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Abstract. - The structures of the nuclei on isotope chain of even-even Mo
are investigated in the axially deformed relativistic mean-field theory with the
NL-SH forces. We put an emphasis on the ground state properties of molybde-
num nuclei. With high neutron number is correctly reproduced in the relativistic
mean-field theory (RMF). In general, the RMF theory can give a good descrip-
tion of the isotope chain of Mo nuclei.
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One of the main aims of researches in nuclear physics is to try to describe ground-
state properties of nuclei in the whole mass region. Unfortunately, due to lack of
understanding in strong interaction and numerical difficulty in treating nuclear many-
body problems, so far all microscopic descriptions are only possible on a phenomeno-
logical ground. The relativistic mean field theory of the nucleus has been a fairly
successful application of Dirac phenomenology. It has been applied to study the
binding energy, the shape of the ground state and various other properties of nu-
clei. An excellent recent review by Ring [1], gives a comprehensive list of references.
Recent advances include studies in dripline regions through the relativistic Hartree-
Bogoliubov formalism [2], explanation of pseudospin symmetry [3], etc.

The basic Ansatz of the RMF theory is a Lagrangian density [1, 4-6] where nucle-
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ons are described as Dirac particles which interact via the exchange of various mesons.
The Lagrangian density considered is written in the form:
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The meson fields included are the isoscalar o-meson, the isoscalar-vector w-meson
and the isovector-vector p-meson. The latter provides the necessary isospin asymme-
try. The arrows in Eq. (1) denote the isovector quantities. The Lagrangian contains
also a non-linear scalar self-interaction of the o-meson.

1 1 1
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This term is important for appropriate description of surface properties [7]. M,

Me,m,, and m, are the nucleon-, the o-, the w- and the p-meson masses respectively,

while g5, gu, g9, and % = ﬁ are the corresponding coupling constants for the mesons

and the photon. The field tensors of the vector mesons and of the electromagnetic
fields take the following form:

QY = P — Ot (3)
R = orp — 0" (4)
Fr = grAY — 9¥ AF (5)

The variational principle gives the equations of motion. The mean field approxi-
mation is introduced at this stage by treating the fields as the c-number or classical
fields. This results into a set of coupled equations namely the Dirac equation with
potential terms for the nucleons and the Klein-Gordon type equations with sources for
the mesons and the photon. For the static case, along with the time reversal invari-
ance and charge conservation the equations get simplified. The resulting equations,
known as RMF equations have the following form.

Dirac equation for the nucleon,

{—ia 7 +V(r) + B [M + S(r)]}vhi = i (6)

where V(1) represents the vector potential:
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1+
V(r) = gowo(r) + gpm3po(r) +e 5 2 Ao(r) (7)
and S(r) is the scalar potential:
S(r) = gs0(r) (8)
the latter contributes to the effective mass as:
M* =M+ S(r) (9)

The Klein-Gordon equations for the meson and electromagnetic fields with the
nucleon densities as sources:

{=A+m2}o(r) = —gops(r) — gao®(r) — g30°(r) (10)
{=A+md}wo(r) = gupu(r) (11)
{=A+m2}po(r) = gops(r) (12)

—AAo(r) = epe(r) (13)
The corresponding densities are:
A —
ps = Z niii (14)
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Here the sums are taken over the particle states only. This implies that the con-
tributions from negative-energy states are neglected (no-sea approximation), i.e. the
vacuum is not polarized. The 7w-meson does not contribute in the present relativistic
mean field (Hartree) approximation because of its pseudo nature. The occupation
number n; is introduced to account for pairing which is important for open shell nu-
clei. In the absence of pairing it takes the value one (zero) for the levels below (above)
the Fermi surface. In the presence of pairing the partial occupancies (n;) are obtained
in the constant gap approximation (BCS) through the well known expression:
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The ¢; is the single-particle energy for the state i and chemical potential or Fermi
energy A for protons (neutrons) is obtained from the requirement

) (18)

Z n; = the number of protons(Z)
i=1
(the number of neutrons(N)) (19)

The sum is taken over protons (neutrons) states. The gap parameter A is calcu-
lated from the observed odd-even mass differences. In the absence of experimental
masses it can inferred from the extrapolation of the masses given by any of the
avalaible mass formulae.

The above set of equations (6,10,11,12 and 13) are to be solved self-consistently.
For this purpose one starts with an initial guess of the fields (e.g. generated by
axially deformed Woods-Saxon potential) to calculate the potential terms (Eqs. (7,
8)) appearing in the Dirac equation (Eq. (6)). The Dirac equation is solved with
these potentials terms to yield the nucleon spinors which in term are used to obtain
the sources (densities). The meson and photon equations are then solved with these
sources to get a new set of fields to be used for the calculation of new potential terms.
The Dirac equation is then solved with the new potentials to get the spinors again
to be used to obtain the new sources for the meson fields. This iterative procedure is
continued till the converegence upto the desired accuracy is achieved.

The total binding energy is written as

E = Epart + Eo’ + Ew + Ep + ECoul + Epair + Enl - Ec.m — AM. (20)

DETAILS OF CALCULATIONS

The molybdenum nuclei considered here are even-mass nuclei with mass number
A = 88 up to 106. All of these isotopes are open-shell nuclei both in protons and
neutrons, thus requiring the inclusion of pairing. The parameter set NL-SH [8] has
been employed for all nuclei. This set has been found to be very successful for the
ground-state properties of many nuclei. The number of shells taken into account are
12 and 20 for the fermionic (Nr) and bosonic (Np) expansion, respectively. The basis
parameters hw and By used for the calculations have been taken to be 414~1/3 and
0.0, respectively.

In order to investigate these Mo nuclei we have performed the calculations with
Saxoon-Woods initial wavefunctions.

There are a number of parametrization sets for prediction of the nuclear ground
state properties [1]. We used the parameter set NL-SH [8] in the present calculation.
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Table 1: The parameters of the force NL-SH. All the masses are in MeV, while go is
in fm~'. The other coupling constants are dimensionless.
M =939.0 m, = 526.059 m, = 783.0 m, = 763.0
go = 10.444 g = 12.945 gp = 4.383
go = —6.9099 g3 = —15.8337
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Figure 1: The calculated binding energy per nucleon for Mo isotopes.

Fig.1 shows the binding energy per nucleon (E/A) for Mo isotopes. The empir-
ical values which is from Thomas Fermi Model taken from [9] are also shown. The
parabolic shapes of the binding energy per nucleon emerges nicely. The minimum in
the binding energy is observed at the magic neutron number N = 50 in RMF theory.
The calculated RMF binding energies agree very closely the experimental values [10].

We give in Fig.2 the quadrupole deformation 35 for the shape correspondingto the
lowest energy. It is seen that (3 is close to zero in the ligher isotopes of molybdenum.
This turns out that these nuclei are spherical near the magic neutron number N =
50. Nuclei above this magic number the shape turns to prolate one. In Fig.3 the
r.m.s. charge and neutron radii of Mo nuclei are shown. It is seen that ongoing
from the lighter isotopes to the heavier ones the charge radii exhibit a decreasing
trend upto the magic isotope, that is the lighter isotopes have higher charge radii
than the heavier closed neutron- shell nucleus. The charge radii for nuclei heavier
than the closed neutron-shell start increasing with addition of neutrons. The neutron
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Figure 2: The quadrupole deformation G5 for Mo nuclei.
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Figure 3: The calculated r.m.s. charge and neutron radii of Mo nuclei.
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Table 2: Some calculated energy values of Mo isotopic chain obtained by using the
force NL-SH.

E(MeV) E, Eon E., E, Ec Epair | Fem | Frotal
B Mo -12493.1 | -236.88 | 10526.7 | 2.59 | 281.84 | -12.63 | -6.91 | -744.06
OMo -12897.9 | -244.16 | 10869.5 | 5.02 | 281.53 | -12.32 | -6.86 | -770.72
2 Mo -13289.6 | -251.12 | 11201.18 | 8.26 | 281.09 | -11.39 | -6.81 | -796.16
Mo -13489.6 | -255.87 | 11365.02 | 11.79 | 279.68 | -13.31 | -6.76 | -810.37
%Mo -13763.9 | -261.53 | 11591.1 | 16.13 | 277.50 | -12.48 | -6.72 | -827.34
B Mo -13969.7 | -266.17 | 11759.3 | 20.87 | 275.99 | -12.74 | -6.67 | -841.91
100770 -14256.3 | -271.56 | 11995.9 | 26.39 | 274.19 | -12.48 | -6.62 | -857.76
102770 -14536.5 | -277.06 | 12225.7 | 32.57 | 272.82 | -12.55 | -6.58 | -871.25
04770 -14783.2 | -282.20 | 12427.8 | 39.15 | 271.52 | -12.75 | -6.54 | -884.11
067070 | -15017.09 | -287.07 | 12619.2 | 46.06 | 270.18 | -12.82 | -6.49 | -896.49

Table 3: The calculated quadrupole values of Mo nuclei.

Qn(b) | Qp(d) | QD)
Mo | 0.18 0.15 | 0.33
Mo | 0.032 | 0.031 | 0.063
2Mo | 0.011 | 0.013 | 0.02
Mo | 0.032 | 0.027 | 0.059
%Mo | 2.022 | 1.597 | 3.619
BMo | 2467 | 1.775 | 4.242
0pr0 | 3761 | 2.665 | 6.425
027070 | 4.577 | 3.051 | 7.628
040710 | 5.009 | 3.212 | 8.221
067010 | 5.559 | 3.477 | 9.036

radii, on the other hand, also show a kink about the neutron shell closure. However,
the neutron radius for lighter isotopes in these chains is not higher than that of the
closed-shell nucleus.

In Table 2 we present some calculated energy values of molybdenum nuclei. It is
also given calculated quadrupole moments of neutron and proton in Mo isotopes in
Table 3.

SUMMARY

The relativistic mean field theory has been used to study a number of Mo isotopes
in the mass 88-106 region. The ground state properties of these nuclei have been
calculated using rmfaxial code [11]. It is found out that the rmf theory is capable of
describing Mo nuclei.



T. BAYRAM : INVESTIGATION OF SOME EVEN-EVEN Mo NUCLEL... 125

REFERENCES

[1] P.Ring, Prog.Part.Nucl.Phys. 37 , 193 (1996)

[2] P. Ring and P. Schuck, The Nuclear Many-Body Problem. Springer-Verlag |,
Berlin (1980)

3] J.N.Ginocchio,Phys.Rev.Lett. 78 , 436 (1997)

4] B.D. Serot and J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).

5] B.D. Serot, Rep. Prog. Phys. 55, 1855 (1992).

6] M.M. Sharma, G.A. Lalazissis, and P. Ring, Phys. Lett. B317, 9 (1993).

7] J. Boguta and A.R. Bodmer,Nucl. Phys. A292,413 (1977)

8] M.M.Sharma and M.A.Nagarajan, Phys.Lett. B312, 377 (1993)

9] W.D. Myers and W.J. Swiatecki, http:// nsdssd.lbl.gov

0] G. Audi and A.H. Wapstra, Nucl. Phys. A565, 1 (1993)

1] P.Ring, Y.K.Gambhir and G.A.Lalazissis, Comp.Phys.Comm. 105, 77 (1997)

[
[

— =



