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Abstract

In this work the analysis of the intermittency signal observed in high energy experi-
ments is done using multiparticle distributions and correlation functions. The effect of
the dimensional projection of the multiparticle distributions on one or two-dimensional
subspace is discussed. The structure of the multiparticle cumulants is analyzed for the
DELPHI e+e~ annihilation data. The language of the self-similar distribution func-
tions, which is used in this work, is shown to be largely equivalent to the well known
a-model. In the case of the ultrarelativistic nuclear collisions, where the Monte-Carlo
simulations fail to reproduce the data, we argue that the observed intermittency pattern
is a signal of some nonlinear effect beyond the simple superposition of nucleon-nucleon
collisions. The model of spatiotemporal intermittency is discussed in details and is
shown to reproduce qualitatively the dependence of the intermittency strength on the
target and projectile nuclei. Similar effects are also observed in the statistical systems
undergoing a higher order phase transition. We study in particular a 1-dimensional
(ID) cellular-automaton (CA) and a ID forest-fire model. On the example of the
noncritical ID Ising model we illustrate the difficulties of the scaled factorial moment
(SFM) method in extracting genuine scaling behaviour. The problem of the finite-size
effect in connection to the dimensional projection can be easily exemplified in the case
of the 2D critical system with conformai symmetry. All these studies could serve as
tools to test the sensibility of the SFM method as used in the analysis of the high
energy production.
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1. Introduction

Since few years intermittency in the phase-space distributions of produced parti-
cles is studied experimentally in the high energy collisions. Intennittency, which was
discussed first in the connection with turbulence bursts in classical mechanics [1], is a
manifestation of the scale-invariance of the physical process.

It was conjectured that the multiplicity fluctuations in small bins can reveal impor-
tant aspects of the multiparticle production mechanism such as the intermittent pattern
of fluctuations [2,3]. Intennittency is characterized by large nonstatistical fluctuations
at all scales , i.e. the SFMs F{ of a studied distribution rise like Fi(Sy) on (6y)~Ui with
decreasing bin size Sy (for the definitions see sect. 2.1). Even though the underlying
physical interpretation in the spirit of some multifractal structures in the multiparticle
distributions is experimentally not clear, the method of the SFMs in limited rapidity
intervals, proposed by Bialas and Peschanski, became a powerful tool in the studies of
nonstatistical fluctuations in the multiparticle production.

The two basic results of the work of Bialas and Peschanski [2] were the proposition
of applying SFMs in order to reduce the statistical noise and the study of the SFMs
with changing resolution scale. The SFMs reduce the statistical noise which is present
in the events with a finite multiplicity, and they remove it completely in the case of
the Poissonian noise. Thus, this method permits to study effects of the nonstatistical,
dynamical fluctuations in the probability distributions of produced particles without
the bias from the statistical fluctuations.

The dependence of the SFMs on the resolution scale in rapidity, azimuthal angle,
transverse momentum or any combination of these variables was proposed as a tool to
search for fractal probability distributions in multiparticle production. The method of
the SFMs is a beautiful method to investigate the multiparticle correlations on small
scales and/or for high order correlations which otherwise would be inaccessible. The
SFMs have also the advantage of selecting spikes in the particle distributions. The
SFM of rank i has contributions only from bins with at least i particles, so higher
moments are sensitive to the clusters of particles well collimated in momentum. An
important tool in these studies is the a-model of density fluctuations [4] which was
introduced in the high energy phenomenology by Bialas and Peschanski [2, 3]. This
model was used to study the different questions of the intennittency analysis, giving
predictions in agreement with the experimental results. It is also the only model which
predicts consistently the relations between the SFMs of different rank.

In the present work, we shall study the intermittency phenomena in a different ap-
proach, which is based on the relation between the multiparticle distribution functions
and the SFMs [5]. This approach was used extensively with non-singular parametriza-
tion of the correlations [6, 7, 8, 9]. We shall mostly assume the presence of singularities
in the multiparticle distributions and study in this language the different issues of the
intennittency phenomenology. These include the dimensional projection, the finite-size
scaling (FSS), the regimes of strong and weak intermittency, the scaled factorial cor-
relators (SFCs) and the relation between the two-particle distributions and the higher
multiparticle distributions. In all these questions, with the exception of this last issue,



the singular multipaxticle distribution is largely equivalent to the a-model. As it was
already mentioned, the a-model is the only one that relates consistently the SFMs of
different ranks. In this domain the singular (or nonsingular) multiparticle distribution
approach is much less successful. A related problem is the phase-structure of the a-
model allowing for different regimes of fluctuations [10]. Of course, this very interesting
problem cannot be studied in the approach presented in this work.

The nonstatistical fluctuations in ultrarelativistic nuclear collisions deserve in our
opinion special attention. We argue that it is a nonlinear effect, which cannot be ac-
counted for by the simple nucleon-nucleon superposition models and may have strong
implication on our understanding of the collision dynamics. The presence of spatiotem-
poral intermittency in the interaction region could explain the essential features of the
experimentally observed intermittency patterns (impact parameter and projectile de-
pendence). Assuming that the onset of the spatiotemporal intermittency is due to
the higher order phase-transition [11], the detailed calculations with the inclusion of
the non-ideal inside-outside dynamics and the resonance decay are presented. Also
the behaviour of the fluctuations during the hydrodynamical evolution of the colliding
system and the implication of the fractal structures in space-time for Bose - Einstein
(B-E) correlations are studied.

Another domain where the study of the SFMs was performed are the fluctuations in
the critical Ising systems [12,13]. We analyze in a similar way the SFMs behaviour for
two simple CA models, finding a scaling behaviour in the SFMs for ID (non-projected)
and 2D analysis. In order to study the noncritical intermittent-like behaviour we
calculate the SFMs for the distributions of the number of particles or links (nearest
neighbour interactions) in the ID lattice gas model. The intermittent-like behaviour
present in this model could serve as an illustration of the difficulties in the procedures
searching for some fractal source of the phenomena observed in the experimental data.
The intermittency signals in the particles and links are compared and a possible influ-
ence of the clustering in hadronization on the fluctuations is also discussed. The effect
of the finite size of a critical system on intermittency pattern is studied. It is shown
that the correlations in a system of the infinitely long strip with a finite width exhibit
different behaviour on the distances of the order of the induced effective correlation
range than the correlations in the infinite system. It is difficult however to discuss the
possible implications of this effect on the observation of the intermittency signal at the
present stage of the experimental results.

The study of fluctuations in the density of particles produced in ultrarelativistic
collisions attracted much attention from the experimental groups [14] - [33] .

To close this chapter, we list below most of the published experimental data on the
intermittency analysis by the SFM method. The e+e~ annihilation was first analyzed
by the TASSO Collaboration [14]. The analysis was performed in the ID rapidity
(y) distribution along the sphericity axis and in the 2D rapidity-azimuthal angle (y-4>)
distributions. At LEP energies, DELPHI [15], ALEPH [16] and OPAL [17] Collabo-
rations performed the intermittency analysis in ID or 2D distributions. The LUND
model predictions were found to be consistent with the data. The CELLO Collabora-
tion analyzed the 3D intermittency signal in e+e~ annihilation and also found a good
agreement with the LUND model [18]. The ID analysis was made also for the /t-p
scattering, the data could not be reproduced by the LUND and Marchesini-Webber



models [19]. Unlike in the other experiments, the authors found that a significant part
of the effect could be due to the B-E correlations.

The multiparticle production in the t/-nucleus interactions was analyzed, finding an
intermittency signal in ID rapidity analysis for i/-Ne interactions and no intermittency
for i/-D interactions [20]. The intermittency in this case was interpreted as an effect of
«scattering in the i/-nucleus interaction.

The Tr+/K+-p collisions were extensively analyzed by the NA22 Collaboration
[21, 22] which calculated also the SFCs for their data [23]. In this process, neither
the magnitude, nor the p^-dependence of the effect are reproduced by the FRITIOF
Monte-Carlo. The data of the UA1 collaboration for pp collisions at 630 GeV in-
dicated an increase of the intermittency signal for the low multiplicity sample [24].
Again, this tendency is not reproduced by the models. The pp collisions at 360 GeV
were analyzed in ID for different multiplicity samples. The Monte-Carlo generators
also do not reproduce the multiplicity dependence of the fitted intermittency slopes
[25]. The NA22 Collaboration performed the intermittency analysis of the particles
produced in 7r+/A"+-nucleus interactions [26], using the same experimental setup as
for the ir+/K+-p collisions studied earlier by this group [21, 22, 23]. The results show
weaker intermittency signal for larger targets.

The proton-nucleus and nucleus-nucleus collisions were first analyzed by the KLM
Collaboration [27, 28] in ID and 2D distributions. The intermittency signal decreased
for larger projectiles, but this decrease was smaller than expected from the increase
of the mean multiplicity in the collision. It was impossible to reproduce this nonlin-
ear dependence on the multiplicity by the models independent collisions. The EMU01
Collaboration performed also the intermittency analysis for different nuclear projectiles
and targets [29, 30] and found a similar dependence as the KLM Collaboration. Gen-
erally, the intermittency signal decreased rapidly for increasing incident energy (14.6,
60 and 200 GeV). The NA35 Collaboration analyzed the multiparticle production in
the nuclear collisions also in the 3D momentum space [31]. ID and 2D analysis of
the nuclear collisions was also performed for emulsion experiments at different ener-
gies [32]. Few events from cosmic ray experiments were analyzed finding rather strong
intermittency effect [33].

In summary, one can say that all processes shov an increase of fluctuations with
increasing resolution. However, the SFMs dependence on the bin size flattens for small
bins in ID analysis. An intermittency signal was found stronger in 2D and even stronger
in 3D analysis, where no sign of flattening is seen. Recent results for the SFMs in 3D
for e+e~ annihilation [34], fi-p [35], v+/K+-p [36] and nucleus-nucleus collisions [31]
show that the dependence of the SFM on the resolution is stronger than a power-law.
Fialkowski showed that these results could be explained if only a part of the two-particle
distribution is scale-invariant [37], in contrast to the predictions of the a-model where
the whole two-particle distribution is scale-invariant [2]. The e+e~ annihilation results
are consistent with the predictions of the LUND model. The hadron-hadron collisions
show however a reverse dependence of the intermittency signal on the multiplicity cuts
as the FRITIOF model. In the nuclear collisions, the Monte-Carlo calculations fail to
reproduce the strength of the intermittency signal.



2. Scale-invariant multiparticle distributions

This chapter gives the essential definitions for the factorial moments and their
relation to the correlation functions. The rise of the SFMs was explained by some
authors using the extrapolation of the known non-singular short range correlations to
very small rapidity bins [6,7]. In this chapter we give the description of the dependence
of the SFMs on the resolution scale by the singular multiparticle distributions in 2D
or 3D space. This leads, after the dimensional projection, to similar results as in
the non-singular ID description. The description of the intermittency patterns in the
language of the n-particle distributions is discussed in the relation to a-model and to
some experimental results.

2.1 Basic definitions

In this section we shall give same basic definitions of the quantities that we shall
study and some relations between them. We shall assume in this work the existence
of only one particle specie, which is what in most of the experiments is classified as
charged particles. The total inelastic cross section 07 can be written as a sum of the
cross sections trn for the production of exactly n-particles in an event :

«r/ = j > » (2.1)
n=0

Further, one can define the probabilities Pn = cn/aj of observing ra-particles in an
inelastic event. From those probabilities one can construct the moments of the multi-
plicity distribution, the i-th moment is given as :

<n* >=£)»•>„, (2.2)
n=l

or the scaled moments

C. = ̂ ^ . (2.3)

The scaled moments Cf- are frequently used to compare multiplicity distribution for
different processes in restricted rapidity intervals or for different energies, i.e. for
distributions with different < n > . In particular the energy independence of C, was
expected to be a consequence of the KNO scaling of the multiplicity distributions. As
we shall see below the SFMs are a better tool to study the multiplicity distributions,
because they are not contaminated by the statistical noise. Actually, they deconvolute
the observed multiplicity distributions from the Poisson distribution, which is a natural
ansatz for statistical noise superimposed on top of the "physical" distribution. The
factorial moment is defined as :

00

<n{n-l)...(n-i + l)>=Y^,n(n-l)...(n-i+l)Pn , (2.4)
n=l



and the SFM as , ,
<n(n-l)...(n-i+l)> , .

Fi = T^T' • (2-5)

Let us write the discrete multiplicity distribution Pn in form of a Poisson trans-
form (see ref. [38] for a discussion of the Poisson transform in the context of high
energy phenomenology) :

where n=<n> and f(x) fulfils the normalization conditions :

f~xf(x)dx=l. (2.7)

The Poisson transform means a convolution of the statistical Poissonian noise of mean
n with the "physical" distribution f(x). The SFMs of the discrete distribution Pn are
related to the moments of the function f(x) :

Fi= [°axif(x)dx . (2.8)
Jo

This analysis was used to study the multiplicity distributions in the full phase-space
or in some restricted rapidity windows. Some bin to bin correlations and, in particular
the forward-backward correlations were studied.

The studies of the multiplicity distribution cannot show the structure of the cor-
relations between the momenta of the produced particles. In the independent particle
production, the probability of producing a particle does not depend on the fact that
and how many other particles are produced. If, on the contrary, some correlations
are present, the production of i particles enhance the probability of the production
of the (i + l)-st particle. As a result, the multiplicity distributions are broader then
the Poisson distribution. This gives us information on the global number of the parti-
cles produced, i.e. on the integrated correlation functions and not on the correlations
between particles with definite momenta.

The information about n-particle correlations is contained in the n-particle distri-
bution function pa[yi,• • • ,yn) , where y,- denotes generally the momentum vector of
the i-th particle. This quantity denotes the probability density of observing «-particles
with momenta j / i , . . . ,yn irrespective of the number and positions of any other particles.
These distribution densities are related to the n-particle inclusive cross sections :

1 da

- . (2.9)

The integration of the n-particle distribution over a domain Î2 of the phase-space, gives
us the factorial moments of the multiplicity distribution in that domain [5] :

<n>a= I dy p^y)



< n(n - 1 ) . . . (n - i + 1) > n = J dyx... j dyt pi{yi,... ,3/,) , (2.10)

and correspondingly the SFM :

F_ = Sndyi...Sndyipi(yl,...,yi) ^ n j

If the one-particle inclusive distribution is approximately constant, i.e. in the "plateau"
region, we can rewrite the above relation as :

where the i , represents the i-particle reduced density :

di{yu...,yi)= ^ " - ^ v . (2.13)

The use of the reduced density is very common in phenomenological parametrizations of
the i-particle distribution, in the cases where the one-particle distributions are assumed
to factorize. Furthermore, we shall mostly assume in the model comparisons that the
one-particle density is almost constant. The n-particle distribution can be written
using the n-particle correlation function :

• • • Pi{yn) + C n ( y i , . . . , y n ) , (2.14)

and analogously one can define the reduced correlation function :

p ( y ) p ( y )

The n-particle correlation function consists mainly of statistical combination of lower
order correlations. In order to study genuine n-particle correlations, one has to define
the n-particle cumulant Kn(yi,..., yn) , which enters into the expression for pn together
with cumulants of the order lower than n. The first few densities are :

K2{yi,y2) , (2.16)

i.e. K2 = C2 ,

^2yi)K2{yj,yk) + K3{yi,y2,y3)

(3k,!/i)

k,yi) + K4{yuy2,y3,y4)

, yi, ym) + Yi K*{yh yj)Myt, n, ym)
+K5(yu...,ys), (2.17)



where the sums are taken over all permutation of {yi,..., yn} without the transposition
inside the factors of the sums.

The n-particle cumulant measures the statistical dependence of the whole n particle
set. The n-particle cumulant is zero, if anyone of the n particles is independent of the
others. Analogously, the n-particle reduced cumulant can be defined :

kn(yu...,yn) = -7-T —7-T • (2.18)
pi{yi) • Pi(y)

Bialas and Peschanski proposed to look on the dependence of the SFMs on the
resolution in the rapidity [2]. The idea was to study in the high energy event the
structure of the particle density in rapidity. They showed that the SFMs averaged over
M bins of width Sy in the total rapidity window of length AY" = MSy , correspond to
the moments of the probability density in these bins :

r

(2.19)
where nk is the number of particles in the bin k in the event of the total multiplicity
N in the whole rapidity interval AY" . An average of the r.h.s. of the above equation
over a large number of events with fixed multiplicity N, should converge to the l.h.s.
The multiplicity distribution in different bins Pmui{ni, • • • I^M) is a convolution of the
probability distribution P and the multinomial distribution :

Pmul(n1,...,nM) = —: ' , . , N / dxx...j
n\\ TIM'M' JO JO

(2.20)
Thus, the factorial moments of the multiplicity distribution in different bins give the
moments of the probability distribution P. The intermittent behaviour1 is defined as
a power-law dependence of the SFMs on the number of bins :

(j£Y ' , (2.21)

where i/t- is called the intermittency exponent of rank i . This analysis was applied to
the JACEE event [2], confirming the observation of Takagi [39] that the rapidity density
fluctuations are of a nonstatistical origin. The SFMs can also be averaged for a sample
of many events. This allows to perform similar studies also in low multiplicity events
such as discussed in e+e~ or hadron-hadron collisions [2, 3]. The SFM is calculated for
each event in a definite bining, i.e. for each event the sum over all th?,M bins is taken,
and then the average over all events is taken. Generally, the events in the sample have
different multiplicities so the normalization N(N — 1 ) . . . (iV — i + 1) from eq. (2.19),
which accounts for the Bernoulli character of the statistical fluctuations around the

'We shall use the name inteimittency signal oi intermittency patterns to describe the increase of
the SFMs with the resolution, but not necessaily a power-law. We shall also call an intermittency
signal a stronger one if the corresponding local slopes of the dependence of the SFM on the resolution
are bigger.



studied probability P, is replaced by < n >'", where < n > is the mean multiplicity in
the sample of events. This gives the horizontally averaged SFMs [3] :

^ f l ) . . . ( n f e - t + l ) > , (2.22)
n

where < . . . > means an average over events. Generally, even if the particles are
uncorrelated (all correlation functions Cn = 0) the defined above Ft contains a spurious
dependence on the scale due to the shape of the one-particle distribution pi(y) . So
the horizontal SFMs should be corrected for this dependence by a factor [40] :

'-1 M

b £
The corrected SFMs :

M'-1 M

(2-24)

are less biased by the variations in the single-particle spectrum. Bialas, Gaidzicki and
Ochs proposed to look at the fluctuations in a different variable [41]:

( 2 - 2 5 )

now 0 < X(y) < 1 . This change of variables before the intermittency analysis is
especially important for rapidly changing pi, such as for the transverse momentum
distribution, where this procedure was shown to better follow the true intermittent
correlation than the corrected horizontal analysis. The experimental data are almost
entirely analyzed using the corrected, horizontally averaged SFMs Ft . The SFMs
calculated in that way for each chosen bin width are then fitted to the intermittent
relation :

ln{Fi) ~ a - Viln(6y) . (2.26)

One can also define the vertically averaged SFMs [42] :

F 1 ^ < M n f c - l ) . . . ( n t - i + l ) >
Fi = M £ ^ T P • (2-27)

This corresponds to the average of the SFMs calculated in each of the M bins over all
the bins. This form of averaging is equivalent to the previous one for the case of the flat
one-particle distribution. However, there are till now not many experimental data on
the vertical SFMs. The EMU01 data on the nuclear collisions [29] show little difference
between the vertical SFMs and the corrected horizontal SFMs. From the theoretical
point of view, it is particularly easy to relate the vertical SFMs to the integrals of the
n-particle distributions :



For slowly varying pi(y), SFMs can be written using the reduced densities as follows :

fUmin+kSy1 * ' 1 /'Vmii.+fcSy fUmin+kSy

{Sy) = ± Y. TTTi / , , dyi • • • J ,t « dyi

Generally, one assumes translational invariance of the reduced densities and conse-
quently, of the SFMs in different bins. The reduced densities depend then only on the
relative variables y,- — y*, so that one has :

/ 6 W - - - , y . ) • (2.30)

The comparison of the horizontal SFMs to the phenomenolcgical parametrization of
the reduced density is difficult because the contribution of different bins is weighted
by the single-particle distribution pi{y) for that bin. The vertical moments have the
contribution of each bin scaled so that all of ihem enter on equal footing to the sum
over the bins. For sufficiently small bins they are closer to the integrals of the reduced
density (eq. 2.30) than the horizontal moments even if the one-particle distribution
is not fiat. One expects to have simple and approximately translationally invariant
parametrization for the reduced densities, which can be used in the expression (2.30).
In the next sections we shall extensively use this relation between the SFMs and the
reduced densities.

Till now, there are no experimental data on the dependence of the SFMs in small
bins on the position of the bin. Due to large experimental errors all results for the
SFMs in small bins are averaged over the whole rapidity window A V . There is some
experimental evidence for the dependence of the bin averaged SFMs on the position
of the rapidity window used in the analysis. Thus, one observes some change in the
results for the corrected horizontal SFM, depending on whether the target and projec-
tile fragmentations region are included into the analysis [19]. However, it is difficult
to draw definite conclusions from the horizontal SFMs, which are dominated by the
contributions from bins in the central region, where the single-particle density is max-
imal It would be interesting to make the analysis using vertical SFMs in different
windows, which would give information on the correlations in the different regions of
the phase-space. Another indirect evidence for the lack of the translational invariance
is provided by the SFCs (eq. 2.32) which are not symmetric :

# J #*>. . , (2.31)

for i 5= j in the asymmetric ir+/K+-p collisions [23]. This shows that in this case
the fluctuations are different in the target fragmentation region and in the projectile
fragmentation region.

The SFM in a rapidity window Sy is equivalent to the n-particle distribution func-
tion integrated from the scale 0 to Sy (eq. 2.30). Thus, Fi(Sy) has contributions from
the i-particle distribution on all this range of scales in rapidity. This makes difficult
to disentangle the true scaling behaviour of the multiparticle distributions in a certain
range of rapidity separations from other effects, which could be present at the lim-
iting scales. This concerns especially the behaviour of the n-particle distribution for
particle separation going to 0. The presence of some limit on the scaling behaviour



in this region, can change dramatically the dependence of the integrated n-paiticle
distribution on the upper integration limit Sy (see [43, 44] and sects. 2.3, 4.2). On
the other hand, the limit Sy —» 0 tests only a limited part of the i-particle phase-space
(I Vi ~ Vk |< Sy —* 0). To cure this disadvantage of the SFMs Bialas and Peschanski
proposed to study the SFCs, which are the observables relating the fluctuations in
separated bins [3]. The SFC Fij for two bins of width Sy separated by the distance D
is denned as :

F is < «i(n! - 1 ) . . . (nx - i + 1)B2(W2 - 1) • • • (n2 - j + 1) >

where n^) is the number of particles in the first (second) bin. The so denned SFC is
then averaged over all the pairs of bins distant by D in the rapidity window AY, what
corresponds to the vertical averaging. In was shown in the a-model that the SFCs axe
independent of the bin size Sy and exhibit a power-law dependence on the bin distance
D :

Fij ~ (2?)-"J • (2.33)

Vi j in the above expression is called the intermittency exponent of the SFC .F1;,, . The
SFCs can also be directly related to the integrals of the (i + j)-particle distribution
function :

[k-l)Sy

fdmin+D+kSy rymin+D+k6y£ lmin+D+kSy fym

^n^lt ! « dyi+1 • • • J

\JVmin+(k-l)5y

fVnin+D+kSy fVnin+D+kSy \

d fe( ) (2.34)

where M = (£Y — D)/Sy is the number of the bin pairs in the rapidity window
(jfmniifffiiin + AF] . For slowly varing single-particle density, the SFCs can be approxi-
mated by simple integrals of the (i + j)-particle reduced distributions. This form will
be used in the further investigations. Moments similar to the SFCs have also been
proposed by Seibert and Voloshin [45]. They proposed the split-bin correlators, i.e. the
bin of width Sy is divided in two parts and the correlations in the left and right part
of the bin are calculated :

(0 =

This definition corresponds to the SFC .Fltl for the case Sy = D. Due to the approx-
imative independence of the SFCs on the bin width Sy both in the a-model [3] and
in the experiment [23], SFCs and the split-bin correlators are largely equivalent. The
split-bin moments have also the advantage that they allow the analysis of the fluctu-
ations in continuum observables such as the transverse energy in certain subdomains

10



of the rapidity and/or azimuthal angle. Dealing with the small scale correlations in
the case of a thermodynamic model, Haglin and Seibert [46] made an interesting ob-
seivation of the difference in the results for the SFMs and the split-bin moments. The
split-bin correlation are sensitive to the scale on which they are calculated and are not
contaminated at all the scales by the zero scale behaviour. This could be important if
the experimental data are contaminated by some double track counting, "which intro-
duces spurious correlations at the scale of the resolution of the detectors. The analysis
by the split-bin moments or the SFCs could disentangle these spurious correlations
from other nontrivial correlation at other scales.

The SFCs and SFMs are all related to the n-particle distribution function and
so there exist relations between them [47]. These relations are true for any type of
translationally invariant distributions. In the case of self-similar distributions, one
obtains relations also between the intermittency exponents of the SFMs and SFCs :

= vi+i - Vi - Vj . (2.36)

The n-particle distribution is the sum of the trivial product of the single-particle
distributions and of the n-paiticle correlation functions. Generally, one studies the
behaviour of the SFMs which tests the whole n-particle distribution function. Self-
similar behaviour in this variable is expected in the a-model, but in the experimental
data it is not yet clear whether the self-similar behaviour is present in the SFMs or in
the scaled factorial cumulants. The scaled factorial cumulants have the advantage of
testing the genuine n-particle correlations, and so it is always interesting to test their
contribution to the higher order correlation for each process. The indirect analysis of
the factorial cumulants for the KLM data [9] leads to the conclusion that the three or
more particles cumulants are zero. The self-similar parametrization in the n-particle
distribution or in the n-particle correlations can both reproduce the data after the
dimensional projection [48, 49] (see sects. 2.3 and 2.4). Probably more data on 3D
SFMs and scaled factorial cumulants would help to select the better of these two
parametrizations. In sect. 2.4, it will be assumed that a singular aggregation function
is present in 3D, leading to a structure involving nonsingular terms and singularities of
different exponents in the n-particle distribution. In the remaining parts of the work
we shall assume that the self-similarity is present in the n-particle densities. In the
chapter 3, the discussion will be confined to the second SFM, leaving apart the problem
of the presence of any higher order cumulants [8, 9].

2.2 The dimensional projection

It was observed by Ochs and Wosiek that the 2D intermittency analysis in rapidity
and azimuthal angle gives a stronger intermittency signal than the ID analysis in the
rapidity alone [50]. This "was interpreted as an effect of the pencil-jet structure in the
branching model studied in [50]. Later Ochs showed that the effect is quite general
and it is expected that the ID projected distributions have no longer scale-invariant
fluctuations, even though the system possess such a structure in its full-dimensional
version [51]. He studied in particular the dimensional projection in the a-model. Simi-
lar studies have been performed by Bialas and Seixas for a phenomenological model of
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singular multipartide distributions in 3D momentum space [48]. They have observed
that the effect of the dimensional projection depends on the range of the transverse
momentum, over which one averages the fluctuations. The discussion of the impor-
tance of the factorization properties of the 2D multiparticle distributions was made in
ref. [52]. The effect of the dimensional projection in space-time was studied in the
model of phase-transition for the nuclear collisions. There the strength of the effect
was linked with the transverse size of the interaction region [52]. The dependence of
the attenuation of the intermittency signal on the transverse size of the system or on
the transverse momentum cuts can be studied quantitatively [53].

Our discussion will concentrate on the second SFM, for which it is particularly easy
to relate its behaviour with the singular structures of the two-particle density P2(r^,r^).
For slowly varying pi(r), i.e. in the "plateau" region, one gets for the second SFM (eq.
2.12) :

1 M"

where the n - dimensional volume fl is divided in M" cubes ÎÎ,- of volume SÛ . The
intermittent fluctuations in the density distribution should be observed as a power law
behaviour of the factorial moment :

t i (Oil) ~ [Oil) . (Z.ÔO)

This type of behaviour for small cubes SQ, is equivalent to the existence of singularity
in the reduced density à^ . In the following we shall assume , that this singularity
is dominating and hence, in the calculation of F2 we shall omit all non-singular
terms in d2 . This corresponds to the power-law behaviour of the SFM and not of the
scaled factorial cumulant. Below, we consider translationally invariant densities with
two different parametrizations of the singularity. The factorized parametrization :

(2.39)

where ri = [z,-,-X,] , and the isotropic parametrization :

(2.40)

Results do not change if one rescales one of the components of f in (2.40), allowing
in this way for non-isotropic shapes of d2 • In this case, by a suitable coordinate trans-
formation which changes only the integration domain fi, one can bring the singularity
back to the isotropic form (2.40). This latter modification is negligible for small bins,
and hence the behaviour of the factorial moments is similar in these two cases. Thus, it
does not change the qualitative behaviour of the SFM for the projected distributions,
i.e. the flattening of the SFMs for small bins in rapidity. The variation of the integra-
tion region ÎÎ changes, however the resulting "effective slope" in the ID intermittency
analysis (sects. 3.2 and 4.3) and can be analyzed by the FSS method [53].

Both factorized d| and isotropic dj types of singularities give a power law
behaviour for F-f with the exponent v2 . However, they have a different behaviour in
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the (n - l)-dimensional subspace X . The (n - l)-dimensional SFM can be obtained
from the density d2 by integrating over a;,- :

^ - « ( f o J s J L T, f dXlf dx2 f dXx f dX2 d2(x1,X1;x2,X2) . (2.41)
II 0W JrJ Jûs J&x JU; Jut

The factorized singularity d^ac* (eq. 2.39) gives a power law dependence also in
(n — l)-dimensions :

F$~l\6u) ~ Âtfw)»2 . (2.42)

On the contrary, the reduced isotropic density has no more a singularity in X variables
and, consequently, it does not show a power law behaviour of the SFM. In particular,
in the case n = 2 such as for the (y-^)-distribution, the ID SFM in the limit SX —* 0
can be written as :

F?\SX) = {SX)-1 I dXd2{X) , (2.43)
Jo

) and X = Xi — X2 . The intermittency

(2.44)

(2.45)

where
exponent at the scale SX is given by :

dlnSX

After a substitution of (2.43) into eq. (2.44) one obtains :

For SX —» 0 , the intermittency exponent v2{SX) tends to zero if the density
has no singularity at X = 0 . Using the similar arguments as above, one can argue that
for finite bins SX one should observe a flattening of the SFM. As an example of such
a behaviour we show in Fig. 2.1 the dependence of the ID SFM F2

 o n the rapidity
resolution oy for the singular density d2^'°\fi,f2) ( f,j = [jfr, ^ , ] , i = 1,2) and also
in the case when the scale-invariant correlations have a finite value of the correlation
range :

C3 for AJZ <

where AR = | r{ — rj | . The ID factorial moments shown in Fig. 2.1, have been
calculated for the singular 2D reduced density (2.46) with v2 = 0.153 . This value of
the singularity exponent corresponds to the observed slope of F2 in (y — tf>) bins in
the e+ e~ annihilation process [14] . The ID moments show no power law behaviour.
Moreover, the behaviour of F2 {8y) depends not only on the singularity but also on
the cut-off parameter even for small rapidity bins. A similar type of behaviour in small
rapidity bins can be obtained from the non-singular reduced density [54] :

-2fe) = 1 + 7 ( - I Si -V2 (2.47)

An even stronger effect of the dimensional projection is observed when projecting
a 3D singular density. In this case the flattening of the ID SFM is stronger and the
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Figure 2.1: The dependence of the second SFM F2 on the size of the rapidity bin
8y , as obtained from eq. (2.41) with n = 2 for three different values of the corre-
lation range iZeorr . The dashed-dotted Une represents the results obtained using the
non-singular, short range correlation ansatz for the reduced density (2.47) with the
parameters f = 0.25 and £ = 1.1 . All the curves are normalized at 6y = 1.

"effective" slopes are smaller than the ones resulting from a 2D to ID projection.
An example of this double projection is given in sect. 2.4, where such a singular 3D
correlation function projected on rapidity is used to describe the e+e~ annihilation
data of the DELPHI Collaboration [15]. Recent experimental results confirm that
the strongest intermittency exists in the 3D analysis, and that the intermittent signal
decreases with the number of the effective projections of the multiparticle distribution
[18,31,28]. This could be taken as an evidence for the non-factorized type of singularity
in the reduced density. A similar behaviour of the correlation function has been found in
the proton - emulsion data [55] : the hadron pairs with small pseudorapidity separation
| A?71< 0.2 are correlated in the azimuthal angle, and hence {i) — <f>) - correlations do
not factorize.

The discussion of different behaviour of the a—model in different regimes was per-
formed by Brax and Peschanski [56]. They found that the three phases of the a—model
behave differently in the dimensional projection. One of such phases could explain the
appearance of anomalous events such as seen by the NA22 Collaboration [57] and
another one the jet structure observed in the e+e~ annihilation. In the language of
distribution functions, all these regimes should have different parametrization in 2D.

The dimensional projection from different transverse sizes, discussed in relation
to the nuclear collision geometry (sect. 3.2) and to the finite size effect in a critical
system (sect. 4.3), could be the dominant effect in the observed dependence of the
intermittency signal on the pr-cut [22], as proposed by Bialas and Seixas [48]. This
would mean that the intermittency effect is not due to hard processes, since it is present
and even stronger in low pr samples. Below we investigate the observable evidences
of this effect, which moreover allow to extract the intermittency exponents from the
analysis of the projected ID data [53].

Let us write the SFMs as integrals of the multiparticle reduced distribution func-
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tions :

dyi di(Puyu...,PitVi) , (2.48)

where AL is the size of the transverse dimension over which the integration takes place.
AL should be regarded as an effective transverse size in momentum after the change
of variables, so that the integration limits over the transverse momentum J£° ptdpt are
finite [41]. We keep explicitely the number of transverse dimensions n, because as we
will see the results do not depend on it. The t-particle scale-invariant distribution
function :

gives rise to the power-law behaviour of the SFMs in the "full" (n + l)-dimensional
analysis (eq. 2.38).

The SFMs from the ID analysis (eq. 2.48) have no longer a power-law behaviour as
a function of the bin size Sy . Nevertheless, they exhibit interesting scaling which can
be observed experimentally. Let us consider Fi(Sy; XAL) calculated from the i-particle
distribution after the projection over the n transverse dimensions, but with a different
size XAL of the allowed values of the transverse variables. Such a change in the range
of transverse variables can be achieved by imposing cuts in the transverse momentum
or biases on the centrality of the event. Indeed, as predicted by Bialas and Seixas
[48], the intermittency signal was found to be sensitive to the cuts in the transverse
momentum [21]. Generally, the intermittency signal is weaker and the effective slopes
are smaller for larger allowed range of transverse momenta. By a change of variables,
the SFM in a system of the transverse size AAL can be related to the SFM of the
system of size AL :

XAL fXAL _ fXAL fXAL
d"Pi

(SyYlXALYrv rfy - -

dyi ...I dyi di(Pi,yi,.. -,Pi,yi)
Jo

1 fAL fAL _ fAL fAL _
= /c w , . » / •••/ «TAP, . . . / . . . / «TAP,

(6y)*{XAL)n • Jo Jo Jo Jo
eSy/X fSy/X ^ _,

/ dy^... I dyi i , (APX ,Ayi , . . . ,AP,,XyA
Jo Jo

\-^ fAL fAL _ fAL rAL
(SyY{AL)" «Jo "Jo * " " " Jo '"Jo "

Jo Jo
(2.50)

In the above expression we have used the scale-invariance of the distribution function
(2.49) to relate the densities in the scaled variables. The above relation is similar to
the FSS relations in the critical systems [58] :

G{x,L) = L-vG{xlL11). (2.51)
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This analogy allows to treat the experimental data obtained for different effective sizes
of the transverse variables by the methods of the statistical physics.
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Figure 2.2: The experimental data for the SFMs F2 of the NA22 Collaboration, before
FSS analysis. Different data sets correspond to different cuts in transverse momentum :
pr < 0.15 GeV (the empty boxes), pr < 0.30 GeV (the crosses), all pr (the empty
triangles), pr > 0.15 GeV (the full boxes) and pr > 0.30 GeV (the full triangles). The
experimental errors are not shown on the figures for clarity.

We illustrate the method using the NA22 data for ir+/K+-p collisions at 250 GeV
[21]. The SFMs are calculated for five different cuts in transverse momentum of the
produced particles. The NA22 results for F2 are shown in Fig. 2.2 and one can see
that the SFMs have different magnitudes and local slopes. The scaling hypothesis
means that by a shift of the origin of the curves, one can superimpose them on top of
each other with the shifts in the horizontal and vertical directions equal to — In A and
—Vi In A respectively. As a result, the two shifts should be proportional with the same
proportionality factor i/j for different data sets. The result of applying this procedure
to the NA22 data is shown in Figs. 2.3a-c for F2, F3 and F4 respectively .

As it is shown in Fig. 2.3a , the procedure works well for all NA22 data except for
the set with pr < 0.15 GeV (the open boxes). The values of the shifts for different data
sets axe shown in the Table 2.1. The shifts in the vertical and horizontal directions
follow closely the linear relation confirming the existence of scaling with the exponent
v2 ^ 0.3 .

The data set with px <• 0.15 GeV does not lie on the same universal curve as the
other data. In Fig. 2.3a we plot this data set using the linear relation between the
horizontal and vertical shifts with the exponent v2 = 0.3 . Shifting of this curve to the
region of the universal curve with a comparable local slope can be achieved by taking
In A ~ —1.5 and v2 ~ 0.1 . This strong difference of parameters could mean that the
two-particle distribution function has a different behaviour for small pj with, perhaps,
a different scaling index.

For F3 and F4 in Figs. 2.3b-c we have taken the same value of In A as for the
moment F2- This is consistent with the idea, that different moments of the same data
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PT

PT

PT

Data set

< 0.15 GeV

< 0.30 GeV

all pT

> 0.15 GeV

> 0.30 GeV

Horizontal shift

(-lnA)

-0.4
0

0.4

0.5

0.6

Vertical shift

(-1/2 hi A)

-0.12

0

0.12

0.14

0.17

Table 2.1: The horizontal and vertical shifts of the FSS analysis for the different data
sets of the NA22 Collaboration

set should be described with the same effective transverse size. We have found that if
v2 is taken from the shift of F2 for the same data set (see the Table 2.1) then the NA22
data is consistent with the quadratic relation vt = '̂ I~1 f̂2 between scaling indices and
the third and fourth factorial moments F3, F4 show the finite size scaling. One may
conclude from these fits that the multiparticle production in hadronic collisions shows
intermittent behaviour in higher dimensional phase-space and, after the dimensional
projection, the resulting SFMs show FSS. The FSS analysis allows to find the true
intermittency indices for the respective moments. These indices are approximately
equal 0.3 , 0.9 and 1.2 for the second, third and fourth SFMs, i.e. they correspond to
the quadratic dependence on the rank of the moment as expected for random gaussian
multiplicative processes.

The procedure gives also the relations between the transverse scales corresponding
to different data sets. This transverse size is not directly related to the pj-cuts for two
reasons. Firstly, due to the strong dependence of the one-particle distribution on the
transverse momentum, we are using the effective transverse variables [41]. Secondly,
the different shapes of the integration region for various conditions imposed on the data
( e.g. pr > Peut or pr < p^ ) impose a different definition of the transverse "effective
size" for the data set. It is obvious from the definition of the projected distributions
that a good estimate of the transverse size could be the mean two-point distance in
the data set :

AL = (2.52)

where ÔX is the transverse integration region imposed by the given cut (we are working
in the variables where the one-particle distribution is flat). Then, one can rewrite the
averaging over the transverse domain 5T as an integration over the n-dimensional cube
of size L (eq. 2.48), for which the size rescaling can be performed. This definition of
the transverse size of the data set is different from the estimate ST and in fact gives
different behaviour. The SFMs for the data set "all pr" (the empty triangles in Fig.
2.2) lie above and have larger slopes than for the data sets "py < pmt

n , in spite of the
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fact that its naive size measured by the corresponding cross section is larger. Moreover,
it also contradicts the widely discussed drJijv scaling [59, 7, 60, 61].
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Figure 2.3: The SFMs of the NA22 Collaboration, after the FSS analysis, i.e. after
rescaling of Sy and # . In parts a) , b) and c) are shown the SFMs F2, F3 and F4

respectively. The results are depicted using the same symbols as in Fig. 2.2 .

The whole discussion is important because in fact one does not know what are the
transverse dimensions and what is the shape of the regions of averaging corresponding
to different pr-cuts. All the above reasoning is exactly the same if as the transverse
variables we take not the transverse momentum but some other variable. As inspired
from the Reggeon field theory, the scaling may not be present in the 3D momentum
space but in the rapidity-impact parameter space [62]. In that case the correspon-
dence between cutting parameters for different data sets and the shape and size of the
transverse integration region is not known. Consequently, the finite size scaling is the
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only way to analyze the underlying multiparticle scaling distributions, since one has no
access experimentally to the impact parameter corresponding to the produced particle.
Finally, we observe that the similar analysis can be done for the 2D data, the only
assumption needed is the scaling of the multiparticle distributions (eq. 2.49). This
feature is not conserved in a nonlinear change of variables, so one must be careful in
extracting the relevant variables. It is generally assumed that such a scaling can be
expected in the rapidity and transverse momentum or impact parameter variables as
discussed here.

The SFCs are related to the SFMs by appropriate sum rules [47, 63]. Therefore,
introducing in these sum rules the universal scaling functions (eq. 2.50) found for the
SFMs, gives directly the corresponding scaling functions of the SFCs. The SFCs would
then obey a similar FSS with those scaling functions.

To conclude this discussion, we would like to stress once more that the FSS analysis
of the ir+ /K+-p data of the NA22 Collaboration confirms the existence of scaling in
the multiparticle distributions. This analysis gives the access to intermittency indices.
The recent preliminary NA22 data on SFMs in 3D momentum space indicate, that
the full phase-space multiparticle distribution is not scale-invariant [36]. This means
that the observed FSS in ID distributions is not due to the projection from the 3D
momentum space. The FSS in the rapidity distributions could be a signal of some
scaling behaviour taking place in a space inaccessible for direct experimental studies as
in the Reggeon field theory scenario [62] or in the model of spatiotemporal intermittency
for nuclear collisions [52, 64]. If this is true, then the method of FSS is the only way
of the deconvolution of the dimensional projection effect. It would be interesting to
perform the same analysis for other reactions. This should consist of creating different
data sets by using cuts in multiplicity or, better, in transverse momentum and doing
the above described FSS analysis. Although we have not performed the FSS analysis
for other reactions, some qualitative features of other data allow to conclude that
the FSS is not fulfilled in the e+e~ anihilatior and in the nuclear reactions. The
FSS implies that a relation exists between the magnitude and the slope of the ID
SFM for a given data set. Generally, for lower local slopes one obtains lower values
of the SFMs. This qualitative feature is not present in the e+e~ anihilation data of
the DELPHI Collaboration [34] and in the nuclear collisions [30]. For the case of
the e+e~ collision this could mean that the multiparticle distributions do not have
a simple, translationaly invariant parametrization (2.49) and the SFMs behave very
differently for different pj-cuts. On the other hand, the multiparticle correlations in
the nuclear collisions have many different sources and the strongly restrictive form of
the multiparticle distributions (2.49) could be wrong. In particular, one expects the
nonsingular components destroying the FSS to be present. It would be interesting to
compare the results of the FSS scaling here presented to other hadron-hadron collisions.
If this feature of the SFM is confirmed in other hadron-hadron reaction, it could mean
that the fluctuations in hadron-hadron collisions have a very special structure, perhaps
also with specific relevant variables (rapidity-impact parameter).
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2.3 The singular multiparticle distribution func-
tion and the a-model

The a-model of a multiplicative cascade was proposed as a general scheme ex-
plaining intermittent fluctuations in the multiparticle production in both elementary
particle and nuclear collisions [2, 3]. This model gives intermittency exponents for the
SFMs and the SFCs [2, 3, 65]. Also the experimental data on the intermittency slopes
can be described by this simple model. However, the dimensionality of the intermit-
tency analysis was found to be important for the strength of the inteimittency signal
if the non-factorizable, self-similar correlations are present in the 2D or 3D phase-
space [51, 48, 52]. Another phenomenological description of the data was proposed
using singular multiparticle reduced distributions in ID [48, 52] (sect. 2.2). The phe-
nomenological, singular parametrization of the correlation functions gives, similarly as
in the a-model, a power-law behaviour of the SFMs [48, 52] (sect. 2.2).

In this section we study a relation between descriptions using either the singular
distribution function or the a-model and, in particular, we study the implications of
the dimensional projection and a regularization of the singularity [44]. We shall also
compare the results of these two approaches for the SFCs in ID and 2D.

In a framework of the a-model the distinction is made between the case of the strong
and weak intermittency [65,43]. Let us consider the a-model with the branching num-
ber A and a certain probability distribution function P(w) of the random multiplicative
factors [2]. The case of the weak intermittency corresponds to probability distributions
satisfying :

< « ; * > < i - 1 . (2.53)

In this case, the self-similar cascade can be infinite and the total multiplicity has a
limit distribution [65]. If the condition (2.53) is not satisfied, then the cascade must
be finite. For the rapidity intervals of length Sy S> I, where / is the limiting minimal
scale of the cascade, one obtains the following behaviour of the SFMs :

Fi ~ {Sy)1-' , (2.54)

i.e., the intermittency exponents are now V{ = i — 1 .
In the parametrization using the singular distribution function, the SFMs are re-

lated to the integrals of the reduced distribution functions (eq. 2.30). We have seen
that the singular sccle-invsuant distribution function :

di{Xyi,...,Xyi) = A-'ifedf!, . . . ,») (2.55)

gives rise to the intermittent behaviour of the SFM :

Fi ~ (Sy)-" . (2.56)

However, this is correct only if the integral in eq. (2.30) exists. This gives bounds on
the values of the intermittency exponents i/; . Let us consider the case when all the
n-particle distributions have the form :

*dn, . . . ,»t)~{II I»-»!"""}.» . , (2.57)
(m)
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where the number m of the pairs | yk — yi | is at least i — 1 and at most i(i — l)/2 ,
and the whole expression is symmetrized over the permutations of {yi,..., y,} . If the
integral in eq. (2.30) exists, then the SFM has an intermittent behaviour with the
intermittency exponent i/, = mv . For the above written distribution functions, the
integral (2.30) exists if the inteimittency exponents satisfy :

v,< i - 1 . (2.58)

In this case one obtains intermittent behaviour of the SFMs for all scales and there is
no need to introduce any regularization of the singularity in the distribution function.
This situation corresponds to the weak intermittency in the a-model [65]. However, if
the distribution function (eq. 2.55) shows a self-similar behaviour with the exponent
v,i> i — 1 , then to ensure the existence of the integral in eq. (2.30) , one should
introduce some regularization for \ Uk ~Vi \~* 0 . Let us suppose that if the distance
between any pair of points y^ , yi is smaller than a certain cut-off value /, then
\ yk — yi I wâl be replaced by I . For Sy » I , the SFMs have then the following
behaviour :

Fi(6y) = a tr^Sy)1-* + b (Sy)-" + O(Sy2) . (2.59)

Clearly, the above expression is divergent for I —* 0 if i — 1 < i/, . For 6y S> /, the
first term is dominant giving the behaviour :

Fi(Sy) ~ (ty)1-" , (2.60)

similarly as in the a-model for the case of the strong intermittency. Here, analogously
as in the a-mcdel where the number of steps in the cascade must be finite, a non-
singular behaviour has to be: assumed in the distribution function, i.e. a finite scale
below which the scale-invariance breaks down. Similarly, we recover the scale-invariant
behaviour of the SFMs (eq. 2.60) at scales Sy >• I , but with the exponents of the
strong intermittency Vi = i — 1 .

Let us now consider the SFC calculated from the (i + j)-particle reduced density :

F
***> (Syy+'FtfyWSy)

(2.61)
For farther simplicity we take Fi,i , which is given by the uniquely determined two-
particle reduced distribution function :

This gives :

The above expression follows closely the power-law behaviour in D :

F tnih.\ AD + SyY + ( D S y y 2 &
FV{D, Sy) = A [2_v){1_v){Syf • (2-63)

(2.64)

Similarly as in the a-model, the intermittency exponent v equals 1/2 , i.e. it is the same
as for the SFM F2 . Fig. 2.4 shows the dependence of the SFC F^D, Sy) on Sy for
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Figure 2.4: The dependence of the SFC J*i,i(D, Sy) on the bin size Sy as calculated
from eq. (2.63) fox the inteimittency exponents v = 0.1 (the dashed line) and v = 0.4
(the solid line) .

v = 0.1 , 0.4 . One can see that Fltï is approximately independent of Sy . Moreover,
as long as D — Sy is larger than the minimal scale of the self-similarity, the SFCs do
not depend on whether the distribution function is regularized or not. These features
of the a-model in ID can be reproduced by the singular or regularized scale-invariant
distribution function (eq. 2.55) .

As was noticed in refs. [51, 48, 52], the intermittency signal depends dramatically
on the dimensionality of the analysis if the correlations are multidimensional and non-
factorizable. The projected distributions of the 2D a-model [51] or of the 2D and 3D
singular distributions [48, 52] are not intermittent. Their respective effective slopes are
smaller than in the unprojected case and the dependence of the SFM on the binning
flattens ont for small bins.

Let us now consider the a-model in 2D having the transverse size L, and let us cal-
culate the SFC F\ti in this model for the projected distribution which is obtained by av-
eraging over the transverse size. The SFC FI,I(JD»Sy) =< ni«2 > / (< « I > < n2 >) ,
where nx and n2 are the number of particles in the region 1 and 2 respectively (see Fig.
2.5), become :

L/6UL/SV

n2>)
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Figure 2.5: The summation region foi the scaled factorial correlator FXi of the 2D
a-model. The two regions are subdivided into L/Sy squares Sy x Sy.

LJSyL/Sy

~éJo dyi Jo dy2
f o r (2.65)

Hence, as in the unprojected a-model and in the experiment [23], the SFC are ap-
proximately independent of Sy. In the case of the 2D singular distribution, similar
arguments can be put forward as for the a-model. This shows that also in this case
one expects the bin size independence of the projected SFCs. We have also calculated
numerically the SFCs in ID from the formula :

D+Sy
dy2 (2.66)

The dependence of the SFC on the bin size Sy is shown in Fig. 2.6 . As already noticed
by PeschansH and Seixas [47], the SFCs fulfil approximately the requirement of the
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independence on the bin size. This is even better satisfied than in the ID case (compare

1.1
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Figure 2.6: The dependence of the SFC Fj,i(.D,£y) on the bin size Sy as calculated
from eq. (2.66) for the intermittency exponents v = 0.1 (the dashed Une) and v = 0.4
(the solid line). For the transverse size we take L = 4D .

Figs. 2.4 and 2.6).
The expérimental data show different relations between the slopes of the SFCs and

the slopes of the SFMs than predicted by the a-model :

"id = ~ "« ~ v"id = "i+j ~ "« ~ vi • (2-67)

This difference can be understood as being due to the effect of the projection in a
higher-dimensional model. In ref. [47], a general relation was derived which relates the
SFC F1 4 to the SFM F2 :

F1A(D, Sy) = Fltl(D, D) = 2F2{2D) - F2(D) . (2.68)

From the above equation one can calculate the local slope of the SFC :

d fafUD.fr) / d lnF2{2D)
^ ( 2 D ) dln{2D) )

(2.69)
d ln{D) dln{D)

Due to the projection, the local slopes of the SFMs flatten ont for small bins and, in
general, the slope is decreasing for the decreasing bin size. This gives :

d lnF2{2D) d lnF2{D)
dln(2D) > dln{D) '

(2.70)
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Substituting this relation into eq. (2.69) one obtains :

dlnF1,1{D,8y) d lnF2(D)
dln{D) > dln(D)

This feature is found in the experimental data [23] for which

•+; - "« ~ vi •

(2.71)

(2.72)

The above relation follows from the saturation of the SFMs and from the general iden-
tity (2.68), which is true for any kind of translationally invariant distribution functions.
This observation can explain the breaking of the relation (2.67) between slopes of the
SFCs and the SFMs which holds in the original a-model and in the description using
the scale-invariant distribution function but is no longer fulfilled in the projected ID
distributions.

We have shown that the a-model and the singular distribution functions give similar
behaviour of the SFMs and the SFCs. This covers the cases of both strong and weak
intermittency, which can be correctly described by the singular and regularized scale-
invariant distribution functions respectively or, in the a-model, by the infinite and
finite self-similar cascade respectively. The SFCs, as obtained from the integration of
the scale-invariant distribution functions, are similar to those obtained from the a-
model. The dimensional projection does not change this similarity. Both descriptions
show the same behaviour in the projected SFMs and SFCs. These two descriptions
give an approximate independence of the SFCs on the bin size, and moreover, the
relations between the slopes of the SFCs and SFMs are changed by the dimensional
projection. This last observation which was confirmed by the experimental data [23],
allows to explain the recent data on SFCs using the higher dimensional a-model of
the multiparticle correlations. Together with results of previous works, which used the
scale-invariant distribution function to describe the power-law behaviour of the SFMs
[48, 52] (sect. 2.2), this result completes an analysis of similarities between the two
approaches. These two approaches are in agreement with the experimental data on
both SFMs and SFCs if the dimensional projection is taken into account.

2.4 Structure of the multiparticle correlations

In the previous sections we have concentrated mainly on the structure of the two-
paiticle correlations, which are related to the second SFM F2 and to the SFC Fitl .
The study of the higher SFMs and SFCs can give some insight into the structure of the
multiparticle correlations. In sect. 2.1 the relation between the n-particle density and
the ra-th SFM was given. The experimental analysis of the SFMs allowed for the first
time to have an estimate of the behaviour of the multiparticle correlations on small
distances in rapidity. Those features could not be seen in the study of the correlation
functions, due to the large experimental errors in these direct, non-integrated observ-
ables which conceal the intermittent behaviour. One can then ask what is the relation
between the structure of the multiparticle correlations and the structure of the simplest
one, the two-particle correlation. In this section we try to identify this relation in the
e+e~ annihilation data of the DELPHI Collaboration [15].
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Much experimental data on multiplicity distributions have been fitted using the
negative binomial (NB) distribution [66]. NB fits have been applied both to the whole
rapidity range as well as to the symmetric or shifted subintervals of the rapidity, down
to the rapidity width Sy = 0.4 — 0.5. The intermittency analysis revived the interest
in the studies of the multiplicity distributions in small rapidity bins and especially
its dependence on the bin width. In numerous studies, the values of the intermittency
exponent V{ and its scaling with the rank i have been discussed. The experimental data
for ir+/K+-p, fi-p collisions and e+e~ annihilation [21,19,15] , show an approximately
quadratic scaling of the intermittency exponents :

i(i-l)
v2

(2.73)

From the above relation, conclusions can been extracted concerning the underlying
particle production mechanism [3]. On the other hand, the rise of SFMs should be
related to the shape of the multiplicity distribution in small rapidity intervals or in
some restricted regions of the phase-space and several authors have tried to extrapolate
the NB distribution down to the very small intervals in rapidity [67, 68]. This problem
concerns not only the relation between intermittency exponents of different rank, but
also the relation between the magnitude of the factorial moments. The magnitude
of the SFMs in small rapidity bins shows deviations from the prediction of the NB
law [68, 51] :

^ l ) , (2.74)
Ti- l

and, in general, SFMs grow slowlier than predicted by (2.74). This feature is not
confirmed by the DELPHI data for e+e~ annihilation [15] for which the SFMs grow
faster than (2.74) and, therefore, one may ask the question whether the same scheme
of multiparticle correlations is present both in the e+e~ annihilation and in the hadron
- hadron collisions.

Several authors have tried to describe the measured SFMs in small rapidity bins by
postulating various expressions for the higher correlation functions [68,6,69]. Probably
the most consistent procedure, which in the limiting case reproduces the NB distribu-
tion, has been proposed by Van Hove [69, 70]. In this procedure one assumes that
all multiparticle correlations can be expressed in terms of the single-particle distribu-
tion pi[y) and a two-particle aggregation function a(y,y'). The experimental data for
F2 have been successfully reproduced using the two-particle reduced density of the
form 1 + fexp{— | ft - y2 I H) [68, 6, 7]. The second term in this expression can be
identified with the aggregation function :

= 7 (2.75)

Following Van Hove [69], the n-particle inclusive distribution is determined by the one-
particle distribution Pi(y) and the aggregation function a{y,y) (which is nothing else
than the reduced two-particle correlation function defined in sect. 2.1) by means of the
recursive formula :

= {pn(yu---,yn)pi{yn+i)(l + na(yuyn+l))}s (2.76)
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where { }s means symmetrization over all ̂ . A similar pioceduie, which gives the same
results in small rapidity bin, has been used extensively by De Wolf to reproduce the
higher SFMs in various piocessess [68]. One should stress that all these approaches deal
with the structure of the correlation function and hence, they are directly connected
to the behaviour of the scaled factorial cumulants. In other words, a singularity in
the aggregation function and in the resulting higher order cumulants, would give a
power-law or an approximately power-law behaviour of the scaled factorial cumulants
and not of the SFMs.

From the fits one can observe that the NB formula overestimates the experimentally
observed SFMs in small rapidity bins for hadronic collisions [68]. The reverse behaviour
is seen in the e+e" (see Fig. 2.7) and (i-p data. The curves corresponding to the
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Figure 2.7: The dependence of SFMs on the bin size as obtained for the NB-like
correlation scheme given by eq. (2.76) (the solid lines) and for the power-like correlation
scheme (2.77) (the dashed-dotted line), with the aggregation function given by eq.
(2.75) with parameters 7 = 0.64 and £ = 1.48 . The experimental data are denoted by
the points and correspond to the e+e~ annihilation data of the DELPHI Collaboration.

NB like structure of the higher correlation functions (2.76) in this case lie below the
experimental points, possibly indicating a different structure of the n-particle inclusive
distributions in the e+e~ than in the hadron-hadron collisions. Below, we propose a
new, power-like scheme of the multiparticle correlations [49] :

= {pn(yi,• • • ,yn)/n(yn+i
t'=l

a{yi,yn+i))}s , (2.77)

which is related to the multiplicative process of particle production. Independently of
the details of the underlying branching scheme, all these models give the log-normal
distribution for high numbers of branching steps [71]. For the case of constant a(y,y)
in this correlation scheme, we obtain the following expression :

< n{n - 1) • - - (n - i + 1) > n = n'n(l + o)*"1)/2 (2.78)

for the factorial moment in an interval ÏÎ of rapidity, where wn = Jn Pi(y)dy is the mean
multiplicity in the interval fl. In this perhaps oversimplified case, the SFMs follow the
quadratic law :
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which is a general feature of the random multiplicative processes in the gaussian approx-
imation [72]. For the symmetric aggregation function a(i, j) = a(yi,yj) = a[yj,yi) ,
the reduced n-particle correlation functions can be expressed as follows :

l,2)n(2,3) + o(l,2)a(l,3)a(2,3)}s

= {12a(l,2)a(2,3)a(3,4) + 4a(l,2)a(l,3)a(l,4)

+12a(l, 2)o(l, 3)a(2,3)a(2,4) + 3a(l, 2)a(l, 3)a(2,4)a(3,4)

+6a(l,2)o(l,3)o(l,4)a(2,3)o(2,4)

)a(l, 8)o(l, 4)a(2,3)a(2,4)a(3,4)}s

The structure of the above correlation functions differs strongly from those derived for
the Van Hove ansatz given by eq. (2.76) ( see also eqs. (22), (23) of ref. [69]). In
general, the n-particle correlation function in the power-like scheme (2.77), contains
products of n — 1 up to n{n — l ) /2 functions a(y,y ). For real cascading the powers
of a(y,y ) would not occur with the weights predicted by the log-normal distribution
because, due to the finite energy and the non-negligible particle masses, the number
of branching steps is finite. At higher energies, however, one might expect that the
multiparticle distributions would be better described by a very long branching process
which would imply an even closer agreement with the formula (2.77). Even at presently
available energies the log-normal distribution has been successfully applied to fit the
full phase-space multiplicities of charged particles produced in e+e~ annihilation [71].

We have used the same parametrization of the aggregation function (2.75) in the
two correlation schemes (2.76), (2.77). The resulting predictions for F3 and F4 are
shown in Fig. 2.7 . The experimental SFMs are clearly overestimated by the SFMs
calculated for the power-like correlation scheme (2.77). However, for small rapidity
binning both schemes fail to reproduce the experimental data which lie between the
curves calculated for these two correlation schemes.

Here one should comment that the log-normal distribution can be obtained in a
multiplicative random process using the gaussian approximation. This is not correct
in the tails of the distributions, which are especially important in the calculation of
the highest moments. In fact it was shown by Alberty and Bialas [73] that for high
moments the intermittency indices should be linear in the rank of the moment :

Vi ~ t . (2.81)

Another possibility is allowed if one considers the Levy-stable random variables [74].
Brax and Peschanski have shown that then the intermittency exponents depend in the
following way on the rank of the moment :

with 0 < /i < 2 . The things become even more complicated if one considers the finite
cascades or the regime of the strong intermittency. Moreover, the scaling in the values
of the SFMs and not in the intermittency exponents requires additional assumptions,
which will be discussed below.
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Another very important problem is related to the effective number of dimensions
in which the correlations are built [51, 48]. This question was raised in discussing the
observable consequences of intermittency in projected distributions such as the rapidity
or rapidity-azimuthal angle multiplicity distributions. It has been shown [51, 48, 52],
that the occurrence of intermittency in two or in three dimensions does not lead to the
power law behaviour of the SFM in the projected ID distributions (sect. 2.2). This
leads naturally to the question about the number of dimensions in which the correlation
functions could be described by some simple ansatz. In studying this problem, we have
assumed that the «.-particle inclusive distributions in 3D phase-space obey the relations
(2.76) or (2.77), where now y, is the 3D momentum pj of the on-shell particle i. In
order to reproduce the behaviour of the ID SFMs we have assumed a singularity in the
3D momentum space. However, unlike in refs. [48, 52,44] and in the previous sections,
we do not assume that the whole reduced density is given by the singularity, but that
only the aggregation function is singular :

(2-83)

This leads to a power law behaviour of the second factorial cumulant. However, the
higher order cumulant do not share that because the i-particle cumulant contains sin-
gularities of the exponents from nv to n(n — l)v/2 (eq. 2.80). One should observe
that the singular structure of the aggregation function is incompatible with the scheme
given by eq. (2.77). Indeed, the «-particle correlations contain the singularity with
the exponent n{n — l)f/2 , so for the sufficiently high order of the correlations the
singularity becomes non-integrable. This would require some regularization of (2.83),
but since we confine our studies to Fz and F3 , no such procedure is needed. A detailed
discussion of a regularization of the integrals of the singular correlation function and
of its implication is presented in section 2.3.

For the single-particle distribution we have taken pi{f) = exp{—
Using (2.83) with all momenta expressed in GeV, we have obtained a reasonable fit to
the experimental values of F2 foi the parameter values 7 = 0.11 and v = 1.2 . Both
the non-singular ID (eq. 2.75) and the singular 3D (eq. 2.83) aggregation functions
can correctly describe the rapidity width dependence of F2 in the range (Sy = 0.1 — 1)
(Fig. 2.8). This confirms again that the ID non-singular dependence of the second
SFM can be due to the existence of the intermittent behaviour in the 3D momentum
space [51, 48, 52].

The singular parametrization (2.83) was used to calculate F3 in the two schemes of
correlations given by eqs. (2.76) and (2.77). Similar features can be observed as for the
ID non-singular aggregation function, for which the experimental points are situated
between the two curves calculated in the two different correlation schemes (Figs. 2.8
and 2.9). However, these two curves for F3 are shifted up in comparison with the ID
parametrization.

In order to compare the scaling of the SFMs of different rank, we have studied the
dependence of In Ft [i = 3,4) on In F2 . This way of analyzing the results is less
sensitive to the details of the parametrization of the two-particle correlations, which
are not equally good in reproducing the data for F2 (see Fig. 2.8). It was observed
by Ochs [51] that for e+e~ annihilation at y/s = 35 GeV and pp collisions at various
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Figure 2.8: Dependence of the second SFM F2 on the bin size for different assumptions
about the correlations. The solid line represents the non-singular parametrization in ID
(eq. 2.75). The dashed-dotted Une represents the SFM of the projected 3D distribution
containing the singularity (eq. 2.83) with 7 = 0.11 and v = 1.2.

energies, and also for a scale-invariant branching model, the 2D a-model and the QCD
parton model HERWIG, In Fi (i > 2) depends linearly on hi F2 :

In Fi1 = ki; + ft hi F2 . (2.84)

This relation is only approximately satisfied by the NB law (2.74). Nevertheless, in the
range of rapidity bins studied in this work, the scheme given by eq. (2.76), which is
based on the NB, can be well approximated by a linear dependence. In the Table 2.2,
we show the fitted parameters fc, and ft for various schemes of correlations and for the
experimental data. One can see that, independent of the details of the parametrization,
the experimental slope ratios ft lie between the values obtained from the two models
both in the ID and in the 3D case. For the scheme given by eq. (2.77) and the non-
singular aggregation function, the parameters of the linear dependence (2.84) approach
the values 4, = 0 and ft = *(» - l ) /2 for small bins, in accordance with the relation
(2.79). For the projected 3D densities with the singular aggregation function (2.83),
the scheme (2.76) leads to deviations from the NB law, whereas the scheme (2.77)
departs from the power law (2.79). In both cases, the numerically calculated values of
F3 are larger, and thus the first scheme is closer to the data points and the second one
deviates even more from the data points than in the non-singular case.

In summary, the analysis of the data on the SFMs of the multiplicity distribution
for e+e" annihilation leads to several interesting observations. First we observe that
the scaling of the magnitudes of the SFMs exceeds the prediction of the NB, unlike for
the Tr+/K+-p and pp collisions [68, 51]. This is a striking feature and could indicate a
different behaviour of the multiparticle production mechanism in the e+e~ annihilation
at this energy. Motivated by the properties of the random multiplicative processes, we
have proposed a scheme relating the n-partide inclusive distribution function to the
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Figure 2.9: Dependence of the third SFM F3 on the bin size foi different assumptions
about the correlations. The curves have been obtained by integrating the 3D sin-
gular three-particle distribution obtained either from the NB like correlation scheme
(eq. 2.76) (the solid Une) or from the power Bice correlation scheme (eq. 2.77) (the
dashed-dotted Une).

single-particle distribution and to the two-particle aggregation function. This scheme
gives faster growing SFMs than the scheme proposed by Van Hove [69] which is based on
the NB law. The experimental data for F3 and F4 fall in between these two predictions.
This conclusion is confirmed by the analysis of the dependence of In F, (i > 2) on
In F2 in the different correlation schemes and for the data.

In this section we have also addressed the problem of the effective dimensionality of
the correlations. Assuming the presence of a singularity in the aggregation function in
the 3D momentum space, we have reproduced the experimentally measured factorial
moments F2 using the projected ID two-particle distribution. We have generalized the
two schemes of correlations for the 3D momentum space, but we have not found any
substantial change in comparison to the data. This would mean, assuming the presence
of intermittency in the 3D momentum space, that each of the two schemes represents
an effective description of the projected ID rapidity distributions. In order to clarify
this, it would be interesting to compare the predictions of the two correlation schemes
for the projected singularity both in the rapidity-azimuthal angle and in the azimuthal
angle distributions.

In the ID case, the multiplicative scheme (eq. 2.77) reproduces the experimental
slope ratios ft- better than does the NB scheme (eq. 2.76) (Table 2.2). The slope ratios
are unchanged by the projection from higher dimensions [51] and thus provide a more
clear characteristic of the particle production mechanism than the ID intennittency
slopes. On the other hand, the coefficients ki have no such general meaning. This
favours an interpretation of the log-normal scheme (eq. 2.77) as an effective descrip-
tion of the ID correlations, which takes into account the basic properties of the particle
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Table 2.2: Parameters of the linear fit (2.84) of the SFMs for various correlation schemes
and different effective dimensionalities of the correlations, as well as for the e+e~
nihilation data of DELPHI Collaboration .

an-

* 3

ft
*4

ft

Data

Ref. [15]

-0.05

2.99

-0.14

5.72

Eq. (2.76)

ID

0.08

2.51

0.25

4.33

Eq. (2.77)

ID

0.01

2.99

0.03

5.93

Eq. (2.76)

3D

0.07

2.57

-

-

Eq. (2.77)

3D

-0.03

3.2

-

-

production mechanism but not its dimensionality. Consequently, it fails to reproduce
the coefficients fcj. However, both these schemes, when generalized to 3D, fail to re-
produce the data. This is caused by the singular 3D aggregation function. So there is,
until now, no general scheme of multiparticle correlations giving the scaling properties
of SFMs, i.e. the slope ratios /?,• and the expected in 3D intermittent dependence on
the binning.

The a-model predicts [65] that the moments of the multiplicity distribution in a
rapidity interval Sy should be related to the moments in the full rapidity interval Ay
as follows :

(2.85)

This leads in the Gaussian approximation to the log-normal scaling relation between the
intermittency slopes vt ~ i(i — l)/2i/2 . This relation can then be only approximately
fulfilled for the first few intermittency exponents, because in order for the eq. (2.85)
to be true the weak intermittency bound on the intermittency slopes must be ensured
[65]:

Vi < i - 1 . (2.86)

The random cascade model could explain the different behaviour of the multiplicity
distributions on different scales. For the full phase-space or for the large rapidity
windows, the NB distribution is a correct fit to the data [15] However, for small rapidity
bins, the SFMs of the multiplicity distribution increase and differ from the NB. In the
case of the projected ID densities one cannot expect intermittent power-law behaviour
(eq. 2.85). However, if the relative increase of the SFMs with increasing resolution is
log-normal, one would expect the following relation to be fulfilled [51] :

= Fi(Ay)G{Sy/AYf', (2.87)

with a universal function G and /?,- = i(i — l ) /2 for the log-normal case. As we can
see in Table 2.2, the experimental values of the coefficients /3,- are slightly below the
log-normal prediction. It is an open question whether it is a result of the limitation of
the log-normal approximation to the random multiplicative processes or it is an effect
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of the finite cm. energy available in the process. Concerning the second possibility,
it would be interesting to study the dependence of the coefficients /?,- on the energy.
Resuming the results of this section, we see that neither of the two correlation schemes
is correct for all scales in the rapidity. Neither of them reproduces the tendency of the
data to be NB-like in large rapidity windows and log-normal for small rapidity bins.
This feature of the data could be explained by the self-similar, random multiplicative
cascade production (the a-model). However, even in the framework of the a-model
the multiplicity distributions are determined only up to the choice of the initial values
[65]. No phenomenological scheme of multipaiticle correlations exists for this model.
As we discussed above, such a scheme should describe multiparticle correlation at all
scales. Motivated by a simple structure of the SFM in the a-model, it seems natural
to parametrize directly of the n-particle distribution and not the n-particle cumulant.
From the discussion in this section we must conclude, that the approach based on
the "iteration" of the n-particle cumulants is not satisfactory and unlike the a-model,
it does not give correct predictions on both the multiplicity distribution in the full
phase-space and on the intermittency indices.
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4. Spatiotemporal intermittency in ultrarela-
tivistic nuclear collisions

The experiments on the relativistic heavy-ion collisions raised the question about a
possible existence of exotic phenomena, such as the creation of the quark-gluon plasma.
It is expected that in central collisions of the heavy-ions accelerated to the energy of
200 GeV/nucl the critical energy density is reached, offering the possibility of a phase-
transition to the state of free quarks and gluons. The intermittency analysis was first
applied to high multiplicity events such as the JACEE event with a multiplicity ~ 1000
[2] and the events produced in ultrarelativistic proton-emulsion and nucleus-emulsion
interactions [27] with a multiplicity of the order of 100. The high multiplicity of the
produced particles was expected to help in this analysis, allowing to disentangle the
interesting particle density fluctuations from the statistical ones. The study of the
fluctuations in the rapidity distribution of the produced particles could be a signal of
some exotic phenomena occuring during the collision [39], and the method of the SFMs
gave a possibility to quantitatively estimate the effect. Indeed, the fluctuations in the
nuclear collisions seem to have another source than in the e+e~ and hadron-hadron
collisions. It could be a signal of some collective phenomena occurring in nuclear
collisions, or even could be caused by the quark-gluon plasma phase-transition. In
this chapter we will try to discuss why the intermittency patterns observed in nuclear
collisions could be an indication of some collective phenomena. We shall also calculate
the intermittency signal resulting from a phase-transition [52, 64].

4.1 Geometrical models of nuclear collisions

In the first approximation, the nucleus-nucleus collision may be considered as a
superposition of independent nucleon-nucleon collisions, the number of which is deter-
mined by the geometry of the reaction. This picture of the ultiaielativistic dynamics
leads to accurate predictions for a number of observables. Many geometrical models
are successful in describing the relation between hadron-hadron and hadron-nucleus
collision, and other models can relate within the same framework both the hadron-
nucleus and the nucleus-nucleus collisions. The main contribution to the change of
the observed multiplicity distributions for different collisions is due to the change in
the geometry of the collision when passing from smaller to larger projectile or target.
Models, such as the wounded nucléon model [T5] or the additive quark model [76],
were elaborated to calculate the number of primary collisions, which is not a directly
observable quantity. The mean multiplicity in different collisions is directly reproduced
using such simple models. Also the geometrical arguments permit to describe the ex-
perimental multiplicity distribution of the produced particles [77, 78, 79], as well as
the experimental transverse energy distribution [80, 81].

The fundamental assumption of all those models is that the primary excited ob-
jects such as nucléons, quarks, tubes, strings or ropes, produce particles independently
and, hence, the final particle distribution can be considered as the superposition of
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distributions from elementary collisions (sources). Also the more elaborate models of
heavy-ion collisions such as the dual parton model [82] or the FRITIOF model [83],
describe the multiparticle production as an independent fragmentation of strings and
the geometry determines only the number of strings in those models [84]. Obviously,
neither of the above mentioned models of the independently emitting sources, contain
genuine nonlinear effects and, consequently, the comparison of their predictions to the
experimental data provides only a starting point in the quest for exotic phenomena in
ultrarelativistic nuclear collisions.

The hydrodynamical approach offers an alternative picture of both the dynamics
of the collision and the treatment of possible nonlinear effects. In this approach, the
excited matter equilibrates rapidly and its further evolution is governed by the equa-
tions of the relativistic hydrodynamics involving only locally averaged quantities such
as the energy density, the pressure, the velocity, the temperature and not any kind of
microscopic degrees of freedom. This presupposes both a very short mean free path
and a short memory of the primary collisions.

In the models based on the concept of the creation and subsequent decay of strings,
the picture of independent fragmentation of strings seems to be not justified. The den-
sity of generated strings which is 2 — 3 strings/fm2 [85], denies the reliability of such
a scenario and leads to the necessity of taking the string interaction into account. The
first attempt to study these effects in the interacting string model has been done by
Andersson and Hennig [85], but still the existence of various nonlinear phenomena and
nontrivial correlations remains an open question. In the treatment of nonlinear effects,
such a flux-tube model [85] with a possible phase-transition would stand halfway be-
tween the simple nucleon-nucleon superposition models and the hydrodynamics with
a phase-transition. Van Hove proposed to use the parton-shower model including a
perturbative stage of parton production and the hadronization through the string frag-
mentation during the final stage [84]. This picture needs a very soft parton cascade in
order to reproduce the experimental effects, and it is not clear whether a perturbative
approach could be justified.

In the present work we concentrate on the multiparticle correlations. Those corre-
lations can be built up at any stage of the collision. They can arise either from random
cascading structure of the parton cascade or from the string fragmentation process.
However, as we will show below, they are not a product of independent fragmentation
of strings (sources). The inclusion of a non-negligible interaction between the strings
is crucial in order to reproduce the experimental data.

3.2 Fractal structures in the collision dynamics

It was claimed that the presence of nonstatistical fluctuations in the spectra of
hadrons produced in ultrarelativistic nuclear collisions could be a signal of the quark-
gluon plasma formation [39, 2]. The effect of nonstatistical fluctuations can be ex-
tracted and the comparison between different processes is possible using the method of
the SFM [2, 3]. The experimental data in e+e~ and hadron-hadron collisions confirm
the existence of such fluctuations and the dependence of SFM on the resolution in
rapidity can be fitted using a power law relation. In the case of a large number N of
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independent fluctuating sources, the superimposed distributions would follow a similar
law with the slopes P, which are N times smaller than for one source [7, 59, 60, 61].
This motivates the so called Bialas plot, i.e. the intermittency slopes versus the particle
rapidity density jp. Comparing on such a plot different nuclear collisions at similar
energies leads to the conclusion that the intermittency slopes are anomalously high for
heavy targets [30]. The discussion of the independent collision model was performed
by Capella et ai. [7] who concluded that this model give values of the intermittency
slopes 4 — 20 times too low and, consequently, the observed intermittency slopes in
nuclear collisions cannot be interpreted as an effect of superimposed nucleon-nucleon
collisions. One should notice that even if the mechanism responsible for the fluctuations
in nucleus-nucleus collisions is different than in hadron-hadron collisions, still there is a
lack of consistency in the observed parameters for different projectiles (p, O, S) [52]. In

Moment

F2

F2

F 3

F2

F 3

Reaction

p-Em

O-Em

O-Em

S-Em

S-Em

Data [28]

0.019

0.016

0.042

0.012

0.028

Data (rescaled multiplicity)

0.019

0.003

0.010

0.0015

0.006

Model

0.016

0.006

. . .

0.003

Table 3.1: Slopes of the SFMs F2 and F$ for different reactions are compared to the
rescaled multiplicity data for p — Em reaction (eq. 3.1). The estimate of the slope
from the theoretical model presented in this chapter is given for F2 .

table 3.1 we show the experimental data for F2 and F3 for three projectiles [28] and the
predictions for the projectile nucleus A from the p—Em data rescaled in accordance
with the change of the mean multiplicity :

<NA>
(3.1)

As was already discussed in the ref. [52], the observed decrease of the intermittency
slopes is not as large as the corresponding increase of the multiplicity.

Bialas and Swa proposed that the inteimittency patterns of fluctuations in the nu-
clear collisions could be a consequence of a higher order phase-transition from quark-
gluon plasma into hadrons [11]. More generally, it could also be understood as an
effect of some strong space-time correlations in the nuclear dynamics. In the picture of
partons and strings it means that the main contribution to the observed intermittency
patterns does not come from the stage of parton cascade or independent string frag-
mentation but instead from the stage of dynamical evolution of the interacting string
network with a possible phase-transition similar to the percolation [86].

In ref. [52], the two-particle density in space-time was taken to be a scale-invariant
function, Eke in the critical point for a second order phase-transition. The correlation
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function at the proper time r2 of the freeze out, can be written in the covariant form :

for T12 < Tmrr ,

for T12 > Tœrr ,
(3.2)

where T12 = y f ô — i^)2 — (t2 — *i)2 and T,»,.,. is the range of the correlations. The finite
range of the correlations in this model is exclusively due to the causality constraints.
Assuming that the phase-transition takes place at a certain proper time TÏ and that
the correlations cease to build at some other value of the proper time r2 , one obtains
TOOT = ( T | ~ Ti )M f°r *he range of the fluctuations (Fig. 3.1). The intermittency

freeze-out

hadronization

Figure 3.1: The space-time evolution of the system in the nuclear collision. The max-
imal range T ^ , of the correlations, which are build between the two proper times TX

and r2 is shown. The variable | x | corresponds to | r | in (3 + l)-dimensions.

exponent v* describes the strength of the singular correlations and is given by the
nature of the mechanism by which the spatiotemporal intermittency is build up. In
our calculation we took v2 = 1.0 .

For the dynamics of the reaction we assume the Bjorken's scaling in the longitudinal
direction. The ideal inside-ontside correspondence will be smeared out, to simulate
realistically the dynamics of the interactions at 200 GeV/nucl. The other non-ideal
effect taken into account is the presence of the long lived resonances. Here we assume
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that a given part (1 — q) of the observed pions come from the decay of such resonances1.
The decay is assumed to be isotropic in the rest frame of the resonance, in which case
the rapidity distribution is l/cosh2y . Such a distribution is well approximated by
a gaussian distribution with the half-width equal 0.75 . The one-particle density is
assumed to be constant inside a tube of radius Rtu and zero outside. The radius of
the tube is given by the geometry of the reaction, i.e. by the impact parameter and
the projectile radius. The interaction region for central collisions is determined by the

z axis

Figure 3.2: Schematic view of the geometry involved in a central collision of two nuclei

radius of the smaller (projectile) nucleus, Rtu = ToA1*3 (see Fig 3.2). Integrating the
two-particle reduced density over transverse radii and azimuthal angles, one obtains
the one-dimensional reduced density :

«<» RrdRr j * « R2dR2 £ .

d2{Ri,<l>i,yi;Ri,$2,1/2) •

£ . d<j>2
(3-3)

This represents the two-particle reduced density of the space-time rapidity distribution
of the sources. Following our assumptions, this density (3.3) corresponds only approx-
imately to the Mnematical rapidity distribution. In order to obtain the distribution in
the kinematical rapidity one should fold the space-time rapidity distribution with the
phase-space distribution, which we take in the following form [87] :

(3.4)

In the case of the ideal inside-outside cascade, the phase-space distribution is given by
the S function :

/(y>y(rf)) = 5(y — y(ï£)) • (3.5)
The parameter a in the above equation represents the width of the smearing of the
rapidity distribution. The rapidity distribution is then :

/ atf
(3-6)

1Some detailed results fiom the c+e~ annulation indicate that the effect of the resonance decay
effectively does not change (or even increase) the fluctuations [18], so it is not excluded that the value
9 = 1 could be better suited foi this calculation (Fig. 3.6).
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This is the kinematical rapidity distribution of the sources of the final pions. As we
already mentioned, only about q = 0.25 - 0.5 of the total number of pions are produced
directly and the rest comes from the resonances decays. Taking this into account, the
two-particle rapidity distribution for pions can be written as follows :

(3.7)
(g % i - yi) + (i - q)p{"o){yi - si)) {q % * - y'*) + (x - 9V("o)(y2 - 3/2)) •

The decay distribution of a resonance />(iso) in the above equation is approximated by :

(3-8)

From the two-particle reduced density one obtains directly the second SFM :

F2 = j ^ I*" dyi / * ' dy2 S*] (2/1, Vz) • (3-9)
(by)2 Jo Jo

The results for F2{Sy) in the range Sy = 0 .1 -1 aTe plotted in Fig. 3.3 . As one can

1.0 2.0 0.0 1.0 2.0

- I n dy

Figure 3.3: The dependence of the second SFM Ft on the size of the rapidity bin 6y,
as obtained from eq. (3.9) for three different freeze out times T2 = 4/m (the solid
line), 6/m (the dotted line) and 10/m (the dashed line). The parameters are set to
Ti = 3fm/c, q = 0.25 and a — 0.3. All the curves are normalized at 8y = 1 .

see the results depend strongly on the assumed freeze-out time T2- The resulting slopes
v2 of the SFM axe of the same order of magnitude as observed experimentally. How-
ever, the detailed comparison is not meaningful because the calculated slopes v2 depend
sensitively not only on the projectile and the impact parameter but also on the unob-
servable parameters such as the correlation range Terr , percentage of the direct pions
ç and the width a of the rapidity spread around the Bjorken's solution. So the depen-
dence of the SFMs on the projectile and the impact parameter as calculated in this
model, can be treated only as a qualitative relation. In Table 3.1 one can see the com-
parison of the experimental data with results of calculations obtained for the freeze-out
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time T2 = 6 fm . Even though the numerical values of the intermittency slopes v2 are
systematically underestimated, they depend on the projectile less strongly than the
inverse of the mean multiplicity (eq. 3.1).

- 0.06
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- 0.02

O-Em
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- /
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-In8y
Figure 3.4: The dependence of the second SFM F2 on the size of the rapidity bin Sy, as
obtained from eq. (3.9) for three different freeze out times T2 = 4/m (the solid line),
6/m (the dotted line), 10/m (the dashed line) and 20/m (the dash-dotted line). The
parameters ate set to rx = 3fm/c, q = 0.5 and a = 0.5. All the curves are normalized
at 8y = 1 .

For comparison, we are plotting in Fig. 3.4 the similar results for a different set
of parameters. The proportion of the direct pions is now set to q = 0.5 and the half-
width of the smearing of the rapidity distribution is a = 0.5 . The resulting SFMs
have a similar dependence on the rapidity bin width 6y as those plotted in Fig. 3.3.
This shows the difficulty in making a quantitative comparison with the data, without
having a precise estimate of the unknown parameters.

In Table 3.1 we make a comparison between central nucleus-nucleus collisions in
the model (the constant radius of the interaction region) and a sample of central and
medium parameter collisions in the experiment. This could be another effect explaining
the stronger attenuation of the calculated slopes. On the other side, all ultrarelativistic
proton-nucleus collisions are in our model central. So, the model gives relations for
central collisions of different projectiles and the experiment gives relations between
central proton-nucleus and a mixture of central and medium impact parameter nucleus-
nucleus collisions.

Following those arguments, one can take the relations between the "slopes" of the
SFMs in our model (see the table 3.1) as the lower bound. Nevertheless, these relations
are in much better agreement to the relations followed by the experimental data on F2

than the independent superposition models, and serve as a schematic explanation of the
observed relations between intermittency exponents for different projectiles and targets.
It would be interesting to compare the results of the model with the experimental results
for a sample of only central collisions for different projectiles.

This tendency of the results of the model of spatiotemporal intermittency could
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Figure 3.5: The dependence of the second SFM F2 on the size of the rapidity bin
Sy, as obtained from eq. (3.9) for O-Au collisions using T2 = 24/m/c, Rtu = 7.2/m/c
(the dashed line) and for S-S collisions using T2 = 5.5/m/c, Rtu = 5.5/m (the solid
line). The parameters are set to T\ = 2fm/c, q = 0.5 and a = 0.5. All the curves are
normalized at 6y = 1 .

certainly be made closer to the experimental data, if we would allow for a projectile
dependence on both the spatial and the temporal extensions of the interaction region.
This means that taking larger freeze-out time r2 for heavier projectiles, one can obtain
even weaker attenuation of the slopes with the mass of the interacting nucleus. The
recent results of the NA35 Collaboration [88] on the time of the pion emission in
ultrarelativistic collisions gives a very high value of the freeze-out time of the order of
20/m/c. The lifetime of the pion source in the mid-rapidity was found to be much
longer in the asymmetric collisions (20/m/c for O-Au) than in the symmetric collisions
(6/m/c for S-S) [88]. This strong increase of the emission time with the asymmetry
of the collision can explain in the framework of the present model the increase of the
slopes of the SFMs with the increase of the mass of the target, as seen by the EMU01
Collaboration [30]. As said before, the interaction time in the asymmetric collisions can
take a value of 20/m/c and, as one can. see in Figs. 3.5 and 3.6, it gives a substantial
increase of the intermittency signal.

The model presented in this section to make allows a comparison between different
reactions and explains the dependence of the intermittency parameters on the target
and projectile mass. The quantitative analysis of different collisions needs however hints
on the values of the parameters Rtu, Tj and r2 . We have calculated the intermittency
signal for the two different assumptions about the size of the interaction region. First
the size of the interaction region was taken to be equal to the size of the projectile
nucleus (Figs. 3-3 and 3.4). However, this assumption about the size of the interaction
region (Rtu ~ A1/3) can be justified only at the Dubna and Bevalac energies [89].
For higher energies the scaling of the interaction radius with the rapidity density was
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Figure 3.6: The same as in Fig. 3.5 but for g = 1 and c = 0.8.

observed from B-E correlations [90] :

Rtu[fm] ^0.84. /Ç. (3.10)

This would lead to the increasing interaction radius with the energy. The intermittency
signal can be calculated, using the NA35 data on the interaction radius from the B-E
correlations (Figs. 3.5 and 3.6). The estimated value of this radius, which depends
strongly on the model, is 6 — 8/m . The freeze-out time, which depends even stronger
on the model of the nonstatic source, equals 24/m/c in the central region for the O-Au
collisions [88]. Different parameters were estimated for the symmetric S-S collisions
[88] leading to a much weaker intermittency, signal independently of the details of
the non-ideal effects (see Figs. 3.5 and 3.6). H these results about the length of the
interaction time were confirmed then, according to the above model the intermittency
signal should be much stronger for the asymmetric O-Au collisions in spite of the larger
interaction volume.

The above discussed effects can be due also to some other phenomena, different
from the phase-transition from the quark-gluon plasma into hadrons. In that case, even
though we have no longer scale-invariant correlations with the range exclusively due
to causality constraints, still the correlation range should be of the order of the radius
of the interaction region. Consequently, the difference between various projectiles or
impact parameters means only the different radius of a single correlated source or,
due to differences in the time scales involved, a difference in the correlation length
Teorr- On the other hand, if the correlation range is small then the collision would be
better described as a superposition of independent sources with the radius equal to
the correlation range and would give smaller values of the intermittency exponents for
heavy projectiles than observed.
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3.3 Interferometry measure of the spatiotemporal
intermittency

The hypothesis of the spatiotemporal inteimittency rises the question if such a
strong correlation between the emitting sources in space-time could be observed in B-E
correlations between the produced particles. This question was addressed by Bialas [91]

1.5 -

0.04 0.06

q (GeV/c)

Figure 3.7: The two-particle distribution function D2[k) , as obtained from eq. (3.16),
for different strength of the intermittency correlations v2 = 1.0 (the solid line),
v2 = 0.5 (the dotted line) and for the uncorrelated sources (the dashed line).

in relation to the possible existence of fractal structures in the high energy collisions.
The intetferometry was first proposed by Hanbury Brown and Twiss [92] as a way
to measure the spatial extension of extragalactic sources. Kopylov and Podgoretsky
[93] proposed to use the interference of undistinguishable particles to measure the
spatiotemporal extension of the interaction region in elementary particles or nuclear
collisions. The two-particle distribution :

- P2(fei»fe2)

is related to the density of the emitting sources by

(3.11)

(3.12)
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Figure 3.8: The two-particle distribution function D2(k) for the emission from a surface
is shown for different strength of the intermittency correlations v2 = 1.0 (the solid line),
v2 = 0.5 (the dotted line) and for the uncorrelated sources (the dashed line).

where <Zi(fc) is the four-dimensional Fourier transform of the density of the sources. The
experimentally measured like-signed pion correlation function, can be used to study the
radius of the interaction region in the collision. The distribution function is related to
the radius of the radiating region R and to the mean decay width F of the emitting
sources :

(3J3)

The derivation of the above equation assumes that the sources emit incoherently and
are randomly distributed over the sphere of radius R. One can however discard the
assumption of uncorrelated sources in space-time and use the two-pion interferometry
as a tool to study the correlation of the emitting sources.

The pion interferometry can measure the possible underlying correlations of the
emitting sources and its correlation length. For sources correlated in space-time eq.
(3.13) takes the form :

+
(3-14)

If the number of sources is large, then :

xux2)
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We calculate the two-pion correlation function assuming a spherical static source ia
three-dimensions. The source distribution function is in this case :

(3.15)

with the source density d^R) = exp(—\R2) . The parameter A = 2/(TT < R >2) is
given by the mean radius < R > and can be related to the radius of a sphere R,ph with
the same mean radius :

l.lo
~ < R,ph >

2 "

We take R,ph = 3.5/m as in the central S-Em collisions. Then the equation for D2(k)
simplifies to :

Sd3Rexp(\Ry2)cos(Rky\R\>*

The results for v2 = 1.0 ,0.5 and u2 = 0 (uncorrelated sources) are plotted in Fig.
3.7. The different distribution are indistinguishable from the case of the randomly
distributed sources according to the density di(R) . The emission from correlated
but not necessarily fractal sources, gives distribution function corresponding to an
effectively smaller emitting region. In other words, if the sources are correlated then
the radius of the interaction region is actually larger than the measured one, but still
the effect is very small. The effect of correlated sources can be compensated by a change
of about 15% of the radius of the interaction region (Fig. 3.7), and hence it cannot
serve as a signal of the spatiotemporal intermittency. The difference between correlated
and uncorrelated sources becomes substantial (Fig. 3.7) only in the region of large
momentum difference of the pair of pions. This behaviour for large momenta reflects
the presence of a singularity for small separation of sources (eq. 3.15). The signal of the
singularity in this region of momenta would be probably difficult to disentangle from
the background which is present in experimental studies of the correlation function.
Its magnitude should be larger if the pion emission would take place on a surface. In
this case, the effect of a correlated (fractal) distribution of sources could be better seen
even in the Fourier transformed quantity such as the distribution function D2 (Fig.
3.8).

3.4 Hydrodynamical evolution of the fluctuations
Another interesting problem is the behaviour of the fluctuations within the rela-

tivistic hydrodynamical models. This question was addressed in different context in
ref. [94], where the diffusion of plasma droplets through the expansion was discussed.
We studied the fluctuations in the (1 + 1)-D hydrodynamical model of nucleus-nucleus
collisions with hadronization sources described in ref. [95]. The model was modified
by the introdution of the randomness of a gaussian or fractal type in the sources. The
hydrodynamical evolution of the system was studied by numerical integration of the
equations of the relativistic hydrodynamics in two dimensions :

= S" ,
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where T1*" is the energy-momentum tensoi:

«" , (3-17)

with vP, e and p being the fluid local velocity, energy density and pressure. In the
studied example we assume a simple equation of state which yields the relation :

dp = c.2de,

with a constant sound velocity c, . Rewriting these equations in the variables:

£=i ]og(« + *- /^) (3.18)

and
Î/ = 2 1 0 S ( * + / 0 , (3-19)

one obtains [95] :

(8i + vdy)e + (e + p){v8t + du)Q = f?>(*) / s o c o s h © _ S i s m h 0) , (3.20)
cosn̂ fc) — y)

{ydi + dy)p + (e + p){d{ + vdv)e = f ™ ( - S 0 sinh 0 + S1 cosh 0) , (3.21)
cos ni yy *̂~ y}cos ni yy *̂~ y}

where

and
v = tanh(0 - y) . (3.23)

The sources £" represent the hadrons forming after the first nucleon-nucleon collisions,
so they are a kind of the retarded map of the particle production in direct collisions.
For the details see ref. [95], where a functional form of the sources is proposed. All the
parameters and initial conditions are taken from ref. [95] and correspond to central
U-U collision with 400 GeV/A energy. Those sources are then modified by applying a
random factor ((y) :

SW(l,») = Ew(*,»)C(y). (3.24)

and we take :
( ) (3.25)

with a normally distributed random variable f (y), or a self-similar distribution in ra-
pidity C(y). The simulation shows that the fluctuations induced by the random sources
giving the initial conditions for the hydrodynamical evolution are strongly damped in
the evolution. It reflects the stability of the Bjorken's solution of the two-dimensional
hydrodynamical equations. The energy density is shown in Figs. 3.9 and 3.10 for three
evolution times.
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Figure 3.9: Energy density at three different evolution times for the gaussian random
hadronization sources with the width s = 0.2 .
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Figure 3.10: Energy density at three different evolution times for the fractal random
hadronization sources.

The analysis of the moments of the energy distribution shows a systematic flattening
of the distributions (Figs. 3.11 and 3.12). The fitted slopes of SFMs decrease rapidely
during the hydrodynamical evolution, i.e. the energy distribution smoothes out and its
dimension approaches 1.

This mechanism can cause another weakening of the intermittency patterns. The
possible appearance of fractal or fluctuating distributions due to a random hadroniza-
tion would be strongly damped during the hydrodynamical expansion. The assumed
independence of the sources on time is of course the most optimistic hypothesis. If we
superpose independent random sources at different times in the same rapidity interval,
the effect wDl then be only weaker due to averaging.
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Figure 3.11: The dependence on the size of the rapidity bin Sy for the moments F2 (the
solid line), F3 (the dotted line) and F4 (the dashed line) of the distributions shown
in Fig. 3.9 .
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Figure 3.12: The dependence on the size of the rapidity bin Sy for the moments Ft (the
solid line), F3 (the dotted line) and FA (the dashed line) of the distributions shown
in Fig. 3.10 .

The detailed study of the damping of the fluctuations can be performed, for a
simpler situation of the hydrodynamical evolution of the initially fractal distribution.
For the initial distribution we take a self-similar energy density distribution in a range
of rapidity scales, following the p-model distribution [96], The p-model is equivalent
to a semirandom a-model with the number of branching A = 2 . The probability
distribution for the first random variable is P(vi\) = 0.5 S(w — l -p)+0.5 6{w — 1+p) .
The second random variable is taken as wz = 2 — tui . For the rapidity distribution
Q(y) we take the scaling initial condition Q(y,t = 0) = y. The resulting distributions
are analyzed for different times of evolution and the slopes v,- of the moments are
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evaluated. In Fig. 3.13 we show 2i/,/i(i — 1) for i = 2 and 4 as a function of the
proper time r for three initial distributions (given by different values of the parameter
p). One can observe that the intermittency slopes are strongly reduced already after
the first fm/c of the evolution. At t — 1 fm/c the values of F2 and F4 correspond to
21% and 24% of their initial values respectively. The • • lculated time dependence of
the slopes can be fitted by a power law :

*(t) = *( l ) /* 7 , (3.26)

with the parameter 7 = 1.24 and 1.20 for the moments F2 and F4 respectively.

0.12

13

(fm/c)

Figure 3.13: The function Vi/i{i — 1) , where 1/; is the intermittency exponent for the
moment of rank i , is plotted as a function of the proper time of the hydrodynamical
evolution of the initially fractal energy density distributions. The results are shown
for three different initial fractal distributions, p — 0.50 (the solid Une), p = 0.60 (the
dotted line) and p = 0.65 (the dashed line).

As was already mentioned, this damping of the fluctuations is a result of the stability
of the (1 + 1)-D scaling solution of the perfect fluid hydrodynamics [97]. The general
problem of the stability of the scaling solution in (1 + n)-D for the relativistic viscous
fluid was addressed in ref. [98] and the limits on the viscosity coefficients were found for
which the scaling solution is stable. There exist however some regions of the parameters
were the scaling motion becomes unstable. The authors of ref. [98], using the results
of Hosoya and Kajantie [99] for the viscosity coefficients of the quark-gluon plasma,
found that the stability condition given by the Reynold's number R > 1 is well satisfied.
For example, for the initial temperature of the plasma T = 300 MeV , one finds
R = 7.22 for a, = 0.3 and R = 1.34 for a, = 0.1 . However, the recent calculation of
Baym et al. [100] predicts a larger value of the plasma viscosity and the corresponding
Reynold's number is R = 1.79 for a, = 0.3 and R = 0.33 for a, = 0.1. This value can
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be even lower foi a lower value of the initial temperature. According to this prediction
[100], the unstable region R < 1 could be approached in the nucleus-nucleus collisions
and could produce many unexpected results such as the increase of the fluctuations
in the rapidity distributions. We have not checked numerically the damping of the
fluctuations in the viscous fluid. However, taking a lower value of the sound velocity
than for the ideal equation of state (cs = l/>/3 c), we have found a slower damping of
the fluctuations durring the hydrodynamical evolution.

The turbulent origin of the fluctuations was proposed to explain the fluctuations in
the distributions of galaxies in the universe [101]. However, in the case of the heavy-
ion collision, the short time of the hydrodynamical evolution provides some constraint
on the space extention of those fluctuations. Taking for the time of the evolution
t = 4 fm/c and for the sound velocity c, = 1/y/S c , one finds the upper limit on the
extension of an eddy reddv = 0.7 fm (one full revolution of the eddy with the sound
velocity). Larger eddies simply have no time to build up. So even if the hydrodynamical
evolution of a collision would give strong fluctuations, these cannot be thought of as
the fully developed turbulence in a broad range of scales.

In conclusion, the ideal hydrodynamics is damping the fluctuations very rapidly. We
can deduce that if the observed multiplicity fluctuations come from the stage before
or during the hydrodynamical evolution, then this evolution must be very short or
the viscosity coefficients must be in the range of values where the scaling solution
of relativistic hydrodynamics is unstable [98]. This means that the fluctuations are
produced during the final stage of the collision, just before the freeze out, or that the
hydrodynamics describing the reaction is near or in the unstable region, in the latter
case it could be even the dominant source of fluctuations.

3.5 Intermittency and the nuclear collision dynam-
ics

The moments of the multiplicity distributions in rapidity were analyzed in the
proton-nucleus and nucleus-nucleus collisions. Assuming a local parton-hadron duality
or, in the hydrodynamical model, a local correspondence between the energy density
and the multiplicity of the final hadrons, the model of the spatiotemporal intermittency
was studied. Here the origin of the intermittency in rapidity distributions comes from
the correlations of the hadron sources in the space-time. These correlations were first
studied in the context of a higher order phase-transition [52], but can be generalized
to any kind of dynamically induced correlations with the correlation range of the order
of the size of the system. The scale-invariant form of the correlations is most probably
washed out due to :

• the projection from the 3D hyperspace of constant proper time to the ID rapidity
distributions [51, 48, 52],

• the smearing of the distribution due to non-ideal Bjorken's scaling,

• the contribution from the isotropic decay of the metastable resonances,

• the damping of the fluctuations during the hydrodynamical evolution.
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So, even if the interacting system possess scale-invariant correlations, there is no reason
to expect such a behaviour in rapidity distributions of the final hadrons.

The effect of the dimensional projection is crucial to explain the observed depen-
dence of the SFMs on the projectile and on the impact parameter. The range of
the correlation, which is of the order of the size of the interacting region, is a basic
assumption to relate the size of the system to the magnitude of the "slopes" of the
SFMs. The model presented in sect. 3.2 gives qualitatively similar relations between
SFMs as observed experimentally. However, detailed comparison is difficult due to
many model-dependent, non-ideal effects. We have found that physically reasonable
variations of these parameters can change the resulting dependence of the SFM on
the rapidity bin by a factor of 2 — 3. Even more important could be the effect of
non-singular components in the multiparticle distribution. Motivated by the scaling
behaviour of the spin distributions of the Ising model in the thermodynamic limit
[103], we have based the calculation of the SFMs on the assumption of the intermittent
structure of the two-particle distribution. This could however change if the relevant
variable would be the energy density e(f) corresponding by some "local energy-hadron
duality" to the produced hadrons. The intermittent behaviour of the energy correlator
< e(?)e(f') > — < e(f) >< e(r ) > implies then the scaling for the factorial cumulants
of the produced particles. Other phenomena leading to non-singular components of the
two-particle distribution could be also the contribution from the particles produced out-
side the space-time region undergoing the phase transition, or the contribution from
events where the phase-transition does not occur.

In accordance with the considerations of this chapter, the study of the fluctuations
in the multiparticle distributions provides important informations about the structure
of the correlations in the collision dynamics. The detailed nature of the fluctuations
in the dynamics remains however unknown and, because of many effects reducing the
correlations, it cannot serve as a signal of a higher order phase-transition. Alternative
mechanisms involving string interaction and rescattering, could build up correlations
giving similar intermittent behaviour [85,102]. Furthermore, a direct observation of the
fractal structure in space-time through B-E correlations does not seem to be possible.
However, the possible existence of the spatiotemporal intermittency should be taken
into account is. the analysis of the B-E correlation data especially if the emission takes
place effectively from a surface. Large source composed of few strongly correlated
"hot-spots" would look as a smaller source with the radius intermediate between the
radius of the source and of the hot-spot. The scaling correlations are an example of
the creation of such "hot-spots" on all length scales.

The considerations which were presented in this section, show the importance of
the correlated evolution of the hadron sources. Hence, any mechanism aiming at a
correct description of the fluctuations in the multiparticle distributions, such as the
higher order phase-transition or the string interaction, must include correctly the in-
teractions between hadron sources. The simplest way to describe phenomenologically
the nontrjvial interactions between the hadron sources is to introduce the space-time
correlations between sources and the concept of the correlation range. The observed
relations between intermittency exponents for different projectiles give us, in a model
independent way, hints that the correlation range is of the order of the size of the
interacting system.
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4. Intermittency in statistical systems

The concept of scaling at the critical point of a statistical system raised very early
the question about the existence of nontrivial scaling fluctuations in such systems [12].
Indeed, the scale-invariant fluctuations in the vicinity of the critical point were observed
in the 2D Ising model [12]. The SFMs were calculated for a Z<i symmetric definition
of the number of spins in a cell [13]. On the other side, the scaling of the number of
spins in a cell of a given size was shown to be related to the critical index t\ of the
Ising model [103]. It was also noticed that the statistical noise in the cell of N spins
is expected to be not of the Poissonian type but of the binomial type [104], so that a
slightly different definition of the SFMs was proposed :

< n > « N{N - 1 ) . . . {N - i + 1)
(4.1)

The correct relation between the rise of the SFMs of the number of spins up in a cell
and the scaling indices of the Ising model was recently calculated [105]. This problem
was resolved for the Ising model with scaling spin correlation function and, generally,
one has to find in a similar way the correct estimate of the scaling in the critical system
for each particular case (SFMs, scaled factorial cumulants, central moments).

4.1 Intermittency in simple cellular automata

In this section the SFMs analysis of a CA system will be performed. We propose
to study the fluctuations in a ID model exhibiting an absorbing transitions between
two states [106]. The ID model has the critical properties similar to the (1 + 1)-D
directed percolation and the Reggeon field theory [107]. In the simulation we follow
the method of Jensen [107]. We begin the evolution from the three central sites and all
the remaining sites empty (§['=0* = 0). The evolution of the occupations at the next
time step follows a probabilistic rule. The state of the spin i depends on the state of
its neighbours in the previous time step. If one defines the sum of the occupation of
the spins in its neighbourhood [107] :

st=
i+4

j=i-4

then the evolution of the spin i follows the rule :

10 ot]
with probability p if 3 < S\ < 6
otherwise

(4.2)

(4.3)

The critical value of the probability to survive was estimated to be pc = 0.7216 ±.0002
[107]. It was observed that this model is in the same universality class as the (1 + 1)-D
directed percolation and the Reggeon field theory. It has a power-law dependence of
the surviving probability P(t) of an evolution on time. The dependence of the average
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Figure 4.1: The distribution of the occupied cells after 500 time steps foi the CA model
(arbitrary units).

number of occupied sites n(t) and of the mean-square spreading R?{t) was also found to
be of that form, with the exponents consistent with those of the directed percolation :

(4.4)

n(t)~t\
R2{t) ~ t* .

The exponents were found to be 0.161, 0.312 and 1.272 [107]. We have tested the
behaviour of the fluctuations in the distribution of occupied sites in the model for
the critical surviving probability. The ID intermittency analysis was performed for
the fluctuations in the number of occupied sites after 500 time steps ( in a window
of width 180 around the central site), also ID intermittency analysis was applied to
the fluctuations in the number of occupied sites in the time history of a given site
(the central site ij = 500 and a shifted one i2 = 530 , for the times between 320
and 500). The 2D SFM analysis in the time-space was performed for the square
410 < i < 590 , 320 < t < 500 . The horizontal SFMs were corrected for the
shape of the single particle distribution which is not flat (Fig. 4.1). One expects an
almost Gaussian profile of the percolating cone in (1+1)D [108]. The binomial type of
statistical noise was assumed and the SFMs were reseated according to eq. (4.1). The
results for the SFMs F2 and F3 are shown in Figs. 4.2 and 4.3 . The results shown in
Figs. 4.2 and 4.3 demonstrate the scale-invariance of the fluctuations induced by the
local updating rule (4.3) with the critical probability pc. This is related to the structure
of the correlations in the percolating system. In the case of the directed percolation,
the probability of cluster connectivity between two sites scales with their distance.
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Figure 4.2: The dependence of the SFM F2 on the bin size for the CA model. The
dotted line represents the ID analysis in the space dimension. The dashed line repre-
sents the ID analysis in the time direction for the central site and the dashed-dotted
line for the shifted site. The results of the 2D analysis are shown with the solid line.
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Figure 4.3: The same as in Fig. 4.2 but for F3 .

The intermittency slopes for the moment F2 are 0.23 for the space direction, 0.14 for
the time direction and 0.21 for the 2D analysis. As one could expect, the result for the
2D analysis lies in between the two ID values. The detailed form of the 2D correlation
function is however unknown [109]. The value 0.21 for the anomalous dimension of the
(1 + 1)-D cellular automaton should be compared with the value 0.19 obtained for the
(1 + 1)-D directed percolation [108]. The difference can be attributed to the finite size
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effect and/or to the bias due to the correction of the horizontal SFMs on the shape
of the ID distribution. Another effect is also the absence of translational invariance,
which can be seen in the difference in the SFMs calculated for two different sites in the
time direction (Figs. 4.2 and 4.3).

10.5

0L-

Fignre 4.4: The dependence of the number of surviving evolutions of the forest fire on
the number of the time steps.

In t

Figure 4.5: The dependence of the number of occupied sites on the number of the time
steps for the forest fire model.
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Figure 4.6: The dependence of the mean-square spread of the foiest fire on the number
of the time steps.
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Figure 4.7: The same as in Fig. 4.2 but for the forest fire model.
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Figure 4.8: The same as in Fig. 4.3 but for the forest fire model.

We have tested the scaling properties for a directed forest fire model. In this model,
the occupied site can fire in the next generation the sites i — l , i , i + 1 , each which
the probability p. The initial conditions are now $|'=0' = 0 except for the central site
which is occupied. We have found a reasonable scaling behaviour for p = 0.5885. The
Figs. 4.4,4.5 and 4.6 show the dependence of the surviving probability, the number of
the occupied sites and the mean-square spreading as a function of the time step.

The results follow the power-law (4.4) with the exponents equal 0.16, 0.5 and 2.0
respectively. Thus, we observe that the forest fire model is probably in a different
universality class than the model discussed previously. The same SFM analysis as for
the CA was performed for the forest fire model and the results are shown in Figs. 4.7
and 4.8 . The intermittency exponents equal to 0.2, 0.11 and 0.2 for the space, time
direction and for the 2D analysis respectively.

4.2 Intermittency and clustering in the ID lattice
gas model

Dias de Dens and Seixas have calculated numerically the intermittency signal in
the ID Ising system and shown that for certain values of the parameters some of the
features of the experimentally observed intermittency patterns could be reproduced
[110]. Even though the ID Ising system does not possess a critical point, it shows in
some range of scales an intermittent-like behaviour which is not related to the scale
invariance of the system. The intermittency in this case is not due to scale-invariant
correlations with infinite correlation range and, in fact, is present en much larger scales
than the scales determined by the finite (and usually small) correlation range in the
ID system.

In this section we perform the analytical study of the model of ID lattice gas with
nearest neighbour interactions, which is equivalent to the Ising model [111]. The system
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consists of a lattice of N sites and at each lattice site i the particle number Y{ takes
the values 0 or 1. The partition function for this model is given by :

Z = £ *xp(££ïflï+i -M*£Yi), (4.5)

where the first sum denotes the sum over all possible particle distributions {Yi,.
with periodic boundary conditions YN+I = Yi. The SFMs F, = < n ( n - l ) . . . (n-i+1) >
I < n >' of the number of n particles in a given bin are calculated as a function of
the bin size I. Here < . . . > means an average over the particle configurations with
the weight function given by eq. (4.5). The factorial moments of any rank can be
calculated from the generating functions defined as follows :

j N N

where m({3^}) is the number of particles in the bin of size I for the given configuration
{Yi} (similar analytical calculations were performed by Seixas using the two-spin cor-
relation function [112]). The factorial moment of rank i is given by the i-th derivative
ofG,:

<n(n-l) ( n - t + l ) > = ^ ^ | -o (4 7)

The generating functional Gi(x) can be calculated using the method of the transfer
matrix :

l\X] = i f OQ <TOX<T[X) <TOX /IT <7Q , l * . " J

with
eE-M

and

Denoting by \±{x) = l / 2 ( ( l + x ) e E - M + l ± ^ ( ( l + x)eE~M - l ) 2 + 4(1 + x)e~M\ the

eigenvalues of a[x) and by |u;±(a;) > the corresponding eigenvectors, one can rewrite
eq. (4.8) in the thermodynamic limit JV —> oo as follows :

^ w+\aox\w+{x) >> ( ^ )

(4.11)
where A+ = A+(0) and \w+ >=_|«;+(0) > .

The generating functional Gi(x) for the factorial moments of the number of links
in a given interval can be defined in a similar way. A link is defined as a pair of
neighbouring particles, i.e. Yt = Yi+i = 1. Using the transfer matrix method, the
generating functional for links can be written as :

G,{x) = TT crt'*(*)' /TT <tf , (4.12)
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with

*(«)=(
{l + x)eB-M e~M'2

e-M/2 1
(4.13)

In the thermodynamic limit the functional G can be expressed by the eigenvalues and
the eigenvectors of the transfer matrices :

«f !•-(

J-1.05757

K—0.50909

-2.0 -1.0 1.0 2.0

Figure 4.9: Dependence of the SFMs of the number of particles on the rapidity interval.
Here the rapidity interval Sy = 4.0 corresponds to the cell size I = 561 .

The mapping between the ID Ising model and the ID lattice gas model, allows us to
reproduce the results of the ref. [110] in the thennodynamic limit. Using the notation
of Dias ds Deus and Seixas [110] the mapping between the two sets of parameters
takes the form : E = iJ and M = iJ - 2K . Thus the parameters J — 1.05757
and K = -0.50909 correspond to E = 4.23028 and M = 5.24846 in our notation.
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The mean value of the occupation number < Yi > = 0.0124 should be compared to the
values 0.01322, 0.01274 and 0.0126 obtained in ref. [110] for a lattice size of 256, 512
and 1024 respectively. The différence can be attributed to the finite size effect and
consistently decreases with increasing lattice size.
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Figure 4.10: The same as in Fig. 4.9 but for SFMs of the number of links.

The dependence of the SFMs Ft for t = 2, 3, 4, 5 on the cell size is shown in
Fig. 4.9 . In order to reproduce the experimentally observed mean multiplicity ~
6.96 in the central rapidity interval [21], we have adjusted the scale of the rapidity
and the scale of the length on the lattice. As a consequence of the reseating relation
<n> = l<Yi>~ 6.96, the full rapidity interval AY = 4 corresponds to the
length of the cell I — 561. The model shows intermittent-like behaviour in the whole
experimentally studied range of scales. The SFMs of the number of links with the
same set of parameters and for the same cell sizes are shown in Fig. 4.10 . One
can see that the corresponding intermittency slopes are significantly larger than for
the particle number fluctuations. The above observation demonstrate the effect of the
clustering on the strength of the fluctuations. The SFMs of the clustered variables show
stronger intermittency signal. This motivates the following change of the interpretation
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of the model: the particles in the lattice gas correspond now to partons and the links
(nearest neighbour interactions) to the observed mesons. This interpretation is only
very schematic, because many partons are not linked and other are shared by two
links, however it gives some insight into the mechanism of the hadron formation. Thus
the intermittency signal observed in the distribution of hadrons would correspond to
fluctuations in the number of produced links. These fluctuations come in some part
from the clustering of partons into pairs. The interpretation of the clustering as the
hadronization, leads to the conclusion that the transition from partons to hadrons
enlarge the inhomogeneities which are present in the parton distribution.

The clustering of the gas of particles into links could be a simple model of the cold
hadronization proposed by Van Hove [113]. This mechanism was given as a possible
explanation of the intermittent behaviour. If, as proposed in ref. [113], this transi-
tion takes place as collective phenomenon involving many partons in the creation of a
single hadron, then the relative increase of the fluctuations during the hadronization
should be even stronger. The ID model shows systematically stronger intermittency
in all the regions of parameters where the SFMs increase. It is, however, only a very
schematic and simple model of the transition from the partonic to the hadronic phase
and, therefore, the quantitative conclusions would require the investigation of more
realistic 3D models based on a correct gauge group structure and with the inclusion
of finite mass of the quarks. The structure of the group (SU(2) or SU(3)) and the
presence of quarks are known to be crucial in this issue [86]. Also an unambiguous
identification of the clusters with the final hadrons is required. Finally, we would like
to notice that, if this mechanism of the enhancement of the fluctuations is important,
then baryons which have a more complicated structure would show stronger intermit-
tency than mesons. The formation of baryons as topological defects in the disordered
Higgs field by the Kibble's mechanism [114] could also lead to similar increase of the
fluctuations in comparison to the disordered (weakly fluctuating) Higgs field.

4.3 The dimensional projection and the finite-size
effect in critical systems

The role of dimensionality in the intermittency analysis of the high energy processes
was discussed in the chapter 2. The same is true for statistical systems exhibiting
intermittent behaviour. Wosiek has discussed the role of the dimensionality on the
intennittency signal in critical systems [115]. He has made the comparison between
the intennittency patterns on elongated cells in the ID analysis and on square cells in
the 2D analysis. To calculate the second central moment, Wosiek has used the following
form of the correlation function in the vicinity of the critical point :

C72(r) = e - ^ ( r / O - 2 1 , (4.15)

where 2x is the critical exponent and £ is the correlation range which tends to infinity
as the temperature approaches the critical value Tc . He has shown that the size of the
transverse dimension in the critical system [115] is important for the reduction of the
intermittency signal. Moreover, in the case of the critical systems, the magnitude of
this reduction increases with the elongation of the cell [115] or, for nuclear collisions,
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with the transverse size of the interaction region on which we average the fluctuations
[52]. In phenomenological models of the nuclear collisions, this effect may be crucial for
explaining the observed dependence of the intennittency parameters on the projectile
and on the impact parameter.

In chapter 3 a phenomenological model was proposed which involves a phase tran-
sition with the correlation range given only by the causality constraints [52, 64], i.e.
the correlation range in this model is of the order of the size of the interacting system.
The interpretation of the size of the transversal averaging as a new scale which is in-
troduced in the system by the geometrical constraints on the collision, as given in that
work [52, 64], goes in fact beyond some convention on the method of measurement
of the intermittency patterns. The cutoff in the transverse momentum discussed in
chapter 2, which is a conventional scale, has not the meaning of a physical parameter.
The transverse size of the system is a physical scale built in the system, which can
determine the correlations present in the system. One may therefore ask how the pres-
ence of such a finite transverse dimension influences the ID and/or 2D intermittency
analysis. It is the aim of this section to answer this question [116].

8 van.

L

* > > „> s "

Figure 4.11: The subdivisions of the square cell in an infinite system in the 2D analysis.

To study this effect we analyze two exemplaric systems. The first one is a square
cell of size L embedded in an infinite system (Fig. 4.11) and the second one is a square
cell of size L embedded in an infinite strip of transverse dimension L (Fig. 4.15). The
second system simulates the presence of a finite size in the critical system.

The infinite system at the critical point has an infinite correlation range and the
correlation function is scale-invariant :

C2(r) ~ -L . (4.16)

The exponent 2x equals 1/4 for the 2D Ising system [117,103] . Assuming the appli-
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Figure 4.12: The subdivisions of the square cell in the strip geometry in the 2D analysis.

cability of the conformai invariance at the critical point, one can relate the correlation
function in the z-plane :

C2(z!,z2) =| w\Zl) n w\z2) \x C2(w(zx),w(z2)) (4-17)

to the correlations in the conformally transformed geometry [118]. Using the conformai
transformation:

— 5 » ' . <"s>
the whole plane changes in the strip | Im w \< L and the two-point correlation
function becomes [118] :

2ir(3/i —y2) 2ir(y2 — yi) 2ir(8i — ^ Î ) \
^2(yij^i»y2>^2) ~ exp —xln(exp 1- exp 2 cos ) .

L L L
(4.19)

For | yt — y2 |—> oo this correlation attains an effective correlation range Ç = fjjf .
From the correlation function one can calculate the second central moment [115] :

I- A y
dyidy> (4.20)

In the 2D analysis we calculate F% as a function of M2 for Ay = L/2M and A0 =
L/2M (Figs. 4.11 and 4.12). In the ID analysis, the moment F%2) is plotted as a
function of M for either Ay = L/2M and A0 = 1/2 (the cell is elongated transversally
to the strip) or Ay = X/2 and A0 = L/2M (the cell is elongated along the strip).

The dependence of the moment F£c' on the number of subdivisions of the cell is
plotted in Fig. 4.13 . We find that the intermittency signal in the ID analysis using
the strip geometry differs from the signal obtained in the infinite plane. The moment
calculated on cells elongated along the strip (subdivisions in the 9 variable) grows
slowlier than for the system of infinite size in the two directions. The reverse relation
is observed when the moment is calculated on cells which are elongated transversally to
the strip (subdivisions in the y variable). The moment calculated in the y variable and
averaged over 6 (L/2 < 0 < i / 2 ) , grows initially even faster than in the 2D analysis.
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0.0
0.00

N
Figure 4.13: Dependence of the second SFM F^ on the number of subdivisions of the
i x l cell in the infinite strip geometry (the dashed lines) and in the infinite plane
geometry (the solid lines). Moments are calculated using eq. (4.20) with N = Af'
where i is the dimension of the intermittency analysis. All moments are normalized
for the first binning.

This effect reflects the fact that the correlations in y have an effective finite correlation
range [118] (in our case £ ~ £/25) and thus shows a faster growth in this range of M
than the intermittent relation F^c) ~ M" [115], On the other hand, for cells smaller
than the correlation range, the dependencies are asymptotically the same in all cases as
one could expect when the effect of boundary conditions is negligible for small | y^ — y2 \
and | 0i — 02 | • In this limit the correlations given by eq. (4.16) and by eq. (4.19)
show the same kind of singularity. For the strip geometry the effect is the strongest one
for large divisions of the cell, i.e. when the effective correlation range dominates the
functional dependence of the moments (eq. 4.19). This feature can be clearly observed
in Fig. 4.14 . Here the curves correspond to different ID and 2D subdivisions of a
cell of length 4L in the strip direction and L in the transverse direction. So now
in eq. (4.20) we have Ay = 2L/M and A0 = L/2M for the 2D analysis (Figs. 4.15
and 4.16) and Ay = 2L/M and A0 = 1/2 or Ay = 2L and A0 = L/2M for the ID
analysis. For the strip geometry, the initial growth of the moment, analyzed either
in 2D or in ID along the strip, is much more pronounced than seen in the analysis
on square cells (Fig. 4.13). Similarly, the moment analyzed transversally to the strip
grows much slowlier for the cell L x 41 than for the cell L x L . Fig. 4.14 shows
the dependence of the moment FJf* in the region where the finite correlation range
behaviour is dominant and hence, where the discrepancies between the two geometries
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Figure 4.14: The saine as in Fig. 4.13 but for a 4L x L cell in the two systems.

aie more pronounced. Of course, to treat the case of the 4L x L cell in the strip as a
quasi-one-dimensional system, its extension along the strip should be much bigger than
4L. It is obvious that these conditions are stronger and, hence, rarelier satisfied in real
processes or systems than for the L x L cell. Therefore, one should be careful "when
applying here described intennittency analysis in square and elongated cells to realistic
systems with a quasi-one-dimensional geometry. However, whenever the assumption of
the infinite strip geometry is well satisfied, the simultaneous analysis on a square and
on an elongated cell would be useful providing a more direct signal of finite-size effects.

As we have noticed above, the effect of an infinite strip geometry, i.e. a quasi-
one-dimensionality of the system, induces some deviations from the critical scaling
behaviour. These deviations are superimposed on the effect of the dimensional projec-
tion [51,48,52]. The projected ID moments show different dependence on the y and 8
variables. The moment analyzed in the y variable grows faster than the one analyzed
in the 8 variable. Also the moment analyzed along the strip is much more influenced by
the effective finite correlation range than the projected moment in the infinite plane ge-
ometry. This effect can influence dramatically the reduction of the intermittency signal
through the dimensional projection, showing a different effective correlation range than
in the infinite system and a strong asymmetry in both y and 8 variables. Hence, if those
finite-size effects would be present in scale-invariant multiparticle production then the
quantitative analysis of the dimensional projection should consider also the above ob-
servations when extracting the dimensionality and the parameters of the intermittent
correlations [51,48,52,49].

We have discussed a system with finite transverse size and periodic boundary con-
ditions. In the case of fermions, one should use antiperiodic boundary conditions. Of
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Figure 4.15: The subdivisions of the elongated cell in the infinite geometry in the 2D
analysis.
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Figure 4.16: The subdivisions of the elongated cell in the 2D analysis using the strip
geometry.

course, the use of antiperiodic boundary conditions changes the finite-size behaviour.
For antiperiodic boundary conditions one obtains smaller effective correlation length
for the same transverse size [119]. For example, in the case of the Ising system one
obtains three times smaller effective correlation length [119]. This means that for the
same geometry the finite-size effect should be more pronounced for fermions than for
bosons.

4.4 Statistical systems and high energy phenom-
ena

In section 4.2 we have analyzed the SFMs of the number of particles in a ID lattice
gas model. We have found a strong increase of the SFMs with increasing resolution.
This behaviour is not related to the critical properties of the system. In fact the
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two-particle correlation function is :

(4.21)

where £ = l/ln(A+/A_) is the correlation length in units of the lattice size. For the
parameters for which the SFMs are shown in Fig. 4.9, the correlation length is about
1.5 . The strong dependence of the SFMs on the resolution is due to the short range
correlations which are integrated over a much broader range of scales. Note that this
increase of the SFMs appears in a different range of rapidity separations than for the
parametrization of refs. [6, 7], where the correlation range was of the order of one
unit in the rapidity. Consequently, the slopes are much more important in the range of
separations discussed here than in the experimental results in high energy collisions and
in the fits of refs. [6, 7]. Moreover, unlike in the high energy intermittency analysis, the
slopes of the higher moments are linear in the rank of the moment. This, however, does
not exclude the possibility that such short range correlations are but one component
of the whole n-particle distribution function and that the mixing of two components
would give approximately the experimental slopes [120], i.e. smaller but faster than
linear rise of the intermittency slopes with the rank of the moment.

Another feature of the critical systems is that the scaling properties are often not
present in the two-field average < o-(r)«r(r/) > but rather in the two-field cumulant
< ff(r)ff(r') > — < <r(r) >< <r(r') > ~ |r — r'|~". An exemple of such an observable is

the number of spins up in the Ising system, for which the resulting relation of the SFMs
to the scaling properties of the critical Ising system are given in ref. [105]. Different
definitions of the moments give very different results in finite systems. The CA models
studied in sect. 4.1 and the percolation models exhibit scaling in the SFMs. This
means that the scaling in these models occurs in the two-point occupation probability
or in the two-point connectivity on the percolating cluster. The problem of the correct
observable to measure the scaling properties in small discrete systems has not a general
solution and in each case separately one should carefully look for the correct scaling
observable.

The long distance limit in which one studies scaling in statistical systems gives, by
convexity, different conditions on the scaling indices :

"i/i < "j/j for i > j (4.22)

than in the multiparticle phenomenology [121]. The equality sign in (4.22) is true for
ordered systems, like the Ising model, whereas the inequality is true for disordered
systems having an infinite hierarchy of exponents like e.g. the random Isiag system.
The detailed structure of the correlation functions in finite and anisotropic systems was
discussed in the model of a finite conformai critical system. The resulting conclusions
are too schematic to be directly applied to the high energy phenomenology. This could
be however an approach in studies of the detailed structure of the three momentum
distribution functions. In particular such issues as the role of the pj, y variables and
the pr-dependence could be studied in such examples. Another example which could
give insight into this problem is the relation of the directed vs undirected percolation
model [109].
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6. Closing discussion

The SFM analysis allows to study the multiparticle densities on small scales in
the momentum space. This method of studying the high energy collisions can learn
us about the mechanisms of the multiparticle production and hadronization. Several
experimental groups analyzed the fluctuations in the particle distributions on small
distances in the rapidity or, more generally, in the phase-space. The experimental
results of the 2D and 3D analysis show a growth of the fluctuations with the resolution.
This kind of behaviour is similar to the one observed in the classical turbulence and
in the chaotic attractors. This observation motivates the very attractive hypothesis
that similar multifractal structures may be present in the multiparticle dynamics. The
presence of such fractal multiparticle distributions should be manifested by a power-
law increase of the SFMs with the resolution for small phase-space cells. This concept
was at the origin of a big activity in this field resulting in a good phenomenological
understanding of the features of such self-similar structures. The results presented in
this work were a part of these studies. On the other hand, the understanding from
the "first principle" of the origin of the self-similar structures in multiparticle densities
and in particular, the relation of this phenomenon to the fundamental properties of
the theory of strong interactions is still missing.

In the approach proposed by Bialas and Peschanski, the particle production is
viewed as a multiplicative random cascade. The mechanism of the self-similar cascade
could reproduce the basic features of the multiparticle final state [2, 3]. The most
important prediction of the cascade model (the a-model) is the scaling of the SFM
with the resolution. This simple cascading mechanism explains how the multiparticle
distributions of a very special, self-similar type are build up.

The recent SFM data in 3D momentum space for the /x-p, ir+/K+-p and nuclear
collisions seem to indicate that the scaling correlations are only a part of the whole
multiparticle distribution [37]. This would be difficult to understand in the language
of a-model, and it would mean that the cascade correlates only some of the produced
particles. At the origin of stronger than power-law fluctuations for small bins, could
be the fluctuations in the hadtonization, similar to the fluctuations in the links distri-
bution discussed in sect. 4.2. One should subtract these hadronization fluctuations in
order to find the unperturbed intermittent behaviour in high energy collisions. Note,
however, that the FSS analysis indicates that the system of produced particles has a
scaling multiparticle distribution in some higher dimensional space for hadron-hadron
collisions. This issue still needs more experimental statistics and a better resolution in
the rapidity.

As we already mentioned, the analysis performed in this work which was motivated
by the analogy with classical multifractals, was based mainly on the assumption of the
existence of the scale-invariant multiparticle distribution. Obviously, the assumption
of the scale-invariance of the multiparticle distributions implies intermittency in the
SFMs similarly as in the a-model. In fact, the scale-invariant parametrization of the
multiparticle distributions is equivalent to the a-model prediction in many features
(sects. 2.2 and 2.3). One of these features is the behaviour in the dimensional projec-
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tion. The dimensional projection removes the singularities from the full-dimensional
multiparticle distribution leading to the experimentally observed flattening of the de-
pendence of the SFMs on the bin width in rapidity. The most obvious way around this
problem is to perform the analysis in the 3D momentum space. Another possibility
is given by the FSS analysis of the ID SFM data (sect. 2.2). The FSS, which is the
remnant of the underlying scaling-law, allows to extract the intermittency parameters
of the full-dimensional scaling multiparticle distributions. Another of the common
predicitions of the a-model and of the scaling multiparticle distributions is the bin
width independence of the SFCs and the scaling in the bin to bin distance. These
predictions are similar also for the SFCs of the dimensionally projected denstities and
are consistent with the experimental data.

The analysis of the structure of the higher order correlations in the e+e~ annihilation
data of DELPHI Collaboration teaches us that the approach aiming at a simple para-
metrization of the ra-partide cumulants is unsatisfactory (sect. 2.4). The multiplicity
distributions in rapidity intervals were studied in the NB scheme, similar to the linked-
pair-approximation and in the log-normal scheme of the multiparticle correlations.
None of these schemes reproduce the DELPHI e+e~ data on SFMs in rapidity. On
the other hand, as discussed in sect. 2.4, the a-model can reproduce the shape of
the multiplicity distribution both at large and small rapidity intervals. Thus, due
to the correspondence between the a-model and the scale-invariant distributions, this
indicates that the self-similar parameterization of the multiparticle densities should
be used instead of the correlation schemes used in sect. 2.4. However, unlike in
the a-model, there is no way in this description of relating the intermittency indices
of different orders. Thus, the problem of finding a simple scheme of higher order
multiparticle distribution has not a consistent solution.

For the hadron-hadron collisions the structure of the multiparticle distributions is
not resolved and, formally, this structure can be changed by the independent superpo-
sition of intermittent sources [8], making the search for a simple parametrization more
difficult. Moreover, one can imagine different mechanisms of fluctuations for the soft
and hard production. This makes the assumption of the self-similar cascade models
more doubtful for the hadron-hadron collisions. In this context, the FSS which was
found in the NA22 data for K+/ir+-j> collisions is very intriguing (sect. 2.2). The
results of the FSS analysis for the NA22 data mean that the underlying multiparticle
productions could have a simple structure in a higher dimensional space, of which the
remnant is seen in the FSS of the SFMs in rapidity. The observation of the FSS provides
an argument in favour of the hypothesis that the critical behaviour of the Reggeon field
theory in rapidity-impact parameter space could by at the origin of the intermittency
phenomena in hadron-hadron collisions. Moreover, the FSS analysis allows to test such
hypothesis for which the relevant variables are not accessible experimentally.

The study of fluctuations in nuclear collisions indicates perhaps some nonlinear
effect, such as a phase-transition or some regime of strongly interacting fragmenting
strings. Such a nonlinear effect is needed in order to reproduce the dependence of the
strength of the fluctuations on the mass of the target and projectile nuclei. We have re-
produced qualitatively this dependence in a model of the spatiotemporal intermittency.
The simple structure of the singular two-particle distribution was used as input for the
space-time density in the interaction region of the nuclear reaction (chapter 3). This
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ldnd of multiparticle distributions is expected to be present at the critical point of a
statistical system. The observable fluctuations in rapidity distributions resulting from
such, singular space-time correlations were also discussed. The results allow to check
qualitatively the dependence of the intermittency signal on the size of the target and
projectile nuclei. This approach reproduces approximately the observed dependence,
which is different than the up to now discussed drJ,dy scaling. The analysis of the
fluctuations shows that a realistic model of ultrarelativistic collisions cannot be based
on independent nucleon-nucleon collisions. The interaction between the fragmenting
objects is crucial to reproduce the projectile and target dependence of the intermit-
tency signal. In the model of sect. 3.2 this feature is due to the large correlation
range of the order of the size of the interaction region. However, there is up to now
no evidence that such long range correlations should be scale-invariant. The relatively
strong intermittency signal observed in nuclear collisions limits the applicability of the
ideal relativistic hydrodynamics in the description of the collision dynamics.

•"* The study of SFMs in statistical systems is less interesting because, unlike in the
intermittency studies in high energy collisions, one is interested in the scaling in the long
distance limit. Thus, the method of SFM is not crucial in removing the statistical noise.
The analysis of such systems can learn us, however, about the features of the SFM
method. To illustrate the SFM analysis in the statistical systems we studied two simple
CA models. For these models, we found scaling in the SFM analysis separately in the
time and space directions and also in the 2D space-time analysis. We have calculated
the SFMs for a noncritical ID lattice gas model. The SFMs show an intermittent-
like behaviour caused by correlations present at very small scales. This shows that
the SFMs are sensitive to such non-scaling correlations and that it is better to use
the SFCs which are not contaminated by the small scale correlations. We found in
this model that the SFMs were larger for the links than for the particles. This can
be an indication of the mechanism by which the fluctuations can build up in the
scenario of the cold hadronization. The study of the conformally invariant critical
systems can also be an indication of the behaviour of the SFMs in the finite system.
The existence of such a finite scale changes the correlation function in 2D and in the
projected distributions. This introduces an asymmetry in the projected distributions
if the system has asymmetric boundary conditions. This is only one of such features,
which one can also expect in the high energy phenomenology if the strong interactions
possess conformai invariance in position space at small scales [122].

The study of structures in the multiparticle production at small momentum scale
is very interesting, and using the method of the SFMs or SFCs this study is now
possible. However, these structures should be analyzed with much care because of many
difficulties, of which some have been discussed in this work. The SFM or SFC method is
a powerful method of analyzing the multiparticle correlations at small scales. Using the
SFM method it was demonstrated for the first time that interesting phenomena occur at
small distances in the momentum. The study of those small distance correlations could
give insight into the hadronization mechanism. Another objective is the demonstration
of some scale-invariant structure in the multiparticle production. This issue is still
not clear experimentally and its study is more difficult. In this work we analyzed
the features that should possess such a scale-invariant distribution in multiparticle
production both in elementary particle and in nuclear collisions. Most of the predictions
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of the scale-invariant multiparticle distributions are qualitatively confirmed by the
experiment. The detailed quantitative analysis still needs to be done. It requires from
the experiment an unambiguous extraction of the parameters of intermittency and from
the theory we need a calculation of the scaling indices.
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