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Abstract
We introduce several new notions of (sectional) curva-
ture bounds for Lorentzian pre-length spaces: On the
one hand, we provide convexity/concavity conditions
for the (modified) time separation function, and, on the
other hand, we study four-point conditions, which are
suitable also for the non-intrinsic setting. Via these con-
cepts, we are able to establish (under mild assumptions)
the equivalence of all previously known formulations
of curvature bounds. In particular, we obtain the equiv-
alence of causal and timelike curvature bounds as
introduced by Kunzinger and Sämann.
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1 INTRODUCTION

The theory of Lorentzian length spaces aims to give a synthetic description of Lorentzian geom-
etry. Inspired by the transformative effect, its metric predecessor (cf., e.g. [5, 11, 12]) has had on
the field of Riemannian geometry, after its introduction in [24] the theory has quickly branched
out from Lorentzian Alexandrov geometry (e.g. [4, 8, 9]) into a variety of fields, in particular into
optimal transport andmetric measure geometry (e.g. [10, 15, 27]), causality theory (e.g. [1, 14, 25]),
and general relativity (e.g. [19, 26, 28]).
During the initial development of the theory, one of the main goals was to establish a synthetic

version of sectional curvature bounds via triangle comparison, a characterisation which in the
smooth setting is known even for semi-Riemannian manifolds due to [3]. These descriptions of
curvature bounds are also a topic of substantial interest in Alexandrov geometry. Indeed, for met-
ric spaces, there is an abundance of different formulations for (sectional) curvature bounds, cf. [5,
11, 12].
Some of these have been added to the Lorentzian repertoire aswell, such as, for example, the so-

called monotonicity condition. In fact, both [9] and [6], more or less simultaneously, introduced
the concept of hyperbolic angles into the synthetic Lorentzian theory, and gave a formulation
of timelike curvature bounds expressed via the monotonic behaviour of angles. In [6], there is
also a formulation using angles directly in relation to their comparison angles, but only for lower
curvature bounds, and in [9], angle comparison is only obtained as an implication of ordinary
curvature bounds and not vice versa.
As is evident from Alexandrov geometry, having a wide array of different characterisations at

one’s disposal is vital to producing a rich and flourishing theory of synthetic geometry. In this
work,we collect all the currently known approaches to (sectional) curvature bounds in Lorentzian
pre-length spaces, add several new ones and prove equivalence of all these notions under suit-
able assumptions. The precise interdependence of all of these concepts will be established in
Theorem 5.1.

2 PRELIMINARIES

Since the theory of Lorentzian pre-length spaces is by now quite well established, we are not going
to repeat the basic definitions, instead referring to [24] for the fundamentals, and to [6, 9] formore
in-depth discussions of angles and some of the curvature bounds discussed here.

Remark 2.1 (Notations and conventions). For the sake of readability and consistency in notation,
we collect some generalities here. Let 𝑋 denote a Lorentzian pre-length space.

(i) Unless explicitly stated otherwise, 𝐾 is assumed to be any real number. It symbolises the
curvature of the model space, and hence, it is only explicitly mentioned when necessary.

(ii) By adistance realiser, wemean a curve that attains the 𝜏-distance between its endpoints, that
is, if 𝛾 is a causal curve from 𝑥 to 𝑦, then 𝛾 is a distance realiser if 𝜏(𝑥, 𝑦) = 𝐿𝜏(𝛾). Instead of
labelling the curve, we may also use the notation [𝑥, 𝑦] for a distance realiser from 𝑥 to 𝑦.
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ON CURVATURE BOUNDS IN LORENTZIAN LENGTH SPACES 3 of 41

(iii) By a timelike triangle in 𝑋, we mean a collection of three timelike related points 𝑥 ≪ 𝑦 ≪

𝑧, 𝜏(𝑥, 𝑧) < ∞, and three distance realisers pairwise joining them. By an admissible causal
triangle, wemean a collection of three points 𝑥 ⩽ 𝑦 ≪ 𝑧 or 𝑥 ≪ 𝑦 ⩽ 𝑧, 𝜏(𝑥, 𝑧) < ∞, together
with distance realisers between timelike-related points. In other words, one of the two short
sides is allowed to be null, and if it is, it need not be realised by a curve. When the context
allows for it, we may refer to either of these as just a triangle, and both are denoted by
Δ(𝑥, 𝑦, 𝑧).

(iv) Given a triangle Δ(𝑥, 𝑦, 𝑧) in 𝑋, a comparison triangle is a triangle in 𝕃2(𝐾) with the
same side lengths. The existence of comparison triangles is established in the so-called
Realisability lemma, see [3, Lemma 2.1].

(v) We say that a triangle or hinge (cf. Definition 2.5 below) in 𝑋 satisfies size bounds for 𝐾 if
there exists a (unique) comparison configuration in 𝕃2(𝐾), the Lorentzian model space of
constant curvature 𝐾. Throughout the paper, we assume any such configuration to satisfy
size bounds. As will become evident later on, this is precisely the case when the largest
𝜏-value in this configuration is less than 𝐷𝐾 .

(vi) To increase readability, we are going to mark points arising in comparison triangles with
a bar, in comparison hinges with a tilde and in four-point comparison configurations (cf.
Definition 4.4 below) with a hat. That is, if 𝑥 ∈ 𝑋, then the corresponding point in a com-
parison triangle will be denoted by 𝑥̄, the corresponding point in a comparison hinge will
be denoted by 𝑥̃ and the corresponding point in a four-point comparison configuration will
be denoted by 𝑥̂. To ease the notational burden we will, however, not mark the time sepa-
ration function in the comparison spaces by 𝜏̄. Instead, we will always just write 𝜏 since the
marking of the arguments will clearly indicate when the time separation function in the
model space is considered.

(vii) We will use the slightly updated version of curvature bounds introduced in [7]. In order
for these conditions to be non-void, that is, trivially satisfied by pathological spaces where,
for example, 𝜏 ≡ ∞, we will always assume 𝑋 to be chronological. This is not a substantial
restriction since any space that satisfies some timelike curvature bound in the original for-
mulation in [24, Definition 4.7] is chronological by definition, as there 𝜏 was supposed to
be finite on comparison neighbourhoods.

(viii) Thenotation regarding hyperbolic angles (which are defined as limits)will use curves,while
angles in the comparison spaces will use the endpoints of the corresponding curves (as the
model spaces are uniquely geodesic, this is consistent).

(ix) Throughout this paper, we introduce several formulations of curvature bounds, all of which
are built on the notion of comparison neighbourhoods. We will adhere to the follow-
ing terminology: a Lorentzian pre-length space is said to have curvature bounded below
(resp. above) by 𝐾 in any of these senses if it is covered by the corresponding (⩾ 𝐾)-
(resp. (⩽ 𝐾)-)comparison neighbourhoods. Moreover, we say that 𝑋 has curvature glob-
ally bounded below (resp. above) by 𝐾 in any of these senses if 𝑋 is a corresponding (⩾ 𝐾)-
(resp. (⩽ 𝐾)-)comparison neighbourhood. In general, implications on comparison neigh-
bourhoods without further assumptions on the neighbourhoods yield implications on
curvature bounds for 𝑋, so that we will not highlight this in every statement. However, if
this only holds under additional assumptions, we will explicitly formulate the implication
for curvature bounds on 𝑋.

For completeness, we briefly repeat the most important definitions surrounding hyperbolic
angles, following [9].
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4 of 41 BERAN et al.

Definition 2.2 (𝐾-comparison angles and sign). Let𝑋 be a Lorentzian pre-length space,Δ(𝑥, 𝑦, 𝑧)
an admissible causal triangle in 𝑋, and Δ(𝑥̄, 𝑦̄, 𝑧̄) a comparison triangle in 𝕃2(𝐾) for Δ(𝑥, 𝑦, 𝑧).
Assume that, say, 𝑥 is adjacent to two timelike sides (the following definition clearly works for
any other vertex who is between two timelike sides).

(i) The 𝐾-comparison angle at 𝑥 is defined as the ordinary hyperbolic angle at 𝑥̄ between 𝑦̄ and
𝑧̄:

∡̃𝐾𝑥 (𝑦, 𝑧) ∶= ∡
𝕃2(𝐾)
𝑥̄ (𝑦̄, 𝑧̄) = arcosh(|⟨𝛾′𝑥̄𝑦̄(0), 𝛾′𝑥̄𝑧̄(0)⟩|) , (1)

where we assume the mentioned geodesics to be unit speed parametrised.
(ii) The sign 𝜎 of a 𝐾-comparison angle is the sign of the corresponding inner product (in the

−,+,… ,+ convention). That is, in this notation, the sign is −1 if the angle is measured at 𝑥
or 𝑧 and 1 if the angle is measured at 𝑦.

(iii) The signed 𝐾-comparison angle is defined as ∡̃𝐾,𝑆𝑥 (𝑦, 𝑧) ∶= 𝜎∡̃𝐾𝑥 (𝑦, 𝑧).

Definition 2.3 (Angles). Let 𝑋 be a Lorentzian pre-length space and let 𝛼 and 𝛽 be two timelike
curves of arbitrary time orientation emanating from 𝛼(0) = 𝛽(0) =∶ 𝑥.

(i) The angle between 𝛼 and 𝛽, if it exists, is defined as

∡𝑥(𝛼, 𝛽) ∶= lim
𝑠,𝑡→0

∡̃0𝑥(𝛼(𝑠), 𝛽(𝑡)) , (2)

where the limit only takes values of 𝑠 and 𝑡 into account for which the triple (𝑥, 𝛼(𝑠), 𝛽(𝑡)) (or
some permutation thereof) forms an admissible causal triangle.†

(ii) The sign 𝜎 of an angle is −1 if 𝛼 and 𝛽 have the same time orientation and 1 otherwise. The
signed angle is defined as ∡𝑆𝑥(𝛼, 𝛽) ∶= 𝜎∡𝑥(𝛼, 𝛽).

Remark 2.4. Note that one could also look at angles defined using any 𝐾 instead of 0 in (2).
However, the limit is the same regardless of the model space in which it is considered due to
[9, Proposition 2.14]. Although this reference uses strong causality to ensure size bounds, this is
not actually necessary, the condition from Definition 3.1(i) is sufficient: As 𝜏 is continuous near
(𝑝, 𝑝) (since 𝜏(𝑝, 𝑝) = 0 < 𝐷𝐾) and 𝜏−1([0, 𝐷𝐾)) is open, for two curves 𝛼, 𝛽 emanating from 𝑝,
(𝛼(𝑡), 𝛽(𝑡)) will initially stay in 𝜏−1([0, 𝐷𝐾)). This is why we will usually drop the superscript
𝐾 in the comparison angle and just write ∡̃𝑥(𝑦, 𝑧). Similarly, we will write ∡𝑥̄(𝑦̄, 𝑧̄) instead of
∡
𝕃2(𝐾)
𝑥̄ (𝑦̄, 𝑧̄) for angles between points in 𝕃2(𝐾) (which do not necessarily arise as comparison

angles).

Definition 2.5 (Hinges and comparison hinges). Let 𝑋 be a Lorentzian pre-length space. Let 𝛼 ∶
[0, 𝑎] → 𝑋 and 𝛽 ∶ [0, 𝑏] → 𝑋 be two timelike distance-realisers emanating from the same point
𝑥 ∶= 𝛼(0) = 𝛽(0). Then, we say that 𝛼 and 𝛽 and their associated angle form a hinge‡ at 𝑥, and
denote it by (𝛼, 𝛽). In particular, if the angle ∡𝑥(𝛼, 𝛽) is finite, then by a comparison hinge in

†As admissible causal triangles arise as limits of timelike triangles, one can also restrict this to timelike triangles.
‡ In [9, Definition 2.11], such a constellation is only called a hinge if the angle exists, meaning that the lim sup is a limit
and is finite. Here, we drop these restrictions, see Definition 3.14(iv) below.
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ON CURVATURE BOUNDS IN LORENTZIAN LENGTH SPACES 5 of 41

𝕃2(𝐾), denoted† by (𝛼̃, 𝛽), we mean a constellation 𝑥̃ together with two distance-realisers 𝛼̃ and 𝛽
emanating from that point, such that they have the same length (and time orientation) as 𝛼 and 𝛽,
respectively, and such that the angle between them is the same, that is,∡𝑆𝑥(𝛼, 𝛽) = ∡𝑆𝑥̃(𝛼̃(𝑎), 𝛽(𝑏)).

Another concept we shall require is the so-called finite diameter of a Lorentzian pre-length
space. Introduced in [7], this number essentially bounds the length of geodesics for which it is
possible to implement comparison methods.

Definition 2.6 (Finite diameter). Let 𝑋 be a Lorentzian pre-length space.

(i) The finite diameter of 𝑋 is

diamfin = sup({𝜏(𝑥, 𝑦) ∣ 𝑥 ≪ 𝑦} ⧵ {∞}) , (3)

that is, the supremum of all values 𝜏 takes except∞.
(ii) By 𝐷𝐾 we denote the finite diameter of 𝕃2(𝐾). In particular,

𝐷𝐾 = diamfin(𝕃
2(𝐾)) =

⎧⎪⎨⎪⎩
∞, if 𝐾 ⩾ 0 ,

𝜋√
−𝐾

, if 𝐾 < 0 .
(4)

Note that the formula of 𝐷𝐾 is pleasantly similar to the diameter of the Riemannian model
spaces inmetric geometry. Finally, we introduce the concept of being (locally) 𝑟-geodesic, another
notion very similar to its metric counterpart.

Definition 2.7 (𝑟-geodesic). Let 𝑋 be a Lorentzian pre-length space and let 0 < 𝑟 ⩽ ∞.

(i) A subset 𝑈 ⊆ 𝑋 is called 𝑟-geodesic if for all 𝑝 ≪ 𝑞 in 𝑈 with 𝜏(𝑝, 𝑞) < 𝑟, there exists a dis-
tance realiser in𝑈 connecting them. In particular, if𝑈 is∞-geodesic, then this corresponds
to the original definition of being geodesic, cf. [24, Definition 3.27], without the assumption
of the existence of null realisers.

(ii) If one additionally assumes the existence of null realisers, we call 𝑈 causally 𝑟-geodesic.
(iii) 𝑋 is called locally (causally) 𝑟-geodesic if every point has a neighbourhood which is (causally)

𝑟-geodesic.

3 CURVATURE COMPARISON FOR LORENTZIAN PRE-LENGTH
SPACES

In this section, we recall and amend the currently known characterisations of timelike curvature
bounds. In particular, for those cases where, as of yet, only implications between certain notions
are available, we show full equivalence. Timelike curvature bounds in the setting of Lorentzian
pre-length spaceswere first introduced in [24, Definition 4.7] and slightly updated in [7, Definition
2.7].

†As the sides of a comparison hinge are unique, we may also denote a comparison hinge by its endpoints (and the vertex
where the angle is measured), that is, (𝛼̃(𝑎), 𝑥̃, 𝛽(𝑏)).
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6 of 41 BERAN et al.

Definition 3.1 (Curvature bounds by timelike triangle comparison). Let 𝑋 be a Lorentzian pre-
length space. An open subset 𝑈 is called a (⩾ 𝐾)- (resp. (⩽ 𝐾)-)comparison neighbourhood) in
the sense of timelike triangle comparison if:

(i) 𝜏 is continuous on (𝑈 × 𝑈) ∩ 𝜏−1([0, 𝐷𝐾)), and this set is open.
(ii) 𝑈 is 𝐷𝐾-geodesic.
(iii) Let Δ(𝑥, 𝑦, 𝑧) be a timelike triangle in 𝑈, with 𝑝, 𝑞 two points on the sides of Δ(𝑥, 𝑦, 𝑧). Let

Δ(𝑥̄, 𝑦̄, 𝑧̄) be a comparison triangle in 𝕃2(𝐾) for Δ(𝑥, 𝑦, 𝑧) and 𝑝̄, 𝑞̄ comparison points for 𝑝
and 𝑞, respectively. Then,

𝜏(𝑝, 𝑞) ⩽ 𝜏(𝑝̄, 𝑞̄) (resp. 𝜏(𝑝, 𝑞) ⩾ 𝜏(𝑝̄, 𝑞̄)) . (5)

Note that within a (⩾ 𝐾)-comparison neighbourhood, 𝑝 ≪ 𝑞 implies 𝑝̄ ≪ 𝑞̄, and within a (⩽ 𝐾)-
comparison neighbourhood, 𝑝̄ ≪ 𝑞̄ implies 𝑝 ≪ 𝑞.

As a first different formulation, wemention one-sided triangle comparison. This was originally
introduced in [6] for lower curvature bounds only, but can easily be adapted to work for upper
curvature bounds as well.

Definition 3.2 (Curvature bounds by one-sided timelike triangle comparison). Let 𝑋 be a
Lorentzian pre-length space. An open subset 𝑈 is called a (⩾ 𝐾)- (resp. (⩽ 𝐾)-)comparison
neighbourhood) in the sense of one-sided timelike triangle comparison if:

(i) 𝜏 is continuous on (𝑈 × 𝑈) ∩ 𝜏−1([0, 𝐷𝐾)), and this set is open.
(ii) 𝑈 is 𝐷𝐾-geodesic.
(iii) Let Δ(𝑥, 𝑦, 𝑧) be a timelike triangle in 𝑈. Let 𝑝 be a point on one side of the triangle and

denote by 𝑣 ∈ {𝑥, 𝑦, 𝑧} the vertex opposite of 𝑝. Let Δ(𝑥̄, 𝑦̄, 𝑧̄) be a comparison triangle in
𝕃2(𝐾) for Δ(𝑥, 𝑦, 𝑧) and let 𝑝̄ be a comparison point for 𝑝. Then†

𝜏(𝑝, 𝑣) ⩽ 𝜏(𝑝̄, 𝑣) and 𝜏(𝑣, 𝑝) ⩽ 𝜏(𝑣, 𝑝̄),

(resp. 𝜏(𝑝, 𝑣) ⩾ 𝜏(𝑝̄, 𝑣) and 𝜏(𝑣, 𝑝) ⩾ 𝜏(𝑣, 𝑝̄)) .

Proposition 3.3 (One-sided triangle comparison). Let 𝑈 be an open subset in a Lorentzian pre-
length space𝑋. Then,𝑈 is a (⩾ 𝐾)- (resp. (⩽ 𝐾)-)comparison neighbourhood in the sense of timelike
triangle comparison if and only if it is a (⩾ 𝐾)- (resp. (⩽ 𝐾)-)comparison neighbourhood in the sense
of one-sided timelike triangle comparison.

Proof. Concerning the non-trivial direction, the case for (⩽ 𝐾)-comparison neighbourhoods is
shown in [6, Proposition 4], so we only need to consider upper curvature bounds. Moreover, if,
say, 𝑝 ∈ [𝑥, 𝑦] and 𝑞 ∈ [𝑦, 𝑧], then the proof of [6, Proposition 4] works for (⩾ 𝐾)-comparison
neighbourhoods in complete analogy, by reversing the inequalities between 𝜏-values, as well as
between the nonnormalised angles established in [6, Lemmas 1 & 2].
The other case of one point being on the longest side is where the cases of lower and upper

curvature bounds differ (and this is, in fact, also the reason why we, in contrast to [6], require the
𝜏-inequalities to hold even if there is no timelike relation between a point and the opposing vertex).

†Note that as 𝑋 is supposed to be chronological, at most one of the 𝜏-values in 𝑋 is positive in each case.
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ON CURVATURE BOUNDS IN LORENTZIAN LENGTH SPACES 7 of 41

Let, say,𝑝 ∈ [𝑥, 𝑦] and 𝑞 ∈ [𝑥, 𝑧]. If 𝜏(𝑝̄, 𝑞̄) = 0, then (5) is trivially satisfied. So, assume 𝑝̄ ≪ 𝑞̄. Let
Δ(𝑥̄, 𝑦̄, 𝑧̄) be a comparison triangle for Δ(𝑥, 𝑦, 𝑧) and let Δ(𝑥̄′, 𝑝̄′, 𝑧̄′) be a comparison triangle for
the subtriangleΔ(𝑥, 𝑝, 𝑧). Since𝑈 is a (⩾ 𝐾)-comparison neighbourhood in the sense of one-sided
timelike triangle comparison, we infer 𝜏(𝑝, 𝑧) ⩾ 𝜏(𝑝̄, 𝑧̄), hence also 𝜏(𝑝̄′, 𝑧̄′) = 𝜏(𝑝, 𝑧) ⩾ 𝜏(𝑝̄, 𝑧̄).
The triangles Δ(𝑥̄′, 𝑝̄′, 𝑧̄′) and Δ(𝑥̄, 𝑝̄, 𝑧̄) have two sides of equal length and an inequality between
the lengths of their third sides, so we obtain∡𝑥̄(𝑝̄, 𝑧̄) ⩾ ∡𝑥̄′ (𝑝̄

′, 𝑧̄′) by law of cosines monotonicity,
cf. [9, Remark 2.5]. Clearly, this further yields

∡𝑥̄(𝑝̄, 𝑞̄) = ∡𝑥̄(𝑝̄, 𝑧̄) ⩾ ∡𝑥̄′ (𝑝̄
′, 𝑧̄′) = ∡𝑥̄′ (𝑝̄

′, 𝑞̄′) . (6)

Applying law of cosines monotonicity once more to the subtriangles Δ(𝑥̄, 𝑝̄, 𝑞̄) and Δ(𝑥̄′, 𝑝̄′, 𝑞̄′) of
Δ(𝑥̄, 𝑝̄, 𝑧̄) and Δ(𝑥̄′, 𝑝̄′, 𝑧̄′), respectively, we obtain 𝜏(𝑝̄, 𝑞̄) ⩽ 𝜏(𝑝̄′, 𝑞̄′). By one-sided comparison in
the subtriangle Δ(𝑥, 𝑝, 𝑧) of Δ(𝑥, 𝑦, 𝑧), we get 𝜏(𝑝, 𝑞) ⩾ 𝜏(𝑝̄′, 𝑞̄′), hence the desired inequality of
𝜏(𝑝, 𝑞) ⩾ 𝜏(𝑝̄, 𝑞̄) follows. Assuming the opposite timelike relation of 𝑞̄ ≪ 𝑝̄, the proof works out
just the same. □

Throughout this work, the property of a Lorentzian pre-length space being locally causally
closed, cf. [24, Definition 3.4], is used several times. This should be compared with the slightly
weaker notion of being locally weakly causally closed, which was introduced in [1, Definition 2.19]
to better resemble the smooth setting below the level of strong causality. It turns out that these two
notions are equivalent under the assumption of strong causality, see [1, Proposition 2.21]. In a sim-
ilar spirit, the following lemma shows in what way one could also work with this latter definition
in the present paper.

Lemma 3.4 (Causally closed comparison neighbourhoods). Let 𝑋 be a locally weakly causally
closed and strongly causal Lorentzian pre-length space which has curvature bounded below (resp.
above) by 𝐾 in the sense of timelike triangle comparison. Then, each point has a comparison neigh-
bourhood which is causally closed. This will also work in any of the following senses, except the
four-point condition.

Proof. Let 𝑥 ∈ 𝑋, and let 𝑈1 be a weakly causally closed neighbourhood. Let 𝑈2 be a curva-
ture comparison neighbourhood. According to (i) in Definition 3.1, we have that (𝑈2 × 𝑈2) ∩

𝜏−1([0, 𝐷𝐾)) is open, sowe find𝑈3with 𝑥 ∈ 𝑈3 ⊆ 𝑈2 and𝑈3 × 𝑈3 ⊆ 𝜏−1([0, 𝐷𝐾)). Then, by strong
causality, there exists a causally convex set𝑉 = ∩𝑛

𝑖=1
𝐼(𝑝𝑖, 𝑞𝑖)with 𝑥 ∈ 𝑉 ⊆ 𝑈1 ∩ 𝑈3. We claim that

𝑉 is a causally closed comparison neighbourhood. The properties (i) and (iii) follow as we are just
restricting. For (ii), note that distance realisers in 𝑈2 with endpoints in 𝑉 are automatically con-
tained in 𝑉 by causal convexity. To see causal closure, let 𝑥𝑛 ⩽ 𝑦𝑛 in 𝑉 with 𝑥𝑛 → 𝑥 and 𝑦𝑛 → 𝑦.
As 𝑥𝑛, 𝑦𝑛 ∈ 𝑈3, we have 𝜏(𝑥𝑛, 𝑦𝑛) < 𝐷𝐾 , so as𝑈2 is𝐷𝐾-geodesic, there is a causal distance realiser
𝛾𝑛 connecting 𝑥𝑛 and 𝑦𝑛. In particular, there is a causal curve joining them contained in𝑉, which
in the terminology of [1] is denoted by 𝑥𝑛 ⩽𝑉 𝑦𝑛, fromwhich it follows by the weak causal closure
that 𝑥 ⩽𝑉 𝑦, that is, 𝑥 and 𝑦 are also joined by a causal curve in 𝑉. Thus, we obtain 𝑥 ⩽ 𝑦 and
hence 𝑉 is causally closed. □

The following three characterisations were all to some extent developed in [9] and use the
notion of being locally strictly timelike geodesically connected, see [9, Definition 1.12]. It turns out
that this is equivalent to the seemingly more natural property of being regular, which is why we
will use this formulation instead (see Lemma 3.7 below). The following concept of regularity for
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8 of 41 BERAN et al.

Lorentzian pre-length spaces was introduced in [7, Definition 2.4] (and has to be compared to the
notion of regularity of Lorentzian length spaces, cf. [24, Definition 3.22]). The two concepts are
equivalent under the assumption of strong causality, see Lemma 3.6 below.

Definition 3.5 (Regularity). A Lorentzian pre-length space 𝑋 is called regular if every distance
realiser between timelike related points is timelike, that is, it cannot contain a null segment.

Lemma 3.6 (Regularly localisable vs. regular and localisable). A strongly causal Lorentzian pre-
length space is regularly localisable if and only if it is regular and localisable.

Proof. A regularly localisable Lorentzian pre-length space is automatically regular in the sense
of Definition 3.5. By [19, Lemma 4.3], we can choose localisable neighbourhoods Ω such that the
local time separation function agrees with 𝜏. Thus, also a distance realiser w.r.t. the local time
separation function is a global distance realiser, and has to stay timelike. □

Lemma 3.7 (Regularity and local strictly timelike geodesic connectedness). A 𝐷𝐾-geodesic
Lorentzian pre-length space 𝑋 such that 𝑡 ↦ 𝐿(𝛾|[0,𝑡]) is continuous† for every distance realiser
𝛾 ∶ [0, 𝑏] → 𝑋 is regular if and only if it is locally strictly timelike geodesically connected.

Proof. If 𝑋 is regular, any distance realiser between timelike-related points is timelike
by definition.
If 𝑋 is locally strictly timelike geodesically connected, let 𝑥 ≪ 𝑦 and 𝛾 ∶ [0, 𝑏] → 𝑋 a causal

distance realiser connecting 𝑥 to 𝑦. The function 𝑓(𝑡) =∶ 𝐿(𝛾|[0,𝑡]) = 𝜏(𝑥, 𝛾(𝑡)) is continuous and
monotonically increasing and, as 𝛾 is a distance realiser, we have 𝜏(𝛾(𝑠), 𝛾(𝑡)) = 𝑓(𝑡) − 𝑓(𝑠) for 𝑠 ⩽
𝑡. If 𝛾 is not timelike, we have 𝑠 < 𝑡 such that 𝜏(𝛾(𝑠), 𝛾(𝑡)) = 0, so 𝑓 is constant on [𝑠, 𝑡], but 𝑓(0) <
𝑓(𝑏). W.l.o.g. assume 𝑓(0) < 𝑓(𝑠) and let 𝑠 be minimal such that 𝑓 is constant on [𝑠, 𝑡]. Then,
we have 𝑓(𝑠 − 𝜀) < 𝑓(𝑠) = 𝑓(𝑠 + 𝜀). Thus, at 𝑝 = 𝛾(𝑠), we have a distance realiser 𝛾|[𝑠−𝜀,𝑠+𝜀] with
𝛾(𝑠 − 𝜀) ≪ 𝛾(𝑠 + 𝜀), but 𝛾(𝑠)  𝛾(𝑠 + 𝜀), contradicting the assumption that 𝑋 is strictly timelike
geodesically connected in a neighbourhood of 𝑝. □

Next, we turn to the so-called monotonicity condition. This equivalent formulation was intro-
duced in [9, Definition 4.9] and updated in [7, Definition 2.15]. Intuitively, it says that signed
comparison angles cannot increase (decrease) when approaching the vertex. Note that at first
glance, this seems opposite to (iii) in the following definition, but this apparent contradiction is
resolved by noting that increasing the inputs in 𝜃 causes one to move away from the vertex.

Definition 3.8 (Curvature bounds by monotonicity comparison). Let 𝑋 be a regular Lorentzian
pre-length space. An open subset𝑈 is called a (⩾ 𝐾)- (resp. (⩽ 𝐾)-)comparison neighbourhood in
the sense ofmonotonicity comparison if:

(i) 𝜏 is continuous on (𝑈 × 𝑈) ∩ 𝜏−1([0, 𝐷𝐾)), and this set is open.
(ii) 𝑈 is 𝐷𝐾-geodesic.
(iii) let 𝛼 ∶ [0, 𝑎] → 𝑈, 𝛽 ∶ [0, 𝑏] → 𝑈 be timelike distance realisers such that 𝑥 ∶= 𝛼(0) = 𝛽(0)

and such that 𝐿(𝛼), 𝐿(𝛽), 𝜏(𝛼(𝑎), 𝛽(𝑏)), 𝜏(𝛽(𝑏), 𝛼(𝑎)) < 𝐷𝐾 . Let 𝜃 ∶ 𝐷 → [0,∞) be defined

† This can, for example, be achieved by assuming that any point has a neighbourhood 𝑈 such that 𝜏|𝑈×𝑈 is continuous,
which is the case in any space with curvature bounds, see [24, Lemma 3.33] (whose proof also works with 𝜏 being merely
continuous in this sense).
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ON CURVATURE BOUNDS IN LORENTZIAN LENGTH SPACES 9 of 41

by 𝜃(𝑠, 𝑡) ∶= ∡̃𝐾,S𝑥 (𝛼(𝑠), 𝛽(𝑡)) (𝐷 ⊆ (0, 𝑎] × (0, 𝑏] is the set where this is defined, that is, the
set of points where there is some causal relation between 𝛼(𝑠) and 𝛽(𝑡) and the comparison
triangle exists). Then, 𝜃 is monotonically increasing (resp. decreasing).

The equivalence between monotonicity comparison and triangle comparison has already been
established in [9].

Proposition 3.9 (Equivalence of triangle and monotonicity comparison). Let 𝑈 ⊆ 𝑋 be an open
subset in a regular Lorentzian pre-length space 𝑋. Then, 𝑈 is a (⩾ 𝐾)- (resp. (⩽ 𝐾)-)comparison
neighbourhood in the sense of timelike triangle comparison if and only if it is a (⩾ 𝐾)- (resp.
(⩽ 𝐾)-)comparison neighbourhood in the sense of monotonicity comparison.

Proof. See [9, Theorem 4.13]. □

Remark 3.10 (One-sided monotonicity comparison). As it turns out, similar to the case of trian-
gle comparison, there is also a one-sided version ofmonotonicity comparison. Thismeans that we
leave the parameter of one of the curves fixed. Clearly, ordinarymonotonicity comparison implies
one-sided monotonicity comparison. Conversely, one simply varies the parameters one after the
other (taking care to make the points stay timelike related), to get from one-sided monotonic-
ity comparison to the original formulation. As will be seen below, the one-sided version is more
convenient to work with.

The next formulation of curvature bounds is closely related to monotonicity comparison.
Instead of talking about monotonic behaviour of comparison angles when going along the sides
of a hinge, we now require an inequality between hyperbolic angles and comparison angles. A
formulation of curvature bounds using angles was first introduced in [6]. However, this uses a
slightly different definition for angles. The following definition is better suited for our setting.
Note that as in [6], for the case of upper curvature bounds, one needs to explicitly assume one
case of the triangle inequality for angles.

Definition 3.11 (Curvature bounds by angle comparison). Let 𝑋 be a regular Lorentzian pre-
length space. An open subset𝑈 is called a (⩾ 𝐾)- (resp. (⩽ 𝐾)-)comparison neighbourhood in the
sense of angle comparison if:

(i) 𝜏 is continuous on (𝑈 × 𝑈) ∩ 𝜏−1([0, 𝐷𝐾)), and this set is open.
(ii) 𝑈 is 𝐷𝐾-geodesic.
(iii) Let 𝛼 ∶ [0, 𝑎] → 𝑈, 𝛽 ∶ [0, 𝑏] → 𝑈 be distance realisers such that 𝐿(𝛼), 𝐿(𝛽), 𝜏(𝛼(𝑎), 𝛽(𝑏)),

𝜏(𝛽(𝑏), 𝛼(𝑎)) < 𝐷𝐾 and such that 𝑥 ∶= 𝛼(0) = 𝛽(0) and 𝛼(𝑎), 𝛽(𝑏) are causally related. Then,

∡S𝑥(𝛼, 𝛽) ⩽ ∡̃𝐾,S𝑥 (𝛼(𝑎), 𝛽(𝑏)) (resp. ∡S𝑥(𝛼, 𝛽) ⩾ ∡̃𝐾,S𝑥 (𝛼(𝑎), 𝛽(𝑏))) . (7)

(vi) For (⩾ 𝐾)-comparison neighbourhoods only: let 𝛼, 𝛽, 𝛾 ∶ [0, 𝜀) → 𝑈 be distance realisers, all
emanating from the samepoint𝑥 ∶= 𝛼(0) = 𝛽(0) = 𝛾(0). Suppose that𝛼 and 𝛾 have the same
time orientation and 𝛽 has the opposite time orientation. Then, we have the following special
case of the triangle inequality of angles:

∡𝑥(𝛼, 𝛾) ⩽ ∡𝑥(𝛼, 𝛽) + ∡𝑥(𝛽, 𝛾) . (8)
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10 of 41 BERAN et al.

Note that for a Lorentzian pre-length space𝑋 with curvature bounded below, in point (𝑖𝑣), one
can also take the curves as maps into 𝑋, since angles only depend on the initial segments of the
curves anyways.

Remark 3.12 (Only considering timelike triangles). While Definition 3.11 requires all admissible
causal triangles to satisfy the angle condition at each vertex where an angle is defined, it is often
more convenient to work only with timelike triangles. However, it becomes clear, when using our
new vocabulary, that only requiring the angle condition to hold at each vertex of every timelike
triangle is an equivalent constraint.
Consider, for example, an admissible causal triangle Δ(𝑥, 𝑦, 𝑧)where 𝑥 ≪ 𝑦 ⩽ 𝑧, with 𝜏(𝑦, 𝑧) =

0 with a failing angle condition. (The case 𝑥 ⩽ 𝑦 ≪ 𝑧 is similar.) We show that moving 𝑦 slightly
can create a timelike triangle with a failing angle condition. Let 𝛼 ∶ [0, 𝑎] → 𝑋 be a distance
realiser from 𝑥 to 𝑦 and 𝛽 ∶ [0, 𝑏] → 𝑋 a distance realiser from 𝑥 to 𝑧. By regularity, the side [𝑦, 𝑧]
contains no timelike segments, so the only angle which is defined in Δ(𝑥, 𝑦, 𝑧) is at 𝑥. It follows
that, if an angle condition fails, it necessarily does so at 𝑥. As 𝑠 ↗ 𝑎, the triangle Δ(𝑥, 𝛼(𝑠), 𝑧) is
timelike and converges to the original Δ(𝑥, 𝑦, 𝑧). The signed angle ∡S𝑥(𝛼, 𝛽) is not dependent on
the endpoint of 𝛼, while the signed comparison angles ∡̃𝐾,S𝑥 (𝛼(𝑠), 𝛽(𝑏)) vary continuously with 𝑠.
The failure of the angle condition at 𝑥 is an open condition, and so, for 𝑠 sufficiently close to 𝑎,
the timelike triangle Δ(𝑥, 𝛼(𝑠), 𝑧) also has a failing angle condition at 𝑥.
Hence, the existence of an admissible causal triangle with failing angle condition implies the

existence of a timelike triangle (of comparable size) with failing angle condition. The contraposi-
tive then tells us that a space has a curvature boundwith respect to angle comparison in admissible
causal triangles if it does so with respect to angle comparison in timelike triangles. The converse
implication is tautological and the two notions are therefore equivalent. In particular, we refrain
from introducing ‘causal angle comparison’, since it would anyways be automatically equivalent
to Definition 3.11.

We now show that monotonicity comparison implies angle comparison. As [6] uses a different
convention and the proof is elementary, we give it anew. We intend to form an implication circle,
so the converse implication is proven later. In that proof, a technical detail requires us to assume
the triangle inequality of angles as displayed in (8), which was achieved in [9, Theorem 4.5(ii)]
using geodesic prolongation, cf. [9, Definition 4.2].
As this is a rather strong property, however, we believe that it is, in fact, more natural to directly

impose this condition, whenever necessary. We will do this by saying that 𝑋 satisfies (8).

Proposition 3.13 (Monotonicity comparison implies angle comparison). Let 𝑈 ⊆ 𝑋 be an open
subset in a regular Lorentzian pre-length space. In the case of lower curvature bounds, additionally
assume that 𝑋 satisfies (8). Then, if 𝑈 is a (⩾ 𝐾)- (resp. (⩽ 𝐾)-)comparison neighbourhood in the
sense of monotonicity comparison, it is also a (⩾ 𝐾)- (resp. (⩽ 𝐾)-)comparison neighbourhood in the
sense of angle comparison.

Proof. (i) and (ii) are the same in both definitions, and (iv) in the case of lower curvature bounds
is assumed directly. So, the only point to check is (iii) in Definition 3.11. To this end, given distance
realisers 𝛼 and 𝛽 in 𝑈 as in Definition 3.11(iii), we have by definition

∡S𝑥(𝛼, 𝛽) = lim
𝑠,𝑡→0

∡̃𝐾,S𝑥 (𝛼(𝑠), 𝛽(𝑡)) = lim
𝑠,𝑡→0

𝜃(𝑠, 𝑡) . (9)

As 𝜃 is monotonous by assumption, the desired inequality holds in the limit as well. □
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ON CURVATURE BOUNDS IN LORENTZIAN LENGTH SPACES 11 of 41

Finally, we turn to hinge comparison. This uses the construction of hinges and comparison
hinges, and the distinguishing inequality pertains to the opposite side of the angle that forms the
hinge. As will be seen below, this is closely related to angle comparison via the law of cosines.
To establish a proper equivalence between hinge comparison and angle comparison, however, we
need to additionally assume the same case of the triangle inequality of angles as in Definition 3.11.

Definition 3.14 (Curvature bounds by hinge comparison). Let 𝑋 be a regular Lorentzian pre-
length space. An open subset𝑈 is called a (⩾ 𝐾)- (resp. (⩽ 𝐾)-)comparison neighbourhood in the
sense of hinge comparison if:

(i) 𝜏 is continuous on (𝑈 × 𝑈) ∩ 𝜏−1([0, 𝐷𝐾)), and this set is open.
(ii) 𝑈 is 𝐷𝐾-geodesic.
(iii) Let 𝛼 ∶ [0, 𝑎] → 𝑈, 𝛽 ∶ [0, 𝑏] → 𝑈 be distance realisers emanating from the same point 𝑥 =

𝛼(0) = 𝛽(0) such that 𝐿(𝛼), 𝐿(𝛽), 𝜏(𝛼(𝑎), 𝛽(𝑏)), 𝜏(𝛽(𝑏), 𝛼(𝑎)) < 𝐷𝐾 and such that the angle
∡𝑥(𝛼, 𝛽) is finite. Let (𝛼̃, 𝛽) form a comparison hinge for (𝛼, 𝛽) in 𝕃2(𝐾). Then

𝜏(𝛼(𝑎), 𝛽(𝑏)) ⩾ 𝜏(𝛼̃(𝑎), 𝛽(𝑏)) (resp. 𝜏(𝛼(𝑎), 𝛽(𝑏)) ⩽ 𝜏(𝛼̃(𝑎), 𝛽(𝑏))) . (10)

(iv) Let 𝛼, 𝛽 be as in (iii), without the restriction of finite angle. For (⩾ 𝐾)-comparison neigh-
bourhoods, we assume that if 𝛼, 𝛽 point in different time directions, the angle can never be
infinite, and for (⩽ 𝐾)-comparison neighbourhoods, we assume that if 𝛼, 𝛽 point in the same
time directions, the angle can never be infinite.†

(v) For (⩾ 𝐾)-comparison neighbourhoods only: let 𝛼, 𝛽, 𝛾 ∶ [0, 𝜀) → 𝑈 be distance realisers all
emanating from the samepoint𝑥 ∶= 𝛼(0) = 𝛽(0) = 𝛾(0). Suppose that𝛼 and 𝛾 have the same
time-orientation and 𝛽 has the opposite time orientation. Then,we have the following special
case of the triangle inequality of angles:

∡𝑥(𝛼, 𝛾) ⩽ ∡𝑥(𝛼, 𝛽) + ∡𝑥(𝛽, 𝛾) . (11)

Proposition 3.15 (Equivalence of angle and hinge comparison). Let𝑈 be an open subset in a reg-
ular Lorentzian pre-length space𝑋. Then,𝑈 is a (⩾ 𝐾)- (resp. (⩽ 𝐾)-)comparison neighbourhood in
the sense of angle comparison if and only if it is a (⩾ 𝐾)- (resp. (⩽ 𝐾)-)comparison neighbourhood
in the sense of hinge comparison.

Proof. Definition 3.11(iv) and Definition 3.14(v) as well as (i) and (ii) in both formulations are the
same. Thus, only the case of (iii) in both conditions as well as 3.14(iv) are of interest. Concerning
3.14(iv), note that angle comparison for, say, lower curvature bounds, yields

∡S𝑥(𝛼, 𝛽) ⩽ ∡̃𝐾,S𝑥 (𝛼(𝑎), 𝛽(𝑏)) (12)

for any two distance realisers as in Definition 3.11(iii). Clearly, any comparison angle is finite by
definition (it is a hyperbolic angle in the model spaces between timelike distance realisers). If
𝜎 = 1, that is, if the two curves have different time orientation, then this becomes an inequality for
non-signed (comparison) angles, and hence, ∡𝑥(𝛼, 𝛽) < ∞ follows. For upper curvature bounds,
the inequality on signed angles is reversed, which is why we get the implication for finite∡𝑥(𝛼, 𝛽)
for curves with the same time orientation (causing the inequality to reverse once again).

† This can be viewed as the limit of (iii) as ∡𝑥(𝛼, 𝛽) → ∞ and agrees with [9, Lemma 4.10]. The rationale behind (iv) is to
avoid the case of curvature bounds being trivially satisfied when angles are infinite.
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12 of 41 BERAN et al.

For (iii), we start out by noting that hinges and triangles are closely related concepts. Indeed,
given any hinge (𝛼, 𝛽) emanating from 𝑥 such that the endpoints 𝛼(𝑎) and 𝛽(𝑏) of the curves are
causally related, we can form a triangle Δ(𝑥, 𝛼(𝑎), 𝛽(𝑏)) (the order of the points might change
depending on the time orientation of the curves, and the side opposite of 𝑥might be null, but this
is not important for our arguments). Conversely, any timelike triangle Δ(𝑥, 𝑦, 𝑧) gives a hinge at
𝑥 (in fact, at any of the three points), by using the two sides adjacent to 𝑥.
Say (𝛼, 𝛽) is a hinge at 𝑥 with finite angle, both curves are future-directed, and 𝛼(𝑎) ⩽ 𝛽(𝑏).

Consider the comparison triangle Δ(𝑥̄, 𝛼̄(𝑎), 𝛽(𝑏)) (cf. the realisabilty lemma [3, Lemma 2.1]) and
the comparison hinge (𝛼̃(𝑎), 𝑥̃, 𝛽(𝑏)). By construction, we have ∡𝑥(𝛼, 𝛽) = ∡𝑥̃(𝛼̃(𝑎), 𝛽(𝑏)) and
∡̃𝑥(𝛼(𝑎), 𝛽(𝑏)) = ∡𝑥̄(𝛼̄(𝑎), 𝛽(𝑏)). Moreover, the comparison hinge (𝛼̃(𝑎), 𝑥̃, 𝛽(𝑏)) can be viewed
as a geodesic triangle, although the side connecting 𝛼̃(𝑎) and 𝛽(𝑏)) might not be causal. In any
case, the sides adjacent to 𝑥̄ and 𝑥̃ have the same lengths, so we have ∡𝑥(𝛼, 𝛽) ⩽ ∡̃𝑥(𝛼(𝑎), 𝛽(𝑏)) if
and only if 𝜏(𝛼(𝑎), 𝛽(𝑏)) ⩾ 𝜏(𝛼̃(𝑎), 𝛽(𝑏)) due† to the hinge lemma [3, Lemma 2.2]. The case of 𝛼
and 𝛽 having different time orientation (or both being past-directed) is completely analogous.
Finally,weneed to touch on a small technicality about causal relations.While angle comparison

talks about curves where the endpoints are causally related, this is not the case for hinge compar-
ison, meaning that one needs to conclude from angle comparison the fact that hinge comparison
is also valid in configurations where the endpoints are not causally related. Clearly, this is only
possible if the curves have the same time orientation, say both are future directed. Moreover, for
upper curvature bounds, the inequality in hinge comparison reads 𝜏(𝛼(𝑎), 𝛽(𝑏)) ⩽ 𝜏(𝛼̃(𝑎), 𝛽(𝑏)),
which is trivially satisfied if 𝛼(𝑎) and 𝛽(𝑏) are not causally related. So, assume that we are in the
case of lower curvature bounds and let (𝛼, 𝛽) be a hinge with both realisers future-directed and
assume that there is no causal relation between 𝛼(𝑎) and 𝛽(𝑏). We essentially need to show that
there is no timelike relation between 𝛼̄(𝑎) and 𝛽(𝑏). Note that contrary to comparison triangles,
comparison hinges have the useful property that sub-comparison hinges ‘live inside’ the original
one. In otherwords, if (𝛼̃, 𝛽) is a comparison hinge for (𝛼, 𝛽), then (𝛼̃|[0,𝑠], 𝛽) is a comparison hinge
for (𝛼|[0,𝑠], 𝛽). Clearly, 𝛼(𝛿) ≪ 𝛽(𝑏) for small enough 𝛿 > 0. Thus, together with 𝜏(𝛼(𝑎), 𝛽(𝑏)) = 0

and the mean value theorem (𝜏 is continuous in a comparison neighbourhood), we infer that
for each 𝜀 > 0 small enough, there is a parameter 𝑠′ such that 𝜏(𝛼(𝑠′), 𝛽(𝑏)) = 𝜀. Thus, we infer
𝜀 = 𝜏(𝛼(𝑠′), 𝛽(𝑏)) ⩾ 𝜏(𝛼̃(𝑠′), 𝛽(𝑏)). Since 𝜏(𝛼̃(𝑠), 𝛽(𝑏)) is clearly monotonically decreasing in 𝑠 as
well and 𝜀 > 0 was arbitrary, we arrive at 𝜏(𝛼̃(𝑎), 𝛽(𝑏)) = 0, as claimed. □

4 NEW CHARACTERISATIONS OF CURVATURE BOUNDS

In this chapter, we introduce several characterisations of curvature bounds which are new in the
Lorentzian context.

4.1 Timelike and causal curvature bounds

Before we go on to introduce new formulations of curvature bounds, however, we want to
briefly touch on the interplay between causal and timelike curvature bounds. Causal curvature
bounds were also introduced in [24, Definition 4.14]. In (ii) of that definition, it was required that

†We prefer to use this result instead of our version of the law of cosines, as the triangle Δ(𝑥̃, 𝛼̃(𝑎), 𝛽(𝑏)) has a possibly
spacelike side.
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ON CURVATURE BOUNDS IN LORENTZIAN LENGTH SPACES 13 of 41

comparison neighbourhoods be causally geodesic. However, since the defining inequalities on 𝜏
are only required between (comparison) points on timelike sides of an admissible causal triangle,
the existence of null realisers is not necessary. For this reason, in the definition of causal curvature
bounds we give below, we require comparison neighbourhoods to bemerely𝐷𝐾-geodesic (instead
of causally𝐷𝐾-geodesic), just as in the other formulations of curvature bounds. Note that with this
modification, all results about causal curvature bounds that have been obtained in the literature
so far retain their validity. Most importantly, with this reformulation, we are able to show that
causal and timelike curvature bounds are, in fact, equivalent.

Definition 4.1 ((Strict) causal curvature bounds by triangle comparison). Let 𝑋 be a Lorentzian
pre-length space. An open subset𝑈 is called a (⩾ 𝐾)- (resp. (⩽ 𝐾)-)comparison neighbourhood in
the sense of causal triangle comparison if:

(i) 𝜏 is continuous on (𝑈 × 𝑈) ∩ 𝜏−1([0, 𝐷𝐾)), and this set is open.
(ii) 𝑈 is 𝐷𝐾-geodesic.
(iii) Let Δ(𝑥, 𝑦, 𝑧) be an admissible causal triangle in 𝑈, with 𝑝, 𝑞 two points on the timelike

sides of Δ(𝑥, 𝑦, 𝑧). Let Δ(𝑥̄, 𝑦̄, 𝑧̄) be a comparison triangle in 𝕃2(𝐾) for Δ(𝑥, 𝑦, 𝑧) and 𝑝̄, 𝑞̄
comparison points for 𝑝 and 𝑞, respectively. Then,

𝜏(𝑝, 𝑞) ⩽ 𝜏(𝑝̄, 𝑞̄) (resp. 𝜏(𝑝, 𝑞) ⩾ 𝜏(𝑝̄, 𝑞̄)) . (13)

If in (iii), we additionally have

𝑝 ⩽ 𝑞 ⇒ 𝑝̄ ⩽ 𝑞̄ (resp. 𝑝 ⩽ 𝑞 ⇐ 𝑝̄ ⩽ 𝑞̄) , (14)

then 𝑈 is called a (⩾ 𝐾)- (resp. (⩽ 𝐾)-)comparison neighbourhood in the sense of strict causal
triangle comparison.

Theorem 4.2 (Timelike and (strict) causal curvature bounds). Let 𝑋 be a Lorentzian pre-length
space.

(i) Let𝑈 ⊆ 𝑋 be open. Then,𝑈 is a (⩾ 𝐾)- (resp. (⩽ 𝐾)-)comparison neighbourhood in the sense of
timelike triangle comparison if and only if it is one in the sense of causal triangle comparison.

(ii) Let 𝑈 ⊆ 𝑋 be open. Then, 𝑈 is a (⩾ 𝐾)-comparison neighbourhood in the sense of causal tri-
angle comparison if and only if it is one in the sense of strict causal triangle comparison.
If 𝑈 is locally causally closed, the analogous statement about 𝑈 being a (⩽ 𝐾)-comparison
neighbourhood holds as well.

(iii) 𝑋 has curvature bounded below (resp. above) by 𝐾 in the sense of timelike triangle comparison
if and only if it has the same bound in the sense of causal triangle comparison.

(iv) 𝑋 has curvature bounded below by 𝐾 in the sense of causal triangle comparison if and only if it
has the same bound in the sense of strict causal triangle comparison. If𝑋 is strongly causal and
locally causally closed, the analogous statement about𝑋 having curvature bounded above by𝐾
holds as well.

Proof.

(i) For the non-trivial direction of the claim, suppose that𝑈 is a comparison neighbourhood in
the sense of timelike triangle comparison, and letΔ(𝑥, 𝑦, 𝑧) be a causal triangle in𝑈 satisfying
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14 of 41 BERAN et al.

size bounds, and with 𝜏(𝑦, 𝑧) = 0. Let 𝑝 and 𝑞 be points on the timelike sides of the triangle.
Furthermore, let Δ(𝑥̄, 𝑦̄, 𝑧̄) be a comparison triangle for Δ(𝑥, 𝑦, 𝑧) and denote by 𝑝̄ and 𝑞̄ the
comparison points for 𝑝 and 𝑞 in that triangle, respectively. We distinguish the following
cases:
(1) 𝑝, 𝑞 ≠ 𝑦: Let 𝑝 ∈ [𝑥, 𝑦], 𝑞 ∈ [𝑥, 𝑧], and let 𝛼 ∶ [0, 1] → 𝑈 be a geodesic realising [𝑥, 𝑦],

so 𝑦 = 𝛼(1) and, say, 𝑝 = 𝛼(𝑡0) for 𝑡0 ∈ (0, 1). Set 𝑦𝑡 ∶= 𝛼(𝑡), then for any 𝑡 ∈ (𝑡0, 1),
Δ(𝑥, 𝑦𝑡, 𝑧) is a timelike triangle containing 𝑝 and 𝑞. Let Δ(𝑥̄, 𝑦̄𝑡, 𝑧̄) be a comparison
triangle for Δ(𝑥, 𝑦𝑡, 𝑧) and denote by 𝑝̄𝑡 and 𝑞̄𝑡 the comparison points for 𝑝 and 𝑞

therein. Then, by timelike triangle comparison for Δ(𝑥, 𝑦𝑡, 𝑧), we have 𝜏(𝑝, 𝑞) ⩽ 𝜏(𝑝̄𝑡, 𝑞̄𝑡)

(resp. 𝜏(𝑝, 𝑞) ⩾ 𝜏(𝑝̄𝑡, 𝑞̄𝑡)). We now argue that 𝑦̄𝑡 → 𝑦̄. Clearly, 𝑦𝑡 → 𝑦 and hence, since
𝜏 is continuous, 𝜏(𝑥̄, 𝑦̄𝑡) = 𝜏(𝑥, 𝑦𝑡) → 𝜏(𝑥, 𝑦) = 𝜏(𝑥̄, 𝑦̄) and 𝜏(𝑦̄𝑡, 𝑧̄) = 𝜏(𝑦𝑡, 𝑧) → 𝜏(𝑦, 𝑧) =

𝜏(𝑦̄, 𝑧̄). Fixing the segment [𝑥̄, 𝑧̄] in its place and assuming that it is vertical (after apply-
ing a suitable Lorentz transformation),we see that 𝑦̄𝑡 arises as the unique (up to reflection
on [𝑥̄, 𝑧̄]) point of intersection of hyperbolas with centres 𝑥̄ and 𝑧̄, respectively. Since 𝜏
is continuous, these hyperbolas transform continuously in 𝑡, with the one centred at 𝑧̄
degenerating into two line segments as 𝑡 → 1. This shows 𝑦̄𝑡 → 𝑦̄, which immediately
implies 𝑝̄𝑡 → 𝑝̄ and 𝑞̄𝑡 → 𝑞̄, and so, 𝜏(𝑝̄𝑡, 𝑞̄𝑡) → 𝜏(𝑝̄, 𝑞̄). Thus, we get 𝜏(𝑝, 𝑞) ⩽ 𝜏(𝑝̄, 𝑞̄)

(resp. 𝜏(𝑝, 𝑞) ⩾ 𝜏(𝑝̄, 𝑞̄)), as claimed. The case of 𝑝 ∈ [𝑥, 𝑧], 𝑞 ∈ [𝑥, 𝑦] is analogous.
(2) 𝑞 = 𝑦, 𝑝 ∈ [𝑥, 𝑧]: Again, let [𝑥, 𝑦] be realised by the geodesic 𝛼 ∶ [0, 1] → 𝑈 and set

𝑞𝑡 ∶= 𝛼(𝑡). By case (1), 𝜏(𝑝, 𝑞𝑡) ⩽ 𝜏(𝑝̄, 𝑞̄𝑡) (resp. 𝜏(𝑝, 𝑞𝑡) ⩾ 𝜏(𝑝̄, 𝑞̄𝑡)), where 𝑞̄𝑡 is the com-
parison point to 𝑞 in the triangle Δ(𝑥̄, 𝑦̄, 𝑧̄). Letting 𝑡 ↗ 1, we obtain 𝜏(𝑝, 𝑞) ⩽ 𝜏(𝑝̄, 𝑞̄)

(resp. 𝜏(𝑝, 𝑞) ⩾ 𝜏(𝑝̄, 𝑞̄)) also in this case.
(3) 𝑝 = 𝑦: Then, 0 = 𝜏(𝑝, 𝑞) = 𝜏(𝑝̄, 𝑞̄).

(ii) Let 𝑈 as in (ii) be a comparison neighbourhood in the sense of causal triangle compari-
son. Let Δ(𝑥, 𝑦, 𝑧) be a causal triangle satisfying size bounds, and let 𝑝, 𝑞 each be either
one of 𝑥, 𝑦, 𝑧 or lie on a timelike side of Δ(𝑥, 𝑦, 𝑧). Let Δ(𝑥̄, 𝑦̄, 𝑧̄) be a comparison triangle
and 𝑝̄, 𝑞̄ comparison points. Note that if 𝑝, 𝑞 are both vertices or lie on the same side, the
required inequalities are always satisfied. So, we may suppose that 𝑝 lies in the interior of
the side [𝑥, 𝑧], say 𝑝 = 𝛼(𝑡0), 𝑡0 ∈ (0, 1), where the geodesic 𝛼 ∶ [0, 1] → 𝑈 realises [𝑥, 𝑧].
Let 𝑝𝑡 ∶= 𝛼(𝑡) for 𝑡 < 𝑡0. Then, 𝑝𝑡 ≪ 𝑝 and 𝑝𝑡 → 𝑝 as 𝑡 ↗ 𝑡0, and similarly for the com-
parison points in Δ(𝑥̄, 𝑦̄, 𝑧̄), we have 𝑝̄𝑡 → 𝑝̄ as 𝑡 ↗ 𝑡0. From this and the reverse triangle
inequality for 𝜏, it follows that 𝑝 ⩽ 𝑞 ⇒ 𝜏(𝑝𝑡, 𝑞) > 0 for all 𝑡 < 𝑡0. If 𝑈 is causally closed,
the converse implication holds as well. Moreover, also, in 𝕃2(𝐾), we have 𝜏(𝑝̄𝑡, 𝑞̄) > 0 for all
𝑡 < 𝑡0 if and only if 𝑝̄ ⩽ 𝑞̄. Since 𝜏(𝑝𝑡, 𝑞) ⩽ 𝜏(𝑝̄𝑡, 𝑞̄) (resp. 𝜏(𝑝𝑡, 𝑞) ⩾ 𝜏(𝑝̄𝑡, 𝑞̄)), this verifies (14)
and thereby shows that 𝑈 is also a comparison neighbourhood in the sense of strict causal
triangle comparison.

(iii) This is immediate from (i).
(iv) Recalling Lemma 3.4, this is a direct consequence of (ii). □

Remark 4.3 (One-sided versions of (strict) causal triangle comparison). In analogy to Defini-
tion 3.2, one can also introduce one-sided versions of (strict) causal triangle comparison by
requiring one of 𝑝, 𝑞 to be a vertex of the triangle. The implication from (strict) causal triangle
comparison to (strict) causal one-sided triangle comparison is obvious. The implications from
strict causal one-sided triangle comparison to causal one-sided triangle comparison and further
to timelike one-sided triangle comparison are similiarly obvious. Thus, under the assumptions of
Theorem 4.2, all of these notions are equivalent.
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ON CURVATURE BOUNDS IN LORENTZIAN LENGTH SPACES 15 of 41

F IGURE 1 A timelike four-point configuration in 𝑋 and a corresponding comparison configuration.

4.2 The four-point condition

In Alexandrov geometry, the four-point condition is a convenient reformulation used in both
upper and lower curvature problems. Notably, it is used in a version of Toponogov’s theorem,
cf. [13]. Its biggest advantage is that it does not require the existence of distance realisers, that
is, it also works in a non-intrinsic setting. It is somewhat unique in the sense that, as the name
suggests, it uses four points in contrast to essentially all previous formulations, which used three
points (forming a hinge or a triangle), but at the same time, the formulation is still fundamentally
geometric in nature, so to say, in contrast to the convexity/concavity condition on 𝜏, which seems
more analytical. The four-point condition is a bit more natural for the curvature bounded below
case, which is why we give the definitions separately. As in the metric version, the four-point
condition can be expressed both via distance and angle inequalities.
Before giving the definition, it will be convenient to lay out some notational conventions.

Definition 4.4 (Four-point configurations). Let 𝑋 be a Lorentzian pre-length space.

(i) By a timelike future four-point configuration, we mean a tuple of four points in 𝑋, usually
denoted by (𝑦, 𝑥, 𝑧1, 𝑧2), satisfying the relations 𝑦 ≪ 𝑥 ≪ 𝑧1 and 𝑥 ≪ 𝑧2. It is called endpoint-
causal if 𝑧1 ⩽ 𝑧2.

(ii) By a causal future four-point configuration, we mean a tuple of four points in 𝑋, usu-
ally denoted by (𝑦, 𝑥, 𝑧1, 𝑧2), satisfying the relations 𝑦 ≪ 𝑥 ⩽ 𝑧1 and 𝑥 ⩽ 𝑧2. It is called
endpoint-causal if 𝑧1 ⩽ 𝑧2.

(iii) Given a timelike (resp. causal) future four-point configuration (𝑦, 𝑥, 𝑧1, 𝑧2) in 𝑋, by a four-
point comparison configuration in 𝕃2(𝐾), we mean a tuple of four points (𝑦̂, 𝑥̂, 𝑧̂1, 𝑧̂2) such
that 𝜏(𝑦, 𝑥) = 𝜏(𝑦̂, 𝑥̂), 𝜏(𝑦, 𝑧𝑖) = 𝜏(𝑦̂, 𝑧̂𝑖) and 𝜏(𝑥, 𝑧𝑖) = 𝜏(𝑥̂, 𝑧̂𝑖), 𝑖 = 1, 2, and such that 𝑧̂1 and
𝑧̂2 lie on opposite sides of the line through 𝑦̂ and 𝑥̂, see Figure 1.

(iv) A timelike (resp. causal) future four-point configuration in𝑋 is called left (resp. right) straight
if 𝜏(𝑦, 𝑧1) = 𝜏(𝑦, 𝑥) + 𝜏(𝑥, 𝑧1) (resp. 𝜏(𝑦, 𝑧2) = 𝜏(𝑦, 𝑥) + 𝜏(𝑥, 𝑧2)), that is, 𝑦, 𝑥 and 𝑧1 (resp.
𝑧2) lie on a distance realiser, if it exists. Note that the four-point comparison configuration
(if it exists) of a four-point configuration is straight if and only if the original four-point
configuration is straight, see Figure 2.

(v) There are past versions of all of the aforementioned concepts, which result from revers-
ing all causality relations in the obvious way. The resulting tuple will then be denoted by
(𝑧2, 𝑧1, 𝑥, 𝑦).
When proving statements where some formulation of curvature bounds implies a cur-

vature bound expressed via four-point configurations, we will only explicitly show how to
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16 of 41 BERAN et al.

F IGURE 2 A (left) straight timelike four-point configuration in 𝑋 and a corresponding comparison
configuration.

obtain the desired inequality for a future configuration. The case of a past configuration
always follows symmetrically. Since the list of decorating adjectives for four-point config-
urations is already quite long, we decided to omit the word ‘future’ when dealing with future
four-point configurations (which, in any case, are also clearly identified by the order of points
in the above notation).

Intuitively, these four-point configurations could be thought of as two admissible causal (or
even timelike) triangles Δ(𝑦, 𝑥, 𝑧𝑖) that share the side [𝑦, 𝑥], but technically, one has to be careful
with this as the points in 𝑋 might not form a triangle if there are no geodesics joining the points.

Definition 4.5 (Size bounds for four-point configurations). Similar to the corresponding termi-
nology for triangles and hinges, a four-point configuration (𝑦, 𝑥, 𝑧1, 𝑧2) in a Lorentzian pre-length
space 𝑋 is said to satisfy size bounds for 𝐾 if there exists a four-point comparison configuration in
𝕃2(𝐾). Evidently, this is the case precisely if 𝜏(𝑦, 𝑧1) < 𝐷𝐾 and 𝜏(𝑦, 𝑧2) < 𝐷𝐾 . Note that the four-
point comparison configuration is unique up to isometry of 𝕃2(𝐾). Throughout this work, we will
assume that all mentioned four-point configurations satisfy size bounds.

It turns out that lower and upper curvature bounds in the sense of any four-point condition
have to be formulated quite differently, which is why we introduce them separately. We will go
into more detail below.

Definition 4.6 (Lower curvature bounds by timelike (resp. causal) four-point condition). Let
𝑋 be a Lorentzian pre-length space. An open subset 𝑈 of 𝑋 is called a (⩾ 𝐾)-comparison
neighbourhood in the sense of the timelike (resp. causal) four-point condition if:

(i) 𝜏 is continuous on (𝑈 × 𝑈) ∩ 𝜏−1([0, 𝐷𝐾)), and this set is open.
(ii) Let (𝑦, 𝑥, 𝑧1, 𝑧2) be a timelike (resp. causal) and endpoint-causal four-point configuration in

𝑈. Let (𝑦̂, 𝑥̂, 𝑧̂1, 𝑧̂2) be a four-point comparison configuration in 𝕃2(𝐾). Then,

𝜏(𝑧1, 𝑧2) ⩾ 𝜏(𝑧̂1, 𝑧̂2) . (15)

In addition, for any timelike (resp. causal) and endpoint-causal past four-point configuration
(𝑧2, 𝑧1, 𝑥, 𝑦) and a comparison configuration (𝑧̂2, 𝑧̂1, 𝑥̂, 𝑦̂), we require

𝜏(𝑧2, 𝑧1) ⩾ 𝜏(𝑧̂2, 𝑧̂1) . (16)
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ON CURVATURE BOUNDS IN LORENTZIAN LENGTH SPACES 17 of 41

In the spirit of the equivalence between timelike and causal curvature bounds established in
Theorem 4.2, we also give a more general version of the four-point condition. This is a priori
a stricter property as it says more about a greater number of configurations. Their equivalence
(under somemild assumptions) will be demonstrated below. Unsurprisingly, it is very convenient
to have different equivalent formulations of the same property at hand. In particular, we expect
the strict causal triangle comparison and the strict causal four-point condition to be especially
useful for the slightly adapted setting of so-called Lorentzianmetric spaces, cf. [26], where the time
separation function 𝜏 is replaced by a function 𝓁 that additionally encodes the causal relation.
These conditions can also be more concisely formulated in terms of 𝓁.

Definition 4.7 (Lower curvature bounds by strict causal four-point condition). Let 𝑋 be a
Lorentzian pre-length space. An open subset𝑈 in𝑋 is called a (⩾ 𝐾)-comparison neighbourhood
in the sense of the strict causal four-point condition if it is a (⩾ 𝐾)-comparison neighbourhood in
the sense of the causal four-point condition, where condition (ii) in Definition 4.6 is strengthened
to:

(ii’) Let (𝑦, 𝑥, 𝑧1, 𝑧2) be a causal four-point configuration in 𝑈 (not necessarily endpoint-causal).
Let (𝑦̂, 𝑥̂, 𝑧̂1, 𝑧̂2) be a four-point comparison configuration in 𝕃2(𝐾). Then,

𝜏(𝑧1, 𝑧2) ⩾ 𝜏(𝑧̂1, 𝑧̂2) and (17)

𝑧̂1 ⩽ 𝑧̂2 ⇒ 𝑧1 ⩽ 𝑧2 . (18)

In addition, for any causal past four-point configuration (𝑧2, 𝑧1, 𝑥, 𝑦) and a comparison
configuration (𝑧̂2, 𝑧̂1, 𝑥̂, 𝑦̂), we require

𝜏(𝑧2, 𝑧1) ⩾ 𝜏(𝑧̂2, 𝑧̂1) and (19)

𝑧̂2 ⩽ 𝑧̂1 ⇒ 𝑧2 ⩽ 𝑧1 . (20)

Similar to the metric case, the timelike four-point condition cannot only be described via a
distance estimate but also via the behaviour of (comparison) angles, cf. [13, Definition 2.3] and
[11, Definition II.1.10].

Lemma 4.8 (Angle version of the timelike four-point condition for lower curvature bounds).
Let 𝑈 be an open subset in a Lorentzian pre-length space 𝑋 which satisfies Definition 4.6(i). Let
(𝑦, 𝑥, 𝑧1, 𝑧2) be a timelike and endpoint-causal four-point configuration in𝑈 and let (𝑦̂, 𝑥̂, 𝑧̂1, 𝑧̂2) be
a comparison configuration in 𝕃2(𝐾). Then, 𝜏(𝑧1, 𝑧2) ⩾ 𝜏(𝑧̂1, 𝑧̂2) if and only if

∡̃𝑥(𝑧1, 𝑧2) ⩽ ∡̃𝑥(𝑧1, 𝑦) + ∡̃𝑥(𝑦, 𝑧2) . (21)

In addition, if (𝑧2, 𝑧1, 𝑥, 𝑦) is a timelike past and endpoint-causal four-point configuration and
(𝑧̂2, 𝑧̂1, 𝑥̂, 𝑦̂) a comparison configuration, then 𝜏(𝑧2, 𝑧1) ⩾ 𝜏(𝑧̂2, 𝑧̂1) if and only if (21) is satisfied.

Proof. It will suffice to only consider the future case. Let Δ(𝑥̄, 𝑧̄1, 𝑧̄2) be a comparison triangle for
(the possibly merely causal) triangle Δ(𝑥, 𝑧1, 𝑧2), then by definition, ∡̃𝑥(𝑧1, 𝑧2) = ∡𝑥̄(𝑧̄1, 𝑧̄2). For
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18 of 41 BERAN et al.

the hyperbolic angles in the comparison configuration (𝑦̂, 𝑥̂, 𝑧̂1, 𝑧̂2), we have

∡𝑥̂(𝑧̂1, 𝑧̂2) = ∡𝑥̂(𝑦̂, 𝑧̂1) + ∡𝑥̂(𝑦̂, 𝑧̂2) = ∡̃𝑥(𝑧1, 𝑦) + ∡̃𝑥(𝑦, 𝑧2) , (22)

where the first equality is due to the triangle equality of angles in (two-dimensional) spacetimes.
Note that 𝜏(𝑥̄, 𝑧̄1) = 𝜏(𝑥, 𝑧1) = 𝜏(𝑥̂, 𝑧̂1) and 𝜏(𝑥̄, 𝑧̄2) = 𝜏(𝑥, 𝑧2) = 𝜏(𝑥̂, 𝑧̂2), that is, the sides adjacent
to the angles at 𝑥̄ and 𝑥̂ have the same lengths. Thus, we can use the Hinge Lemma, cf. [3, Lemma
2.2], to read off the desired equivalence directly. □

Proposition 4.9 (Angle comparison implies timelike four-point condition for lower curva-
ture bounds). Let 𝑈 be an open subset in a regular Lorentzian pre-length space 𝑋. If 𝑈 is a
(⩾ 𝐾)-comparison neighbourhood in the sense of angle comparison, then it is a (⩾ 𝐾)-comparison
neighbourhood in the sense of the timelike four-point condition.

Proof. Let 𝑈 be a (⩾ 𝐾)-comparison neighbourhood in the sense of angle comparison and let
(𝑦, 𝑥, 𝑧1, 𝑧2) be a timelike and endpoint-causal four-point configuration in𝑈. Take distance realis-
ers 𝛼 from 𝑥 to 𝑧1, 𝛽 from 𝑥 to 𝑦, 𝛾 from 𝑥 to 𝑧2, which we know exist by Definition 3.11(ii). We
obtain the following inequalities for angles:

∡̃𝑥(𝑧1, 𝑧2) ⩽ ∡𝑥(𝛼, 𝛾) ⩽ ∡𝑥(𝛼, 𝛽) + ∡𝑥(𝛽, 𝛾) ⩽ ∡̃𝑥(𝑧1, 𝑦) + ∡̃𝑥(𝑦, 𝑧2), (23)

where we used (iii) (with corresponding signs) and (iv) in Definition 3.11. The claim therefore
follows from Lemma 4.8. The same inequality can be obtained for a past four-point configuration
in complete analogy. □

When introducing a four-point condition for timelike curvature bounded above, we run into the
following problem: in the above proof, the inequalities from angle comparison and hinge compar-
ison reverse, but the triangle inequality of angles does not. However, there is a way around this, as
equality in the triangle inequality of angles is enough to obtain inequalities in the opposite direc-
tion. This is achieved by restricting to straight four-point configurations. We also briefly want
to justify (ii) in the following definition. In essence, the existence of 𝜏-midpoints is assumed† in
order to ensure that the definition does turn into a void statement when its assumptions cannot
be met. Indeed, there exist exotic spaces without distance realisers, where there simply exist too
few (or none at all) straight four-point configurations, in which case the curvature bound might
be trivially satisfied. As an example for such a space, consider a locally finite random selection
of points in the Minkowski plane, equipped with the restrictions of the causal relation and time
separation function from ambient space. Then, almost surely no three points lie on a line.

Definition 4.10 (Upper curvature bounds by timelike (resp. causal) four-point condition). Let 𝑋
be a Lorentzian pre-length space. An open subset𝑈 is called a (⩽ 𝐾)-comparison neighbourhood
in the sense of the timelike (resp. causal) four-point condition if:

(i) 𝜏 is continuous on (𝑈 × 𝑈) ∩ 𝜏−1([0, 𝐷𝐾)), and this set is open.

† The existence of 𝜏-midpoints is comparatively strong, but it is easy to formulate andwe aremostly working in an intrinsic
setting anyways (where the existence of such points is not automatic). Technically, requiring a weaker condition, like the
existence of distance realisers that are partially defined on a dense subset of some interval suffices.
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ON CURVATURE BOUNDS IN LORENTZIAN LENGTH SPACES 19 of 41

(ii) For all 𝑥 ≪ 𝑧 in 𝑈 with 𝜏(𝑥, 𝑧) < 𝐷𝐾 , there exists a 𝜏-midpoint in 𝑈, that is, a point 𝑦 ∈ 𝑈

such that 𝜏(𝑥, 𝑦) = 𝜏(𝑦, 𝑧) = 1

2
𝜏(𝑥, 𝑧).

(iii) Let (𝑦, 𝑥, 𝑧1, 𝑧2) be a straight timelike (resp. causal) and endpoint-causal four-point config-
uration in 𝑈. Let (𝑦̂, 𝑥̂, 𝑧̂1, 𝑧̂2) be a straight four-point comparison configuration in 𝕃2(𝐾).
Then,

𝜏(𝑧1, 𝑧2) ⩽ 𝜏(𝑧̂1, 𝑧̂2) . (24)

In addition, for any straight timelike (resp. causal) and endpoint-causal past four-point
configuration (𝑧2, 𝑧1, 𝑥, 𝑦) and a comparison configuration (𝑧̂2, 𝑧̂1, 𝑥̂, 𝑦̂), we require

𝜏(𝑧2, 𝑧1) ⩽ 𝜏(𝑧̂2, 𝑧̂1) . (25)

Definition 4.11 (Upper curvature bounds by strict causal four-point condition). Let 𝑋 be a
Lorentzian pre-length space. An open subset𝑈 of𝑋 is called a (⩽ 𝐾)-comparison neighbourhood
in the sense of the strict causal four-point condition if it is a (⩽ 𝐾)-comparison neighbourhood in
the sense of the causal four-point condition, where under the assumptions of condition (iii), we
additionally require

𝑧1 ⩽ 𝑧2 ⇒ 𝑧̂1 ⩽ 𝑧̂2 , (26)

and for past configurations, we additionally require

𝑧2 ⩽ 𝑧1 ⇒ 𝑧̂2 ⩽ 𝑧̂1 . (27)

Remark 4.12 (Endpoint causality in the strict four-point condition). Note that for upper curvature
bounds, a more general formulation allowing for non-endpoint-causal four-point configurations
is superfluous. Indeed, whenever 𝑧1 and 𝑧2 are not causally related, both the inequality 𝜏(𝑧1, 𝑧2) ⩽
𝜏(𝑧̂1, 𝑧̂2) and the implication 𝑧1 ⩽ 𝑧2 ⇒ 𝑧̂1 ⩽ 𝑧̂2 are trivially satisfied. It therefore essentially only
makes sense to consider endpoint-causal four-point configurations.

Remark 4.13 (Relevant constellations of causal four-point configurations). Here, we show that it
is not necessary to look at causal four-point configurations (𝑦, 𝑥, 𝑧1, 𝑧2) where 𝑥 ⩽ 𝑧2 are null
related, where for curvature bounded below in the sense of the strict causal four-point condition,
one additionally needs that the space (or the comparison neighbourhood) is regular to conclude
this. However, the latter is not an actual restriction since the only statement involving the strict
causal four-point condition, Proposition 4.19, assumes this anyways.
To beginwith, we cannot have 𝑧1 ≪ 𝑧2 as otherwise 𝑥 ⩽ 𝑧1 ≪ 𝑧2would yield a timelike relation

𝑥 ≪ 𝑧2, and the sameworks for 𝑧̂1  𝑧̂2. In particular, the 𝜏-inequality in any four-point condition
is trivially satisfied. Moreover, 𝑧̂1  𝑧̂2 unless the four-point situation is left-straight and 𝑥 is null
before 𝑧1 (as 𝑧̂1 and 𝑧̂2 are on opposite sides of the line extending [𝑦̂, 𝑥̂]). Under the previously
mentioned assumption of regularity, 𝑥 = 𝑧1 follows in this case (as 𝑦, 𝑥, 𝑧1 are collinear with 𝑦 ≪
𝑥 and 𝑥, 𝑧1 null related), and therefore, lower curvature bounds in the sense of the strict causal
four-point condition automatically hold.
For upper curvature bounds in the sense of the strict causal four-point condition, assume

that (𝑦, 𝑥, 𝑧1, 𝑧2) is straight with 𝑥 ⩽ 𝑧2 null related. Since we need to consider endpoint-
causal configurations by Remark 4.12, it must be the case that 𝑥 ⩽ 𝑧1 are null related as
well, otherwise 𝑥 ≪ 𝑧1 ⩽ 𝑧2 would yield 𝑥 ≪ 𝑧2, a contradiction to them being null related.

 14697750, 2024, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12971, W

iley O
nline L

ibrary on [09/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



20 of 41 BERAN et al.

If (𝑦, 𝑥, 𝑧1, 𝑧2) is left straight, we have 𝜏(𝑦, 𝑧1) = 𝜏(𝑦, 𝑥) + 𝜏(𝑥, 𝑧1) = 𝜏(𝑦, 𝑥). In particular, the
comparison points 𝑦̂, 𝑥̂, 𝑧̂1 lie on a line, and as 𝜏(𝑥̂, 𝑧̂1) = 0, we conclude 𝑧̂1 = 𝑥̂ ⩽ 𝑧̂2. Thus,
𝑧̂1 = 𝑥̂ ⩽ 𝑧̂2. On the other hand, if it is right straight, then 𝜏(𝑦, 𝑧2) = 𝜏(𝑦, 𝑥) + 𝜏(𝑥, 𝑧2) = 𝜏(𝑦, 𝑥).
Further, 𝜏(𝑦, 𝑧2) ⩾ 𝜏(𝑦, 𝑧1) + 𝜏(𝑧1, 𝑧2) = 𝜏(𝑦, 𝑧1) and also 𝜏(𝑦, 𝑧1) ⩾ 𝜏(𝑦, 𝑥) + 𝜏(𝑥, 𝑧1) = 𝜏(𝑦, 𝑥), so
𝜏(𝑦, 𝑥) = 𝜏(𝑦, 𝑧1) = 𝜏(𝑦, 𝑧2). In particular, this configuration is also left straight, making both
𝑦̂, 𝑥̂, 𝑧̂1 and 𝑦̂, 𝑥̂, 𝑧̂2 lie on a line, which forces 𝑥̂ = 𝑧̂1 = 𝑧̂2. This shows that (26) is satisfied.
Finally, if 𝑥 = 𝑧1 or 𝑥 = 𝑧2, any 𝜏-inequality and implication of causal relation is trivially satis-

fied.
Altogether (assuming that the space is regular in the case of the strict causal four-point con-

dition for curvature bounded below), we can always assume that all four points are distinct and
𝑥 ≪ 𝑧2.

In order to show that angle comparison implies timelike four-point comparison in the case of
upper curvature bounds, we require the following auxiliary result. It is, in fact, a variant of [9,
Theorem 4.5(i)], where we do not rely on the fact that one of the angles exists, cf. [9, Lemma 4.10].

Lemma 4.14 (Triangle inequality of angles, special case). Let 𝑋 be a Lorentzian pre-length space
with curvature bounded above by 𝐾 in the sense of timelike triangle comparison. Let 𝛼 and 𝛽 be
future-directed distance realisers, and let 𝛾 be a past-directed distance realiser, all emanating from
the same point 𝑝, such that the concatenation of 𝛾 and 𝛽 again is a distance realiser. Then,

∡𝑝(𝛼, 𝛾) ⩽ ∡𝑝(𝛼, 𝛽) . (28)

Since ∡𝑝(𝛽, 𝛾) = 0, cf. [9, Lemma 3.4], this amounts to the following triangle inequality of angles:

∡𝑝(𝛼, 𝛾) ⩽ ∡𝑝(𝛼, 𝛽) + ∡𝑝(𝛽, 𝛾) . (29)

Proof. Choose any parameters 𝑟, 𝑠, 𝑡 such that, say, 𝑥 = 𝛾(𝑟), 𝑦 = 𝛽(𝑠) and 𝑧 = 𝛼(𝑡) form a time-
like triangle Δ(𝑥, 𝑦, 𝑧) (the direction of the timelike relation between the points on 𝛼 and 𝛽 is
not important). Consider the two subtriangles Δ(𝑥, 𝑝, 𝑧) and Δ(𝑝, 𝑦, 𝑧) and consider a compari-
son configuration consisting of Δ(𝑥̄, 𝑝̄, 𝑧̄) and Δ(𝑝̄, 𝑦̄, 𝑧̄) (such that they share the common side
between 𝑝̄ and 𝑧̄). Due to upper curvature bounds and the Alexandrov Lemma, cf. [8, Proposition
2.42], this is a concave configuration, that is,

∡̃𝑝(𝛾(𝑟), 𝛼(𝑡)) = ∡𝑝̄(𝑥̄, 𝑧̄) ⩽ ∡𝑝̄(𝑦̄, 𝑧̄) = ∡̃𝑝(𝛽(𝑠), 𝛼(𝑡)) . (30)

The desired inequality then follows from the definition of angles as limits of comparison
angles. □

Proposition 4.15 (Angle comparison implies timelike four-point condition for upper curvature
bounds). Let 𝑈 be an open subset of a regular Lorentzian pre-length space 𝑋. If 𝑈 is a (⩽ 𝐾)-
comparison neighbourhood in the sense of angle comparison, then it is also a (⩽ 𝐾)-comparison
neighbourhood in the sense of the timelike four-point condition.

Proof. Properties (i) and (ii) in Definition 4.10 follow directly from (i) and (ii) in Definition 3.11.
So, let (𝑦, 𝑥, 𝑧1, 𝑧2) in 𝑈 be a straight timelike and endpoint-causal four-point configuration.

Take distance realisers (which exist by our assumptions in Definition 3.11) 𝛼 from 𝑥 to 𝑧1, 𝛽 from
𝑥 to 𝑦 and 𝛾 from 𝑥 to 𝑧2. Note that for, say, a left straight configuration, 𝛼 and 𝛽 fit together to
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ON CURVATURE BOUNDS IN LORENTZIAN LENGTH SPACES 21 of 41

a distance realiser from 𝑦 through 𝑥 to 𝑧1 (the right straight case works analogously, with 𝛽, 𝛾
fitting together). In particular, ∡𝑥(𝛼, 𝛽) = 0 (by [9, Lemma 3.4]). Let (𝑦̂, 𝑥̂, 𝑧̂1, 𝑧̂2) be a (straight)
comparison configuration for (𝑦, 𝑥, 𝑧1, 𝑧2). In particular, Δ(𝑦̂, 𝑥̂, 𝑧̂2) is a comparison triangle for
Δ(𝑦, 𝑥, 𝑧2). Similar to the lower curvature bounds case, we obtain the following inequality for
angles:

∡𝑥(𝛼, 𝛾) = ∡𝑥(𝛽, 𝛼)
⏟⎴⏟⎴⏟

=0

+∡𝑥(𝛼, 𝛾) ⩾ ∡𝑥(𝛽, 𝛾)

⩾ ∡̃𝑥(𝑦, 𝑧2) = ∡𝑥̂(𝑦̂, 𝑧̂2) = ∡𝑥̂(𝑧̂1, 𝑧̂2) ,

(31)

where we used Lemma 4.14, Definition 3.11(iii) (with the sign of the angles already taken into
account), and the triangle equality for angles in 𝕃2(𝐾).
Let (𝑥̃, 𝑧̃1, 𝑧̃2) form a comparison hinge for (𝛼, 𝛾) in 𝕃2(𝐾). Then, hinge comparison, cf.

Definition 3.14 and Proposition 3.15 yield

𝜏(𝑧1, 𝑧2) ⩽ 𝜏(𝑧̃1, 𝑧̃2) . (32)

The comparison hinge (𝑥̃, 𝑧̃1, 𝑧̃2) and the triangle Δ(𝑥̂, 𝑧̂1, 𝑧̂2) have two sides of equal length,
and ∡𝑥̂(𝑧̂1, 𝑧̂2) ⩽ ∡𝑥(𝛼, 𝛾) = ∡𝑥̃(𝑧̃1, 𝑧̃2) by (31). Thus, law of cosines monotonicity (cf. [9, Remark
2.5]) implies 𝜏(𝑧̃1, 𝑧̃2) ⩽ 𝜏(𝑧̂1, 𝑧̂2), which together with (32) gives the desired inequality 𝜏(𝑧1, 𝑧2) ⩽
𝜏(𝑧̂1, 𝑧̂2). The case of a past four-point configuration follows analogously. □

Proposition 4.16 (Angle version of the timelike four-point condition for upper curvature
bounds). Let𝑈 be an open subset in a Lorentzian pre-length space𝑋 which satisfies Definition 4.6(i).
Let (𝑦, 𝑥, 𝑧1, 𝑧2) be a straight timelike and endpoint-causal four-point configuration in 𝑈 and let
(𝑦̂, 𝑥̂, 𝑧̂1, 𝑧̂2) be a comparison configuration in 𝕃2(𝐾). Then, 𝜏(𝑧1, 𝑧2) ⩽ 𝜏(𝑧̂1, 𝑧̂2) if and only if

∡̃𝑥(𝑧1, 𝑧2) ⩾ ∡̃𝑥(𝑧1, 𝑦) + ∡̃𝑥(𝑦, 𝑧2) . (33)

In addition, if (𝑧2, 𝑧1, 𝑥, 𝑦) is a timelike and endpoint-causal past four-point configuration and
(𝑧̂2, 𝑧̂1, 𝑥̂, 𝑦̂) a comparison configuration, then 𝜏(𝑧2, 𝑧1) ⩽ 𝜏(𝑧̂2, 𝑧̂1) if and only if (33) is satisfied.

Proof. The proof is completely analogous to the lower curvature bounds version, see
Lemma 4.8. □

Note that in (33), one of the angles on the right-hand side is zero, depending on whether one
deals with a left straight or a right straight configuration.

Proposition 4.17 (Timelike vs. causal four-point condition). Let 𝑋 be a Lorentzian pre-length
space, and let𝑈 ⊆ 𝑋 be open, regular and𝐷𝐾-geodesic. Then,𝑈 is a (⩾ 𝐾)- (resp. (⩽ 𝐾)-)comparison
neighbourhood in the sense of the timelike four-point condition if and only if 𝑈 is a (⩾ 𝐾)- (resp.
(⩽ 𝐾)-)comparison neighbourhood in the sense of the causal four-point condition.
In particular, if 𝑋 is strongly causal, locally 𝐷𝐾-geodesic and regular, then it has curvature

bounded below (resp. above) by 𝐾 in the sense of the timelike four-point condition if and only if it
has the same bound in the sense of the causal four-point condition.
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22 of 41 BERAN et al.

Proof. The direction from causal to timelike is clear, as any (straight) timelike four-point
configuration is also a (straight) causal four-point configuration.
For the converse direction, let (𝑦, 𝑥, 𝑧1, 𝑧2) be a causal and endpoint-causal four-point config-

uration. Let 𝛼 ∶ [0, 1] → 𝑋 be the timelike distance realiser from 𝑦 to 𝑥. Set 𝑥𝑡 ∶= 𝛼(𝑡), then for
all 𝑡 < 1, the four-point configuration (𝑦, 𝑥𝑡, 𝑧1, 𝑧2) is timelike and endpoint-causal, and straight
if (𝑦, 𝑥, 𝑧1, 𝑧2)was straight. Note that by continuity of 𝜏, we can choose the four-point comparison
configuration (𝑦̂𝑡, 𝑥̂𝑡, 𝑧̂𝑡

1
, 𝑧̂𝑡

2
) of (𝑦, 𝑥𝑡, 𝑧1, 𝑧2) such that each of the points converges to the corre-

sponding point in the four-point comparison situation (𝑦̂, 𝑥̂, 𝑧̂1, 𝑧̂2) of (𝑦, 𝑥, 𝑧1, 𝑧2). In particular,
we have 𝜏(𝑧̂𝑡

1
, 𝑧̂𝑡

2
) → 𝜏(𝑧̂1, 𝑧̂2), and 𝜏(𝑧1, 𝑧2) remains independent of 𝑡. For lower curvature bounds,

we know 𝜏(𝑧1, 𝑧2) ⩾ 𝜏(𝑧̂𝑡
1
, 𝑧̂𝑡

2
), thus we also have 𝜏(𝑧1, 𝑧2) ⩾ 𝜏(𝑧̂1, 𝑧̂2). In the case of upper curva-

ture bounds, we get corresponding inequalities in the other direction. The case of a past four-point
configuration follows analogously.
Finally, note that the additional assumptions in the second part of the claim are required since

comparison neighbourhoods in the sense of any four-point condition need not be 𝐷𝐾-geodesic.
Concerning the non-trivial direction, let 𝑥 ∈ 𝑋 and suppose that 𝑈 is a comparison neighbour-
hood of 𝑥 in the sense of the timelike four-point condition. Then, we find a neighbourhood 𝑉
of 𝑥 which is 𝐷𝐾-geodesic. Any intersection of timelike diamonds inside 𝑈 ∩ 𝑉 is, due to causal
convexity, easily seen to be a regular and𝐷𝐾-geodesic comparison neighbourhood, hence the first
statement of the proposition applies. □

Next, we show that curvature bounds in the sense of the causal four-point condition imply
curvature bounds in the sense of monotonicity comparison.

Proposition 4.18 (Causal four-point condition implies monotonicity comparison). Let 𝑋 be a
Lorentzian pre-length space and let 𝑈 ⊆ 𝑋 be open, regular and 𝐷𝐾-geodesic. If𝑈 is a (⩾ 𝐾)- (resp.
(⩽ 𝐾)-)comparison neighbourhood in the sense of the causal four-point condition, then𝑈 is a (⩾ 𝐾)-
(resp. (⩽ 𝐾)-)comparison neighbourhood in the sense of monotonicity comparison.
In particular, if 𝑋 is strongly causal, regular and locally 𝐷𝐾-geodesic, and 𝑋 has curvature

bounded below (resp. above) by 𝐾 in the sense of the causal four-point condition, then it also has
the same bound in the sense of monotonicity comparison.

Proof. We only demonstrate the case of lower curvature bounds, the upper curvature bounds case
is entirely analogous. Let 𝑈 be as in the statement. The first two conditions in Definition 3.8 are
satisfied by assumption. For the third condition, let 𝛼 ∶ [0, 𝑎] → 𝑋, 𝛽 ∶ [0, 𝑏] → 𝑋 be a hingewith
𝛼(0) = 𝛽(0).
There are two cases to consider, one where the two curves have the same time-orientation (say

both future-directed), and one where they have different time orientation (say 𝛼 is future-directed
and 𝛽 is past-directed).
First, we consider the case of 𝛼 and 𝛽 being future-directed. We need to show that the par-

tial function 𝜃(𝑠, 𝑡) = ∡̃𝐾,S𝑦 (𝛼(𝑠), 𝛽(𝑡)) is monotonically increasing. By Remark 3.10, it suffices to
establish one-sided monotonicity. The future-directed case technically breaks down into three
subcases, depending on the relations between the points on the curves (see Figure 3 for a rough
sketch of the in total four subcases). Let 𝑠+ > 𝑠− > 0 and 𝑡 > 0 be such that 𝛼(𝑠+) ⩽ 𝛽(𝑡) (the
case of 𝛼(𝑠−) ⩽ 𝛽(𝑡) ⩽ 𝛼(𝑠+) follows analogously). These correspond to the cases (i) and (ii) in
Figure 3, respectively. Note that in case (ii), we might deal with a causal four-point configura-
tion if 𝛼(𝑠−) ⩽ 𝛽(𝑡) are null related. Set 𝑦 ∶= 𝛼(0) = 𝛽(0), 𝑥 ∶= 𝛼(𝑠−), 𝑧1 ∶= 𝛼(𝑠+) and 𝑧2 ∶= 𝛽(𝑡).
We need to show that 𝜃(𝑠−, 𝑡) ⩽ 𝜃(𝑠+, 𝑡), that is, ∡̃𝑦(𝑥, 𝑧2) ⩾ ∡̃𝑦(𝑧1, 𝑧2) (recall that 𝜃 is defined
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ON CURVATURE BOUNDS IN LORENTZIAN LENGTH SPACES 23 of 41

F IGURE 3 The four possible subcases of endpoint-causal straight four-point configurations which arise
from a hinge.

using signed angles). By construction, (𝑦, 𝑥, 𝑧1, 𝑧2) forms a left straight timelike and endpoint-
causal four-point configuration. Let (𝑦̂, 𝑥̂, 𝑧̂1, 𝑧̂2) be a comparison configuration, then Δ(𝑦̂, 𝑥̂, 𝑧̂2)
is a comparison triangle for Δ(𝑦, 𝑥, 𝑧2). Let Δ(𝑦̄, 𝑧̄1, 𝑧̄2) be a comparison triangle for (the possi-
bly merely admissible causal triangle) Δ(𝑦, 𝑧1, 𝑧2) and let 𝑥̄ be the comparison point for 𝑥 in
Δ(𝑦̄, 𝑧̄1, 𝑧̄2). We have ∡̃𝑦(𝑥, 𝑧2) = ∡𝑦̂(𝑥̂, 𝑧̂2) = ∡𝑦̂(𝑧̂1, 𝑧̂2) and ∡̃𝑦(𝑧1, 𝑧2) = ∡𝑦̄(𝑧̄1, 𝑧̄2), so the desired
inequality reads ∡𝑦̂(𝑧̂1, 𝑧̂2) ⩾ ∡𝑦̄(𝑧̄1, 𝑧̄2). The two triangles Δ(𝑦̄, 𝑧̄1, 𝑧̄2) and Δ(𝑦̂, 𝑧̂1, 𝑧̂2) have two
sides of equal length, and by four-point comparison, we know 𝜏(𝑧̄1, 𝑧̄2) = 𝜏(𝑧1, 𝑧2) ⩾ 𝜏(𝑧̂1, 𝑧̂2).
Thus, ∡̃𝑦(𝑥, 𝑧2) = ∡𝑦̂(𝑧̂1, 𝑧̂2) ⩾ ∡𝑦̄(𝑧̄1, 𝑧̄2) = ∡̃𝑦(𝑧1, 𝑧2) follows by law of cosines monotonocity, cf.
[9, Remark 2.5]).
For the remaining subcase of the future-directed case, let 𝑠−, 𝑠+ and 𝑡 be such that 𝛽(𝑡) ⩽

𝛼(𝑠−) ≪ 𝛼(𝑠+), see (iii) in Figure 3 (note that also here one might deal with a causal four-point
configuration if 𝛽(𝑡) ⩽ 𝛼(𝑠−) are null related. Set 𝑧2 ∶= 𝛼(0) = 𝛽(0), 𝑧1 ∶= 𝛽(𝑡), 𝑥 ∶= 𝛼(𝑠−) and
𝑦 ∶= 𝛼(𝑠+) and consider the resulting left straight timelike and endpoint-causal past four-point
configuration (𝑧2, 𝑧1, 𝑥, 𝑦).
Construct a comparison configuration (𝑧̂2, 𝑧̂1, 𝑥̂, 𝑦̂) as well as a comparison triangle Δ(𝑧̄2, 𝑧̄1, 𝑦̄)

for the triangle Δ(𝑧2, 𝑧1, 𝑦). The triangles Δ(𝑧̄2, 𝑧̄1, 𝑦̄) and Δ(𝑧̂2, 𝑧̂1, 𝑦̂) have two sides of equal
length, and by four-point comparison, we know 𝜏(𝑧2, 𝑧1) = 𝜏(𝑧̄2, 𝑧̄1) ⩾ 𝜏(𝑧̂2, 𝑧̂1). Thus, by law of
cosines, we obtain ∡𝑦̄(𝑧̄2, 𝑧̄1) ⩽ ∡𝑦̂(𝑧̂2, 𝑧̂1). Let 𝑥̄ be a comparison point for 𝑥 in Δ(𝑧̄2, 𝑧̄1, 𝑦̄) and
consider the subtriangles Δ(𝑧̄1, 𝑥̄, 𝑦̄) and Δ(𝑧̂1, 𝑥̂, 𝑦̂) of Δ(𝑧̄2, 𝑧̄1, 𝑦) and Δ(𝑧̂2, 𝑧̂1, 𝑦̂), respectively.
They have two sides of equal length, and the angles at 𝑦̄ (resp. 𝑦̂) agree with the ones in the
original triangles, that is, ∡𝑦̄(𝑥̄, 𝑧̄1) = ∡𝑦̄(𝑧̄2, 𝑧̄1) ⩽ ∡𝑦̂(𝑧̂2, 𝑧̂1) = ∡𝑦̂(𝑥̂, 𝑧̂1). Thus, we get 𝜏(𝑥̄, 𝑧̄1) ⩾
𝜏(𝑥̂, 𝑧̂1) = 𝜏(𝑥, 𝑧1). Finally, we can relate a comparison triangle Δ(𝑧̄′2, 𝑧̄

′
1
, 𝑥̄′) for Δ(𝑧2, 𝑧1, 𝑥) to the

subtriangle Δ(𝑧̄2, 𝑧̄1, 𝑥̄) of Δ(𝑧̄2, 𝑧̄1, 𝑦̄). They have two sides of equal length, and from the above
arguments, we know 𝜏(𝑥̄, 𝑧̄1) ⩽ 𝜏(𝑥, 𝑧1) = 𝜏(𝑥̄′, 𝑧̄′

1
). Hence, the desired inequality ∡𝑧̄2(𝑥̄, 𝑧̄1) ⩾

∡𝑧̄′
2
(𝑦̄′, 𝑧̄′

1
) follows.

At last, consider the case of 𝛼 being future-directed and 𝛽 being past-directed, see (iv) in
Figure 3. In this case, for any choice of parameters, 𝛼(𝑠−), 𝛼(𝑠+) and 𝛽(𝑡) (together with the origin)
yield a straight timelike and endpoint-causal past four-point configuration. Labelling the points
as in the case (iii) depicted in Figure 3, we observe that we are actually in the same situation, with
the only difference being that the causal relation between 𝑧1 and 𝑧2 is reversed. Regardless, the
arguments are completely analogous.
The second part of the statement follows just as in Proposition 4.17. □
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24 of 41 BERAN et al.

Proposition 4.19 (Causal vs. strict causal four-point condition). Let 𝑋 be a Lorentzian pre-length
space and let𝑈 ⊆ 𝑋 be open,𝐷𝐾-geodesic and regular. In the case of lower curvature bounds, assume
in addition that 𝑈 is causally closed. Then, 𝑈 is a (⩾ 𝐾)- (resp. (⩽ 𝐾)-)comparison neighbourhood
in the sense of the causal four-point condition if and only if it is a (⩾ 𝐾)- (resp. (⩽ 𝐾)-)comparison
neighbourhood in the sense of the strict causal four-point condition.
In particular, if 𝑋 is strongly causal, regular and locally 𝐷𝐾-geodesic, then 𝑋 has curvature

bounded below (resp. above) by 𝐾 in the sense of the causal four-point condition, if and only if it
has the same bound in the sense of the strict causal four-point condition.

Proof. In both cases of implications, one implication is obvious from the definitions, so we only
need to show that the causal four-point condition implies the strict causal four-point condition.
For (⩽ 𝐾)-comparison neighbourhoods, let first (𝑦, 𝑥, 𝑧1, 𝑧2) be a left straight causal and endpoint-
causal four-point configuration. Then, 𝑥 ≪ 𝑧1 since 𝑦 ≪ 𝑥 and𝑈 is regular. Let 𝛼 ∶ [0, 1] → 𝑋 be
the timelike distance realiser connecting 𝑥 to 𝑧1, and set 𝑧𝑡1 ∶= 𝛼(𝑡), then 𝑧𝑡

1
≪ 𝑧2 for all 𝑡 < 1.

Consider the straight timelike four-point configuration (𝑦, 𝑥, 𝑧𝑡
1
, 𝑧2) and a comparison configura-

tion (𝑦̂, 𝑥̂, 𝑧̂𝑡
1
, 𝑧̂2). Then, we have 0 < 𝜏(𝑧𝑡

1
, 𝑧2) ⩽ 𝜏(𝑧̂𝑡

1
, 𝑧̂2). Note that (𝑦̂, 𝑥̂, 𝑧̂𝑡1, 𝑧̂2) can be chosen so

that it converges to a comparison configuration for (𝑦, 𝑥, 𝑧1, 𝑧2) as 𝑡 ↗ 1, that is, 𝑧̂𝑡
1
→ 𝑧̂1. Thus,

in the limit, we get 𝑧̂1 ⩽ 𝑧̂2, as required.
If (𝑦, 𝑥, 𝑧1, 𝑧2) is instead a right straight causal and endpoint-causal four-point configuration,

let 𝛽 be the timelike distance realiser connecting 𝑦 to 𝑧1 and 𝛾 be the timelike distance realiser
connecting 𝑦 to 𝑥. Then, for all 𝑡 < 1, there is an 𝑠 < 1 such that 𝛾(𝑡) ≪ 𝛽(𝑠), and we can make
this choice 𝑠𝑡 continuously and such that lim𝑡↗1 𝑠𝑡 = 1. Set 𝑥𝑡 = 𝛾(𝑡) and 𝑧𝑡

1
= 𝛽(𝑠𝑡). Consider the

right straight timelike and endpoint-causal four-point configuration (𝑦, 𝑥𝑡, 𝑧𝑡
1
, 𝑧2), then we have

𝜏(𝑧𝑡
1
, 𝑧2) ⩾ 𝜏(𝑧𝑡

1
, 𝑧1) > 0. For a comparison configuration (𝑦̂, 𝑥̂𝑡, 𝑧̂𝑡

1
, 𝑧̂2), we have 0 < 𝜏(𝑧𝑡

1
, 𝑧2) ⩽

𝜏(𝑧̂𝑡
1
, 𝑧̂2) by the causal four-point condition. In particular, 𝑧̂𝑡

1
⩽ 𝑧̂2 for all 𝑡 ∈ [0, 1). Note that

(𝑦̂, 𝑥̂𝑡, 𝑧̂𝑡
1
, 𝑧̂2) can be chosen so that it converges to a comparison configuration for (𝑦, 𝑥, 𝑧1, 𝑧2)

as 𝑡 ↗ 1, so in the limit, we get 𝑧̂1 ⩽ 𝑧̂2, as required.
Now we have to look at whether (⩾ 𝐾)-comparison neighbourhoods in the sense of the causal

four-point condition are also such in the sense of the strict causal four-point condition. Let
(𝑦, 𝑥, 𝑧1, 𝑧2) be a causal four-point configuration which is not necessarily endpoint-causal). For
now, consider the case where 𝑥 ≪ 𝑧1 is timelike. First, we look at the inequality between the 𝜏’s.
Let 𝛼 be the timelike distance realiser from 𝑥 to 𝑧1, set 𝑧𝑡1 ∶= 𝛼(𝑡) and consider the causal four-
point configuration (𝑦, 𝑥, 𝑧𝑡

1
, 𝑧2). This yields a four-point comparison configuration (𝑦̂, 𝑥̂, 𝑧̂𝑡1, 𝑧2)

(note that this can be chosen in such a way that only 𝑧̂𝑡
1
depends on 𝑡).

By Proposition 4.18, we know that𝑈 is also a comparison neighbourhood in the sense of mono-
tonicity comparison. Thus, we have that ∡̃𝑥(𝑦, 𝛼(𝑡)) = ∡𝑥̂(𝑦̂, 𝑧̂

𝑡
1
) is increasing in 𝑡. By the triangle

equality of angles in 𝕃2(𝐾), we know ∡𝑥̂(𝑧̂
𝑡
1
, 𝑧̂2) = ∡𝑥̂(𝑦̂, 𝑧̂

𝑡
1
) + ∡𝑥̂(𝑦̂, 𝑧̂2), hence also ∡𝑥̂(𝑧̂𝑡1, 𝑧̂2) is

increasing in 𝑡. Now we claim that 𝜏(𝑧̂𝑡
1
, 𝑧̂2) is strictly monotonically decreasing in 𝑡 whenever

𝑧̂𝑡
1
⩽ 𝑧̂2. Let 𝑠 < 𝑡. Let 𝑧̂𝑠𝑡

1
be the point on the side [𝑥̂, 𝑧̂𝑡

1
] such that 𝜏(𝑥̂, 𝑧̂𝑠𝑡

1
) = 𝜏(𝑥, 𝛼(𝑠)). Note that

𝑧̂𝑠𝑡
1
is a comparison point on the side of a triangle, while 𝑧̂𝑠

1
is a vertex of a comparison triangle.

Then we observe:

∙ 𝜏(𝑧̂𝑠𝑡
1
, 𝑧̂2) > 𝜏(𝑧̂𝑡

1
, 𝑧̂2) by reverse triangle inequality (𝑧̂𝑠𝑡1 ≪ 𝑧̂𝑡

1
),

∙ 𝜏(𝑧̂𝑠
1
, 𝑧̂2) > 𝜏(𝑧̂𝑠𝑡

1
, 𝑧̂2) by law of cosines monotonicity: These can each be completed to a triangle

with 𝑥̂. The other side lengths corresponding to each other agree and we know an inequality
between the angles at 𝑥̂.
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ON CURVATURE BOUNDS IN LORENTZIAN LENGTH SPACES 25 of 41

In particular, we can look at the functions 𝑓(𝑡) = 𝜏(𝑧𝑡
1
, 𝑧2) and g(𝑡) = 𝜏(𝑧̂𝑡

1
, 𝑧̂2). We have just

proven that g is strictly monotonically decreasing whenever 𝑧̂𝑡
1
⩽ 𝑧̂2. The reverse triangle inequal-

ity proves that 𝑓 is as well whenever 𝑧𝑡
1
⩽ 𝑧2. By Remark 4.12, both causal relations are certainly

satisfied for small 𝑡. Ultimately, we have to show that 𝜏(𝑧1, 𝑧2) ⩾ 𝜏(𝑧̂1, 𝑧̂2), that is, 𝑓(1) ⩾ g(1).
We even show that 𝑓(𝑡) ⩾ g(𝑡) for all 𝑡 ∈ (0, 1]. If 𝑡 is such that 𝑓(𝑡) > 0, we know 𝑧𝑡

1
≪ 𝑧2, so

we can apply the causal four-point condition to the timelike and endpoint-causal four-point con-
figuration (𝑦, 𝑥, 𝑧𝑡

1
, 𝑧2) and a corresponding comparison configuration to get that 𝑓(𝑡) ⩾ g(𝑡). If

𝑓(𝑡) = 0, we have to show g(𝑡) = 0 as well. Let us now indirectly assume that there is 𝑡1 such
that 0 = 𝑓(𝑡1) < g(𝑡1) = 𝜏(𝑧̂𝑡

1
, 𝑧̂2). By the reverse triangle inequality, we then also have 𝜏(𝑥̂, 𝑧̂2) ⩾

𝜏(𝑥̂, 𝑧̂
𝑡1
1
) + 𝜏(𝑧̂

𝑡1
1
, 𝑧̂2) > 0. Again, by Remark 4.13, we further have that 𝑓(0) = 𝜏(𝑥, 𝑧2) = 𝜏(𝑥̂, 𝑧̂2) =

g(0) > 0, and thus, for small enough 𝑡 also 𝑓(𝑡) > 0 by continuity of 𝜏. In particular, there exists
𝑡0 ∈ (0, 𝑡1) such that 𝑓(𝑡0) > 0. By the above argument, we gather 𝑓(𝑡0) ⩾ g(𝑡0). As 𝑓 is continu-
ous, there is a 𝑡∗ ⩽ 𝑡1 such that𝑓(𝑡∗) = min

(
g(𝑡1)

2
, 𝑓(𝑡0)

)
. Then,wehave 0 < 𝑓(𝑡∗) < g(𝑡1) ⩽ g(𝑡∗)

in contradiction to the causal four-point condition.
As to the implication of the causal relations, recall that we are still in the case of 𝑥 ≪ 𝑧1 and

suppose towards a contradiction that 𝑧1  𝑧2 but 𝑧̂1 ⩽ 𝑧̂2. Since 𝑈 is a causally closed neighbour-
hood, we infer that ≰ is open, that is, 𝑓(𝑡) = 0 for 𝑡 close enough to 1. However, since 𝑧̂1 ⩽ 𝑧̂2,
it follows that 𝑧̂𝑡

1
≪ 𝑧̂2 for all 𝑡 ∈ [0, 1), which, in turn, gives 𝑓(𝑡) < g(𝑡), a contradiction to the

paragraph above.
Finally, consider the case of 𝑥  𝑧1 being null related. We follow the same proof as above,

but have to replace all the arguments leading to g being strictly monotonically decreasing. In
this case, 𝛼 is a null curve from 𝑥 to 𝑧1. In particular, we have 𝑧𝑠

1
⩽ 𝑧𝑡

1
for 𝑠 < 𝑡 and hence

𝜏(𝑦, 𝑧𝑡
1
) ⩾ 𝜏(𝑦, 𝑧𝑠

1
) + 𝜏(𝑧𝑠

1
, 𝑧𝑡

1
) by the reverse triangle inequality. Moreover, the second term on the

right-hand side is zero (since 𝛼 is null), which is why the reverse triangle inequality must be strict
since otherwise regularity of𝑈 would be violated. Thus, we conclude 𝜏(𝑦, 𝑧𝑡

1
) > 𝜏(𝑦, 𝑧𝑠

1
). Arrange

the four-point comparison configurations (𝑦̂, 𝑥̂, 𝑧̂𝑠
1
, 𝑧̂2) and (𝑦̂, 𝑥̂, 𝑧̂𝑡1, 𝑧̂2) such that they share the

triangle Δ(𝑦̂, 𝑥̂, 𝑧̂2). Note that 𝑥̂ ⩽ 𝑧̂𝑠
1
and 𝑥̂ ⩽ 𝑧̂𝑡

1
are null related and point towards the left (by

convention), hence 𝑥̂, 𝑧̂𝑠
1
and 𝑧̂𝑡

1
all lie on a null geodesic. In particular, 𝑧̂𝑠

1
and 𝑧̂𝑡

1
are causally

related, and since 𝜏(𝑦̂, 𝑧̂𝑠
1
) < 𝜏(𝑦̂, 𝑧̂𝑡

1
), we have 𝑧̂𝑠

1
⩽ 𝑧̂𝑡

1
. By the reverse triangle inequality and the

fact that 𝑧̂𝑠
1
, 𝑧̂𝑡

1
and 𝑧̂2 do not all lie on a single distance realiser, we have 𝜏(𝑧̂𝑠

1
, 𝑧̂2) > 𝜏(𝑧̂𝑡

1
, 𝑧̂2)

for all 𝑠 < 𝑡 whenever 𝑧̂𝑡
1
⩽ 𝑧̂2, that is, g is monotonically decreasing, and indeed strictly so on

{𝑡 ∣ 𝑧̂𝑡
1
⩽ 𝑧̂2} ⊆ [0, 1]. The rest of the proof works as in the case of 𝑥 ≪ 𝑧1.

The case of a past four-point configuration follows analogously.
The final claim of the proposition follows just as in Proposition 4.17. □

4.3 Convexity and concavity of 𝝉

Similar to the metric setting (cf., e.g. [5]), a characterisation of curvature bounds via convexity or
concavity properties of modified distance functions relies crucially on the analytic properties of
solutions to the differential equation

𝑓′′ − 𝐾𝑓 = 𝜆 , (34)

its homogeneous variant

𝑓′′ − 𝐾𝑓 = 0 , (35)
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26 of 41 BERAN et al.

as well as the corresponding differential inequalities† 𝑓′′ − 𝐾𝑓 ⩾ 𝜆 (resp.⩽ 𝜆).We therefore begin
this section by deriving some essentials of the solution theory for (34). In the geometric applica-
tions we are interested in, the function 𝑓 will typically only be continuous. For such functions,
the standard solution concept is the distributional one (although for our purposes, the most use-
ful concept is ‘in the sense of Jensen’, cf. Definition 4.21 below). Due to the hypoellipticity of any
constant coefficient ordinary differential operator, this makes no difference in the case of equality
in (34), whose general solution is given explicitly by

𝑓(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝛼 cos(

√
𝐾𝑡) + 𝛽 sin(

√
𝐾𝑡) + 𝜆

𝐾
(𝐾 < 0)

𝜆 𝑡
2

2
+ 𝛼𝑡 + 𝛽 (𝐾 = 0)

𝛼 cosh(
√|𝐾|𝑡) + 𝛽 sinh

(√|𝐾|𝑡) + 𝜆

𝐾
(𝐾 > 0),

(36)

where 𝛼, 𝛽 ∈ ℝ. In the inequality case, 𝑓 being a solution in the sense of distributions to 𝑓′′ −
𝐾𝑓 ⩾ 𝜆 (resp.⩽ 𝜆), or a distributional subsolution (resp. supersolution),means that, for any smooth
non-negative test function 𝜑 with compact support in 𝐼, we have

∫𝐼 𝑓(𝑡)𝜑
′′(𝑡) − 𝐾𝑓(𝑡)𝜑(𝑡) − 𝜆𝜑(𝑡) 𝑑𝑡 ⩾ 0 (resp. ⩽ 0). (37)

Such functions automatically are of higher regularity.

Proposition 4.20 (Almost-convexity for distributional subsolutions). Let 𝐼 ⊆ ℝ be an open inter-
val, 𝑓 ∶ 𝐼 → ℝ a continuous function which is a distributional subsolution (resp. supersolution) to
(34) and let 𝑡0 ∈ 𝐼. Then there is a 𝑐 > 0 (resp. 𝑐 < 0) such that 𝑓(𝑡) + 𝑐𝑡2 is a convex (resp. concave)
function near 𝑡0. In particular,𝑓 is locally Lipschitz and possesses one-sided derivatives at every point
of 𝐼. For these, we have 𝑓′(𝑡−) ⩽ 𝑓′(𝑡+) (resp. 𝑓′(𝑡−) ⩾ 𝑓′(𝑡+)) at each 𝑡 ∈ 𝐼.

Proof. Let 𝑓 be a distributional subsolution. By assumption, for any 𝑐, we have

(𝑓(𝑡) + 𝑐𝑡2)′′ ⩾ 𝐾𝑓(𝑡) + 𝜆 + 2𝑐,

and the right-hand side can be made non-negative near 𝑡0 for 𝑐 > 0 sufficiently big since 𝑓 is
continuous, hence locally bounded. It follows that 𝑓(𝑡) + 𝑐𝑡2 is a convex distribution, hence a
convex function near 𝑡0 (cf. [20, Theorem 4.1.6]). The remaining claims follow from well-known
properties of convex functions (cf. [21, Corollary 1.1.6]). The supersolution case follows from the
subsolution one by considering −𝑓. □

For the modified distance function, we are going to study below, the following alternative
solution concept will be relevant.

Definition 4.21. A continuous function 𝑓 ∶ 𝐼 → ℝ (𝐼 an interval) is called a solution to 𝑓′′ −
𝐾𝑓 ⩾ 𝜆 in the sense of Jensen‡ (ITSJ) if the following holds: If 𝑡1, 𝑡2 ∈ 𝐼, 𝑡1 < 𝑡2, |𝑡1 − 𝑡2| < 𝐷𝐾
and g is the unique solution to (34) with g(𝑡𝑖) = 𝑓(𝑡𝑖) (𝑖 = 1, 2), then 𝑓(𝑡) ⩽ g(𝑡) for all 𝑡 ∈ [𝑡1, 𝑡2].

† This is a convexity (resp. concavity) condition on 𝑓, cf. [2].
‡ In [5], this property is called Jensen’s inequality, which motivates our terminology here.
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ON CURVATURE BOUNDS IN LORENTZIAN LENGTH SPACES 27 of 41

Also here we speak of subsolutions† ITSJ, and the supersolution case is defined analogously
with the inequalities reversed. As in the distributional case, ITSJ solutions enjoy additional
regularity properties:

Proposition 4.22 (Almost-convexity for Jensen subsolutions). Let 𝐼 ⊆ ℝ be an open interval, 𝑓 ∶

𝐼 → ℝ a continuous functionwhich is a subsolution (resp. supersolution) to (34) in the sense of Jensen
and let 𝑡0 ∈ 𝐼. Then there is a 𝑐 > 0 (resp. 𝑐 < 0) such that 𝑓(𝑡) + 𝑐𝑡2 is a convex (resp. concave)
function near 𝑡0. In particular,𝑓 is locally Lipschitz and possesses one-sided derivatives at every point
of 𝐼. For these, we have 𝑓′(𝑡−) ⩽ 𝑓′(𝑡+) at each 𝑡 ∈ 𝐼.

Proof. To show convexity of 𝑓(𝑡) + 𝑐𝑡2, we need to establish that, for any 𝜆 ∈ (0, 1) and 𝑡1 < 𝑡2
near 𝑡0, we have

𝜆(𝑓(𝑡1) + 𝑐𝑡21) + (1 − 𝜆)(𝑓(𝑡2) + 𝑐𝑡22)

⩾ 𝑓(𝜆𝑡1 + (1 − 𝜆)𝑡2) + 𝑐(𝜆𝑡1 + (1 − 𝜆)𝑡2)
2.

(38)

For |𝑡1 − 𝑡2| small, we can pick g = g𝑡1,𝑡2 as in Definition 4.21 with g(𝑡𝑖) = 𝑓(𝑡𝑖) (𝑖 = 1, 2). Now
picking 𝑐 = 𝑐(𝑡1, 𝑡2) > 0 such that g(𝑡) + 𝑐𝑡2 becomes convex near 𝑡0 and inserting in (38), we
obtain

𝜆(𝑓(𝑡1) + 𝑐𝑡21) + (1 − 𝜆)(𝑓(𝑡2) + 𝑐𝑡22)

= 𝜆(g(𝑡1) + 𝑐𝑡21) + (1 − 𝜆)(g(𝑡2) + 𝑐𝑡22)

⩾ g(𝜆𝑡1 + (1 − 𝜆)𝑡2) + 𝑐(𝜆𝑡1 + (1 − 𝜆)𝑡2)
2

⩾ 𝑓(𝜆𝑡1 + (1 − 𝜆)𝑡2) + 𝑐(𝜆𝑡1 + (1 − 𝜆)𝑡2)
2.

Hence, the claim will follow once we are able to show that 𝑐(𝑡1, 𝑡2) can be chosen to remain uni-
formly bounded for 𝑡1 < 𝑡2 sufficiently near to 𝑡0. Equivalently, we require a uniform lower bound
on g ′′ in a fixed small neighbourhood of 𝑡0. Now since g is a solution to (34), g ′′ is a solution to the
corresponding homogeneous equation (35). From the explicit formulae (36), the claim for 𝐾 = 0

follows immediately. So, suppose first that 𝐾 > 0. If g ′′|[𝑡1,𝑡2] has its minimum at 𝑡1 or 𝑡2 (e.g. if it
is monotonous), then employing (35) for g together with the fact that g(𝑡𝑖) = 𝑓(𝑡𝑖) (𝑖 = 1, 2) allows
us to conclude local uniform boundedness of g ′′ from that of 𝑓. Otherwise, |g ′′|must attain a local
maximum in [𝑡1, 𝑡2], say at 𝑡. Then |g ′′| ⩾ 1

2
|g ′′(𝑡)| in some ball 𝐵𝑟(𝑡) around 𝑡. Now (35) for g ′′

together with (36) shows that g ′′(𝑡) = 𝐴 cos(
√
𝐾(𝑡 − 𝑡)) for suitable amplitude𝐴, both depending

on 𝑡1, 𝑡2. Since, however, the frequency
√
𝐾 depends only on 𝐾, the same is true for the radius

𝑟 = 𝑟(𝐾). Hence, if we restrict to a ball of radius 𝑟(𝐾) around 𝑡0, then 𝑡𝑖 will both lie in 𝐵𝑟(𝑡), so
that (using (34) for g) we have

|g ′′(𝑡)| < 2|g ′′(𝑡1)| ⩽ 2𝐾|g(𝑡1)| + 𝜆 = 2𝐾|𝑓(𝑡1)| + 𝜆,

again allowing us to infer local boundedness of g ′′ around 𝑡0 from that of 𝑓. In the case 𝐾 > 0,
again by (35) and (36), we can write g ′′ in one of the forms 𝐶 sinh(𝑡 + 𝜃), 𝐶 cosh(𝑡 + 𝜃), 𝐶𝑒𝑡, or

† The defining inequality in Definition 4.21 is the reason we chose the names sub- and supersolution as we did.

 14697750, 2024, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12971, W

iley O
nline L

ibrary on [09/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



28 of 41 BERAN et al.

𝐶𝑒−𝑡. Since none of these functions has an interior minimum on any finite interval, the claim
follows as in the case of a boundary minimum above. □

We are going to need a comparison result on the homogeneous version of (34), which can be
found in [17, p. 23], cf. also [22, Theorem 5.1.1].

Lemma 4.23. Let 𝜓 ∶ [0, 𝐿] → ℝ be a smooth solution to 𝜓′′ − 𝐾𝜓 ⩾ 0, 𝜓(0) = 0, 𝜓(𝐿) = 0 and
assume that 𝐿 < 𝐷𝐾 . Then 𝜓(𝑡) ⩽ 0 for all 𝑡 ∈ [0, 𝐿].

It is then immediate that the same conclusion holds if 𝜓(0), 𝜓(𝐿) are supposed to be ⩽ 0 (cf.
Corollary 4.29 below for a strengthening of this result).
The following result is a slight generalisation of [5, Theorem 3.14] (stated without proof there).

Since we will repeatedly rely on arguments required for establishing it, we give a complete proof.

Theorem 4.24. Let 𝐼 = (𝑎, 𝑏) ⊆ ℝ be an interval and 𝑓 ∶ 𝐼 → ℝ a continuous function. The
following are equivalent.

(i) 𝑓 is a solution to 𝑓′′ − 𝐾𝑓 ⩾ 𝜆 in the distributional sense.
(ii) 𝑓 is locally Lipschitz and is a solution to 𝑓′′ − 𝐾𝑓 ⩾ 𝜆 in the support sense (ITSS), that is, for

all 𝑡0 ∈ 𝐼 there is a solution g ∶ 𝐼 → ℝ of (34) with g(𝑡0) = 𝑓(𝑡0) and 𝑓 ⩾ g on [𝑡0 − 𝐷𝐾, 𝑡0 +

𝐷𝐾] ∩ 𝐼.†
(iii) 𝑓 is a solution to 𝑓′′ − 𝐾𝑓 ⩾ 𝜆 in the sense of Jensen.

The corresponding statement with all inequalities reversed in (i)–(iii) holds as well.

Proof. Due to Propositions 4.20 and 4.22, we may assume 𝑓 to be locally Lipschitz throughout.

(i)⇒(iii): Let 𝜑 ∈ 𝐶∞𝑐 ((−1, 1)), 𝜑 ⩾ 0, ∫ 𝜑(𝑡) 𝑑𝑡 = 1 and set 𝜑𝜀(𝑡) ∶=
1

𝜀
𝜑
(
𝑡

𝜀

)
. Finally, let 𝑓𝜀 ∶=

𝑓 ∗ 𝜑𝜀. Then, 𝑓𝜀 is smooth on 𝐼𝜀 ∶= (𝑎 + 𝜀, 𝑏 − 𝜀) and satisfies 𝑓′′𝜀 − 𝐾𝑓𝜀 ⩾ 𝜆 on its
domain. Let 𝑡1 < 𝑡2 ∈ 𝐼, |𝑡1 − 𝑡2| < 𝐷𝐾 and let 𝜀 > 0 be so small that [𝑡1, 𝑡2] ⊆ 𝐼𝜀. Let
g𝜀 be the unique solution to (34) with g𝜀(𝑡𝑖) = 𝑓𝜀(𝑡𝑖) (𝑖 = 1, 2). Then, 𝜓𝜀 ∶= 𝑓𝜀 − g𝜀
is smooth, 𝜓′′𝜀 − 𝐾𝜓𝜀 ⩾ 0, and 𝜓𝜀(𝑡𝑖) = 0 for 𝑖 = 1, 2. By Lemma 4.23, then, 𝜓𝜀 ⩽ 0 on
[𝑡1, 𝑡2]. Letting 𝜀 → 0 implies that 𝑓 ⩽ g on [𝑡1, 𝑡2] (cf. [23, Theorem 11]).

(iii)⇒(ii): We first prove that, with 𝑡1, 𝑡2 and g as in Definition 4.21, that is, as in (iii), we also have
that 𝑓(𝑡) ⩾ g(𝑡) for all 𝑡 ∈ ((𝑡2 − 𝐷𝐾, 𝑡1] ∪ [𝑡2, 𝑡1 + 𝐷𝐾]) ∩ 𝐼. We show this for any fixed
𝑡0 ∈ (𝑡2 − 𝐷𝐾, 𝑡1] ∩ 𝐼, the other case being analogous. Denote by ℎ the solution to (34)
with ℎ(𝑡0) = 𝑓(𝑡0) and ℎ(𝑡2) = 𝑓(𝑡2). By (iii), ℎ ⩾ 𝑓 on [𝑡0, 𝑡2] and we claim that ℎ ⩾ g

on [𝑡0, 𝑡1]: Supposing, to the contrary, the existence of some 𝑡 ∈ [𝑡0, 𝑡1]with ℎ(𝑡) < g(𝑡),
then since ℎ(𝑡1) ⩾ g(𝑡1), there would also have to be some 𝑡 ∈ [𝑡0, 𝑡1] with g(𝑡) = ℎ(𝑡).
But then since also g(𝑡2) = 𝑓(𝑡2) = ℎ(𝑡2), g = ℎ everywhere by unique solvability of the
boundary value problem for (34), giving a contradiction. Consequently, g(𝑡0) ⩽ ℎ(𝑡0) =

𝑓(𝑡0), as claimed.
Now for given 𝑡 ∈ 𝐼, consider two sequences 𝑠𝑛 ↗ 𝑡, 𝑡𝑛 ↘ 𝑡, and let g𝑛 be the unique

solution to (34) with g𝑛(𝑠𝑛) = 𝑓(𝑠𝑛) and g𝑛(𝑡𝑛) = 𝑓(𝑡𝑛). Since 𝑓 is locally Lipschitz,
it follows from [18, Lemma 3] that both g𝑛 and g ′𝑛 remain uniformly bounded in
some fixed neighbourhood of 𝑡 for 𝑛 large. In particular, there is a subsequence of

†Note that in [5, Theorem 3.14 (b)], the inequality sign has to be reversed.
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ON CURVATURE BOUNDS IN LORENTZIAN LENGTH SPACES 29 of 41

(g𝑛(𝑡), g
′
𝑛(𝑡)) that converges, so w.l.o.g. the whole sequence does. By continuous depen-

dence on initial data, g𝑛 therefore converges to the solution g with initial data g(𝑡) =
lim𝑛 g𝑛(𝑡) and g ′(𝑡) = lim𝑛 g

′
𝑛(𝑡).

For 𝑡 − 𝐷𝐾 < 𝑠 < 𝑡 (the other case being analogous), we have for large enough 𝑛

that 𝑡+𝑛 − 𝐷𝐾 < 𝑠 < 𝑡−𝑛 < 𝑡. For such 𝑛, the above considerations show that𝑓(𝑠) ⩾ g𝑛(𝑠).
Taking the limit as 𝑛 → ∞, we get 𝑓(𝑠) ⩾ g(𝑠).

(ii)⇒(i): Assume first that 𝑓 is smooth and let 𝑡0 ∈ 𝐼 and g as in (ii). Then

𝑓′′(𝑡0) = lim
ℎ→0

𝑓(𝑡0 + ℎ) − 2𝑓(𝑡0) + 𝑓(𝑡0 − ℎ)

ℎ2
(39)

⩾ lim
ℎ→0

g(𝑡0 + ℎ) − 2g(𝑡0) + g(𝑡0 − ℎ)

ℎ2
(40)

= g ′′(𝑡0) = 𝜆 + 𝐾g(𝑡0) = 𝜆 + 𝐾𝑓(𝑡0) (41)

gives the claim in this case. Next, suppose that 𝑓 is only locally Lipschitz and let 𝜑𝜀
be as above. For 𝑠 ∈ 𝐼, let g𝑠 be the solution from (ii) with 𝑡0 = 𝑠. If 𝑓 is differentiable
at 𝑠, then (ii) implies that g ′𝑠 (𝑠) = 𝑓′(𝑠). For such values of 𝑠, therefore, g𝑠 is uniquely
determined and can indeed be calculated from 𝑓(𝑠) and 𝑓′(𝑠) according to (36). Since
𝑓′ ∈ 𝐿∞

𝑙𝑜𝑐
(𝐼), it follows that (𝑠, 𝑡) ↦ g𝑠(𝑡) ∈ 𝐿∞(𝐼 × 𝐼). Now fix 𝑡0 ∈ 𝐼 and set (for 𝑡 near

𝑡0 and 𝜀 small)

ℎ𝜀(𝑡) ∶= ∫ g𝑡0−𝑠(𝑡 − 𝑠)𝜑𝜀(𝑠) 𝑑𝑠 = ∫ g𝑡0−𝑠(𝑠)𝜑𝜀(𝑡 − 𝑠) 𝑑𝑠.

Then ℎ𝜀 is a smooth solution to ℎ′′𝜀 − 𝐾ℎ𝜀 = 𝜆. Moreover,

𝑓𝜀(𝑡0) = ∫ 𝑓(𝑡0 − 𝑠)𝜑𝜀(𝑠) 𝑑𝑠 = ∫ g𝑡0−𝑠(𝑡0 − 𝑠)𝜑𝜀(𝑠) 𝑑𝑠 = ℎ𝜀(𝑡0)

and 𝑓𝜀(𝑡) ⩾ ℎ𝜀(𝑡) near 𝑡0 (for 𝜀 small). From the smooth case, it then follows that 𝑓′′𝜀 −
𝐾𝑓𝜀 ⩾ 𝜆 near 𝑡0, so 𝜀 → 0 gives the claim. □

We record the following consequence of the proof of (iii)⇒(ii) in Theorem 4.24.

Corollary 4.25 (Outer Jensen). Let 𝐼 ⊆ ℝ be an open interval and 𝑓 ∶ 𝐼 → ℝ locally Lipschitz. Then
𝑓 is a subsolution in the sense of Jensen if and only if it satisfies the following condition: for all 𝑡1 <
𝑡2 ∈ 𝐼, the (unique) solution g ∶ 𝐼 → ℝ of (34) with g(𝑡𝑖) = 𝑓(𝑡𝑖) satisfies 𝑓 ⩾ g on (𝐼 ⧵ (𝑡1, 𝑡2)) ∩
(𝑡2 − 𝐷𝐾, 𝑡1 + 𝐷𝐾).

The following solutions of (34) will be of particular interest to us.

Definition 4.26. Themodified distance functionmd𝐾 ∶ [0, 𝐷𝐾) → ℝ in the model space 𝕃2(𝐾) is
the solution of the initial value problem

⎧⎪⎨⎪⎩
(md𝐾)′′ − 𝐾md𝐾 = 1

md𝐾(0) = 0

(md𝐾)′(0) = 0.

(42)

 14697750, 2024, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12971, W

iley O
nline L

ibrary on [09/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



30 of 41 BERAN et al.

The modified sine function sn𝐾 = (md𝐾)′ and the modified cosine function cn𝐾 = (sn𝐾)′ are
the solutions of the following initial value problems for the corresponding homogeneous
equation:

⎧⎪⎨⎪⎩
(sn𝐾)′′ − 𝐾 sn𝐾 = 0

sn𝐾(0) = 0

(sn𝐾)′(0) = 1

(43)

and

⎧⎪⎨⎪⎩
(cn𝐾)′′ − 𝐾 cn𝐾 = 0

cn𝐾(0) = 1

(cn𝐾)′(0) = 0

(44)

Explicitly:

𝐦𝐝𝑲(𝒕) 𝐬𝐧𝑲(𝒕) 𝐜𝐧𝑲(𝒕)

𝐾 = 0 𝑡2

2
𝑡 1

𝐾 = 1 cosh(𝑡) − 1 sinh(𝑡) cosh(𝑡)

𝐾 = −1 1 − cos(𝑡) sin(𝑡) cos(𝑡)

The role of the modified distance is the following, compare [5, Chapter 1, 1.1(a)].

Lemma 4.27 (md𝐾 and geodesics in model spaces). Let 𝑝 ∈ 𝕃2(𝐾) and 𝛾 ∶ ℝ → 𝕃2(𝐾) be a 𝜏-unit
speed geodesic. Then, the partial function

𝑓(𝑡) =

{
md𝐾(𝜏(𝑝, 𝛾(𝑡))) 𝑝 ⩽ 𝛾(𝑡)

md𝐾(𝜏(𝛾(𝑡), 𝑝)) 𝛾(𝑡) ⩽ 𝑝
(45)

satisfies:

𝑓′′ − 𝐾𝑓 = 1 , (46)

more precisely, 𝑓 = md𝐾 +𝐶 sn𝐾 +𝐷 cn𝐾 where this is positive, and 𝑓 is not defined where the
right-hand side is negative, with 𝐶 = 𝑓′(0) and 𝐷 = 𝑓(0). In particular, it is extensible to a solution
on ℝ.

Proof. By rescaling, it suffices to consider the cases 𝐾 = −1, 0, +1. For 𝐾 = 0, after applying a
suitable Lorentz transformation, we can assume that 𝑝 = (𝑡𝑝, 𝑥𝑝) and 𝛾(𝑡) = (𝑡, 0). It then follows

that 𝑓(𝑡) = 𝑡2

2
− 𝑡𝑝𝑡 +

𝑡2𝑝−𝑥
2
𝑝

2
= md0(𝑡) + 𝑓′(0) sn0(𝑡) + 𝑓(0) cn0(𝑡).

For the case 𝐾 = 1, again by applying a suitable† Lorentz transformation, we may assume
that 𝑝 = (𝑡𝑝, 𝑥𝑝, 𝑦𝑝) and 𝛾(𝑡) = (sinh(𝑡), 0, cosh(𝑡)). Now for any causally related points 𝑣, 𝑤 in
de Sitter space 𝕃2(1), the time separation function is given explicitly by 𝜏(𝑣, 𝑤) = arcosh⟨𝑣, 𝑤⟩
†Here, we view de Sitter space as the set {(𝑡, 𝑥, 𝑦) ∣ −𝑡2 + 𝑥2 + 𝑦2 = +1} embedded in ℝ3

1
.
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ON CURVATURE BOUNDS IN LORENTZIAN LENGTH SPACES 31 of 41

(cf., e.g. [16, (2.7)]). Consequently, for 𝑝 ⩽ 𝛾(𝑡), 𝜏(𝑝, 𝛾(𝑡)) = arcosh(−𝑡𝑝 sinh 𝑡 + 𝑦𝑝 cosh 𝑡), and so,

𝑓(𝑡) = md1(𝜏(𝑝, 𝛾(𝑡))) = −𝑡𝑝 sinh 𝑡 + 𝑦𝑝 cosh 𝑡 − 1

= md1(𝑡) + 𝑓′(0) sn1(𝑡) + 𝑓(0) cn1(𝑡).

Finally, for the anti-de Sitter† case 𝐾 = −1, we can w.l.o.g. assume 𝛾(𝑡) = (cos(𝑡), sin(𝑡), 0), and
we set 𝑝 = (𝑠𝑝, 𝑡𝑝, 𝑥𝑝). Here, for causally related points 𝑣, 𝑤, we have 𝜏(𝑣, 𝑤) = arccos(−⟨𝑣, 𝑤⟩)
(using [16, (2.7)], together with [29, Lem. 4.24]). Thus, for 𝑝 ⩽ 𝛾(𝑡), we have

𝑓(𝑡) = md−1(𝜏(𝑝, 𝛾(𝑡))) = 1 + ⟨𝑝, 𝛾(𝑡)⟩ = 1 − 𝑠𝑝 cos 𝑡 − 𝑡𝑝 sin 𝑡

= md−1(𝑡) + 𝑓′(0) sn−1(𝑡) + 𝑓(0) cn−1(𝑡). □

The definition of 𝑓 in (45) requires a distinction in cases depending on the causal relation of 𝑝
and 𝛾(𝑡). This is also themain differencewith respect to themetricmachinery: if there is no causal
relation between 𝑝 and 𝛾(𝑡), then 𝑓 cannot give any information. This is why the next few results
build up the theory in order to extend some known results frommetric geometry to domains that
consist of two intervals.

Lemma 4.28. Let 𝑓𝑖 ∶ (𝑎, 𝑏) → ℝ, 𝑖 = 1, 2, be two solutions of (34) and let 𝑡1, 𝑡2 ∈ 𝐼 with 𝑡1 < 𝑡2.
Then, if 𝑓1(𝑡1) = 𝑓2(𝑡1) and 𝑓1(𝑡2) < 𝑓2(𝑡2), we have 𝑓1 < 𝑓2 on (𝑡1,min(𝑏, 𝑡1 + 𝐷𝐾)) and 𝑓1 > 𝑓2
on (max(𝑎, 𝑡1 − 𝐷𝐾), 𝑡1). In particular, if 𝑓1(𝑡1) > 𝑓2(𝑡1) and 𝑓1(𝑡2) < 𝑓2(𝑡2), we have 𝑓1 < 𝑓2 on
(𝑡2,min(𝑏, 𝑡1 + 𝐷𝐾)) and 𝑓1 > 𝑓2 on (max(𝑎, 𝑡2 − 𝐷𝐾), 𝑡1).

Proof. Assume w.l.o.g. that 𝑡1 = 0 and let 𝑓 ∶= 𝑓2 − 𝑓1. Then, 𝑓 is a solution of the homogeneous
problem (35), hence it is of the form 𝑓 = 𝑎 cn𝐾 +𝑏 sn𝐾 . As 𝑓(0) = 0, we have 𝑓 = 𝑏 sn𝐾 and 𝑏 =
𝑓(𝑡2)

sn𝐾(𝑡2)
> 0. By the explicit formula, sn𝐾(𝑡) > 0 for 𝑡 ∈ (0, 𝐷𝐾) and sn𝐾(𝑡) < 0 for 𝑡 ∈ (−𝐷𝐾, 0).

For 𝑓1 and 𝑓2 and general 𝑡1, this means that 𝑓1 < 𝑓2 on (𝑡1,min(𝑏, 𝑡1 + 𝐷𝐾)) and 𝑓1 > 𝑓2 on
(max(𝑎, 𝑡1 − 𝐷𝐾), 𝑡1).
For the ‘in particular’ statement, note that 𝑓 has a zero between 𝑡1 and 𝑡2, so we can apply the

main part of the lemma. □

As a consequence, we obtain the following strengthening of Lemma 4.23.

Corollary 4.29. Let the continuous function 𝜓 ∶ [0, 𝐿] → ℝ be a solution to 𝜓′′ − 𝐾𝜓 ⩾ 0 in the
sense of Jensen and assume that 𝜓(0) ⩽ 0 and 𝜓(𝐿) ⩽ 0, with at least one of these inequalities strict.
Then 𝜓(𝑡) < 0 for all 𝑡 ∈ (0, 𝐿).

Proof. Let 𝜑1 be the unique solution to (35) with 𝜑1(0) = 𝜓(0) and 𝜑1(𝐿) = 0, and 𝜑2 the one
with 𝜑2(0) = 0 and 𝜑2(𝐿) = 𝜓(𝐿). Then, 𝜑 ∶= 𝜑1 + 𝜑2 is the unique solution to (35) with the same
boundary conditions as 𝜓, so 𝜓 ⩽ 𝜑 on [0, 𝐿]. This proves the claim since at least one of 𝜑1 and 𝜑2
is strictly negative on (0, 𝐿) by Lemma 4.28. □

In the following results, we will require a Jensen-type solution concept that is applicable to
domains more general than intervals.

†Here, we view anti-de Sitter space as the set {(𝑠, 𝑡, 𝑥) ∣ −𝑠2 − 𝑡2 + 𝑥2 = −1} embedded in ℝ3
2
.
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32 of 41 BERAN et al.

Definition 4.30. Let𝑈 ⊆ ℝ be any subset. A continuous function 𝑓 ∶ 𝑈 → ℝ is said to satisfy the
Jensen subsolution (resp. supersolution) inequality for the parameters (𝑡1, 𝑡2, 𝑡3) with 𝑡1 < 𝑡2 < 𝑡3
and |𝑡1 − 𝑡3| < 𝐷𝐾 if 𝑓(𝑡2) ⩽ g(𝑡2) (resp. 𝑓(𝑡2) ⩾ g(𝑡2)), where g is the unique solution to (34) with
g(𝑡𝑖) = 𝑓(𝑡𝑖) for 𝑖 = 1, 3.

Remark 4.31 (Reformulation of subsolutions (resp. supersolutions)). Note that 𝑓 is a subsolution
(resp. supersolution) in the sense of Jensen if and only if it satisfies the Jensen subsolution (resp.
supersolution) inequality for all parameters (𝑡1, 𝑡2, 𝑡3) with 𝑡1 < 𝑡2 < 𝑡3 and |𝑡1 − 𝑡3| < 𝐷𝐾 .

Proposition 4.32 (Splitting Jensen). Let 𝐼 ⊆ ℝ be an open interval, 𝑓 ∶ 𝐼 → ℝ a continuous func-
tion. Let 𝑡1 < 𝑡2 < 𝑡3 < 𝑡4 and |𝑡1 − 𝑡4| < 𝐷𝐾 . If 𝑓 satisfies the Jensen subsolution (supersolution)
inequality for the parameters (𝑡1, 𝑡2, 𝑡3) and for (𝑡2, 𝑡3, 𝑡4), it also satisfies it for (𝑡1, 𝑡2, 𝑡4) and
(𝑡1, 𝑡3, 𝑡4).

Proof. Again, it will suffice to prove the subsolution case. Let g13, g24 and g14 be the solutions to
(34) with g13(𝑡1) = 𝑓(𝑡1), g13(𝑡3) = 𝑓(𝑡3), g24(𝑡2) = 𝑓(𝑡2) and g24(𝑡4) = 𝑓(𝑡4), g14(𝑡1) = 𝑓(𝑡1) and
g14(𝑡4) = 𝑓(𝑡4). Then, our assumption is that 𝑓(𝑡2) ⩽ g13(𝑡2), as well as 𝑓(𝑡3) ⩽ g24(𝑡3). We then
have to show, w.l.o.g., that 𝑓(𝑡2) ⩽ g14(𝑡2).
As g13(𝑡2) ⩾ g24(𝑡2) and g13(𝑡3) ⩽ g24(𝑡3), we can use Lemma 4.28 to conclude that g24(𝑡1) ⩽

𝑓(𝑡1). Now set 𝜓 ∶= g24 − g14. Then 𝜓(𝑡1) ⩽ 0 and 𝜓(𝑡4) = 0, so Lemma 4.23 implies that 𝜓 ⩽ 0 on
[𝑡1, 𝑡4]. In particular, 𝑓(𝑡2) = g24(𝑡2) ⩽ g14(𝑡2). □

Note that the above result could, in fact, be formulated entirely in terms of properties of g13, g24
and g14, without recourse to the function 𝑓. However, for the applications we have in mind, the
formulation we chose is more appropriate.
As in the case of the model spaces (see Lemma 4.27), we will be interested in when a func-

tion 𝑓 defined on two disjoint intervals is a subsolution of (34) when restricted to the set
where it is non-negative. For our intended purposes (cf. Definition 4.35 below), these inter-
vals will be closed. In this case, we note the following immediate but helpful consequence of
Definition 4.21:

Remark 4.33. If 𝑓 is a continuous function on an interval [𝑎, 𝑏], then 𝑓 is a subsolution (resp.
supersolution) to (34) ITSJ on [𝑎, 𝑏] if and only if it is one on (𝑎, 𝑏). It follows from this, together
with Theorem 4.24, that in the following result, the Jensen solution concept on intervals can also
be expressed in terms of the equivalent notions given there.

Proposition 4.34. Let 𝐼 = [𝑎, 𝑏] ∪ [𝑐, 𝑑], 𝑎 < 𝑏 < 𝑐 < 𝑑, and 𝑓 ∶ 𝐼 → ℝ continuous with 𝑓(𝑏) =
𝑓(𝑐) = 0. Then the following are equivalent.

(i) 𝑓 is a subsolution ITSJ of (34) in the following sense: For all 𝑡1, 𝑡2, 𝑡3 ∈ [𝑎, 𝑏] ∪ [𝑐, 𝑑] with 𝑡1 <
𝑡2 < 𝑡3 and |𝑡1 − 𝑡3| < 𝐷𝐾 , 𝑓 satisfies the Jensen subsolution inequality.

(ii) 𝑓 is extensible as a subsolution of (34) ITSJ on [𝑎, 𝑑].
(iii) 𝑓 is a subsolution of (34) ITSJ on both parts of its domain, and for the solution g of (34) with

g(𝑏) = g(𝑐) = 0, we have 𝑓′(𝑏−) ⩽ g ′(𝑏) and 𝑓′(𝑐+) ⩾ g ′(𝑐).

An analogous equivalence holds for supersolutions.
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ON CURVATURE BOUNDS IN LORENTZIAN LENGTH SPACES 33 of 41

Proof.

(ii)⇒(i) is clear.
(i)⇒(iii): The proof of Corollary 4.25 still works in the present setup and shows that for g

as in (iii), we have g ⩽ 𝑓 on [max(𝑎, 𝑐 − 𝐷𝐾), 𝑏] (as well as on [𝑐,min(𝑑, 𝑎 + 𝐷𝐾)]).
Therefore,

𝑓′(𝑏−) = lim
𝑡↗𝑏

𝑓(𝑏) − 𝑓(𝑡)

𝑏 − 𝑡
⩽ lim

𝑡↗𝑏

g(𝑏) − g(𝑡)

𝑏 − 𝑡
= g ′(𝑏).

The inequality 𝑓′(𝑐+) ⩾ g ′(𝑐) can be established in a similar way.
(iii)⇒(ii): Taking g as in (iii), we extend 𝑓 to [𝑎, 𝑑] by setting 𝑓(𝑡) ∶= g(𝑡) for 𝑡 ∈ (𝑏, 𝑐). We now

verify the Jensen condition for this extended function. By Proposition 4.32, we only
need to check three cases: |𝑡1 − 𝑡3| < 𝐷𝐾 and either 𝑡1 < 𝑡2 < 𝑡3 are all contained in
either [𝑎, 𝑏] or [𝑏, 𝑐] or [𝑐, 𝑑] (where it is automatically satisfied), or (𝑡1, 𝑏, 𝑡3)with 𝑡1 ∈
(𝑎, 𝑏) and 𝑡3 ∈ (𝑏, 𝑐), or, finally, (𝑡1, 𝑐, 𝑡3) with 𝑡1 ∈ (𝑏, 𝑐) and 𝑡3 ∈ (𝑐, 𝑑). By symmetry,
we only need to treat (𝑡1, 𝑏, 𝑡3). Thus, let ℎ be the unique solution to (34) with ℎ(𝑡1) =
𝑓(𝑡1) and ℎ(𝑡3) = 𝑓(𝑡3). The claim then is that ℎ(𝑏) ⩾ 𝑓(𝑏).

If we can show that 𝑓 ⩾ g on [𝑡1, 𝑏] we will be done: Indeed, then ℎ(𝑡1) = 𝑓(𝑡1) ⩾ g(𝑡1) and
ℎ(𝑡3) = g(𝑡3), so Lemma 4.23 implies ℎ(𝑏) ⩾ g(𝑏) = 𝑓(𝑏). So, we are left with proving that 𝑘 ∶=
𝑓 − g , which is a subsolution ITSJ of the homogeneous equation (35), is non-negative on [𝑡1, 𝑏].
We now construct a supporting solution for 𝑘 at 𝑏: Let 𝑠𝑛 ∈ (𝑡1, 𝑏), 𝑠𝑛 ↗ 𝑏 and denote by 𝑙𝑛

the unique solution to (35) with 𝑙𝑛(𝑠𝑛) = 𝑘(𝑠𝑛) and 𝑙𝑛(𝑏) = 𝑘(𝑏). As in the proof of Theorem 4.24,
(iii)⇒(ii), it then follows that (up to picking a subsequence) 𝑙𝑛 converges (in 𝐶2) to the solution 𝑙
of the initial value problem to (35) with

𝑙(𝑏) = lim
𝑛
𝑙𝑛(𝑏) = 𝑘(𝑏),

𝑙′(𝑏) = lim
𝑛
𝑙′𝑛(𝑏).

By the mean value theorem, 𝑙𝑛(𝑏)−𝑙𝑛(𝑠𝑛)
𝑏−𝑠𝑛

= 𝑙′𝑛(𝑠𝑛) → 𝑙′(𝑏) (where 𝑠𝑛 ∈ (𝑠𝑛, 𝑏)), which by construc-
tion implies that 𝑙′(𝑏) = 𝑘′(𝑏−). As in the proof of Theorem 4.24, (iii)⇒(ii), it follows that 𝑙 is a
supporting function for 𝑘 at 𝑏, that is, 𝑙 ⩽ 𝑘 on [𝑡1, 𝑏]. Furthermore, we have 𝑙(𝑏) = 𝑘(𝑏) = 0 and
𝑙′(𝑏) = 𝑘′(𝑏−) ⩽ 0 by (iii), so (36) implies that 𝑙 ⩾ 0 on [𝑡1, 𝑏]. Thus, finally, 𝑘 ⩾ 𝑙 ⩾ 0, so 𝑓 ⩾ g on
[𝑡1, 𝑏], as claimed. □

We now have the necessary tools at hand to introduce a characterisation of curvature bounds
via a convexity/concavity property of 𝜏, see [5, Theorems 8.23 & 9.25].

Definition 4.35 (Curvature bounds by convexity/concavity of 𝜏). Let 𝑋 be a regular Lorentzian
pre-length space. An open subset𝑈 is called a (⩾ 𝐾)- (resp. (⩽ 𝐾)-)comparison neighbourhood in
the sense of the 𝜏-convexity (resp. 𝜏-concavity) condition if:

(i) 𝜏 is continuous on (𝑈 × 𝑈) ∩ 𝜏−1([0, 𝐷𝐾)), and this set is open.
(ii) 𝑈 is 𝐷𝐾-geodesic.
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34 of 41 BERAN et al.

(iii) Let 𝑝 ∈ 𝑈 and let 𝛾 ∶ [𝑎, 𝑑] → 𝑈 be a timelike 𝜏-arclength parametrised distance realiser†
with 𝜏(𝑝, 𝛾(𝑑)) < 𝐷𝐾 , 𝜏(𝛾(𝑎), 𝑝) < 𝐷𝐾 and 𝜏(𝛾(𝑎), 𝛾(𝑑)) = 𝑑 − 𝑎 < 𝐷𝐾 . We define the partial
function on [𝑎, 𝑑]

𝑓(𝑡) =

{
md𝐾(𝜏(𝑝, 𝛾(𝑡))), if 𝑝 ⩽ 𝛾(𝑡)

md𝐾(𝜏(𝛾(𝑡), 𝑝)), if 𝛾(𝑡) ⩽ 𝑝
(47)

(compare this with (45), but note that here 𝜏 denotes the time separation in 𝑋). If 𝑓 is not
defined on a closed subset, extend it by setting it equal to 0 on the boundary of its domain.
We require

𝑓′′ − 𝐾𝑓 ⩾ 1 (resp. 𝑓′′ − 𝐾𝑓 ⩽ 1) , (48)

that is, 𝑓 is a subsolution (resp. supersolution) in the sense of any of the equivalent
formulations established in Proposition 4.34 and Remark 4.33.

Remark 4.36 (Domain of𝑓). Define 𝑏 = sup{𝑡 ∈ [𝑎, 𝑑] ∶ 𝛾(𝑡) ⩽ 𝑝}, 𝑐 = inf {𝑡 ∈ [𝑎, 𝑑] ∶ 𝑝 ⩽ 𝛾(𝑡)} (if
the respective set is nonemtpy). Then the function 𝑓 defined in (47) has the domain: [𝑎, 𝑏] ∪ [𝑐, 𝑑]
if both 𝑏, 𝑐 are defined, [𝑎, 𝑏] if 𝑐 is not defined, [𝑐, 𝑑] if 𝑏 is not defined, and ∅ if neither are defined.
Without the extension of 𝑓 and if 𝑈 is not causally closed, the points 𝑏, 𝑐 may be missing from
these sets.

Proposition 4.37 (Triangle comparison and 𝜏- convexity (resp. concavity) condition are equiv-
alent). Let 𝑈 be an open subset in a regular Lorentzian pre-length space 𝑋. Then, 𝑈 is a (⩾ 𝐾)-
(resp. (⩽ 𝐾)-)comparison neighbourhood in the sense of one-sided timelike triangle comparison if
and only if it is a (⩾ 𝐾) (resp. (⩽ 𝐾)) -comparison neighbourhood in the sense of the 𝜏-convexity
(resp. 𝜏-concavity) condition.

Proof. Since 𝑋 is assumed to be regular, the first two conditions in Definitions 3.1 and 4.35 agree.
It is left to check the third condition. We will do this for lower curvature bounds and mention
where the case of upper curvature bounds is not analogous.
Below,when considering the convexity condition,we take a point𝑝 ∈ 𝑈 and a timelike distance

realiser 𝛾 in 𝜏-unit speed parametrisation. Define the partial function 𝑓 as required, without the
extension (cf. (47)). Note that the extension of 𝑓 is still continuous and, by a limit argument, the
extended 𝑓 is a subsolution (resp. supersolution) ITSJ if and only if 𝑓 before the extension was
a subsolution (resp. supersolution) ITSJ. We then want to check that 𝑓 is a subsolution of (34)
ITSJ with 𝜆 = 1 by showing that it satisfies the Jensen subsolution inequality for any parameters
𝑡1 < 𝑡2 < 𝑡3 with |𝑡1 − 𝑡3| < 𝐷𝐾 , cf. Remark 4.31. Take 𝑡1 < 𝑡2 < 𝑡3 in the domain of 𝛾 with |𝑡1 −
𝑡3| < 𝐷𝐾 . We set 𝑥 = 𝛾(𝑡1), 𝑞 = 𝛾(𝑡2) and 𝑦 = 𝛾(𝑡3), and assume that 𝑥 and 𝑦 are causally related
to 𝑝.
On the other hand, when considering one-sided triangle comparison, wewill letΔ(𝑥, 𝑝, 𝑦) form

a timelike triangle (in any possible permutation), and let 𝑞 be a point on the side [𝑥, 𝑦] realised
by 𝛾 in 𝜏-unit speed. Let 𝑥 = 𝛾(𝑡1), 𝑞 = 𝛾(𝑡2) and 𝑦 = 𝛾(𝑡3). Note that choosing 𝑞 in the interior of
[𝑥, 𝑦] is not a real restriction since otherwise we would have trivial equality of the 𝜏-lengths in 𝑋
and 𝕃2(𝐾).

†Any timelike distance realiser can be parametrised by 𝜏-arclength, but this parametrisation need not be Lipschitz, cf. [24,
Corollary 3.35].
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ON CURVATURE BOUNDS IN LORENTZIAN LENGTH SPACES 35 of 41

Now we are ready to establish both directions simultaneously.
Case 1: First assume that the parameters are suitable for both timelike triangle comparison as

well the Jensen inequality. More precisely, assume that 𝑥, 𝑦 are timelike related to 𝑝 and 𝑝 ⩽ 𝑞

(in which direction the points are related is not important). In particular, 𝑡1, 𝑡2, 𝑡3 all lie inside the
domain of 𝑓. Then, we can consider both the one-sided triangle comparison for 𝑞 in Δ(𝑝, 𝑥, 𝑦)
and the Jensen inequality for the parameters 𝑡1 < 𝑡2 < 𝑡3, and we claim that they are equivalent.
For both triangle comparison and Jensen inequality, we take a comparison situation Δ(𝑝̄, 𝑥̄, 𝑦̄)

and a comparison point 𝑞̄. In the present case 1, we additionally assume 𝑝̄ ⩽ 𝑞̄. Define 𝛾̄ as the
side [𝑥̄, 𝑦̄] in 𝜏-unit speed parametrisation such that 𝛾̄(𝑡1) = 𝑥̄, then 𝛾̄(𝑡2) = 𝑞̄ and 𝛾̄(𝑡3) = 𝑦̄.
We set

𝑓(𝑡) ∶=

{
md𝐾(𝜏(𝑝̄, 𝛾̄(𝑡))), if 𝑝̄ ⩽ 𝛾̄(𝑡) ,

md𝐾(𝜏(𝛾̄(𝑡), 𝑝̄)), if 𝛾̄(𝑡) ⩽ 𝑝̄ .

By Lemma 4.27, 𝑓 is a solution of (46) and is given bymd𝐾 +𝐵 cn𝐾 +𝐶 sn𝐾 where both are defined,
which is precisely where the latter is non-negative. Extend 𝑓 to g , given by that formula. We have
that 𝑓(𝑡1) = 𝑓(𝑡1) and 𝑓(𝑡3) = 𝑓(𝑡3), so g is the solution of (46) with 𝑓(𝑡1) = g(𝑡1) and 𝑓(𝑡3) =
g(𝑡3).
Now one-sided triangle comparison from below precisely says that 𝜏(𝑝, 𝑞) ⩽ 𝜏(𝑝̄, 𝑞̄). The case

of 𝜏(𝑞, 𝑝) = 0 ⩽ 𝜏(𝑞̄, 𝑝̄) = 0 is automatic: indeed, by push-up and chronology,𝑝 ⩽ 𝑞 implies 𝑞  𝑝

(and similarly in the model space). Asmd𝐾 is strictly monotonically increasing on [0, 𝐷𝐾], this is
equivalent to

𝑓(𝑡2) = md𝐾(𝜏(𝑝, 𝑞)) ⩽ md𝐾(𝜏(𝑝̄, 𝑞̄)) = 𝑓(𝑡2) , (49)

which is the Jensen subsolution inequality for 𝑡1 < 𝑡2 < 𝑡3. The curvature bounded above case
follows analogously, concluding Case 1.
For all of the remaining cases, note that the logic is more subtle: we aim to prove that all

Jensen inequalities imply the desired curvature bound inequality, and that all curvature bound
inequalities imply the desired Jensen inequality.
Before we continue, note that we can restrict to admissible causal triangles in the Jensen

inequality. Indeed, it cannot be that both 𝑥, 𝑦 are not timelike related to 𝑝: as 𝑡1 < 𝑡3, this could
only be the case if we have 𝑥 ⩽ 𝑝 ⩽ 𝑦 all null related, but then 𝑝, 𝑞 are causally unrelated, contrary
to our assumption in the present case. In all of the following cases, we will therefore assume that
𝑥, 𝑦 and 𝑝 form an admissible causal triangle.
Case 2: We can extend Case 1 to admissible causal triangles. Thus, let 𝑥, 𝑦, 𝑞 be causally related

to 𝑝 and not both 𝑥 and 𝑦 timelike related to 𝑝 as well as 𝑝̄ and 𝑞̄ causally related (in the same
direction as 𝑝 and 𝑞), then timelike triangle comparison does not make sense immediately. If only
one of 𝑥, 𝑦 is not timelike related, by varying 𝑝 and 𝑞, one can reduce this to Case 1 by a limiting
procedure as in the second paragraph in Proposition 4.19.
We have now dealt with all cases where, up to symmetry, 𝑝 ⩽ 𝑞 and 𝑝̄ ⩽ 𝑞̄.
Furthermore, we have to consider curvature bounds above and below separately.
Case 3: Let now 𝑝 ⩽ 𝑞 and 𝑝̄, 𝑞̄ be causally unrelated. Then, we automatically have 0 ⩽ 𝑓(𝑡2)

and 0 > g(𝑡2). In the case of curvature bounds below, we use the main argument in the equiv-
alence of strict causal curvature bounds (Theorem 4.2 (ii)). As the implication 𝑝 ⩽ 𝑞 ⇒ 𝑝̄ ⩽ 𝑞̄

does not hold, this contradicts strict causal triangle comparison, which we know to be equivalent
to one-sided timelike triangle comparison by Proposition 3.3 and Theorem 4.2, thus also some
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36 of 41 BERAN et al.

curvature bound inequality for 𝜏 fails. For the Jensen subsolution inequality, 𝑓(𝑡2) ⩽ g(𝑡2) is
violated, making these match.
Triangle comparison above is automatically satisfied. For the Jensen supersolution inequality,

𝑓(𝑡2) ⩾ g(𝑡2) is automatically satisfied, making these match as well.
Case 4: Let now 𝑝, 𝑞 be causally unrelated and 𝑝̄ ⩽ 𝑞̄. In any curvature bound, 𝑓(𝑡2) is not

defined, so this does not correspond to a Jensen subsolution (resp. supersolution) inequality. Note
that triangle comparison from below is automatically satisfied. Triangle comparison from above
does not hold if and only if 𝑝̄ ≪ 𝑞̄, so we restrict to that case, seeking a contradiction. As 𝑝̄ ⩽ 𝑞̄ ≪

𝑦̄, we also infer that 𝑝 ≪ 𝑦. Consider 𝑞𝑡 = 𝛾(𝑡) and 𝑞̄𝑡 = 𝛾̄(𝑡) for 𝑡 > 𝑡2, then 𝑝̄ ≪ 𝑞̄𝑡. Note that for
large enough 𝑡 < 𝑡3, we do have 𝑝 ⩽ 𝑞𝑡. Set 𝑡′ to be the infimum of these 𝑡, then

lim
𝑡↘𝑡′

𝜏(𝑝, 𝑞𝑡) = 0 < 𝜏(𝑝̄, 𝑞̄) ⩽ 𝜏(𝑝̄, 𝑞̄𝑡′ ) = lim
𝑡↘𝑡′

𝜏(𝑝̄, 𝑞̄𝑡) , (50)

where both limits exist since their arguments are monotonically increasing in 𝑡. If lim𝑡↘𝑡′ 𝜏(𝑝, 𝑞𝑡)

were positive, we would have 𝑝 ≪ 𝑞′𝑡 , contradicting the fact that 𝑡
′ was an infimum. This, in

turn, contradicts the Jensen supersolution inequality for 𝑡 close enough to 𝑡′, concluding this
case.
Case 5: Let now 𝑝, 𝑞 be causally unrelated and 𝑝̄, 𝑞̄ causally unrelated too. Then 𝑓(𝑡2) is unde-

fined, so this does not correspond to a Jensen subsolution (resp. supersolution) inequality. For
triangle comparison, 𝜏(𝑝, 𝑞) = 𝜏(𝑝̄, 𝑞̄), so this instance of triangle comparison below (resp. above)
is automatically satisfied.
Case 6: Let𝑝 ⩽ 𝑞 and 𝑝̄ ⩾ 𝑞̄, that is, the two sides of the Jensen inequality are in different settings

with respect to our case distinction. As in Case 4, we know that 𝑝 ⩽ 𝑞 ≪ 𝑦 and 𝑥̄ ≪ 𝑞̄ ⩽ 𝑝̄, so
𝑥 ≪ 𝑝 ≪ 𝑦. We claim that we can find a parameter 𝑡2 suitable for Case 1 violating the required
triangle comparison, thus Case 1 shows that the corresponding Jensen inequality does not hold.
In other words, under the assumptions of curvature bounds (in the sense of triangle comparison
or convexity/concavity), this case cannot occur. Set 𝑞𝑡 = 𝛾(𝑡), then the corresponding point is 𝑞̄𝑡 =
𝛾̄(𝑡). For curvature bounds below, we define the functions 𝑎(𝑡) = 𝜏(𝑝, 𝛾(𝑡)) and 𝑎̄(𝑡) = 𝜏(𝑝̄, 𝛾̄(𝑡)).
Then,we know that both𝑎 and 𝑎̄ are increasing, they both attain 0 and somepositive value, and for
𝜀 > 0 small enough, we have that 𝑎(𝑡2 + 𝜀) > 0 but 𝑎̄(𝑡2 + 𝜀) = 0 (if the second was positive for all
𝜀 > 0, we would have 𝑝̄ ⩽ 𝑞̄ as well, so we can apply Case 1 directly). Let 𝜀′ ∶= sup{𝜀 ∣ 𝑎̄(𝑡2 + 𝜀) =

0}. Then, 𝑎(𝑡2 + 𝜀′) > 0, 𝑎̄(𝑡2 + 𝜀′) = 0. This allows us to find a value 𝑡2 such that 𝑎(𝑡2) > 𝑎̄(𝑡2) > 0.
This violates triangle comparison from below and makes (𝑡1, 𝑡2, 𝑡3) parameters suitable for Case
1, thus also the Jensen subsolution inequality fails.
For curvature bounds above, the argument is analogous, using the functions 𝑎(𝑡) = 𝜏(𝛾(𝑡), 𝑝)

and 𝑎̄(𝑡) = 𝜏(𝛾̄(𝑡), 𝑝̄) instead.
Case 7: The case of 𝑝 ⩾ 𝑞 as well as the case of 𝑝 and 𝑞 being causally unrelated and 𝑝̄ ⩾ 𝑞̄ are

symmetric with respect to time orientation. □

5 EQUIVALENCES AMONG CURVATURE BOUNDS

Here, we collect the various interdependencies between synthetic sectional curvature bounds that
have been established in the previous sections into the following main result.

 14697750, 2024, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12971, W

iley O
nline L

ibrary on [09/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ON CURVATURE BOUNDS IN LORENTZIAN LENGTH SPACES 37 of 41

Theorem 5.1 (Equivalent notions of curvature bounds for Lorentzian pre-length spaces). Let 𝑋
be a chronological† Lorentzian pre-length space. Recall that 𝑋 may have curvature bounded below
(resp. above) by 𝐾 in any of the following senses:

(i) timelike triangle comparison,
(ii) one-sided timelike triangle comparison,
(iii) causal triangle comparison,
(iv) one-sided causal triangle comparison,
(v) strict causal triangle comparison,
(vi) one-sided strict causal triangle comparison,
(vii) monotonicity comparison,
(viii) one-sided monotonicity comparison,
(ix) angle comparison,
(x) hinge comparison,
(xi) timelike four-point condition,
(xii) angle version of timelike four-point condition,
(xiii) causal four-point condition,
(xiv) strict causal four-point condition,
(xv) 𝜏-convexity (resp. 𝜏-concavity) condition.

In general, the following relations between these curvature bounds hold:

(𝑖) ⇔ (𝑖𝑖) ⇔ (𝑖𝑣) ⇔ (𝑖𝑖𝑖) ⇔ (𝑣) ⇔ (𝑣𝑖), and (𝑥𝑖) ⇔ (𝑥𝑖𝑖) ,

where in the case of upper curvature bounds for (𝑖𝑖𝑖) ⇔ (𝑣) ⇔ (𝑣𝑖), one needs to additionally assume
that 𝑋 is strongly causal and locally causally closed.
If 𝑋 is regular, we additionally have:

(𝑥𝑣) ⇔ (𝑖) ⇔ (𝑣𝑖𝑖𝑖) ⇔ (𝑣𝑖𝑖) ⇒ (𝑖𝑥) ⇔ (𝑥) ⇒ (𝑥𝑖) ,

where in the case of lower curvature bounds for (𝑣𝑖𝑖) ⇒ (𝑖𝑥), one needs to additionally assume that
𝑋 satisfies (8).
Finally, if𝑋 is strongly causal, regular and locally𝐷𝐾-geodesic, and in the case of upper curvature

bounds additionally is locally causally closed and in the case of lower curvature bounds satisfies
(8), then all aforementioned notions of curvature bounds are equivalent. All relations between the
curvature bounds are depicted Figure 4.

6 IMPLICATIONS OF CURVATURE BOUNDS

In this final section, we prove two implications of upper curvature bounds in the spirit of [11,
Proposition II.2.2, Exercise II.2.3]. On the one hand, we infer that 𝜏 is bi-concave for curvature
bounded above by 0, and on the other hand,we get that 𝜏(𝑝, ⋅) (resp. 𝜏(⋅, 𝑝)) is concave for arbitrary
upper curvature bounds.

†We assume all spaces to be chronological from the onset, but wanted to emphasise this in the main theorem.
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F IGURE 4 All relations between different formulations of curvature bounds for Lorentzian pre-length
space. Black arrows are always valid, red arrows require 𝑋 to be regular and blue arrows require 𝑋 to be strongly
causal, regular and locally 𝐷𝐾-geodesic. The two instances of additional assumptions for one direction of
curvature bounds are marked by (∗) in the figure.

6.1 Bi-concavity of 𝝉

The bi-concavity of 𝜏 for spaces with curvature bounded above by 0 essentially follows by the
intercept theorem in the Minkowski plane.

Proposition 6.1 (Bi-concavity of 𝜏). Let𝑋 be a Lorentzian pre-length space with curvature bounded
above by 0 (in the sense of strict causal triangle comparison). Let𝑈 be a comparison neighbourhood
in 𝑋. Then 𝜏|(𝑈×𝑈) is ‘timelike bi-concave’, that is, for any two constant speed parametrised timelike
distance realisers 𝛼, 𝛽 ∶ [0, 1] → 𝑋 with the same time orientation such that 𝛼(1) ⩽ 𝛽(1) and 𝛼(0) ⩽
𝛽(0), we have

𝜏(𝛼(𝑡), 𝛽(𝑡)) ⩾ 𝑡𝜏(𝛼(1), 𝛽(1)) + (1 − 𝑡)𝜏(𝛼(0), 𝛽(0)) . (51)

Proof. Say without loss of generality that both curves are future-directed. Let us first assume
that 𝛼(0) = 𝛽(0). Let Δ(𝛼̄(0), 𝛼̄(1), 𝛽(1)) be a comparison triangle for Δ(𝛼(0), 𝛼(1), 𝛽(1)). The
intercept theorem yields the elementary equality 𝜏(𝛼̄(𝑡), 𝛽(𝑡)) = 𝑡𝜏(𝛼̄(1), 𝛽(1)) = 𝑡𝜏(𝛼(1), 𝛽(1)).
By curvature bounds from above, we infer 𝜏(𝛼(𝑡), 𝛽(𝑡)) ⩾ 𝜏(𝛼̄(𝑡), 𝛽(𝑡)), and hence 𝜏(𝛼(𝑡), 𝛽(𝑡)) ⩾
𝑡𝜏(𝛼(1), 𝛽(1)), which already shows (51), as 𝛼(0) = 𝛽(0) and 𝛼(𝑡) ⩽ 𝛽(𝑡).
Now assume 𝛼(0) ⩽ 𝛽(0). Then, from 𝛼(0) ⩽ 𝛽(0) ≪ 𝛽(1), we infer 𝛼(0) ≪ 𝛽(1) by the transi-

tivity of ≪. Let 𝛾 ∶ [0, 1] → 𝑋 be a constant speed parametrised timelike distance realiser from
𝛼(0) to 𝛽(1), that is, 𝛾(0) = 𝛼(0) and 𝛾(1) = 𝛽(1). Then, Δ(𝛾(0), 𝛽(0), 𝛾(1)) and Δ(𝛾(0), 𝛼(1), 𝛾(1))
form two triangles which fit into the special case above (where the first configuration has a
reversed time orientation). Thus, we infer 𝜏(𝛼(𝑡), 𝛾(𝑡)) ⩾ 𝑡𝜏(𝛼(1), 𝛾(1)) and 𝜏(𝛾(𝑡), 𝛽(𝑡)) ⩾ (1 −

𝑡)𝜏(𝛾(0), 𝛽(0)). In particular, the intercept theorem also yields that the causal relation in the
Minkowski plane is preserved, that is, we have 𝛼̄(𝑡) ⩽ 𝛾̄(𝑡) ⩽ 𝛽(𝑡) for all 𝑡 ∈ [0, 1] and hence
𝛼(𝑡) ⩽ 𝛾(𝑡) ⩽ 𝛽(𝑡) by strict causal curvature bounds. Then via the reverse triangle inequality
obtain

𝜏(𝛼(𝑡), 𝛽(𝑡)) ⩾ 𝜏(𝛼(𝑡), 𝛾(𝑡)) + 𝜏(𝛾(𝑡), 𝛽(𝑡))

⩾ 𝑡𝜏(𝛼(1), 𝛾(1)) + (1 − 𝑡)𝜏(𝛾(0), 𝛽(0))

= 𝑡𝜏(𝛼(1), 𝛽(1)) + (1 − 𝑡)𝜏(𝛼(0), 𝛽(0)) . □
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6.2 Concavity of 𝝉

Corollary 6.2 (Concavity of 𝜏). Let 𝑋 be a Lorentzian pre-length space with curvature bounded
above by 𝐾 in the sense of strict causal triangle comparison. Let 𝑈 be a comparison neighbourhood
in 𝑋. Then 𝜏 is concave on (𝑈 × 𝑈) ∩ 𝜏−1([0,

𝐷𝐾
2
)), that is, for all 𝑝 ∈ 𝑈 and all timelike geodesics 𝛾

contained in either 𝐼+(𝑝) ∩ 𝑈 or 𝐼−(𝑝) ∩ 𝑈 that have 𝜏-distance less than 𝐷𝐾
2
to 𝑝, we have

𝜏(𝑝, 𝛾(𝑡)) ⩾ 𝑡𝜏(𝑝, 𝛾(1)) + (1 − 𝑡)𝜏(𝑝, 𝛾(0)) (52)

or

𝜏(𝛾(𝑡), 𝑝) ⩾ 𝑡𝜏(𝛾(1), 𝑝) + (1 − 𝑡)𝜏(𝛾(0), 𝑝) (53)

for all 𝑡 ∈ [0, 1].

Proof. An elementary calculation yields that if 𝜏 is bi-concave in the sense of Proposition 6.1, then
it is also concave in the sense of (52) and (53). In particular, the current proposition is valid for
𝐾 = 0. Moreover, any space with timelike curvature bounded above by 𝐾 > 0 also has timelike
curvature bounded above by 0, which can easily be seen from [4, Lemma 6.1].
Thus, it is only left to consider the case of 𝐾 < 0, which up to scaling we can reduce to 𝐾 = −1.

In this case, we claim that the time separation on 𝕃2(−1), which in the remainder of this proof
shall be denoted by 𝜏̄, is concave. Assuming the claim, we then consider a triangle Δ(𝑝, 𝛾(0), 𝛾(1))
and the corresponding comparison triangle and compute

𝜏(𝑝, 𝛾(𝑡)) ⩾ 𝜏̄(𝑝̄, 𝛾̄(𝑡)) ⩾ 𝑡𝜏̄(𝑝̄, 𝛾̄(1)) + (1 − 𝑡)𝜏̄(𝑝̄, 𝛾̄(0))

= 𝑡𝜏(𝑝, 𝛾(1)) + (1 − 𝑡)𝜏(𝑝, 𝛾(0)) .

Showing that 𝜏̄ is concave is an elementary calculation. Indeed, after applying a suitable
Lorentz transformation and parameter shift, we can assume 𝑝 = (cosh(𝜔), 0, sinh(𝜔)) and 𝛾(𝑡) =
(cos(𝑡), sin(𝑡), 0), so that

𝑓(𝑡) ∶= 𝜏̄(𝑝, 𝛾(𝑡)) = arccos(cosh(𝜔) cos(𝑡)) , (54)

which is defined on
(
− 𝜋,− arccos

(
1

cosh(𝜔)

)]
∪ [arccos

(
1

cosh(𝜔)

)
, 𝜋). Then, we get

𝑓′′(𝑡) = −
cosh(𝜔) cos(𝑡)(cosh(𝜔)2 − 1)√

1 − cosh(𝜔)2 cos(𝑡)2
3

. (55)

Clearly, both the numerator and the denominator are positive (for 𝑡 ⩽ 𝜋

2
and whenever defined),

sowe have 𝑓′′(𝑡) ⩽ 0, showing that 𝜏̄(𝑝̄, 𝛾̄(𝑡)) is concave in 𝑡 on
[
− 𝜋

2
, 𝜋
2

]
(where it is defined). □
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