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Abstract. There exist two distinct ways in realizing the approximate SU(3) fla-
vor symmetry of QCD to describe the two-body nonleptonic decays of charmed
baryons, the irreducible SU(3) approach (IRA) and the topological diagram ap-
proach (TDA). The TDA has the advantage that it is more intuitive, graphic and
easier to implement model calculations. We perform a global fit to the experi-
mental data of two-body charmed baryon decays based on the TDA and discuss
its equivalence with the IRA and their phenomenological implications.

1 Introduction

In the past few years, the experimental and theoretical progresses in the study of hadronic
decays of charmed baryons are very impressive. On the experimental side, more than 35
measurements of branching fractions and decay asymmetries have been accumulated. On
the theory aspect, there were many approaches developed in 1990s such as the relativis-
tic quark model, the pole model and current algebra (for a review, see [1]). Besides the
dynamical model calculations, a very promising approach is to use the approximate SU(3)
flavor symmetry of QCD to describe the two-body nonleptonic decays of charmed baryons.
There exist two distinct ways in realizing the flavor symmetry, the irreducible SU(3) ap-
proach (IRA) and the topological diagram approach (TDA). They provide a powerful tool for
a model-independent analysis. Among them, the IRA has become very popular in the past
few years. In the IRA, SU(3) tensor invariants are constructed through the short-distance
effective Hamiltonian, while in the TDA, the topological diagrams are classified according to
the topologies in the flavor flow of weak decay diagrams with all strong-interaction effects
included implicitly.

Within the framework of the IRA, two-body nonleptonic decays of charmed baryons were
first analyzed in Refs. [2, 3]. After 2014, this approach became rather popular. However, the
early studies of the IRA have overlooked the fact that charmed baryon decays are governed by
several different partial-wave amplitudes which have distinct kinematic and dynamic effects.
In other words, S- and P-waves were not distinguished in the early analysis and the IRA
amplitudes are fitted only to the measured rates. After the pioneer work in Ref. [4], it became
a common practice to perform a global fit of both S- and P-wave parameters to the data of
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branching fractions and decay asymmetries [5-9]. Just like the case of hyperon decays, non-
trivial relative strong phases between S- and P-wave amplitudes may exist, but they were
usually not considered in realistic model calculations of the decay asymmetry «.

The first analysis of two-body nonleptonic decays of antitriplet charmed baryons 8.(3) —
B(8)M(8+ 1) within the framework of the TDA was performed by Kohara [10]. A subsequent
study was given by Chau, Cheng and Tseng (CCT) in Ref. [11] followed by some recent
analyses in the TDA [12-15]. Unlike the IRA, global fits to the rates and decay asymmetries
in the TDA were not available until recently.

Although the TDA has been applied very successfully to charmed meson decays [16—18],
its application to charmed baryon decays is more complicated than the IRA. As stressed in
Ref. [12], it is easy to determine the independent amplitudes in the IRA, while the TDA
gives some redundancy. Some of the amplitudes are not independent and therefore should
be absorbed into other amplitudes. Nevertheless, the TDA has the advantage that it is more
intuitive, graphic and easier to implement model calculations. The extracted topological
amplitudes by fitting to available data will enable us to probe the relative importance of
different underlying decay mechanisms, and to relate one process to another at the topological
amplitude level.

2 TDA

Since baryons are made of three quarks in contrast to two quarks for the mesons, the appli-
cation of TDA to the baryon case will inevitably lead to some complications, for example,
the symmetry of the quarks in flavor space could be different. As shown explicitly in Ref.
[19], physics is independent of the convention one chooses for the wave functions of the
octet baryons. We prefer to use the bases /*(8)4,, and y/*(8)s,, for octet baryons as they are
orthogonal to each other:

W®an) = Y dagrlacX[gagslach 8)a,,),

qa>qb-9c

W®sn) = D) Ngada){guanladt s .), M

qa>qb-9c

denoting the octet baryon states that are antisymmetric and symmetric in the first two quarks,
respectively. Hence,

IB™4(8)) = aly"(1/2a )W ®)an) + b (1/2)s W ®)s ) @

with |a?> + |b]*> = 1, where X"(1/2)4,5 are the spin parts of the wave function defined in Eq.
(23) of Ref. [11].

In terms of the octet baryon wave functions given in Eq. (2), the relevant topological
diagrams for the decays of antitriplet charmed baryons B.(3) — B(8)M(8 + 1) are depicted
in Fig. 1: the external W-emission, T'; the internal W-emission C; the inner W-emission C’;
W-exchange diagrams E\4, E\s, Exa, Eas, E3 and the hairpin diagram E;. Since there are
two possible penguin contractions, we will have penguin diagrams Pj, P4, Pys as well as
P, P, P}¢. The topologies P, and P; are hairpin penguin diagrams. The decay amplitudes
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Figure 1: Topological diagrams contributing to B.(3) — B(8)M(8 + 1) decays.

of B.(3) — B(8)M(8 + 1) in the TDA have the expressions [20, 21]:

Arpa = T(B)H™ (Bg);j (MM},
+ C(Bo)H (By)yj (M), + C'(Be) H)y (B)y; (M)
+ E\a(B) T HE (B5) jjon (M} + Ers (B) THE M) [(Bs) jic + (B |
+ Exa(Be) HE (By) ju (M)} + Eng (B) HE (M [(Bs) jit + (B8 |
+ E5(Bo) T HE (B8)ym (MY + En(B)THE (By)y; (M) 3)
+ Pu(Bo) HE (B (M) + P1(B)H* (By); (M),
+ Poa(B) Hpt (B (M) + Pos(Be) H (M) [(B)i + (B)in]
+ P(B)THY (B (M) + P{(B)Hy' (By); (M),
+ Py(B)HY (B (M) + P (Be) HY (M), [(By)s + (Bs)ie] »

where (B,)” is an antisymmetric baryon matrix standing for antitriplet charmed baryons,
(B3); and M;. represent octet baryons and nonet mesons, respectively, and the tensor coef-

ficient H¥ related to the CKM matrix elements appears in the standard model Hamiltonian
with H¥(grc)(@:1g™). The contraction of the two indices of HX, namely, H”", is induced in the

penguin diagrams Py, P4, P>g and Py, while H{" in the penguin diagrams P}, P}, P’zs and
P/
h*
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In diagrams T and C, the two spectator quarks ¢; and ¢g; are antisymmetric in flavor.
Notice that the final-state quarks ¢; and g; in topological diagrams C’, E3 and Ej, also must
be antisymmetric in flavor owing to the Korner-Pati-Woo (KPW) theorem which states that
the quark pair in a baryon produced by weak interactions is required to be antisymmetric in
flavor in the SU(3) limit [22]. Likewise, the KPW theorem together with the pole model also
leads to [23]

Ery = —E)a, Eys = —Ejs. “
As a result, the number of independent topological diagrams depicted in Fig. 1 and the TDA
amplitudes in Eq. (3) is 7.

Working out Eq. (3) for B.(3) — B(8)M(8 + 1) decays, the obtained TDA decay ampli-
tudes are listed in Tables I and II of Ref. [20]. Among the 7 TDA amplitudes given in Eq.
(3), there still exist 2 redundant degrees of freedom through the redefinitions [11]:

TZT—ELS*, C=C+E15, é/ZC’—ZEIS,

E\=Ein+Eis —Es, E,=E,+2E;. Q)
A closer look of the TDA amplitudes of Cabibbo-favored, singly-Cabibbo-suppressed and
doubly-Cabibbo-supprerssed decays given in Tables I and II shows that E;g can be absorbed
by T, C, C’, E| and Ej, as shown in the above equation. Hence, the redundant E;g can be
eliminated. Also the amplitude Ej is always accompanied by Ej4 + E;s. Consequently, it
can be absorbed by the combination of Ej4 + Eg. As a result, among the seven topological
amplitudes T, C, C’, E\4, Ej,, E|s and E3, the last two are redundant degrees of freedom and
can be omitted through redefinitions. ! It is clear that the minimum set of the topological
amplitudes in TDA is 5. This is in agreement with the number of tensor invariants found in
IRA [25].

It should be stressed that the redefinition given in Eq. (5) is not unique. another redefini-

tion, for example,

T=T-CJ2, C=C-C'/2, Eis=E;—-C)/2,

Eiw=Eis—-E3+C'/2, Ey=E,+C, (6)

also works.

2.1 Equivalence of TDA and IRA ()

To demonstrate the equivalence between the TDA and IRA, we need to show that the number
of the minimum set of tensor invariants in the IRA and the topological amplitudes in the TDA
is the same. We follow Ref. [12] to write down the general SU(3) invariant decay amplitudes
in the IRA:

Araa = a1 (Be); (He) (By)i Mj + az (B.); (He)F (By), M] + a3 (B.); (He)'f (Bg)] M
+ a4 (B); (He)]" (Bs); My + as (B.); (He)]" (Bs)'; M,
PRy ko N1 agi
+ag (B (Hs) | (Bs)] M + a7 (Bo); (Hys) | (B M, D
ik P ik .
+as (Bo); (Hys)| (By)] My + as (Bo)i (Hs), () M,

ik .
+ a9 (8.); (Hys), (B8} M.

!t was claimed in a recent work [24] that the relations of T = C and E; = E, (or Ty = T> and T4 = Ts in
the notation of Ref. [24] ) can be used to reduce the number of independent degrees of freedom from 7 to 5. Since
the color-allowed T" and the color-suppressed C are different topologies, the relation of 7 = C does not hold and
likewise for E| and E>.
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For the explicit expressions of (H6)2j and (HE):’ see Ref. [12]. The first five terms associated
with Hg are not totally independent as one of them is redundant through the redefinition. It
should be stressed that the redefinition is not unique. For example, we will consider the
following redefinitions

’ ’ ’ ’
ay=a —as, a,=ay+as, ay=az+as, a,=a4+as, ®)
and [12]
n” ’n ’’ 1’
al =a1+ay, a, =a—a3, ay=az—as, ds5 =das+as. )

As for the five terms associated with Hyz in Eq. (16), four of them are prohibited by the KPW
theorem and the pole model, namely, ag = a7 = ag = ajo = 0 [23, 25].

By comparing the TDA amplitudes in Tables 1 and 2 of [20] with the IRA amplitudes
given in Tables 14-16 of Ref. [12], we arrive at the relations

-1 ~ 1
T = —(—ay + as + ag), C=—=(ar —as + ayg),
2( 2 + a4 + ag) 2( 2 — a4 + ag) (10)
C' = —ap — as, E~1 =as + as, Eh = —ap + as.
Therefore, we have the correspondence
A 1 ’ ’ ’ ~ 1 ’ ’ ’
T = 5(—612 +ay + ag), C= E(a2 —ay + ag), (11
¢ = —ay, E| = a;, E, = —aj.

in terms of the redefinitions given in Eq. (8). The equivalence between the TDA and IRA is
thus established.
There is another set of the IRA amplitudes given in Ref. [25]

Arab = [ (BY* (He)i; (Bs)] M + 2 (B)* (He)i; (Bs)y M] + < (B)* (Hy);; (Bs)] M.,
+ FL B (He)yy (B, ] + ¢ (Bo); (Hs), (B9)] M.

(12)
The equivalence between "fﬁ/i, IRAa and IRAD leads to the relations:
Foi(pefn  C=ieper
T2 ’ T2 ’ (13)

C=f-7 E = -f, E, = f

2.2 Equivalence of TDA and IRA (ll)

In Refs. [20, 21] the equivalence of TDA with IRA is established by first writing down the
TDA and IRA amplitudes of B.(3) — B(8)M(8 + 1) decays and then comparing them to
figure out their relations. Here we will make a direct transformation from TDA to IRA and
show that they are identical.
In terms of (B,); and (Bg); defined by (8,)" = €/X(B,)x and (Bg)ij = €;i(Bs)s, respec-
tively, Eq. (3) can be recast to
Arwa = QT -C' -2Es )(Bc)i(Bs)iHlﬁMT +2C+C - 2E2S)(Bc)i(88);Hrlv{M;n
+ C' (BB (Hyy — HiDM]" + (E1a — Eis — E3)(B)i(Bg)p HIM"
+ (Eax — Eas + E3)(Bo)i(Bs)n HIM" — ENB.)(By)'(H) — H M
+ 2E15(Bo)i(Bs) Hiy M + 2Ens (Bo)i(Bs) T Hy M + -+,

(14)
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where only the non-penguin terms are kept. Substituting the relation

HY = % [H(A5)! + HE)! |+ (15)

into the above equation yields
” ' ; i
Ao = (T +C)NBo)i (His), (Bo);M]' — Ex(Be); (He)! (B5) M),

+(T = C = C' = 2E15)(Be)i (He )y (Bs);M]" = C'(Be)i (He)yy (Bs),My (16)
+(E1a — Eis — E3)(Bo): (Ho)! (Bs)sM]" +2E15(8B.); (He) (Bs)! M

Comparing the TDA amplitudes with the IRA ones in Eq. (16), we obtain

’
a; = —Ej, a = -C’, a3 = E\xy - E5 — E3,

7
ay=T—-C-C" -2Eg, as = 2Es, ag=T+C.
These lead to N ~
ay=ay —as = -k, ay=ar+as=-C,
dy =as +as = E, dy=aj+as=T-C-C, (18)
a9=T+C’, ag =a; =ag =djp =0,
consistent with Eq. (34) of Ref. [20]. Also, we have
a'l' =a;—ay= —Eh, Cllzl =ay—az = _EIA +EIS
ag’=a3—a4=—7+6+E1A +E15, a;’=a3+a5 IElA +E15, (19)
a9=7+a ag=a; =ag =aj =0,

3 Numerical Analysis and Results

As there are 5 independent tilde TDA amplitudes given in Eq. (5), we have totally 19 un-
known parameters to describe the magnitudes and the phases of the respective S - and P-wave
amplitudes, namely,

~ '6Tj ~ ‘6C ~ ch ~ .6571 - .65',,

ITIses, |Clses, |C'lses , |Elges , |Exlse”s,

~ T ~ el ~ e ~ . Ey - . )

ITIpe, |Clpe, |C'per , |Eilpe, |Exlpe, (20)

collectively denoted by |Xj|s ¢ and X peiéfi, where the subscripts S and P denote the S -
and P-wave components of each TDA amplitude. Since there is an overall phase which can
be omitted, we shall set 5§ = 0. Likewise, for the tidle IRA amplitudes given in Eq. (12), we

also have
- L fa s ) f'b ~. L fe =1 . /‘»11 - L fe
Ifses . |f0ses | flse™s, I se%s | fses
Fay ish by sl e, ish 7, sk Fe| ish
|felper, 1f7lper,  1flper,  |flper, 1f%lper . 2D

We shall aslo set (5{? = 0. Of course, physics is independent of which phase is removed.
Hence, in both cases we are left with 19 parameters.
In terms of the §- and P-wave amplitudes given in

M(B. — Bs + P) = iiig(A — Bys)u, (22)
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and their phases 05 and dp, respectively, the decay rate and Lee-Yang parameters read

_ Pe (m; + mf)2 —m?

E(1AP + <1BP),

8t ml2
_ 2ulA*Blcos(Bp — 65) . 21A*Bisin(dp —65) AP — k?IBP o3
T AR+aBE 7T T AR+«BE T T AR+ <2BR

where k = p./(Ey +my) = \J(Ef —my)/(Ef +my) and o* + 8% + y* = 1. It is clear that the
magnitudes of S- and P-wave amplitudes can be determined from I" and y. As for the phase
shift between S- and P-wave amplitudes, it is naively expected that dp — ds = arctan(8/a)
(see, for example, Ref. [26]). However, this is is somewhat misleading as the range of this
solution is limited to (-7, 7), which does not fully cover the phase-shift space. The correct
one is [20]

B

\a? + B2 +a

This naturally covers the correct solution space without imposing manual modification. As
an example, consider the recent LHCb measurements of the decay parameters @ = —0.782 +
0.010 and 8 = 0.368 + 0.017 for the decay A} — Axn*. The formula 6p — §s = arctan(B/a)
yields 6p — 05 = —0.44 rad, while Eq. (24) leads to 6p — 65 = 2.70 rad.

As noticed in Ref. [25], there is a so-called Z, ambiguity in the determination of phases,
namely, (&%, 6?) — (=67, —6;5"). Since 8 is proportional to sin(dp — dy ), this sign ambiguity
can be resolved by the measurement of 5 as just noticed in passing. The sign of the Lee-Yang
parameter y depends on the relative magnitude of S - and P-wave amplitudes. Hence we also
need measurements of 7y to select the solution for |A| and |B|. Recently, LHCb has performed
the first measurements of all the Lee-Yang parameters in A} — Azx* and A} — AK™; see
Table 1.

0p —ds = 2arctan (24)

Table 1: LHCb measurements of the decay parameters for A} — An* A} — AK™' and
A} — pK? decays [27].

Decay a B y
Af - Ar* -0.782 +£0.009 + 0.004 0.368 +0.019 +£0.008  0.502 + 0.016 + 0.006
Af - AK* -0.569 = 0.059 + 0.028 0.35+0.12+0.04 —0.743 £ 0.067 £ 0.024
Al - ng —-0.744 + 0.012 + 0.009 - -

Fitted tilde TDA and IRA amplitudes collectively denoted by X; are shown in Table 2,
where we have used the LHCb data in Table 1 and the data collected in Table VII of Ref.
[20]. We have set 6§ =0and 6’; = 0. The fit results based on the tilde TDA and tilde IRA
are shown in Table 3. In the following we discuss their implications.

For the decay A} — Z°K*, BESIII found [26]

a=001+£0.16+0.03, B=-0.64+0.69+0.13, y=-0.77+0.58+0.11, (25)

and uncovered two sets of solutions for the magnitudes of S - and P-wave amplitudes in units
of 102G GeV*:

Al= 1619+ 04, Al = 43107 +04,
A= 1650 . JA1=9320 (26)
Bl = 1832807, 1Bl =673 + 1.6,
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Table 2: Fitted tilde TDA and IRA amplitudes collectively denoted by X;. We have set 65 =0
and (5§a =0.

1Xils |Xilp 5y 5y
(102G GeV?) (in radian)

T | 423+0.12 1247+031 - 241 +0.04
C | 294+052 11.76+092  3.03+0.11 -0.72+0.18
C’ | 538+044 19.03+0.86 -0.04+0.06 223+0.12
E, | 290+£020 10.10+0.50 -2.81+0.06 1.88+0.10
E, | 3.88+077 1343+192 265+0.13 -194+0.21
F4] 431+£068 15.78+2.23 - 1.73 £0.12
fl 7.10+£072 2440+1.04 -273+0.10 -027+0.13
f¢ | 292+0.19 10.17+048 -234+0.11 232+0.13
f4l 157062 724+220 -2.80+022 031+024
fe | 147+0.67 069+1.11 -246+020 -1.29+250

as well as two solutions for the phase shift,
0p—0s = —1.55+0.25+0.05 or 1.59 +0.25 + 0.05 rad. 27)

Our fits with |A| = 2.75+0.19, |B| = 9.59 £ 0.47, a=zog+ = —0.03£0.12, B=zog+ = —0.98 +0.02
and 6p — s = —1.60 = 0.12 rad are consistent with the first phase-shift solution as well
as the Lee-Yang parameters a=zog+ and Bzox+. However, our result of B(A; — 20Ky =
(0.33 £ 0.03)% is smaller than the measured value of (0.55 + 0.07)% [28].

It should be stressed that although the BESIII’s measurement of azog-+ is in good agree-
ment with zero, it does not mean that the theoretical predictions in the 1990s with vanishing
or very small S-wave amplitude are confirmed. We have checked that if we set 6?” = 655" =0
from the outset and remove the input of (@zog+)exp > the fit azog+ will be of order 0.95 . Hence,
we conclude that it is necessary to incorporate the phase shifts to accommodate the data. It is
the smallness of | cos(dp — ds)| ~ 0.02 that accounts for the nearly vanishing azog-.

Besides the decay A} — Z°K*, we have noticed that the following modes Z0 —
K, X, pK~, pn,na° and B — pr’, nm* also receive contributions only from the
topological W-exchange amplitude £;. In the absence of strong phases in S- and P-wave
amplitudes, they are expected to have large decay asymmetries. For example, @zo_y.x- Was
found to be 0.79*033, 0.81+0.16 and 0.98 £0.20, respectively, in Refs. [4-6]. Once the phase
shifts are incorporated in the fit, the above-mentioned modes should have 6p — dg similar to
that in A¥ — Z°K™* and their decay asymmetries will become smaller (see Tables 3). In par-
ticular, for the CF channel Eg — X*K~ whose branching fraction has been measured before,
we predict that gy - = —0.03  0.12 similar to that of A} — Z°K*. This can be used to
test our theoretical framework.

The predicted B(E? — E-n*) = (2.96 + 0.10)% is noticeably higher than the measured
value of (1.80 + 0.52)% by Belle [29], but it is in a good agreement with the sum rule derived
in both TDA and IRA, namely,

EBE) - Ext) = 3BA] - Ax') + BT - 207 -

— B - nr*).  (28)
Txo sin” O¢
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Table 3: The fit results based on the tilde TDA (upper) and tilde IRA (lower). S - and P-wave
amplitudes are in units of 102G GeV? and 6p — &5 in radian.

Channel 10°8 a B y |1A| |B| dp =05 Bexp Qexp
1292005 077001 038002 0512001 5352010 9292021 268 0.2
+ 0+ —
Ao o N 1294005  ~0774£001 038+002 051001 555£0.10 928021 268+002 | 22005 ~0771£0011
1265005  -048+002 034+0.11 -081+005 194£024 1929+046 2.53+0.15
+ 0+ —
A= 1265005  —048£002 037+0.10 -080+005 202£025 19.18+047 248+0.14 | 27006 047003
1285005  —048+002 034+0.01 -081+005 194£024 1929046 2.53+0.15
+ 40 _
Ac - X 1275005  ~048£002 0372010 —080£005 202025 1918047 248x0.14 | 200 049003
034003  ~092:0.04 003:0.14 040£0.10 297019 702068 3.11+0.16
ey _
A =X 033£003  -092£004 —0.10£016 037012 290+0.19 712077 3042017 | 032004 0.99:£006
035010  -044£007 0894006 0.12+037 378114 2099258  2.03+0.08
ey _
Ac =X 046:0.12  —044£007 089£005 009:031 425:105 2419316 203+008 | =01 0.46£0.07
033003  -003+0.012 0984002 020£009 275£0.19 959047 —1.600.12 :
b =0
Ac=EKT 0342003 005£0.01 —098+002 0205009 277£018 9.66+046 -l62011 | C>>*007 - 001=016
0.0625+0.0030 —057+004 040£007 —-072+004 056+0.04 438011 254%0.10
+ 0 gt i
A= AR 00627 £0.0030 058004  039+007 —072+004 056+004 439£011 2552010 | *0033 #0003 —0579£0.041
0.0384+00029 -065+008 076£007 000+0.11 0834007 295+013 227+0.10
+ 0+ _
A= KT 00390 £0.0027  ~0.62£007  079£005 004011 086+0.07 290+0.14 223009 | (03820005 ~0.55+0.20
00385400029 —0.65+008 —-0.76+007 000+0.11 0834007 295+013 227+0.10
.
A=K 100390200027 0625007  079+005 0.04x011 086£007 290014 223009 | 0047=0014
N e | 007220008 0532011 0712004 0452001 1302007 192025 2212012 | (0o
e 0072£0007 ~-056+0.10 —-0.71+0.04 0424010 128+007 196022 -224x0.10 | 0660013
o 00196200036 0454031 0874028 0202054 050015 1482042 2052041 | | oo
ST 00200400040 ~0.52+0.012 ~0.77+035 -037+063 045£020 159048 2165029 | 013600l
1555006  -074+001 051018 —-043£021 397+073 1600131 254017
+ _
ATPES | 1582006 -074+001 0476025 -047+025 384091 16364145 258x024 | 0EODT 07430015
Jo 015320007  -065+005 0382026 -066+016 098024 555+028 2614029 | (000
e 0.150£0007 —-0.67+006 030+043 -0.68+021 093+031 554+036 272+053 | 1490
Ne Loy | 00530008 0432011 0642025 -064+024 0702023 487057 2172024 [ (oo
¢ 0051 £0008 040023 0.69+024 -060+023 073:021 475:055 210+035 | k
296010  ~074£003 0674003 0.12+004 803£023 2370058  2.41+0.04
=0 =t —
E—oET 207+010  -073+003 0.67£003 013:004 810£023 2354058 239+004 | 80032 0.64:£005
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This sum rule was first derived in Ref. [25]. It is very useful to constrain the branching
fraction of Z) — Z~x*. This needs to be tested in the near future.

4 CP violation

The existence of strong phases in the partial-wave amplitudes of hadronic charmed baryon
decays plays a pivotal role in a further exploration of CP violation in the charmed baryon
sector. According to the standard model, CP violation is at a very small level in the decays
of charmed hadrons. This is because of the relation of the CKM matrix elements, A, ~ —A,
with 4, = V{,V,,. As a consequence, CP violation in the charm sector is usually governed
by A, which is very tiny compared to A, or A, in magnitude. This also indicates that the
corresponding QCD penguin and electroweak penguin are also rather suppressed.

In 2019 LHCD has announced the first observation of CP asymmetry difference between
DY — K*K~ and D° — n*7~ with the result AAcp = (—1.54 + 0.29) x 1073 [30]. In the
standard-model estimate with the short-distance penguin contribution, we have the expression
(seee.g. [31])

AAcp ~ —13x 1073 sing_|, (29)

bed

T+E

——| sinf, +
T+ELK1 K ‘

where the factor of —1.3 x 10~ comes from the imaginary part 2Im(444;)/ |42, Okk is the
strong phase of (P/T),, and likewise for 6,,. Since |P/T| is naively expected to be of order
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(@s(ue)/m) ~ O(0.1), it appears that AAcp is most likely of order 10~ assuming strong phases
close to 90° or even less for realistic strong phases. It was pointed out in [31] that there
is a resonant-like final-state rescattering which has the same topology as the QCD-penguin.
That is, the penguin topology receives sizable long-distance contributions through final-state
interactions. In 2012 an ansatz that PP is of the same order of magnitude as E was made
in Ref. [31] . This ansatz of P'® = E'P x~ E was justified by a recent systematical study
of the final-state rescattering of the short-distance 7" diagram in the tolological diagrammatic
approach [32]. Since the W-exchange topology can be extracted from the data, one can make
a reliable prediction of AAcp as carried out in Ref. [33] in 2012, 7 years before the LHCb
observation of CP violation in the charm meson sector. Hence, it is the interference between
tree and long-distance penguin that pushes AAcp in the charmed meson sector up to the per
mille level [33].

By the same token, CP asymmetry in the charmed baryon sector at the per mille level
also can be achieved through final-state interactions as discussed recently in Ref. [34]. In
particular, large CP asymmetries AACP(EQ — pK ’)—AACP(EB — X*77) = (1.87+£0.57)x1073
and AA%P(E? — pK™) - AA%P(E? — Y*7) = (—4.94 + 0.57) x 1073 were obtained, where
AAL, = (@ +@)/(a — @).
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