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Abstract: Let M(Spin(8,C)) be the moduli space of Spin(8,C)-Higgs bundles over a compact
Riemann surface X of genus g ≥ 2. This admits a system called the Hitchin integrable system, induced
by the Hitchin map, the fibers of which are Prym varieties. Moreover, the triality automorphism of
Spin(8,C) acts on M(Spin(8,C)), and those Higgs bundles that admit a reduction in the structure
group to G2 are fixed points of this action. This defines a map of moduli spaces of Higgs bundles
M(G2) → M(Spin(8,C)). In this work, the action of triality automorphism is extended to an action
on the Hitchin integrable system associated with M(Spin(8,C)). In particular, it is checked that
the map M(G2) → M(Spin(8,C)) is restricted to a map at the level of the Prym varieties induced
by the Hitchin map. Necessary and sufficient conditions are also provided for the Prym varieties
associated with the moduli spaces of G2 and Spin(8,C)-Higgs bundles to be disconnected. Finally,
some consequences are drawn from the above results in relation to the geometry of the Prym varieties
involved.

Keywords: outer automorphism; triality; Higgs bundle; fixed point; Hitchin integrable system
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1. Introduction

Let X be a compact Riemann surface of genus g ≥ 2, and let G be a semi-simple
complex Lie group with Lie algebra g. A G-Higgs bundle over X is defined to be a pair
(E, ϕ), where E is a holomorphic principal G-bundle over X, and ϕ is a holomorphic global
section of the adjoint bundle of E, E(g), twisted by the canonical bundle, K. The section ϕ

is called a Higgs field of the Higgs bundle. Suitable notions of stability and polystability
can be given for G-Higgs bundles that extend what is given by Ramanathan [1,2] for
principal G-bundles and for stable principal G-bundles in [3], obtaining that the moduli
space of polystable G-Higgs bundles, M(G), is a complex algebraic variety of dimension
2 dim G(g − 1).

Higgs bundles were introduced by Hitchin in his groundbreaking 1987 paper [4]
and possess a remarkable wealth of geometric structures, so they are of interest in many
different areas and have been intensively studied. Indeed, G-Higgs bundles provide the
framework for the extension of the theorem of Narasimhan and Seshadri [5], whose analog
states that the moduli space of polystable G-Higgs bundles is isomorphic to the moduli
space of reductive representations of the fundamental group π1(X) in G [6–10]. In other
directions, G-Higgs bundles are of interest in different areas of mathematics and physics,
including gauge theory, mirror symmetry, Langlands duality, or symplectic, Kähler, and
hyperkähler geometry [11–13].

Hitchin proved the existence of an integrable system in the moduli space of polystable
G-Higgs bundles over an algebraic curve for any reductive complex Lie group, G [14].
A relevant and classical theorem by Chevalley [15] states that, for any complex reductive
Lie group, G, with adjoint representation Ad : G → GL(g), the algebra of all Ad-invariant
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polynomials is finitely generated, and the degrees, d1, . . . , dr (where r = rk G), of the
elements of a basis of homogeneous polynomials are well-defined. Given any principal
G-bundle, E, over X, an Ad-invariant (or G-invariant, or simply invariant) homogeneous
polynomial p of degree d defines a map, p : H0(X, E(g) ⊗ K) → H0(X, Kd), via the
evaluation of p on the corresponding Higgs field ϕ, where ⊗ denotes the tensor product of
bundles (and also a spectral curve, S, is induced by each G-Higgs bundle (E, ϕ) by taking
the characteristic polynomial of the Higgs field through the adjoint representation, which is
a cover of X, the fibers of which correspond to the eigenvalues of ϕ). This can be computed
using a basis of invariant polynomials to finally obtain a map.

M(G) → B(G) = H0(X, Kd1)⊕ · · · ⊕ H0(X, Kdr ). (1)

This map, which is called a Hitchin map, is, indeed, proper. The space B(G) is an affine
space called the base of the Hitchin map. For each stable and simple principal G-bundle, E
(i.e., a stable principal G-bundle for which the only automorphisms are those induced by
the action of the center of the structure group, G, which is a smooth point in the moduli
space of principal G-bundles), the space H0(X, E(g)⊗ K) is isomorphic, according to Serre
duality, to H1(X, E(g))∗, the cotangent bundle to the moduli space of stable and simple
principal G-bundles at E. This cotangent bundle is naturally embedded in the moduli
space M(G) of polystable G-Higgs bundles. Hitchin defined a global symplectic structure
in M(G) that extends the natural symplectic structure of that cotangent space in a way
that the Hitchin map defines an integrable system. The Hitchin fibration has proven to be
an essential tool for understanding the Geometric Langlands program, as Kapustin and
Witten [13] pointed out.

A fruitful way of studying the geometry of the moduli spaces M(G) of G-Higgs
bundles is by describing the subvarieties and maps between these moduli spaces [16–18].
Specifically, given an automorphism of M(G), a subvariety is naturally defined by taking
the fixed points of that automorphism. It is then useful to study automorphisms of a finite
order of M(G). The case of involutions of the moduli space of SL(n,C)-Higgs bundles was
developed by García-Prada in [17], where he related Higgs bundles with representations
of the fundamental group of the surface in the real forms of the group. A larger family
of finite-order automorphisms is studied in [19] but in the context of orthogonal bundles
over a curve. Moreover, the case of the involutions of M(G) induced by the action of outer
automorphisms of order 2 of G has been studied in [18] and with different techniques for
simple classical complex Lie groups in [20].

This paper is interested in Higgs bundles, the structure group of which is Spin(8,C).
This group is the only simple, complex Lie group that admits an outer automorphism of or-
der 3, called triality automorphism. This unique fact makes the geometric structures related
to this group (including Spin(8,C)-Higgs bundles) have both interesting and very specific
geometric features, which usually require specific studies [21–23]. In particular, in the
previous literature, it has been proved that triality automorphism acts on the moduli space
M(Spin(8,C)), and its fixed points can be described as reductions in the structure group
to the subgroups G2 or PSL(3,C) of Spin(8,C). This leads to the existence of two maps of
algebraic varieties, M(G2) → M(Spin(8,C)) and M(PSL(3,C) → M(Spin(8,C)). In this
work, the study of the first map, M(G2) → M(Spin(8,C)), is deepened. The way to
carry out this deepening is through the study of the Hitchin integrable system associated
with the two moduli spaces involved. Specifically, if B is the basis of the Hitchin map of
M(Spin(8,C)) and B′ is the basis of the Hitchin map of M(G2), it is proved that the triality
automorphism acts on B, that there exists a homomorphism j : B → B′ compatible with the
map between moduli spaces, and that the image of j is formed by fixed points of the action
of the triality automorphism on B (Lemma 2). This allows us to state that the map between
moduli spaces is restricted to maps between Prym varieties Prym(Xa) → Prym(Xj(a)),
where a ∈ B′ and Xa and Xj(a) are the associated spectral curves. Following this, in this
paper, the geometry of the Prym varieties involved is studied to the extent of providing
necessary and sufficient conditions for these Prym varieties to be disjointed (Proposition 5).
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Prym varieties play a key role in the study of the geometry of moduli spaces of
Higgs bundles and G-Higgs bundles. In particular, the connection or disconnection of
Prym varieties, understood as branched coverings, allows us to identify the irreducible
components of the fibers of the moduli space. Not only this, but several authors have shown
that the knowledge of the topology of Prym varieties helps to deepen the knowledge of the
topology of moduli spaces of G-Higgs bundles [14,24] and to study the automorphisms of
the moduli spaces of principal bundles [25].

As a consequence of the above results, sufficient conditions are provided for the two
Prym varieties involved to be disjointed. Thus, the paper provides innovative results on
the geometry of the map M(G2) → M(Spin(8,C)) and also provides novel techniques for
the mentioned geometry study (consisting specifically in studying the Hitchin integrable
system). In particular, it is intended to provide tools to advance knowledge about the
map M(G2) → M(Spin(8,C)) and to be able (in the future )to prove properties such as,
for example, whether it is injective, in the spirit of Serman [26].

In addition, the map M(G2) → M(Spin(8,C)) has been considered because the pre-
ceding literature provides sufficient results on the Hitchin integrable system of G2 [22] and
on the relationship between G2-invariant polynomials and Spin(8,C)-invariant polynomi-
als [27] to be able to carry out the analysis intended here. Indeed, Hitchin [22] deepened
the study of the integrable system of the moduli space of G2-Higgs bundles because the
special characteristics of the group G2 make it of great interest in differential equations [28],
geometry, and physics [16,29]. Thus, Hitchin [22] described the spectral curves, S, as-
sociated with the Hitchin fibration for the group G2 and the associated Prym varieties.
In particular, he proved the existence of an intermediate curve, C, such that the covering
S → X factors were found through C and an involution σ of S so that Prym(S, X) is given
by those L ∈ Prym(S, C) satisfying L∗ ∼= σ(L). He also proved that the G2-Higgs bundle
can be reconstructed from the associated spectral curve. It has also been proved that every
G2-invariant polynomial is also a Spin(8,C)-invariant polynomial fixed by the action of
the triality automorphism [27].

In summary, the main results of this work are as follows. First, the existence of a
map between the bases of the Hitchin map of M(G2) and M(Spin(8,C)) is proved, which
commutes with the forgetful map M(G2) → M(Spin(8,C)) and the image of which is
composed of the fixed points of the Spin(8,C)-action on the base of the Hitchin map of
M(Spin(8,C)) (Proposition 1). Secondly, necessary and sufficient conditions are provided
so that the characteristic polynomial of the Higgs field of a Spin(8,C)-Higgs bundle (Propo-
sition 2) or of a G2-Higgs bundle (Proposition 3) admits irreducible factors of all possible
degrees. Finally, the above results are used to give necessary and sufficient conditions for
the Prym varieties of M(Spin(8,C)) and M(G2) to be disjointed (Proposition 5).

The article is organized in the following way. In Section 2, some foundations on the
geometry of the Lie group Spin(8,C) and the triality automorphism are recalled. The action
of the group Out(G) of outer automorphisms of any semi-simple complex Lie group, G,
on the moduli space M(G) of G-Higgs bundles over X, introduced in [16], is described
and studied. The particular case of G = Spin(8,C) and the specific characteristics of the
triality automorphism are also explained in a more detailed way. In Section 4, the action of
the triality automorphism on the base and on the fibers of the Hitchin integrable system
is constructed. Section 5 is devoted to providing the main geometric features of the Prym
varieties coming from the Hitchin integrable system associated with Spin(8,C). Finally,
the main conclusions of the paper are drawn.

2. The Group Spin(8,C) and Triality Automorphism

In this section, some basics on the Lie group Spin(8,C), its subgroups, and the triality
automorphism are provided. Suitable references for this topic are [16,21,30]. The group
G = Spin(8,C) is the only simple and simply connected complex Lie group of type D4.
Its Lie algebra is so(8,C), and its center is isomorphic to Z = Z2 ⊕ Z2. It is, indeed, the
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double cover of the special orthogonal Lie group SO(8,C), and it can then be described as
an extension of SO(8,C) by Z2:

1 → Z2 → Spin(8,C) → SO(8,C) → 1. (2)

Of course, the action of the group Aut(Spin(8,C)) of automorphisms of Spin(8,C)
leaves the center Z = Z2 ⊕Z2 invariant; hence, there is a homomorphism of Aut(Spin(8,C))
into the group S(Z2) of permutations of the set Z2 = Z \ {1} of central elements of order 2.
The subgroup Inn(Spin(8,C)) of inner automorphisms clearly acts trivially on Z; thus, this
induces a homomorphism of the group Out(Spin(8,C)) of the outer automorphisms of
Spin(8,C) into S(Z2) ∼= S3, which is actually an isomorphism. Recall that Out(Spin(8,C))
is the quotient of the group Aut(Spin(8,C)) of automorphisms of Spin(8,C) by the normal
subgroup Inn(Spin(8,C)) of inner automorphisms. The triality automorphism is then a choice,
τ, of an order 3 outer automorphism (the other outer automorphism of order 3 is τ−1).

Since Spin(8,C) is the simply connected complex Lie group with Lie algebra of
so(8,C), there is an isomorphism of short exact sequences of the form

1 −−−−→ Inn(Spin(8,C)) −−−−→ Aut(Spin(8,C)) −−−−→ Out(Spin(8,C)) −−−−→ 1




y





y





y

1 −−−−→ Inn(so(8,C)) −−−−→ Aut(so(8,C)) −−−−→ Out(so(8,C)) −−−−→ 1.

(3)

Given any complex Lie algebra g, if α, β ∈ Aut(g), it is stated that α ∼i β if there exists
θ ∈ Inn(g) such that α = θ ◦ β ◦ θ−1 [18]. Thus defined, ∼i is an equivalence relation such
that the obvious map

Aut(g)/ ∼i→ Out(g) (4)

is well-defined [18,21].
Notice that the order of an automorphism of g clearly coincides with the order of

its class modulo ∼i. Then, if Aut3(so(8,C)) denotes the subset of automorphisms of
order 3 of so(8,C) and an analogous definition is given for (Aut(so(8,C))/ ∼i)3 and for
Out3(so(8,C)), it is satisfied that

Aut3(so(8,C))/ ∼i= (Aut(so(8,C))/ ∼i)3. (5)

It is also clear that the automorphisms of order 3 are sent to elements of Out(so(8,C))
of order 3 or to the identity through the map defined in (4). This implies that Aut3(g)/ ∼i
is sent onto Out3(g) ∪ {1} through the natural map; that is,

Aut3(g)/ ∼i→ Out3(g) ∪ {1}. (6)

There are exactly two pre-images of the triality automorphism τ given by the map
defined in (6) [18,21]. Then, there are two possibilities for the sub-algebra of the fixed
points of an automorphism of order 3 of so(8,C) representing τ. Wolf and Gray [31]
proved in Theorem 5.10 that these two different representatives of τ given by the map (6)
have g2 and sl(3,C) as sub-algebras of fixed points (with simply connected subgroups G2 and
PSL(3,C)), respectively.

3. The Action of the Triality Automorphism on the Moduli Space of
Spin(8,C)-Higgs Bundles

Let X be a compact Riemann surface of genus g ≥ 2. A principal SO(8,C)-bundle over
X is a complex rank-8 and trivial determinant vector bundle equipped with a globally defined
holomorphic non-degenerate symmetric bilinear form. The set of isomorphism classes of
principal SO(8,C)-bundles is parametrized by the cohomology set H1(X, SO(8,C)). A map,
ω2 : H1(X, SO(8,C)) → H2(X,Z2) ∼= Z2, is defined, which assigns to each principal
SO(8,C)-bundle E its second Stiefel-Whitney class, ω2(E). The bundle E lifts to a principal
Spin(8,C)-bundle over X if and only if ω2(E) = 0, with two of such lifts differing in a
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line bundle of order 2. However, every principal Spin(8,C)-bundle admits an associated
SO(8,C)-bundle through the covering map Spin(8,C) → SO(8,C) defined in (2).

In the next definitions, the notions of Higgs bundles are specified for the structure
groups SO(8,C) and Spin(8,C) following the original notion of the G-Higgs bundle in-
troduced by Hitchin [4]. Recall that, when given a semi-simple complex Lie group G,
a G-Higgs bundle over X is a pair (E, ϕ), where E is a principal G-bundle over X (i.e.,
a bundle over X, the fiber of which is G, so a right action of G on it is given) and ϕ is a
holomorphic global section of E(g)⊗ K, where E(g) is the vector bundle, the fiber of which
is the Lie algebra g of G induced by the adjoint action G → GL(g), where ⊗ denotes the
tensor product, and K is the canonical line bundle over X. Depending on the specific form
of the structure group, G-Higgs bundles may have particular interpretations, such as that
given below for SO(8,C) and Spin(8,C).

Definition 1. An SO(8,C)-Higgs bundle over X is a pair (E, ϕ) where E is a principal SO(8,C)-
bundle over X with an associated bi-linear form, q, and ϕ : E → E ⊗ K is a complex vector bundle
homomorphism preserving the bi-linear form, q, where K denotes the canonical bundle over X.

Definition 2. A Spin(8,C)-Higgs bundle over X is a pair (E, ϕ), where E is a principal Spin(8,C)-
bundle over X and ϕ ∈ H0(X, E(so(8,C))⊗K). Here, K is the canonical bundle over X, E(so(8,C))
is the adjoint vector bundle of E, and ϕ : E → E ⊗ K is a vector bundle morphism preserving the
bi-linear form with which the special orthogonal bundle associated with E is equipped.

For both principal Spin(8,C)-Higgs bundles and SO(8,C)-Higgs bundles, the element
ϕ is called a Higgs field, and it can be understood on each fiber of the orthogonal bundle E
as an 8-dimensional complex matrix of the Lie algebra so(8,C).

There are suitable notions of stability and polystability that allow us to construct the
moduli space of G-Higgs bundles for any complex reductive Lie group G [32], which will
be denoted by M(G). These notions extend to the notions given by Ramanathan [1,2] to
Higgs pairs for principal bundles and by Ramanan [33] for orthogonal and Spin bundles.
The moduli space of Spin(8,C)-Higgs bundles over X is then the algebraic variety, which
parameterizes isomorphism classes of polystable Spin(8,C)-bundles over X.

Given any Spin(8,C)-Higgs bundle (E, ϕ), an automorphism of (E, ϕ) is an automorphism
f : E → E of the principal Spin(8,C)-bundle E such that the following diagram commutes:

E
ϕ

−−−−→ E ⊗ K

f




y





y

f⊗1K

E
ϕ

−−−−→ E ⊗ K,

(7)

that is, ( f ⊗ 1K) ◦ ϕ = ϕ ◦ f .
Consider now any semi-simple complex Lie group, G, with Lie algebra, g. In [16,18],

it is proved that the following defines an action of the group Out(G) on the moduli space
M(G) of G-Higgs bundles; if ρ ∈ Out(Spin(8,C)) and (E, ϕ) ∈ M(G), then ρ · (E, ϕ) is
defined to be the G-Higgs bundle

ρ · (E, ϕ) = (A(E), dA(ϕ)), (8)

where A ∈ Aut(G) is an automorphism of G representing ρ, and A(E) is the principal
G-bundle, the total space of which is that of E, but it is equipped with the right action of G
given by e ⋄ g = eA−1(g) for e ∈ E and g ∈ G. It can be proved that this action preserves
the stability and polystability of the G-Higgs bundles and that it does not depend on the
choice of the representative A of ρ since inner automorphisms act trivially on G-Higgs
bundles [16,18].

Let τ ∈ Out(Spin(8,C)) be the triality automorphism, and let (E, ϕ) be a Spin(8,C)-Higgs
bundle over X fixed by the action of τ. If A ∈ Aut(Spin(8,C)) is an automorphism of Spin(8,C)
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representing τ, then (E, ϕ) ∼= (A(E), dA(ϕ)). A way to understand the action of the triality
automorphism on the moduli space of Spin(8,C)-Higgs bundles is by attending to the action
of triality on vector representations of the group. Bi-jective correspondence exists between the
nodes of the Dynkin diagram of Spin(8,C) (Figure 1), its irreducible representations, which
are 8-dimensional, and the nontrivial elements of its center [30]. Triality automorphism acts
by permuting the three fundamental representations and the three nontrivial central elements
of Spin(8,C). At the level of vectorial forms of the principal Spin(8,C)-bundles, it should be
recalled that the underlying vector bundle of every stable Spin(8,C)-bundle E through the
homomorphism of groups Spin(8,C) → SO(8,C) →֒ GL(8,C) admits a vector decomposition
of the form E = (E1 ⊗ E∗

2)⊕ (E3 ⊗ E∗
4) for some rank 2 vector subbundles, e.g., E1, E2, E3,

and E4, as proved in Proposition 2.3 of [21]. The action of the triality automorphism is enacted
by fixing one of these vector sub-bundles and permuting the other three mentioned sub-
bundles so that in a fixed point of the action of the triality automorphism, three of these vector
sub-bundles are isomorphic. Thus, a Spin(8,C)-bundle, the underlying vector bundle of which
is of the form (F ⊗V∗)⊕ (V ⊗V∗) for certain rank 2 stable vector bundles F and V over X is
an example of a Spin(8,C)-bundle on which the triality acts trivially.

Figure 1. Dynkin diagram of the simple Lie group Spin(8,C), where the nodes of the diagram
correspond to the vectorial representation V8 and the spinor representations S+ and S− of Spin(8,C),
corresponding to the two types of spinors in dimension 8, known as Weyl spinors (which are
8-dimensional and interchanged by the action of the triality automorphism) and the adjoint represen-
tation Ad (which is 28-dimensional and fixed by the action of triality) [30]. The figure is original and
was made using Microsoft Word® v. 2409.

Recall that there are only two possibilities for the group Fix(A) of fixed points of
A, depending on the lifting of the triality automorphism by the relation ∼i. These two
possibilities are G2 or PSL(3,C), as proved in Theorem 5.10 of [31]. In [16,18], it is proved
that the fixed points of the action of the triality automorphism on the moduli space of
Spin(8,C)-Higgs bundles are those which admit a reduction in structure group to G2
or PSL(3,C). Then, there are maps M(G2) → M(Spin(8,C)) and M(PSL(3,C)) →
M(Spin(8,C)) such that their images complete the subvariety of fixed points of the action
of the triality automorphism. In this work, the study of map M(G2) → M(Spin(8,C)) is
deepened, taking advantage of the existence of results relating the invariant polynomials of
G2 and Spin(8,C), which will be key in the study.

4. The Triality Automorphism and the Hitchin Integrable System

In the context of the moduli space M(G) of G-Higgs bundles over X for a semi-simple
complex Lie group G, the Hitchin map projects M(G) over an affine space B called base,
which parametrizes certain invariant polynomials (for the adjoint action of G) associated
with the Higgs fields of the Higgs bundles [14]. Specifically, these invariant polynomials,
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when evaluated on a Higgs field ϕ, lead to global sections of the canonical line bundle K
tensored with Casimir polynomials of the Lie algebra of G. This defines the Hitchin map
M(G) → B. This map not only projects M(G) but transforms it in the integrable system
of the induced fibration; thus, it is called a Hitchin integrable system. This system has some
remarkable properties. Between them, the generic fiber of this fibration is an abelian variety
called the Prym variety. This Hitchin system admits a natural symplectic structure from
that of the cotangent bundle in a way that the Poisson bracket of the functions defined
by the Hitchin map is zero. This is key for the system to be integrable in the sense of
Liouville [14]. The study of this integrable system, particularly the geometry and topology
of the Prym varieties, is key to addressing and studying problems concerning the topology
of M(G).

Given a finite covering, Σ → X, of X, the Prym variety Prym(Σ, X) (or simply
Prym(Σ)) is the subgroup of the Jacobian of Σ that parametrizes divisors on Σ of zero
norms, which is an abelian variety, with the norm being the map that moves the divisors
on Σ to the divisors on X. In the context of the moduli space of G-Higgs bundles over X,
with G being a semi-simple complex Lie group acting as the structure group of the Higgs
bundles, the Higgs field ϕ of each G-Higgs bundle (E, ϕ) induces a spectral covering of X,
which is essentially the zero locus of the characteristic polynomial of the Higgs field, taken
through the adjoint representation of G on its Lie algebra g. Then, the associated Prym
variety is given by the Prym variety of this spectral covering, which can be proved to be
isomorphic to the fiber of the Hitchin map [14].

Specifically, let G be a semi-simple complex Lie group with Lie algebra g, and let
p1, . . . , pr be the basis of the ring of invariant homogeneous polynomials of g, where r is
the rank of g. The action of each polynomial on the Higgs field defines a map

(p1, . . . , pr) : H0(X, E(g)⊗ K) →
r

⊕

i=1

H0(X, Kdi ), (9)

where di = deg pi for i = 1, . . . , r. This map allows us to define the so-called Hitchin map,

H : M(G) →
r

⊕

i=1

H0(X, Kdi ), (10)

where M(G) is the moduli space of G-Higgs bundles. The vector space

B =
r

⊕

i=1

H0(X, Kdi ) (11)

is called the base of the Hitchin map. In [14], it is proved that dimM(G) = dim B. If n is
the dimension of M(G), the Hitchin map induces n complex-valued functions f1, . . . , fn
defined on T∗M∗(G), where M∗(G) denotes the moduli space of stable and simple principal
G-bundles, which is a dense open subset of the moduli space M(G) of principal G-bundles.
The tangent space to M∗(G) at an element E ∈ M∗(G) is isomorphic to H1(X, E(g)), which
coincides with H0(X, E(g)⊗ K)∗ according to Serre duality. Hitchin also proved that the
n functions fi Poisson-commute with the canonical symplectic structure of the cotangent
bundle as shown in Proposition 4.5 of [14]. This, then, defines a completely integrable
system on M(G) [34].

As will be proved below, the group Out(G) of outer automorphisms of G acts on the
base of the Hitchin map so that this action is compatible with the action of Out(G) on
M(G) when G is simply connected, (which is the case of Spin(8,C)).

Lemma 1. Let G be a semi-simple and simply connected complex Lie group. Let f be an automor-
phism of the Lie algebra g of G, and let p be an invariant homogeneous polynomial of G. Then, p ◦ f
is also an invariant homogeneous polynomial of G.
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Proof. Since f is a linear map, it is clear that p ◦ f is a homogeneous polynomial. Therefore,
it suffices to show that it is invariant.

Let F ∈ Aut(G) be an automorphism of G such that dF = f (such automorphism
exists because G is simply connected), and let g ∈ G. Then, for any x ∈ g,

p ◦ f (Ad(g)(x)) = p ◦ dF ◦ dig(x) = p ◦ d(F ◦ ig)(x)

= p
(

diF(g)( f (x))
)

= p ◦ f (x)
(12)

(where ig : G → G is defined as the inner automorphism induced by g, ig(h) = ghg−1), so
p ◦ f is invariant, as desired.

From this, the announced action of Out(G) on the base, B, of the Hitchin map can
be defined for a semi-simple and simply-connected complex Lie group, G. Hitchin [14]
proved that the Hitchin map H : M(G) → B is surjective. Then, for each α ∈ B, there
exists (E, ϕ) ∈ M(G) such that α = (p1(ϕ), . . . , pr(ϕ)). If ρ ∈ Out(G), it is defined

ρ · (p1(ϕ), . . . , pr(ϕ)) = (p1 ◦ fρ(ϕ), . . . , pr ◦ fρ(ϕ)), (13)

where fρ is an automorphism of G representing ρ.

Lemma 2. If G is a semi-simple and simply connected complex Lie group, then the action of Out(G)
on the base of the Hitchin map defined in (13) is well-defined, and it is compatible with the action of
Out(G) on M(G) defined in (8).

Proof. To check that the action given in (13) is well-defined, notice the following:

• It is clear from Lemma 1 that p1 ◦ fρ, . . . , pr ◦ fρ are invariant homogeneous
polynomials of G.

• If f is an inner automorphism of G, then, since p1, . . . , pr are invariant under this kind
of automorphism, the action is trivial, so the above action descends to an action of
Out(G).

• If (E, ϕ) and (E′, ψ) are polystable G-Higgs bundles over X such that

(p1(ψ), . . . , pr(ψ)) = (p1(ϕ), . . . , pr(ϕ)), (14)

then, since p1, . . . , pr is a basis of invariant polynomials of G, p(ψ) = p(ϕ) for every
invariant polynomial p of G, so, in particular,

(p1 ◦ τ(ψ), . . . , pr ◦ τ(ψ)) = (p1 ◦ τ(ϕ), . . . , pr ◦ τ(ϕ)). (15)

The above three points lead to the conclusion that the action under consideration
is well-defined.

Now, let ρ ∈ Out(G). To check that the action of Out(G) on the base of the Hitchin
map is compatible with the action on M(G), it suffices to show that

ρ · H((E, ϕ)) = H((ρ(E), ρ(ϕ))) (16)

for all (E, ϕ) ∈ M(G). Notice that

ρ · H((E, ϕ)) = ρ · (p1(ϕ), . . . , pr(ϕ))

= (p1 ◦ ρ(ϕ), . . . , pr ◦ ρ(ϕ))

= (p1(ρ(ϕ)), . . . , pr(ρ(ϕ)))

= H((ρ(E), ρ(ϕ))),

(17)

as it was intended to prove.
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Remark 1. Since, according to Lemma 2, the action of an outer automorphism ρ on the base of the
Hitchin map does not depend on the representative of ρ chosen in Aut(G), if
α = (p1(ϕ), . . . , pr(ϕ)) is an element if the base of the Hitchin map for some G-Higgs bundle,
(E, ϕ), it can be denoted

ρ · (p1(ϕ), . . . , pr(ϕ)) = (p1 ◦ ρ(ϕ), . . . , pr ◦ ρ(ϕ)). (18)

The above study will now be particularized to the case of Spin(8,C) and G2-Higgs
bundles. The algebra of invariant polynomials of Spin(8,C) is generated by four invariant
homogeneous polynomials

A =
〈

p2, p4, p6, p′4
〉

, (19)

where deg pi = i for each i, and p4 is the Pfaffian, so deg p′4 = 4 [14]. Indeed, as it can be
found in [35],

p2(ϕ) =
1
2

Tr(ϕ2),

p4(ϕ) =
1
4

Tr(ϕ2)2 +
1
8

Tr(ϕ4),

p6(ϕ) =
1
48

Tr(ϕ2)3 − 6 Tr(ϕ2)Tr(ϕ4) + 8 Tr(ϕ6).

(20)

Then, the base of the Hitchin map is

B = H0(X, K2)⊕ H0(X, K4)⊕ H0(X, K6)⊕ H0(X, K4). (21)

When given a quadruple a = (a2, a4, a6, b4) ∈ B, it induces the polynomial

b2
4 + a6t2 + a4t4 + a2t6 + t8 (22)

in the sense that the characteristic polynomial of the Higgs field of any (E, ϕ) in the fiber
of the Hitchin map at a is det(tI − ϕ) = b2

4(ϕ) + a6(ϕ)t2 + a4(ϕ)t4 + a2(ϕ)t6 + t8, where
each ai or bi is a holomorphic global section of Ki over X, and a = (a2, a4, a6, b4) defines the
Hitchin map M(Spin(8,C)) → B.

The mentioned characteristic polynomial defines the spectral curve in the total space
of the canonical bundle π : K → X. Then, given any a ∈ B, it defines the equation of
the corresponding spectral curve, which will be called Xa as the divisor of a section of
π∗K8 defined by the induced polynomial, where x is the tautological section of π∗K; it is a
single-valued eigenvalue of the Higgs field ϕ.

Consider now the Lie group G2, which is seen as a subgroup of Spin(8,C). The algebra of
invariant polynomials of G2 is generated by using two polynomials, q2, q6, of degrees 2 and
6, respectively.

A′ = ⟨q2, q6⟩. (23)

Then, the base of the Hitchin map of the moduli space of G2-Higgs bundles is

B′ = H0(X, K2)⊕ H0(X, K6), (24)

and, given a pair (a2, a6) ∈ B′, the induced invariant polynomial is a6t2 +
a2

2
4 t4 + a2t6 + t8;

therefore, by taking a common factor t2, it follows that the polynomial

a6 +
a2

2
4

t2 + a2t4 + t6 (25)

is also G2-invariant [22,35].
Roughly speaking, the triality automorphism of Spin(8,C) acts in each fiber of the

Hitchin map HSpin(8,C) : M(Spin(8,C)) → B by permuting the orbits corresponding to
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the three 8-dimensional irreducible representations of Spin(8,C) mentioned above (the
vectorial version and the two spinor versions, positive and negative, corresponding to the
Weyl spinors [30]). In Figure 2, a generic fiber of the mentioned Hitchin map of the moduli
space of Spin(8,C)-Higgs bundles over the compact Riemann surface X is represented, and
three orbits interchanged by the triality automorphisms are shown in a very simple and
schematic way. The point called v in the intersection of the orbits represents a fixed point
of the action of triality on the fiber.

Figure 2. Action of triality on a fiber of the Hitchin map of M(Spin(8,C)). In blue is an orbit
corresponding to the irreducible vectorial representation of Spin(8,C), and in red and green are orbits
corresponding to the two spinor representations. These three orbits are interchanged by the action of
triality. The figure is original and was made using Microsoft Word® v. 2409.

Some facts on spectral curves and Prym varieties associated with the moduli spaces
M(Spin(8,C)) and M(G2) will be now recalled. Given a Spin(8,C)-Higgs bundle (E, ϕ)
over X, the characteristic polynomial of the Higgs field ϕ defines an element, a ∈ B, so a
spectral cover X(E,ϕ) = Xa and an 8-sheeted covering map π(E,ϕ) : X(E,ϕ) → X are defined,
the fibers of which are identified using the eigenvalues of ϕ. A detailed construction of this
curve can be found in [22,36,37]. There exists an exact sequence on the spectral curve X(E,ϕ)

0 → L ⊗ π∗K−7 → π∗E
x−ϕ
→ π∗(E ⊗ K) → L ⊗ π∗K → 0, (26)

where E denotes both the principal Spin(8,C)-bundle and the orthogonal bundle that it
induces ([22,36]). By dualizing Equation (26) and tensoring it with π∗K, the following
is obtained:

0 → L∗ → π∗E∗ → π∗(E∗ ⊗ K) → L∗ ⊗ π∗K8 → 0. (27)

Here, L is a line bundle that satisfies E = π∗L (as a vector bundle). It is constructed as
the coker of π∗ϕ − x, where x denotes the tautological global section of π∗K, and X(E,ϕ)
can be identified with the support of L. The covering map π(E,ϕ) : X(E,ϕ) → X gives a
norm map Nm defined by Nm(∑i ai · xi) = ∑i aiπ(E,ϕ)(xi) on divisor classes. The norm
defines a map at the level of Jacobian varieties NmJ : J(X(E,ϕ)) → J(X). Then, the Prym
variety of the spectral curve π(E,ϕ) : X(E,ϕ) → X is defined to be the connected component
of the kernel of NmJ . This Prym variety is then an abelian subvariety of the Jacobian of
the sectral curve X(E,ϕ). Observe that since ϕ takes values in so(8,C), the opposite of an
eigenvalue of ϕ is also an eigenvalue of ϕ, so an involution σ of X(E,ϕ) is defined by a
change in sign, and the eigenspace V of eigenvalue λ of ϕ is moved to σ∗V for eigenvalue
−λ. Then, L∗ ∼= L ⊗ π∗K−7 according to (26) and (27), so L2 ∼= π∗K7. This means that
M = L ⊗ π∗K−3/2 satisfies that M ⊗ σ∗M is trivial (the choice of a square root of K is
required here). Then, the Prym variety is the collection of those elements M of the Jacobian
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of X(E,ϕ) such that M ⊗ σ∗M is trivial. This is equivalent to stating that the desired Prym
variety coincides with Prym(X(E,ϕ), X(E,ϕ)/σ), with the last Prym variety being defined
from the covering map X(E,ϕ) → X(E,ϕ)/σ. Notice that, given any M ∈ Prym(X(E,ϕ), X),
one has that E ∼= π∗L, where L = π∗K3/2 ⊗ M, and since L2 ∼= π∗K7, then E ∼= E∗, as a
consequence of (26) and (27); therefore, the special orthogonal bundle is obtained from the
element of the Prym variety. Then, the fiber H−1(H(E, ϕ)) is a 22g-sheeted covering of the
Prym variety of X(E,ϕ) → X (details on this construction can be found in [22]).

Now, consider the Lie group G2. The fundamental complex representation of G2
has rank 7 and defines (in addition) an inclusion, G2 →֒ SO(7,C). A holomorphic anti-
symmetric 3-form can be defined in C7 in a way that G2 is the group of elements of SL(7,C),
which preserves this 3-form [29]. For any G2-Higgs bundle (E, ϕ) over X, Hitchin [22]
considered the spectral curve X(E,ϕ) associated with it and constructed an intermediate
curve, C, such that the covering map π(E,ϕ) admits a factorization

X(E,ϕ)
p
→ C

pC
→ X (28)

and proved the existence of an involution σ of X(E,ϕ) such that p ◦σ = p and Prym(X(E,ϕ), X)
represent the subspace of those L ∈ Prym(X(E,ϕ), C) for which L ⊗ σ∗L is trivial. From this
description, Hitchin [22] proved that the globally defined holomorphic anti-symmetric
2-form defined in E by its G2-structure can be reconstructed from the corresponding point
of the Prym variety Prym(X(E,ϕ), X). In this way, it was proved that the fiber of the Hitchin
map of M(G2) is isomorphic to Prym(X(E,ϕ), X) [22].

Notice that if (E, ϕ) is a G2-Higgs bundle, then when it is seen as a Spin(8,C)-Higgs
bundle through the contention of groups G2 →֒ Spin(8,C), it satisfies the Pfaffian b4(ϕ) being

0. Then, if a is the G2-invariant polynomial a6 +
a2

2
4 t2 + a2t4 + t6 and Xa is the associated

spectral curve, b is the Spin(8,C)-invariant polynomial, and Xb is the associated spectral
curve, the map M(G2) → M(Spin(8,C) is restricted to a map:

Prym(Xa) → Prym(Xb). (29)

Proposition 1. Let B and B′ be the base of the Hitchin maps of Spin(8,C) and G2, as defined
in (21) and (24), respectively. Then, there exists a map j : B′ → B such that the diagram

M(G2)
F

−−−−→ M(Spin(8,C))

HG2





y





yHSpin(8,C)

B′ j
−−−−→ B

(30)

is commutative, and j(B′) is given by fixed points for the action of the triality automorphism of
Spin(8,C) on B. Moreover, the generating homogeneous G2-invariant polynomials q2 and q6 can
be described as

q2 =
1
2

p2,

q6 =
1
16

p3
2 − 5p2 p4 + 8p6,

(31)

where p2, p4, p6 are the generating homogeneous Spin(8,C)-invariant polynomials given in (21).

Proof. The algebra of homogeneous G2-invariant polynomials is naturally embedded
in the algebra of homogeneous polynomials of Spin(8,C), which are invariant for the
action of the subgroup G2, and there is also a surjective map of this sub-algebra on the
algebra of homogeneous Spin(8,C)-invariant polynomials, as proved in Corollary 2.2.3
of [27] and in Propositions 4.2 and 4.3 of [35]. From this, the map, j, making the diagram
above commutative is defined by the composition of the two maps described. It has also
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been proved that the image (according to j of the algebra of homogeneous G2-invariant
polynomials) is exactly represented by the fixed points of the triality automorphism action
on the algebra of homogeneous Spin(8,C)-invariant polynomials, as shown in Propositions
4.2 and 4.3 of [35]. Moreover, Hitchin proved that a matrix of the Lie algebra g2, when
considered as a matrix of so(8,C), has eigenvalues of (0, 0, λ1,−λ1, λ2,−λ2, λ3,−λ3) such
that λ1 + λ2 + λ3 = 0, with the homogeneous invariant polynomials being q2 and q6, which
generates the algebra of invariant polynomials of G2, taking values of q2 = λ2

1 + λ2
2 + λ2

3
and q6 = (λ1λ2λ3)

2, respectively [22,35]. From this, in Proposition 4.3 of [35], the explicit
expressions for q2 and q6 of the statement are computed.

Remark 2. Notice that if a ∈ B′, Xa is the spectral curve of the G2-invariant polynomial a6 +
a2

2
4 t2 + a2t4 + t6 induced by a, and if Xj(a) is the spectral curve associated with j(a), where j

is defined in Proposition 1, then the map M(G2) → M(Spin(8,C)) is restricted to a map:
Prym(Xa) → Prym(Xj(a)). The image of Prym(Xa) represents the fixed points of the action of the
triality automorphism on Prym(Xj(a)).

5. Connectedness Criteria for the Prym Varieties

In this section, the geometry of the Prym varieties Prym(Xa) and Prym(Xj(a)) of
M(G2) and M(Spin(8,C)), respectively, will be studied, where a ∈ B′ are defined in (24).
In particular, the necessary and sufficient conditions for the above Prym varieties to be
disconnected will be established.

Lemma 3. Let G be the complex simple Lie group Spin(8,C) or G2. Let M(G) be the moduli
space of G-Higgs bundles over X and H : M(G) → B be the Hitchin map defined in (10), where B
denotes the base of the Hitchin map. Let a ∈ B and let Xa be the associated spectral curve. Then, Xa
admits a copy of X in it if and only if the polynomial defined in (22) or (25), respectively, induced
by a admits a global linear factor.

Proof. Consider the polynomial on t induced by a defined in (22) or (25), which will also
be called a for simplicity. Let d be the degree of a. Suppose that a admits a linear factor,
say β0 + β1t, where β0 ∈ H(X, Kd) and β1 ∈ H0(X, Kd−1). Then, β1 ̸= 0 on a dense open
subset U of X. The element β1 defines an isomorphism

0 → O|U → Kd−1
∣

∣

∣

U
→ 0. (32)

By taking the dual, it is induced as an isomorphism

0 → K1−d
∣

∣

∣

U
→ O|U → 0. (33)

Then, there exists a unique element β−1
1 : H0(U, K1−d) → H0(U,OU) such that

β1β−1
1 = 1OU . Since β0 + β1t|a, this implies that β0(x)β−1

1 (x) ∈ Xa for all x ∈ U. This,
then, defines a morphism β0β−1

1 : U → Xa such that πa ◦ β0β−1
1 = idU , where πa : Xa → X

is the spectral covering. Therefore, β0β−1
1 is injective. Since X and Xa are projective curves,

β0β−1
1 extends to the desired morphism.
Reciprocally, suppose that β : X →֒ Xa is an inclusion of curves. It is then clear that

β + t is a linear factor of a.

Proposition 2. Let M(Spin(8,C)) be the moduli space of Spin(8,C)-Higgs bundles over X,
and let B be the base of the Hitchin map defined in (21). Let a ∈ B and let Xa be the associated
spectral curve. Let b2

4 + a6t2 + a4t4 + a2t6 + t8 be the invariant polynomial defined by a, where
b4 ∈ H0(X, K4) and ai ∈ H0(X, Ki) for all i. This polynomial will also be denoted by a. Then,

1. The polynomial induced by a admits a linear factor if and only if Xa admits a copy of X, in the
sense that X is a component of Xa.
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2. The polynomial induced by a admits an irreducible factor of order two if and only if there exist
β0 ∈ H0(X,OX), β1 ∈ H0(X, K), and β2 ∈ H0(X, K2) such that the following identities
in H0(X, K14) and H0(X, K15), respectively, hold:

β0β6
2a2 + (β0β2

1β4
2 − β2

0β5
2)a4 + (β0β4

1β2
2 + β3

0β4
2 − 3β2

0β2
1β3

2)a6+

+ (β0β6
1 − β4

0β3
2 + 6β3

0β2
1β2

2 − 5β2
0β4

1β2)b
2
4 = β7

2

β1β6
2a2 + (β3

1β4
2 − 2β0β1β5

2)a4 + (β5
1β2

2 + 3β2
0β1β4

2 − 4β0β3
1β3

2)a6+

+ (β7
1 − 4β3

0β1β3
2 − 6β0β5

1β2 + 10β2
0β3

1β2
2)b

2
4 = 0.

(34)

3. The polynomial induced by a admits an irreducible factor of order three if and only if there
exist β0 ∈ H0(X,OX), β1 ∈ H0(X, K), β2 ∈ H0(X, K2) and β3 ∈ H0(X, K3) such that
the following identities in H0(X, K18), H0(X, K19) and H0(X, K20), respectively, hold:

β0β2β4
3a4 + (2β0β1β2β3

3 − β0β3
2β2

3 − β2
0β4

3)a6+

+ (3β0β1β3
2β3 − 3β2

0β2
2β2

3 − 3β0β2
1β2β2

3 + 2β2
0β1β3

3)b
2
4 = β6

3

(β1β2β4
3 − β0β5

3)a4 + (2β2
1β2β3

3 − β1β3
2β2

3 − 2β0β1β4
3 + β0β2

2β3
3)a6

+ (3β2
1β3

2β3 − 6β0β1β2
2β2

3 − 3β3
1β2β2

3 + 3β0β2
1β3

3 + 2β2
0β2β3

3)b
2
4 = 0

β6
3a2 + (β1β5

3 − β2
2β4

3)a4 + (β2
1β4

3 + 2β0β2β4
3 + β4

2β2
3 − 3β1β2

2β3
3)a6+

+ (β2
0β4

3 − β3
1β3

3 − 6β0β1β2β3
3 + 6β2

1β2
2β2

3 + 3β0β3
2β2

3 − 3β1β4
2β3)b

2
4 = 0.

(35)

4. The polynomial induced by a admits an irreducible factor of order four if and only if there exist
β0 ∈ H0(X,OX), β1 ∈ H0(X, K), β2 ∈ H0(X, K2), β3 ∈ H0(X, K3) and β4 ∈ H0(X, K4)
such that the following identities in H0(X, K20), H0(X, K21), H0(X, K22), and H0(X, K23),
respectively, hold:

β0β4
4a4 + ((β0β2β3

4 − β0β2
3β2

4)a6+

+ (β2
0β3

4 − β0β2
2β2

4 + 3β0β2β2
3β4 − 2β0β1β3β2

4 − β0β4
3)b

2
4 = −β5

4

β1β4
4a4 + (β0β3β3

4 + β1β2β3
4 − β1β2

3β2
4)a6+

+ (β0β3
3β4 − 2β0β2β3β2

4 + 2β0β1β3
4 − β1β2

2β2
4 + 3β1β2β2

3β4

− 2β2
1β3β2

4 − β1β4
3)b

2
4 = 0

β5
4a2 + β2β4

4a4 + (β2
2β3

4 + β1β3β3
4 − β2β2

3β2
4 − β0β4

4)a6+

+ (β2β3
4 − β0β2

3β2
4 + β2

1β3
4 + β1β3

3β4 + β0β2β3
4 − β3

2β2
4 + 3β2

2β2
3β4

− 4β1β2β3β2
4 − β2β4

3)b
2
4 = 0

β3β4
4a4 + (2β2β3β3

4 − β3
3β2

4 − β1β4
4)a6+

+ (2β1β2β3
4 + 2β0β3β3

4 − 3β2
2β3β2

4 + 4β2β3
3β4 − 3β1β2

3β2
4 − β5

3)b
2
4 = 0.

(36)

Proof. The first part is a consequence of Lemma 3. For the second part, notice that the
polynomial induced by a admits a factor of degree 2 if and only if there exist elements
αi ∈ H0(X, Ki) for i = 0, 1, 2, 3, 4, 5, 6 and βi ∈ H0(X, Ki) for i = 0, 1, 2 such that

(

β2 + β1t + β0t2
)(

α6 + α5t + α4t2 + α3t3 + α2t4 + α1t5 + α0t6
)

= b2
4 + a6t2 + a4t4 + a2t6 + t8. (37)
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This gives the following system of equations:

β2α6 = b2
4

β2α5 + β0α6 = 0

β2α4 + β1α5 + β0α6 = a6

β2α3 + β1α4 + β0α5 = 0

β2α2 + β1α3 + β0α4 = a4

β2α1 + β1α2 + β0α3 = 0

β2α0 + β1α1 + β0α2 = a2

β1α0 + β0α1 = 0

β0α0 = 1OX

(38)

Since, according to the hypothesis, the factor β2 + β1t + β0t2 is irreducible, it follows
that β2 ̸= 0. Therefore, from the first seven equations, it is obtained that the αis are
determined by the β js, so the other two equations provide the necessary and sufficient
conditions, which the β js should satisfy for the existence of a solution. Straightforward
computations show that these two conditions are those announced in the statement.

The third part is analogous to the case above when considering the system in
αi ∈ H0(X, Ki) for i = 0, 1, 2, 3, 4, 5 induced by the expression

(

β3 + β2t + β1t2 + β0t3
)(

α5 + α4t + α3t2 + α2t3 + α1t4 + α0t5
)

= b2
4 + a6t2 + a4t4 + a2t6 + t8, (39)

where βi ∈ H0(X, Ki) for i = 0, 1, 2, 3. That is,

β3α5 = b2
4

β3α4 + β2α5 = 0

β3α3 + β2α4 + β1α5 = a6

β3α2 + β2α3 + β1α4 + β0α5 = 0

β3α1 + β2α2 + β1α3 + β0α4 = a4

β3α0 + β2α1 + β1α2 + β0α3 = 0

β2α0 + β1α1 + β0α2 = a2

β1α0 + β0α1 = 0

β0α0 = 1OX

(40)

The αis are determined by the βis from the first six equations since it must be β3 ̸= 0.
Then, the necessary and sufficient conditions on the β js for the existence of a solution are
given by the last three equations. These conditions are those of the statement.

Finally, the fourth part is similar. It follows from the expression

(

β4 + β3t + β2t2 + β1t3 + β0t4
)(

α4 + α3t + α2t2 + α1t3 + α0t4
)

= b2
4 + a6t2 + a4t4 + a2t6 + t8, (41)
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which induces a system on the αis with coefficients in βis of the form

β4α4 = b2
4

β4α3 + β3α4 = 0

β4α2 + β3α3 + β2α4 = a6

β4α1 + β3α2 + β2α3 + β1α4 = 0

β4α0 + β3α1 + β2α2 + β1α3 + β0α4 = a4

β3α0 + β2α1 + β1α2 + β0α3 = 0

β2α0 + β1α1 + β0α2 = a2

β1α0 + β0α1 = 0

β0α0 = 1OX

(42)

From the first five equations, the αis can be expressed in terms of the βis (notice that,
in this case, it must be β4 ̸= 0), so the four conditions of the statement follow from the four
last equations of the system.

Consider now the moduli space of G2-Higgs bundles over X. From Lemma 3, similar
computations to those made in Proposition 2 allow us to prove the following analogous
result.

Proposition 3. Let M(G2) be the moduli space of G2-Higgs bundles over X, and let B′ be the base
of the Hitchin map of M(G2) defined in (24). Let a ∈ B′ and Xa be the induced spectral curve.

Suppose that the invariant polynomial induced by a, which will be also called a, is a6 +
a2

2
4 t2 −

a2t4 + t6, where ai ∈ H0(X, Ki) for all i = 2, 6. Then,

1. The polynomial induced by a admits a linear factor if and only if Xa admits a copy of X in the
sense that X is a component of Xa.

2. The polynomial induced by a admits an irreducible factor of order two if and only if there exist
β0 ∈ H0(X,OX), β1 ∈ H0(X, K), and β2 ∈ H0(X, K2) such that the following identities
on H0(X, K10) and H0(X, K11), respectively, hold:

(β0β4
1 + β3

0β2
2 − 3β2

0β2
1β2)a6 +

β0β2
1β2

2 − β2
0β3

2
4

a2
2 = β5

2

(β0β4
1 − 2β2

0β2
1β2 + β3

0β2
2 − β0β2

1β2)a6

−
β2

0β1β3
2 + β0β1β3

2 − β0β3
1β2

2
4

a2
2 − β1β4

2a2 = 0.

(43)

3. The polynomial induced by a admits an irreducible factor of order three if and only if there
exist β0 ∈ H0(X,OX), β1 ∈ H0(X, K), β2 ∈ H0(X, K2), and β3 ∈ H0(X, K3) such that
the following identities on H0(X, K12), H0(X, K13) and H0(X, K14), respectively, hold:

(2β0β1β2β3 − β0β3
2 − β2

0β2
3)a6 −

β0β2β2
3

4
a2

2 = β4
3

(2β2
1β2β3 − β1β3

2 − 2β0β1β2
3 + β0β2

2β3)a6 +
β0β3

3 − β1β2β2
3

4
a2

2 = 0

(3β1β2
2β3 − β4

2 − 2β0β2β2
3 − β2

1β2
3)a6 +

β1β3
3 − β2

2β2
3

4
a2

2 + β4
3a2 = 0.

(44)

Proof. The first part is an immediate consequence of Lemma 3. For the second part, note
that the polynomial induced by a admits a factor of degree two if and only if there exist
elements αi ∈ H0(X, Ki) for i = 0, 1, 2, 3, 4 and βi ∈ H0(X, Ki) for i = 0, 1, 2 such that

(

β2 + β1t + β0t2
)(

α4 + α3t + α2t2 + α1t3 + α0t4
)

= a6 +
a2

2
4

t2 − a2t4 + t6. (45)
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This gives the following system of equations.

β2α4 = a6

β2α3 + β1α4 = 0

β2α2 + β1α3 + β0α4 =
a2

2
4

β2α1 + β1α2 + β0α3 = 0

β2α0 + β1α1 + β0α2 = −a2

β1α0 + β0α1 = 0

β0α0 = 1OX

(46)

It must be β2 ̸= 0, since, according to the hypothesis, the factor β2 + β1t + β0t2 is
irreducible. It is then clear that the αis are determined by the β js from the first five equations
of this system, so the other two equations give the necessary and sufficient conditions,
which the β js should verify for the existence of a solution. Straightforward computations,
then, readily show that these two conditions are those of the statement.

For the third part, notice that the condition for the polynomial induced by a to admit
a degree three factor is the existence of elements αi ∈ H0(X, Ki) for i = 0, 1, 2, 3 and
βi ∈ H0(X, Ki) for i = 0, 1, 2, 3 such that

(

β3 + β2t + β1t2 + β0t3
)(

α3 + α2t + α1t2 + α0t3
)

= a6 +
a2

2
4

t2 − a2t4 + t6, (47)

from which a similar system of equations follows; thus, an analogous computation (to the
above) leads to the expressions of the statement since it must be β3 ̸= 0 according to the
irreducibility of β3 + β2t + β1t2 + β0t3. Specifically, the induced system is of the form

β3α3 = a6

β3α2 + β2α3 = 0

β3α1 + β2α2 + β1α3 =
a2

2
4

β3α0 + β2α1 + β1α2 + β0α3 = 0

β2α0 + β1α1 + β0α2 = −a2

β1α0 + β0α1 = 0

β0α0 = 1OX

(48)

Here, it also must be β3 ̸= 0, so the first four equations allow us to express the αis in
terms of the βis. The rest of the three equations give the conditions announced.

Corollary 1.3 of the work by Hausel and Pauly [38] is recalled here, as it will be useful
in the study of the geometry of Prym varieties associated with the Hitchin system in the
moduli spaces M(Spin(8,C)) and M(G2). Although the findings in [38] work with the
SL(n,C)-case, the results that will be used here are directly applicable to the cases of interest
in the present work since the representations that are considered allow us to interpret the
curves as spectral curves associated with some SL(n,C)-Higgs bundle, which admits an
additional structure.

Proposition 4 ([38], Corollary 1.3). Let X′ → X be an n-sheeted spectral cover of the complex
irreducible projective curve, X. The Prym variety Prym(X′) is not connected if and only if there
exists a prime number, d, with d|n such that the spectral cover X′ → X comes from a degree, n/d,
spectral cover over the étale Galois cover of degree, d, over X.
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Consider the moduli space M(Spin(8,C)) of Spin(8,C)-Higgs bundles over X. Let
B be the base of the Hitchin map of M(Spin(8,C)), as defined in (21). In Proposition 4,
Hausel and Pauly prove that the Prym variety of a given spectral curve Xa with a ∈ B is
connected if and only if the polynomial β0td + βd does not divide the polynomial defined
by a in (22) whatever β0 ∈ H0(X,OX), βd ∈ H0(X, Kd), and d is a prime number that
divides the degree of the cover, Xa → X.

Similarly, if the moduli space M(G2) of G2-Higgs bundles over X is considered and
B′ denotes the base of its Hitchin map defined in (24), Proposition 4 states that, for any
a ∈ B′ with associated spectral curve Xa, the Prym variety Prym(Xa) is connected if and
only if for every β0 ∈ H0(X,OX), βd ∈ H0(X, Kd) and every prime number d (such that
d divides the degree of the cover Xa → X), the polynomial β0td + βd does not divide the
polynomial defined by a in (25).

From Proposition 4 and the discussion above, one can prove the following result,
which determines the condition of a Prym variety given by the groups Spin(8,C) or G2 to
be connected.

Proposition 5. Let G be the complex simple Lie group Spin(8,C) or G2, and let M(G) be the
moduli space of G-Higgs bundles over X. Let a be an element of the base of the associated Hitchin
map. Then, the following is satisfied:

1. If G = Spin(8,C) and the invariant polynomial associated with a is b2
4 + a6t2 + a4t4 +

a2t6 + t8 with ai ∈ H0(X, Ki) for i = 2, 4, 6 and b4 ∈ H0(X, K4), then the Prym variety
Prym(Xa) is not connected if and only if one of the following conditions holds:

(a) Xa contains a copy of X.
(b) There exists a global section β ∈ H0(X, K2) such that β is a solution of the polynomial

b2
4 + a6t + a4t2 + a2t3 + t4, (49)

which takes values in H0(X, K8).

2. If G = G2 and the invariant polynomial associated with a is a6 +
a2

2
4 t2 − a2t4 + t6 with

ai ∈ H0(X, Ki) for i = 2, 6, then the Prym variety Prym(Xa) is not connected if and only if
one of the following conditions holds:

(a) Xa contains a copy of X.
(b) There exists a global section β ∈ H0(X, K2) such that β is a solution to the polynomial

−a6 +
a2

2
4

t + t3, (50)

which takes values in H0(X, K6).
(c) a2 = 0, and there exists a global section β ∈ H0(X, K3) such that β is a solution to

the polynomial
a6 + t2, (51)

which takes values in H0(X, K6).

Proof. As a consequence of Proposition 4, in both cases, Prym(Xa) is disconnected if
and only if there exists a polynomial of the form β0td + βd, with β0 ∈ H0(X,OX) and
βd ∈ H0(X, Kd), which divides the polynomial associated with a and such that d is a prime
number that divides the degree of the polynomial associated with a. Consequently,

1. If G = Spin(8,C), the only possibility for d is d = 2 since the degree of the polynomial
associated with a is 8. There are two possibilities for the polynomial b2

4 + a6t2 +
a4t4 + a2t6 + t8 to have a factor of the form β0t2 + β2: first, the polynomial β0t2 + β2
is reducible if and only if Xa contains a copy of X, according to the first part of
Proposition 2; secondly, the polynomial β0t2 + β2 is irreducible if and only if β0, β1 =
0, β2 satisfy the conditions of the second part of Proposition 2. Notice that since



Mathematics 2024, 12, 3436 18 of 20

β0t2 + β2 is supposed to be irreducible, both sections, β0 and β2, should be non-zero.
By taking β1 = 0 in those expressions, it follows that β2β−1

0 is a solution to the
polynomial b2

4 + a6t + a4t2 + a2t3 + t4, which takes values in H0(X, K8).
2. If G = G2, since the polynomial associated with a has a degree of 6, there are two

possibilities for the degree, d:

(a) If d = 2, the polynomial β0t2 + β2 may be reducible or irreducible. It is re-
ducible if and only if Xa contains a copy of X, according to the first part of
Proposition 3; it is irreducible if and only if β0, β1 = 0, β2 satisfy the two con-
ditions given in the second part of Proposition 3. Since β0t2 + β2 is supposed
to be irreducible, β0 and β2 are non-zero sections, and by taking β1 = 0 in
those expressions, it is deduced that −β2β−1

0 is a solution to the polynomial

−a6 +
a2

2
4 t + t3, which takes values in H0(X, K6).

(b) If d = 3, then, as in the previous item, the polynomial β0t3 + β3 may be
reducible or irreducible. It is easily seen that the reducible case falls in the
preceding case. It is irreducible if and only if β0, β1 = 0, β2 = 0, β3 satisfy the
conditions given in the third part of Proposition 3. Since it should be β0 ̸= 0
and β3 ̸= 0, by taking β1 = 0 and β2 = 0 to those expressions, it follows that
a2 = 0 and β−1

0 β3 represent a solution to a6 + t2 in H0(X, K6).

Remark 3. Proposition 5 gives the necessary and sufficient conditions for the elements a ∈ B′ for
the base of the Hitchin map of M(G2) for the Prym varieties Prym(Xa) and Prym(Xj(a)) to be
connected or disconnected, where j is the map defined in Proposition 1. Recall that these two Prym
varieties are related to each other through the map Prym(Xa) → Prym(Xj(a)), as defined in the
Remark after Proposition 1. At the present moment, it is not easy (in the light of what has been
proved) to give a simple criterion for deriving, for example, the connection of Prym(Xj(a)) from
the connection of Prym(Xa). To illustrate this difficulty, consider criterion 2(c) of Proposition 5.
In the case illustrated in that item, a2 = 0; so, according to Proposition 1, the polynomial associated
with j(a) is a6

8 t + t4 = t
( a6

8 + t3). Even if criterion 2(c) for the disconnection of Prym(Xa) (the
existence of β ∈ H0(X, K3) such that a6 + β2 = 0) is satisfied, it is not possible to ensure that
Prym(Xj(a)) is disjointed because this would require the existence of β′ ∈ H0(X, K2) such that
a6 + β′3 = 0. However, by taking the intersection of both criteria, it is possible to give a sufficient
condition for the two Prym varieties to be disjointed, as is stated in the following result, which is an
immediate consequence of Proposition 5.

Corollary 1. Let a ∈ B′ be an element of the base of the Hitchin map of M(G2) defined in (24),
the associated polynomial of which is a6 + t6 (that is, a2 = 0). Then, if there exists β ∈ H0(X, K6)
such that a6 + β6 = 0, then the Prym varieties Prym(Xa) and Prym(Xj(a)) are both disconnected,
where j is defined in Proposition 1.

6. Conclusions

Let X be a compact Riemann surface of genus g ≥ 2, and let M(Spin(8,C)) and
M(G2) be the moduli spaces of Spin(8,C) and G2-Higgs bundles over X, respectively. It
is known that there is a map of algebraic varieties M(G2) → M(Spin(8,C)), the image
of which is composed of the fixed points of the action of the triality automorphism τ on
M(Spin(8,C)). In this paper, it has been proven that τ acts on the base, B, of the Hitchin
map given by the Hitchin integrable system associated with M(Spin(8,C)); there exists a
homomorphism j : B′ → B, where B′ is the base of the Hitchin map of M(G2); the image
of j is composed by using the fixed points of the action of τ. This led to the definition
of maps between Prym varieties Prym(Xa) → Prym(Xj(a)), where a ∈ B′, given by the
restriction of the map M(G2) → M(Spin(8,C)). As a way of studying the geometry of
the maps Prym(Xa) → Prym(Xj(a)) (which, in turn, deepens the study of the geometry
of the map M(G2) → M(Spin(8,C))), the results on the geometry of the Prym varieties
involved have been provided. In particular, the Prym varieties being disjointed has been
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characterized. As a consequence, sufficient conditions are provided for both Prym varieties,
Prym(Xa) and Prym(Xj(a)), to be disjointed. All this contributes to a better understanding
and deepening of the map M(G2) → M(Spin(8,C)) and, therefore, of the geometry of
the moduli spaces of the Higgs bundles involved. Specifically, the main implication of the
present work is to provide criteria for deciding the connection or disconnection of Prym
varieties of the two moduli spaces above, which, moreover, are related because there is
an obvious homomorphism of one in the other. These findings allow us to deepen our
knowledge of the topology of moduli spaces with structure groups G2 and Spin(8,C),
which is key in the identification of irreducible components and the computation of Betti
numbers and characteristic classes. Specifically, the disconnection of the Prym varieties
implies the existence of a stratification in the corresponding fiber of the moduli space. This
leads not only to the existence of different irreducible components but to the existence
of non-isomorphic Higgs bundles with different geometric properties. In addition, when
the Prym varieties are connected, the cohomology of the moduli space can be simplified,
and it should also be easier to compute Betti numbers and other topological invariants.
In mathematical physics, the connection or disconnection of the Prym varieties affects the
way in which certain dualities, such as Langlands duality, act. Thus, the results provided
here provide mathematical physicists with a suitable framework with which to study the
mentioned dualities in the context of string theory.

Consequently, as a future line of research, the analysis of the topological invariants
of both moduli spaces and, definitely, the discussion about whether the forgetful map
M(G2) → M(Spin(8,C)) is or is not injective and, in any case, the behavior of its image
concerning the irreducible components of M(Spin(8,C)) are proposed. Specifically, we
propose explicitly computing the number of connected components of the considered Prym
varieties, which is an open problem that may help to identify irreducible components in
the fibers of the Hitchin map of the moduli spaces of G2 and Spin(8,C)-Higgs bundles
over a curve, X. We also propose proving whether the map above is injective and explicitly
identifying the image of the homomorphism B′ → B, where B′ is the base of the Hitchin
map of M(G2) and B is the base of the Hitchin map of M(Spin(8,C)). These aims may
make use of the results on connectedness of the Prym varieties provided here, and it
would also be interesting to analyze the effect of the action of triality automorphism on
certain subvarieties of M(Spin(8,C)), such as the Lagrangian subspaces that are defined
as reductions in the real forms of the structure group coming from the action of involutions
of Spin(8,C), which are identified in [11]. All these are open problems related to the one
addressed here that would strengthen the applications of the study to mirror symmetry
and Langlands duality.
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