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Abstract. There exist two distinct ways in realizing the approximate SU(3) fla-
vor symmetry of QCD to describe the two-body nonleptonic decays of charmed
baryons, the irreducible SU(3) approach (IRA) and the topological diagram ap-
proach (TDA). The TDA has the advantage that it is more intuitive, graphic and
easier to implement model calculations. We perform a global fit to the experi-
mental data of two-body charmed baryon decays based on the TDA and discuss
its equivalence with the IRA and their phenomenological implications.

1 Introduction

In the past few years, the experimental and theoretical progresses in the study of hadronic
decays of charmed baryons are very impressive. On the experimental side, more than 35
measurements of branching fractions and decay asymmetries have been accumulated. On
the theory aspect, there were many approaches developed in 1990s such as the relativis-
tic quark model, the pole model and current algebra (for a review, see [1]). Besides the
dynamical model calculations, a very promising approach is to use the approximate SU(3)
flavor symmetry of QCD to describe the two-body nonleptonic decays of charmed baryons.
There exist two distinct ways in realizing the flavor symmetry, the irreducible SU(3) ap-
proach (IRA) and the topological diagram approach (TDA). They provide a powerful tool for
a model-independent analysis. Among them, the IRA has become very popular in the past
few years. In the IRA, SU(3) tensor invariants are constructed through the short-distance
effective Hamiltonian, while in the TDA, the topological diagrams are classified according to
the topologies in the flavor flow of weak decay diagrams with all strong-interaction effects
included implicitly.

Within the framework of the IRA, two-body nonleptonic decays of charmed baryons were
first analyzed in Refs. [2, 3]. After 2014, this approach became rather popular. However, the
early studies of the IRA have overlooked the fact that charmed baryon decays are governed by
several different partial-wave amplitudes which have distinct kinematic and dynamic effects.
In other words, S - and P-waves were not distinguished in the early analysis and the IRA
amplitudes are fitted only to the measured rates. After the pioneer work in Ref. [4], it became
a common practice to perform a global fit of both S - and P-wave parameters to the data of
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branching fractions and decay asymmetries [5–9]. Just like the case of hyperon decays, non-
trivial relative strong phases between S - and P-wave amplitudes may exist, but they were
usually not considered in realistic model calculations of the decay asymmetry α.

The first analysis of two-body nonleptonic decays of antitriplet charmed baryonsBc(3̄)→
B(8)M(8+1) within the framework of the TDA was performed by Kohara [10]. A subsequent
study was given by Chau, Cheng and Tseng (CCT) in Ref. [11] followed by some recent
analyses in the TDA [12–15]. Unlike the IRA, global fits to the rates and decay asymmetries
in the TDA were not available until recently.

Although the TDA has been applied very successfully to charmed meson decays [16–18],
its application to charmed baryon decays is more complicated than the IRA. As stressed in
Ref. [12], it is easy to determine the independent amplitudes in the IRA, while the TDA
gives some redundancy. Some of the amplitudes are not independent and therefore should
be absorbed into other amplitudes. Nevertheless, the TDA has the advantage that it is more
intuitive, graphic and easier to implement model calculations. The extracted topological
amplitudes by fitting to available data will enable us to probe the relative importance of
different underlying decay mechanisms, and to relate one process to another at the topological
amplitude level.

2 TDA

Since baryons are made of three quarks in contrast to two quarks for the mesons, the appli-
cation of TDA to the baryon case will inevitably lead to some complications, for example,
the symmetry of the quarks in flavor space could be different. As shown explicitly in Ref.
[19], physics is independent of the convention one chooses for the wave functions of the
octet baryons. We prefer to use the bases ψk(8)A12 and ψk(8)S 12 for octet baryons as they are
orthogonal to each other:

|ψk(8)A12〉 =
∑

qa,qb,qc

|[qaqb]qc〉〈[qaqb]qc|ψ
k(8)A12〉,

|ψk(8)S 12〉 =
∑

qa,qb,qc

|{qaqb}qc〉〈{qaqb}qc|ψ
k(8)S 12〉, (1)

denoting the octet baryon states that are antisymmetric and symmetric in the first two quarks,
respectively. Hence,

|Bm,k(8)〉 = a |χm(1/2)A12〉|ψ
k(8)A12〉 + b |χm(1/2)S 12〉|ψ

k(8)S 12〉 (2)

with |a|2 + |b|2 = 1, where χm(1/2)A,S are the spin parts of the wave function defined in Eq.
(23) of Ref. [11].

In terms of the octet baryon wave functions given in Eq. (2), the relevant topological
diagrams for the decays of antitriplet charmed baryons Bc(3̄) → B(8)M(8 + 1) are depicted
in Fig. 1: the external W-emission, T ; the internal W-emission C; the inner W-emission C′;
W-exchange diagrams E1A, E1S , E2A, E2S , E3 and the hairpin diagram Eh. Since there are
two possible penguin contractions, we will have penguin diagrams P1, P2A, P2S as well as
P′1, P′2A, P′2S . The topologies Ph and P′h are hairpin penguin diagrams. The decay amplitudes
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In diagrams T and C, the two spectator quarks qi and q j are antisymmetric in flavor.
Notice that the final-state quarks ql and qk in topological diagrams C′, E3 and Eh also must
be antisymmetric in flavor owing to the Körner-Pati-Woo (KPW) theorem which states that
the quark pair in a baryon produced by weak interactions is required to be antisymmetric in
flavor in the SU(3) limit [22]. Likewise, the KPW theorem together with the pole model also
leads to [23]

E2A = −E1A, E2S = −E1S . (4)

As a result, the number of independent topological diagrams depicted in Fig. 1 and the TDA
amplitudes in Eq. (3) is 7.

Working out Eq. (3) for Bc(3̄) → B(8)M(8 + 1) decays, the obtained TDA decay ampli-
tudes are listed in Tables I and II of Ref. [20]. Among the 7 TDA amplitudes given in Eq.
(3), there still exist 2 redundant degrees of freedom through the redefinitions [11]:

T̃ = T − E1S , C̃ = C + E1S , C̃′ = C′ − 2E1S ,

Ẽ1 = E1A + E1S − E3, Ẽh = Eh + 2E1S . (5)

A closer look of the TDA amplitudes of Cabibbo-favored, singly-Cabibbo-suppressed and
doubly-Cabibbo-supprerssed decays given in Tables I and II shows that E1S can be absorbed
by T , C, C′, E1 and Eh, as shown in the above equation. Hence, the redundant E1S can be
eliminated. Also the amplitude E3 is always accompanied by E1A + E1S . Consequently, it
can be absorbed by the combination of E1A + E1S . As a result, among the seven topological
amplitudes T , C, C′, E1A, Eh, E1S and E3, the last two are redundant degrees of freedom and
can be omitted through redefinitions. 1 It is clear that the minimum set of the topological
amplitudes in TDA is 5. This is in agreement with the number of tensor invariants found in
IRA [25].

It should be stressed that the redefinition given in Eq. (5) is not unique. another redefini-
tion, for example,

T = T −C′/2, C = C −C′/2, E1S = E1S −C′/2,
E1A = E1A − E3 + C′/2, Eh = Eh + C′, (6)

also works.

2.1 Equivalence of TDA and IRA (I)

To demonstrate the equivalence between the TDA and IRA, we need to show that the number
of the minimum set of tensor invariants in the IRA and the topological amplitudes in the TDA
is the same. We follow Ref. [12] to write down the general SU(3) invariant decay amplitudes
in the IRA:

AIRAa = a1 (Bc)i (H6)ik
j (B8) j

k Ml
l + a2 (Bc)i (H6)ik

j (B8)l
k M j

l + a3 (Bc)i (H6)ik
j (B8) j

l Ml
k

+ a4 (Bc)i (H6) jk
l (B8)i

j Ml
k + a5 (Bc)i (H6) jk

l (B8)l
j Mi

k

+ a6 (Bc)i

(
H15

)ik

j
(B8) j

k Ml
l + a7 (Bc)i

(
H15

)ik

j
(B8)l

k M j
l

+ a8 (Bc)i

(
H15

)ik

j
(B8) j

l Ml
k + a9 (Bc)i

(
H15

) jk

l
(B8)i

j Ml
k

+ a10 (Bc)i

(
H15

) jk

l
(B8)l

j Mi
k.

(7)

1It was claimed in a recent work [24] that the relations of T = C and E1 = E2 (or T1 = T2 and T4 = T5 in
the notation of Ref. [24] ) can be used to reduce the number of independent degrees of freedom from 7 to 5. Since
the color-allowed T and the color-suppressed C are different topologies, the relation of T = C does not hold and
likewise for E1 and E2.
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For the explicit expressions of (H6)i j
k and

(
H15

)i j

k
, see Ref. [12]. The first five terms associated

with H6 are not totally independent as one of them is redundant through the redefinition. It
should be stressed that the redefinition is not unique. For example, we will consider the
following redefinitions

a′1 = a1 − a5, a′2 = a2 + a5, a′3 = a3 + a5, a′4 = a4 + a5, (8)

and [12]
a′′1 = a1 + a2, a′′2 = a2 − a3, a′′3 = a3 − a4, a′′5 = a5 + a3. (9)

As for the five terms associated with H15 in Eq. (16), four of them are prohibited by the KPW
theorem and the pole model, namely, a6 = a7 = a8 = a10 = 0 [23, 25].

By comparing the TDA amplitudes in Tables 1 and 2 of [20] with the IRA amplitudes
given in Tables 14-16 of Ref. [12], we arrive at the relations

T̃ =
1
2

(−a2 + a4 + a9), C̃ =
1
2

(a2 − a4 + a9),

C̃′ = −a2 − a5, Ẽ1 = a3 + a5, Ẽh = −a1 + a5.
(10)

Therefore, we have the correspondence

T̃ =
1
2

(−a′2 + a′4 + a′9), C̃ =
1
2

(a′2 − a′4 + a′9),

C̃′ = −a′2, Ẽ1 = a′3, Ẽh = −a′1.
(11)

in terms of the redefinitions given in Eq. (8). The equivalence between the TDA and IRA is
thus established.

There is another set of the IRA amplitudes given in Ref. [25]

AIRAb = f̃ a (Bc)ik (H6)i j (B8) j
k Ml

l + f̃ b (Bc)ik (H6)i j (B8)l
k M j

l + f̃ c (Bc)ik (H6)i j (B8) j
l Ml

k

+ f̃ d (Bc)kl (H6)i j (B8)i
k M j

l + f̃ e (Bc) j

(
H15

)ik

l
(B8) j

i Ml
k.

(12)
The equivalence between T̃DA, IRAa and IRAb leads to the relations:

T̃ =
1
2

( f̃ b + f̃ e), C̃ =
1
2

(− f̃ b + f̃ e),

C̃′ = f̃ b − f̃ d, Ẽ1 = − f̃ c, Ẽh = f̃ a,

(13)

2.2 Equivalence of TDA and IRA (II)

In Refs. [20, 21] the equivalence of TDA with IRA is established by first writing down the
TDA and IRA amplitudes of Bc(3̄) → B(8)M(8 + 1) decays and then comparing them to
figure out their relations. Here we will make a direct transformation from TDA to IRA and
show that they are identical.

In terms of (Bc)i and (B8)i
j defined by (Bc)i j = ε i jk(Bc)k and (B8)i jk = εi jl(B8)l

k, respec-
tively, Eq. (3) can be recast to

ATDA = (2T −C′ − 2E1S )(Bc)i(B8)i
jH

jl
m Mm

l + (2C + C′ − 2E2S )(Bc)i(B8)i
jH

l j
m Mm

l

+ C′(Bc)i(B8)l
j(H

ji
m − Hi j

m)Mm
l + (E1A − E1S − E3)(Bc)i(B8) j

mHil
j Mm

l

+ (E2A − E2S + E3)(Bc)i(B8) j
mHli

j Mm
l − Eh(Bc)i(B8)l

j(H
i j
l − H ji

l )Mm
m

+ 2E1S (Bc)i(B8)m
j H jl

m Mi
l + 2E2S (Bc)i(B8)m

j Hl j
m Mi

l + · · · ,

(14)
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where only the non-penguin terms are kept. Substituting the relation

Hi j
k =

1
2

[
H(15)i j

k + H(6)i j
k

]
+ · · · (15)

into the above equation yields

ATDA = (T + C)(Bc)i

(
H15

) jl

m
(B8)i

jM
m
l − Eh(Bc)i (H6)i j

l (B8)l
jM

m
m

+ (T −C −C′ − 2E1S )(Bc)i (H6) jl
m (B8)i

jM
m
l −C′(Bc)i (H6)i j

m (B8)l
jM

m
l

+ (E1A − E1S − E3)(Bc)i (H6)il
j (B8) j

mMm
l + 2E1S (Bc)i (H6) jl

m (B8)m
j Mi

l

(16)

Comparing the TDA amplitudes with the IRA ones in Eq. (16), we obtain

a1 = −Eh, a2 = −C′, a3 = E1A − E1S − E3,

a4 = T −C −C′ − 2E1S , a5 = 2E1S , a9 = T + C.
(17)

These lead to
a′1 = a1 − a5 = −Ẽh, a′2 = a2 + a5 = −C̃′,

a′3 = a3 + a5 = Ẽ1, a′4 = a4 + a5 = T̃ − C̃ − C̃′,

a9 = T̃ + C̃, a6 = a7 = a8 = a10 = 0,
(18)

consistent with Eq. (34) of Ref. [20]. Also, we have

a′′1 = a1 − a2 = −Eh, a′′2 = a2 − a3 = −E1A + E1S

a′′3 = a3 − a4 = −T + C + E1A + E1S , a′′5 = a3 + a5 = E1A + E1S ,

a9 = T + C, a6 = a7 = a8 = a10 = 0,

(19)

3 Numerical Analysis and Results

As there are 5 independent tilde TDA amplitudes given in Eq. (5), we have totally 19 un-
known parameters to describe the magnitudes and the phases of the respective S - and P-wave
amplitudes, namely,

|T̃ |S eiδT̃
S , |C̃|S eiδC̃

S , |C̃′|S eiδC̃′
S , |Ẽ1|S eiδẼ1

S , |Ẽh|S eiδẼh
S ,

|T̃ |PeiδT̃
P , |C̃|PeiδC̃

P , |C̃′|PeiδC̃′
P , |Ẽ1|PeiδẼ1

P , |Ẽh|PeiδẼh
P , (20)

collectively denoted by |Xi|S eiδXi
S and |Xi|PeiδXi

P , where the subscripts S and P denote the S -
and P-wave components of each TDA amplitude. Since there is an overall phase which can
be omitted, we shall set δT̃

S = 0. Likewise, for the tidle IRA amplitudes given in Eq. (12), we
also have

| f̃ a|S eiδ f̃ a

S , | f̃ b|S eiδ f̃ b

S , | f̃ c|S eiδ f̃ c

S , | f̃ d |S eiδ f̃ d

S , | f̃ e|S eiδ f̃ e

S ,

| f̃ a|Peiδ f̃ a

P , | f̃ b|Peiδ f̃ b

P , | f̃ c|Peiδ f̃ c

P , | f̃ d |Peiδ f̃ d

P , | f̃ e|Peiδ f̃ e

P . (21)

We shall aslo set δ f̃ a

S = 0. Of course, physics is independent of which phase is removed.
Hence, in both cases we are left with 19 parameters.

In terms of the S - and P-wave amplitudes given in

M(Bc → B f + P) = iū f (A − Bγ5)uc, (22)
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and their phases δS and δP, respectively, the decay rate and Lee-Yang parameters read

Γ =
pc

8π
(mi + m f )2 − m2

P

m2
i

(
|A|2 + κ2|B|2

)
,

α =
2κ|A∗B| cos(δP − δS )
|A|2 + κ2|B|2

, β =
2κ|A∗B| sin(δP − δS )
|A|2 + κ2|B|2

, γ =
|A|2 − κ2|B|2

|A|2 + κ2|B|2
, (23)

where κ = pc/(E f + m f ) =
√

(E f − m f )/(E f + m f ) and α2 + β2 + γ2 = 1. It is clear that the
magnitudes of S - and P-wave amplitudes can be determined from Γ and γ. As for the phase
shift between S - and P-wave amplitudes, it is naively expected that δP − δS = arctan(β/α)
(see, for example, Ref. [26]). However, this is is somewhat misleading as the range of this
solution is limited to (− π2 ,

π
2 ), which does not fully cover the phase-shift space. The correct

one is [20]

δP − δS = 2 arctan
β√

α2 + β2 + α
. (24)

This naturally covers the correct solution space without imposing manual modification. As
an example, consider the recent LHCb measurements of the decay parameters α = −0.782 ±
0.010 and β = 0.368 ± 0.017 for the decay Λ+

c → Λπ+. The formula δP − δS = arctan(β/α)
yields δP − δS = −0.44 rad, while Eq. (24) leads to δP − δS = 2.70 rad.

As noticed in Ref. [25], there is a so-called Z2 ambiguity in the determination of phases,
namely, (δXi

S , δ
Xi
P ) → (−δXi

S ,−δ
Xi
P ). Since β is proportional to sin(δP − δS ), this sign ambiguity

can be resolved by the measurement of β as just noticed in passing. The sign of the Lee-Yang
parameter γ depends on the relative magnitude of S - and P-wave amplitudes. Hence we also
need measurements of γ to select the solution for |A| and |B|. Recently, LHCb has performed
the first measurements of all the Lee-Yang parameters in Λ+

c → Λπ+ and Λ+
c → ΛK+; see

Table 1.

Table 1: LHCb measurements of the decay parameters for Λ+
c → Λπ+ Λ+

c → ΛK+ and
Λ+

c → pK0
S decays [27].

Decay α β γ

Λ+
c → Λπ+ −0.782 ± 0.009 ± 0.004 0.368 ± 0.019 ± 0.008 0.502 ± 0.016 ± 0.006

Λ+
c → ΛK+ −0.569 ± 0.059 ± 0.028 0.35 ± 0.12 ± 0.04 −0.743 ± 0.067 ± 0.024

Λ+
c → pK0

S −0.744 ± 0.012 ± 0.009 – –

Fitted tilde TDA and IRA amplitudes collectively denoted by Xi are shown in Table 2,
where we have used the LHCb data in Table 1 and the data collected in Table VII of Ref.
[20]. We have set δT̃

S = 0 and δ f̃ a

S = 0. The fit results based on the tilde TDA and tilde IRA
are shown in Table 3. In the following we discuss their implications.

For the decay Λ+
c → Ξ0K+, BESIII found [26]

α = 0.01 ± 0.16 ± 0.03, β = −0.64 ± 0.69 ± 0.13, γ = −0.77 ± 0.58 ± 0.11, (25)

and uncovered two sets of solutions for the magnitudes of S - and P-wave amplitudes in units
of 10−2GF GeV2:

I.

|A| = 1.6+1.9
−1.6 ± 0.4 ,

|B| = 18.3 ± 2.8 ± 0.7 ,
II.

|A| = 4.3+0.7
−0.2 ± 0.4 ,

|B| = 6.7+8.3
−6.7 ± 1.6 ,

(26)

7

EPJ Web of Conferences 312, 04003 (2024)
FPCP 2024

https://doi.org/10.1051/epjconf/202431204003



Table 2: Fitted tilde TDA and IRA amplitudes collectively denoted by Xi. We have set δT̃
S = 0

and δ f̃ a

S = 0.

|Xi|S |Xi|P δXi
S δXi

P
(10−2GF GeV2) (in radian)

T̃ 4.23 ± 0.12 12.47 ± 0.31 – 2.41 ± 0.04
C̃ 2.94 ± 0.52 11.76 ± 0.92 3.03 ± 0.11 −0.72 ± 0.18
C̃′ 5.38 ± 0.44 19.03 ± 0.86 −0.04 ± 0.06 2.23 ± 0.12
Ẽ1 2.90 ± 0.20 10.10 ± 0.50 −2.81 ± 0.06 1.88 ± 0.10
Ẽh 3.88 ± 0.77 13.43 ± 1.92 2.65 ± 0.13 −1.94 ± 0.21
f̃ a 4.31 ± 0.68 15.78 ± 2.23 – 1.73 ± 0.12
f̃ b 7.10 ± 0.72 24.40 ± 1.04 −2.73 ± 0.10 −0.27 ± 0.13
f̃ c 2.92 ± 0.19 10.17 ± 0.48 −2.34 ± 0.11 2.32 ± 0.13
f̃ d 1.57 ± 0.62 7.24 ± 2.20 −2.80 ± 0.22 0.31 ± 0.24
f̃ e 1.47 ± 0.67 0.69 ± 1.11 −2.46 ± 0.20 −1.29 ± 2.50

as well as two solutions for the phase shift,

δP − δS = −1.55 ± 0.25 ± 0.05 or 1.59 ± 0.25 ± 0.05 rad. (27)

Our fits with |A| = 2.75±0.19, |B| = 9.59±0.47, αΞ0K+ = −0.03±0.12, βΞ0K+ = −0.98±0.02
and δP − δS = −1.60 ± 0.12 rad are consistent with the first phase-shift solution as well
as the Lee-Yang parameters αΞ0K+ and βΞ0K+ . However, our result of B(Λ+

c → Ξ0K+) =

(0.33 ± 0.03)% is smaller than the measured value of (0.55 ± 0.07)% [28].
It should be stressed that although the BESIII’s measurement of αΞ0K+ is in good agree-

ment with zero, it does not mean that the theoretical predictions in the 1990s with vanishing
or very small S -wave amplitude are confirmed. We have checked that if we set δXi

S = δXi
P = 0

from the outset and remove the input of (αΞ0K+ )exp , the fit αΞ0K+ will be of order 0.95 . Hence,
we conclude that it is necessary to incorporate the phase shifts to accommodate the data. It is
the smallness of | cos(δP − δS )| ∼ 0.02 that accounts for the nearly vanishing αΞ0K+ .

Besides the decay Λ+
c → Ξ0K+, we have noticed that the following modes Ξ0

c →

Σ+K−,Σ+π−, pK−, pπ−, nπ0 and Ξ+
c → pπ0, nπ+ also receive contributions only from the

topological W-exchange amplitude Ẽ1. In the absence of strong phases in S - and P-wave
amplitudes, they are expected to have large decay asymmetries. For example, αΞ0

c→Σ+K− was
found to be 0.79+0.32

−0.33, 0.81±0.16 and 0.98±0.20, respectively, in Refs. [4–6]. Once the phase
shifts are incorporated in the fit, the above-mentioned modes should have δP − δS similar to
that in Λ+

c → Ξ0K+ and their decay asymmetries will become smaller (see Tables 3). In par-
ticular, for the CF channel Ξ0

c → Σ+K− whose branching fraction has been measured before,
we predict that αΞ0

c→Σ+K− = −0.03 ± 0.12 similar to that of Λ+
c → Ξ0K+. This can be used to

test our theoretical framework.
The predicted B(Ξ0

c → Ξ−π+) = (2.96 ± 0.10)% is noticeably higher than the measured
value of (1.80± 0.52)% by Belle [29], but it is in a good agreement with the sum rule derived
in both TDA and IRA, namely,

τΛ+
c

τΞ0
c

B(Ξ0
c → Ξ−π+) = 3B(Λ+

c → Λπ+) + B(Λ+
c → Σ0π+) −

1
sin2 θC

B(Λ+
c → nπ+). (28)
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Table 3: The fit results based on the tilde TDA (upper) and tilde IRA (lower). S - and P-wave
amplitudes are in units of 10−2GF GeV2 and δP − δS in radian.

Channel 102B α β γ |A| |B| δP − δS Bexp αexp

Λ+
c → Λ0π+ 1.29 ± 0.05 −0.77 ± 0.01 0.38 ± 0.02 0.51 ± 0.01 5.55 ± 0.10 9.29 ± 0.21 2.68 ± 0.02 1.29 ± 0.05 −0.771 ± 0.0111.29 ± 0.05 −0.77 ± 0.01 0.38 ± 0.02 0.51 ± 0.01 5.55 ± 0.10 9.28 ± 0.21 2.68 ± 0.02

Λ+
c → Σ0π+ 1.26 ± 0.05 −0.48 ± 0.02 0.34 ± 0.11 −0.81 ± 0.05 1.94 ± 0.24 19.29 ± 0.46 2.53 ± 0.15 1.27 ± 0.06 −0.47 ± 0.031.26 ± 0.05 −0.48 ± 0.02 0.37 ± 0.10 −0.80 ± 0.05 2.02 ± 0.25 19.18 ± 0.47 2.48 ± 0.14

Λ+
c → Σ+π0 1.28 ± 0.05 −0.48 ± 0.02 0.34 ± 0.11 −0.81 ± 0.05 1.94 ± 0.24 19.29 ± 0.46 2.53 ± 0.15 1.25 ± 0.09 −0.49 ± 0.031.27 ± 0.05 −0.48 ± 0.02 0.37 ± 0.10 −0.80 ± 0.05 2.02 ± 0.25 19.18 ± 0.47 2.48 ± 0.14

Λ+
c → Σ+η

0.34 ± 0.03 −0.92 ± 0.04 0.03 ± 0.14 0.40 ± 0.10 2.97 ± 0.19 7.02 ± 0.68 3.11 ± 0.16 0.32 ± 0.04 −0.99 ± 0.060.33 ± 0.03 −0.92 ± 0.04 −0.10 ± 0.16 0.37 ± 0.12 2.90 ± 0.19 7.12 ± 0.77 −3.04 ± 0.17

Λ+
c → Σ+η′

0.35 ± 0.10 −0.44 ± 0.07 0.89 ± 0.06 0.12 ± 0.37 3.78 ± 1.14 20.99 ± 2.58 2.03 ± 0.08 0.44 ± 0.15 −0.46 ± 0.070.46 ± 0.12 −0.44 ± 0.07 0.89 ± 0.05 0.09 ± 0.31 4.25 ± 1.05 24.19 ± 3.16 2.03 ± 0.08

Λ+
c → Ξ0K+ 0.33 ± 0.03 −0.03 ± 0.12 −0.98 ± 0.02 0.20 ± 0.09 2.75 ± 0.19 9.59 ± 0.47 −1.60 ± 0.12 0.55 ± 0.07 0.01 ± 0.16 -

0.34 ± 0.03 −0.05 ± 0.11 −0.98 ± 0.02 0.20 ± 0.09 2.77 ± 0.18 9.66 ± 0.46 −1.62 ± 0.11

Λ+
c → Λ0K+ 0.0625 ± 0.0030 −0.57 ± 0.04 0.40 ± 0.07 −0.72 ± 0.04 0.56 ± 0.04 4.38 ± 0.11 2.54 ± 0.10 0.0635 ± 0.0031 −0.579 ± 0.0410.0627 ± 0.0030 −0.58 ± 0.04 0.39 ± 0.07 −0.72 ± 0.04 0.56 ± 0.04 4.39 ± 0.11 2.55 ± 0.10

Λ+
c → Σ0K+ 0.0384 ± 0.0029 −0.65 ± 0.08 0.76 ± 0.07 0.00 ± 0.11 0.83 ± 0.07 2.95 ± 0.13 2.27 ± 0.10 0.0382 ± 0.0051 −0.55 ± 0.200.0390 ± 0.0027 −0.62 ± 0.07 0.79 ± 0.05 0.04 ± 0.11 0.86 ± 0.07 2.90 ± 0.14 2.23 ± 0.09

Λ+
c → Σ+KS

0.0385 ± 0.0029 −0.65 ± 0.08 −0.76 ± 0.07 0.00 ± 0.11 0.83 ± 0.07 2.95 ± 0.13 2.27 ± 0.10 0.047 ± 0.0140.0390 ± 0.0027 −0.62 ± 0.07 0.79 ± 0.05 0.04 ± 0.11 0.86 ± 0.07 2.90 ± 0.14 2.23 ± 0.09

Λ+
c → nπ+ 0.072 ± 0.008 −0.53 ± 0.11 −0.71 ± 0.04 0.45 ± 0.11 1.30 ± 0.07 1.92 ± 0.25 −2.21 ± 0.12 0.066 ± 0.0130.072 ± 0.007 −0.56 ± 0.10 −0.71 ± 0.04 0.42 ± 0.10 1.28 ± 0.07 1.96 ± 0.22 −2.24 ± 0.10

Λ+
c → pπ0 0.0196 ± 0.0036 −0.45 ± 0.31 −0.87 ± 0.28 −0.20 ± 0.54 0.50 ± 0.15 1.48 ± 0.42 −2.05 ± 0.41 0.0156+0.0075

−0.00610.0200 ± 0.0040 −0.52 ± 0.12 −0.77 ± 0.35 −0.37 ± 0.63 0.45 ± 0.20 1.59 ± 0.48 −2.16 ± 0.29

Λ+
c → pKS

1.55 ± 0.06 −0.74 ± 0.01 0.51 ± 0.18 −0.43 ± 0.21 3.97 ± 0.73 16.00 ± 1.31 2.54 ± 0.17 1.59 ± 0.07 −0.743 ± 0.0151.58 ± 0.06 −0.74 ± 0.01 0.47 ± 0.25 −0.47 ± 0.25 3.84 ± 0.91 16.36 ± 1.45 2.58 ± 0.24

Λ+
c → pη

0.153 ± 0.007 −0.65 ± 0.05 0.38 ± 0.26 −0.66 ± 0.16 0.98 ± 0.24 5.55 ± 0.28 2.61 ± 0.29 0.149 ± 0.0080.150 ± 0.007 −0.67 ± 0.06 0.30 ± 0.43 −0.68 ± 0.21 0.93 ± 0.31 5.54 ± 0.36 2.72 ± 0.53

Λ+
c → pη′

0.053 ± 0.008 −0.43 ± 0.11 0.64 ± 0.25 −0.64 ± 0.24 0.70 ± 0.23 4.87 ± 0.57 2.17 ± 0.24 0.049 ± 0.0090.051 ± 0.008 −0.40 ± 0.23 0.69 ± 0.24 −0.60 ± 0.23 0.73 ± 0.21 4.75 ± 0.55 2.10 ± 0.35

Ξ0
c → Ξ−π+ 2.96 ± 0.10 −0.74 ± 0.03 0.67 ± 0.03 0.12 ± 0.04 8.03 ± 0.23 23.70 ± 0.58 2.41 ± 0.04 1.80 ± 0.52 −0.64 ± 0.052.97 ± 0.10 −0.73 ± 0.03 0.67 ± 0.03 0.13 ± 0.04 8.10 ± 0.23 23.54 ± 0.58 2.39 ± 0.04

Ξ+
c → Ξ0π+ 0.97 ± 0.16 −0.89 ± 0.08 0.29 ± 0.11 0.36 ± 0.14 2.93 ± 0.27 6.67 ± 0.96 2.83 ± 0.13 1.6 ± 0.80.95 ± 0.13 −0.91 ± 0.06 0.28 ± 0.10 0.30 ± 0.13 2.84 ± 0.25 6.90 ± 0.81 2.85 ± 0.11

Channel 102RX α β γ |A| |B| δP − δS 102(RX)exp αexp

Ξ0
c → Ξ−K+ 4.38 ± 0.02 −0.73 ± 0.03 0.66 ± 0.03 0.20 ± 0.04 1.85 ± 0.05 5.46 ± 0.13 2.41 ± 0.04 2.75 ± 0.574.39 ± 0.02 −0.72 ± 0.03 0.66 ± 0.02 0.22 ± 0.04 1.86 ± 0.05 5.42 ± 0.13 2.39 ± 0.04

Ξ0
c → ΛK0

S
23.1 ± 0.9 −0.61 ± 0.02 0.50 ± 0.13 −0.61 ± 0.11 2.38 ± 0.34 14.18 ± 0.47 2.46 ± 0.12 22.9 ± 1.423.1 ± 0.8 −0.61 ± 0.02 0.49 ± 0.17 −0.62 ± 0.13 2.37 ± 0.41 14.22 ± 0.49 2.47 ± 0.17

Ξ0
c → Σ0K0

S
3.8 ± 0.6 −0.54 ± 0.38 −0.90 ± 0.11 0.18 ± 0.60 1.68 ± 0.49 4.33 ± 1.52 −2.15 ± 0.39 3.8 ± 0.73.7 ± 0.6 −0.64 ± 0.19 −0.86 ± 0.17 −0.01 ± 0.77 1.53 ± 0.65 4.76 ± 1.71 −2.26 ± 0.26

Ξ0
c → Σ+K−

13.7 ± 0.9 −0.03 ± 0.12 −0.99 ± 0.01 −0.13 ± 0.09 2.75 ± 0.19 9.59 ± 0.47 −1.60 ± 0.12 12.3 ± 1.213.8 ± 0.9 −0.05 ± 0.11 −0.99 ± 0.01 −0.13 ± 0.09 2.77 ± 0.18 9.66 ± 0.46 −1.62 ± 0.11

This sum rule was first derived in Ref. [25]. It is very useful to constrain the branching
fraction of Ξ0

c → Ξ−π+. This needs to be tested in the near future.

4 CP violation

The existence of strong phases in the partial-wave amplitudes of hadronic charmed baryon
decays plays a pivotal role in a further exploration of CP violation in the charmed baryon
sector. According to the standard model, CP violation is at a very small level in the decays
of charmed hadrons. This is because of the relation of the CKM matrix elements, λs ≈ −λd

with λp ≡ V∗cpVup. As a consequence, CP violation in the charm sector is usually governed
by λb which is very tiny compared to λd or λs in magnitude. This also indicates that the
corresponding QCD penguin and electroweak penguin are also rather suppressed.

In 2019 LHCb has announced the first observation of CP asymmetry difference between
D0 → K+K− and D0 → π+π− with the result ∆ACP = (−1.54 ± 0.29) × 10−3 [30]. In the
standard-model estimate with the short-distance penguin contribution, we have the expression
(see e.g. [31])

∆ACP ≈ −1.3 × 10−3
(∣∣∣∣∣ P

T + E

∣∣∣∣∣
KK

sin θKK +

∣∣∣∣∣ P
T + E

∣∣∣∣∣
ππ

sin θ
ππ

)
, (29)

where the factor of −1.3 × 10−3 comes from the imaginary part 2Im(λdλ
∗
b)/|λd |

2, θKK is the
strong phase of (P/T )KK and likewise for θππ. Since |P/T | is naïvely expected to be of order
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(αs(µc)/π) ∼ O(0.1), it appears that ∆ACP is most likely of order 10−4 assuming strong phases
close to 90◦ or even less for realistic strong phases. It was pointed out in [31] that there
is a resonant-like final-state rescattering which has the same topology as the QCD-penguin.
That is, the penguin topology receives sizable long-distance contributions through final-state
interactions. In 2012 an ansatz that PLD is of the same order of magnitude as E was made
in Ref. [31] . This ansatz of PLD = ELD ≈ E was justified by a recent systematical study
of the final-state rescattering of the short-distance T diagram in the tolological diagrammatic
approach [32]. Since the W-exchange topology can be extracted from the data, one can make
a reliable prediction of ∆ACP as carried out in Ref. [33] in 2012, 7 years before the LHCb
observation of CP violation in the charm meson sector. Hence, it is the interference between
tree and long-distance penguin that pushes ∆ACP in the charmed meson sector up to the per
mille level [33].

By the same token, CP asymmetry in the charmed baryon sector at the per mille level
also can be achieved through final-state interactions as discussed recently in Ref. [34]. In
particular, large CP asymmetries ∆ACP(Ξ0

c → pK−)−∆ACP(Ξ0
c → Σ+π−) = (1.87±0.57)×10−3

and ∆Aα
CP(Ξ0

c → pK−) − ∆Aα
CP(Ξ0

c → Σ+π−) = (−4.94 ± 0.57) × 10−3 were obtained, where
∆Aα

CP = (α + ᾱ)/(α − ᾱ).
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