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1. - INTRODUCTION

1)

L'an dernier vous avez déja entendu le Professeur Wightman
vous parler du probléme de l'oscillateur anharmonique, plus spécifique-

ment de 1'étude des niveaux d'énergie du Hamiltonien

A
H=- g;t_-:—x"'-a—Qx‘* (1)

I1 vous a décrit d'une part les résultets obtenus par
Bender et Wu 2) 4 1l'aide de l'approximation W.K.B. mais sans justifica-
tion de cette approximation, d'autre part les résultats rigoureux obtenus

3)

par Simon et Wightman err suivant les méthodes de Kato.

L'inconvénient des méthodes & la Kato est qu'elles permettent
seulement d'aller jusqu'a un certain point mais non de découvrir la struc-
ture analytique compléte des niveaux d'énergie en fonction de ’)y . L'avan-
tage est que la méthode est aisément généralisable au cas de plusieurs

dimensions.

Ici, renongant provisoirement & 1l'espoir d'une généralisation
4 plusieurs dimensions, nous voulons tenter de résoudre le probléme er
exploitant au maximum le fait qu'il se réduit & 1l'étude des solutions d'une
équation différentielle du second ordre (et non d'une équation aux dérivées

partielles !) dans le domaine complexe.

Nous nous concentrerons tout d'abord sur 1'Hamiltonien (1)
et nous montrerons qu'il est possible de généraliser la caractérisation
des niveaux et fonctions propres par le nombre de zéros de la fonction
d'onde, valable dans le cas de Q réel positif, au cas de ﬂ complexe,
plus précisément -T < ArgA < +(n'. Evidemment ces zéros deviendront
complexes. Nous montrerons ainsi que chaque niveau E(Q ) est analytique
dans un plan coupé =TI < Arg A < +T. Ceci combiné avec la positivité
de E(A), 2a savoir Im(E(A))/InA > 0 et certaines estimations sur
les termes de la série asymptotique de E(g) autour de Q = 0 par
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3)

Simon , conduit a la conclusion que E(g) est une fonction du type

de Stieljes telle que la suite des approximants de Padé diagonaux (voir
4))

l'exposé de Froissart construits & l'aide de la série formelle de

perturbation autour de (A = 0 converge vers E(Q)

Tous ces résultats sont résumés dans une lettre de Simon,
Wightman, Loeffel et moi-méme 5). I1 est peut-&tre intéressant de noter
que c'est ici méme & Strasbourg que Loeffel et moi-méme avons entendu
parler pour la premieére fois de ce probléme par Wightman. Ceci démontre

clairement 1'utilité de ces rencontres.

La derniére section de mon exposé sera une tentative de

4

généralisation a des interactions polynomiales autres que x + X .

Je présenterai seulement quelques résultats partiels.
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2. - GENERALITES, LE CHANGEMENT D'ECHELLE

Les états propres sont définis comme les solutions normali-

_ gi;:'-f—x”' + ﬂx‘)%:ﬁ@hb "

sur l'intervalle -® +® .

sables de

Au départ on s'intéresse uniquement & Q réel positif.
Dans ce cas les résultats classiques s'appliquent et 1'on peut montrer
le ceractére self-adjoint de 1l'Hamiltonien. ZEtant donné que l'inter-

. 2 . .
action x  + x4 est invariante dans x — -x, on peut classer les
X

états propres en états pairs et impairs, soit ax x=0

\r(x)lko = 0.

Un inconvéniert essentiel de (2) est que Cl multiplie

= 0, soit

le terme dominant de l'interaction pour |x| - ® . Il en résulte que
le terme 1) x4 ne peut jamais €tre vraiment considéré comme une per-
turbation, aussi petit soit , bien que l'on puisse montrer que les
termes successifs du développement formel des niveaux d'énergie en )

6

série de perturbation existent. C'est pourquoi, suivant Symanzik ’

on effectue un changement d'échelle : on considére l'Hamiltonien

et ses états propres

(3)
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il est facile de voir que l'on passe de 1l'un & l'autre par le changement
7
g=x 7
p= 9
3

de variables
(4)

Pour le moment nous travaillerons avec l'équation (3),
d'un maniement beaucoup plus commode. Une étude prélimingire néces-
saire est celle des solutions de (3) tendant vers zéro au voisinage de
y=®. Cette étude a déja été effectuée par Hsieh et Sibuya 7) et

nous allons ici nous contenter de résumer notre propre approche.

On recherche des solutions "approchées" de (3) de la forme
_x \ A
y exp[-P(y)] ot P(x) est un polyndme. On choisit P et o de
fagon & faire disparaftre de (3) les puissances de y les plus élevées.

On trouve ainsi un candidat & une solution approchée

(1) = ¥ exp- [l’;+ rg] (5)

On construit alors une équation intégrale pour LF'(y)/ﬁ(y)
et 1l'on montre qu'il existe une solution de cette équation intégrale
tendant vers 1 pour y — +® . Ceci définit \r-:-co (y,td,E'). Notez
que, pour le moment, E' n'est pas nécessairement une valeur propre.

On démontre alors les résultats suivants
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(i) A &)(y,rL,E‘) est une fonction entiere de Yy, 7&_ et E.

(ii) le comportement

2
Y+;(7/P:E'> o YT e - é + _iv

est valable non seulement pour y — +® mais aussi pour

o IMgrI<E.

Les énergies propres sont alors définies pour les conditions
suivantes ¢

- pour les niveaux pairs, nous demandons

0.'%‘ tﬁi X, ’».)-E') =0 (7)
X=0

- pour les niveaux impairs, nous demandons

g, (pe) =07

X=0

Dans les deux casS nous voyons que, d'aprés la propriété (6),

les niveaux d'énergie sont donnés par les zéros d'une fonction entiére

de E' et de‘r\,.
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I1 est possible de montrer qu'il suit de 1& qu'une solution
Bl W, de (7) [ou ae (8)], ou E! et , sont finis, est entourde
d'un voisinage dans lequel E' est une fonction analytique de avec
un point de branchement d'ordre fini a ’L: tl. o+ Cependant il est dif-
ficile d'étudier & partir de (7) ou (8) la structure globale des énergies
propres en fonction de 'k . Nous résoudrons ces prob'l‘emes a la Section 4

par des méthodes particulieres.
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3. — RESTRICTIONS DUES A LA POSITIVITE. INEGALITES VARIATIONNELLES

Ici nous voulons établir quelques inégalités sur les énergies

propres E(A) et E'(r.) valables pour tous les niveaux.

A) La positivité

Nous savons définir des Y'(y, ,E') pour tout et
donc par le changement d'échelle (4), ‘des \fj , pour lArg/\l <M.

Soit un état propre Lr y B, mnous avons

YrHp = & [y

donc prenant la partie imagingire des deux membres

REW [l
2 [l | o

de méme si l'on traveille avec les LJ/' on trouve

(9)

Tw El(ﬁl = ﬂk()'r—'j’—aw >0 o
r T4

(9) et (10) sont des restrictions trés importantes. Elles montrent que
E(A) ou E'( 'A.) ne peuvent pas avoir de singularités isolées en
dehors de l'axe réel : dans le voisinage d'une singularité isolée (pS8le,
singularité essentielle isolée) la partie imaginaire de E ou de E!

ne peut pas garder un signhe constant.



B) Inégalités variationnelles

Par la technique d'intégration déja décrite, nous avons

J‘Q%'/: FI‘P'/"\,L.;. y"H)'D My = f’/r)/;,f,y';(11)

Combinant les parties réelles et imaginaires de cette équation, nous

obtenons

Re E'(|0+ Y bm E’(ﬂ :
e S o
[ 191y

Le membre de droite peut &tre considéré comme une approxi-

mation variationnelle de l'énergie de 1'état fondamental du Hamiltonien
1
/ 4 L
= - Y )
4’} - ;z;filff (SEQL'& g ¥ +Y

avec la fonction d'onde d'essai (fl'. Nous avons donc

QLE,('A)'I'X%E’("\ >/ -E; (ebr. + X?"w r> (13)
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pour -~® < at< +®, ou Eé représente 1'état fondamental correspon-

dant au couplage Re r +xIm'A..

Chaque inégalité (13) définit un demi-plan de valeurs
permises de E'. L'intersection de cette famille de demi-plans est un
domaine convexe ne contenant comme seule direction possible & 1'infini

que la direction E' - 4w .

pente valeurs permises de E'

7 S S e s

Ceci permet d'établir que, comme dans le cas self-adjoint
( tl- réel), le seul point d'accumulation possible des valeurs propres
est B' = +® [si 1'on tient compte du fait qu'ad partir de (7) et (8)

il ne peut y avoir de point d'accumulation & distance finiél-

A 1'aide d'estimations de Eé pour les valeurs réelles
de , qui sont faciles a obtenir (Eé‘z - 'L2/4 pourrkreel - +® )
on peut calculer plus précisément le domaine permis et 1l'on trouve que

la courte limite supérieure est une parabole.

Notons que toutes les considérations de cette Section s'dtendent
au cas d'interactions polynémiales plus complexes pourvu que le terme do-

minant de H' soit x2N et s'étendent gussi au cas de plusieurs dimen-

sionse.
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- CARACTERISATION DES ETATS PROPRES PAR LES ZEROS

Jusqu'ici nous ne savons pas encore grand chose sur les
singularités de E'('L). Nous savons seulement que E'S;A) est donné
comme fonction implicite de ’L,.par les zéros d'une fonction entiére
de E' et de jo et que les E' sont soumis aux inégalités (10)
et (13). En particulier nous voulons savoir ou sont situés les points
de branchement de E'(E,) et s'il existe des frontiéres naturelles de

certaines branches.

Les considérations générales de la Section précédente ne
permettent pas de trancher ces questions car elles traitent sur le
méme pied la suite infinie des énergies propres pour un donné.

Or nous voulons nous intéresser & une valeur propre particuliére. Il
faut donc pouvoir identifier cette valeur propre et cette fonction
propre pour rL. complexe. La théorie classique des €équations diffé-
rentielles du second ordre nous apprend que, pour ;ggl_(cas auto-
adjoint), nous pouvons classer les fonctions propres par le nombre de
leurs zéros sur l'axe réel. L'énergie propre la plus basse correspond
a4 une fonction d'onde sans zéro, le niveau suivant un seul zéro, etc.
Le n™°®® piveau Eg(r.) est associé & une fonction d'onde ayant n

3)

zéros sur l'axe réel. D'autre part, Simon a montré que ces niveaux
sont continuables en rk dans le voisinage de l'axe réel a 1l'aide des

méthodes de Kato.

o7
3

sible de continuer & caractériser les niveaux par le nombre de zéros

Nous voulons montrer que pour lArgtA[ < il est pos-

dans une certaine région complexe (évidemment il ne faut pas s'attendre

2T
. 3
le nombre de zéros d'ume fonction d'onde QIé(Z,)b) associée a une conti-

4 ce que les zéros restent réels). Nous montrerons que si IArg'\| <

nuation du niveau EA(‘L) dans lArg zl < %5 est constant. Si donc

nous partons d'une valeur réelle de et effectuons une continuation

de E]f'l( ".) le long d'un chemin contenu dans |Arg N < %T retournant
a4 la valeur initiale de 'L., nous retrouvons le méme nombre de zéros dans
"

|Arg zl < 3 et en fait sur l'axe réel positif. La fonction d'onde est

donc exactement identique a celle dont on est parti. Comme ceci est vrai
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0

'A.

an
3

pour tous les chemins contenus dans ]arg,gl < 2;1- cela signifie que

Eﬂ(rL) n'a aucun point de branchement dans cette région.

Pour que ce raisonnement soit valable il faut évidemment
que la continuation soit possible et que les éventuels points de bran-
chement soient isolés. Si 1l'on peut montrer que lors de la continua-
tion EA(rL) reste borné, alors les points de branchement sont néces-
sairement isolés et 1'on ne rencontre pas de frontiére naturelle, en

vertu de (7) ou (8) (suivant la parité).

Commengons par montrer qu'aussi loin qu'on puisse continuer

analytiquement E;l(,") pour |Arg '4[ < 2-3-71. le nombre de zéros de L’J'

dans |Arg z[ <:1%- est fixe-

Considérons tout d'abord le cas de rs réel. Nous étudions

1!'équation de Schrodinger le long d'un rayon

2 = r'e—NP O\(CP<J&[

Elle devient

'.l—

“ ' ; ~ I 1
-4y tw"'g,é"?-\— rief ¢—E'e&¢)t}' =0 ™
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Notons que d'aprés la condition (10) Im E' = 0 si

Im r.= O. On multiplie par g’/* et on integre de 0 & r ¢ il vient

\*l*,l [ _

e
,
f{ ir'/:- (yr"e""ﬁ r'qe.“tfleu#)/\fﬁ&'

o

' !
[Notez que soit (.P(r:O) = 0, soit %g(xeo) = 0.], et donc pour
t& réel, E' réel

(15)

'}»(t}"*é%)___[@,wg, 4?%'9%6?'5'”@”'7?"'

T

de méme, puisque lﬁl <% L}l' - 0, pour r — ® et donc on peut

aussi intégrer de r a o :

&0

g Q‘* %):J@r‘”ﬁ@ﬂ"’% 6p-E '%29/&}/7:'«@
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Nous notons que dans (15) ou (16) 1l'intégrant est une

forme quadratique en r'2 qui peut s'amnnuler 0, 1 ou 2 fois

' i

lorsque T 2 varie de O & 1'infini. Avec O < g < ¢ la quantité
. ) ] .
>
pr! P b + r‘"f—»f? - £ S—vaT

est certainement positive pour r'2 - ®. Il suffit donc d'avoir
E'> 0 pour &tre slr qu'elle est négative & r'2 = 0. Alors cette
quantité s'annule une fois et une seule pour r' = o Dans ces
conditions, on utilise (15) pour r < T, et (16) pour r > r, pour
montrer que Im({ '* Qégl ) # 0. En conclusion, si E'(rk):> 0

( réel) les geuls zéros de qJ'(z) dans |Arg z| < -ér sont sur
l'axe réel positif. Une condition suffisante (mais non nécessaire)
pour avoir E'('L)j> 0O est | >0 car alors H' est défini positif.
Ces zéros d'aprés la théorie classique des équations différentielles

sont caractéristiques des niveaux successifs.

D'autre part, notons que, pour y4 + '&.y2 > E', c'est-a-

2P !
dire y réel suffisamment grand, on a ga?%—'/ Q)' < 0 et, puisque

t'l'*O a y— o, (P' n'a pas de zéro.

La situation, pour r—-réel > 0 est donc la suivante

plan z

L3
%
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Considérons maintenant le cas de r;. complexe. A nouveau
1 - ' _ L. i8I e
nous partons de 1'équation (14) le long d'un rayon z = r e 6 < B < e -
Les analogues de (15) et (16) sont

%(‘-{}/*é‘ﬁ?) =

v

r fm o + [l Fv'«(‘fc} +M3 1) “[E’/“W%J{&'

(17)
° oo
:—j[ e ]o‘r'
P

Supposons que

[M}E',\( g-zg (1)

alors, clairement

%(2(#4- P‘WﬁE'))O pour %—&<¢<%—

(19)

%k2_¢+m:3£)<g pour -.T&’. (c’:(—-%-m

Par conséquent, le crochet dans (17) est alors de signes opposés pour
r'=0 et r'=® et q)' ne s'annule pas. La condition (18) peut

8tre remplacée par une autre : d'aprés les équations (4) nous avons
1

E'(Y-) = t).zE(* = P:Q/3) ; si 0< Argr.< 2—315 , nous aurons tout
d'abord, d'aprés la condition de positivité (10) O < Arg E' < T .

D'autre part, d'aprés la condition de positivité (9) -M< Arg E ('A—Z/B) <0
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et donc 0 < Arg E' < =A_x_~§_F< — . On étudie de la méme fagon le cas

—%n—< Arg’,g< 0. En bref, lArgr.l < %E entrafne |Arg E!| <--3E y

et, par conséquent, on a alors deux intervalles angulaires

L)
—6--£<15<I, -I<ﬂ5< -I+€ dans lesquels L[l' n'a pas de

6 6

6

Notons aussi qu'en raison de la forme asymptotique de &l)'
l | 3
\l) Lo - u«-, -2 -+ .E}
2 3 2-
I

il n'y a pas non plus de zéros pour z grand dans lArg zl < < —& .

Si une continuation analytique est possible d'une valeur

réelle de 'A. a une valeur complexe de P» dans IArgtL[ < g_;_l'

la fonction d'onde varie d'une maniére continue et les zéros ne peuvent
pas apparaltre ou disparaltre & l'intérieur de la région IArg z[ < %
Mais ils ne peuvent pas non plus en franchir la frontiére comme nous
venons de le démontrer. Leur nombre reste donc constant et égal a

celui de la fonction d'onde dont on est parti sur l'axe réel positif.

I1 est clair que si nous effectuons un circuit fermé en
partant de 1l'axe réel et retournant & l'axe réel nous retrouverons une
fonction d'onde avec le méme nombre de noeuds que celle dont nous sommes

partis et, par conséquent, le méme niveau d'énergie.
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La seule question qui reste est celle de savoir s'il y a
un obstacle & une continuation analytique. Celle-ci est toujours pos-
sible, avec des points de branchements isolés éventuels, aussi longtemps
gue E' reste borné. Nous allons aussi démontrer ce dernier point en

utilisant les zéros.

. ay
Un état propre - disons pair - est tel que ~ '(z=0,tk) =
On peut intégrer 1l'équation de Schrddinger depuis l'origine et 1'écrire

sous la forme de Volterra :

(20)

c}/ ws(VE 9.)+.J$mf_@ 2! 2’+ﬂ2’)‘f(‘*)4‘2'

sur cette équation il n'est pas difficile de montrer gue, pour [z! < R
R arbitraire, on a E‘f" -cos(ﬁ'zﬂ / [expllm(ﬂ'z)ll-’ 0 pour
E' - ®. On parvient ainsi & montrer, & l'aide du théoréme de Rouché

que dans un secteur formé de

/hg%-—-— 5159:_5—'+e
A"-;e_—- E'—a

ot < (%]

ol ]: :[ désigne la partie entiére, le nombre de zéros de ' est
égal a l:%:[ pour E' assez grand. Comme ce Secteur est entiére-
ment contenu dans [Arg zl <6 puisque d'aprés les résultats de
la Section 3, E' ne peut tendre vers 1l'infini qu'avec Arg E' - O,
nous aboutissons & une contradiction, & savoir un trop grand nombre
de zéros si IE'I est trop grand. E' reste donc borné au cours de

la continuation et rien n'arrétera cette continuation.
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En conclusion E;l( ) est analytique dans |Arg | < 5
et d'aprés (4), En(g) est analytique dans lArg/\l <M, c'est-a-

dire dans un plan coupé.

Si nous complétons ce résultat par la condition de positi-
vité (9) ImE(A) / ImA > 0, nous voyons que la fonction E(A) est
une fonction de Herglotz réelle pour 2 > 0. En outre, Simon 3) a
montré que les coefficients du développement asymptotique E =Z Cn X n

-1/2n+1

satisfaisaient la condition de Carleman "S_Icn| divergeant".

Dans ces conditions, on peut montrer la convergence de la
suite des approximants de Padé diagonaux vers E. Ces approximants
s'écrivent PN() )/QN(’\) ol Py et Qg sont des polynlmes de degré
N +tels que formellement ' 2 N+!

n_fyo- o2
Se -3 =
Qy



5e

- 18 -

~ GENERALISATION A D'AUTRES INTERACTTIONS

Partant directement de la forme réduite on peut s'intéresser

aux cas

K—* %;;- + 7,2"'4- 2 P g.u-k— f’)y/:o

Toutes les considérations sur la forme asymptotique des solutions
s!'étendent sans difficulté. Toute la Section 2 peut &tre reproduite

avec les modifications suivantes

a) (_P'+m—>0 pour |Argz|< n/2(n+1);

b) si 1l'interaction n'est pas paire il faut aussi définir

q/iq). Les états propres sont alors donnés par le Wronskien
W(y)' , Y/ ')= 0. C'est encore une fonction entiére des
+@® -
)(._ et de E'.
1Y

Les inégalités variationnelles persistent :

R(E( - Fom)+ § E (ju - Fan) >
E;('QQH("'X%/"') T R"‘f‘u-"yh/'ah)

1l'on prouve ainsi que les valeurs permises de E'! sont dans un domaine

convexe s!étendant & 1l'infini seulement dans la direction ArgE! = O,

I1 est beaucoup plus difficile d'énoncer un résultat général
sur le nombre de zéros. En premier lieu, il est beaucoup plus simple de
se limiter aux interactions paires de fagon & pouvoir faire usage de
L&‘(z:O)::O ou de (d(*'/dr)(r:O)::O et d'intégrer le long de rayons
Arg 7z = const. Dans ce cas l'on trouve des résultats analogues a celui
de 1l'oscillateur anharmonique en f(x2+x4. Je voudrais simplement

insister sur un point : nous savons d'apreés Kato que chaque niveau
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d'énergie Em( r1""”ﬁhg est développable dans une boule
I,L1l2+ cae +|rL2]2 < Rm en perturbations. Ce que 1l'on peut montrer
au moins dans le cas des interactions paires (,L1==’L:5,... = 0)
c'est que le rayon de cette boule tend vers 1l'infini avec m (o m
est le nombre de noeuds de la fonction d'onde non per‘turbée)° Le principe

est fort simple :

On intégre le long d'un rayon

| m_ _ I
M* =‘P1 2(n+t) £<Cf<2(n+/)

ol el S+ = - ] < R

et 1l'on suppose

R arbitraire. Alors

e (¥ ¢
o
_ V’mﬁr.mﬁ%ﬂ) §l - [£] (24 +hge ']d, /
o r + f?m—?.crﬂ)

ou P2n~2(r') est un polyn8me de degré 2n-2 a coefficients dépendant

des '& .
1Y

Si IE'I est trés grand, |ArgE'I est aussi voisin que
l'on veut de O. On peut prendre ]E" > Eé tel que pour @ voisin
de " +(W/2(n+1)) sin(2g+ArgE') ait le signe de sin2@. Il est facile
de voir qu'étant donné @ et R il est possible de choisir E' > E%,
de fagon que le crochet s'annule au plus une fois pour O < r' < @,

On montre ainsi que le nombre de zéros, dans l'angle
|Arg:3|< (17/2(n+1)) reste fixe si IE'I est assez grand. Il n'y a
donc pas de point de branchement. Pour &tre assuré dfavoir IE'I assegz
grand il faut choisir E&(’Lp:O) assez grand et s'assurer que |E'|
ne diminue pas trop lorsque les }kp varient dans la boule ZI "4.p]2=Ro
De cela il est aussi possible de s'assurer en calculant une borne supé-

rieure du nombre de zéros dans l'angle en fonction de E', & partir de
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la forme de Volterra analogue & (20). Si partant d'un Exln(”'p=o) tres
grand EI;I diminue trop le nombre de zéros devrait diminuer déja avant
IEI;II = E,'I, ce qui est impossible.

Plus R sera choisi grand, plus Eé et E% seront grands
et plus m nombre de zéros de la fonction d'onde non perturbée devra

8tre grand, mais le procédé marchera toujours, aussi grand soit R.

Le domaine de convergence de la série des perturbations de

P
Em( rz,..., r~2n) tend donc vers l'infini avec m.



6.

—21-

~ REMARQUES FINATES

On peut se demander ce qui motive 1l'étude de l'oscillateur
anharmonique. On peut dire ceci : si nous regardons EK;Q ) nous avons
un exemple ou les termes successifs de la série des perturbations
existent sans que la série converge. C'est une situation analogue a

celle (probable) de la théorie des champs, par exemple l'interaction en

A4

W~

Or ici, par 1l'étude de ltanalyticité en > nous arrivons

m/

prouver qu'il existe un procédé de construction de suites comnstruites
partir des termes perturbatifs qui converge vers la réponse exacte.
Cl'est un encouragement pour le cas de la théorie des champs ou certains
physiciens utilisent ces procédés de sommation sans savoir s'ils convergent.
Mais il y a un grand pas & faire avant de passer d'une dimension (notre cas)
4 une infinité de dimensions (le cas de la théorie des champs) et malheu-
reusement nos méthodes sont difficiles & généraliser, ne serait-ce qu'a
deux dimensions ! On peut, plus modestement, dire que nos résultats

peuvent &tre utiles, tels quels, dans des problémes de spectroscopie
moléculaire par exemple. Dans cet esprit, la convergence des approximants

de Padé avait déja été testée empiriquement par Reid 8), & l'aide d'une

calculatrice électronique !
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