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Abstract: Using a flexible form for ladder operators that incorporates confluent hypergeometric

functions, we show how one can determine all of the discrete energy eigenvalues and eigenvectors

of the time-independent Schrödinger equation via a single factorization step and the satisfaction of

boundary (or normalizability) conditions. This approach determines the bound states of all exactly

solvable problems whose wavefunctions can be expressed in terms of confluent hypergeometric

functions. It is an alternative that shares aspects of the conventional differential equation approach

and Schrödinger’s factorization method, but is different from both. We also explain how this approach

relates to Natanzon’s treatment of the same problem and illustrate how to numerically determine

nontrivial potentials that can be solved this way.

Keywords: discrete energy eigenstates; factorization method; supersymmetric quantum mechanics;

confluent hypergeometric functions

1. Introduction

The goal of this work was to solve the energy eigenvalue equation in single-particle
quantum mechanics (often called the time-independent Schrödinger equation). This is
usually formulated in position space, where, for example, in one dimension, the momentum
operator is represented by p̂ = −ih̄d/dx, and the time-independent Schrödinger equation
becomes the second-order linear differential equation

− h̄2

2M

d2

dx2
ψ(x) + V(x)ψ(x) = Eψ(x), (1)

for the energy eigenvalue E and the energy eigenstate, which is represented as a wave-
function ψ(x). Here, V(x) is the potential that the particle moves in and M is the particle’s
mass. This equation was introduced by Schrödinger in 1926 [1].

Fourteen years later, Schrödinger developed another approach to solve for energy
eigenvalues and eigenstates [2]. It uses a representation-independent methodology that
factorizes the Hamiltonian in the form

Ĥ =
p̂2

2M
+ V(x̂) = Â† Â + EI. (2)

Here, x̂ and p̂ are operators that satisfy the canonical commutation relation [x̂, p̂] = ih̄, Â†

and Â are raising and lowering operators (also called ladder operators), and the factor-
ization method determines the ground-state energy E without explicitly determining the
ground-state wavefunction. Instead, it simply postulates the existence of a state that is
annihilated by Â via the subsidiary condition Â|ψ⟩ = 0, and then, because the Hamiltonian
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is written as a positive semidefinite operator plus a constant, the energy of this state is
given by E. The lowering operator is written as

Â =
1√
2M

(

p̂ − ih̄W(x̂)
)

, (3)

with W being the superpotential. Often, there are multiple choices for the superpotential
that provide a factorization—one must choose the superpotential that satisfies some ad-
ditional conditions that guarantee the ground-state wavefunction will be normalizable
in order to have a valid solution. For example, in a one-dimensional problem, we need
W(x) to be positive for x → ∞ and negative for x → −∞, and to be finite for all x (there
can be additional conditions). When the superpotential satisfies these conditions, it is a
supersymmetric superpotential. To find the higher energy eigenstates, one forms the factor-
ization chain, which involves defining new auxiliary Hamiltonians, factorizing them, and
constructing the higher-energy eigenstates by applying the appropriate ladder operators
to each auxiliary Hamiltonian ground state. It would take us too far afield to describe the
further details of that construction here, but this context provides the jumping off point for
our work.

The name superpotential comes from a revival of the factorization method by Wit-
ten [3] in the 1980s, which led to the field of supersymmetric quantum mechanics. Super-
symmetric quantum mechanics works with a single factorization, which is subsequently
used to construct two partner potentials that are related to each other as two adjacent
links in a factorization chain. The system of two Hamiltonians can be formulated into
an additional two-by-two matrix structure that represents bosonic and fermionic sectors.
Broken supersymmetry can be examined within this context as well. We will not discuss
supersymmetric quantum mechanics further here, but we do note two books that provide
further context for the method [4,5]. The problem of determining exactly solvable poten-
tials within supersymmetric quantum mechanics has been studied widely. We mention
in particular work led by Lévai, which is closely related in its approach to the work we
present here [6–8]. While that work is focused on finding and clarifying different classes of
exactly solvable potentials, our work here is focused on describing a different methodology
for determining energy eigenstates.

Determining the initial factorization for the ground state typically requires the solution
of a nonlinear Ricatti equation. Conversely, the ground-state wavefunction can always be
employed to construct a factorization if it is known. We simply choose the superpotential
to satisfy W(x̂) = −ψ′(x̂)/ψ(x̂), where the prime indicates a derivative with respect to
the argument of the function; then, the Schrödinger equation is equivalent to the Ricatti
equation for the superpotential:

h̄2

2M

(

−W ′(x̂) + W2(x̂)
)

= V(x̂)− EI. (4)

In analytically solvable problems (so-called shape-invariant potentials), one can directly
determine the superpotential without requiring an explicit solution of the Ricatti equation or
knowing the ground-state wavefunction (an example is the well-known abstract operator
method applied to the simple harmonic oscillator). Such cases are exceptions, not the
general rule. Once one formulates the Ricatti equation, it can also be solved directly
without a priori knowledge of the ground-state wavefunction to factorize the Hamiltonian.

The single-shot method for bound states is half-way between the Schrödinger equation
and the factorization method. It works by finding a single factorization in a general form
and then determines all of the allowed energies that yield normalizable solutions. This
methodology has already been employed to find continuum eigenstates of exactly solvable
problems [9]. The bound-state problems bring in a number of additional subtleties due to
the quantization of the energy eigenvalues.
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In this work, we develop the single-shot factorization method for bound states. We
apply it to solve for all exactly solvable energy eigenvalue problems that can be solved
with wavefunctions that include a confluent hypergeometric function multiplied by simple
functions (powers, exponentials, Gaussians, etc.). This is the same problem that Natanzon
solved [10], where he described all potentials that have confluent hypergeometric functions
as part of their wavefunctions. Our approach is markedly different from Natanzon’s
though, and we show in detail how the two methods interrelate.

2. Formalism of Single-Shot Factorization

In our general description, we examine problems in one-, two-, and three-dimensions.
Rather than using x̂ for our general variable, we use q̂. It can represent the one-dimensional
x, the two-dimensional radial coordinate ρ =

√

x2 + y2, or the three-dimensional radial
coordinate r =

√

x2 + y2 + z2. The effective Hamiltonian of a system with a non-relativistic
particle of mass M moving in an effective potential Veff(q̂) then becomes

Ĥ =
p̂2

q

2M
+ Veff(q̂), (5)

where q̂ represents the aforementioned radial coordinate operator and Veff(q̂) is the “radial”
potential that is derived using separation of variables. We use a subscript q on the mo-
mentum operator because in two or three dimensions, it will be the corresponding radial
momentum operator.

We want to factorize the Hamiltonian in the form

Ĥ = Â†
k Âk + Ek Î (6)

where Ek is the energy of the system and Âk , which is the lowering operator, is given by

Âk =
1√
2M

[

p̂q − ih̄kWk(kq̂)
]

, (7)

in terms of Wk, which is the superpotential, and k, which is a wavenumber that makes
the superpotential and its argument dimensionless. We slightly changed the form of the
superpotential here by introducing some constants that make the remainder of the analysis
clearer. We hope this causes no confusion to the reader.

By using the subsidiary condition

Âk |ψ⟩ = 0, (8)

we can express the superpotential in terms of a function ψ(q̂):

Wk(kq̂) = −1

k

dψ(q̂)

dq̂

1

ψ(q̂)
= −1

k

d

dq̂
[ln(ψ(q̂))]. (9)

The derivatives can be thought of formally as being computed by taking the functions as
functions of a real variable q, performing the standard derivative, and then substituting q →
q̂ into the final functional form of the derivative. In 1D, we have ψ(x) as the wavefunction.
But in 2D, ψ(ρ) is

√
ρ times the radial wavefunction, and in 3D, ψ(r) is r times the radial

wavefunction. These results are critical in determining the wavefunction itself in higher
dimensions—they arise because of the form of the radial momentum operators in higher
dimensions. Letting ẑ = kq̂ + α, we can rewrite the superpotential as

Wk(ẑ) = − d

dẑ
ln[ψ(ẑ)]. (10)
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Since we are looking for potentials that can be solved in terms of the confluent hyper-
geometric functions, we consider the following ansatz:

ψ(ẑ) = f (ẑ)M(a, b, ζ(ẑ)), (11)

where M(a, b, ζ(z)) is a solution to the confluent hypergeometric equation that is well-
behaved near ζ = 0, f (ẑ) and ζ(ẑ) are functions of ẑ, and a and b are parameters, all of which
are set during the solution of the problem. When we talk about solutions of a differential
equation, we replace the operator by a real variable, as we described above. The functions f
and ζ are chosen to be real valued, as are the coefficients a and b. Note that there are always
two linearly independent solutions to the confluent hypergeometric function. In most cases,
these can be represented in terms of the functions M(a, b, z) and U(a, b, z), but in special
cases, the two linearly independent equations are more complicated (see Ref. [11] for more
details). Typically, the second solution U is not physically admissible due to its behavior
near z = 0. Because of this, we only consider the confluent hypergeometric function
M(a, b, z) in this work. For a more general treatment of this problem and additional details
of the following calculations, we refer to previous work on the continuum solutions [9].
Natanzon [10,12] solved the problem of what potentials can be solved with this ansatz
using a different methodology. We compare our approach with his later in the paper.

Substituting Equation (11) into Equation (10) yields

Wk(kq̂) = − f ′(ẑ)
f (ẑ)

− dζ̂

dẑ

dM(a, b, ζ̂)

dζ̂

1

M(a, b, ζ̂)
, (12)

where we put a hat onto ζ when we do not explicitly indicate its operator-valued arguments.
Note that derivatives with respect to the operators should be thought of in a formal way, as
we described above. From equations 13.3.3, 13.3.9, 13.3.15, and 13.3.22 in the Digital Library
of Mathematical Functions (DLMF) [13], we find that

M′(a, b, ζ̂) = M(a, b, ζ̂)− b − a

b
M(a, b + 1, ζ̂). (13)

Let

g(ẑ) = − d

dẑ
ln
[

eζ̂ f (ζ̂)
]

. (14)

We use this and Equation (13) to rewrite the superpotential as

Wk(kq̂) = g(ẑ) +
b − a

b

dζ̂

dẑ

M(a, b + 1, ζ̂)

M(a, b, ζ̂)
. (15)

By construction, g is a real-valued function, as is the derivative of ζ. For real parameters a
and b and real-valued ζ, one finds that the ratio of hypergeometric functions is also real
valued (when thought of as a function of a real variable), which is a requirement in the
factorization method for Hamiltonians that have no linear terms in momentum. Hence, we
obtain the raising and lowering operators corresponding to our ansatz via

Âk =
1√
2M

{

p̂q − ih̄k

[

g(ẑ) +
b − a

b

dζ̂

dẑ

M(a, b + 1, ζ̂)

M(a, b, ζ̂)

]}

(16)

and

Â†
k =

1√
2M

{

p̂q + ih̄k

[

g(ẑ) +
b − a

b

dζ̂

dẑ

M(a, b + 1, ζ̂)

M(a, b, ζ̂)

]}

. (17)
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Calculating Â†
k Âk then gives the following:

Â†
k Âk =

1

2M

{

p̂2
q + h̄2k2

(

g2(ẑ)− g′(ẑ) +
a − b

ζ̂

(

ζ̂ ′
)2
)

+
b − a

b
h̄2k2

(

2g(ẑ)ζ̂ ′ +
(

1 +
b

ζ̂

)

(

ζ̂ ′
)2 − ζ̂ ′′

)

M(a, b + 1, ζ̂)

M(a, b, ζ̂)

}

, (18)

where the extra derivatives arise from the commutators of momentum operators with the
functions of position operators. Finding a factorization for the given Hamiltonian requires

(

g2(ẑ)− g′(ẑ) +
a − b

ζ̂

(

ζ̂ ′
)2
)

+
b − a

b

(

2g(ẑ)ζ̂ ′ +
(

1 +
b

ζ̂

)

(

ζ̂ ′
)2 − ζ̂ ′′

)

M(a, b + 1, ζ̂)

M(a, b, ζ̂)
=

2M

h̄2k2
(Veff(q̂)− E). (19)

Veff(q̂) must be independent of E in order to have a valid set of solutions to the energy eigen-
value problem. This is a critical requirement, as we can solve the converse problem—start
from this ansatz for the wavefunction (or ladder operator) and determine all possible
potentials that can be solved with this ansatz (this is, in essence, Natanzon’s problem). The
requirement that the potential is independent of E is a stringent requirement in finding
such solutions. Another way of stating this is that the only E dependence on the left-hand
side of the equation can be a linear dependence on E—otherwise, the potential will change
with each energy eigenvalue, and this is not a problem we are interested in exploring.

Since a and b oftentimes do depend on energy, the simplest way to avoid the energy
dependence of the potential is to set the coefficient in front of M(a, b + 1, ζ̂)/M(a, b, ζ̂) to
zero. It remains to be seen whether this step is absolutely necessary to produce solutions,
and we discuss this issue in more detail later. Indeed, Natanzon essentially assumed this
must be true in his classification scheme. It is not clear whether weakening this requirement
could still yield solutions, but we will not consider the weakened requirement any further
here. Enforcing the requirement, then, implies we have to enforce the condition

2g(ẑ)ζ̂ ′ +
(

1 +
b

ζ̂

)

(

ζ̂ ′
)2 − ζ̂ ′′ = 0. (20)

Rearranging, we find that

g(ẑ) =
1

2

ζ̂ ′′

ζ̂ ′
−
(

1 +
b

ζ̂

)

ζ̂ ′

2
, (21)

which we substitute into Equation (19) to obtain

(

ζ̂ ′
)2
(

1 +
2(2a − b)

ζ̂
+

b(b − 2)

ζ̂2

)

+ 3

(

ζ̂ ′′

ζ̂ ′

)2

− 2

(

ζ̂ ′′′

ζ̂ ′

)

=
8M

h̄2k2
(Veff(q̂)− E). (22)

The standard way to solve this problem is then to fix the effective potential and determine
ζ̂(ẑ), g(ẑ), a, and b to produce the wavefunctions and energies of the system. The function
f (ẑ) is then found from Equations (14) and (21) as

− d

dẑ
ln
[

eζ̂ f (ζ̂)
]

=
1

2

ζ̂ ′′

ζ̂ ′
−
(

1 +
b

ζ̂

)

ζ̂ ′

2
. (23)

Solving for f (ẑ) gives

f (ẑ) = (ζ̂ ′)−1/2ζ̂b/2e−ζ̂/2. (24)
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The final wavefunction (in operator form) then becomes

ψ(q̂) = (ζ̂ ′)−1/2ζ̂b/2e−ζ̂/2M(a, b, ζ̂). (25)

To express this as a traditional wavefunction, we simply substitute q̂ → q and multiply by
the appropriate power of q for 2D and 3D cases to obtain the corresponding radial wave-
functions. Another requirement we must now introduce is that bound-state wavefunctions
are normalizable. Let us look at the limiting behavior of ψ(q) at extreme values. When a is
not a non-positive integer (a /∈ Z

≤0), we have that

M(a, b, ζ) ≈ γ(b)

γ(a)
eζ ζa−b[1 +O(|ζ|−1)], as ζ → ∞. (26)

If the range of ζ(z) contains +∞, the ansatz will not yield a normalizable wavefunction
because it will behave like eζ/2 in that limit, which diverges. This requires us to set a to be
a non-positive integer (a ∈ Z

≤0), where we have

M(−m, b, ζ) ≈ ζm, as ζ → ∞, (27)

for −a = m = 0, 1, 2, · · · , which typically leads to a normalizable solution that decays
as e−ζ/2. Finally, we obtain the solution for a given effective potential by determining a
ζ̂(ẑ) that satisfies Equation (22), and then we determine the a and b values that lead to
normalizable wavefunctions.

This approach to the problem assumes that the other linearly independent solution
does not produce any new solutions to the problem. This is well-known for all analytically
solvable potentials and a detailed analysis allowing for the other linearly independent
solution always shows that it does not produce any new solutions [11]. Therefore, we do
not perform this analysis here.

Note that we can work with Equation (19) in another way. We can find normalizable
wavefunctions and substitute their results into Equation (19) to find solvable effective
potentials (and energy eigenvalues). This requires the potentials to also be bounded from
below for all q in the domain of the problem at hand. We use this alternative approach
when comparing our work to that of Natanzon.

3. Analytically Solvable Problems

We now show how to use this approach to solve a number of analytically solvable
problems. All of these problems are well-known from quantum mechanics, although not
all of them are commonly examined in quantum instruction. Solving these problems in
detail provides concrete examples for how this approach works.

3.1. Harmonic Oscillator in 1D

The potential for the 1D harmonic oscillator is given by

Veff(x̂) =
1

2
Mω2 x̂2. (28)

Substituting this into Equation (22) yields

(

ζ ′
)2
(

1 +
2(2a − b)

ζ̂
+

b(b − 2)

ζ̂2

)

+ 3

(

ζ̂ ′′

ζ̂ ′

)2

− 2

(

ζ̂ ′′′

ζ̂ ′

)

=
8M

h̄2k2

(

1

2
Mω2 x̂2 − E

)

. (29)

By trial and error, it is clear the following functions will produce the required quadratic
term on the left-hand side (LHS):

ẑ = kx̂ and ζ̂(ẑ) = cẑ2. (30)
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We set k =
√

Mω
h̄ and use Equation (30) in Equation (29) to obtain

4c2ẑ2 + 8c(2a − b) +
4b(b − 2)

ẑ2
+

3

ẑ2
= 4ẑ2 − 8E

h̄ω
.

Now, we combine like terms to find

4z2
(

c2 − 1
)

+ 8

(

c(2a − b) +
E

h̄ω

)

+
4b(b − 2) + 3

ẑ2
= 0. (31)

From this last result, it is clear that we must take

c = ±1, (32)

a =

(

b

2
− 1

c

E

2h̄ω

)

, and (33)

b =
1

2
or

3

2
. (34)

Now, since we know that for normalizability, we must choose a ∈ Z
≤0, we set a = −n,

n ∈ Z
≥0. This condition determines the allowed energies:

a =

(

b

2
− 1

c

E

2h̄ω

)

= −n =⇒ E = ch̄ω(2n + b). (35)

The energy of a wavefunction cannot be less than the minimum value of the potential. In
this case, the minimum value of Veff(x) is 0. Hence, we have the constraint that E ≥ 0. It is
clear that if

c = −1 =⇒ E = −h̄ω(2n + b) < 0 (36)

c = 1 =⇒ E = h̄ω(2n + b) > 0. (37)

This requires us to choose c = 1. Now, all that is left is to determine which value of b will
yield admissible energy values. It turns out that they both do. In other words,

b =
1

2
=⇒ En = h̄ω

(

2n +
1

2

)

and (38)

b =
3

2
=⇒ En = h̄ω

(

2n + 1 +
1

2

)

. (39)

Therefore, b = 1
2 produces the even solutions and b = 3

2 produces the odd solutions.
Together, they give the complete set of solutions for the simple harmonic oscillator in
1D. You might be surprised that one choice does not solve the entire problem. This is
because the Hermite polynomials involve two different types of Laguerre polynomials, as
we discover next when we determine the wavefunctions.

According to our earlier derivation, the wavefunction is found by using Equation (25),
which yields

ψn(q̂) ∝ ẑb−1/2e−ẑ2/2M(−n, b, ẑ2), b ∈
{

1

2
,

3

2

}

, (40)

after we recall that ζ̂ ∝ ẑ2. Referring to equations 13.6.16 and 13.6.17 in the DLMF, we
find that

M
(

−n, 1
2 , ẑ2

)

∝ H2n(ζ̂) and (41)

ẑM
(

−n, 3
2 , ẑ2

)

∝ H2n+1(ζ̂), (42)
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where H2n and H2n+1 are the even and odd Hermite polynomials. Hence, the wavefunctions
are of the following form:

b =
1

2
=⇒ ψn(q̂) ∝ e−ẑ2/2H2n(ζ̂) and (43)

b =
3

2
=⇒ ψn(q̂) ∝ e−ẑ2/2H2n+1(ζ̂). (44)

All that remains is to find the normalization constant, which we do not do here. To finish

the derivation, we replace ẑ → z, ζ̂ → z2, and then z =
√

Mω
h̄ x. You then find that

ψ1d SHO
n (x) = CnHn

(

Mωx2

h̄

)

e−
Mω
2h̄ x2

, (45)

with Cn being the normalization constant, which is the standard result, but found with a
somewhat different path than usual.

3.2. Harmonic Oscillator in Higher Dimensions

We next consider the isotropic harmonic oscillator in two and three dimensions, but we
also consider a more general problem, which can be thought of as a harmonic oscillator plus
an inverse q-squared potential with an arbitrary coefficient. While conventional constraints
fix the coefficient of the inverse q-squared coefficient according the z-component of angular
momentum in two dimensions or the total angular momentum in three dimensions, the
single-shot factorization method solution has no such constraint, and we can find the
general solution for any real value of that coefficient (as long as it is not negative). Keeping
this in mind, the form of the effective potential for this class of problems is given by

Veff(q̂) =
1

2
Mω2q̂2 +

λ

q̂2
. (46)

Here, we have λ ≥ 0 as a real number and the restrictions of

λ

q̂2
=







h̄2(4m2−1)
8Mρ̂2 for the 2D harmonic oscillator

h̄2l(l+1)
2Mr̂2 for the 3D harmonic oscillator.

(47)

We solve the problem for a general λ as well; this possibility is not as well known as the
explicit solutions in 2D and 3D. Note that the 2D case with m = 0 has λ < 0. It turns out
that the solution nevertheless remains normalizable, as shown below. Note that the same
ẑ and ζ̂ choices used in the 1D case also work here. When substituted into Equation (22),
the LHS has both ẑ2 and 1

ẑ2 terms, allowing for a solution of all of the current cases by just
making different choices for the coefficients. In particular, we take

ẑ = kq̂ and ζ̂ = cẑ2, (48)

and then find that we have

4c2ẑ2 + 8c(2a − b) +
4b(b − 2)

ẑ2
+

3

ẑ2
=

8M

h̄2k2

[

1

2
Mω2 ẑ2

k2
+

λk2

ẑ2
− E

]

. (49)

Again, we take k =
√

Mω
h̄ , which yields

4(c2 − 1)ẑ2 + 8

(

c(2a − b) +
E

h̄ω

)

+
4b(b − 2)− 8M

h̄2 λ + 3

ẑ2
= 0. (50)
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From Equation (50), we see that we must choose

c = ±1, (51)

a =

(

b

2
− 1

c

E

2h̄ω

)

, and (52)

b = 1 ±
√

1

4
+

2Mλ

h̄2
. (53)

Now, since a must be a non-positive integer, we have

E = ch̄ω(2n + b). (54)

From here, we must determine which values of c and b will provide us with acceptable
solutions for the different problems we want to solve.

3.2.1. Two-Dimensional Harmonic Oscillator

We start with the 2D harmonic oscillator, which has

λ =
(4m2 − 1)h̄2

8M
=⇒ b = 1 ± m. (55)

Note that M(−n, b − m, ζ̂) is not well defined when b − m ∈ Z
≤0. Therefore, the only

possible solutions with an M confluent hypergeometric function are with b = 1+ |m| (since
m can be negative). In addition, we must choose c = 1 since c = −1 results in a negative
energy, which produces unphysical results. Hence, the energy eigenvalues are

E = h̄ω(2n + |m|+ 1). (56)

Using Equation (25), the wavefunction is given by

ψn(ρ̂) =
√

ρ̂Pn(ρ̂) ∝ ẑ|m|+1/2e−ẑ2/2M(−n, |m|+ 1, ẑ2). (57)

According to equation 13.6.19 in the DLMF,

M(−n, |m|+ 1, ẑ2) ∝ L
|m|
n (ẑ2), (58)

where L
|m|
n is an associated Laguerre polynomial. The final result is

ψn(ρ̂) =
√

ρ̂Pn(ρ̂) ∝ ẑ|m|+1/2e−ẑ2/2L
|m|
n (ẑ2) (59)

up to a normalization constant. The full wavefunction then becomes

ψ2D SHO
nm (ρ, φ) = Cnmρ|m|e−

Mω
2h̄ ρ2

L
|m|
n

(

Mωρ2

M

)

eimφ, (60)

with Cnm being the normalization constant and our dividing by
√

ρ as required. Note that
n is not the usual principal quantum number here; instead, it is the quantization value for
the coefficient −a. This is the well-known result for this problem. You can also see that in
the case with m = 0, there are no singularities, and thus, everything is well-behaved, as we
claimed it would be earlier.

3.2.2. Three-Dimensional Harmonic Oscillator

For the 3D oscillator, we have

λ =
l(l + 1)h̄2

8M
=⇒ b = l +

3

2
or − l +

1

2
. (61)
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The wavefunction becomes

ψ(r̂) = r̂R(r̂) ∝ ẑb−1/2e−ẑ2/2M(a, b, ẑ2). (62)

Note that if b = −l + 1
2 , then

ψ(r̂) = r̂R(r̂) ∝ ẑ−le−ẑ2/2M
(

a,−l + 1
2 , ẑ2

)

→ ∞ as ẑ → 0, (63)

for l > 0, which is not normalizable. When l = 0, the problem is identical to the 1D problem
we already solved. We must choose the odd solution (b = 3

2 ) because at r = 0, the system

acts like it has a hard wall boundary. Therefore, we have b = l + 3
2 and the energy becomes

E = h̄ω
(

2n + l + 3
2

)

. (64)

Note that we choose c = 1 to make the energies positive. We then use Equation (58) to
write the wavefunction in terms of an associated Laguerre polynomial by noting that the
index is now l + 1

2 . This then gives us

ψ(r̂) = r̂R(r̂) ∝ ẑl+1e−ẑ2/2L
l+ 1

2
n (ẑ2), (65)

up to the normalization constant. The wavefunction then becomes

ψ3D SHO
nlm (r, θ, φ) = Cnlr

le−
Mω
2h̄ r2

L
l+ 1

2
n

(

Mωr2

h̄

)

Ylm(θ, φ), (66)

which is the well-known solution, with Ylm being the spherical harmonic and the wave-
function being proportional to ψ/r in 3D. Again, note that n is not what is normally called
the principal quantum number, but is the quantized value of −a.

3.2.3. Continuously Varying Harmonic Oscillator

Here, we re-express the coefficient via

λ =
h̄2(l(l + 1) + γ)

2M
, (67)

where l and γ are chosen such that γ > 0, and l is the largest possible value that still allows
γ > 0. Note that it is likely that these conditions can be relaxed because we saw that we
could obtain solutions for the 2D case with m = 0, which has λ < 0, but we do not consider
negative λ here because we are working with a generalization of the 3D case. Plugging this
into our equation for b gives us the following:

b = 1 ±
√

1
4 + l(l + 1) + γ. (68)

We choose b = 1+
√

1
4 + l(l + 1) + γ since the opposite sign choice leads to a wavefunction

that is not normalizable. The energy then becomes

E = 2h̄ω

(

2n + 1 +
√

1
4 + l(l + 1) + γ

)

. (69)

The function ψ is given by

ψ(r̂) = r̂R(r̂) ∝ ẑ
1
2+
√

1
4+l(l+1)+γe−ẑ2/2M

(

−n, 1 +
√

1
4 + l(l + 1) + γ, ẑ2

)

(70)

and the wavefunction by
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ψcont
nlm (r, θ, φ) = Cnlr

− 1
2+
√

1
4+l(l+1)+γ

e−
Mω
2h̄ r2

M

(

−n, 1 +
√

1
4 + l(l + 1) + γ,−Mω

h̄ r2

)

Ylm(θ, φ) (71)

in 3D. When we have γ > 0, we find that the wavefunction vanishes at the origin. It
becomes a constant only for γ = 0 and l = 0. It appears to remain normalizable for γ > − 1

4 ,
which is the lower limit for how low γ can go in this 3D example. Such a case has a
wavefunction that diverges at the origin but remains normalizable. While such a condition
is odd, it is not ruled out by any of the quantum postulates and does occur in the solutions
of the Dirac equation.

Note that the energies given by Equation (64) contain many degeneracies. However,
adding the extra γ perturbation breaks this for most choices of γ, causing the energy values
to be distinct. This occurs because the isotropic harmonic oscillator in d dimensions has a
“hidden” SU(d) symmetry. When γ ̸= 0, the symmetry is broken.

3.3. The Coulomb Problem

In this subsection, we not only consider the Coulomb problem (1/r potential plus
a 1/r2 centrifugal term), focusing on the two-dimensional and three-dimensional cases,
but also consider the case with a continuously varying coefficient of the centrifugal term
because it does not need to be quantized in any way to yield a solution in terms of confluent
hypergeometric functions. The effective potential is then

Veff(q̂) =
λ

q̂2
− e2

q̂
, (72)

where the coefficient λ has the same restrictions as given in Equation (47) for the 2D and
3D cases.

Choosing the following for ẑ and ζ̂ allows for the required forms on the LHS of
Equation (22):

ẑ = kq̂ and ζ̂ = cẑ. (73)

We then find that

c2 +
2c(2a − b)

cẑ
+

b(b − 2)

c2ẑ2
=

8M

h̄2

λ

ẑ2
− 8M

kh̄2

e2

ẑ
− 8ME

k2h̄2
. (74)

We set a0 = h̄2

Me2 (the Bohr radius), and then the required coefficients satisfy

c =

√

−8ME

k2h̄2
, (75)

a =
b

2
− 2

cka0
, and (76)

b = 1 ±
√

1 +
8Mλ

h̄2
. (77)

We now set k =
√
−2ME

h̄ , which then results in c = ±2. Now, given a value for λ, we
determine the bound-state wavefunctions and energies. Since a must be a non-positive
integer, we first determine k, which then gives us E:

a = −n =⇒ k =
2

ca0

(

n + b
2

) =⇒ E = − h̄2

2a2
0M(n + b

2 )
2

. (78)
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3.3.1. Three-Dimensional Hydrogen

We now consider the three-dimensional case with quantized angular momentum
given by the integer l:

λ =
l(l + 1)h̄2

2M
. (79)

Substituting into Equation (77) yields

b = 2(l + 1) or b = −2l. (80)

Since M(a, b, ζ) is undefined when b ∈ Z
≤0, we can only choose b = 2(l + 1) with the

function M; trying the linearly independent choice for b = −2l does not lead to anything
new [11], and thus, we do not discuss it further. We then obtain the allowed energies by
substituting this value of b into Equation (78). For clarity, let n + l + 1 = ñ ∈ Z

≥1. Then,
we have

E = − h̄2

2a2
0M(n + l + 1)2

= − e2

2a0ñ2
(81)

as the final formula for the energy, with ñ being the principle quantum number for this
problem. Using Equation (25), we next determine the function ψ as

ψn(r̂) = r̂Rn(r̂) ∝ |ẑ|l+1e∓ẑ M
(

l + 1 ∓ 1
ka0

, 2(l + 1),±2ẑ
)

. (82)

Here, the top sign corresponds to c = 2 and the bottom sign corresponds to c = −2. At
first glance, it looks like c = −2 will not yield a normalizable solution because eẑ does not
decay as ẑ → ∞. However, equation 13.2.39 in the DLMF shows that

M(a, b, ζ̂) = eζ̂ M(b − a, b,−ζ̂). (83)

Hence,

M
(

l + 1 + 1
ka0

, 2(l + 1),−2ẑ
)

= e−2ẑ M
(

l + 1 − 1
ka0

, 2(l + 1), 2ẑ
)

, (84)

and thus, both values of c yield normalizable wavefunctions (there is nothing new here,
they just yield the same function). According to equation 13.6.19 in the DLMF, we can then
express the function ψ in terms of the associated Laguerre polynomials via

ψn(r̂) = r̂Rn(r̂) ∝ |ẑ|l+1e−ẑL2l+1
ñ−l−1(2ẑ). (85)

The wavefunction is then given by

ψ3D H
ñlm (r, θ, φ) = Cñlr

le
− r

ña0 L2l+1
ñ−l−1

(

2r
ña0

)

Ylm(θ, φ), (86)

where, again, we have not determined the normalization constant Cñl .

3.3.2. Two-Dimensional Hydrogen

Next, we consider the two-dimensional case, where

λ =
(4m2 − 1)h̄2

8M
. (87)

Substituting into Equation (77), we obtain

b = 2m + 1 or b = −2m + 1. (88)

Since M(a, b, ζ̂) is undefined if b is a non-positive integer, we require b = 2|m|+ 1 for a
solution in terms of M (recall that m can be negative). Substituting this into Equation (78)
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then yields the allowed energies. Let ñ = n + |m|+ 1 be the principal quantum number
(ñ ≥ 1) so that we have

E = − e2

2a0

1
(

ñ − 1
2

)2
. (89)

The function ψ is

ψñ(ρ̂) =
√

ρ̂Pñ(ρ̂) ∝ |ẑ||m|+ 1
2 e∓ẑ M

(

|m|+ 1
2 ∓ 1

ka0
, 2|m|+ 1,±2ẑ

)

. (90)

Here, the top sign corresponds to c = 2 and the bottom sign corresponds to c = −2. Once
again, we use equation 13.2.39 in the DLMF to see that both values of c give the same net
contribution to the function ψ because

M
(

|m|+ 1
2 + 1

ka0
, 2|m|+ 1,−2ẑ

)

= e−2ẑ M
(

|m|+ 1
2 − 1

ka0
, 2|m|+ 1, 2ẑ

)

. (91)

Now, we re-express the function ψ in terms of the Laguerre polynomials by using 13.6.19
in the DLMF, which yields

ψñ(ρ̂) =
√

ρ̂Pñ(ρ̂) ∝ ẑ|m|+ 1
2 e−ẑL

2|m|
ñ−|m|−1

(2ẑ). (92)

The wavefunction is then given by

ψ2D H
ñm (ρ, φ) = Cñmρ|m|e

− ρ

a0(ñ− 1
2 ) L

2|m|
ñ−|m|−1

(

2ρ

a0(ñ − 1
2 )

)

eimφ (93)

up to the normalization constant. This is also the standard solution.

3.3.3. Continuously Varying Hydrogen

In this case, we write the parameter as a correction to the 3D problem:

λ =
h̄2(l(l + 1) + γ)

2Mr2
, (94)

with γ > 0 and l chosen to be the largest non-negative integer so that γ > 0. This requires
us to choose

b = 1 ±
√

1 + 4(l(l + 1) + γ). (95)

Note that because γ > 0, we have that

1 −
√

1 + 4(l(l + 1) + γ) < 0. (96)

Hence, if b = 1 −
√

1 + 4(l(l + 1) + γ), then ψ(z) ̸→ 0 as z → 0. This wavefunction is not
normalizable. Hence, it must be the case that

b = 1 +
√

1 + 4(l(l + 1) + γ). (97)

This then tells us that

E = − e2

2a0

1
(

n + 1
2 + 1

2

√

1 + 4(l(l + 1) + γ)
)2

. (98)
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Again, the additional γ perturbation to the 3D potential of the hydrogen atom generally
splits all degeneracies. Here, this is because a hidden SO(4) symmetry is broken in the 3D
case. To express the wavefunction, we first introduce a compact notation and let

M̃(2ẑ) = M

(

1
2 +

√

1
4 + l(l + 1) + γ − 1

ka0
, 1 +

√

1 + 4(l(l + 1) + γ), 2ẑ

)

. (99)

Next, recalling that

k =
1

a0

(

n + 1
2 +

√

1
4 + l(l + 1) + γ

) , (100)

the function ψ is then given by

ψ(r̂) = r̂R(r̂) ∝ ẑ1/2+
√

1/4+l(l+1)+γe−ẑ M̃(2ẑ). (101)

The 3D wavefunction then becomes

ψcont
nlm (r, θ, φ) = Cnl r̂

−1/2+
√

1/4+l(l+1)+γe−kr M̃(2kr)Ylm(θ, φ). (102)

It also goes to zero at r = 0 whenever γ > 0 or l > 0. Again, the true constraint is γ > − 1
4

and we can again have a wavefunction that diverges at the origin. This actually occurs for
the relativistic hydrogen wavefunction for l = 0.

3.4. Morse Potential

The Morse potential is commonly used to describe molecular vibrations, as it has the
same type of asymmetric shape seen in molecular potentials. The one-dimensional case has
the effective potential

Veff(x̂) = V0

(

e−2αx̂ − 2e−αx̂
)

. (103)

In this case, we pick
ẑ = kx̂ and ζ̂ = ce−α.ẑ. (104)

Substituting into Equation (22) yields

α2c2e−2αẑ + α2ce−αẑ2(2a − b) + α2b(b − 2) + α2 =
8M

h̄2k2

(

V0

(

e−2αẑ/k − 2e−αẑ/k
)

− E
)

. (105)

From this form, it is clear that k = 1 and

(

α2c2 − 8MV0

h̄2

)

e−2αẑ +

(

α2c2(2a − b) +
16MV0

h̄2

)

e−αẑ + α2b(b − 2) + α2 +
8ME

h̄2
= 0. (106)

Next, we determine a, b, and c as follows:

c = ±
√

8MV0

αh̄
, (107)

a =
b

2
−

√
16MV0

cαh̄
, and (108)

b = 1 ±
√
−8ME

αh̄
. (109)

Now, we need to check which values of b and c produce normalizable wavefunctions.
Using Equation (25), we find that

ψ(x̂) ∝ e
(1−b)αx̂

2 e−
c
2 e−αx̂

M(a, b, ce−αx̂). (110)

For this to be normalizable at ±∞, the sign of both exponents must be negative. As
x → −∞, we have e−αx → ∞ and the function ψ is dominated by exp(− c

2 e−αx), which
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vanishes if c > 0. As x → ∞, we have that the function behaves like exp( 1−b
2 αx), which

requires 1 − b < 0. Hence, we must have that

(1 − b)α

2
< 0 =⇒ b = 1 +

√
−8ME

αh̄
, and (111)

− c

2
< 0 =⇒ c =

√
8MV0

αh̄
, (112)

and

a =
1

2
+

√
−2ME

αh̄
−

√
2MV0

αh̄
. (113)

Using the fact that a = −n must be a non-positive integer finally yields the allowed
energies as

E = −α2h̄2

2M

(

(

n + 1
2

)

−
√

2MV0

αh̄

)2

. (114)

Note that for 0 ≤ n ≤
√

2MV0
βh̄ − 1

2 , E is a strictly increasing function of n. When n reaches
√

2MV0
βh̄ − 1

2 , we must change b to be equal to 1−
√
−8ME

αh̄ , which is no longer a valid solution.

Hence, the Morse potential only has a finite number of bound states corresponding to

0 ≤ n ≤
√

2MV0
βh̄ − 1

2 . The way to understand this requirement on b is that we are taking E

through zero as if it is a continuously varying parameter, and then the change in the sign of
the square root is needed to have a well-defined square root.

4. Relationship to Natanzon’s Work

Natanzon determined the most general class of potentials that can be solved by both
hypergeometric and confluent hypergeometric functions [10,12,14]. While he analyzed the
problem thoroughly, he was not able to express the potentials in a closed form for the generic
case. This remains true today—many of the potentials can only be determined numerically.

Natanzon’s strategy was to transform the appropriate hypergeometric or confluent
hypergeometric differential equation into the Schrödinger equation and read off the allowed
potentials. This is a very different strategy from the one we chose, where we used an
ansatz to factorize the Schrödinger equation that incorporated confluent hypergeometric
functions. Clearly, these two approaches should yield the same final results for the confluent
hypergeometric cases, but the relationship between the two is not so simple at first glance.
We concretely show the relationship here, sticking with the operator form of the derivation
so that the final results of the Natanzon method and the single-shot factorization method
can be directly compared.

We start from the confluent hypergeometric function and ask when it can be trans-
formed into the Schrödinger equation via a specific change in variables. The confluent
hypergeometric function differential equation is given by

(

ζ̂
d2

dζ̂2
+
(

b − ζ̂
) d

dζ̂
− a

)

φ(ζ̂) = 0. (115)

We first transform the second-order differential equation into the canonical form consisting
of only a second derivative term and a constant term. To remove the first-order derivative,
we make the transformation

Φ(ζ̂) = exp

(

∫ ζ̂ b − t

2t
dt

)

φ(ζ̂), (116)
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which results in the differential equation

(

d2

dζ̂2
+ I(ζ̂)

)

Φ(ζ̂) = 0, (117)

with

I(ζ̂) =
−4aζ̂ + 2ζ̂ + 2(b − ζ̂)− (b − ζ̂)2

4ζ̂2
, (118)

which is known as the Bose invariant. Now, we want to transform the differential equation
to a differential equation in terms of ẑ, which is a variable that determines ζ̂ = ζ(ẑ), just as
we had before with the factorization method. The differential equation is transformed into

(

(

ζ̂ ′
)−2 d2

dẑ2
− ζ̂ ′′
(

ζ̂ ′
)3

d

dẑ
+ I(ζ(ẑ))

)

Φ(ζ(ẑ)) = 0. (119)

We remove the term linear in the derivative with respect to ẑ using a similar transformation
to find

(

d2

dẑ2
+ J(ẑ)

)

ψ(ẑ) = 0, (120)

with

ψ(ẑ) =
(

ζ̂ ′(ẑ)
)

1
2
Φ(ζ̂(ẑ)), and (121)

J(ẑ) =
(

ζ̂ ′(ẑ)
)2

I(ζ̂(ẑ)) +
1

2

{

ζ̂, ẑ
}

. (122)

The notation
{

ζ̂, ẑ
}

is the so-called Schwarz derivative, which is given by

{

ζ̂, ẑ
}

=
ζ̂ ′′

ζ̂ ′

(

ζ̂ ′′′

ζ̂ ′′
− 3

2

ζ̂ ′′

ζ̂ ′

)

. (123)

Now, to transform the confluent hypergeometric function into the Schrödinger equation,
we must have

(

ζ̂ ′
)2

I(ζ̂) +
1

2

{

ζ̂, ẑ
}

= − 2M

h̄2k2

(

V(q̂)− E
)

. (124)

The Bose invariant can be rewritten as

I(ζ) = −1

4
+

2(b − 2a)

4ζ̂
+

b(2 − b)

4ζ̂2
. (125)

Substituting this into equation Equation (124) gives us

(

ζ̂ ′
)2
[

1 +
2(2a − b)

ζ̂
+

b(b − 2)

ζ̂2

]

− 2
ζ̂ ′′′

ζ̂ ′
+ 3

(

ζ̂ ′′

ζ̂ ′

)2

=
8M

h̄2k2
[V(q̂)− E]. (126)

This is identical to the final Equation (22), which we arrived at after calculating Â†
k Âk. By

approaching the problem using a wavefunction that contains a confluent hypergeometric
function, our method implicitly arrives at this constraint, while Natanzon’s method arrives
at the same condition by explicitly showing the relationship between the confluent hyper-
geometric and Schrödinger equations. Note that Natanzon actually started his work from a
scaled confluent hypergeometric equation, which is required to solve for the general case.
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It turns out that we can obtain this more general result by scaling ζ̂ → cζ̂, which we do
to obtain

(

ζ̂ ′
)2
[

c2 +
2c(2a − b)

ζ̂
+

b(b − 2)

ζ̂2

]

− 2
ζ̂ ′′′

ζ̂ ′
+ 3

(

ζ̂ ′′

ζ̂ ′

)2

=
8M

h̄2k2
[V(q̂)− E]. (127)

Note that we must have c > 0 because the wavefunction behaves like e−ζ̂/2 → e−cζ̂/2 as
ζ̂ → ∞.

Natanzon’s method does not yield a term that depends on the confluent hypergeomet-
ric function, as we found in Equation (19), because the coordinate transformation does not
depend on energy. This provides further justification for setting that term to zero in our
formulation, but does not exclude the possibility that one can solve these problems with
that term, at least not yet. The reason why Natanzon’s approach does not have this term is
that he excluded it earlier in his derivation in order to have a potential that is independent
of E.

Although we use different approaches, we end up with the the same result (after our
rescaling). One can then proceed by plugging a potential into the RHS of Equation (127)
and following the method outlined in the previous section, or one can solve for all possible
energies and potentials in a parametric form, as Natanzon does. We give an outline on
how to achieve this parametric form and discuss the criteria for finding potentials that
admit bound states. Of course, this approach works for both techniques since the starting
equation is the same.

At this stage, we work with parametric functions, and it is more convenient to work
with real-valued functions, thus we drop the hats from the remainder of the article.

In order to find a parametric form for the desired potentials, and under the assumption
that V(q) and ζ(z) have no dependence on E, we require that the energy E arise in the
following way. We express the coefficients in the square brackets on the first line of
Equation (127) in terms of numbers independent of E plus a term proportional to the
energy. Therefore, we take

c2 = v1 − α1
2ME

h̄2k2
= v1 − α1Ē, (128)

2c(2a − b) = v2 − α2
2ME

h̄2k2
= v2 − α2Ē, and (129)

b(b − 2) = v3 − α3
2ME

h̄2k2
= v3 − α3Ē, (130)

where we introduce a dimensionless Ē; we also introduce a dimensionless potential V̄(q) =
2MV(q)/h̄2k2. Then, we find that Equation (127) has the Ē term given by

Ē =
(

ζ ′
)2
(

α1

4
+

α2

4ζ
+

α3

4ζ2

)

Ē, (131)

which requires the first two factors on the RHS to multiply to 1, or

ζ ′ = ± 2ζ
√

α1ζ2 + α2ζ + α3

. (132)

We have a choice for the sign, which is up to us. We pick the positive sign. Using this
relation allows us to re-express Equation (126) as

V̄(q) =
v1ζ2 + v2ζ + v3 + 1

α1ζ2 + α2ζ + α3
+

(4α1ζ + α2)ζ

(α1ζ2 + α2ζ + α3)2
− 5ζ2(2α1ζ + α2)

2

4(α1ζ2 + α2ζ + α3)3
, (133)

after some significant algebra to compute all of the higher order derivatives and using the
constraint to simplify the final results. Now, we choose the limit of the potential to be zero
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as ζ(q) → ∞, which requires v1 = 0. We also see that in the limit as ζ(q) → 0, the limit
of the potential is (v3 + 1)/α3. Hence, in general, the potential has asymmetric limits as
q → ±∞.

The constraint in Equation (132) further implies that

q(ζ)− q0 =
1

2

∫ ζ
√

α1ζ̄2 + α2ζ̄ + α3

ζ̄
dζ̄. (134)

The variable q is required to be real. One way to guarantee this is to require α1ζ2 + α2ζ +
α3 > 0 in the domain (0, ∞); one can see that q → −∞ as ζ → 0 if α3 ̸= 0 and q → ∞ as
ζ → ∞ if α1 ̸= 0. The positivity requirement leads to the constraints that

α1 ≥ 0, α3 ≥ 0, and α2 ≥ −2
√

α1α3. (135)

Enforcing this, we can now solve Equation (134) using 2.261, 2.266, and 2.267 of [15]. In the
case where α1 ̸= 0 and −2

√
α1α3 < α2, we find

q(ζ)− q0 =
1

2

[

√

R(ζ)−√
α3 ln

(

2α3 + α2ζ + 2
√

α3R(ζ)

ζ

)

+
α2

2
√

α1
ln

(

2α1ζ + α2 + 2
√

α1R(ζ)

)

]

, (136)

with R(ζ) = α1ζ2 + α2ζ + α3. One can show that the arguments of the logarithms are
always positive on the domain when we enforce the constraints on the coefficients. Here
q0 is an arbitrary integration constant since the origin of the position coordinate can lie
anywhere. When α1 = 0, we have

q(ζ)− q0 =
1

2

[

√
α3 ln

(

∣

∣

√
α2ζ + α3 −

√
α3

∣

∣

√
α2ζ + α3 +

√
α3

)

+ 2
√

α2ζ + α3

]

. (137)

Now, by choosing values for the five parameters v2, v3, α1, α2, and α3 and inverting
the function q(ζ), it is possible to obtain potentials that can be solved using the confluent
hypergeometric function by computing the potential and energy, as well as verify that the
potential satisfies the required conditions and the energy is larger than the minimum value
of the potential.

Notice that q(ζ) is not easily invertible unless all but one of α1, α2, and α3 are equal
to zero. In these three cases, the resulting potentials are the three potentials solved earlier.
However, if more than one of the three α1, α2, and α3 are non-zero, then q(ζ) contains inverse
trigonometric functions along with the square root of a polynomial. This combination has
no known analytical inverse. We work with the system as a parametric set of equations
when we do the numerics to avoid needing to perform any numerical inversions.

The allowed energies can be found by requiring a in Equation (126) to be a non-positive
integer in order for the resulting wavefunctions to be normalizable. This leads to the general
result (when v1 = 0) that

c =
√

−α1Ē, (138)

which is real and positive because we must have Ē < 0 and c > 0, and

b = 1 +
√

1 + v3 − α3Ē, (139)

because the asymptotic behavior near ζ → 0 requires b > 0, and the energy satisfies the
equation

2n + 1 = − v2

2
√

−α1Ē
− α2

√
−Ē

2
√

α1
−
√

1 + v3 − α3Ē, (140)



Symmetry 2024, 16, 297 19 of 22

with n = 0, 1, · · · . This result agrees with Natanzon’s. Given values for the five parameters,
it is possible to determine whether the corresponding potential has bound states by solving
Equation (140) for real roots that are less than the minimum of 0 and (1 + v3)/α3. There is
only one negative energy root for each n value.

Natanzon carefully analyzed these equations and concluded the following results. If
α1 > 0, the parameter space can be split into three regimes:

1. If v2 > 0 and v3 + 1 > 0, then Equation (140) does not permit any bound states
because there can be no solutions for n ≥ 0 because the RHS is always less than zero;

2. If v2 < 0, there will be an infinite number of bound states that converge to zero
because the RHS is dominated by the first term and it is unbounded as Ē → 0;

3. If v2 > 0 and v3 + 1 < 0, the potential may have bound states if α2 < 0.

If α1 = 0, we must have v1 ̸= 0, and then c =
√

v1, b =
√

1 + v3 − α3Ē, and

2n + 1 +
v2

2
√

v1
= − α2Ē

2
√

v1
−
√

1 + v3 − α3Ē. (141)

Once again, there should be only one negative energy root for each value of n. In this case,
we can split the parameter space into two regimes:

1. If α2 = 0, there will be an infinite number of bound states;
2. If α2 > 0, the potential may have a finite number of bound states.

Note how the criteria given by Natanzon are necessary but not sufficient. There are two
parameter regimes in which there may be bound states, but we do not have sufficient infor-
mation to determine this analytically. One must instead explore these cases numerically,
as we do in the next section. We also want to emphasize that because Natanzon’s final
equation is identical to our requirement, this approach also identifies all potentials that can
be solved by single-shot factorization.

5. Numerical Examples of Natanzon Potentials

As we described above, most of the potentials that can be exactly solved by confluent
hypergeometric functions cannot be found analytically. They tend to have similar shapes
to each other, approaching a constant value to the left and to the right (not always an
equal constant). To have potentials with bound states, we must ensure the potentials have
minima. While it is known that if the potential has the same limit to the left and the right
and it always lies below that limiting value, it must always have at least one bound state;
when the limits are different, or the potential does not always lie below the limit, less is
known about whether there is at least one bound state.

For our numerical examples, we chose cases where the left limit varied, while the
right limit was always at 0. To achieve this, we took α1 = 1, α2 = −1, α3 = 1, v1 = 0,
v2 = 1, and v3 + 1 < −6.85. This was the case that had at least one bound state. This was
because the negative value for v3 requires Ē < 1 + v3 in order for the far right square root
in Equation (140) to be a real number. In this regime, the first term on the right-hand side
was small and negative, while the second term was large and positive. The maximal n
value we could have if we neglected the small negative terms was then

nmax ≈ −α2

4

√

−(1 + v3)

α1α3
− 1

2
=

1

4

√

−(1 + v3)−
1

2
(142)

for these sets of parameters. One can see we had one bound state for v3 less than about −5
(the correct value is −7.85), two bound states when v3 was less than about −37, three when
v3 was less than about −99, and so on.

The strategy to compute the results numerically is then straightforward. We set ζ on a
grid. In order to obtain large negative values of q, we needed pick a small step size near
ζ = 0 because q goes to −∞ only logarithmically in ζ; q and ζ are related approximately
linearly when ζ → ∞. Then, with this set of ζ values, we next compute the parametric
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equations q(ζ) from Equation (136) and V(ζ) from Equation (133). Then, we plot V(q) by
simply using the corresponding results for q and V. The potentials for these parameters
are plotted in Figure 1 (The data for the figure is provided in Supplementary Materials).
They all have clear wells where we have bound states. As we decrease v3, the well becomes
deeper, which allows for more bound states. The approximate transition points are reported
in the caption of Figure 2. The potential becomes more asymmetric as well. As the depth
becomes deeper, we anticipate that there would be more bound states, but in all cases, we
expect just a finite number of them. As shown in Figure 2, the energy of each bound state
decreases approximately linearly with v3. New bound states enter with energies near the
left asymptotic limit and then move downward. In addition, the higher-energy bound
states have a smaller spacing than the lower-energy ones. This behavior is similar to the
behavior seen in the bound states of the Morse potential. We verify the results for the
energy eigenstates via an independent “shooting method” code to find the ground states
with specific energy eigenvalues. We find that the shooting method (performed on a finite,
rather than infinite, domain) produces an energy that agrees to four or more decimal points,
confirming all of the numerics.

Figure 1. Exactly solvable potentials for different v3 values (v3 became more negative). We plot

v3 = −10, −30, −60, −100, −150, −210, −280, −360, −450, −550, −660, −780, and −900. The color

coding records the number of bound states for each potential well. The well increases in depth,

allowing for more bound states. It also becomes more asymmetric.

Figure 2. Behavior of the bound state energies as ν3 → −∞. One can see that as the potential depth

deepens, more bound states are allowed in the system. The newly formed bound states enter at first
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with the asymptotic value of the left limit, in this case, because it is the lower of the two limits of

the potential. The approximate transitions are as follows: two bound states, v3 ≈ −39; three bound

states, v3 ≈ −103; four bound states, v3 ≈ −199; five bound states, v3 ≈ −327; six bound states,

v3 ≈ −487; and seven bound states, v3 ≈ −679.

6. Conclusions

In this work, we describe a different approach to solving the energy eigenvalue prob-
lem, which we call single-shot factorization. By introducing an ansatz for the superpotential
that is a logarithmic derivative of confluent hypergeometric functions, plus some additional
simple functions, we are able to find analytical solutions by inputting an analytically solv-
able potential and determining the energies and wavefunctions by enforcing appropriate
boundary conditions and normalization conditions. The approach can also be used in the
converse way by inputting a normalizable eigenfunction and using the factorization to
determine the potential. This converse problem is equivalent to Natanzon’s method, but
our approach provides a different perspective to this problem, especially with regard to its
relationship with supersymmetric quantum mechanics.

In supersymmetric quantum mechanics, or more generally in the conventional factor-
ization method, one forms a factorization chain and a sequence of auxiliary Hamiltonians
to solve the problem. In each case, the factorization is performed with a superpoten-
tial that is a logarithmic derivative of a ground-state wavefunction, which has no nodes.
Instead, in the single-shot factorization approach, there is no factorization chain, no aux-
iliary Hamiltonians, and each factorization has a superpotential that is singular at the
nodes of the wavefunction. This provides another perspective of the energy eigenvalue
problem that is different from the Schrödinger equation approach and the conventional
factorization method.

In the process of our solution, we found it expedient to require the constraint in
Equation (20) to ensure that the potential was independent of the quantization energy. This
constraint naturally arose in Natanzon’s work when converting hypergeometric differential
equations to the Schrödinger equation. If there happens to be some special form of M(a, b, ζ)

such that
M(a,b+1,ζ)

M(a,b,ζ)
is not dependent on a and b, there might be additional solutions to

be uncovered that go beyond what Natanzon discovered. Most likely, any new solution
would need to be on a finite and not infinite domain, as it might be easier to enforce the
constraint of the potential not depending on the energy for that case.

This work focused exclusively on confluent hypergeometric function representations
for the eigenfunctions. It should be possible to extend this work using hypergeometric
functions and even Heun functions. Some work in this direction has already been completed
from the perspective of supersymmetric quantum mechanics [16]. This indicates that the
single-shot factorization method we use here should be able to be extended in these
directions. We leave this question for future work.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/

10.3390/sym16030297/s1. The supplementary materials include a README file and two data files

including all the data plotted in each figure.
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