite beam, are removed from the
event sample by requiring that the collision occurs within |z| < 10 cm of the nominal interaction
point. This requirement additionally means that the number of accessible clusters for track
reconstruction in the TPC, is approximately equal for positive and negative η.

The largest ‘physical’ background is that of electromagnetic processes, electromagnetic inter-
actions between the nuclei, and neutron emission. These processes lead to very low multiplicity
events (which would end up at 90%-100% centrality); details on rejection can be found in [135].
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Figure 3.7: V0 amplitude (in arbitrary units (a.u.)), divided in centrality classes according to
Eq. 3.3. The red line represents the Glauber fit. Figure from [132].

3.3.2 Centrality determination

Collision centrality, the measure of overlap of the colliding nuclei, is expressed as a percentage
of the total nuclear interaction cross section σ. The centrality percentile c of an AA collision
with an impact parameter b is defined by integrating the impact parameter distribution dσ/db

′

as

c =

∫ b

0
dσ/db′ d′b′∫∞

0
dσ/db′ db′

=
1

σAA

∫ b

0

dσ

db′
db′. (3.3)

Since the impact parameter is not a measurable quantity, centrality percentile c is exper-
imentally defined by the percentile of the hadronic cross section corresponding to a particle
multiplicity above a given threshold (NTHR

ch )

c′ ≈ 1

σAA

∫ ∞
NTHR

ch

dσ

dN ′ch
dN ′ch. (3.4)

In practice, the cross section is replaced by the number of observed events, corrected for trigger
efficiency and determined in a region where the contribution of QED processes to the total
cross section is negligible [135]. The absolute scale of the centrality is determined by the an-
chor point, AP, which is chosen as the amplitude recorded by the V0 detector equivalent to
90% of the hadronic cross section. The determination of the AP requires the knowledge of the
trigger efficiency and the remaining background contamination in nuclear collision events. The
AP is chosen based on multiplicity predictions from a Glauber Monte Carlo fit to the experi-
mental multiplicity distribution (see Fig. 3.7) where emission of particles is parametrized by a
convolution of two negative binomial probability distributions around Npart and Ncoll [136–138].

bThe minimum bias sample includes, as the name implies, all events from hadronic interactions, without
imposing a bias on the event selection. A bias is introduced in e.g. § 8.2.1, where the online event selection only
selects events in which a jet of a given energy is produced. This leads to a specific subset (a ‘biased sample’)
of events. Biased events samples can be useful when e.g. investigating rare phenomena, but may render the
outcome of the measurement difficult to compare to theoretical predictions.
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Figure 3.8: Left panel: centrality distribution of accepted events for the LHC11h run. Blue
open squares mark the original centrality distribution, the green markers represent the flat-
tened centrality distribution. The centrality distribution in the LHC10h data is given as red
diamonds. Right panel: centrality weights as a function of centrality percentile. Centrality
weights are only used in the 10 % most central collisions.

The mapping of V0 amplitudes to centrality classes is performed on minimum bias events,
which sample the full hadronic cross section. If the full hadronic cross section is sampled,
the centrality distribution is uniform. In the 2011 data taking however, a centrality trigger is
introduced: the trigger efficiency is based on V0 multiplicity to have a larger relative contribution
of central events to the total event sample (see the blue data points in the left panel of Fig. 3.8
for the resulting centrality distribution). The finite efficiency of the trigger near the trigger
threshold (8–12% centrality) leads to a non-uniform centrality selection. To correct for this non-
uniformity and ensure that events from each centrality percentile have an equal contribution to
the final measured vch jet

2 , information from events in each centrality percentile i is multiplied
by weight

wi =
〈N〉
Ni

(3.5)

where 〈N〉 is the average number of events in a centrality percentile between 0–10% centrality,
and Ni is the observed number of events in centrality percentile interval ic. The weighted
centrality distribution for events from the 2011 run is shown as green markers in the left panel
of Fig. 3.8, applied weights are shown in the right panel of the same figure. The original centrality
distribution of the 2011 data is shown as blue open square markers, the 2010 data (red closed
diamonds) is flat.

3.3.3 Event and track selection
Particles that traverse the detector leave energy deposits that are read out. Tracking is the pro-
cess of converting these measurements to particle trajectories (tracks) with kinematic properties
that can be used in physics analysis.

cIn principle the centrality percentile is a real-valued number. Weights are constructed in discrete centrality
percentile intervals with a width of 1%.
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Event reconstruction starts at determining the location of the primary interaction point (or
‘primary vertex’) from clusters in the two SPD layers of the ITS. After the primary vertex is
reconstructed in three dimensions, particle trajectories are constructed using a Kalman filtering
algorithm [139]. As initial seeds of track finding, charge depositions at the outer edge of the
TPC, where the spatial separation between the trajectories is at a maximum, are used. Tracks
are propagated inward until the inner wall of the TPC is reached, after which the track is
matched to charge depositions in the outer layer of the SSD, and further propagated into the
ITS. In a second fitting pass, this procedure is inverted and a track is fitted starting at the
innermost layer of the ITS, and finally propagated to clusters out of the TPC (into e.g. the
TRD of TOF detectors). Multiple tracks are allowed to share a fraction of clusters. Trajectories
based on a subset of information (e.g. ‘tracklets’, constructed from only ITS hits, or trajectories
containing only information for the TPC) can also be reconstructed and used in analysis. For a
full description of event and track reconstruction, see [126–128].

Charged particle tracks in this analysis are reconstructed from information in the ITS
and TPC and are selected in a pseudorapidity range |η| < 0.9 with transverse momenta
0.15 < pT < 100 GeV/c. Including the ITS in the reconstruction ensures sufficient momen-
tum resolution by maximizing the track length. Since the SPD acceptance is non-uniform in
azimuthd, two classes of tracks are used. The first class requires at least three hits per track in
the ITS, with at least one hit per track in the SPD. The second class contains tracks without
hits in the SPD, in which case the primary interaction vertex is used as an additional con-
straint for the momentum determination. For each track, the expected number of TPC space
points is calculated based on its trajectory; tracks are accepted if they have at least 80% of
these expected TPC space-points, with a minimum of 70 TPC points. Tracks produced from
interactions between particles and the detector, as well as tracks originating from weak decays
(secondary tracks) are rejected by requiring that the minimum distance of the track to the pri-
mary vertex (the distance of closest approach) is < 2.4 cm in the radial direction and < 3.1 cm
in the longitudinal direction. In addition to this requirement, particle trajectories reconstructed
by combining ITS and TPC information and trajectories derived from using TPC information
only (but constraining the origin of the track to the primary vertex) may not differ more than
six standard deviations. After track selection, the contribution of secondary tracks to the track
sample is less than 10% for tracks with pT < 1 GeV/c and negligible for tracks with higher
transverse momentum.

3.4 Monte Carlo simulations

To validate analysis techniques and to correct for instrumental effects, model events are gener-
ated. These events are generally called Monte Carlo events, as they rely on random sampling
of physical distributions (e.g. the impact parameter or position of nucleons within the nucleus).
Two Monte Carlo event generators are used, for proton proton collisions (PYTHIA) and nucleus–
nucleus collisions (HIJING). The event generators produce particle-level information, i.e. events
that are generated without propagating the particles through the detector. To simulate the
interaction of created particles with the detector material, the transport code GEANT3 [140] is
used to create detector-level events.

dDuring part of the 2011 data taking, the TPC acceptance is also non-uniform. Details on this can be found
in App. A.
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3.4.1 HIJING
The HIJING [141] event generator (Heavy-Ion Jet Interaction Generator) is used to generate
nucleus–nucleus collisions. As ansatz HIJING models nucleus–nucleus events as a superposition
of (independent) pp collisions, hence it does not generate collective effects such as vn harmonics
(see § 2.4.1). HIJING uses nPDFs to account for effects of nuclear shadowing. Nucleons are
placed inside the nuclei according to a Woods-Saxon distribution. Jet production from hard scat-
terings is modeled using pQCD calculations; jet quenching is introduced from a parametrization
of dE/dx of partons traversing the medium. Fragmentation and additional particle production
from soft processes in the non-perturbative regime is calculated using the Lund fritiof model
[142, 143]. The Lund string model [33, 34] is used for the hadronization step to final state
particles. HIJING events in this work are used to test the efficiency of particle tracking and
consequently the efficiency jet finding in high multiplicity environments (see § 4.5).

3.4.2 PYTHIA
PYTHIA [144] is used to generate high energy proton–proton collisions. Scattering proba-
bilities are evaluated using PDFs and pQCD. Subsequent parton showering is evaluated per-
turbatively and, at lower energies, non-perturbatively using Lund model string fragmentation.
Non-perturbative processes in PYTHIA rely on phenomenological descriptions, parameters of
which are tuned to experimental data (the set of tunes commonly used at the LHC experiments
are the Perugia tunes [145]). To hadronize particles into colorless final states, the Lund model
is used. 2→ 2 scatterings are forced at specified virtuality intervals which are governed by the
parameter phardT , which controls the momentum exchange between the two incoming partons.
To generate a realistic PYTHIA event sample, scatterings are generated separately in different
phardT intervals, and merged into a final sample applying weights

wphard
T

=
σphardT

Ntrials
(3.6)

where σphard
T

denotes the average cross-section within a phardT interval, and Ntrials is the number
of generated events in this interval.

3.4.3 GEANT3
GEANT3 [140] (GEometry ANd Tracking) is not an event generator, but a transport code: sim-
ulation software that describes the passage of elementary particles through mattere. GEANT3 is
used to simulate how particles, created in e.g. a collision, interact (via e.g. scattering or absorp-
tion) with the detector material, thus quantifying in which way the experiment itself (including
the magnetic field) distorts the measurement. For GEANT simulations, which can be run inside
the AliROOT (§ 3.5) framework, the full detector geometry, including detector conditions (e.g.
polarity of the magnetic field) have to be simulated. Tracks that serve as input to GEANT3 are
the aforementioned particle-level , and are in this work primary charged particles (produced by
an event generator, e.g. PYTHIA), which comprise all prompt charged particles produced in the
collision as well as products of strong and electromagnetic decays, while products of weak decays
of strange hadrons are rejected. GEANT3 subsequently ‘transports’ these particles through the
detector material and outputs a set of detector-level tracks.

eOriginally created at CERN, GEANT is now used in a wide variety of fields, ranging from space research to
usage in hospitals where radiation treatments in oncology are tuned in simulations.
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3.5 The analysis within the AliROOT framework

Data analysis at the ALICE experiment is performed using the AliROOT framework [146–148],
a collection of c++ libraries developed for the ALICE experiment as an extension of the ROOT
framework [149]. ROOT itself comprises a collection of c++ libraries, developed at CERN and
widely used in high energy physics, aimed at data processing, statistical analysis, visualization
and data storage. The framework contains a line-by-line c++ interpreter, but can transparently
be used in combination with other languages (e.g. Python, R) as well.

The AliROOT framework provides an additional layer to ROOT, which contains common
tools for ALICE specific data analysis and simulation (such as interfaces to Monte Carlo event
generators, transport codes, jet finding algorithms, track and event selection criteria). Data
processing is performed via automated distribution of computational tasks by the ALIce EN-
vironment (ALIEN [150]) on the world wide computing GRID [151], on which, at the time of
writing, ALICE has access to ≈ 70k CPU cores.
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4 | Data analysis

In Ch. 2, the harmonic coefficient vch jet
2 was introduced to quantify the path length dependence

of parton energy loss in the QGP. The following chapter covers data analysis: converting the
' 700 terabyte of reconstructed tracks recorded by ALICE between 2010 and 2011 to vch jet

2 .
This chapter starts with an overview (§ 4.1), after which the analysis is broken down into
four sections, 4.2 through 4.5, each of which covers a distinct analysis step. A treatment of
uncertainties and validation of the results of the analysis is given in Chapters 5 and 6.

4.1 Overview

As explained in Ch. 2, vch jet
2 is the coefficient of the second term in a Fourier expansion of the

azimuthal distribution of jets relative to symmetry planes Ψn (Eq. 2.40), which can be expressed
as

dN

d (∆ϕn)
∝ 1 +

∞∑
n=1

2vjetn cos [n (∆ϕn)] . (4.1)

with the jet azimuthal angle ϕjet relative to symmetry plane angle Ψn written as ∆ϕn = ϕjet −
Ψn

a. The definition of coefficient vjet2 is illustrated in Fig. 4.1. On the left panel, two colliding
nuclei and the overlap region are shown. The right side of the figure shows a sketch of the
resulting distribution of ∆ϕ2. This distribution is modulated around ∆ϕ2, as jets emitted along
the minor axis of the overlap ellipse traverse less QGP medium than jets emitted along the
major axis. This modulation is periodic with a period of π and amplitude vch jet

2 .
As already explain in § 2.4.1, harmonic coefficients vjetn of the series Eq. 4.1 are given by

[89, 90]
vjetn (pT) = 〈〈cos (n [∆ϕn])〉〉 (4.2)

- where the inner brackets in 〈〈...〉〉 denote an average over all tracks, and the outer brackets are
an all-event average - and thus calculable from jet pT, jet orientation ϕjet and symmetry plane
angles Ψ2. Equation 4.2 is of little practical use, however. Parton showers (jets) and their orien-
tation need to be reconstructed from tracks that are recorded by the detector (so neither pT or
ϕjet are directly available). Secondly, the symmetry plane angle Ψ2 can only approximately be
determined. A third concern is the fact that, per collision, an abundance of particles which are
not showered from initial hard scatterings but rather a product of uncorrelated low momentum
transfer scatterings, is created. Experimentally, there is no tool to distinguish between ‘back-
ground’ tracks and ‘signal’ tracks, therefore the reconstructed jet energy (and consequently pT)

aBoth ϕjet and Ψn are defined in the laboratory frame, see § 3.2 for the definition of the coordinate system.
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Figure 4.1: Definition of vch jet
2 . Left: overlapping nuclei (dashed circles) form an approx-

imately elliptical overlap region (red) in the plane transverse to the beam axis. The blue
shaded areas indicate the in-plane direction. Right: sketch of the expected resulting distribu-
tion of jet yield in ∆ϕ2 (the orientation of the jet azimuthal angle ϕjet relative to the symmetry
plane angle Ψn). The blue shaded areas again indicate the in-plane directions. The amplitude
of the modulation in of the jet yield in ∆ϕ2 has magnitude 2 vch jet

2 .

is not unambiguously defined. Clustering of background tracks affects mostly the jet pT scale,
by giving a ϕ-dependent boost to the jet pT. An additional complication is that the distribution
of ϕ − Ψn of these uncorrelated tracks also shows a cosine modulation (the earlier explained
hydrodynamic flow), which means that even in the absence of quenched hard scatterings, non-
zero vch jet

2 is measured when evaluating Eq. 4.2 directly. Lastly, the measurement is limited by
instrumental resolution and will suffer from statistical fluctuations.

Because of these experimental limitations, vch jet
2 cannot be obtained directly from Eq. 4.2.

Eq. 4.1 can however be rewritten in terms of quantities that are available experimentally:
the pT-differential in-plane (Nin) and out-of-plane (Nout) jet yieldsb with respect to the event
planeΨEP, 2, an experimental estimate of the orientation of symmetry plane Ψ2, derived from
the density of outgoing particles in the transverse plane.

The jet yields Nin and Nout can be expressed by integration of Eq. 4.1 over ∆ϕ2 intervals.
Taking into account only the second order harmonic and substituting ΨEP, 2 for Ψn,

Nin(pT) =

∫ π
4

−π
4

dN

d(∆EPϕ2)
d(∆EPϕ2) +

∫ 5π
4

3π
4

dN

d(∆EPϕ2)
d(∆EPϕ2)

Nout(pT) =

∫ 3π
4

π
4

dN

d(∆EPϕ2)
d(∆EPϕ2) +

∫ 7π
4

5π
4

dN

d(∆EPϕ2)
d(∆EPϕ2). (4.3)

where ∆EPϕ2 = ϕjet −ΨEP, 2, gives

Nin(pT) = a
(
π + 4vobs2

)
Nout(pT) = a

(
π − 4vobs2

)
(4.4)

where a is a normalization constant. The notation vobs2 is introduced in Eq. 4.4 to indicate that
the harmonic coefficients in this intermediate step quantify azimuthal anisotropy with respect

bYield is used in the general sense as quantity or number; the pT-differential jet yield is therefore simply the
number of jets, measured in finite pT intervals.
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to the event plane angles ΨEP, 2 rather than symmetry plane angles Ψ2. Introducing a term
R which corrects for the finite precision with which the event plane ΨEP, 2 approaches the real
symmetry plane Ψ2 and rewriting Eq. 4.4, an expression for vch jet

2 relative to the symmetry
plane Ψ2 is obtained

vch jet
2 (pjetT ) =

π

4

1

R2

Nin(pjetT )−Nout(p
jet
T )

Nin(pjetT ) +Nout(p
jet
T )

. (4.5)

By rewriting Eq. 4.1, an expression for vch jet
2 in measurable quantities is found. Eq. 4.5 is

insensitive to v4 as a result of the integration limits; the first other harmonic that contributes to
the measured vobs2 is vobs6 (under the assumption, confirmed the by observation of 〈cos(2[ϕtracks−
Ψ3])〉 = 0 [91], that the odd harmonic symmetry planes have no correlation with Ψ2).

The rest of this chapter is dedicated to explaining the steps that need to be taken to arrive
at these quantities, from jet reconstruction and background energy subtraction (§ 4.2), to the
determination of ΨEP, 2 and its resolution (§ 4.3), continuing with the parameterization of the
underlying event itself (§ 4.4) and finishing with unfolding (§ 4.5). Any bias that cannot be re-
moved experimentally from the observed vch jet

2 is a systematic uncertainty. These uncertainties,
as well as closure tests that validate the analysis, are described in Chapters 5 and 6.

4.2 Jet finding and selection

Jets are theoretically well defined objects, in the sense that they are collimated sprays of particles
showered from a single parton. Experimentally however there is no way to connect a track to
a specific parton, and a jet needs to be reconstructed from the collection of final state particles
in a detector. Jets are reconstructed using a jet finding algorithm, which clusters tracks that
are most likely part of the same shower, and recombines these constituent tracks into a jet.
Experimentally, the jet definition depends on the jet finding algorithm that is used.

4.2.1 Jet finding

The most commonly used jet finding algorithms are sequential recombination algorithms, which
iteratively recombine objects according to given recombination criteria. Two specific implemen-
tations of such sequential recombination algorithms used for this work are the kT and anti-kT
algorithms [152, 153], implemented in the FastJet [154, 155] suite. The (anti)-kT operates as
follows:

As a first step, all tracks within an event are considered as (in this work) massless protojets
with distance to the beam

di = pT
2p
,i . (4.6)

For each protojet pair i, j within the event, the separation distance di,j is calculated

di,j = min
(
pT

2p
,i , pT

2p
,j

) ∆2
i,j

R2
(4.7)

where R is the jet resolution parameter and

∆2
i,j = (ηi − ηj)2 + (ϕi − ϕj)2 . (4.8)
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In the ‘recombination’ step, the algorithm searches for the smallest number in the list
{di, di,j}. If this smallest number is a di,j pair, protojets i and j are merged, following -
in this specific analysis - a pT recombination scheme [155], to a new protojet k:

pT,k = pT,i + pT,j

ϕk = (pT,iϕi + pT,jϕj)/pT,k

ηk = (pT,iηi + pT,jηj)/pT,k. (4.9)

If the smallest number is di, protojet i can no longer be merged (if di < di,j , all other
protojets are at a distance greater than R from i) and i is considered a jet and removed
from the list of protojets.
The preceding steps are repeated until all protojets in the event are considered jets (mean-
ing that all tracks in an event, regardless of origin, are clustered into jets).

Parameter p in Eqs 4.6 and 4.7 defines whether the highest or lowest pT track is used as a seed
for jet finding. The kT algorithm uses p = 1, starting at low momentum ‘edge’ of a jet, whereas
the anti-kT algorithm uses p = −1 and starts at a high pT seed.

In § 4.4, the concept of jet area - the surface in η–ϕ that is occupied by a jet’s constituent
tracks - is used. The jet area is determined by embedding a fixed number of near zero-momentum
ghost particles per event prior to jet finding; the number of ghost particles in each reconstructed
jet then gives a direct measure of the jet area. As explained in the next section, adding near-
zero momentum particles does not change the jets that are found by the (anti)-kT algorithm.
A ‘ghost density’ of 200 particles per unit area is used in this work, so that approximately 25
ghost particles are clustered into a jet with a radius of 0.2.

4.2.2 Collinear and infrared safety

Experimental jets are defined by the employed jet finding algorithm. For a meaningful compar-
ison to theory however the experimental definition of a jet must coincide with quantities that
can be calculated from pQCD. When a qq pair is created, either of the two quarks can emit a
gluon. The differential cross section for the process particle → qqg c follows the proportionality

dσ

dxqdxq
∝ αs

x2q + x2q
(1− xq)(1− xq)

(4.10)

with xi the fractions

xi ≡
2Ei
Q

(4.11)

where Q is the usual total momentum transfer in x→ qqg and Ei is the energy of parton i. To
calculate the total cross section, integration of Eq. 4.10 must be performed over xi from 0 to 1;
the integrand however diverges for xi → 1. For a physical interpretation of these divergences,
definitions of Eq. 4.11 are substituted into the terms of the denominator of Eq. 4.10,

1− xq '
2

Q2
(pq· pg)

' 2

Q2
(EqEg{1− cos θqg}) (4.12)

cThis discussion follows [2], Ch. 10 and 11.
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Figure 4.2: Partons are vertical lines, their height is proportional to their transverse momen-
tum, and the horizontal axis indicates rapidity. In the left-hand figure, collinear emission of a
soft gluon does not change the experimental definition of the jet. In the right-hand side, the
jet definition changes under collinear emission of a gluon. Adapted from [156].

where pi is the four-momentum of parton i and θij is the opening angle between i, jd. The
integrand diverges either when the gluon that is emitted is very soft (Eg → 0) or when the
gluon emission is collinear to the quark trajectory (θqg → 1). These divergences are called
infrared and collinear divergences, and can only occur in QCD as the gluon are massless.

To calculate an actual cross-section for these processes, the singularities in Eq. 4.10 need to
be regularized. This is accomplished by introducing a fictitious gluon mass mg. Doing so adds
several terms to the cross-section which are equal but opposite in sign to the divergent terms,
effectively removing singularities. The total cross section is finite and does not depend on the
fictitious gluon mass.

To be able to compare theory to experiment, the set of hard jets that is found has to remain
unchanged under collinear splitting or emission of a soft gluon, otherwise the renormalization
ansatz of cancellation of divergent terms is broken (as illustrated in Fig. 4.2 for collinear emis-
sions). The (anti)-kT algorithm meets these criteria and is IRC (infrared and collinear) safe.

4.2.3 Background subtraction

The left panel of Fig. 4.3 shows transverse momentum density as function of η and ϕ in a
simulated pp event. Jet finding using the anti-kT algorithm has been performed, tracks clustered
into a jet have equal colors. Jet finding in pp can be verified more or less ‘by-eye’: the colored
clusters found by the jet finder are spatially separated, well defined jets. The right panel of
Fig. 4.3 shows the same pp event, embedded in a simulated nucleus-nucleus collision without

dThese relations follow from four-momentum conservation, and hold under the assumption that participating
particles are massless (m ' 0, p2i ' 0,Ei ' |pi|). In a system where virtual particle x splits into two quarks, q
and q, and radiated gluon g,

Q2 = p2x = (pq + pq + pg)2 ' 2pq · pq + 2pq · pg + 2pq · pg , (4.13)

combining this expression with a bit of optimism one gets

2pq · pg ' p2x − 2pq · (pq + pg) ' p2x − 2pq · (pq + pg + pq) ' p2x − 2pq · px ' Q2

(
1−

2Eq

Q

)
' Q2 (1− xq) . (4.14)
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Figure 4.3: Transverse momentum (pT) density as function of η and ϕ in simulated proton-
proton (left) [153] collisions and Pb–Pb collisions (right). Different colors are used to mark
reconstructed anti-kT cluster.

hard jets. Jet finding is performed on the combined pp, nucleus-nucleus event. The figure
directly illustrates the main difficulty in jet analyses in heavy-ion collisions: all tracks in an
event are clustered into jets, meaning that:

a significant fraction of jets found by the algorithm are clusters of uncorrelated tracks
which meet the merging criteria of Eqs 4.6 and 4.7, called fake or combinatorial jets;
clusters that actually contain particles from a parton shower will also contain uncorrelated
particles that happen to be emitted in the same phase-space.

The collection of tracks unrelated to the initial hard scatterings of interest is called the
underlying event (UE). The fraction of a measured jet’s energy that is generated by the UE
rather than the result of a hard scattering needs to be subtracted in order to obtain the true
jet energy or pjetT . The energy density of the underlying event is parametrized by background
energy density description which at a given η–ϕ position in an event has value ρch local

e. The
corrected transverse momentum pjetT of a jet of area A is then calculated from the measured raw
jet momentum, prawT , as [157]

pjetT = prawT − ρch localA. (4.15)

4.2.4 Jet selection criteria

Jets of which vch jet
2 is measured are reconstructed with the anti-kT algorithm in the central

barrel of ALICE, using information from the ITS and TPC. A fiducial cut of |ηjet| < 0.7 is
applied on the signal jets to ensure that all jets are fully contained within the ITS and TPC
acceptances and edge effects are avoided (see Fig. 4.5). The contribution of combinatorial jets
to the measured jet spectrum is reduced by requiring that reconstructed jets contain at least one
charged particle with pT > 3 GeV/c and have an area of at least 0.56 πR2 (see Fig. 4.6). These
selection criteria leave the hard part of the jet spectrum unaltered while significantly reducing
the number of combinatorial jets which stabilizes the unfolding procedure [108, 120, 158, 159]
(see § 4.5).

eHow ρch local is determined is treated in § 4.4. The subscript ch indicates that only charged particles are
taken into consideration.
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Figure 4.4: Effect of leading hadron minimum pT requirement in PYTHIA. Left: normalized
PYTHIA jet yields with three different leading hadron biases: no bias (blue), a pT > 3 GeV/c
leading hadron requirement (green) and a pT > 5 GeV/c (black) leading hadron requirement.
Right panel: ratio of biased to unbiased yields, using equal color coding.

The bias that is introduced by the requirement that a jet must contain at least one particle
with pT > 3 GeV/c is quantified in events generated with PYTHIA, (see Fig. 4.4) by investigating
the changes in the pT differential jet yield for various requirements on the minimum pT of the
most highly energetic particle in a jet. The jet spectra are unchanged in the pjetT ranges in which
the final results (Ch. 7) are reported for the pT > 3 GeV/c requirement.

4.3 Event plane angles

The coefficient vch jet
2 is defined relative to the symmetry plane Ψ2. As the initial distribution

of nucleons is not accessible experimentally, the event plane angles ΨEP, n are used in place of
Ψn when evaluating 4.1. The event plane angles ΨEP, 2 and ΨEP, 3 in this study, corresponding
to the two dominant Fourier harmonics v2 and v3, are reconstructed using the V0 detectors. In
order to determine the event plane angle, flow vectors Q [160] are constructed

Qn =
∑
i

wi exp (inϕi) . (4.16)

where the sum is taken over all i V0 channels, and wi corresponds to the multiplicity incident on
the cell. As explained in Ch. 3, the V0 detector consists of two arrays of scintillators (V0A and
V0C) and does not give tracking information. Azimuthal angle ϕi is taken from the location of
the center of gravity of each scintillator, and evaluated as

ϕi =
π

4

(
1

2
+ i%8

)
(4.17)
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Figure 4.5: Top panels: jet yield in η, ϕ for 0–5% (left) and 30–50% (right) collision centrality,
prior to jet selection. For |η| > 0.7 a ‘ridge’ is visible, caused by the limited detector acceptance,
which leads to a high number of reconstructed jets with smaller than average area and pT.
Lower panels: jet yields after jet selection for the same centrality intervals. Jets are distributed
homogeneously in η, ϕ, the ‘edge effects’ are removed.

with i = 1–32 for V0C and i = 33–64 for V0A and i%8 is the remainder of Euclidean division
of i by 8. The event plane angles are calculated from the real and imaginary parts of Qn as

ΨEP, n = arctan
(
= [Qn]

< [Qn]

)
/n. (4.18)

4.3.1 V0 calibration and event plane

Before the V0 signal can be used for the construction of Q-vectors, its signals must be calibrated
to ensure that an equal incident multiplicity gives an equal response in each of the V0 cells. The
calibration is performed in two steps: gain equalization and recentering of the Q-vectors.
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Figure 4.6: Illustration of the effect of the minimum area requirement on the jet yield (top).
Jet area distributions as function of pjetT are shown for 0–5% (left) and 30–50% (right) centrality.
The dashed line is drawn at 0.56 πR2 (the minimum jet area). In both centrality classes the
area requirement does not alter the jet pT distribution for pjetT > 20 GeV/c. Lower panels:
pT-differential ratio of jet yield prior to jet selection (unbiased) to the yield after selection
(biased) for the same centrality classes. The reduction in jet yield is strongest at low transverse
momenta, where the selection criteria are aimed at rejecting combinatorial jets.

4.3.1.1 Gain equalization

Gain equalization requires a prior analysis of the data in which the calibration information is
gathered. In this first step, the signal of each scintillator is stored (see figure 4.7, left). When
calculating Q-vectors (in the second pass over the data), cell multiplicities wi are evaluated as

wi = Mi
ξ

〈Mi〉
(4.19)

where Mi is the multiplicity recorded in channel i in the current event, 〈Mi〉 the average mul-
tiplicity in channel i for a given runf, and ξ is a correction factor (see Fig. 4.7, top) which

fData are collected in runs, with one or several of which comprising a fill . A fill starts with stable beams in
the LHC and ends when the beams - for whatever reason - are dumped, which generally lasts less than 12 hours.
The V0 response is not stable over time, therefore calibration is performed on a run-by-run basis.
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Figure 4.7: V0 multiplicity per cell prior to gain equalization (top) and after (bottom) equal-
ization for one run as boxplots. The boxplots summarize the characteristics of a distribution:
50% - two quartiles - of measured points lies within the box, with is split by a solid line, in-
dicating the median of the distribution, and a dashed line, indicating the mean (which is only
visible when it differs from the median). The whiskers span 3 quartiles of the distribution (± ≈
2.698 σ); data that lie outside of this range are represented by crosses. The green dashed line
indicates the value of ξ (Eq. 4.19) in the V0A and V0C detector.

is obtained by fitting a constant y = ξ through the mean multiplicity distribution of all cells
of either the V0A or V0C, using χ2 minimization. Earlier studies [93] have shown that a
pseudorapidity-dependent fit (i.e. constructing factor ξ for the eight distinct η regions of the V0
system independently) does not alter the outcome of v2 analyses. The lower panel of Fig. 4.7
shows the distributions of corrected multiplicities wi obtained via multiplication ofMi with ξ

〈Mi〉
for one run.

4.3.1.2 Q-vector recentering

After gain equalization, residual unevenness in the Q-vector distribution is removed by Q-vector
recentering [132, 161]. In recentering, the centroids of the Q-vector distributions are shifted to 0
(as in minimum bias data the event plane angle distribution is random and therefore a non-zero
centroid is an artifact of non-uniform detector response). Recentering also relies on a prior pass
over the data. A database is built of components of gain-equalized Q-vectors. This database
contains the centrality-dependent distribution of Q-vector means 〈Qn〉 and widths σQn

. The
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Figure 4.8: Boxplots of the Q2,x and Q2,y distributions for the V0 detectors before Q-vector
recentering for various centrality classes (see caption of Fig. 4.7 for an explanation of the
plotting format).

event-by-event Q-vector is calculated from the equalized V0 signal, and then recentered accord-
ing to

Q′n →
Qn − 〈Qn〉

σQn

. (4.20)

Figures 4.8 and 4.9 show boxplots of the Q2,x and Q2,y distributions for the V0 detectors
before and after Q-vector recentering for various centrality classes.

4.3.1.3 Q-vector combination

Q-vectors for the V0A and V0C detector are constructed independently. Prior to determining
ΨEP, n, the information of the two V0 detectors needs to be combined. The V0A and V0C
detectors cover different η regions in which multiplicity N and background flow vn differs [162–
165]. The total V0Q-vector is therefore constructed using weights χn [89] that are approximately
proportional to the event plane resolution (explained in § 4.3.3) in each detector,

Qn,V0 = χ2
n,V0AQn,V0A + χ2

n,V0CQn,V0C, (4.21)

to achieve the optimal combined event plane resolutiong

g The derivation of weights χ is not straightforward. Details can be found in [87], a short summary is given
in App. C.
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Figure 4.9: Boxplots of the Q2,x and Q2,y distributions for the V0 detectors after Q-vector
recentering for various centrality classes (see caption of Fig. 4.7 for an explanation of the
plotting format).

As a systematic check, Eq. 4.21 has been evaluated using either no weights (trivially summing
over all 64 V0 cells) or using the squared inverse of the statistical uncertainty (1/σ2

R2
) on the

event plane resolution as weights (assuming Poisson distribution of the number tracks incident
on the V0, this estimate is proportional to the χ weights). No effect on the final vch jet

2 was
found.

4.3.2 Bias of di-jet systems

Using the V0 detectors for the reconstruction of the event plane guarantees that the jet axis and
event plane information are separated in pseudorapidity by |∆η| > 1. The orientation of single
jets within the ITS, TPC acceptance therefore does not affect the event plane angle orientation.
The event plane orientation can however be biased when a correlated signal, such as a di-jet, is
detected in the ITS, TPC and V0 system simultaneously.

Di-jet systems are 2→ 2 processes in which two partons are produced from a hard scattering.
The resulting jets are emitted ‘back to back’, i.e. ∆ϕ = |ϕjet1 − ϕjet2| = π in the transverse
plane. When a di-jet system is produced within the TPC and V0 acceptance, a trivial bias,
not related to the initial overlap region of the colliding nuclei, is generated, as the event plane
orientation is partially determined by the azimuthal angle of the jet in the V0h.

hAs the V0 detector is not a hodoscope, it is not possible to ‘reject’ particles from energetic jets from the
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The fraction of events in which these di-jet configurations are produced has been studied in
PYTHIA, by selecting di-jet events, defined in the simulation as events in which a pair of jets
is found for which ∆ϕ > π − 0.3, in which the leading (most energetic) jet of a di-jet pair lies
within the TPC acceptance, and the sub-leading jet in either of the V0 detectors. The rate of
such di-jet configurations was found to be negligible (less than 1 per mil of the total di-jet rate
at mid-rapidity) for a leading pjetT > 20 GeV/c. Possible effects from back-to-back jet pairs with
a jet in each of the V0 detectors are even smaller.

4.3.3 Event plane resolution

Coefficient vch jet
2 , in Eq. 4.1, quantifies the azimuthal anisotropy of jet production relative to the

symmetry planes Ψn. The quantity vobs2 in Eq. 4.4 is the azimuthal anisotropy determined from
the pT differential jet yield with respect to the experimentally available event plane ΨEP, 2. To
correct for the finite precision with which the true symmetry plane is approximated by ΨEP, n,
the measured vobsn is corrected using an event plane resolution correction Rn, which relates
vch jet
2 and vobs2 asi

vch jet
2 = 〈cos(2[ϕjet −Ψ2])〉 =

〈cos(2[ϕjet −ΨEP, 2])〉
〈cos(2[ΨEP, 2 −Ψ2])〉

=
vobs2

R2
. (4.22)

The event plane resolution Rn = 〈cos(n[ΨEP, n − Ψn])〉 as expressed in Eq. 4.22 is not
directly measurable. It can however be derived from data by combining products of event plane
resolutions from sub-events [166, 167], which are independent samples of tracks from the event
(e.g. tracks taken from different η ranges). The product of the resolutions of sub-events i and
j is given by

RinRjn = 〈cos(n[Ψi
EP, n −Ψn])〉〈cos(n[Ψj

EP, n −Ψn])〉

= 〈cos(n[Ψi
EP, n −Ψj

EP, n])〉. (4.23)

Combining several equalities of the type of Eq. 4.23, involving event plane angles of different
sub-events, event plane resolution in one sub-event i can be expressed as

Rin =

√√√√(RinRjn)(RinRkn)(
RjnRkn

) (4.24)

Using the negative and positive η regions of the TPC as sub-events, the event plane resolution
of the V0 detector in Eq. 4.5 is

RV0
2 =


〈

cos
[
2
(

ΨV0
EP, 2 −ΨTPC, η > 0

EP, 2

)]〉〈
cos
[
2
(

ΨV0
EP, 2 −ΨTPC, η < 0

EP, 2

)]〉
〈

cos
[
2
(

ΨTPC, η > 0
EP, 2 −ΨTPC, η < 0

EP, 2

)]〉
1/2

. (4.25)

information of which ΨEP, n is calculated, as will be done in § 4.4 for the TPC vn determination.
iThe validity of Eqs 4.22 and 4.23 can be shown explicitly by expression the equalities in complex exponentials,

where the sine terms vanish due to reflection symmetry with respect to the reaction plane [89].
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Figure 4.10: Left: 〈ρch〉 as a function of centrality, right panel: 〈ρch〉 as function of multi-
plicity. The charged transverse momentum background density per unit area (〈ρch〉) has a
linear dependence on the charged particle multiplicity.

The ΨEP, 2 angles in the TPC are obtained following the procedure of Eq. 4.18 on tracks with
0.15 < pT < 4 GeV/c, using unit track weights in the construction of the flow vectors Q2 (see
Eq. 4.16). The event plane resolution RV0

2 is 0.47 in 0–5% collision centrality and 0.75 in 30–
50% collision centrality with negligible uncertainties. This second number is found by measuring
R2 in 30–40 and 40–50% collision centrality, and combining the obtained resolutions, using the
pT-integrated jet yields within the same intervals between 20 < pjetT < 90 GeV/c as weights.

The factorization in Eq. 4.23 only holds when the underlying Ψn is equal for both sub-events.
Recent studies indicate that the angle Ψn depends weakly on pseudorapidity; at rapidity intervals
used in this analyses however, relative event plane angle fluctuations do not exceed 5% [168].

4.4 The underlying event

As explained in § 4.2 and Eq. 4.15, the measured jet energy in Pb–Pb collisions needs to be
corrected for the contribution of energy from the underlying event. The average transverse-
momentum density per unit area 〈ρch〉 is estimated event-by-event as

〈ρch〉 = median

{
prawT i

Ai

}
(4.26)

where prawT i is the uncorrected pT of kT jets and Ai the corresponding area. Subscript ‘ch’
in 〈ρch〉 indicates that the variable is, in this work, constructed from charged particles only.
The kT algorithm is chosen because it produces, in uniform distributions of tracks, jets with a
stable area A ∝ πR2 (contrary to the anti-kT algorithm, which tends to find a small number
of hard jets with area A ∝ πR2, and a large number of very small, low momentum jets). The
influence of hard jets on 〈ρch〉 is reduced by using the median of the distribution rather than the
mean, and by excluding the two most highly energetic kT clusters from the jet sample prior to
evaluating 〈ρch〉. Fig. 4.10 shows 〈ρch〉 as function of centrality and charged particle multiplicity.
The charged transverse momentum background density per unit area has, as expected, a linear
dependence on the charged particle multiplicity.

68



R. A. Bertens

 (rad)ϕ
0 1 2 3 4 5 6

)
c

) 
(G

e
V

/
ϕ(

c
h

ρ

0

50

100

150

200

 = 2.76 TeV
NN

sPb­Pb 

Single event

| < 0.9 
track

η, |c < 5 GeV/
T, track

p0.15 < 

]))
EP, 2

Ψ­ϕcos(2[
2

(1+2v
0

ρ

]))
EP, 3

Ψ­ϕcos(3[
3

(1+2v
0

ρ

)ϕ(
ch

ρ

0
ρ

ALICE
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4.4.1 Anisotropic flow of the underlying event
In each event, the anisotropy of the underlying event is modeled using the dominant [169] flow
harmonics v2 and v3,

ρch(ϕ) = ρ0 (1 + 2{v2 cos [2 (ϕ−ΨEP, 2)] + v3 cos [3 (ϕ−ΨEP, 3)]}) . (4.27)

Here, ρch(ϕ) is the azimuthal distribution of summed track pT for tracks with 0.15 < pT < 5
GeV/c and |ηtrack| < 0.9. The parameters ρ0 and vn are determined event-by-event from a fit of
the right side of Eq. 4.27 to data. The event plane angles ΨEP, n in Eq. 4.27 are fixed to the V0
event plane angles. A single event example of this procedure is illustrated in Fig. 4.11, where the
data points represent the transverse momentum density distribution in a single event, the red
curve represents the full functional description of ρch(ϕ) (Eq. 4.27), the green and gray curves
give the contributions of the separate harmonics v2 and v3, and the dashed magenta line is the
normalization constant ρ0. To reduce the bias of hard jets in the estimates of vn in Eq. 4.27
while retaining azimuthal uniformity, the leading jet in each event is removed by rejecting all
tracks for which |ηjet − ηtrack| < R. The η separation between the tracks and the V0 detectors
also removes short range correlations between the event planes and tracks.

The number of bins into which the azimuthal range is divided is set on an event-by-event
basis to the square root of the number of tracks. The fit maximizes the estimated likelihood
[170], which is based on a Poisson distribution for the bin content. Since the bin contents are
not pure counts, but weighted by pT, the statistical uncertainties on each bin σi are estimated
as the sum of the squares of the pT of the individual particles σi = σ(

∑
pT) =

√∑
p2T. A scaled
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Poisson distribution P (xi/wi|µi/wi) is used as the probability distribution for the data points
in the likelihood calculation, with a scale factor wi = σ2

i /yi where yi is the bin content and µi
is the expected signal from the fit function. The compatibility of each fit with the data is tested
by calculating the χ2 and evaluating the probability of finding a test statistic at least as large
as the observed one in the χ2 distribution. When this probability is less than 0.01, the average
event background density 〈ρch〉 is used instead of ρch(ϕ); this occurs in 3% (most central) to
7% (semi-central) of events. The acceptance criterion is varied in the systematic studies; the
sensitivity to it is small. In the centrality ranges in which the final results are given, minima of
ρch local are always positive.

Equation 4.15 shows that the corrected transverse momentum pjetT of a jet of area A is
calculated as pjetT = prawT − ρch localA. In this expression, ρch local is obtained from integration
of ρch(ϕ) around ϕjet ±Rj

ρch local =
〈ρch〉
2Rρ0

∫ ϕ+R

ϕ−R
ρch(ϕ)dϕ. (4.28)

The pre-factor of the integral, 〈ρch〉2Rρ0
, is chosen such that integration over the full azimuth yields

the average transverse momentum density 〈ρch〉.

4.4.2 Subtracted flow harmonics

Figure 4.12 shows the vn harmonics, corrected using R2 and R3, extracted by fitting Eq. 4.27 as
function of centrality (square markers) together with v2 and v3 measurements from two (vn{2})
and four (vn{4}) particle correlations (circular markers) [169]. Although a direct quantitative
comparison between the two measurements can not be made (as explained below), Fig. 4.12
qualitatively validates the underlying event parametrization.

The flow measurement in Fig. 4.12 is performed using the unweighted two- and four-particle
Q-cumulant method [171] (vn{2} and vn{4}) at mid-rapidity (|η| < 0.9). The vn{2} (closed
circles) and vn{4} (open circles) coefficients measure ‘number flow’, i.e. vn = 〈cos(n[ϕ − Ψn])〉
where each track that enters the average contributes equally to the amplitude of vn. Coefficients
vn in Eq. 4.27 are fitted to the angular distribution of summed track pT rather than the modu-
lation in the number of tracks only. For a more meaningful comparison, Fig. 4.12 therefore also
shows vn harmonics obtained by fitting Eq. 4.27 to the angular distribution of number of tracks
dN/dϕ (open squares).

The fitted vn harmonics from the distribution of dN/dϕ follow the trend of the v2{4} mea-
surement, which is in good agreement with expectations, as the dN/dϕ method has a small
sensitivity to non-flow effects because the track and event plane information are separated in
pseudorapidity by |∆η| > 1. Non-flow effects are angular correlations between particles that are
not a remnant of collective expansion of the QGP, but rather a result of e.g. resonance decay or
a parton shower. Two particle correlations are inherently sensitive to such correlations. More-
particle correlations are less affected by non-flow, as e.g. a x → yy decay does not correlate
three or more particles. This sensitivity is visible in Fig. 4.12, as vn{2} is consistently larger
than vn{4}.

jIntegration over ϕ is in this analysis introduced to account for the flow harmonics vn which modulate the
underlying event. In studies where event plane dependence is irrelevant, a subtraction of the form of pjetT =
prawT − ρA suffices. η dependence of ρ(ϕ, η) is treated in § 4.4.
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Figure 4.12: All-event average of the vn coefficients obtained by event-by-event fitting of
Eq. 4.27, either to the azimuthal distribution of transverse momentum (ρ(ϕ)) or to the az-
imuthal distribution of number of tracks dN/dϕ, compared to anisotropic flow measurements
(vn{2} and vn{4}) at mid-rapidity from [91, 169]).

Qualitative agreement is also observed for the v3 measurements, but the data are less com-
patible than those of the second order harmonic coefficient. The small amplitude of v3 and low
resolution R3 possibly hinder the fitting procedure and lead to a poorer compatibility.

4.4.3 The δpT distribution
The validity of Eq. 4.27 as a description of the contribution of background flow to the underlying
event energy is tested by placing cones of radius R = 0.2 at random positions (excluding the
location of the leading jet) in the η–φ plane and subtracting the expected summed transverse
momentum in a cone from the measured transverse momentum in the cone,

δpT =
∑

ptracksT − ρπR2. (4.29)

Here, ρ is the measured background transverse momentum density. This procedure is repeated
multiple times per event, until the full phase space is covered, to obtain a distribution of δpT val-
ues. The δpT distribution as a function of the cone azimuthal angle ϕRC relative to the event
plane ΨEP, 2 is shown in Fig. 4.13. In panel (a) 〈ρch〉 has been used to estimate the under-
lying event summed pT and in panel (b) ρch(ϕ). Incorporating azimuthal dependence into
the underlying event description leads to a sizable reduction in the cosine modulation of the
δpT distribution.

The effectiveness of the subtraction of background flow is quantified by comparing the
expected and measured widths of the δpT distribution in the absence of background flow,
σ(δpTvn=0), (see Fig. 4.13b) to the expected and measured widths of the δpT distribution in the
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Figure 4.13: The δpT distribution (Eq. 4.29) from the random cone (RC) procedure as function
of cone azimuthal angle ϕRC relative to the event plane. In panel (a) the azimuthally-averaged
background 〈ρch〉 has been subtracted; in panel (b) the azimuthally dependent ρch(ϕ) from an
event-by-event fit of the pT-density with Eq. 4.27. The solid black line represents the mean
of the δpT distribution.

presence of background flow, σ(δpTvn) (Fig. 4.13a). Assuming independent particle emission
and Poisson statistics, the expected width of the δpT distribution in the absence of background
flow (vn = 0) can be calculated by quadratic summing of the relative uncertainties on expected
particle 〈pT〉 (σ(pT)) and multiplicity (σ(NA)) within a cone [158]

σ(δpvn=0
T )

pTRC
=

√(
σ(NA)

〈pT〉

)2

+

(
σ(pT)

NA

)2

. (4.30)

Using σ(NA) =
√
NA and pT

RC = NA〈pT〉 an expression for σ(δpvn=0
T ) is found in quantities

that are readily available

σ(δpvn=0
T ) =

√
NAσ2(pT) +NA〈pT〉2 (4.31)

where NA is the average expected number of tracks within a cone, 〈pT〉 the mean pT of a single
particle spectrum and σ(pT) the standard deviation of this spectrum. This expectation can
be extended to include contributions from background flow by introducing non-Poisson density
fluctuations (the background flow harmonics vn) [158], as

σ(δpvnT ) =
√
NAσ2(pT) + (NA + 2N2

A(v22 + v23))〈pT〉2. (4.32)

The measured widths are obtained from the δpT distributions directly; the distributions are
constructed using as the transverse momentum density ρ in Eq. 4.29 either 〈ρch〉 to obtain
σ(δpvnT ) or ρch local for σ(δpvn=0

T ).
Figure 4.14 shows the expected and measured relative change in the width of the δpT distri-

bution,
(σ(δpvnT )− σ(δpvn=0

T ))/σ(δpvnT ), (4.33)

as function of collision centrality. The blue points give the expected reduction from Eqs 4.31
and 4.32. The red points use the measured widths from δpT distributions. The expected change
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Figure 4.14: Centrality dependence of the measured and expected relative change in the δpT
distribution width from using the azimuthally dependent ρch local instead of the median 〈ρch〉.
The blue points give the expected reduction from simple assumptions about the behavior of
charged particle spectra and flow harmonics vn (following Eq. 4.31 and 4.32). The red points
use the measured widths from δpT distributions directly. Statistical uncertainties are smaller
than the marker size.

is in good quantitative agreement with the measured change over the entire centrality range,
indicating that the width of the δpT distributions can be understood in terms of a simple inde-
pendent particle emission model with background flow contributions.

4.4.3.1 η dependence of random cone energy

Random cones are constructed in η–ϕ, and as such, the δpT distribution should be evaluated as

δpT =
∑
tracks

pT −ARC

∫
ARC

ρ(ϕ, η)dϕdη (4.34)

where integration is performed over circular area ARC in η and ϕ. Equation 4.34 however
has no analytical solution. Approximate numerical solutions, such as using a Riemann sum∑
ρ(ϕ, η)∆ϕ∆η instead of integration, can be used to quantify the effect of taking into account

the η dependence of Eq. 4.34. The difference in random cone energy between the two integration
approaches is shown in Fig. 4.15, which gives the ratio of random cone energy obtained by a
numeric solution of Eq. 4.34 to that obtained from integration over dϕ only as function of
random cone pT for different centrality classes, and does not exceed 1% for cone radius R = 0.2.

Integration in dη and dϕ is (depending on the precision of the numerical approach) an
order of magnitude slower than integrating over dϕ only; as default approach therefore, the δpT
definition of Eq. 4.29 is used in this work. It should also be noted - as will be explicitly shown
in Ch. 5 - that the exact definition of the functional form of the background description does
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not affect the measured vch jet
2 as long as the jet spectra are unfolded properly (although it does

have an effect on the systematic uncertainties of the measurement).

4.5 Unfolding

Unfolding is the general problem of estimating probability distributions from data that are
smeared by random fluctuations [172, 173]. The unfolding problem is a deconvolution of the
convolution that relates the true (ftrue(x)) to the measured (fmeas(y)) distribution,

fmeas(x) =

∫
R(x|y)ftrue(y)dy (4.35)

where R(x|y) is a response function that gives the conditional probability of the true signal to
be smeared to the measured one.

After the subtraction procedure presented in the previous section, the measured jet spec-
trum has to be unfolded to correct for detector effects and fluctuations in the underlying event
transverse momentum density. Eq. 4.35 for unfolding jet spectra is written as

M(precT,chjet) =

∫
G(precT,chjet, p

gen
T,chjet)T (pgenT,chjet)ε(p

gen
T,chjet)dp

gen
T,chjet (4.36)

for T (pgenT,chjet), the unfolded true jet spectrum, where M(precT,chjet) is the measured jet spec-
trum, G(precT,chjet,p

gen
T,chjet) is a functional description (response function) of distortions due to

background fluctuations and detector response, and ε(pgenT,chjet) is the jet finding efficiency.
The jet finding efficiency is studied by generating particle-level jets in PYTHIA [144], and

transporting these through the detector using GEANT [140]. The particle- and detector-level
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Figure 4.16: Jet finding efficiency ε as function of particle level pch,partT,jet . Statistical uncertain-
ties only.

jets are matched, using a matching algorithm (see Ch. 5), and the pT differential ratio

ε(pgenT,chjet) =
Nmatched, detector level(p

gen
T,chjet)

N
|η|<0.5
gen (particle level)(p

gen
T,chjet)

, (4.37)

with Nmatched, detector level and Ngen (particle level) both taken as function of particle level pgenT,chjet,
defines the jet finding efficiency. The jet finding efficiency ε for R = 0.2 anti-kT as function of
pjetT is shown in Fig. 4.16. In the pT range in which vch jet

2 is measured, the efficiency is constant,
and will therefore be omitted from hereon as it appears both in the enumerator and denominator
of Eq. 4.1.

Since the measured jet spectrum is binned, Eq. 4.36 is discretized by replacing the integral
by a matrix multiplication

Mm = Gm,t·T
′
t (4.38)

where T′t is the solution of the discretized equation (the prime indicates that T′t is not corrected
for jet-finding efficiency).

The combined response matrix Gm,t is the product of the response matrices from detector
effects and transverse momentum density fluctuations, the latter of which are constructed in-
dependently for the in-plane and out-of-plane spectra by embedding random cones at specific
relative azimuth with respect to the event plane.

4.5.1 The detector response matrix
The detector response matrix is, like the efficiency, obtained by matching jets generated
by PYTHIA [144] (particle-level jets) to the same jets after transport through the detector
(detector-level jets) by GEANT3 [140], where the detector conditions are tuned to those of the
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of 3 GeV/c. The x-axis represents the true (particle level) spectrum, the y-axis shows the
detector level (measured) spectrum (left). Corresponding probability distribution for several
particle level pjetT intervals (right).

Pb–Pb data-taking periods. Particle-level jets contain only primary charged particles produced
by the event generator, which comprise all prompt charged particles produced in the collision,
as well as products of strong and electromagnetic decays, while products of weak decays of
strange hadrons are rejected. Matching is based on the shortest distance in the η–ϕ plane be-
tween detector level and particle level jets and is bijective, meaning that there is a one-to-one
correspondence between detector and particle level jets.

Figure 4.17 shows the detector response for R = 0.2 charged jets containing at least one
charged hadron of pT > 3 GeV/c. The sum of each column of the detector response matrix is
normalized to one so that it represents the probability distribution of reconstructing a particle-
level jet generated with pgenT,chjet = x at reconstructed precT,chjet = y. The most probable value in all
columns is the diagonal of the matrix, indicating is that the detector-level pT or a reconstructed
jet is most likely to be very close to the particle-level pT. Smearing to lower transverse momenta
is a result of tracking efficiency and tracking momentum resolution, whereas smearing to higher
momenta is attributable to resolution effects only.

4.5.2 Background fluctuations matrix

Even though the local background density (Eq. 4.27) is used for background subtraction for each
jet, fluctuations in the energy density of the underlying event still influence the measured jet pT
(as can be seen in Fig. 4.13 (right): δpT is still a distribution rather than a single value).

The background fluctuations matrix is constructed from the δpT distribution by converting
it to a probability distribution (normalizing its integral to one), and filling the matrix with the
probability that a jet with pgenT,chjet = x is measured at precT,chjet = y. This is done for the in-plane
and out-of-plane orientations independently by projecting the distribution in Fig. 4.13 over the
corresponding ∆EPϕ2 intervals, to accommodate residual effects of hydrodynamic flow (which
lead to off diagonal elements in the δpT matrix), and to account for the fact that background
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fluctuations are larger in the in-plane than in the out-of-plane orientation. Figure 4.18 shows
a δpT probability distribution for 30–50% collision centrality (left panel) and the background
fluctuation response matrix (right) that is constructed from this distribution.

Constructing the background fluctuations matrix from the δpT distribution relies on the
underlying assumption that the smearing of the jet spectrum is equal for all jet pT and that
the orientation of the jet axis is not changed by the fluctuations. These assumptions are tested
(and validated) in Ch. 5.

4.5.3 Combined response matrix
Unfolding in this work is performed in one step, in which the jet spectra are unfolded using
a combined response matrix containing information on both the background fluctuations and
the detector response. This combined response matrix is obtained by multiplication of the
background fluctuations matrix Gm,d and the detector response matrix Gd,t

Mm = Gm,d·Gd,t·T
′
t

= Gm,t·T
′
t. (4.39)

A fine-binned combined response matrix is generally not suitable for unfolding since uncer-
tainties on the measured spectrum are too large to lead to a satisfactory result. Since jet spectra
are steeply falling distributions, a weighted re-binning procedure of the response matrix is used,
where as bin weights a fit [158] of a Tsallis function [174] to a PYTHIA spectrum is used

f (pT ) = pT

(
1 +

pT

7.2

)−8
(4.40)

4.5.3.1 pT ranges of measured and unfolded jet spectra

For the results presented in Ch. 7, the measured jet spectra are taken as input for the unfolding
routine in the range 30 < pjetT < 105 GeV/c for 0–5% collision centrality and 15 < pjetT < 90
GeV/c for 30–50% collision centrality. The lower bound corresponds to five times the width of
the δpT distribution, the upper bound is the edge of the last measured bin which contains at
least 10 counts. This configuration was found to lead to reliable unfolded solutions in Monte
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Figure 4.19: Combined response matrix after rebinning (left), from which kinematic efficiency
(right) is obtained by projecting the matrix on its x-axis.

Carlo studies [108, 175]. The unfolded jet spectrum starts at 0 GeV/c to allow for feed-in of
true jets with low pjetT . In addition, combinatorial jets which are not rejected by the jet area
and leading charged particle requirements are migrated to momenta lower than the minimum
measured pjetT . The unfolded solution ranges up to 200 GeV/c (0–5%) and 170 GeV/c (30–50%)
to allow for migration of jets to a pjetT higher than the maximum measured momentum. As the
data points of the unfolded solution are strongly correlated for pjetT outside the experimentally
measured interval, vch jet

2 will be reported only within the limits of the measured jet spectra.
Figure 4.19 shows a combined response matrix (left) that has been truncated to correspond

to the ranges of measured and unfolded jet spectra. As a result of truncation, part of the true
jet yield in the response matrix will not be reconstructed. The kinematic efficiency (Fig. 4.19,
right) represents the fraction of the jet yield that can be affected by smearing within a pgenT,chjet

interval and is accounted for in the final results through the unfolding procedure.

4.5.4 Regularized unfolding
Solving Eq. 4.38 by simple inversion of Gm,t generally leads to non-physical results which
oscillate wildly due to the statistical fluctuations of the measured jet yield [176, 177]. This type
of behavior is shown in the following short example, which starts by discretizing Eq. 4.35

xi = Rijyj (4.41)

with xi a histogram with i bins (the measured distribution), yj a histogram with j bins (the
true distribution) and Rij the response matrix. xi is not what is seen in the detector, rather,
ni data points, subject e.g. Poisson statistics, are observed. Using the observed distribution in
matrix inversion leads to the following relations

R−1ij ni → R−1ij Rijyj → yj + σ
yj
j . (4.42)

In a simple example, where the response matrix represents e.g. efficiency ε,0.8
1

0.9


︸ ︷︷ ︸

ε

1
2
3


︸ ︷︷ ︸

n

=

0.8 0 0
0 1 0
0 0 0.9


︸ ︷︷ ︸

R

·

?
?
?


︸ ︷︷ ︸

y

(4.43)
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inverting R works and gives (omitting the variance of y)1.25 0 0
0 1 0
0 0 1.111


︸ ︷︷ ︸

R−1

·

1
2
3


︸ ︷︷ ︸

n

=

 1.25
2

3.333


︸ ︷︷ ︸

y

. (4.44)

In practice, the bin size of a measurement is small compared to experimental resolution, i.e. the
response matrix has off-diagonal terms (such as the response matrix of Fig. 4.19),0.8

1
0.9


︸ ︷︷ ︸

ε

1
2
3


︸ ︷︷ ︸

n

=

0.5 0.3 0
0.3 0.4 0.3
0 0.4 0.5


︸ ︷︷ ︸

R

·

?
?
?


︸ ︷︷ ︸

y

(4.45)

and which case matrix inversion gives−16 30 −18
30 −50 30
−24 40 −22


︸ ︷︷ ︸

R−1

·

1
2
3


︸ ︷︷ ︸

n

=

−10 ± 293
20 ± 382
−10 ± 338


︸ ︷︷ ︸

y±σy

(4.46)

which is in principle a correct (unbiased) estimator of y, but is a wildly oscillating solution with
large variancesk.

Unfolding via matrix inversion is generally not possible as a result of the resolution of the
measurement. The unfolded solution therefore needs to be regularized, which means that, in
order to reduce the variance of the unfolded result, a small systematic bias is introduced. In
general this is done by introducing a penalty term (regularization) for large local curvatures
associated with oscillations.

In this work, two regularized unfolding approaches are used: singular value decomposition
(SVD) unfolding (the default approach) and χ2 minimization (used as a systematic check, and
to generate priors for the SVD unfolding). Both will briefly be discussed, starting at χ2 mini-
mization, as it most intuitively illustrates regularization.

4.5.4.1 χ2 unfolding

The χ2 method unfolds the spectrum by minimizing the difference between the measured and
refolded spectrum, where the refolded spectrum is the convolution of the unfolded spectrum
with the combined response matrix. Fluctuating solutions are suppressed by introducing a
regularization term to the χ2

χ2 =
∑
i

(
nrefolded
i − nmeasured

i

σmeasured
i

)2

︸ ︷︷ ︸
unfolding

+β P (nunfolded
i )︸ ︷︷ ︸

regularization

(4.47)

the relative importance of which is set by regularization strength β. nrefolded in Eq. 4.47 are
the refolded data points, nmeasured, σmeasured represent the measured points and their statistical

kSee [177] for the calculation of the variances in Eq. 4.46.
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uncertainties. When unfolding jet spectra [159], the regularization term is chosen such that it
favors a power law distribution,

χ2 =
∑
i

(
nrefolded
i − nmeasured

i

σmeasured
i

)2

︸ ︷︷ ︸
unfolding

+β
∑
i

(
d2 lognunfolded

i

d log p2T

)2

︸ ︷︷ ︸
regularization

(4.48)

For unfolded solutions which deviate in shape from a power law, the regularization term in
Eq. 4.48 will be large. Sensitivity to the regularization can systematically be studied by varying
the magnitude of β.

4.5.4.2 Singular Value Decomposition

Singular value decomposition (SVD) is a general technique for factorizing matrices. In the SVD
unfolding method, the unfolding problem is reduced to minimizing a system of linear equations
by employing singular value decomposition. SVD unfolding can be performed in many different
ways; the approach outlined in this section is taken from [178] and implemented in [179]. For
the remainder of this section, boldface capitals are used to indicate matrices whereas boldface
non-capitalized letters denote vectors. Italics are used to represent scalar values.

The SVD unfolding ansatz is similar to that of the χ2 method insofar as the distance between
the response matrixGmultiplied by the unfolded resultw (which, in the SVD unfolding method,
is defined as the unfolded jet yield divided by a best estimate of the yield called a prior), and
the measured data n must be found, whilst imposing some regularization criterion to suppress
oscillating solutions. To do so, a term similar to Eq. 4.48 is minimized

(G̃w − ñ)T(G̃w − ñ︸ ︷︷ ︸
unfolding

) + τ · (Cw)
TCw︸ ︷︷ ︸

regularization

(4.49)

in which T denotes a transpose matrix. Equation 4.49 is a system of linear equations. To
give all equations equal weight, the system is rescaled by dividing the values in all columns by
the uncertainty on the measured jet yield. Rescaled values are denoted by a tilde; rescaling is
performed both for the measurement data (e.g. ñi = ni/σni) and the response matrix G̃.

The response matrix is multiplied by a ‘best estimate’ of the unfolded solution, the prior,
before it is rescaled; in this way it contains the actual number of jets that were generated in bin
j but measured in bin i, rather than conditional probabilities. In this work, both a PYTHIA
jet yield and the unfolded spectrum that is generated by χ2 minimization are used as priors.
Vector w holds the unfolded result, which must eventually be multiplied by the prior to obtain
the actual unfolded jet yield.

The unfolding term of Eq. 4.49 is identical in function to the first term on the right-hand side
of Eq. 4.47 and means that χ2 minimization is used to find a solution in which the difference
between the refolded result and the measured spectra is minimal. The regularization term
dictates that unfolded solution must not oscillate. When a realistic prior is chosen, w is a smooth
set of points with little bin-to-bin variations, therefore the regularization term in Eq. 4.49 should
be large when w is not smooth. The ‘curvature’ of w can be expressed as the sum of the squares
of the second derivatives of w, which has the simple form∑

i

[(wi+1 − wi)− (wi − wi−1)]
2
. (4.50)
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and enters Eq. 4.49 as a multiplication of w by the curvature matrix C,

C =


−1 1 0 0 · · ·
1 −2 1 0 · · ·
0 1 −2 1 · · ·

· · · · · ·
· · · 1 −2 1
· · · 1 −1

 . (4.51)

Now that all components of Eq. 4.49 have been motivated, actual minimization via singular
value decomposition can commence. Equation 4.49 can easily be written as a system of linear
equations, [

G̃√
τ ·C

]
w =

[
ñ
0

]
. (4.52)

which in principle is straightforward to solve, but has a solution for each value of τ .
A general (approximate) solution valid for any τ can be found by applying the method of

damped least squares [180]. This method starts by making the regularization term proportional
to the identity matrix Il, by taking out common factor C[

G̃C−1√
τ · I

]
Cw =

[
ñ
0

]
(4.53)

and solving Eq. 4.52 for the non-regularized case τ = 0. To do so, system 4.53 is rewritten using
singular value decomposition (the aforementioned factorization into multiple matrices) of the
left-hand side of the equation,

G̃C−1 = USVT (4.54)

where U, V are orthogonal matrices and S is a diagonal matrix with non-negative values si
which are called the singular values. Defining

d ≡ UTñ z ≡ VTCw (4.55)

so that the exact solution to w for τ = 0 can be found through

GC−1Cw = ñ

USVTCw = ñ

USz = ñ

z = S−1UTñ. (4.56)

Because S is a diagonal matrix,

S−1 =
1

si
(4.57)

and
zτ=0
i =

di
si
. (4.58)

lAs C is degenerate (the sum of the values in each row or column is 0), it can only be inverted approximately
by adding a small diagonal component Cii → Cii + ξ where ξ ≈ 10−4
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The unfolded jet yield is found by multiplying w by the prior, but becomes unstable for
small values of si at which zi diverges.

Following the dampened least square formalism, the unfolded solution can be regularized by
introducing the regularization parameter τ to d following

dτ 6=0
i = di

(
s2i

s2i + τ

)
, (4.59)

so that
zτ 6=0
i =

disi
s2i + τ

, (4.60)

and the regularized solution wτ 6=0 is given by

wτ 6=0 = C−1Vzτ 6=0. (4.61)

When si in Eq. 4.60 is very small, τ regularizes singularities by suppressing divergent behavior
of zi.

The optimal regularization strength (i.e. the magnitude of τ) can be determined from the
distribution of the variable log |dk|. Only the first few terms of this distribution are expected
to be significant; the rest of the values have zero mean and unit variance (this unit variance is
a result of the rescaling of the equations). If the regularization parameter τ is be chosen as

τ = s2k, (4.62)

which means that it is equal to the square of the kth singular value of the system where k is
chosen as the element for which log |di| is no longer significant, divergences in Eq. 4.59 are
suppressed. Examples of singular values si and log |di| distributions are shown in Ch. 6.

4.6 Summary

The analysis steps described in the previous sections are summarized in Fig. 4.20. The largest
experimental challenge in the vch jet

2 analysis is the separation of the jet signal from the back-
ground of mostly low-pT particles from the underlying event and from unrelated scatterings that
take place in the collision. The jet energy is corrected on a jet-by-jet basis using an estimate
of the background transverse momentum density which takes into account the dominant flow
harmonics v2 and v3 of the background event-by-event. The coefficient vch jet

2 is obtained from
pT-differential jet yields measured with respect to the experimentally accessible event plane
ΨEP, 2, which is reconstructed at forward rapidities (2.8 < η < 5.1 and −3.7 < η < −1.7).

The reported vch jet
2 has been corrected back to the azimuthal anisotropy with respect to

the underlying symmetry plane Ψ2 by applying an event plane resolution correction. Jets are
reconstructed at mid-rapidity (|ηjet| < 0.7) using charged constituent tracks with momenta
0.15 < pT < 100 GeV/c, and are required to contain a charged hadron with pT ≥ 3 GeV/c. The
in-plane and out-of-plane jet spectra are unfolded independently to take into account detector
effects and remaining azimuthally-dependent fluctuations in the underlying event transverse
momentum density. The jet spectra are corrected back to particle-level jets consisting of only
primary charged particles from the collision.
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Charged particle tracks
- ITS: silicon detector
- TPC: gas detector
|η| < 0.9, 0 < φ < 2π

Centrality and Event Plane
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2.8 < η < 5.1, -3.7 < η < -1.7
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Jet finder anti-kT
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ANALYSIS OVERVIEW

Figure 4.20: Analysis summary. The particle level jet spectra are measured independently in
the in-plane and out-of-plane orientation.
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5 | Closure tests

In the previous chapters corrections to vch jet
2 for experimental effects were outlined, such as the

finite event plane resolution and detector effects on the jet energy scale as well as the effects
of the uncorrelated background and its fluctuations using the corrections outlined in § 4.2, §4.3
and § 4.5. Closure tests are performed to validate the efficaciousness of these corrections. Two
types of tests are performed, one based purely on simulated events (§ 5.1) and a (more) data
driven approach (§ 5.2). Uncertainties and biases that cannot experimentally be removed are
treated as systematic uncertainties in Ch. 6.

5.1 Thermal model studies

To test if possible biases from the underlying event are effectively removed by incorporating
hydrodynamic flow in the underlying event description and by unfolding the in-plane and out-
of-plane jet spectra independently, Monte Carlo events are generated in which both vn and
vch jet
2 can be controlled independently.

5.1.1 Event generation

The thermal model that is used, following the approach suggested in [175], generates events with
both a ‘soft’ component (to simulate the underlying event) and a ‘hard’ component (mimicking
jet production). The pT distribution of particles of the soft background is modeled as a Boltz-
mann distribution as function of pT with a mean of 〈pT〉 = 0.67 GeV/c. The ‘jet’ distribution
follows a power law function ∝ pT

−5, scaled by a factor that represents TAA dσ/dpT, where
TAA is the nuclear overlap function and dσ/dpT is the charged jet cross-section in pp collisions.
Rather than modeling (and reconstructing) parton showers, jets do not undergo fragmentation
but are represented by single particles.

Events of fixed multiplicity M = 2200, are generated by drawing a random value from a
single distribution which comprises both the hard and soft component of the spectrum for M
times,

P (pT) = ab2pT exp (−bpT) +

{
0 pT ≤ 1GeV/c(

1
1+exp(−[pT−e]/f)

)(
1

cpTd

)
pT > 1GeV/c

. (5.1)

The total particle spectrum, as well as the independent contributions of the soft and hard
component, is shown in Fig. 5.1. Parameters a through f are tuned so that the measured jet
spectra and width and mean of the δpT distributions as measured in the model agree to those
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observables in data, as can be seen in Fig. 5.2, where the thermal jet yield is shown in blue and
a jet yield in central collisions (prior to unfolding) in red, and by comparing Figs 5.3 to 4.13.
For each track, η and ϕ are chosen randomly from uniform distributions. The multiplicity (M
= 2200) is chosen to simulate mid-central events, where the contribution of the underlying event
to the measured jet energy is expected to be large, as well as the number and energy of purely
combinatorial jets.

The initial azimuthal distribution of tracks in the thermal model is uniform. To introduce
vn harmonics to the ‘underlying event’, or to add non-zero vch jet

2 , the azimuthal distribution of
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the generated tracks is modified followinga

ϕ = ϕ0 − v2 sin [2 (∆ϕ2)] , (5.6)

which means that v2 can be introduced to thermal model events by, for each track in an event
with initial azimuthal angle ϕ0,

solving Eq. 5.6 for ϕ;
and substituting the track’s azimuthal angle ϕ0 → ϕ.

Fluctuations in the initial geometry of heavy-ion collisions lead to fluctuations of the generated
vn harmonics, as explained in § 2.4.1. These fluctuations are incorporated in the model by
sampling vn not as a static value, but rather following a model [181] of Gaussian fluctuations
with probability distribution

f(v′n|vn, σ) =
1

σ
√

2π
exp

[
− (v′n − vn)2

2σ2

]
. (5.7)

which gives the probability to find fluctuation v′n given the mean vn and standard deviation of
fluctuations σ. In practice, fluctuations are introduced by drawing a random number r between
0 and 1, and using this number to generate a fluctuation from the inverse of the cumulative
distribution function,

v′n → vn +
√

2σerf−1 (2r − 1) (5.8)

where erf−1 is the inverse error function (which is single valued in the domain -1, 1). In this
test, fluctuations of 25% (vn/4) are introduced in the ‘soft’ part of the spectrum.

The procedure to generate azimuthal modulations (Eq. 5.6) allows for the introducing of pT
dependent v2 harmonics. Since particle production in the thermal model is governed by one
single distribution there is no clear separation between jets and underlying event (as the Boltz-
mann distribution decreases asymptotically to 0 for pT → 0), v2 and vch jet

2 can be introduced
semi-independently by imposing the requirement that the hydrodynamic flow of the underlying
event decreases to 0 at relatively low momenta, while at the same time generating vch jet

2 for
only sufficiently energetic particles.

aEquation 5.6 is derived as follows. The initial, uniform azimuthal distribution of tracks has the form

dN

dϕ0
=

1

2π
. (5.2)

To introduce v2, dN/d∆ϕ2 is expressed as the familiar Fourier expansion,

dN

d∆ϕ2
=

1

2π
(1 + v2 cos [2 (∆ϕ2)]) (5.3)

which can be re-written, using ϕ0 from Eq. 5.3, as

dN

d∆ϕ2
=

dN

dϕ0

dϕ0

d∆ϕ2
=

1

2π

dϕ0

d∆ϕ2
. (5.4)

From Eq. 5.3 and Eq. 5.4 the relation∫
(1 + 2 cos [∆ϕ2]) d∆ϕ2 =

∫
dϕ0

d∆ϕ2
d∆ϕ2 (5.5)

is obtained. Solving the integrals in Eq.5.5 gives the expression of Eq. 5.6.
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Figure 5.3: The δpT distribution (Eq. 4.29) from the random cone (RC) procedure as func-
tion of cone azimuthal angle ϕRC relative to the event plane for thermal events. Left: the
azimuthally-averaged background 〈ρch〉 has been subtracted; right: the azimuthally dependent
ρch(ϕ) from an event-by-event fit of the pT-density with Eq. 4.27.

5.1.2 Results: vch jet
2 in the presence of hydrodynamic flow

To test if the modulation of the underlying event does not bias the measured vch jet
2 , 6×106

events are generated in which the underlying event exhibits strong hydrodynamic flow, but jet
production itself is isotropic in azimuth. To achieve this, pT differential v2 is sampled from

v2(pT) =

 0.07 pT < 3GeV/c
0.07− (pT − 3)× 0.035 3 < pT < 5GeV/c
0 else

(5.9)

The corresponding δpT distributions, obtained from these events by using either 〈ρch〉 or ρch(ϕ)
to evaluate ρch local in Eq. 4.15, are shown as function of ∆EPϕ2 in Fig. 5.3. The left panel
shows a strong cosine modulation in the mean of the δpT distribution, similar in magnitude to
that observed in data (Fig. 4.13).

Figure 5.4 (right) shows vch jet
2 values that are obtained prior to unfolding the jet spectra

in the in-plane and out-of-plane orientation independently. The blue line is obtained by using
ρch(ϕ) in the evaluation of ρch local in Eq. 4.15, the red line by using 〈ρch〉. Not taking into
account the hydrodynamic flow of the underlying event (i.e. using 〈ρch〉 as parametrization
both in the jet background subtraction and calculation of δpT) leads to a strong non-zero vch jet

2

(weighted arithmetic mean of 0.11 for pT > 40 GeV/c), generated fully by v2 of combinatorial
jets and background v2, prior to unfolding over the entire pT range in which vch jet

2 is measured.
When hydrodynamic flow of the underlying event is taken into account, the effect of independent
in-plane and out-of-plane unfolding on vch jet

2 is limited (and has a weighted arithmetic mean of
0.02 for pT > 40 GeV/c; a further exploration of the effect of unfolding on the change in vch jet

2

is given in Ch. 6).
vch jet
2 , obtained by following the procedure outlined in Ch. 4, is shown in Fig. 5.4 (left;

systematic uncertainties (boxes) are treated in Ch. 6). The red dashed line in the same figure
represents the pT differential input v2 of the thermal events. Coefficient vch jet

2 = 0 over the
full momentum range in which the jet spectrum is unfolded meaning that the initial vch jet

2 is
recovered by the analysis procedure.
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Figure 5.4: Left: vch jet
2 in thermal model events obtained by following the procedure given in

Ch. 4. Systematic uncertainties (boxes) are treated in Ch. 6; the red dashed curve is the v2,
vch jet
2 used as input for the thermal events. Right: vch jet

2 values that are obtained prior to
unfolding the jet spectra in the in-plane and out-of-plane orientation independently. The blue
points are obtained by using ρch(ϕ) in the evaluation of ρch local in Eq. 4.15, the red points by
using 〈ρch〉.

5.1.2.1 Using unfolding for subtraction of vn

In the analysis procedure of § 4.4, hydrodynamic flow is taken into account on an event-by-event
basis in the description of the underlying event. As can be seen in Fig. 5.3, hydrodynamic flow
contributes strongly to the measured vch jet

2 prior to unfolding when not taken into account in
the underlying event description.

)c (GeV/ch, jet

T
p

20 40 60 80

ch
, j

et
2

v

0.05−

0

0.05

0.1

 subtracted, after unfolding〉ρ〈

Figure 5.5: vch jet
2 obtained from unfolding jet spectra that are constructed from jet energies

which are corrected using the ϕ-independent (〈ρch〉) underlying event transverse momentum
density. Analysis performed on thermal events; as input vch jet

2 , Eq. 5.9 is used (given by the
red dashed line). Statistical uncertainties only.
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Figure 5.6: Left: vch jet
2 in thermal model events obtained by following the procedure given in

Ch. 4. Systematic uncertainties (boxes) are treated in Ch. 6; the red dashed curve is the v2,
vch jet
2 used as input for the thermal events. Right: vch jet
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using 〈ρch〉.

Hydrodynamic flow harmonics vn can also be removed from the measured vch jet
2 by unfolding

alone, as is illustrated in Fig. 5.5. For this figure, the unmodulated underlying event description
〈ρch〉 is used both in measuring vch jet

2 and in quantifying the background fluctuations response
(Fig. 5.3, left).

Unfolding in this case is difficult, as the background fluctuations response matrices are off-
diagonal and wide, but still the original input of zero vch jet

2 is retrieved - albeit with large
statistical uncertainties - indicating that even in an ‘extreme’ scenario where unfolding has to
compensate for the entire contribution of background flow to the modulation in the azimuthal
jet distribution, vch jet

2 is properly recovered.

5.1.2.2 Non-zero vch jet
2 in the presence of hydrodynamic flow

To test if non-zero vch jet
2 can be resolved in the presence of strong flow of the underlying event,

a second set of events is generated, in which also the jet orientation has a preferred direction
with respect to the reaction plane. To achieve this, v2 is sampled from

v2(pT) =


0.07 pT < 3GeV/c
0.07− (pT − 3)× 0.035 3 < pT < 5GeV/c
(pT − 30)× 0.005 30 < pT < 40GeV/c
0.05 pT > 40GeV/c
0 else

, (5.10)

meaning that vch jet
2 is non-zero for pjetT > 30 GeV/c. Figure 5.6 shows vch jet

2 that also in this
case, the input vch jet

2 values are recovered correctly by the analysis.
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5.2 Embedding studies

To validate the analysis method in real data, isotropically emitted jets are embedded into Pb–
Pb events. As these jets, generated by PYTHIA, have no preferred orientation, vch jet

2 = 0,
while the heavy-ion underlying event has non-zero azimuthal modulation, which will generate
a difference between the in-plane and out-of-plane jet yield before correcting for the underlying
event and its fluctuations, as shown in § 5.1.

5.2.1 Embedding and matching
The embedding ansatz is simple:

For each (real) Pb–Pb event, a minimum bias PYTHIA event is generated following the
phardT weighting procedure outlined in § 3.4;
Tracks of the PYTHIA event are added to the Pb–Pb event (embedding), so that a combined
event is obtained. Analysis is performed on these combined events;
Jets in the combined event are matched to jets in the original PYTHIA jets. As the
original PYTHIA jets have no preferred azimuthal direction (the emission is isotropic in
azimuth, vch jet

2 = 0), the matched jets should, after correction for effects of the underlying
event, also have vch jet

2 = 0.
A key aspect of embedding studies is matching the initial PYTHIA jets to jets that are

reconstructed in the combined event. Matching is, in a first step, done geometrically, which
starts with performing jet finding simultaneously on the PYTHIA and combined event. If jets
in PYTHIA and combined events are emitted in the same η, ϕ interval, they are geometrically
matched. This proximity criterion is satisfied when√

(ηjet, PYTHIA − ηjet, combined)2 + (ϕjet ,PYTHIA − ϕjet, combind)2 < R (5.11)

where R is the jet resolution parameter. In this first matching step, all PYTHIA and combined
event jet pairs are matched. Geometric matching alone however leads to a situation in which
one PYTHIA jet can be matched to multiple jets in the combined event, and vice versa. In
a second matching step, a bijection from the set of PYTHIA jets to the set of combined jets
is made, by preferring pairs in which the distance between the PYTHIA and combined jet is
minimal.

The ‘purity’ of the matched jet sample is controlled by requiring that a matched jet contains
at least 60% of the pT of the PYTHIA jet to which it is matched. This criterion ensures that a
matched jet truly originates from a PYTHIA jet, rather than being a combinatorial jet which is
by chance reconstructed at the same location. Figure 5.7 shows the ratio of the matched jet pT
to the PYTHIA jet pT (red) and the fraction of pT of the original jet that is recovered in the
matched jet (blue). The jet selection criteria of the matched jets are equal to those in the data
analysis (see § 4.2).

5.2.2 Results: vch jet
2 of embedded jets

Asides from testing the general validity of the analysis method, embedding tests whether or not
the orientation of the jet axis (in this exercise of the PYTHIA jets) in reconstruction is altered
by the presence of underlying event - something the analysis method cannot correct for since
Eq. 4.15 can only change the magnitude of the jet pT but not the orientation of the jet axis (for
that, a component-wise correction in four-momentum would be necessary).
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flow-modulated underlying event energy.

Figure 5.7 (right) shows the distribution of matched jet pT as function of ∆EPϕ2 in the
combined events. It should be noted that the event plane angles of the combined events do not
change under embedding as the PYTHIA tracks are generated only within the central barrel
acceptance, whereas the event plane angles are evaluated in the V0 system.

Coefficient vch jet
2 of matched jets, prior to unfolding and using the φ-independent underlying

event description 〈ρch〉, is shown as the red dashed line in Fig. 5.8 (left). The contribution of the
underlying event to the width of the pT distribution of matched jets is striking; the strong non-
zero vch jet

2 of the red line is a bias from the azimuthal modulation of the momentum density
of the underlying event. The blue line shows vch jet

2 after subtraction of the flow modulated
underlying event contribution to the matched jet pT, which is still non-zero due to background
fluctuations.

The vch jet
2 of matched jets after unfolding is given in Fig. 5.8 (right) and equals 0 over the

entire pT range, meaning that the initial vch jet
2 values are correctly reconstructed.
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6 | Systematic uncertainties

Uncertainties in the corrections on vch jet
2 measurement that are outlined in § 4.2–4.5 are treated

as systematic uncertainties. This chapter explains how the nominal measurement is chosen
(§ 6.2), what are the sources of systematic uncertainties (§ 6.3) and how systematic uncertainties
are assigned and propagated (§ 6.1 and parts of § 6.3).

6.1 Propagation of uncertainties

Coefficient vch jet
2 is derived from the pT differential jet yields Nin and Nout, with negligible

uncertainty on the event plane resolution R2. Uncertainties - statistical or systematic - are
therefore propagated to vch jet

2 from the uncertainties on Nin and Nout (with the exception of
the unfolding uncertainty, as treated in § 6.3.3.1, that is estimated directly from vch jet

2 ) using
partial derivatives of Eq. 4.1.

Any function f(a, b) that is continuous in the neighborhood of a and b, and has continu-
ous derivatives of the first and second order with respect to a and b, has a limiting normal
distributiona with mean E and variance σ2 described by the well known expressions

Ef(a,b) ≈ f(a, b)|a,b

σ2
f(a,b) ≈

∂f

∂a

∣∣∣∣2
a,b

σ2
a +

∂f

∂b

∣∣∣∣2
a,b

σ2
b + 2

∂f

∂a

∂f

∂b

∣∣∣∣
a,b

σab (6.1)

where |a,b indicates that the function is evaluated at a, b and σ2
a and σ2

b variances of a, b and σa,b
the concomitant covariance. The variance and covariances are related by the Pearson correlation
coefficient

ρa,b =
σa,b
σaσb

(6.2)

which ranges from 0 (no correlation between variables a and b) to ± 1 (variations in a and b are
fully (anti-)correlated).

Using Eq. 4.1 as f(a, b) with variables Nin, Nout, and variances σ2
Nin

, σ2
Nout

, the variance of

aA proof of this method can be found following §28.4 in [182], approximate equalities (≈) are used in Eq. 6.1
to indicate that these are leading terms of an expansion.
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vch jet
2 can be expressed asb

σ2
vch jet
2

=

(
1

R2

π

4

)2
(

4Nout
2

(Nin +Nout)
4σ

2
Nin

+
4Nin

2

(Nin +Nout)
4σ

2
Nout

− 8NoutNin

(Nin +Nout)
4σNinσNoutρNin,Nout

)
. (6.3)

Systematic uncertainties on vch jet
2 are grouped into two categories, shape and correlated,

based on their point-to-point correlation (as will be detailed in § 6.3). This correlation however
should not be confused with the correlation coefficient ρNin,Nout

in Eq. 6.3, which governs the
strength between correlated changes of Nin and Nout; both shape uncertainties and correlated
uncertainties have contributions which lead to correlated changes in Nin and Nout.

6.1.1 Resampling and interference from statistical uncertainties

A general approach to finding systematic uncertainties is selecting a measurement which is
deemed the most reliable (the nominal measurement) and comparing the results of this mea-
surement to the results of alternative measurement which are obtained by introducing a variation
in the analysis setup. If these variations lead to a different analysis outcome (not as a result
of chance (statistical effects) but rather of inaccuracies in the measurement or assumptions in
the analysis which cannot be removed), they reflect inaccuracies in the analysis or corrections
which should be covered by the quoted uncertainties.

Finding systematic uncertainties therefore starts by asking the question: is a given parameter,
used in the nominal measurement, the only valid choice, or is it based on some assumption and
is there an alternative measurement which should also give a valid answer? And if so, does this
alternate measurement give a statistically compatible outcome, or does it deviate significantly
from the nominal measurement? Only if the latter is true, a systematic uncertainty should be
assigned.

In tests where a comparison between a nominal measurement m and a single variation v
is made, the ratio of m to v is used as a measure of deviation. Establishing whether or not a
deviation from unity is significant, requires accurate propagation of the (statistical) uncertainties
on m and v which is generally not possible as the covariance σm,v is not known. To overcome
this, a data driven approach to estimating the statistical uncertainty on the ratio of m to v is
suggested, based on resampling. The resampling procedure starts by

Constructing (resampling) a new nominal measurement, m′, by, for each pT interval in m
with N jets and statistical uncertainty σN, drawing a random number N ′ from a Gaussian
distribution with mean N and width σN. The resampled measurement m′ in each pT
interval is then N ′ with uncertainty

√
N ′;

In a similar way, alternate measurement v is resampled to v′;
Assuming m(m′) and v(v′) are obtained prior to unfolding, unfolding is performed and
Eq. 4.1 is evaluated using m′ and v′;
Compare vch jet

2 obtained from the resampled nominal measurement m′ and resampled
alternate measurement v′ by taking the ratio of vch jet

2 |m′ to vch jet
2 |v′ ;

bFor readability, pT dependence is omitted in Eq. 6.3, as well as in other expressions in this chapter. pT
dependence is however implied in all measurable quantities, i.e. σ2

v
ch jet
2

(pT), Nin(pT), σ2
Nin

(pT), etc.
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Figure 6.1: Boxplot of pT-dependent distributions of ratio of alternate to nominal measure-
ments. In this particular example, a systematic effect would be derived from evaluating f(pT)
(red line) and assigned up to 40 GeV/c (see caption of Fig. 4.7 for an explanation of the plotting
format).

Repeat the preceding steps multiple times in each pT to obtain distributions of
vch jet
2 |m′/ vch jet

2 |v′ . The width of such a distribution is the true statistical uncertainty
on the ratio of m to v obtained without making assumptions on the correlation between
m and v; to resolve a systematic uncertainty from the difference between m and v, this
statistical uncertainty must be smaller than the deviation of the ratio from unity.

An illustration of the resampling procedure is given in Fig. 6.1, where a boxplot of distributions
of the ratio of alternate to nominal measurements is shown. The red line indicates the assigned
systematic uncertainty in this example.

The systematic uncertainty is extracted (as will be done in § 6.3) by fitting a function of the
form of

f(pT) = (pT > a)× (b× pT + c) + (pT <= a)× d (6.4)

to the ratio of alternate to nominal measurement, which means that a linear dependence on pT
is allowed up to a given value a, after which the effect is taken to be constant (d), motivated
by the fact that for most systematic uncertainties, pT dependence is observed at low transverse
momenta, but not at higher pTc. Using a fit suppresses the sensitivity to statistical fluctuations
which might be present in the ratio. The magnitude of a relative systematic uncertainty is then
defined as a (significant) deviation from unity of f(pT) in Eq. 6.4.

In the particular example of Fig. 6.1, a systematic effect would be derived from evaluating
f(pT) (red line) and assigned up to pT = 40 GeV/c. This strategy used for all sources of
uncertainties in which just one (or two) alternate measurement is (are) available; in situations
where a distribution of alternate measurements is tested, resampling techniques are not necessary
(as will be discussed in the relevant sections).

cThis behavior is also observed in thermal model studies following the procedure outlined in § 5.1. 1.6×108

events were generated and analyzed to study the magnitude and pT dependence of systematic variations without
limitations from statistical uncertainties.
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6.2 Nominal measurement

Prior to discussing systematic uncertainties resulting from variations in the nominal measure-
ment, the nominal measurement itself must be defined. Motivations for these nominal values
can be found in Ch. 4 and Ch. 5, to make this chapter self-contained however, important points
are repeated here.

6.2.1 Jet definitions and kinematic ranges

The jet spectra are unfolded according to the best practices that are described in [108, 159],
in which unfolding in the presence of a large, fluctuating background, is validated e.g. using
extensive Monte Carlo studies following [175]. The measured jet spectrum is binned into pT
intervals of 5 GeV/c width and unfolded into 10 GeV/c intervals.

The measurement is carried out in 0–5% and 30–50% collision centrality. Jets are recon-
structed in |ηjet| < 0.7 with the anti-kT algorithm with a resolution parameter or R = 0.2, using
charged tracks only. The contribution of combinatorial jets to the measured jet spectrum is
reduced by requiring that reconstructed jets contain at least one charged particle with pT > 3
GeV/c and have an area of at least 0.56 πR2.

The measured jet spectrum is taken as input for the unfolding routine between 30 < pjetT <

105 GeV/c for 0–5% collision centrality and 15 < pjetT < 90 GeV/c for 30–50% collision
centrality. The lower bound corresponds to five times the width of the δpT distribution, the
upper bound is the edge of the last measured bin which contains at least 10 counts. The
unfolded jet spectrum starts at 0 GeV/c to allow for feed-in of true jets with low pjetT ; in
addition combinatorial jets which are not rejected by the jet area and leading charged particle
requirements are migrated to momenta lower than the minimum measured pjetT . The unfolded
solution ranges up to 200 GeV/c (0–5%) and 170 GeV/c (30–50%) to facilitate feed-in of jets
with a pjetT higher than the maximum measured momentum. As the data points of the unfolded
solution are strongly correlated for pjetT higher than the maximum measured pjetT , vch jet

2 will be
reported only up to the upper limit of the measured jet spectra.

6.2.2 Unfolding

The SVD algorithm regularizes the unfolding by omitting components of the measured spectrum
for which the singular value is small, which amplify statistical noise in the result (see § 4.5).
The optimal regularization strength is not known a-priori, but chosen by studying:

The distribution of log |di| (see Eq. 4.59). Only the first terms of the singular value
decomposition are expected to be significant, while oscillating solutions lead to values for
di which are statistically compatible with 0 (since di is scaled, the statistical uncertainty
on all d is 1). di should be significant for small i and fall towards a Gaussian-distributed
random value with a mean close to 0 for large i [178]. The critical value, after which di is
no longer significant, determines the effective rank k of the system of linear equations to
be solved and sets the regularization parameter by Eq. 4.62;
Correlation between points of the unfolded spectrum. The (anti-)correlation between bins
i and j of the unfolded spectrum is quantified in terms of the correlation coefficients ρi,j
(Eq. 6.2) which are derived from the covariance matrix of the unfolded solution. Unfolded
solutions with strong off-diagonal correlations are not accepted as they indicate over- or
under-regularization;
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Figure 6.2: From top to bottom: log |di| distribution, singular values s, and combined response
matrix for in- (left) and out-of-plane (right) jet spectra, 30–50% collision centrality.

The ratio of the measured spectrum to the refolded spectrum, where the refolded spectrum
is obtained by multiplication of the unfolded spectrum with the combined response matrix.
The ratio should be statistically compatible with 1. If the regularization strength is chosen
poorly, the ratio will either oscillate or - in the case of an under-constrained system - be
exactly 1.

The values of log |di|, singular values, and combined response matrices are shown in Fig. 6.2
for the in-plane and out-of-plane jet spectra in 30–50% centrality collisions. Correlation coeffi-
cients and ratios of measured to refolded spectra for in-plane and out-of-plane jet spectra are
shown in Figs 6.3 for the nominal measurement in the same centrality interval.
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Figure 6.3: 30–50% collision centrality. Ratio of measured over refolded spectrum (top) and
ρi,j (bottom), for the in-plane (left) and out-of-plane (right) jet spectrum.

6.3 Systematic uncertainties

Systematic uncertainties on vch jet
2 are grouped into two categories, shape and correlated, based

on their point-to-point correlation. Shape uncertainties are anti-correlated between parts of the
unfolded spectrum: when the yield in part of the spectrum increases, it decreases elsewhere and
vice versa. Correlated uncertainties are correlated point-to-point. The difference in behavior
is visualized in Fig. 6.4, where shape uncertainties (left) and correlated uncertainties (right)
are illustrated by plotting nominal jet spectra (solid line) and variations (dotted lines) and the
resulting systematic uncertainties (dashed lines), obtained from taking ratios. The uncertainties
cover

Correlated
– Tracking efficiency;
– Variations in the pT range of the unfolded jet spectrum.

Shape
– Sensitivity to combinatorial jets;
– Variations in the underlying event description;
– Unfolding uncertainties.

Both types of uncertainties have - as mentioned - contributions which lead to correlated changes
of Nin and Nout. The relevance of the distinction between these two types of uncertainties is
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Figure 6.4: Illustration of different behavior of the two types of systematic uncertainties on
the unfolded jet spectra. Shape uncertainties are anti-correlated between parts of the unfolded
spectrum: when the yield in part of the spectrum increases, it decreases elsewhere and vice
versa (left). Correlated uncertainties are correlated point-to-point (right).

will be explicitly shown when estimating the significance of the results using Eq. 7.1 in Ch. 7.

6.3.1 Correlated uncertainties

Correlated uncertainties are estimated for the in-plane and out-of-plane jet spectra indepen-
dently. Two sources of correlated uncertainties are considered: tracking efficiency and the in-
clusion of combinatorial jets in the measured jet spectrum.

6.3.1.1 Tracking efficiency

The dominant correlated uncertainty (. 10%) arises from tracking and is estimated by con-
structing a detector response matrix with a tracking efficiency reduced by 4% (motivated by
studies [108] comparing reconstructed tracks to simulations of HIJING [141] events). The ob-
served difference between the nominal and modified unfolded solution is taken as a symmetric
uncertainty to allow for an over- and underestimation of the tracking efficiency. As no pT de-
pendence is expected in this variation, the difference is quantified as parameter a of a fit of a
zeroth-order polynomial (y = a) to the ratio.

The relative uncertainty obtained from the ratio of nominal measurement to variation is
shown in Fig. 6.5 for the in-plane (left) and out-of-plane jet (right) spectra for 30–50% colli-
sion centrality to illustrate the clear correlation. The red line represents the assigned constant
uncertainty.

6.3.1.2 Inclusion of combinatorial jets

The sensitivity of the unfolded result to the unknown number of combinatorial jets at low pT in
the measured jet spectrum is tested by changing the lower range of the unfolded solution from
0 to 5 GeV/c, which leads to an overall (correlated) increase of the unfolded jet yield as the
total number of unfolded jets is conserved in the unfolding procedure (i.e. the same amount of
measured jets is distributed over a smaller range). The effect on the in-plane and out-of-plane jet
spectra (an enhancement of the jet yield at low momenta from conservation of total number of
jets) is similar, and leads to an approximately bin-by-bin correlated shift in vch jet

2 . The relative
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Figure 6.5: Relative systematic uncertainty from variations in the tracking efficiency for the
in-plane (left, 8.3% relative uncertainty) and out-of-plane (right, 7.9% relative uncertainty) jet
spectra.
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Figure 6.6: Relative systematic uncertainty from variations in the range of the unfolded spec-
trum for the in-plane (left) and out-of-plane (right) jet spectra. For pT > 40 GeV/c, statistical
uncertainties are large and a systematic effect can no longer be resolved.

uncertainty obtained from the ratio of nominal measurement to variation is shown in Fig. 6.6
for the in-plane (left) and out-of-plane jet spectra for 30–50% collision centrality. The in-plane
and out-of-plane uncertainties behave similarly; for pT > 40 GeV/c no systematic effects can be
resolved.

6.3.2 Total correlated uncertainty

Both correlated uncertainties are added in quadrature and propagated to vch jet
2 , following

Eq. 6.3, asymmetrically, assuming that variations are strongly correlated between the in-plane
and out-of-plane jet spectra, while still allowing for effects from azimuthally-dependent variations
in track occupancy and reconstruction efficiency, by setting the sample correlation coefficient
ρ ≡ σi,j/(σiσj) to 0.75.
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Figure 6.7: Background fluctuation responses for 0–5% collision centrality in the in-plane (left)
and out-of-plane orientation (right).

As ρ = 0.75, the final correlated uncertainty on vch jet
2 is small, given that the relative

uncertainties on the in-plane and out-of-plane jet yields are similar in magnitude. Correlated
uncertainties are depicted as open boxes in the results figures of Ch. 7.

6.3.3 Shape uncertainties

Shape uncertainties are anti-correlated between parts of the unfolded spectrum: when the yield
in part of the spectrum increases, it decreases elsewhere and vice versa. Shape uncertainties fall
into three categories: assumptions in the unfolding procedure, feed-in of combinatorial jets, and
the sensitivity of the unfolded solution to the shape of the underlying event energy distribution.

6.3.3.1 Unfolding uncertainty

The dominant contribution to the unfolding uncertainty is related to the regularization of the
unfolded solution. The SVD algorithm [178] regularizes the unfolding by omitting components
of the measured spectrum for which the singular value is small and which amplify statistical
noise in the result. To explore the sensitivity of the result to the regularization strength, the
effective rank of the matrix equation that is solved is varied by changing the integer regularization
parameter k by ± 1.

As a default, the unfolded solution from the χ2 algorithm [183] is used as a priord for the SVD
algorithm, a PYTHIA spectrum is used as a variation. The bias from the choice of unfolding
algorithm itself is tested by comparing the results of the SVD unfolding and the χ2 algorithm.

It is assumed that the systematic uncertainty resulting from the unfolding procedure is
correlated between the in-plane and out-of-plane jet spectra, as the same nominal unfolding
approach is used for both spectra, and the δpT distributions for the in-plane and out-of-plane
background fluctuations are similar in shape (the background fluctuation responses for 0–5%
collision centrality in the in-plane and out-of-plane orientation are shown in Fig. 6.7).

This assumption is tested by folding (multiplying by the response matrix) a PYTHIA jet
spectrum with the in-plane and out-of-plane background fluctuations matrices. The ratio of
the folded ‘in-plane’ to ‘out-of-plane’ PYTHIA spectra are shown in Fig. 6.8 for 0–5% (left)
and 30–50% (right) collision centrality. The differences between the folded spectra are smalle

dSee the explanation below Eq. 4.48, and at Eqs 4.51 and 4.50.
eIt should be noted that this statement only holds when the azimuthal modulation of the underlying event is

taken in to account event-by-event.
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Figure 6.8: Difference in in-plane and out-of-plane spectra for central (0-5% collision centrality,
top panels) and peripheral (30-50% collision centrality, lower panels) in terms of the ratio of
the spectra (left) and the v2 value.

(. 3 %), systematic variations in e.g. the unfolding setup are therefore similar in the in-plane
and out-of-plane spectrum orientation. The unfolding uncertainty is therefore estimated by
introducing the same variations in the in-plane and out-of-plane unfolding setup simultaneously
and observing changes in vch jet

2 directly rather than propagating the variations in Nin and Nout

independently via Eq. 6.3.
The total uncertainty from unfolding is determined by constructing a distribution (as sug-

gested in [184]) of vch jet
2 in each pjetT bin and assigning the width of this distribution as a

systematic uncertainty,

σi =

√√√√ 1

N

N∑
i=1

(xi − µ)
2
. (6.5)

The absolute uncertainty on vch jet
2 as a result of unfolding is shown in Fig. 6.9 for 0–5% (left)

and 30–50% (right) collision centrality. The systematic uncertainty does not depend on pT even
though the jet spectra are steeply falling; using Eq. 6.5 effectively removes interference from
statistical uncertainties.

6.3.3.2 Sensitivity to combinatorial jets

The other two components of the shape uncertainty are the sensitivity of the unfolded solution
to combinatorial jets and uncertainties arising from the description of the underlying event;
both are estimated on the in-plane and out-of-plane jet spectra independently and propagated
to vch jet

2 as uncorrelated.
The effect of combinatorial jets is tested by varying the minimum pjetT of the measured

jet spectrum by ± 5 GeV/c, effectively increasing or decreasing the possible contribution of
combinatorial jet yield at low jet momentum. As varying the range by ± 5 GeV/c constitutes
two variations, taking one ratio does not suffice for exploring a systematic effect, neither does
two variations give the possibility to take the approach of Eq. 6.5. To quantify a systematic
effect, ratios of the nominal measurement to both variations are taken; per pT bin, the variation
that leads to the most extreme deviation from unity is kept as possible systematic uncertainty
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Figure 6.9: Absolute systematic uncertainty on vch jet
2 from unfolding for 0–5% (left) and 30–

50% collision centrality.

(in practice, extending the range towards lower pT leads to the largest deviation). Explicitly,
the uncertainty is derived in each pT bin by calculating

N

N+5 GeV/c
= a

N

N−5 GeV/c
= b. (6.6)

Where N denotes the yield in a pT bin. If |a − 1| > |b − 1|, a is chosen as possible systematic
variation, for |b−1| > |a−1|, b. An uncertainty is assigned only if the effect is deemed significant
after resampling.

6.3.3.3 Underlying event description

To test the assumptions made in the fitting of Eq. 4.27, the maximum pT of accepted tracks is
lowered to 4 GeV/c, changing the contribution of hydrodynamic flow of the underlying event
that is removed by unfolding rather than subtraction from the raw jet energy prawT (Eq. 4.27).
Additionally, the minimum p-value that is used as a goodness of fit criterion is changed from
0.01 (the nominal value) to 0.1. Analogous to the approach of § 6.3.3.2, two variations are tested
with respect to the nominal measurement instead of one, the prescription of Eq. 6.6 is used to
assign a systematic effect.

Lastly, the minimum required distance of tracks to the leading jet axis in pseudorapidity
(used in the evaluation of Eq. 4.27) is enlarged to 0.3, no effect is found.

6.3.4 Total shape uncertainty

The uncertainties on the in-plane and out-of-plane jet yield resulting from variations in the pT
range of the measured jet spectrum and of variations in the determination of the underlying
event energy density are added in quadrature; a resulting uncertainty on vch jet

2 is propagated
using Eq. 6.3 assuming that the different sources of uncertainty are uncorrelated. The unfolding
uncertainty, obtained from variations in vch jet

2 directly, is added in quadrature to this uncertainty
to obtain the total shape uncertainty.
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uncertainty on vch jet
2

pjetT (GeV/c) 30-40 60-70 80-90 30-40 60-70 80-90
centrality (%) 0-5 30-50

shape
unfolding 0.017 0.012 0.016 0.016 0.011 0.015
pjetT -measured 0.013 � stat � stat 0.024 � stat � stat
ρch(ϕ)fit 0.015 � stat 0.016 � stat � stat � stat

total 0.027 0.012 0.023 0.029 0.011 0.015

correlated tracking 0.009 0.009 0.009 0.0067 0.0067 0.0067
pjetT -unfolded � stat � stat � stat � stat � stat � stat

total 0.009 0.009 0.009 0.0067 0.0067 0.0067

Table 6.1: Systematic uncertainties on vch jet
2 per source for various transverse momenta.

Fields with the value ‘� stat’ indicate that no systematic effect can be resolved within the
statistical limits of the analysis.

6.4 Summary

An overview of the systematic uncertainties as function of pT for all the different sources are given
in table 6.1. The contribution of independent sources of uncertainties to the total uncertainty
on vch jet

2 are shown, as well as the total shape and correlated uncertainties. High statistics
thermal model tests (see § 5.1) have been used to verify that the uncertainties labeled ‘� stat’
are indeed negligible compared to other uncertainties.
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7 | Results and discussion

The coefficients vch jet
2 as function of pjetT for 0–5% and 30–50% collision centrality are presented

in Fig. 7.1. Significant positive vch jet
2 is observed in semi-central collisions and no (significant) pT

dependence is visible. The observed behavior is indicative of path-length-dependent in-medium
parton energy loss.

The observed vch jet
2 in central collisions is of similar magnitude as that seen in semi-central

collisions. The systematic uncertainties on the measurement however are larger than those on
the semi-central vch jet

2 data, in particular at lower pjetT , as a result of the larger background
contribution to the measured jet energy.

7.1 Comparison to high-pT v2, v
calo jet
2

To get a better qualitative understanding of the results, the v2 of single charged particles vpart2

[185, 186] and the ATLAS vcalo jet
2 measurement [187] are shown together with the vch jet

2 mea-
surement in Fig. 7.2. The results are compared to model predictions in Fig. 7.3.

The ATLAS result is for jets with resolution parameter R = 0.2 within |η| < 2.1 compris-
ing both charged and neutral fragments. The event plane angle is measured by the forward
calorimeter system at 3.2 < |η| < 4.9. Jets are reconstructed by applying the anti-kT algorithm
to calorimeter towers, after which, in an iterative procedure, a flow-modulated underlying event
energy is subtracted. Each jet is required to lie within

√
∆η2 + ∆ϕ2 < 0.2 of either a calorime-

ter cluster of pT > 9 GeV/c or a pT > 10 GeV/c track jet with resolution parameter R = 0.4
built from constituent tracks of pT > 4 GeV/c (the full reconstruction procedure can be found
in [187, 188]).

It is important to realize that the energy scales of the ATLAS vcalo jet
2 and ALICE vch jet

2

measurements are different (as the ALICE jets do not include neutral fragments) which compli-
cates a direct comparison between the two measurements. The most central ATLAS results are
measured in 5–10% collision centrality. The ALICE and ATLAS measurements are in qualitative
agreement, both indicating path-length-dependent parton energy loss. Given the uncertainties,
the difference in the central values of the measurement is not significanta.

Figure 7.2 also shows the v2 of single charged particles vpart2 (from [185, 186]), which is
expected to be mostly caused by in-medium energy loss at intermediate and high momenta
(pT & 5 GeV/c, the single charged hadron RAA, shown in Fig. 2.4, is smaller than unity in this
range as well). Even though a direct quantitative comparison between vch jet

2 and vpart2 cannot
be made as the energy scales for jets and single particles are different, the measurements can

aThe significance of the results is explored in more detail in § 7.2.

109



Chapter 7 – Results and discussion

)c (GeV/
ch jet

T
p

20 30 40 50 60 70 80 90 100

 
|>

0
.9

 }
η

∆
 {

E
P

, 
|

c
h
 j
e
t

2
v

0

0.1

0.2

Syst (correlated)

ALICE

(a)

 = 2.76 TeV
NN

sPb­Pb 

|<0.7
jet

η, |Tk = 0.2 anti­R

c > 3 GeV/
T, lead

p, c > 0.15 GeV/
T, track

p

 0­5%, Stat unc.
ch jet

2v

Syst unc. (shape)

Syst unc. (correlated)

)c (GeV/
ch jet

T
p

20 30 40 50 60 70 80 90 100

 
|>

0
.9

 }
η

∆
 {

E
P

, 
|

c
h
 j
e
t

2
v

0

0.1

0.2
Syst (correlated)

ALICE

(b)

 = 2.76 TeV
NN

sPb­Pb 

|<0.7
jet

η, |Tk = 0.2 anti­R

c > 3 GeV/
T, lead

p, c > 0.15 GeV/
T, track

p

 30­50%, Stat unc.
ch jet

2v

Syst unc. (shape)

Syst unc. (correlated)

Figure 7.1: Second-order harmonic coefficient vch jet
2 as function a of pjetT for 0–5% (a) and

30–50% (b) collision centrality. The error bars on the points represent statistical uncertainties,
the open and shaded boxes indicate the shape and correlated uncertainties (as explained in
Ch. 6).
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Figure 7.2: Elliptic flow coefficient v2 of charged particles [185, 186] (red, green) and R = 0.2
full jets (comprising both charged and neutral fragments) measured within |η| < 2.1 [187]
(blue) superimposed on the results from the current analysis of R = 0.2 charged jets vch jet

2 .
In all measurements, statistical errors are represented by bars and systematic uncertainties by
shaded or open boxes. Note that the same parton pT corresponds to different single particle,
full jet and charged jet pT. ATLAS v

calo jet
2 and CMS v2 from [186, 187] in 30–50 % centrality

are the weighted arithmetic means of measurements in 10% centrality intervals using the inverse
square of statistical uncertainties as weights.
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be compared qualitatively, and it can be seen that for central events, the single particle vpart2

and vch jet
2 are of similar magnitude and only weakly dependent on pT over a large range of

pT (≈ 20 − 50 GeV/c). For non-central collisions (30–50%), the measurements of v2 for single
particles and jets are also in qualitative agreement in the pT range where the uncertainties allow
for a comparison.

7.2 Some notes on significance

As mentioned in the previous section, the difference between the ATLAS vcalo jet
2 and vch jet

2

results is not significant, even though the central values of the measurements are different. This
is an effect of the statistical uncertainties and (correlated) systematic uncertainties, which are
large in central collisions and mainly result from the background contribution to the measured
jet energy. Since two types of systematic uncertainties, with different point-to-point correlations,
are shown in the figures, compatibility between results, or with the null hypothesis, is difficult to
estimate visually. The significance of the results is therefore assessed by calculating a p-value for
the hypothesis that vch jet

2 = 0 over the presented momentum range. The p-value is evaluated
starting from a modified χ2 calculation that takes into account both statistical and (correlated)
systematic uncertainties, as suggested in [189]. The modified χ2 for the hypothesis vch jet

2 = µi
is calculated by minimizing

χ̃2(εcorr, εshape) =

n∑
i=1

(v2,i + εcorrσcorr,i + εshape − µi)2

σ2
i

+ ε2corr +
1

n

n∑
i=1

ε2shape
σ2
shape,i

(7.1)

with respect to the systematic shifts εshape, εcorr, where v2,i represent the measured data (n
points), σi are statistical uncertainties and σshape,i, σcorr,i denote the two specific types of sys-
tematic uncertainties.

The parameter εcorr is a measure of the fully correlated shifts; a shift of all data points by
the correlated uncertainty σcorr,i gives a total contribution to χ̃2 of one unit. The systematic
shifts for the shape uncertainty are taken to be of equal size for each point, since this gives the
best agreement with the vch jet

2 = 0 hypothesis and thus provides a conservative estimate of the
significance; the penalty factor is constructed such that an average shift of all data points by
σshape adds one unit to χ̃2.

The p-value itself is calculated using the χ2 distribution with n − 2 degrees of freedom.
For semi-central collisions a p-value of 0.0009 is found, indicating significant positive vch jet

2 . It
should be noted that the most significant data points are at pjetT < 60 GeV/c; the results in
the range 60 < pjetT < 100 GeV/c are compatible with vch jet

2 = 0 (p-value 0.02b). In central
collisions, a p-value with respect to the hypothesis of vch jet

2 = 0 of 0.12 is found which indicates
that vch jet

2 is compatible with 0 within two standard deviations. The same p-value of 0.12 is
consistent with an upper limit of vch jet

2 = 0.088.

bFor more details, see § B.2. It should be noted that Eq. 7.1 does not follow a perfect χ2 distribution; numbers
here should therefore be seen as a guideline.
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7.3 Model comparisons

To elucidate the path-length dependence of parton energy loss, theory predictions of vch jet
2 must

be made, which can be compared to the measured data. Figure 7.3 shows the vch jet
2 of R = 0.2

charged jets from the JEWEL Monte Carlo [103, 104] compared to the measured vch jet
2 . JEWEL

simulates a parton shower evolution in the presence of a dense QCD medium by generating hard
scatterings according to a collision geometry from a Glauber [57] density profile. A 1D Bjorken
expansion is used to simulate the time evolution of the medium. After radiative and collisional
energy loss, PYTHIA is used to hadronize the fragments to final state particles.

The analysis on the JEWEL events is performed with the same jet definition and acceptance
criteria that are used for the vch jet

2 analysis in data. As symmetry plane ΨEP, 2, the idealized
symmetry axis from the optical Glauber geometry is used, with event plane resolution R2 = 1c.

The JEWEL Monte Carlo shows finite significant vch jet
2 in semi-central collisions; in central

collisions vch jet
2 is compatible with zero. The JEWEL result for semi-central 30–50% collisions

is compatible with the measured values (p-value 0.4 using Eq. 7.1 with the JEWEL results as
hypothesis µi and the quadratic sum of the statistical uncertainties of both datasets as σi in the
denominator of the first sum of Eq. 7.1). In central JEWEL collisions vch jet

2 is consistent with
zero, while the measured values are compatible with the JEWEL vch jet

2 within two standard
deviations.

It should also be noted that JEWEL currently uses an optical Glauber model (see § 2.2.3.1)
for the initial state and therefore does not include fluctuations in the participant distribution
due to the spatial configuration of nuclei in the nucleus. This simplified treatment of the
overlap geometry is expected to underestimate the vch jet

2 ([190, 191], see also § 2.4.1). This
comparison of vch jet

2 in JEWEL to experimental data complements earlier studies of the path-
length dependence of parton energy loss and model predictions for the jet RAA ([120], see
Fig. 2.14).

7.4 Conclusion

The azimuthal anisotropy of R = 0.2 charged jet production, quantified as vch jet
2 , has been

presented in central and semi-central collisions. Significant positive vch jet
2 is observed in semi-

central collisions, which indicates that jet suppression is sensitive to the initial geometry of
the overlap region of the collision. This observation can be used to constrain predictions on the
path-length dependence of in-medium parton energy loss. In central collisions, the central values
of the measurement are positive, but the uncertainties preclude drawing a strong conclusion on
the magnitude of vch jet

2 .
The measured vch jet

2 for charged jets is also compared to single particle v2 from ALICE and
CMS and vcalo jet

2 from ATLAS. The measurements cannot be directly compared quantitatively
since the energy scales are different, but qualitatively, the results agree and indicate a positive
v2 for both charged particles and jets to high pT in central and semi-central collisions. This
observation indicates that parton energy loss is large and that the sensitivity to the collision
geometry persists up to high transverse momenta.

cParticles that are part of the underlying event are not stored in JEWEL, hence the event plane angles cannot
be reconstructed following the procedure of § 4.3 and the symmetry plane angles Ψ2, which are known exactly
in the model, are used directly, using an event plane resolution R2 of 1.
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Figure 7.3: vch jet
2 of R = 0.2 charged jets obtained from the JEWEL Monte Carlo (red) for

central (a) and semi-central collisions (b) compared to data. JEWEL data points are presented
with only statistical uncertainties.
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The JEWEL Monte Carlo predicts sizable vch jet
2 for semi-central collisions and very small

to zero vch jet
2 in central events. These predictions are in good agreement with the semi-central

measurement. For central collisions, the JEWEL prediction is below the measurement, but more
data would be needed to reduce the uncertainties on the measurement sufficiently to constrain
the model.
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8 | Outlook and exploratory
studies

The results presented in Figs 7.1 and 7.3 suggest that aside from effects from initial geometry,
fluctuations in the initial distribution of nucleons play an important role in generating energy
loss. A number of studies in Pb–Pb collisions, aimed at further constraining the path-length
dependence of jet energy loss and the interactions associated with this, are discussed in the
first section (§ 8.1) of this chapter, after which some exploratory measurements are presented
in § 8.2.

8.1 Outlook

Partons traversing the QGP medium lose energy via collisional and radiative processes, both of
which contribute to the total energy loss of the initial hard partons. Collisional and radiative
energy loss have different dependencies on L, the length of the parton’s trajectory through the
medium (as argued in § 2.2, 〈∆E〉 ∝ L for collisional energy loss and 〈∆E〉 ∝ L2 - or even
L3 - for radiative processes). The vch jet

2 measurement is aimed at constraining the relative
importance of these two mechanisms.

Strong statements on the L dependence of parton energy loss cannot be made at this point,
because the (statistical) uncertainties on the measured vch jet

2 are large, and because fluctuations
in the initial distribution of nucleons within the nuclei contribute to generating a non-zero vch jet

2 ;
the magnitude of this contribution is unknown. Larger jet samples are necessary to improve the
statistical precision of the vch jet

2 measurement and further constrain theory predictions. Addi-
tional information on the initial state of heavy-ion collisions and the medium evolution can be
obtained from vn measurements of particles at low transverse momenta, but also by performing
more differential measurements of jet observables are. A number of these jet measurements,
which should be pursued, are outlined below.

Measurements of vjet3 . Fluctuations in the initial distribution of nucleons within the overlap
region of the colliding nuclei generate higher order asymmetries, which are not correlated
to orientation of the impact parameter. vjet3 (the azimuthal modulation of jet production
relative to the 3rd-order symmetry plane) can quantify the effect of fluctuations on parton
energy loss in the QGP, as the 3rd-order symmetry is generated fully by fluctuations,
independent of the orientation of the impact parameter. See also [192];
Event-shape engineering and ‘ultra-central’ collisions. ‘Ultra-central’ nuclear collisions are
collisions at vanishing impact parameter, with approximately circular overlap regions (the
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eccentricity is absent or very small). Measuring vjet2 in these collisions can, just as vjet3 , be
used to determine the effect of fluctuations on parton energy loss. In addition, jet energy
loss measurements can be carried out as function of eccentricity directly via ‘event-shape
engineering’, an experimental approach in which the eccentricity of the collision system is
quantified event-by-event. Measurements can be carried out for RAA, vn and vjet2 . A large
number of events would be required to reduce the statistical uncertainties enough to draw
conclusions;
Azimuthal-angle dependence of di-jet production. Di-jet systems originate from 2 → 2
processes, in which two energetic partons are emitted in opposite direction with equal
transverse momenta. Di-jet systems are powerful probes of the QGP, as the momentum
asymmetry of the end-state observed jets is a result of vacuum-like and medium-induced
energy loss. Recent theoretical developments suggest that di-jet imbalance in Pb–Pb
collisions is generated largely by energy-loss fluctuations and only to a lesser extent by
path-length differences [193, 194]. Measuring the di-jet energy asymmetry as a function
of the angle relative to the symmetry plane allows for a direct measure of the effect of
medium geometry on the generation of the di-jet imbalance.

As shown in Ch. 7, the limited significance of the vch jet
2 results precludes drawing strong conclu-

sions on the path-length dependence of parton energy loss. Statistical uncertainties are dominant
at high ( pT > 60 GeV/c) transverse momenta, where the jet yield is low. Systematic uncer-
tainties dominate at lower transverse momenta (pT < 60 GeV/c), where the contribution of
background energy to the jet yield is high.

To successfully carry out the suggested, more differential measurements, larger jet samples
than the ones used for the vch jet

2 study are necessary. Tentative studies on thermal Monte Carlo
events (§ 5.1) indicate that the intrinsic systematic uncertainties in the unfolding routine (such
as feed-in of combinatorial jets) for the presented pT ranges are reached at jet samples ≈ 10
times larger than the current size for minimum bias events (this conclusion was reached after
noting that generating larger data samples (up to 1.5×108) did not lead to smaller systematic
uncertainties from unfolding). Using triggered events (events selected on the presence of large
energy deposit in the electromagnetic calorimeter) is expected to increase the statistical precision
of the measurements, by simultaneously enhancing the jet yield at high transverse momenta,
and suppressing the combinatorial jet yield at low pT.

8.2 Exploratory studies

Jet yields can be enhanced either by studying triggered events, or by enlarging the overall data
sample; both of which will be discussed in the following sections.

8.2.1 EMCal: jet triggered events
The EMCal detector (introduced in § 3.2.4) can be used to trigger on highly energetic jets by
selecting events in which a certain threshold energy is deposited in a limited detector area. If
the area is small and the energy is high, this deposit most likely corresponds to a jet. The
jet patch trigger for central Pb–Pb events in 2011 has a threshold of 80 GeV/c which must be
deposited in 32×32 EMCal patch in η, ϕ. With a cluster size 0.0145 × 0.0145, the trigger patch
area equals 0.216 (= 0.01452× 322).

Additionally, the EMCal measures energy of neutral mesons, such as the π0 and η, via
their decay into photons, so that by combining information from the EMCal with information
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Figure 8.1: Jet spectra (top, not divided into Nin and Nout but measured over full azimuth)
of R = 0.2 charged jets, measured in minimum bias events (blue) and R = 0.2 full jets in
triggered events (red). Ratio of the transverse momentum distributions of triggered full jets
(lower panels) to that of minimum bias charged jets, for central (left) and semi-central collisions
(right). Statistical uncertainties only.

on charged particles from the central barrel tracking detectors (ITS and TPC), ‘full’ jets -
comprising both charged and neutral fragments - can be reconstructeda.

Figure 8.1 shows jet yields as function of pT (upper panels, not divided into Nin and Nout

but measured over full azimuth) of R = 0.2 charged jets, measured in minimum bias events
(blue) and R = 0.2 full jets in triggered events (red). The jet selection criteria are equal to
those of § 4.2 for the minimum bias case (although of course the EMCal jets are reconstructed
only within EMCal acceptance). In central collisions (0–10%), the jet yield in triggered events
is not larger than the yield found in untriggered events. At low momenta however it can be seen
that triggering reduces the combinatorial jet yield strongly. In semi-central collisions (30–50%),
triggering strongly enhances the jet yield at high (> 20 GeV/c) transverse momenta.

The lower panels of Fig. 8.1 show the ratio of the transverse momentum distributions of
triggered full jets to that of minimum bias charged jets for central (left) and semi-central (right)

aCombining information from the EMCal and central barrel is not trivial, as it requires correcting the energy
deposits in the EMCal for charged particle trajectories, and converting the (partially) contained EMCal showers
to a measure of transverse momentum. As this chapter only serves as a ‘proof of principle’, the readers is referred
to e.g. [120] for further information.
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collisionsb. In semi-central events, the jet yield at high pT is five times larger than the minimum
bias charged jet yield.

The gain in jet yield of using triggered events in future data taking periods might differ from
that presented in Fig. 8.1, as it depends strongly on the trigger configuration. In minimum bias
data taking (and in other data taking schemes as well) not all observed events are recorded. The
number of events, of a particular trigger, that is observed in order for one event to be recorded
is referred to as the prescale factor . In 2011, a centrality-dependent prescale was used for the
minimum bias data taking. For the most central collisions, the minimum bias prescale factor
was approximately two times smaller than the jet trigger prescale factor, for more peripheral
minimum bias collisions, a larger factor was used (which is visible in Fig. 3.8, where the centrality
distribution is not uniform). The gain in statistics of using triggered data will therefore depend
on the prescale factors that are used, and the event rate delivered by the LHC.

8.2.2 vcalo jet
2 in the presence of a trigger bias

As explained in § 3.2.4, the EMCal detector has a limited acceptance (|η| < 0.7, 1.4 < ϕ < π).
Events are triggered in the EMCal when the energy deposited in a limited area exceeds a
predefined threshold; no distinction however can be made between energy originating from
parton showers and energy resulting from uncorrelated background. As the average energy flow
- as well as the magnitude of the fluctuations of the underlying event energy density - is larger
along the event plane direction than in the perpendicular direction, triggering leads to an event
plane bias: events in which the event plane angle points towards the EMCal detector are more
likely to meet the triggering criteria. A bias in the event plane distribution in and of itself has
no effect on vn, but since full jets can only be measured within the EMCal acceptance, the
formalism of Eq. 4.1 can not directly be applied, which will be illustrated by a simple Monte
Carlo exercise in which the EMCal trigger is emulated. The Monte Carlo setup works as follows:

Thermal events (see § 5.1) are generated, sampling the event plane orientation ΨEP, 2

randomly from a uniform distribution between −π2 and π
2 from a uniform distribution

for each event; pT-differential v2 is added (red line in the two lower panels of Fig. 8.2)
following the procedure as described in § 5.1;
To mimic EMCal acceptance, tracks of which v2 will be calculated, are only stored when
they are generated within the EMCal acceptance. The event plane angles will be recon-
structed using all tracks however, as in data analysis these would be reconstructed by the
V0 system;
Two types of triggers are modeled:
– A simple (charged) particle trigger, which accepts events only when a track of pT >

5GeV/c is found within the EMCal acceptance;
– A patch trigger, which accepts events only when the total energy that is deposited

in the EMCal acceptance exceeds a threshold. This patch trigger approaches the
triggering mechanism of the EMCal more closely, but is less illustrative than the
particle trigger;

Analysis is performed on both event types, using Eq. 4.1 to evaluate v2.
Generated v2 (red dashed line) and v2 measured in single particle triggered (green triangles)

and patch triggered (blue squares) events are shown in Fig. 8.2. In both trigger scenarios, at

bA similar remark as that made on the comparison between ATLAS vjet2 and ALICE vch jet
2 in Ch. 7 should

be made here: the pT scales of both jet spectra are different, therefore only a qualitative comparison at high pT
should be made.
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Figure 8.2: Generated v2 (red dashed line) and v2 measured in single particle triggered (green
triangles) and patch triggered (blue squares) events.

low momenta, the measured v2 does not correspond to the generated v2. At high transverse
momenta however, v2 is recovered correctly. This effect can be understood by considering trigger
efficiencies εin and εout to Eq. 4.1,

v2 =
1

R2

π

4

εinNin − εoutNout

εinNin + εoutNout
(8.1)

where εin(εout) is the efficiency of measuring the in(out-of)-plane pT-differential jet yield. v2 will
correctly be retrieved when εin = εout. Because the particle spectrum in the in-plane direction
has a higher mean pT than the spectrum in the out-of-plane direction (as the energy flow in this
direction is larger), this condition is, in events selected using the simulated particle trigger, only
met for v2 measured at 5 GeV/c and upwards. In the case of the jet patch trigger, a similar
argumentation can be followed, but the threshold pT at which εin = εout is not clearly defined
as a minimum total energy in a patch does not put constraints on the minimum pT of a track
within the patch (e.g. 10 tracks of 1 GeV/c lead to a similar trigger signal as 1 track of 10
GeV/c).

In reality, calculating the exact threshold at which εin = εout from e.g. hardware settings is
complicated by the fact that triggering is done on on uncorrected energy within an EMCal patch,
rather than on the subtracted jet energy, meaning that fluctuations of the underlying event, and
even mis-calibrations of the detector, can lead to triggering. The pT threshold at which the
trigger bias disappears from the vjet2 measurement using EMCal jets in EMCal triggered events,
can however obtained from data by directly measuring the in-plane and out-of-plane trigger
efficiencies.

The pT-dependent trigger efficiency, εtrigger(pT), is obtained from data as

εtrigger(pT ) =
N(pT)|minimumbias + trigger

N(pT)|minimum bias
. (8.2)

which is the (pT-differential) ratio of the jet spectrum measured in events which pass the min-
imum bias and trigger criteria (N(pT)|minimumbias + trigger) to the jet spectrum measured in

121



Chapter 8 – Outlook and exploratory studies

)c (GeV/full jet

T
p

0 10 20 30 40 50 60 70 80 90 100

 (
fu

ll 
je

ts
)

tr
ig

ge
r

∈

0

0.5

1

1.5

2
0-10% centrality, in-plane

|<0.7
jet

η, |Tk = 0.2 anti-R

)c (GeV/full jet

T
p

0 10 20 30 40 50 60 70 80 90 100

 (
fu

ll 
je

ts
)

tr
ig

ge
r

∈

0

0.5

1

1.5

2
0-10% centrality, out-of-plane

|<0.7
jet

η, |Tk = 0.2 anti-R

)c (GeV/full jet

T
p

0 10 20 30 40 50 60 70 80 90 100

 (
fu

ll 
je

ts
)

tr
ig

ge
r

∈

0

0.5

1

1.5

2
30-50% centrality, in-plane

|<0.7
jet

η, |Tk = 0.2 anti-R

)c (GeV/full jet

T
p

0 10 20 30 40 50 60 70 80 90 100

 (
fu

ll 
je

ts
)

tr
ig

ge
r

∈

0

0.5

1

1.5

2
30-50% centrality, out-of-plane

|<0.7
jet

η, |Tk = 0.2 anti-R

Figure 8.3: Efficiency of the EMCal jet patch trigger as function of pjetT for Nin (left) and Nout

(right) for 0–10% (top) and 30–50% collision centrality (bottom). Statistical uncertainties only.

triggered events (N(pT)|minimum bias)c. These efficiencies are shown in Fig. 8.3 for 0–10% (top)
and 30–50% (bottom) collision centrality, with in-plane efficiencies on the left and out-of-plane
efficiencies on the right.

The ratios of in-plane and out-of-plane trigger efficiencies are given for 0–10, 10–20, 20–30
and 30–50% collision centrality in Fig. 8.4; for jet pT > 40 GeV/c the ratio is equal to one
within statistical uncertainties for all centralities (for 30–50% collision centrality the efficiencies
are equal at even lower pT). This means that vjet2 can be measured via the method of Eq. 4.1 if
jets of sufficiently high pT (> 40GeV/c) are chosen for analysis only.

8.2.3 Expectations for 2015

So far, only events recorded in 2010 and 2011 have been considered. During the 2015 - 2018
period (run 2 ), the LHC will accelerate lead ions to

√
sNN= 5.02 TeV. Although this data was

not available for analysis at the time of writing, projections of the systematic and statistical
uncertainties of future measurements can be made using simple assumptions and taking into
account the planned triggering schemes. Fig. 8.5 shows expected relative uncertainties on vcalo jet

2

cBy requiring that events pass both the minimum bias and trigger criteria in the enumerator of Eq. 8.2, the
minimum bias prescale factor is canceled in the division.
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Figure 8.4: The ratios of in-plane and out-of-plane trigger efficiencies, using the EMCal jet
patch trigger, for 0–10, 10–20, 20–30 and 30–50% collision centrality. Statistical uncertainties
only.

of full jets, measured using the EMCal and DCald detectors together with the central barrel
tracking detectors.

To calculate the relative uncertainties as shown in Fig. 8.5, an expected value of vjet2 = 0.08 is
used, with an absolute shape uncertainty of 0.012 and an absolute correlated uncertainty of 0.009
(corresponding to the values found in the charged jet vch jet

2 in 60 < pjetT < 70 GeV/c interval,
see table 6.1). It is assumed in this study, that the magnitude of the systematic uncertainties
does not strongly depend on the jet yield; the reference pT range of 60 < pjetT < 70 GeV/c
however is still chosen such as to avoid including any trailing effects from combinatorial jets
at low transverse momenta or from limited statistics at high pT. The relative expected shape
uncertainties are shown in Fig. 8.5 as green bars, the expected relative correlated uncertainties
as dark blue bars.

The statistical uncertainty on vcalo jet
2 is evaluated from the statistical uncertainties on R =

0.2 PYTHIA jet yields, generated at
√
s = 5.02 TeV. The PYTHIA jet yields are scaled by the

expected Ncoll in 0–10% collision centrality. Energy loss effects are accounted for by multiplying
the PYTHIA jets yields by an RAA of 0.5. A total of 150 million minimum bias events is
expected in 2015, complemented by ≈ 210 µb−1 of EMCal triggered events, which are used in

dThe DCal - not treated in Ch. 3 - is a calorimeter, commissioned in 2015, opposite in azimuth from the
EMCal. The combined acceptance - taking into account edge effects - of the EMCal, DCal is 1.6 times larger
than the EMCal acceptance. The DCal is visible on the event display in Fig. 3.6.
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Figure 8.5: Relative uncertainty on vch jet
2 in 0–5% collision centrality (magenta) and expected

relative uncertainties (green, light blue and dark blue) on vcalo jet
2 for the 2015 data sample at√

sNN= 5.02 TeV, obtained from scaled PYTHIA simulations.

the evaluation of vjet2 only for transverse momenta higher than 80 GeV/c (to avoid the trigger
bias as explained in the preceding section). The expected relative uncertainties - also evaluated
against a constant vjet2 = 0.08 - are shown in Fig. 8.5 as light blue bars. As a reference, the
relative statistical uncertainty on vch jet

2 in 0–5% collision centrality (from the measurement
presented in Ch. 7) is shown as magenta bars.

The projected statistical uncertainties for the 2015 data taking period are smaller than those
of the 2010 and 2011 data samples combined, indicating that repetition of the vjet2 measurement
on new data could more strongly constrain model predictions. The effect of larger multiplicities
at
√
sNN = 5.02 TeV - which would increase the magnitude of background fluctuations and the

combinatorial jet yield - is not taken into account however, but expected to be small, as the
expected increase in multiplicity is around 20%.
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9 | Summary

This work was aimed at determining properties of the quark-gluon plasma (QGP), a phase of
matter created at extreme densities or temperatures, in which quarks and gluons are not confined
into hadrons but can move freely over long distances. The QGP can be created in relativistic
heavy-ion collisions, and is studied by measuring the production rate of highly energetic partons
(quarks or gluons), which are emitted in initial hard scatterings prior to the QGP formation.
These highly energetic partons cannot be observed directly, but fragment into collimated showers
of particles - ‘jets’ - that can be reconstructed in experiment.

The production rate of hard partons can be calculated using quantum-field theory and the
known parton distributions in the proton and neutron. When produced in a dense medium,
partons will lose energy via gluon radiation and inelastic scatterings. These different types of
parton-plasma interactions are expected to give a different dependence of parton energy loss on
the length of the parton trajectory L through the QGP. Jet production in the laboratory can
therefore be used for QGP ‘tomography’: the modification of the parton shower, which manifests
itself as a modification of the measured jet yield, is used to derive plasma properties.

In this work, the dependence of the energy loss of the parton on path length L is studied
directly by looking at jet production relative to the symmetry axis of Pb–Pb collisions. These
symmetries are generated because in non-central heavy-ion collisions, the initial overlap region
of the colliding nuclei projected into the plane perpendicular to the beam direction has an
approximately elliptic shape. The amplitude of the modulation of jet production around the
collision’s symmetry axis is quantified by coefficient vch jet

2 .
The vch jet

2 measurement is challenging as the general modulation of the yield of particles
that do not belong to the jet needs to be separated from the vch jet

2 signal. It is unique however
in the sense that path-length dependence of parton energy loss is quantified along different paths
within the same event, testing L dependence at equal global conditions (e.g. temperature and
density), contrary to the RAA (Eq. 2.31) or RCP (Eq. 2.39) measurements in which energy loss
differences between different systems are compared.

The observed vch jet
2 in non-central collisions indicates that partons lose energy while travers-

ing the QGP. The indication of non-zero vch jet
2 in central collisions (where there is a full overlap

of the nuclei) indicates that deviations from a homogeneous distribution of nucleons within the
overlap region might play an important role in generating energy loss as well, analogous to
effects from fluctuations that were established by using higher harmonic vn studies of particles
at lower momentum. Future, high-accuracy measurements, will be necessary however to further
elucidate the exact nature of parton energy loss in the QGP, and to more precisely determine
power n in the energy loss expectation 〈∆E〉 ∝ Ln.
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A | Track selection and TPC
non-uniformity

The track selection criteria (Ch. 3) are chosen to optimize track length, and thereby pT, since
pT is determined from the track curvature (Eq. 3.2), which can most accurately be measured
when tracks have great length. The complete set of track selection criteria is:

Maximum DCA in the transverse plane: 2.4 cm;
Maximum DCA in the longitudinal (z) direction: 3.2 cm;
Maximum χ2 between tracks reconstructed in the TPC and TPC tracks which are con-
strained to the primary interaction vertex is 36;
Maximum fraction of TPC clusters shared with another track of 0.6;
Minimum of crossed TPC rows of 70;
Minimum ratio of crossed rows over geometrically findable clusters in the TPC is 0.8;
Maximum of the χ2 between space points in the TPC and the reconstructed track is 4;
Daughter particles of kink decays are rejected;
An ITS and TPC refit is required, meaning that, as a last tracking pass, a complete fit
over all assigned clusters is performed in the TPC and ITS: both refits must be successful;
Maximum of the χ2 between space points in the ITS and the track is 36.

As explained in § 3.3.3, two classes of tracks are used. The first class requires at least three hits
per track in the ITS, with at least one hit per track in the SPD. The second class contains tracks
without hits in the SPD, in which case the primary interaction vertex is used as an additional
constraint for the momentum determination. The η, ϕ distribution of these two classes of tracks
is shown in the upper two panels of Fig. A.1 (left: tracks with at least three hits in the ITS,
right: the complementary tracks).

In 2011, the efficiency of data taking within certain sectors of the TPC was not constant.
This is illustrated in the lower panels of Fig. A.1, where the η, ϕ distribution of selected tracks
is shown, split again into the two classes of tracks. In the lower right panel, at negative η and
around ϕ = 4.6, a loss of about 50% of all tracks is seen, resulting from the lower TPC efficiency.

Non-uniformity in azimuth invalidates the hypothesis that Eq. 4.27 can be used as description
of the underlying event energy density. In addition, the reduced efficiency introduces artefacts
in the jet distribution, as illustrated in Fig. A.2 (left), which shows the η, ϕ distribution of
jets measured in these events. A depletion of jet yield is visible in the region of reduced TPC
efficiency. In runs that are affected by TPC non-uniformity, track and jet selection is therefore
limited to the interval 0 < ϕ < 4. Limiting the jet and track selection to 0 < ϕ < 4 for the
events with non-uniform TPC acceptance removes any bias from reduced efficiency from both
the underlying event description and the vch jet

2 measurement.
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Figure A.1: η, ϕ distribution of selected tracks is shown, split into the two classes of tracks
(left: tracks with at least three hits in the ITS, right: the complementary tracks). The upper
panels show distributions obtained in runs in which the TPC efficiency is uniform in η, ϕ. In
the lower right panel, at negative η and around ϕ = 4.6, a loss of about 50% of all tracks is
seen, resulting from the lower TPC efficiency.

Figure A.2 shows, as validation, v2 and v3 coefficients obtained from fitting Eq. 4.27 to
data in events in which the TPC is fully efficient (dashed lines) and in the events in which the
efficiency is limited (solid lines), and the fit is performed on data gathered between 0 < ϕ < 4.
No difference is found between the extracted vn values.
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A depletion of jet yield is visible in the region of reduced TPC efficiency. Right: v2 and v3
coefficients obtained from fitting Eq. 4.27 to data in events in which the TPC is fully efficient
(open squares) and in the events in which the efficiency is limited (full circles), and the fit is
performed on data gathered between 0 < ϕ < 4.
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B | Some notes on p-values

B.1 Hydrodynamic flow and the underlying event

In § 4.4 it is explained that the fit of Eq. 4.27 to the data is accepted only if its p-value, derived
from a χ2 statistic, is larger than 0.01. The χ2 statistic of a fit is given by

χ2 =

i∑
n=0

(
xi − µi
σi

)2

, (B.1)

where xi represents the content of bin i, µi is the fit value evaluated at the bin center, and σi
is the statistical uncertainty on the xi. In a simple scenario, where the number of bins (and
consequently the number of degrees of freedom) in a fitted histogram is equal for each event,
a goodness of fit criterion could be imposed by selecting directly on χ2a. However, since the
binning of the histogram to which Eq. 4.27 is fitted varies from event to event, k also varies
to event. The standard deviation of the χ2 distribution is

√
2k, rendering χ2 or χ̃2 suboptimal

parameters to use directly as a goodness of fit criterion, as the absolute width of the distribution,
and thus the absolute criterion for selecting certain confidence intervals, changes event-by-event.

The p-value, which is the probability of finding a statistic (i.e. χ2) at least as far away from
the hypothesis as the observed one, is used as a criterion which can be constructed independent
of k. Analytically it is obtained from the χ2 cumulative distribution function (CDF) with the
appropriate number of degrees of freedom k, and x = χ2,

p = 1− CDF(k, x) = 1−

(
1

Γ
(
k
2

)γ [k
2
,
x

2

])
, (B.3)

where Γ is the Gamma function and γ the lower incomplete gamma function. The p-value
distribution itself is uniform when the null-hypothesis (i.e. Eq. 4.27) perfectly describes the
observed data, which is only approximately true in this specific case, for two reasons.

The χ2 statistic relies on the assumption of normally distributed data. The uncertainties
on xi are not truly normally distributed (as explained in § 4.4); therefore, it is expected that
the data will not exactly follow the χ2 distribution. Furthermore, the hypothesis of Eq. 4.27 is
purposefully incomplete: it is known that higher harmonic coefficients (v4, v5, etc. are non-zero,

aOr on the reduced χ2,

χ̃2 =
χ2

k
, (B.2)

where k denotes the number of degrees of freedom. Since the χ2 distribution has its mean at k, χ̃2 has a mean
of 1.
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and in addition to track-to-track correlations from hydrodynamic expansion of the background,
non-flow effects (jets, resonance decays, etc. will play a role in generating structures in ∆ϕn as
well.

To explore and quantify the effect of these issues, the χ2 goodness of fit criterion is tested
both in data and in a simple ‘Monte Carlo’ modelb. This exercise starts by performing a normal
analysis pass over the data. For each event, v2 and v3 are estimated by fitting of Eq. 4.27;
information on the fit (such as p-value and χ2) is stored. After this, all tracks in the event
are assigned ‘new’ azimuthal angles, drawn this time randomly from the functional description
of Eq. 4.27 itself (with v2, v3 and event plane angles fixed to the values just found by fitting
in the same event). Eq. 4.27 is then fitted again, to the ‘simulated’ azimuthal distribution;
information from this ideal fit is also stored. The procedure is repeated for all events in the data
sample. Following this simple routine, the effect of higher harmonics, non-flow and non-normal
uncertainties on the p-value and χ2 statistic is quantified.

Figure B.1 shows p-values as function of centrality (top left), the correlation of χ̃2 and
p-value (top right), χ̃2 as function of centrality (bottom left) and percentage of accepted fits
according to the p > 0.01 criterion as function of centrality (lower right) obtained from fitting
Eq. 4.27 to simulated azimuthal distributions (the ‘Monte Carlo’ case). As expected, the p-value
distributions are uniform and the χ̃2 distributions are centered around 1. 99% of fits is accepted
at the most central collisions (which corresponds to the p > 0.01 criterion), at higher collision
centralities this number decreases a bit, most likely as sparsely filled bins hinder the accuracy
of the fitting procedure.

Figure B.2 shows the same distributions, but obtained from fitting Eq. 4.27 to actual, unal-
tered data. The p-value distribution is no longer flat - an effect which is more pronounced at
higher centrality - and the χ̃2 distributions have a slightly displaced mean. The deviations of
these statistics from their behavior in Fig. B.1 is expected, as it is known that Eq. 4.27 gives a
limited description of the underlying event’s structure, and in addition to this, the uncertainties
on the data to which Eq. 4.27 are fitted are not strictly normally distributed. The deviations
from the expected behavior as small however, and the p-value derived from the χ2 statistic is
considered a just choice.

B.2 Significance: a short addendum

Figure 7.1 shows coefficient vch jet
2 , the compatibility of which is tested against the hypothesis

v2 = 0 by calculating a p-value, using Eq. 7.1, over the full pT range of the measurement. The
(statistical) uncertainties on the vch jet

2 measurement increase in magnitude at high pT however.
Splitting up the data into independent sub-ranges in pT and assessing the p-value in these ranges
allows for quantifying which parts of the jet spectra contribute most strongly to the significance
of the measurement. Since the χ2 test of Eq. 7.1 is performed for n − 2 degrees of freedom
(with n the number of measured data points), a minimum of three data points is necessary
to evaluate the p-value. Testing is therefore limited to only two pT sub-ranges per centrality
interval: 30–60 and 60–100 GeV/c for 0–5% collision centrality, and 20–60 and 60–90 GeV/c for
30–50% collision centrality.

The p-values found in these sub-ranges are given in Tab B.1; the values of nuisance parameters
εcorr and εshape are shown as well, where εcorr is expressed in units of the correlated systematic

b‘Monte Carlo’ is used in quotation marks, as this simple model relies on reshuffling of real data, rather than
generating independent events, as done for other Monte Carlo studies in this dissertation.
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Figure B.1: p-values as function of centrality (top left), the correlation of χ̃2 and p-value (top
right), χ̃2 as function of centrality (bottom left) and percentage of accepted fits according to
the p > 0.01 criterion as function of centrality (lower right) obtained from fitting Eq. 4.27 to
simulated azimuthal distributions.

centrality (%) 0-5 30-50

pjetT range (GeV/c) 30–100 30–60 60–100 20–90 20–60 60–90
εcorr -0.80 -0.62 -1.03 -1.47 -0.91 -0.61
εshape -0.0.36 -0.033 -0.041 -0.064 -0.071 -0.016
p-value 0.12 0.07 0.02 0.000888 0.0015 0.022

Table B.1: p-values and nuisance parameters εcorr and εshape for sub-ranges in pT and evaluated
over the full pT range for 0–5 and 30–50% collision centrality.

error (a value of 1 means a shift up by 1 standard deviation), while εshape is presented in terms
of absolute vch jet

2 values (a shift by 0.05 changes vch jet
2 by 0.05).

At face value, the p-values for different pT ranges in 0–5% collision centrality are surprising,
as the compatibility with 0 is stronger over the whole pT range (p = 0.12) than when taken
over sub-ranges (p = 0.07 and p = 0.02). All p-values however still indicate that the results lie
within 1.5–2 standard deviations of the vch jet

2 = 0 hypothesis; as the number of data points
over which Eq 7.1 is evaluated is small, fluctuations may play a large role in generating the
differences between the p-values.

As can be seen in Table B.1, the deviation from vch jet
2 = 0 is mostly significant at low pT.
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Figure B.2: p-values as function of centrality (top left), the correlation of χ̃2 and p-value (top
right), χ̃2 as function of centrality (bottom left) and percentage of accepted fits according to
the p > 0.01 criterion as function of centrality (lower right) obtained from fitting Eq. 4.27 to
unaltered data.

At high transverse momenta, for both central and semi-central collisions, vch jet
2 is consistent

with zero within two standard deviations (p = 0.02 and p = 0.022 respectively).
The p-value evaluation can also be used to better understand how unfolding changes the jet

spectra. The effect that unfolding has on the significance and uncertainties on the data points is
explored by looking at vch jet

2 obtained from evaluating Eq. 4.1 using the measured spectra prior
to unfolding rather than using the unfolded jet spectra. This ‘uncorrected’ vch jet

2 is shown in
Fig. B.3, for 0–5% (left) and 30–50% (right) collision centrality.

Since jet production follows a steeply falling, asymmetric distribution, the expected net effect
of unfolding is that jet counts are moved from low to higher pTc. As can be seen in Fig. B.3, the
statistical uncertainties at high pT are large on vch jet

2 obtained from the measured jet spectra; in
the final vch jet

2 results (Fig. 7.1), these uncertainties are smaller. To quantify the reduction of the
statistical uncertainties by unfolding, the χ2 statistic can be evaluated for both the uncorrected
and the unfolded vch jet

2 . Since the vch jet
2 prior to unfolding has no systematic uncertainties,

cUnfolding redistributes the jet spectra in pT (i.e. moves jets to lower and higher pT), according to probabilities
that are quantified as the combined response matrix. Since the measured jet spectra are steeply falling, it is
expected that the unfolding moves more counts from low to high pT than vice versa by the simple reason that
there are more jets to be moved from low to high pT than the other way around.
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Figure B.3: Coefficient vch jet
2 prior to unfolding for 0–5% (left) and 30–50% (right) collision

centrality, statistical uncertainties only.

centrality (%) 0-5 30-50

pjetT range (GeV/c) 60–100 50–100 60–90 50–90
χ2
uncorrected 13.5 19.2 5.0 7.2
χ2
unfolded, stat only 27.0 8.0

Table B.2: χ2 statistic for vch jet
2 = 0, evaluated over sub-ranges of the measurement, using

only statistical uncertainties, for vch jet
2 evaluated on measured jets (prior to unfolding) and

unfolded jets.

Eq. 7.1 must be reduced to the ‘standard’ χ2 definition,

χ2 =

n∑
i=1

(v2,i − µi)2

σ2
i

. (B.4)

Table B.2 gives the χ2 statistics for compatibility with v2(= µi) = 0 in the high pT range (60-
100 GeV/c for 0–5% and 60–90 for 30–50% collision centrality). The χ2 after unfolding is larger
than before unfolding, confirming that the statistical uncertainties at high pT are decreased.
The change is (very roughly) compatible to evaluating the χ2 values over a pT range that is
extended by 10 GeV/c to start at 50 GeV/c (as also given in the table), indicating that unfolding
indeed effectively moves jets to higher pT, thereby reducing the statistical uncertainty on vch jet

2

for highly energetic jets.
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C | Event plane angles from
different η intervals

The derivation of weights χ, introduced in § 4.3, is not straightforward, and starts with the
entity

n(ΨEP, n −Ψn), (C.1)

which is the difference between the orientation of the event plane angle (ΨEP, n) and the sym-
metry plane angle (Ψn) at order n, multiplied by order n (the use of this entity is motivated in
§ 4.3.3). The distribution of this difference can be written as [87]

dP

dn(ΨEP, n −Ψn)
=

∫
v′ndv′n
2πσ2

×
(
−v

2
n + v′2n − 2vnv

′
n cos[n(ΨEP, n −Ψn)]

2σ2

)
(C.2)

with

σ2 =
1

2N

〈w2〉
〈w〉2

(C.3)

in which vn are the harmonic flow coefficients (determined from the same track sample as used
in determining ΨEP, n, introduced in § 2.4.1), v′n are flow coefficients ‘measured’ directly with
respect to the impact parameter, N is the number of particles that is used to determine ΨEP, n

and w weights as used in the construction of the Q-vectors (see e.g. Eq. 4.16). Weights χ are
defined as

χ =
vn
σ
' vn

√
2N (C.4)

where the last equality holds when vn is defined as anisotropy in the number of particles that
is produced rather than anisotropy of total ‘energy’ flow (i.e. the number of particles weighted
with their transverse momentum). The integral in Eq. C.2 can be solved analytically [86, 87],
giving an expression for the average value for 〈cos(n[ΨEP, n − Ψn])〉 (which, will be shown in
§ 4.3.3, corresponds to the event plane resolution R)

〈cos(n[ΨEP, n −Ψn])〉 =

√
π

2
√

2
χn exp

(
−χ2

n

4

)
× I(k−1)/2

(
χ2
n/4
)

+ I(k+1)/2

(
χ2
n/4
)

(C.5)

in which Ik is the kth order modified Bessel function. At any given event plane resolution, χ
can be solved numerically from Eq. C.5 by iterative techniques.
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Samenvatting in het Nederlands

Jets - gecollimeerde bundels van deeltjes afkomstig van de fragmentatie van een parton - kunnen
gebruikt worden om het quark-gluon plasma (QGP), dat in botsingen van zware ionen gecreëerd
wordt, te onderzoeken, aangezien door het medium geïnduceerd energieverlies van partonen door
verstrooiing en straling leidt tot een modificatie van het gemeten jet spectrum.

De afhankelijkheid van energieverlies op de afstand die een parton in het medium aflegt,
verschaft inzicht in deze energieverliesmechanismen en kan bestudeerd worden door de produc-
tie van jets, relatief aan de orientatie van het tweede-orde symmetrievlak Ψ2, te meten. De
anisotropie van de jetproductie wordt gekwantificeerd als vch jet

2 , de tweede coëfficient van de
Fourierexpansie van de azimuthale verdeling van jets ten opzichte van Ψ2,

dN

d (ϕjet −Ψn)
∝ 1 +

∞∑
n=1

2vjetn cos [n (ϕjet −Ψn)] , (C.6)

waar ϕjet de azimuthale hoek van de jet is en Ψn de richting van de vlakken van symmetrie van
de initiële distributie van botsende nucleonen.

Dit proefschrift beschrijft de nieuwe resultaten van de ALICE vch jet
2 metingen in centrale

en semi-centrale Pb–Pb botsingen en toont modelvoorspellingen en vergelijkingen met andere
metingen welke gevoelig zijn voor energieverlies van partonen in het QGP.

De gebruikte data is verzameld in 2010 en 2011 en omvat 6.8×106 centrale (0–5%) botsingen
en 8.6×106 semi-centrale (30–50%) botsingen waarvan de interactievertex binnen 10 cm van het
nominame botsingenpunt ligt. Geladen-deeltjessporen worden gereconstrueerd door het Inner
Tracking System en de Time Projection Chamber tussen |η| < 0.9; selectiecriteria zijn gericht op
het optimaliseren van impulsresolutie en het behouden van volledige detectoracceptantie. Cen-
tralitietsbepaling en reconstructie van de symmetryvlakken ΨEP, n (de experimentele schatting
van de initiële symmetrievlakken Ψn) wordt gedaan met behulp van de V0 detectoren, welke
zich bevinden tussen 2.8 < η < 5.1 en -3.7 < η < -1.7.

Jets worden gereconstrueerd middels het kT en anti-kT algoritme, geïmplementeerd in Fast-
jet. Anti-kT jets worden gebruikt voor de bepaling van vch jet

2 . De mediaan van de verdeling
van de oppervlaktedichtheid van transversale impuls van kT jets wordt per botsing bepaald en
gebruikt als schatting van de gemiddelde energiedichtheid. De dominante stromingscoëfficienten
v2 en v3 zijn gemodelleerd volgens

ρch(ϕ) = ρ0 (1 + 2{v2 cos [2 (ϕ−ΨEP, 2)] + v3 cos [3 (ϕ−ΨEP, 3)]}) . (C.7)

Parameters ρ0 en vn worden per botsing bepaald door Vgl. C.7 aan de data te fitten (zie Fig. C.1);
ρch(ϕ) is de azimuthale distributie van de som van pT voor deeltjes met 0.15 < pT < 5 GeV/c
en |η| < 0.9. Het meten van ΨEP, n in het V0 systeem ondervangt correlaties tussen ΨEP, n en
deeltjes, welke slechts op korte afstand bestaan. De gecorrigeerde jet impuls pjetT wordt verkregen
door de lokale achtergrondenergie ρch local, bepaald middels integratie van ρch(ϕ) rond ϕjet±R,

ρch local =
〈ρch〉
2Rρ0

∫ ϕ+R

ϕ−R
ρch(ϕ)dϕ, (C.8)

te vermenigvuldigen met het jet oppervlak A, en dit van de jet impuls af te trekken: pjetT = prawT

- ρch local A.
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Figure C.1: Links: fit van Vgl C.7 aan de transversale energieverdeling van een botsing.
Rechts: vch jet

2 in semi-centrale botsingen, samen met vpart2 en vcalo jet
2 .

Coëfficient vch jet
2 wordt bepaald uit het verschil tussen de gedeconvolueerde pT-differentiële

jet spectra, gemeten langs de korte as van de botsingsellips (Nin) en langs de lange as van de de
botsingsellips (Nout),

vch jet
2 (pjetT ) =

π

4

1

R2

Nin(pjetT )−Nout(p
jet
T )

Nin(pjetT ) +Nout(p
jet
T )

. (C.9)

Vergelijking C.9 is afgeleid van Vgl. C.6 voor n = 2, door integratie over
[
−π4 ,

π
4

]
en
[
3π
4 ,

5π
4

]
voor Nin en

[
π
4 ,

3π
4

]
en
[
5π
4 ,

7π
4

]
voor Nout, met substitutie van ΨEP, 2 door Ψ2. De factor

R2 ≡ 〈cos [2 (ΨEP, 2 −Ψ2)]〉 corrigeert vch jet
2 voor de eindige precisie waarmee ΨEP, 2 Ψ2 be-

nadert. Om de jet spectra te corrigeren voor instrumentale resolutie en fluctuaties van de
achtergrondenergie, wordt een hoekafhankelijke deconvolutie uitgevoerd van Nin en Nout.

Systematische onzekerheden op vch jet
2 zijn in twee categorieën onderverdeeld, afhankelijk

van de punt-tot-punt correlatie. Vormonzekerheden, voornamelijk afkomstig uit de deconvo-
lutie, leiden tot een tegengestelde veranderingen voor hoge en lage pjetT . Gecorreleerde onzek-
erheden, gedomineerd door onzekerheden in de deeltjesspoorreconstructie, zijn punt-tot-punt
gecorreleerd. Correlaties tussen Nin en Nout zijn voor alle onzekerheden in acht genomen.

vch jet
2 is significant en positief in semi-centrale botsingen (Fig. C.1), wat duidt op energiever-

lies van partonen in het botingsmedium. In centrale botsingen leiden de achtergrondfluctuaties
tot grote onzekerheden. De compatibiliteit van de meting met de hypothese vch jet

2 = 0 is getest
middels een gemodificeerde χ2 minimalisatie, en ligt tussen 1-2 standaarddeviaties voor centrale-
en 3-4 standaarddeviatie voor semi-central botsingen. vpart2 van geladen deeltjes en de ATLAS
meting van vcalo jet

2 van R = 0.2 jets bestaande uit zowel geladen als neutrale deeltjes laten eve-
neens zien dat partonen energie verliezen in het botsingesmedium; de resultaten zijn kwalitatief
vergelijkbaar voor zover de onzekerheden een vergelijking toelaten.

De vch jet
2 meting is daarnaast vergeleken met voorspellingen van het JEWEL model, wat

energieverlies van partonen door straling en verstrooiing in een QCD medium simuleert. In semi-
centrale botsingen komt de voorspelling van JEWEL goed overeen met de metingen. JEWEL
geeft echter geen beschrijving van fluctuaties in de distributie van nucleonen binnen de nuclei,
hetwelk tot een onderschatting van de grootte van vch jet

2 leidt in centrale botsingen.
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