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Abstract

Perturbation theory is universally recognized as a fundamental tool in modern theoretical

physics. In functional integral formalism, perturbation theory provides a method for study-

ing field theories, offering both mathematical rigor and substantial physical insights. It is

challenging to name an area of theoretical physics where perturbation theory does not play a

fundamental role: even in theories specifically designed for a non-perturbative approach like

lattice gauge theories, perturbation theory remains relevant and interesting. Lattice gauge

theories offer a powerful framework for understanding non-perturbative aspects of quantum

field theories. By discretizing space-time on a lattice, these theories enable detailed Monte

Carlo simulations that are crucial for probing phenomena beyond the reach of perturbation

theory, shedding light on subtle features such as quark confinement in QCD and many others.

In the mid-1990s, a new method was developed that in a sense integrates traditional per-

turbation theory with Monte Carlo simulations of lattice field theories (in particular lattice

gauge theories, for which traditional diagrammatic perturbation theory is cumbersome). This

approach is known as Numerical Stochastic Perturbation Theory (NSPT). NSPT offers a fully

automated stochastic method for calculating loop corrections in lattice field theories, using the

power of Monte Carlo simulations. Its numerical implementation requires minimal changes

with respect to traditional Monte Carlo simulations; (also due to this) NSPT enables the cal-

culation of loop corrections at very high perturbative orders. The ease of implementation and

advanced capability explain why NSPT has captured the attention of lattice practitioners.

A not-well-explored feature of NSPT is the freedom to choose any vacuum for calculating

perturbation theory, in principle without encountering the intricacies of the diagrammatic

perturbation theory. If one had to make a natural choice, low-dimensional models are the

best candidates for exploratory analysis of the feasibility of perturbative expansions on top of

non-trivial vacua. This way, one immediately encounters problems: it is known that NSPT

simulations exhibit large fluctuations in low-dimensional models. As the perturbative order

increases, huge fluctuations show up, completely obscuring the signal at even not-so-high per-

turbative orders.

In this thesis, we discuss NSPT simulations for a class of highly interesting low-dimensional

models, the two-dimensional O(N) Non-Linear Sigma Models (NLSMs). O(N) non-linear

sigma models can be regarded as a valuable theoretical laboratory in quantum field theory,

as they display in a relatively simple framework interesting features like asymptotic freedom.

From a more phenomenology-oriented point of view, NLSM proved to be effective in modeling

different features in different contexts. As we will see, in this work our interest in O(N)

models is motivated by the possibility of tuning N . On general grounds, we expect that



huge fluctuations in simulations of low-dimensional models are somehow connected to the

limited number of degrees of freedom. From this perspective, O(N) NLSMs are an ideal

laboratory: in fact we can modify the number of degrees of freedom by tuning the parameter

N . Our numerical results show that in the large N limit NSPT simulations are not affected

by the large fluctuations issue at high orders, in contrast to what occurs in the small N

regime. Our conclusions are supported by extensive numerical studies of the properties of

NSPT distributions as function of the perturbative order n and the parameter N . While

a fundamental comprehension is admittedly lacking, we will consider different indicators for

assessing if (and to what extent) large enough N computations are to be regarded as safe at

a given perturbative order n. In particular, the study of relative errors has been particularly

fruitful: in this context, the onset of fluctuations has been probed through violations of very

generally expected scaling behaviors. Our numerical simulations strongly suggest that indeed

for each perturbative order n, an NSPT computation in O(N) can always be found safe with

respect to fluctuations if we take a large enough N . As a result, the larger the value of N ,

the more perturbative corrections we could compute, significantly extending the previously

known results from lattice diagrammatic perturbation theory.

Once for large enough N high perturbative orders can be safely computed, we expect we

can explore the asymptotic behavior of perturbative expansions. In the context of lattice

gauge theories, NSPT has proven to be effective in probing infrared renormalons. In the

final part of the thesis, we discuss O(N) renormalon effects in the large N limit. We will

perform computations on a pretty small lattice size, but we will provide new insight on the

role of finite-volume effects. In particular, by explicitly taking into account the infrared

cutoff, we obtained an analytic (first-principles) estimate of finite-volume effects, assessing

how they modify the factorial scaling of coefficients. Once we have such modeling, we can

compare analytical predictions and numerical results, finding agreement in the asymptotic

perturbative region. We stress that this will be a parameter-free comparison (there is no

space for any parameter to adjust). Large N NSPT simulations for O(N) models can also be

regarded as a preliminary step towards going back to perturbative expansions around non-

trivial vacua. Quite interestingly, such computations in the (quite close) CP (N − 1) models

are connected to resurgence scenarios.
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Preface

Motivations
Numerical Stochastic Perturbation Theory (NSPT) [1] is a computational tool that uses stochas-

tic methods to perform perturbative calculations in quantum field theory. This technique em-

ploys lattice simulations to systematically compute series expansions in the coupling constant,

providing high loop-order results in theories for which traditional diagrammatic perturbation

theory is cumbersome (this is the case for Lattice QCD). NSPT has emerged as a key tool

to explore perturbative and non-perturbative aspects in quantum chromodynamics (QCD) and

other field theories.

Thirty years after its first appearance [2, 3], today a lot of experience with NSPT simula-

tions has been accumulated, with contributions coming from many lattice practitioners. Once

the possibility to compute perturbative expansions using Monte Carlo techniques has been es-

tablished, NSPT has been applied to many problems. In particular, NSPT has proven to be

effective in studying observables for which a very limited number of perturbative coefficients

were known [4–8]. It was noticed that the introduction of dynamical fermions in Lattice QCD

[9] results in a far smaller computational overhead than for non-perturbative Monte Carlo simu-

lations. Furthermore, significant applications of NSPT also involve Lattice QED [10], and many

others [11, 12]. Later on, we will see how NSPT has been precious in probing the asymptotic

behavior dictated by infrared renormalons. It is quite funny that one can directly inspect such

an asymptotic effect in a perturbative scheme (the lattice) for which it has been traditionally

thought that going to high-orders was impossible.

In recent years there has been a growing interest in the study of alternative underlying

stochastic processes for NSPT simulations. Although historically NSPT has been formulated as

the systematic order-by-order integration of a Langevin stochastic process, there are now many

versions of NSPT based on different stochastic equations. Beyond the theoretical importance
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of recognising different legitimate formulations, variants of NSPT aim to use the technology

derived from state-of-the-art Monte Carlo algorithms for non-perturbative simulations, such as

GHMD-based algorithms [8, 13]. Furthermore, NSPT has been in a sense reinterpreted in deep

connection with Automatic Differentiation [14].

Despite the three-decade-long literature, there are specific features of NSPT that have not

yet been fully understood. This is the case of high-order perturbative NSPT simulations for

low-dimensional models. It is a well-known fact that significant fluctuations in high-orders

NSPT simulations show up for small systems (let’s say much smaller than Lattice QCD) [15].

As a matter of fact, the onset of large fluctuations prevents a systematic study of perturbative

coefficients in the asymptotic region for low-dimensional models. Many of these models are

interesting. For example, NSPT expansions around non-trivial vacua are intriguing (it should

be possible to formulate a weak coupling perturbation theory in a much easier way than in

diagrammatic perturbation theory). While NSPT appears to be an ideal tool for computing high-

order corrections on top of non-trivial vacua (a similar case has been worked out for Lattice QCD

in the Schrödinger functional formalism [16]), one would attack at first low dimensional problems

displaying non-trivial vacua to start from. Because of the fluctuations issue we mentioned, we

currently lack these high-order computations.

Furthermore, low-dimensional models can be asymptotically free, and it would be inter-

esting to study the asymptotic perturbative behavior, to verify their fundamental properties

numerically. Infrared renormalons [17] are among the most interesting. NSPT is an excellent

numerical framework for the detection of renormalon scaling, since renormalon analysis provides

predictions in the asymptotic limit, requiring calculations at very high perturbative orders. As

a matter of fact, renormalons have been studied with fruitful results in SU(3) gluodynamics

[18–20] and Lattice QCD with massless staggered fermions [21] by means of NSPT simulations.

Despite some success claimed for PC(N) models [22], there has been no systematic attempt at

assessing how good the assessment of renormalon behavior can be with respect to the onset of

fluctuations in low-dimensional models.

In this thesis, we study NSPT simulations in low-dimensional models. As expected, we will

see that large fluctuations emerge at (not even that) high-orders when attempting to expand a

theory around non-trivial vacua in low-dimensional models. For this reason, we moved to study

the O(N) non-linear sigma model. In this model we varied the number of degrees of freedom

by tuning the parameter N . Using O(N) NSLMs we can probe a general conjecture that we

have fewer problems simulating more degrees of freedom. This seems to be further justified by
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the fact that NSPT distributions exhibit a trend towards Gaussianity in the large N limit at

lower orders, as detailed in [11]. Furthermore, since the O(N) model is asymptotically free, we

can study the asymptotic scaling of perturbative coefficients, hunting for infrared renormalons.

It is worth noting that the CP (N − 1) model, a natural extension of the O(N) sigma model,

displays instantons [23]. For all these reasons it is expected that a comprehensive study of NSPT

simulations for the O(N) sigma models will lead to insights of general interest regarding new

possible NSPT applications.

Thesis organization
This thesis is organized as follows. In Sec. 1 we introduce the main aspects related to Numerical

Stochastic Perturbation Theory. We adhere to the historical path that led to the first imple-

mentation of NSPT, starting from the Stochastic Quantization. Special emphasis is given to

the statistical analysis of data. At the end of the section, alternative approaches using different

stochastic equations are briefly discussed. In Sec. 2 we present a first example of an unconven-

tional application of NSPT, which involves weak coupling expansion around instantonic vacua

for a 0 + 1-dimensional field theory: the Double-Well Potential. We discuss all the key as-

pects of this method, critically analyzing its limitations in relation both to the continuum limit

and to the emergence of fluctuations. In Sec. 3 we show NSPT results for the lattice O(N)

non-linear sigma model. Particular attention was given to the perturbation theory setup. In

this context, high-order spikes and statistical distributions were studied and related to the pa-

rameter N , which represents the number of degrees of freedom. In Sec. 4 we present a direct

application of what we have learned from O(N) NSPT simulations: the study of renormalons

in low-dimensional models. Finite volume effects have been taken into account by introducing

a first-principles estimate of the infrared cutoff in the factorial scaling of loop corrections. In

Sec. 5 we report our conclusions, discussing future prospects and new immediate applications.
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1–| Introduction to NSPT

1.1 Stochastic Quantization
Stochastic Quantization (SQ) represents per se an original approach to field theory quantization.

It was introduced in an innovative article by Parisi and Wu [29]. Since then, the method has

evolved into an effective instrument across various domains of quantum field theory. As said, it

can be regarded as yet another brand-new quantization scheme. This is particularly interesting

in the framework of gauge theories, since in this context one could in principle stay away from

the theoretical issue of how gauge fixing interacts with the construction of the theory (think

about Gribov copies) [30]. At the same time, the Langevin equation on which SQ is based has

been regarded as an alternative to standard Monte Carlo methods in the non-perturbative study

of lattice quantum field theories. As we will see, we will be mainly interested in yet another

aspect, namely SQ gives rise to a novel approach to perturbation theory. For a quite old review,

which is still very interesting, see [31]. For the purposes of this thesis, we present its formulation

explicitly targeting Euclidean scalar field theories.

Following the historical introduction of SQ, the starting point is the notable parallel be-

tween Euclidean quantum field theory and statistical mechanics: in straightforward terms, the

Euclidean path integral measure is intimately linked to a statistical system at the equilibrium in

accordance with the Boltzmann distribution. It follows that n-points Euclidean Green functions

in the Path Integral (PI) formalism

〈ϕ(x1)ϕ(x2) . . . ϕ(xn)〉 =
1

Z

∫
Dϕ exp

(
− 1

h̄
SE

)
ϕ(x1)ϕ(x2) . . . ϕ(xn) (1)

can be deduced as correlation functions of statistical systems. In Eq. (1), SE represents the

Euclidean action. By setting 1/h̄ = 1/kT , Eq. (1) can be interpreted as a statistical expectation

value for a system in thermal equilibrium at temperature T . From now on, we consider physical

units h̄ = 1.

Solving a Euclidean quantum field theory means knowing how to compute correlation func-

2



tions in Eq. (1). This is typically challenging and starting from the path integral one could think

of providing solutions in a variety of ways, ranging from Perturbation Theory (PT) to numerical

simulation of a Lattice Regularization (LR) version of the theory. Stochastic Quantization offers

an alternative formulation of the problem. The starting point is the passage to a system with

one more degree of freedom than the original problem

ϕ(x) → ϕ(x, τ) . (2)

Thinking of this extra degree of freedom as a time, we will prescribe an evolution of the fields

such that the system is led to an equilibrium distribution as stochastic time τ progresses. The

evolution of the scalar field ϕ(x, τ) through stochastic time is governed by a stochastic differential

equation, namely the Langevin equation

∂ϕ(x, τ)η
∂τ

= − δSE

δϕ(x, τ)η
+ η(x, τ) . (3)

We note that the vanishing of the first term in the RHS of Eq. (3)

δSE

δϕ(x, τ)
= 0 (4)

selects the classical field equations, altered only to include τ -dependency. The last term in

Eq. (3) is a Gaussian white noise with defined correlations, namely

〈η(x1, τ1)η(x2, τ2)〉η = 2δ(n)(x1 − x2)δ(τ1 − τ2) (5)

and in general

〈η(x1, τ1) . . . η(x2k+1, τ2k+1)〉η = 0 , (6)

〈η(x1, τ1) . . . η(x2k, τ2k)〉η =
∑
W

∏
〈η(xi, τi)η(xj , τj)〉η , (7)

being W the set of all possible Wick contractions. In this context, the expectation values 〈. . .〉η
are defined as averages over all possible noise realizations

〈. . .〉η =

∫
Dη exp

[
− 1

4

∫
dτdx η2(x, τ)

]
. . .∫

Dη exp
[
− 1

4

∫
dτdx η2(x, τ)

] . (8)

Fields evolving according with Eq. (3) depend on the white noise realization (this motivates the

subscript notation ϕ(x, τ)η) and for a given stochastic realization a formal solution of Eq. (3)

has the form

ϕ(x, τ)η = ϕ(x, τ0)−
∫ τ

τ0

dτ ′
δS

δϕ(x, τ ′)
+

∫ τ

τ0

dτ ′η(x, τ ′) . (9)

3



The main assertion of stochastic quantization is that in the limit of τ approaching infinity,

equilibrium is achieved, and the equal-time correlation functions converge to the corresponding

Green’s functions in Eq. (1), that is to say

lim
τ→∞

〈ϕ(x1, τ)ηϕ(x2, τ)η . . . ϕ(xn, τ)η〉η = 〈ϕ(x1)ϕ(x2) . . . ϕ(xn)〉 , (10)

being the correlation functions defined as follows

〈ϕ(x1, τ)η . . . ϕ(xn, τ)η〉η =

∫
Dη exp

[
− 1

4

∫
dτdx η2(x, τ)

]
ϕ(x1, τ)η . . . ϕ(xn, τ)η∫

Dη exp
[
− 1

4

∫
dτdx η2(x, τ)

] . (11)

The statements suggest that the PI approach to field theories may be traded for a quantization

scheme built on a nonlinear stochastic differential equation. For simplicity, from now on, we will

omit the notation with the subscript ϕ(x, τ)η assuming the dependence is understood.

Since the initial introduction of the Langevin equation in field theory applications, numerous

developments have been achieved. On one hand, in the very original spirit, SQ was conceived

for developing a perturbative evaluation of gauge theories without fixing the gauge. On the

other hand, the Langevin equation has been widely employed as a simulation algorithm for

non-perturbative calculations in lattice field (and in particular gauge) theories.

1.1.1 Fokker-Plank formulation

In Eq. (10) we are considering expectation values of fields, averaging over the white noise re-

alizations. In general we can compute much more general functions of the fields in the SQ

framework, namely

〈A[ϕ(x1, τ) . . . ϕ(xn, τ)]〉η =

∫
Dη exp

[
−1

4

∫
dτdx η2(x, τ)

]
A[ϕ(x1, τ) . . . ϕ(xn, τ)] , (12)

where

Dη =
Dη∫

Dη exp
[
− 1

4

∫
dτdx η2(x, τ)

] (13)

is the normalized measure for the stochastic source.

One way to demonstrate the fundamental assertion in Eq. (10) is to study the (stochastic

time dependent) probability distribution associated with a field configuration, which is dictated

by the so-called Fokker-Planck (FP) formulation. Basically Eq. (12) can be rephrased as an

average over the probability distribution P [ϕ, τ ]1 according to

〈A[ϕ(τ) . . . ϕ(xn, τ)]〉η =

∫
DϕP [ϕ, τ ]A[ϕ(x1) . . . ϕ(xn)] . (14)

1Formally, a formulation in terms of probability distribution P [ϕ, τ ] is encoded in the relation P [ϕ, τ ] = 〈δ(ϕ −

ϕ(τ)η)〉η

4



We are now interested in finding the equation that describes the dynamics of this probability

distribution in the stochastic time and in evaluating its equilibrium solutions. The fundamental

statement in Eq. (10) will thus be verified if a stationary solution can be found which corresponds

precisely to the measure of the functional integral. First, consider the derivative with respect

to stochastic time of Eq. (12) and Eq. (14):

d

dτ
〈A[ϕ(τ)]〉η =

∫
Dϕ

dP [ϕ, τ ]

dτ
A[ϕ] , (15)

d

dτ
〈A[ϕ]〉η =

∫
Dη exp

[
−1

4

∫
dτdx η2(x, τ)

]
dA[ϕ(τ)]

dτ

=

∫
Dη exp

[
−1

4

∫
dτdx η2(x, τ)

] ∫
dx

δA[ϕ]

δϕ(x, τ)

dϕ

dτ

=

∫
Dη exp

[
−1

4

∫
dτdx η2(x, τ)

] ∫
dx

δA[ϕ]

δϕ(x, τ)

(
− δSE

δϕ(x, τ)η
+ η(x, τ)

)
,

(16)

where in the last line of Eq. (16) we used Eq. (3). We can manage the second term in the last

line of Eq. (16) as follow

− 2

∫
Dη
∫
dx

[
δ

δη(x, τ)
exp

(
−1

4

∫
dτdx η2(x, τ)

)]
δA[ϕ]

δϕ(x, τ)

=2

∫
Dη
∫
dx

∫
dy exp

(
−1

4

∫
dτdx η2(x, τ)

)
δ2A[ϕ]

δϕ(y, τ)δϕ(x, τ)

δϕ(y, τ)

δη(x, τ)

=

∫
Dη
∫
dx exp

(
−1

4

∫
dτdx η2(x, τ)

)
δ2A[ϕ]

δϕ(x, τ)2
.

(17)

We note that in the second line of Eq. (17) we use the formal solution in Eq. (9), namely

δϕ(y, τ)

δη(x, τ)
= θ(0)δ(x− y) , (18)

being θ(τ) the Heaviside step function defined with the mid-point prescription rule θ(0) = 1/2.

We obtain

d

dτ
〈A[ϕ]〉η =

∫
Dη
∫
dx exp

[
−1

4

∫
dτdx η2(x, τ)

](
− δSE

δϕ(x, τ)η

δA[ϕ]

δϕ(x, τ)
+

δ2A[ϕ]

δϕ(x, τ)2

)
=

∫
Dϕ

∫
dx

(
− δSE

δϕ(x, τ)η

δA[ϕ]

δϕ(x, τ)
+

δ2A[ϕ]

δϕ(x, τ)2

)
P [ϕ, τ ]

=

∫
Dϕ A[ϕ]

∫
dx

δ

δϕ(x, τ)

[(
δSE

δϕ(x, τ)η
+

δ

δϕ(x, τ)

)
P [ϕ, τ ]

]
.

(19)

By matching Eq. (15) and Eq. (19) we derive the Fokker-Plank equation

dP [ϕ, τ ]

dτ
=

∫
dx

δ

δϕ(x, τ)

[(
δSE

δϕ(x)
+

δ

δϕ(x, τ)

)
P [ϕ, τ ]

]
. (20)
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1.1.2 Solution of the Fokker-Plank equation

Eq. (20) prescribes the evolution of the probability density as the stochastic time progresses.

Although we are only interested in the stationary solution, we show how this can be directly

obtained from a more general solution, evaluated at τ → ∞. In our discussion, we will consider

systems with a finite number of discrete degrees of freedom: it is not a restriction as we are

interested in simulating the system on a computer. Nevertheless, generalizations to systems

with infinite degrees of freedom are also possible [32, 33]. We now start from the Fokker-Plank

equation
dP [ϕ, τ ]

dτ
=

∂

∂ϕ(x)

[(
δSE

δϕ(x)
+

δ

δϕ(x)

)
P [ϕ, τ ]

]
. (21)

We introduce the transformation

P [ϕ, τ ] = ψ(ϕ, τ)e−
S[ϕ]
2 (22)

and the Fokker-Planck equation can be rewritten as

ψ̇[ϕ, τ ]e−
S[ϕ]
2 =

∂

∂ϕ(x)

[
∂ψ

∂ϕ(x)
e−

S[ϕ]
2 +

1

2
ψ(ϕ, τ)e−

S[ϕ]
2

∂S

∂ϕ(x)

]
. (23)

We can recast the equation as follow

ψ̇[ϕ, τ ] = −2

[
−1

2

∂2

∂ϕ(x)2
− 1

4

∂2S

∂ϕ(x)2
+

1

8

(
∂S

∂ϕ(x)

)2]
ψ[ϕ, τ ] . (24)

Setting

H = −1

2

∂2

∂ϕ(x)2
− 1

4

∂2S

∂ϕ(x)2
+

1

8

(
∂S

∂ϕ(x)

)2

, (25)

we recognize the familiar Schröedinger equation

ψ̇ = −2Hψ . (26)

By simplifying to a single degree of freedom (we can extend our conclusions also to more vari-

ables), we can assert that the Hamiltonian

H = −1

2

∂2

∂x2
− 1

4

∂2S

∂x2
+

1

8

(
∂S

∂x

)2

=
1

2

(
− ∂

∂x
+
S′

2

)(
+
∂

∂x
+
S′

2

)
(27)

thus factorized, is self-adjoint and exhibits a non-negative spectrum. Furthermore, the spectrum

is entirely discrete. The transformations in Eq. (22) can be expressed in the eigenstates basis as

ψ[ϕ, τ ] =

∞∑
n=0

anψn[ϕ]e
−Enτ = a0ψ0[ϕ] +

∞∑
n=1

anψn[ϕ]e
−Enτ , (28)
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being ψ0 the zero-eigenvector of Hamiltonian in Eq. (27), namely

ψ0[ϕ] = e−
S[ϕ]
2 . (29)

In the limit of large stochastic time we obtain

lim
τ→∞

P [ϕ, τ ] = lim
τ→∞

ψ(ϕ, τ)e−
S[ϕ]
2 = a0e

−S[ϕ]+ lim
τ→∞

∞∑
n=1

anψn[ϕ]e
−Enτe−

S[ϕ]
2 = a0e

−S[ϕ] . (30)

The normalization constant can be fixed by means of∫
dϕP [ϕ, τ → ∞] = 1 . (31)

Stochastic Quantization thus leads in the limit of large stochastic times to probability distri-

butions in agreement with Euclidean field theory. In other words, this can be considered as a

demonstration of the equivalence between quantization via Path Integral and Stochastic Quan-

tization.

Another way to prove this result goes through the expansion of the probability distribution

into a power series in the coupling constant and writing the Fokker-Planck equation order-

by-order [34]. One ends up with equations coupling the distribution at the k-th order with

the distribution at the k − 1 order. The proof then proceeds by induction, thus proving the

equivalence at any fixed order. We can show the equivalence also using the formalism of the

Langevin equation [35], again in the framework of perturbation theory, as we will see in the next

section.

1.2 Stochastic Perturbation Theory
As anticipated, many results from the theory of Stochastic Quantization are closely related to

perturbation theory. Indeed, the title of the original paper was “Perturbation theory without

gauge fixing”, highlighting the interest in perturbation theory for systems with gauge symmetry

while avoiding the intricacies of Faddeev-Popov ghosts [29].

Perturbative expansions of the Langevin equation solutions are derived, as formal expansions

in the coupling constant, from Eq. (3) through its recursive solution in the coupling constant

itself. One of the simplest and paradigmatic examples, involving only scalar degrees of freedom,

is the self-interacting theory defined by the action [31]

S =

∫
dx

[
(∂µϕ)(∂µϕ) +m2ϕ2 +

λ

3!
ϕ3

]
. (32)
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The associated Langevin equation follows straightforward

d

dτ
ϕ(x, τ) = (∂µ∂µ −m2)ϕ(x, τ)− λ

2
ϕ(x, τ) + η(x, τ) . (33)

As usual, it is convenient to switch to momentum space via Fourier transformation (in the spatial

variables only), through

ϕ(k, τ) =

∫
dx eik·xϕ(x, τ) (34)

and the equivalent of Eq. (33) in Fourier space reads

d

dτ
ϕ(k, τ) = −(k · k +m2)ϕ(k, τ)− λ

2

∫
dpdq

(2π)n
ϕ(p, τ)ϕ(q, τ)δ(k − p− q) + η(k, τ) , (35)

where now (the Fourier transform of a Gaussian noise in position space is still Gaussian in

momentum space)

〈η(k, τ)η(k′, τ ′)〉η = 2(2π)nδ(k − k′)δ(τ − τ ′) . (36)

From a practical point of view, Eq. (35) can be solved by iteration, obtaining an exact expression

up to a fixed perturbative order.

1.2.1 Free scalar field theory

To construct solutions up to a generic perturbative order, it is necessary to first look at the

basic building block, namely the free theory solution. As expected, the free Langevin equation

d

dτ
ϕ(k, τ) = −(k · k +m2)ϕ(k, τ) + η(k, τ) (37)

can be explicitly solved in the Green Functions (GF) formalism in Fourier space, namely

d

dτ
G(k, τ) = −(k · k −m2)G(k, τ) + δ(τ) , with G(k, τ) = 0, τ < 0 , (38)

where the constraint in Eq. (38) selects only the retarded GFs. The solution of Eq. (38) is

G(k, τ) = exp {−(k · k +m2)τ}θ(τ) . (39)

The retarded GF in Eq. (39) can be used to construct the solution of Eq. (37) as follow

ϕ(k, τ) =

∫ ∞

−∞
dτ ′G(k, τ − τ ′)η(k, τ ′) + a exp {−(k · k +m2)τ} , (40)

where a is a constant fixed by the initial conditions. We can remove a evaluating the previous

equation in τ = 0

ϕ(k, 0) = ϕ0(k) =

∫ 0

−∞
dτ ′ exp {(k · k +m2)τ ′}η(k, τ ′) + a , (41)
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obtaining

a = ϕ0(k)−
∫ 0

−∞
dτ ′ exp {(k · k +m2)τ ′}η(k, τ ′) (42)

so that

ϕ(k, τ) =

∫ τ

−∞
dτ ′ exp {−(k · k +m2)(τ − τ ′)}η(k, τ ′)

+

(
ϕ0(k)−

∫ 0

−∞
dτ ′ exp {(k · k +m2)τ ′}η(k, τ ′)

)
exp {−(k · k +m2)τ}

=

∫ τ

0

dτ ′ exp {−(k · k +m2)(τ − τ ′)}η(k, τ ′) + ϕ0(k) exp {−(k · k +m2)τ} .

Let us note that the dependence of the field at time τ on the field at time τ0 = 0 is exponentially

suppressed, as expected. For this reason, for the sake of brevity, we can set the initial condition

ϕ0(k) = 0 , (43)

taking for granted that these terms cannot contribute in the evaluation of the correlation func-

tions in the limit of large stochastic time. In this setting we obtain a simple expression for the

stochastic free field

ϕ(k, τ) =

∫ τ

0

dτ ′ exp {−(k · k +m2)(τ − τ ′)}η(k, τ ′) (44)

and we are able to compute the free two-point function at different stochastic time

D(k,k′, τ, τ ′) = 〈ϕ(k, τ)ϕ(k′, τ ′)〉η . (45)

Inserting Eq. (44) in Eq. (45) we obtain

〈
∫ τ

0

ds exp {−(k · k +m2)(τ − s)}η(k, s)
∫ τ ′

0

dt exp {−(k′ · k′ +m2)(τ ′ − t)}η(k′, t)〉η

=

∫ τ

0

ds

∫ τ ′

0

dt exp {−(k · k +m2)(τ − s)} exp {−(k′ · k′ +m2)(τ ′ − t)}〈η(k, s)η(k′, t)〉η

=

∫ τ

0

∫ τ ′

0

ds dt exp {(k · k +m2)(s− τ)} exp {(k′ · k′ +m2)(t− τ ′)}2(2π)nδ(k − k′)δ(s− t) ,

(46)

where in the last line we use Eq. (36). Integrating in the stochastic time we obtain

D(k,k′, τ, τ ′) =2(2π)n
∫ min(τ,τ ′)

0

ds exp {(k · k +m2)(2s− τ − τ ′)}δ(k − k′)

=(2π)n
exp {−(k · k +m2)(τ + τ ′)}

(
exp {2(k · k +m2)min(τ, τ ′)} − 1

)
(k · k +m2)

δ(k − k′) .

(47)
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We note that

exp {−(k · k +m2)(τ + τ ′ − 2min(τ, τ ′))} = exp {−(k · k +m2)(τ − τ ′)} , τ > τ ′ , (48)

exp {−(k · k +m2)(τ + τ ′ − 2min(τ, τ ′))} = exp {−(k · k +m2)(τ ′ − τ)} , τ ′ > τ , (49)

and we can write

exp {−(k · k +m2)(τ + τ ′ − 2min(τ, τ ′))} = exp {−(k · k +m2)|τ − τ ′|} . (50)

In the end, the two point propagator reads

D(k,k′, τ, τ ′) = (2π)n
(
exp {−(k · k +m2)|τ − τ ′|} − exp {−(k · k +m2)(τ + τ ′)}

)
δ(k − k′)

k · k +m2
.

(51)

Additionally, Eq. (51) highlights the property

D(k,k′, τ, τ ′) = D(k, τ, τ ′) . (52)

Given the propagator in Eq. (51), we can provide an explicit proof of the statement in Eq. (10)

for the free theory. Indeed, we note that the propagator can be evaluated at equal stochastic

time, providing

D(k, τ) = (2π)n
(
1− exp {−2(k · k +m2)τ}

)
δ(k − k′)

k · k +m2
, (53)

and we can calculate the limit for large stochastic times as follows

lim
τ→∞

D(k, τ) = 〈ϕ(k, τ)ϕ(k, τ)〉η = (2π)n
δ(k − k′)

k · k +m2
, (54)

reproducing, as expected, the well-known propagator of the associated Euclidean theory [36].

1.2.2 Diagrammatic stochastic perturbation theory

The free solution in Eq. (44) can be naturally seen as a solution of the interacting theory up to

an O(λ). The underlying idea of Stochastic Perturbation Theory is to substitute this solution

in the formal solution of Eq. (35), namely

ϕ(k, τ) =

∫ τ

0

dτ ′ exp {−(k · k +m2)(τ − τ ′)}
[
η(k, τ ′)−λ

2

∫
dpdq

(2π)n
ϕ(p, τ ′)ϕ(q, τ ′)δ(k−p−q)

]
.

(55)

The solution in Eq. (55) is obtained noting that Eq. (35) is equivalent to Eq. (37) after the

replacement of

η(k, τ ′) → η(k, τ ′)− λ

2

∫
dpdq

(2π)n
ϕ(p, τ ′)ϕ(q, τ ′)δ(k − p− q) . (56)
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A solution can be constructed from Eq. (44) using the same replacement as before. By substi-

tuting the free solution in Eq. (55) we generate a solution to Eq. (35) up to O(λ2). Furthermore,

one can think of continuing in this manner with the newly found solution, and generate a solu-

tion up to O(λ3). Iteratively, solutions can be constructed in principle up to a fixed order. The

solutions obtained are naturally written as power series in the coupling constant up to a fixed

order. Here we present an outline of the procedure.

Writing symbolically the zero-order solution

ϕ0 =

∫
(Gη) , (57)

where the superscript i indicates the order of the recursion procedure, we can construct by

means of Eq. (55) a first-order solution

ϕ1 =

∫
(Gη)− λ

2

∫
G

∫
ϕ0ϕ0 =

∫
Gη − λ

2

∫ ∫ ∫
G(Gη)(Gη) (58)

and a second-order solution

ϕ2 =

∫
Gη − λ

2

∫ ∫ ∫
G(Gη)(Gη) +

λ2

2

∫ ∫ ∫ ∫ ∫
G(Gη)G(Gη)(Gη) (59)

and so on up to a desired order. Typically a graphical representation is given for the perturba-

tive series in Eq. (59) [31]. These are diagrams very similar to the Feynman diagrams
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<latexit sha1_base64="Mpz3hOkPTIDGav9PlnuYU4s0kLM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cI5gHJEmYns8mY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgecQpQSs1u8hjZnrlilf1ZnCXiZ+TCuSo98pf3b6iacwkUkGM6fhegkFGNHIq2KTUTQ1LCB2RAetYKoldEmSzayfuiVX6bqS0LYnuTP09kZHYmHEc2s6Y4NAselPxP6+TYnQdZFwmKTJJ54uiVLio3Onrbp9rRlGMLSFUc3urS4dEE4o2oJINwV98eZk0z6r+ZfXi/rxSu8njKMIRHMMp+HAFNbiDOjSAwiM8wyu8Ocp5cd6dj3lrwclnDuEPnM8fuWuPPg==</latexit> ⇥

<latexit sha1_base64="Mpz3hOkPTIDGav9PlnuYU4s0kLM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cI5gHJEmYns8mY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgecQpQSs1u8hjZnrlilf1ZnCXiZ+TCuSo98pf3b6iacwkUkGM6fhegkFGNHIq2KTUTQ1LCB2RAetYKoldEmSzayfuiVX6bqS0LYnuTP09kZHYmHEc2s6Y4NAselPxP6+TYnQdZFwmKTJJ54uiVLio3Onrbp9rRlGMLSFUc3urS4dEE4o2oJINwV98eZk0z6r+ZfXi/rxSu8njKMIRHMMp+HAFNbiDOjSAwiM8wyu8Ocp5cd6dj3lrwclnDuEPnM8fuWuPPg==</latexit> ⇥
<latexit sha1_base64="Mpz3hOkPTIDGav9PlnuYU4s0kLM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cI5gHJEmYns8mY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgecQpQSs1u8hjZnrlilf1ZnCXiZ+TCuSo98pf3b6iacwkUkGM6fhegkFGNHIq2KTUTQ1LCB2RAetYKoldEmSzayfuiVX6bqS0LYnuTP09kZHYmHEc2s6Y4NAselPxP6+TYnQdZFwmKTJJ54uiVLio3Onrbp9rRlGMLSFUc3urS4dEE4o2oJINwV98eZk0z6r+ZfXi/rxSu8njKMIRHMMp+HAFNbiDOjSAwiM8wyu8Ocp5cd6dj3lrwclnDuEPnM8fuWuPPg==</latexit> ⇥

<latexit sha1_base64="Mpz3hOkPTIDGav9PlnuYU4s0kLM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cI5gHJEmYns8mY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgecQpQSs1u8hjZnrlilf1ZnCXiZ+TCuSo98pf3b6iacwkUkGM6fhegkFGNHIq2KTUTQ1LCB2RAetYKoldEmSzayfuiVX6bqS0LYnuTP09kZHYmHEc2s6Y4NAselPxP6+TYnQdZFwmKTJJ54uiVLio3Onrbp9rRlGMLSFUc3urS4dEE4o2oJINwV98eZk0z6r+ZfXi/rxSu8njKMIRHMMp+HAFNbiDOjSAwiM8wyu8Ocp5cd6dj3lrwclnDuEPnM8fuWuPPg==</latexit> ⇥
<latexit sha1_base64="Mpz3hOkPTIDGav9PlnuYU4s0kLM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cI5gHJEmYns8mY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgecQpQSs1u8hjZnrlilf1ZnCXiZ+TCuSo98pf3b6iacwkUkGM6fhegkFGNHIq2KTUTQ1LCB2RAetYKoldEmSzayfuiVX6bqS0LYnuTP09kZHYmHEc2s6Y4NAselPxP6+TYnQdZFwmKTJJ54uiVLio3Onrbp9rRlGMLSFUc3urS4dEE4o2oJINwV98eZk0z6r+ZfXi/rxSu8njKMIRHMMp+HAFNbiDOjSAwiM8wyu8Ocp5cd6dj3lrwclnDuEPnM8fuWuPPg==</latexit> ⇥

In this description, we characterize G by a line and η by a cross. The process involves integrat-

ing over the momenta at the connection points and considering the fictitious times at both the

junctions and the cross points. The Diagrammatic Stochastic Perturbation Theory proceeds in

building the two-point correlation function from the diagrams presented above. In particular,

for the action in Eq. (32) we have the following stochastic diagrams<latexit sha1_base64="24EeJw0AAmVnIZ2h1VUX1LgU18w=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4Kon42ghFNy4r2Ac0oUwmk3boZBJnJpVS+yluXCji1i9x5984bbPQ1gMXDufcy733BClnSjvOt7W0vLK6tl7YKG5ube/s2qW9hkoySWidJDyRrQArypmgdc00p61UUhwHnDaD/s3Ebw6oVCwR93qYUj/GXcEiRrA2UscuIe8hwyHyBlimPYauUMcuOxVnCrRI3JyUIUetY395YUKymApNOFaq7Tqp9kdYakY4HRe9TNEUkz7u0rahAsdU+aPp6WN0ZJQQRYk0JTSaqr8nRjhWahgHpjPGuqfmvYn4n9fOdHTpj5hIM00FmS2KMo50giY5oJBJSjQfGoKJZOZWRHpYYqJNWkUTgjv/8iJpnFTc88rZ3Wm5ep3HUYADOIRjcOECqnALNagDgUd4hld4s56sF+vd+pi1Lln5zD78gfX5A8Brkwk=</latexit>' =
<latexit sha1_base64="Age47FzHBvUqYGPEEfH8g0BXt4k=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXfB2DXjwmYB6QhDA76U3GzM4uM7NCWPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dfiy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUy6caBZdYN9wIbMUKaegLbPqju6nffEKleSQfzDjGbkgHkgecUWOl2lmvWHLL7gxkmXgZKUGGaq/41elHLAlRGiao1m3PjU03pcpwJnBS6CQaY8pGdIBtSyUNUXfT2aETcmKVPgkiZUsaMlN/T6Q01Hoc+rYzpGaoF72p+J/XTkxw0025jBODks0XBYkgJiLTr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfHmZNM7L3lX5snZRqtxmceThCI7hFDy4hgrcQxXqwADhGV7hzXl0Xpx352PemnOymUP4A+fzB3TFjLk=</latexit>

+
<latexit sha1_base64="Age47FzHBvUqYGPEEfH8g0BXt4k=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXfB2DXjwmYB6QhDA76U3GzM4uM7NCWPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dfiy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUy6caBZdYN9wIbMUKaegLbPqju6nffEKleSQfzDjGbkgHkgecUWOl2lmvWHLL7gxkmXgZKUGGaq/41elHLAlRGiao1m3PjU03pcpwJnBS6CQaY8pGdIBtSyUNUXfT2aETcmKVPgkiZUsaMlN/T6Q01Hoc+rYzpGaoF72p+J/XTkxw0025jBODks0XBYkgJiLTr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfHmZNM7L3lX5snZRqtxmceThCI7hFDy4hgrcQxXqwADhGV7hzXl0Xpx352PemnOymUP4A+fzB3TFjLk=</latexit>

+
<latexit sha1_base64="Age47FzHBvUqYGPEEfH8g0BXt4k=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXfB2DXjwmYB6QhDA76U3GzM4uM7NCWPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dfiy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUy6caBZdYN9wIbMUKaegLbPqju6nffEKleSQfzDjGbkgHkgecUWOl2lmvWHLL7gxkmXgZKUGGaq/41elHLAlRGiao1m3PjU03pcpwJnBS6CQaY8pGdIBtSyUNUXfT2aETcmKVPgkiZUsaMlN/T6Q01Hoc+rYzpGaoF72p+J/XTkxw0025jBODks0XBYkgJiLTr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfHmZNM7L3lX5snZRqtxmceThCI7hFDy4hgrcQxXqwADhGV7hzXl0Xpx352PemnOymUP4A+fzB3TFjLk=</latexit>

+
<latexit sha1_base64="0mMf3HxLYwbpwBfkvc0aNQ9+aiM=">AAAB7HicbVBNS8NAEJ2tX7V+VT16WSyCIIRE/DoWvXisYNpCG8pmu2mXbjZhdyOU0N/gxYMiXv1B3vw3btsctPXBwOO9GWbmhang2rjuNyqtrK6tb5Q3K1vbO7t71f2Dpk4yRZlPE5Godkg0E1wy33AjWDtVjMShYK1wdDf1W09MaZ7IRzNOWRCTgeQRp8RYyT/DjuP0qjXXcWfAy8QrSA0KNHrVr24/oVnMpKGCaN3x3NQEOVGGU8EmlW6mWUroiAxYx1JJYqaDfHbsBJ9YpY+jRNmSBs/U3xM5ibUex6HtjIkZ6kVvKv7ndTIT3QQ5l2lmmKTzRVEmsEnw9HPc54pRI8aWEKq4vRXTIVGEGptPxYbgLb68TJrnjnflXD5c1Oq3RRxlOIJjOAUPrqEO99AAHyhweIZXeEMSvaB39DFvLaFi5hD+AH3+AAu9jYs=</latexit>

+...

<latexit sha1_base64="Mpz3hOkPTIDGav9PlnuYU4s0kLM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cI5gHJEmYns8mY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgecQpQSs1u8hjZnrlilf1ZnCXiZ+TCuSo98pf3b6iacwkUkGM6fhegkFGNHIq2KTUTQ1LCB2RAetYKoldEmSzayfuiVX6bqS0LYnuTP09kZHYmHEc2s6Y4NAselPxP6+TYnQdZFwmKTJJ54uiVLio3Onrbp9rRlGMLSFUc3urS4dEE4o2oJINwV98eZk0z6r+ZfXi/rxSu8njKMIRHMMp+HAFNbiDOjSAwiM8wyu8Ocp5cd6dj3lrwclnDuEPnM8fuWuPPg==</latexit>⇥

<latexit sha1_base64="Mpz3hOkPTIDGav9PlnuYU4s0kLM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cI5gHJEmYns8mY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgecQpQSs1u8hjZnrlilf1ZnCXiZ+TCuSo98pf3b6iacwkUkGM6fhegkFGNHIq2KTUTQ1LCB2RAetYKoldEmSzayfuiVX6bqS0LYnuTP09kZHYmHEc2s6Y4NAselPxP6+TYnQdZFwmKTJJ54uiVLio3Onrbp9rRlGMLSFUc3urS4dEE4o2oJINwV98eZk0z6r+ZfXi/rxSu8njKMIRHMMp+HAFNbiDOjSAwiM8wyu8Ocp5cd6dj3lrwclnDuEPnM8fuWuPPg==</latexit> ⇥
<latexit sha1_base64="Mpz3hOkPTIDGav9PlnuYU4s0kLM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cI5gHJEmYns8mY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgecQpQSs1u8hjZnrlilf1ZnCXiZ+TCuSo98pf3b6iacwkUkGM6fhegkFGNHIq2KTUTQ1LCB2RAetYKoldEmSzayfuiVX6bqS0LYnuTP09kZHYmHEc2s6Y4NAselPxP6+TYnQdZFwmKTJJ54uiVLio3Onrbp9rRlGMLSFUc3urS4dEE4o2oJINwV98eZk0z6r+ZfXi/rxSu8njKMIRHMMp+HAFNbiDOjSAwiM8wyu8Ocp5cd6dj3lrwclnDuEPnM8fuWuPPg==</latexit> ⇥

<latexit sha1_base64="Mpz3hOkPTIDGav9PlnuYU4s0kLM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cI5gHJEmYns8mY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgecQpQSs1u8hjZnrlilf1ZnCXiZ+TCuSo98pf3b6iacwkUkGM6fhegkFGNHIq2KTUTQ1LCB2RAetYKoldEmSzayfuiVX6bqS0LYnuTP09kZHYmHEc2s6Y4NAselPxP6+TYnQdZFwmKTJJ54uiVLio3Onrbp9rRlGMLSFUc3urS4dEE4o2oJINwV98eZk0z6r+ZfXi/rxSu8njKMIRHMMp+HAFNbiDOjSAwiM8wyu8Ocp5cd6dj3lrwclnDuEPnM8fuWuPPg==</latexit> ⇥
<latexit sha1_base64="Mpz3hOkPTIDGav9PlnuYU4s0kLM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cI5gHJEmYns8mY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgecQpQSs1u8hjZnrlilf1ZnCXiZ+TCuSo98pf3b6iacwkUkGM6fhegkFGNHIq2KTUTQ1LCB2RAetYKoldEmSzayfuiVX6bqS0LYnuTP09kZHYmHEc2s6Y4NAselPxP6+TYnQdZFwmKTJJ54uiVLio3Onrbp9rRlGMLSFUc3urS4dEE4o2oJINwV98eZk0z6r+ZfXi/rxSu8njKMIRHMMp+HAFNbiDOjSAwiM8wyu8Ocp5cd6dj3lrwclnDuEPnM8fuWuPPg==</latexit> ⇥

<latexit sha1_base64="Mpz3hOkPTIDGav9PlnuYU4s0kLM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cI5gHJEmYns8mY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgecQpQSs1u8hjZnrlilf1ZnCXiZ+TCuSo98pf3b6iacwkUkGM6fhegkFGNHIq2KTUTQ1LCB2RAetYKoldEmSzayfuiVX6bqS0LYnuTP09kZHYmHEc2s6Y4NAselPxP6+TYnQdZFwmKTJJ54uiVLio3Onrbp9rRlGMLSFUc3urS4dEE4o2oJINwV98eZk0z6r+ZfXi/rxSu8njKMIRHMMp+HAFNbiDOjSAwiM8wyu8Ocp5cd6dj3lrwclnDuEPnM8fuWuPPg==</latexit> ⇥
<latexit sha1_base64="Mpz3hOkPTIDGav9PlnuYU4s0kLM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cI5gHJEmYns8mY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgecQpQSs1u8hjZnrlilf1ZnCXiZ+TCuSo98pf3b6iacwkUkGM6fhegkFGNHIq2KTUTQ1LCB2RAetYKoldEmSzayfuiVX6bqS0LYnuTP09kZHYmHEc2s6Y4NAselPxP6+TYnQdZFwmKTJJ54uiVLio3Onrbp9rRlGMLSFUc3urS4dEE4o2oJINwV98eZk0z6r+ZfXi/rxSu8njKMIRHMMp+HAFNbiDOjSAwiM8wyu8Ocp5cd6dj3lrwclnDuEPnM8fuWuPPg==</latexit> ⇥

<latexit sha1_base64="Mpz3hOkPTIDGav9PlnuYU4s0kLM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cI5gHJEmYns8mY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgecQpQSs1u8hjZnrlilf1ZnCXiZ+TCuSo98pf3b6iacwkUkGM6fhegkFGNHIq2KTUTQ1LCB2RAetYKoldEmSzayfuiVX6bqS0LYnuTP09kZHYmHEc2s6Y4NAselPxP6+TYnQdZFwmKTJJ54uiVLio3Onrbp9rRlGMLSFUc3urS4dEE4o2oJINwV98eZk0z6r+ZfXi/rxSu8njKMIRHMMp+HAFNbiDOjSAwiM8wyu8Ocp5cd6dj3lrwclnDuEPnM8fuWuPPg==</latexit> ⇥
<latexit sha1_base64="Mpz3hOkPTIDGav9PlnuYU4s0kLM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cI5gHJEmYns8mY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgecQpQSs1u8hjZnrlilf1ZnCXiZ+TCuSo98pf3b6iacwkUkGM6fhegkFGNHIq2KTUTQ1LCB2RAetYKoldEmSzayfuiVX6bqS0LYnuTP09kZHYmHEc2s6Y4NAselPxP6+TYnQdZFwmKTJJ54uiVLio3Onrbp9rRlGMLSFUc3urS4dEE4o2oJINwV98eZk0z6r+ZfXi/rxSu8njKMIRHMMp+HAFNbiDOjSAwiM8wyu8Ocp5cd6dj3lrwclnDuEPnM8fuWuPPg==</latexit> ⇥

<latexit sha1_base64="Op6hIUS2M9atCJzoDWwkvCYIw/g=">AAACEHicbVDJSgNBEO1xjXEb9eilMYiewoy4XYSgF48RzAKZEGo6laRJT8/Q3RMIIZ/gxV/x4kERrx69+Td2FlATHxT1eK+K7nphIrg2nvflLCwuLa+sZtay6xubW9vuzm5Zx6liWGKxiFU1BI2CSywZbgRWE4UQhQIrYfdm5Fd6qDSP5b3pJ1iPoC15izMwVmq4R4EA2RZIgx6opMN/uhrrjQAN0CvacHNe3huDzhN/SnJkimLD/QyaMUsjlIYJ0Lrme4mpD0AZzgQOs0GqMQHWhTbWLJUQoa4PxgcN6aFVmrQVK1vS0LH6e2MAkdb9KLSTEZiOnvVG4n9eLTWty/qAyyQ1KNnkoVYqqInpKB3a5AqZEX1LgClu/0pZBxQwYzPM2hD82ZPnSfkk75/nz+5Oc4XraRwZsk8OyDHxyQUpkFtSJCXCyAN5Ii/k1Xl0np03530yuuBMd/bIHzgf3+RgnH0=</latexit>

h''i⌘ =

<latexit sha1_base64="Mpz3hOkPTIDGav9PlnuYU4s0kLM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cI5gHJEmYns8mY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgecQpQSs1u8hjZnrlilf1ZnCXiZ+TCuSo98pf3b6iacwkUkGM6fhegkFGNHIq2KTUTQ1LCB2RAetYKoldEmSzayfuiVX6bqS0LYnuTP09kZHYmHEc2s6Y4NAselPxP6+TYnQdZFwmKTJJ54uiVLio3Onrbp9rRlGMLSFUc3urS4dEE4o2oJINwV98eZk0z6r+ZfXi/rxSu8njKMIRHMMp+HAFNbiDOjSAwiM8wyu8Ocp5cd6dj3lrwclnDuEPnM8fuWuPPg==</latexit>⇥
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where the symbol “×” denotes the average over the gaussian white noise. Each of these stochas-

tic diagrams resemble a typical Feynman diagram, with the exception of crosses marking the

conjunction of two stochastic noises on the lines.

On the other hand for each Feynman diagram a set of stochastic diagrams sharing the same

structure exists. Additionally, it can be shown that the sum of all the stochastic diagrams

of a given topology reconstructs exactly, in the limit of large stochastic time τ → ∞, the

contribution of the Feynman diagram with that topology [35]. Of course, this can be considered

as an additional perturbative proof of the equivalence between Stochastic Quantization and

Canonical Quantization. For a more complete presentation of the Diagrammatic Stochastic

Perturbation Theory we refer the reader to the review [31] or the original work of Parisi and

Wu [29].

1.3 Numerical Stochastic Perturbation Theory
As said, Stochastic Quantization provides an alternative to Canonical Quantization. In this

framework the evaluation of the functional integral in Eq. (1) is traded for a new stochastic

dynamics taking place in the fictitious time τ , recovering all the well-known results of Euclidean

field theory in the (equilibrium) limit of τ → ∞, after averaging over all possible realizations of

stochastic noise.

Notably, the perspective of solving a stochastic differential equation fits particularly well

to a Monte Carlo implementation: averages over the distribution defined by the path integral

are traded for time averages of expressions built out of solution of the Langevin equation,

evaluated in the asymptotic time limit, in which we recover the functional integral measure as the

equilibrium distribution of the stochastic process. From this viewpoint, the Langevin dynamics

has been implemented in what is now called Langevin Monte Carlo, providing an alternative tool

in numerical simulations of statistical systems [37–39]. Moreover, these algorithms have been

also used for simulations of Lattice Gauge Theories (LGT) [40–42]. Given the close relationship

with Monte Carlo, we digress briefly and discuss the latter.

1.3.1 Monte Carlo methods

Monte Carlo simulations are a computational technique used to approximate multi-dimensional

integrals [43, 44], especially in cases where analytical solutions are difficult to obtain. These sim-

ulations utilize random sampling to estimate the properties of complex systems. The main goal
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of a Monte Carlo simulation is the evaluation of an observable A[ϕ1, . . . , ϕn] for a system with

degrees of freedom {ϕ1, . . . , ϕn} distributed according to the probability density P (ϕ1, . . . , ϕn).

Basically we want an estimate of

〈A〉 =
∫
dϕ1 . . . dϕn A[ϕ1, . . . , ϕn] P (ϕ1, . . . , ϕn) . (60)

For what we are mainly interested in, the probability density is expressed as (Z is the partition

function)

P (ϕ1, . . . , ϕn) =
e−S(ϕ1,...,ϕn)

Z
, (61)

where S(ϕ1, . . . , ϕn) is the action describing the system. The partition function is given by

Z =

∫
dϕ1 . . . dϕn e

−S(ϕ1,...,ϕn) , (62)

in which we sum over all possible configurations of the system.

To compute the expectation value of A[ϕ1, . . . , ϕn], a Monte Carlo simulation generates a

sequence of states

{ϕ1, . . . , ϕn}1 → {ϕ1, . . . , ϕn}2 → . . .→ {ϕ1, . . . , ϕn}m → . . . , (63)

sampled according to the probability density in Eq. (61): this is known as importance sampling.

If importance sampling is guaranteed, as a simple application of the law of large numbers the

expectation value in Eq. (60) can be approximated by the average over the sample

〈A〉 ≈ 1

N

N∑
i=1

A[{ϕ1, . . . , ϕn}i] , (64)

where N is the total number of sampled states and A[{ϕ1, . . . , ϕn}i] is the value of the observable

A[ϕ1, . . . , ϕn] computed on the i-th configuration. As N grows, the Monte Carlo estimate

converges to the true expectation value, with the statistical error diminishing as 1/
√
N . In

a sense, we have simply traded the original problem with that of implementing importance

sampling. In practice, all the Monte Carlo methods that are extensively used are built out of

stochastic processes (Markov processes, actually), the requirement being that asymptotically

the process is distributed according to the probability distribution we want to sample. There

are various algorithms implementing stochastic processes with the desired property we have just

described. The Metropolis–Hastings algorithm [45, 46] is to some extent a prototype (this is

true in a quite sad sense, with many people actually thinking of Metropolis as Monte Carlo tout

court). In more recent years, newer and more efficient algorithms have been introduced, such

13



as Hybrid Monte Carlo (HMC)[47], which is probably the preferred choice in most interesting

cases (including Lattice QCD). Notice that taking for stochastic sampling the solution of a

stochastic differential equation is another natural choice. With this respect, Langevin is one

of the possibilities: as seen, after equilibrium is reached, the configurations are distributed

according to the probability measure in Eq. (61). We should now point out that we have till

now discussed the analytic solution of Langevin equation. When it comes to its implementation

in the sense of a Monte Carlo, the Langevin equation requires numerical integration: this means

discretizing the stochastic time in discrete steps, so that evolution over a given stochastic time

extent is given by τ = Nsteps∆τ . We indicate the value of ∆τ as stochastic time step. The

simplest discretized Langevin equation (Euler scheme) reads

ϕ(x, τ0 +∆τ) = ϕ(x, τ0)−∆τ
∂S

∂ϕ(x, τ0)
+

√
2∆τη(x, τ0) , (65)

being now the Gaussian white noise normalized with zero mean and unit standard deviation

〈η(x, τ0)〉 = 0 , 〈η(x, τ0)η(y, τ1)〉 = δ(x− y)δτ0,τ1 . (66)

We note that in Eq. (65) we replaced functional derivatives in Eq. (3) with partial derivatives:

this is because in order to solve the Eq. (65) on the computer, we will discretize the degrees of

freedom and place them in a finite volume, thus obtaining a finite number of degrees of freedom.

Solutions to Eq. (65) no longer satisfy the Fokker-Planck equation introduced in Eq. (20) [41].

Discretised Langevin equation (here we are talking of the discretization in terms of stochastic

time steps) introduces systematic effects (typically in the form of polynomial correction in the

stochastic time step ∆τ) that need to be removed. Since these technical details are common to

NSPT simulations, all aspects will be treated in detail in the NSPT section.

1.3.2 From SQ(PT) to NSPT

Numerical Stochastic Perturbation Theory (NSPT) roughly lies at the midpoint between Stochas-

tic Perturbation Theory and non-perturbative Monte Carlo Langevin methods. First introduced

by the pioneering works of the lattice group of Parma University [1], it has evolved significantly

over the years, becoming nowadays one of the main numerical tools for calculations in pertur-

bation theory. In our discussion, we will only present NSPT in its position space formulation

(which is typically used in Monte Carlo simulations). We omit the presentation in Fourier space,

which does not present any difference.

We consider a generic action of a Euclidean field theory S[ϕ], in a simplified setting in which

the action contains only one coupling constant g and a scalar field ϕ(x) (these conditions are not
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at all stringent; they only simplify the notation)2. In the framework of Stochastic Quantization,

the degrees of freedom are promoted to depend on stochastic time ϕ(x) → ϕ(x, τ) and evolved

according to the Langevin equation

∂ϕ(x, τ)

∂τ
= − δS

δϕ(x, τ)
+ η(x, τ) . (67)

The key element of Numerical Stochastic Perturbation Theory is that at each fixed stochastic

time it is always possible to expand the fields in a formal power series in the coupling constant,

namely

ϕ(x, τ) = ϕ(0)(x, τ) + gϕ(1)(x, τ) + g2ϕ(2)(x, τ) + . . . = ϕ(0)(x, τ) +

∞∑
n=1

gnϕ(n)(x, τ) . (68)

We can insert the series expansion given by Eq. (68) in the Langevin equation. We make the

point that the expansion is a formal one: no particular value of the coupling will be considered

at any time, but everything will be expanded order by order in the coupling. We note that this

is exactly what happens in the standard approach to perturbation theory. This means that we

can reorganize the Langevin dynamics into a tower of differential equations, each for any given

perturbative order. Let us introduce a convenient notation: let

δS

δϕ(x, τ)

∣∣∣∣∑∞
n=0 gnϕ(n)(x,τ)

=

∞∑
n=0

gnΣ(n)(x, τ) , (69)

where we mean that the gradient of the action should be calculated on the field and then the field

should be substituted with its series expansion in Eq. (68). We can then organise all operations

on fields as order-by-order operations; for example

ϕa(x, τ) + ϕb(x, τ) =

(
ϕ(0)
a (x, τ)+ϕ

(0)
b (x, τ)

)
+g

(
ϕ(1)
a (x, τ) + ϕ

(1)
b (x, τ)

)
+ g2

(
ϕ(2)
a (x, τ) + ϕ

(2)
b (x, τ)

)
+ . . . ,

(70)

ϕa(x, τ) · ϕb(x, τ) = ϕ(0)
a (x, τ)ϕ

(0)
b (x, τ) + g

(
ϕ(0)
a (x, τ)ϕ

(1)
b (x, τ) + ϕ(1)

a (x, τ)ϕ
(0)
b (x, τ)

)
+ g2

(
ϕ(0)
a (x, τ)ϕ

(2)
b (x, τ) + ϕ(1)

a (x, τ)ϕ
(1)
b (x, τ) + ϕ(2)

a (x, τ)ϕ
(0)
b (x, τ)

)
,

(71)

As seen, the gradient of the action itself is expanded in power series of the coupling constant

with coefficients Σ(n)(x, τ). To clarify the meaning of Eq. (69), we observe that for every theory
2It can be shown that we can very well consider more than one coupling constant and several degrees of freedom

(scalars, matrices, fermions and so on) simultaneously.
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whose action can be decomposed into a free part and an interacting part proportional to the

coupling constant

S = S0 + gSI , (72)

the coefficients in Eq. (69) take the form:

Σ(n)(x, τ) = G−1
0 ϕ(n)(x, τ)−D(n)(ϕ(0)(x, τ), ϕ(1)(x, τ), . . . , ϕ(n−1)(x, τ)) , (73)

where D(n)(ϕ(0)(x, τ), . . . , ϕ(n−1)(x, τ)) is a source term that couples different perturbative or-

ders and changes with the considered order n. D(n) depends only on the values of the fields at

perturbative orders m < n. In Eq. (73) G−1
0 is the free propagator of the theory, namely:

δS0

δϕ(x, τ)

∣∣∣∣
ϕ(n)(x,τ)

= G−1
0 ϕ(n)(x, τ) , (74)

and its structure is independent of the considered perturbative order. Moreover, it does not mix

different orders.

Given the decomposition in Eq. (73), inserting the series expansion of Eq. (68) in the Langevin

Eq. (67) we obtain a set of hierarchical stochastic differential equations, namely

∂ϕ(0)(x, τ)

∂τ
= −G−1

0 ϕ(0)(x, τ) + η(x, τ) ,

∂ϕ(1)(x, τ)

∂τ
= −G−1

0 ϕ(1)(x, τ) +D(1)(ϕ(0)(x, τ)) ,

∂ϕ(2)(x, τ)

∂τ
= −G−1

0 ϕ(2)(x, τ) +D(2)(ϕ(0)(x, τ), ϕ(1)(x, τ)) ,

. . .

∂ϕ(n)(x, τ)

∂τ
= −G−1

0 ϕ(n)(x, τ) +D(n)(ϕ(0)(x, τ), ϕ(1)(x, τ), . . . , ϕ(n−1)(x, τ)) ,

. . .

(75)

We emphasize that only the first equation (the free theory equation) is a properly stochastic

equation, containing the dependence on the realization of the stochastic noise. The other equa-

tions contain the stochastic source by means of the dependence on the zero-order. Furthermore

we note that the set of equations is exact at any fixed truncation in perturbation theory (in

particular this will be the case whenever we consider numerical simulations): given a truncation

order n, all the equations depend only on fields defined at orders m ≤ n.

Numerical Stochastic Perturbation Theory consists in integrating Eq. (75) on the computer,

effectively outlining a strategy for a perturbative Monte Carlo. A key practical feature of this

approach is its implementation ease, requiring minimal changes to existing non-perturbative

Monte Carlo routines (see also Sec. 1.7).
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We have discussed the perturbative expansion of the Langevin equation. It is important to

note that also other stochastic equations can be used [8, 13] (we discuss two of them in the fol-

lowing sections). However, no accept/reject Metropolis update algorithms can be implemented.

This is inherent in the nature of the perturbative expansion mechanism: the latter makes sense

only provided an analytic solution exists, which is unavoidably lost in a process like an ac-

cept/reject mechanism. As a matter of fact, this consideration has to do with the “exactness” of

NSPT simulations, which is still under debate.

In NSPT obtaining the perturbative expansion of a given generic observable A[ϕ] is pretty

simple

A[ϕ] = A[
∞∑

n=0

gnϕ(n)] = A(0)[ϕ(0)] + gA(1)[ϕ(0), ϕ(1)] + g2A(2)[ϕ(0), ϕ(1), ϕ(2)]

=

∞∑
n=0

gnA(n)[ϕ(0), . . . , ϕ(n)] ,

(76)

being the A(n) the coefficients we are interested in.

1.4 Numerical integration
The NSPT program proceeds by numerically integrating the Eq. (75). From now on, we switch

from the continuous space-time notation to the lattice notation

ϕ(x, τ) → ϕi(τ) (77)

and we will imply that perturbative operations are performed up to a fixed order, discarding

contributions of higher order.

1.4.1 Euler Integrator

The simplest choice is to use the Euler scheme. In this case, one obtains

ϕ
(0)
i (τ +∆τ) = ϕ

(0)
i (τ)−∆τG−1

0 ϕ
(0)
i (τ) +

√
2∆τηi(τ) ,

ϕ
(1)
i (τ +∆τ) = ϕ

(1)
i (τ)−∆τG−1

0 ϕ
(1)
i (τ) + ∆τD(1)(ϕ(0)(τ)) ,

ϕ
(2)
i (τ +∆τ) = ϕ

(2)
i (τ)−∆τG−1

0 ϕ
(2)
i (τ) + ∆τD(2)(ϕ(0)(τ), ϕ(1)(τ)) ,

. . .

ϕ
(n)
i (τ +∆τ) = ϕ

(n)
i (τ)−∆τG−1

0 ϕ
(n)
i (τ) + ∆τD(n)(ϕ(0)(τ), ϕ(1)(τ), . . . , ϕ(n)(τ)) .

(78)
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The discretization of the stochastic time τ = nsteps∆τ implies that the evolution in Eq. (78) no

longer satisfies the Fokker-Planck equation. The stochastic process can still be considered as a

stationary process, because the corrections to the Fokker-Planck equation can be obtained from

the leading order Fokker-Planck equation with a redefinition of the action.

A Langevin discrete dynamics can be written as

ϕi(τ +∆τ) = ϕi(τ)− Fi(τ) , (79)

where Fi(τ) is a scheme-dependent function. We consider the Kramers-Moyal asymptotic ex-

pansion (see App. A for a hint of the proof)

P [ϕ, τ +∆τ ]− P [ϕ, τ ]

∆τ
=

1

∆τ

∞∑
n=1

1

n!

∂n

∂ϕi1 . . . ∂ϕin

[
〈Fi1(τ) . . . Fin(τ)〉P [ϕ, τ ]

]
. (80)

For a stochastic dynamics at the equilibrium, the LHS of Eq. (80) vanishes for each value of ∆τ

1

∆τ

∞∑
n=1

1

n!

∂n

∂ϕi1 . . . ∂ϕin

[
〈Fi1 . . . Fin〉P [ϕ]

]
= 0 , (81)

where we dropped the trivial dependence on the stochastic time. In the Euler scheme we have

Fi(τ) = ∆τ
∂S

∂ϕi(τ)
−
√
2∆τηi(τ) . (82)

The idea is to evaluate the first correction in ∆τ to Eq. (81), so that expectation values up to

the second order need to be computed:

〈Fi1〉 = ∆τ
∂S

∂ϕi1

,

〈Fi1Fi2〉 = ∆τ2
∂S

∂ϕi1

∂S

∂ϕi2

+ 2∆τδi1i2 ,

〈Fi1Fi2Fi3〉 = 2∆τ2

(
∂S

∂ϕi1

δi2i3 +
∂S

∂ϕi2

δi3i1 +
∂S

∂ϕi3

δi2i1

)
+O(∆τ3) ,

〈Fi1Fi2Fi3Fi4〉 = 4∆τ2(δi1i2δi3i4 + δi1i3δi2i4 + δi1i4δi2i3) +O(∆τ3) .

(83)
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Inserting Eq. (83) in the expansion (81) we obtain

∂

∂ϕi1

[
〈Fi1〉P

]
+

1

2

∂2

∂ϕi1∂ϕi2

[
〈Fi1Fi2〉P

]
+

1

6

∂3

∂ϕi1∂ϕi2∂ϕi3

[
〈Fi1Fi2Fi3〉P

]
+

+
1

24

∂4

∂ϕi1∂ϕi2∂ϕi3∂ϕi4

[
〈Fi1Fi2Fi3Fi4〉P

]
=

∂

∂ϕi1

[
∂S

∂ϕi1

P

]
+

1

2

∂2

∂ϕi1∂ϕi2

[(
∆τ

∂S

∂ϕi1

∂S

∂ϕi2

+ 2δi1i2

)
P

]
+

1

3

∂3

∂ϕi1∂ϕi2∂ϕi3

[
∆τ

(
∂S

∂ϕi1

δi2i3 +
∂S

∂ϕi2

δi3i1 +
∂S

∂ϕi3

δi2i1

)
P

]
+

1

6

∂4

∂ϕi1∂ϕi2∂ϕi3∂ϕi4

[
∆τ(δi1i2δi3i4 + δi1i3δi2i4 + δi1i4δi2i3)P

]
=

∂

∂ϕi1

[
∂S

∂ϕi1

P

]
+

1

2

∂2

∂ϕi1∂ϕi2

[(
∆τ

∂S

∂ϕi1

∂S

∂ϕi2

+ 2δi1i2

)
P

]
+

∂3

∂ϕi1∂ϕi2∂ϕi2

[
∆τ

(
∂S

∂ϕi1

)
P

]
+

1

2

∂4

∂ϕi1∂ϕi1∂ϕi2∂ϕi2

[
∆τP

]
+O(∆τ2) = 0 .

(84)

The leading order Kramers-Moyal expansions gives
∂

∂ϕi1

[
∂S

∂ϕi1

P

]
+

∂2

∂ϕi1∂ϕi1

[
P

]
= 0 , (85)

which is the Fokker-Planck equation introduced in Eq. (20) for the Langevin discrete dynamics.

The first-order correction is

∆τ

{
1

2

∂

∂ϕi1

[(
∂2S

∂ϕi2∂ϕi1

)(
∂S

∂ϕi2

)
P +

(
∂S

∂ϕi1

)(
∂2S

∂ϕi2∂ϕi2

)
P −

(
∂S

∂ϕi1

)(
∂S

∂ϕi2

)2

P

]
+

∂3

∂ϕi1∂ϕi2ϕi2

[(
∂S

∂ϕi1

)
P

]
+

1

2

∂4

∂ϕ2
i1
∂ϕ2

i2

P

}
= ∆τ

{
1

2

∂

∂ϕi1

[(
∂2S

∂ϕi2∂ϕi1

)(
∂S

∂ϕi2

)
P +

(
∂S

∂ϕi1

)(
∂2S

∂ϕi2∂ϕi2

)
P −

(
∂S

∂ϕi1

)(
∂S

∂ϕi2

)2

P

]
+

1

2

∂3

∂ϕi1∂ϕi2ϕi2

[(
∂S

∂ϕi1

)
P

]}
= ∆τ

{
1

2

∂

∂ϕi1

[(
∂2S

∂ϕi2∂ϕi1

)(
∂S

∂ϕi2

)
P +

(
∂S

∂ϕi1

)(
∂2S

∂ϕi2∂ϕi2

)
P −

(
∂S

∂ϕi1

)(
∂S

∂ϕi2

)2

P

]
+
1

2

∂

∂ϕi1

[(
∂3S

∂ϕi1∂ϕi2∂ϕi2

)
P −

(
∂2S

∂ϕi1∂ϕi2

)(
∂S

∂ϕi2

)
P −

(
∂2S

∂ϕi1∂ϕi2

)(
∂S

∂ϕi2

)
P

−
(
∂S

∂ϕi1

)(
∂2S

∂ϕi2∂ϕi2

)
P+

(
∂S

∂ϕi1

)(
∂S

∂ϕi2

)2

P

]}
=

∆τ

2

{
∂

∂ϕi1

[(
∂3S

∂ϕi1∂ϕi2∂ϕi2

)
P −

(
∂S

∂ϕi1

)(
∂2S

∂ϕi2∂ϕi2

)
P

]}
,

(86)

where we use the relation
∂S

∂ϕi1

P = − ∂P

∂ϕi1

+O(∆τ) , (87)
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obtained from the leading order term in Eq. (85). The same leading correction can be obtained

starting directly from Eq. (85) and considering the modified action

S → S +∆τ S̄ , (88)

where

S̄ = −1

4

[(
∂S

∂ϕi1

)2

− 2

(
∂2S

∂ϕi1∂ϕi1

)]
. (89)

As a consequence, the observables display leading ∆τ corrections, namely

〈A〉∆τ =

∫
Dϕ A[ϕ] e−(S+∆τS̄)∫
Dϕ e−(S+∆τS̄)

=

∫
Dϕ A[ϕ] e−S(1−∆τ S̄)∫
Dϕ e−S(1−∆τ S̄)

= 〈A〉+O(∆τ) , (90)

approaching the correct expectation value for the continuous stochastic process ∆τ → 0.

We note that in this context stochastic equations differ significantly from partial differential

equations. In the stochastic case we are not interested in the single update step being executed

with a chosen precision O(∆τn). In contrast, given such an integrator, we look at corrections to

the Fokker-Planck equation. This is quite different compared to partial differential equations,

where different integration schemes can be implemented requiring a fixed single-step precision.

1.4.2 Runge-Kutta Integrator

We can build for the Langevin equation a second-order scheme. In this section we consider the

same analysis as before but changing the function Fi(τ). While there is no systematic study to

date in terms of high-order integrators for stochastic equations, we can derive a second-order

integrator taking inspiration from the general structure of Runge-Kutta integrators.

We consider the following discrete Langevin parametric equation

ϕi(τ +∆τ) = ϕi(τ)−∆τ

[
a

(
∂S

∂ϕi

)
τ

+ b

(
∂S

∂ϕi

)
τ+∆τk

]
+

√
2∆τηi(τ) , (91)

where the subscript τ means that the gradient is computed on ϕ(τ) and the subscript τ +∆τk

means that the gradient is computed on ϕ(τ +∆τk), updated with a parametric Euler step, i.e.(
∂S

∂ϕi

)
τ+∆τk

=

(
∂S

∂ϕi

)(
ϕ(τ)− k∆τ(∇S)τ + σ

√
2∆τη(τ)

)
. (92)
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We can consider the Taylor expansion of Eq. (92), namely(
∂S

∂ϕi1

)
τ+∆τk

=

(
∂S

∂ϕi1

)
τ

+

(
∂2S

∂ϕi1∂ϕi2

)
τ

[
−k∆τ

(
∂S

∂ϕi2

)
τ

− σ
√
2∆τηi2(τ)

]
+

+
1

2

(
∂3S

∂ϕi1∂ϕi2∂ϕi3

)
τ

[
−k∆τ

(
∂S

∂ϕi2

)
τ

− σ
√
2∆τηi2(τ)

][
−k∆τ

(
∂S

∂ϕi3

)
τ

− σ
√
2∆τηi3(τ)

]
+O(∆τ

3
2 )

=

(
∂S

∂ϕi1

)
τ

− k∆τ

(
∂2S

∂ϕi1∂ϕi2

)
τ

(
∂S

∂ϕi2

)
τ

− σ
√
2∆τηi2(τ)

(
∂2S

∂ϕi1∂ϕi2

)
τ

+

+

(
∂3S

∂ϕi1∂ϕi2∂ϕi3

)
τ

σ2∆τηi2(τ)ηi3(τ) +O(∆τ
3
2 ) .

(93)

Inserting Eq. (93) in Eq. (91) we obtain an explicit form for Fi(τ) up to O(∆τ
5
2 ) correction as

follows

Fi1 =∆τ

[
a

(
∂S

∂ϕi1

)
+ b

(
∂S

∂ϕi1

)
− bk∆τ

(
∂2S

∂ϕi1∂ϕi2

)(
∂S

∂ϕi2

)
− bσ

√
2∆τηi2

(
∂2S

∂ϕi1∂ϕi2

)
+∆τbσ2

(
∂3S

∂ϕi1∂ϕi2∂ϕi3

)
ηi2ηi3

]
+

√
2∆τηi1 +O(∆τ

5
2 ) .

(94)

We set

a+ b = 1 (95)

for first-order consistency. In this case Eq. (94) simplifies to

Fi1 =∆τ

(
∂S

∂ϕi1

)
− bk∆τ2

(
∂2S

∂ϕi1∂ϕi2

)(
∂S

∂ϕi2

)
− bσ

√
2(∆τ)

3
2 ηi2

(
∂2S

∂ϕi1∂ϕi2

)
(96)

+∆τ2bσ2

(
∂3S

∂ϕi1∂ϕi2∂ϕi3

)
ηi2ηi3 +

√
2∆τηi1 +O(∆τ

5
2 ) . (97)

As before, we need to compute the expectation values over the gaussian white noise, namely

〈Fi1〉 = ∆τ

(
∂S

∂ϕi1

)
− k∆τ2b

(
∂2S

∂ϕi1∂ϕi2

)(
∂S

∂ϕi2

)
+∆τ2bσ2

(
∂3S

∂ϕi1∂ϕi2∂ϕi2

)
+O(∆τ

5
2 ) ,

(98)

〈Fi1Fi2〉 = ∆τ2
(
∂S

∂ϕi1

)(
∂S

∂ϕi2

)
− 4bσ∆τ2

(
∂2S

∂ϕi1∂ϕi2

)
+ 2∆τδi1i2 +O(∆τ

5
2 ) , (99)

〈Fi1Fi2Fi3〉 = 2∆τ2
[(

∂S

∂ϕi1

)
δi2i3 +

(
∂S

∂ϕi2

)
δi1i3 +

(
∂S

∂ϕi3

)
δi1i2

]
+O(∆τ

5
2 ) , (100)

〈Fi1Fi2Fi3Fi4〉 = 4∆τ2
[
δi1i2δi3i4 + δi1i3δi2i4 + δi1i4δi2i3

]
+O(∆τ

5
2 ) , (101)
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〈Fi1Fi2Fi3Fi4Fi5 . . .〉 = O(∆τ
5
2 ) . (102)

Using the Kramers-Moyal expansion3 in Eq. (81) we recover the leading order equation

∂

∂ϕi1

[(
∂S

∂ϕi1

)
P

]
+

∂2

∂ϕi1∂ϕi2

[
δi1i2P

]
= 0 . (103)

Additionally, the first-order correction to Eq. (103) reads

∂

∂ϕi1

[
−kb

(
∂2S

∂ϕi1∂ϕi3

)(
∂S

∂ϕi3

)
P + bσ2

(
∂3S

∂ϕi3∂ϕi3∂ϕi1

)
P

]
+

+
1

2

∂

∂ϕi1

[(
∂2S

∂ϕi2∂ϕi1

)(
∂S

∂ϕi2

)
P +

(
∂S

∂ϕi1

)(
∂2S

∂ϕi2∂ϕi2

)
P −

(
∂S

∂ϕi1

)(
∂S

∂ϕi2

)2

P−

− 4bσ

(
∂3S

∂ϕi1∂ϕi2∂ϕi2

)
P + 4bσ

(
∂2S

∂ϕi1∂ϕi2

)(
∂S

∂ϕi2

)
P

]
+

∂3

∂ϕi1∂ϕ
2
i2

[(
∂S

∂ϕi1

)
P

]
+

1

2

∂4

∂ϕ2
i1
∂ϕ2

i2

P .

(104)

As before, we can use Eq. (87) to handle the last equation

∂

∂ϕi1

[
−kb

(
∂2S

∂ϕi1∂ϕi3

)(
∂S

∂ϕi3

)
P + bσ2

(
∂3S

∂ϕi3∂ϕi3∂ϕi1

)
P

]
+

+
1

2

∂

∂ϕi1

[(
∂2S

∂ϕi2∂ϕi1

)(
∂S

∂ϕi2

)
P +

(
∂S

∂ϕi1

)(
∂2S

∂ϕi2∂ϕi2

)
P −

(
∂S

∂ϕi1

)(
∂S

∂ϕi2

)2

P−

− 4bσ

(
∂3S

∂ϕi1∂ϕi2∂ϕi2

)
P + 4bσ

(
∂2S

∂ϕi1∂ϕi2

)(
∂S

∂ϕi2

)
P

]
+

1

2

∂3

∂ϕi1∂ϕ
2
i2

[(
∂S

∂ϕi1

)
P

]
=

∂

∂ϕi1

[
−kb

(
∂2S

∂ϕi1∂ϕi3

)(
∂S

∂ϕi3

)
P + bσ2

(
∂3S

∂ϕi3∂ϕi3∂ϕi1

)
P

]
+

+
∂

∂ϕi1

[
1

2

(
∂2S

∂ϕi2∂ϕi1

)(
∂S

∂ϕi2

)
P +

1

2

(
∂S

∂ϕi1

)(
∂2S

∂ϕi2∂ϕi2

)
P − 1

2

(
∂S

∂ϕi1

)(
∂S

∂ϕi2

)2

P−

− 2bσ

(
∂3S

∂ϕi1∂ϕi2∂ϕi2

)
P + 2bσ

(
∂2S

∂ϕi1∂ϕi2

)(
∂S

∂ϕi2

)
P

]
+

+
1

2

∂2

∂ϕi1∂ϕi2

[(
∂2S

∂ϕi1∂ϕi2

)
P −

(
∂S

∂ϕi1

)(
∂S

∂ϕi2

)
P

]
︸ ︷︷ ︸

=A

.

(105)

The last term can be written as

A =
1

2

∂2

∂ϕi1∂ϕi2

[(
∂2S

∂ϕi1∂ϕi2

)
P −

(
∂S

∂ϕi1

)(
∂S

∂ϕi2

)
P

]
=
1

2

∂

∂ϕi1

[(
∂3S

∂ϕi2∂ϕi2∂ϕi1

)
P −

(
∂2S

∂ϕi1∂ϕi2

)(
∂S

∂ϕi2

)
P −

(
∂2S

∂ϕi2∂ϕi1

)(
∂S

∂ϕi2

)
P−

−
(
∂S

∂ϕi1

)(
∂2S

∂ϕi2∂ϕi2

)
P +

(
∂S

∂ϕi1

)(
∂S

∂ϕi2

)2

P

]
.

(106)

3We note that Eq. (81) holds for every discrete stochastic process.
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Considering the previous equation, the first-order correction reads

∂

∂ϕi1

[
−kb

(
∂2S

∂ϕi1∂ϕi3

)(
∂S

∂ϕi3

)
P + bσ2

(
∂3S

∂ϕi3∂ϕi3∂ϕi1

)
P

]
+

+
∂

∂ϕi1

[
1

2

(
∂2S

∂ϕi2∂ϕi1

)(
∂S

∂ϕi2

)
P +

1

2

(
∂S

∂ϕi1

)(
∂2S

∂ϕi2∂ϕi2

)
P − 1

2

(
∂S

∂ϕi1

)(
∂S

∂ϕi2

)2

P−

− 2bσ

(
∂3S

∂ϕi1∂ϕi2∂ϕi2

)
P + 2bσ

(
∂2S

∂ϕi1∂ϕi2

)(
∂S

∂ϕi2

)
P

]
+

∂

∂ϕi1

[
1

2

(
∂3S

∂ϕi2∂ϕi2∂ϕi1

)
P − 1

2

(
∂2S

∂ϕi1∂ϕi2

)(
∂S

∂ϕi2

)
P − 1

2

(
∂2S

∂ϕi2∂ϕi1

)(
∂S

∂ϕi2

)
P−

− 1

2

(
∂S

∂ϕi1

)(
∂2S

∂ϕi2∂ϕi2

)
P +

1

2

(
∂S

∂ϕi1

)(
∂S

∂ϕi2

)2

P

]
=

∂

∂ϕi1

[(
∂2S

∂ϕi1∂ϕi3

)(
∂S

∂ϕi3

)
P

(
−kb+ 2bσ − 1

2

)
+

(
∂3S

∂ϕi3∂ϕi3∂ϕi1

)
P

(
bσ2 − 2bσ +

1

2

)]
.

(107)

We can set the parameters to cancel the first-order correction in the time step. The equations

to be solved are 
a+ b = 1

−kb+ 2bσ − 1

2
= 0

bσ2 − 2bσ +
1

2
= 0 .

(108)

In the standard Runge-Kutta methods one sets [48]

b =
1

2
→ a =

1

2
, k = 1 , σ = 1 . (109)

The corresponding discrete Langevin dynamics reads

ϕi(τ +∆τ) = ϕi(τ)−
∆τ

2

[(
∂S

∂ϕi

)
τ

+

(
∂S

∂ϕi

)
τ+∆τ

]
+

√
2∆τηi(τ) , (110)

where the second gradient in Eq. (110) is calculated in the tentative update

ϕ̃(τ) = ϕ(τ)−∆τ(∇S)τ +
√
2∆τη(τ) . (111)

In this way we obtain vanishing corrections in ∆τ , yielding

〈A〉∆τ =

∫
Dϕ A[ϕ] e−(S+∆τ2S̄)∫
Dϕ e−(S+∆τ2S̄)

=

∫
Dϕ A[ϕ] e−S(1−∆τ2S̄)∫
Dϕ e−S(1−∆τ2S̄)

= 〈A〉+O(∆τ2) . (112)

Eq. (112) shows that for a fixed tiny stochastic time step, the systematic effects using Runge-

Kutta integrator can be in principle smaller compared to the Euler integrator. However, Runge-

Kutta scheme requires extra calculations of the gradient. In the case we presented, the compu-

tational cost doubles for each Monte Carlo step.
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1.5 Continuum stochastic time extrapolations
We consider NSPT measurements of an observable A, namely

A
(n)
∆τ,i , i = 1, . . . , Nsamples , (113)

where n is the perturbative order and ∆τ is the time step. The best estimate for A is the mean

〈A(n)〉∆τ =
1

Nsamples

Nsamples∑
i=1

A
(n)
∆τ,i . (114)

Furthermore, we can define the covariance matrix

Σ∆τ,∆τ ′(n,m) = cov(A(n)
∆τ , A

(m)
∆τ ′) , (115)

being cov(A(n)
∆τ , A

(m)
∆τ ′) the covariance of the mean. In this section we will not consider autocorre-

lated or cross-correlated data. In the next section we discuss how to introduce autocorrelations

and cross-correlations in the matrix element of Eq. (115). Moreover we are always implying

that measurements are taken on thermalized histories, excluding configurations in the transient

region.

Being the samples uncorrelated for different time steps, the matrix in Eq. (115) is a block

diagonal matrix, namely

Σ∆τ,∆τ ′(n,m) = δ∆τ,∆τ ′Σ∆τ (n,m) = δ∆τ,∆τ ′cov(A(n)
∆τ , A

(m)
∆τ ) . (116)

Extrapolations to vanishing time step can be obtained considering a dedicated χ2. Using first-

order scheme such as the Euler scheme, we consider the minimum of the function [21]

χ2
gen =

nmax∑
n,m

∑
∆τ

(
〈A(n)〉∆τ − αn∆τ − βn

)
Σ−1

∆τ (n,m)
(
〈A(m)〉∆τ − αm∆τ − βm

)
(117)

in terms of the parameters αn and βn. It is evident then the order-by-order identification

〈A(n)〉 = βn . (118)

If there is sufficient statistic to also consider higher-order corrections, the previous formula can

be extended as

χ2
gen =

∑
n,m,∆τ

(
〈A(n)〉∆τ − γn∆τ

2 −αn∆τ −βn
)
Σ−1

∆τ (n,m)
(
〈A(m)〉∆τ − γm∆τ2 −αm∆τ −βm

)
.

(119)
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Second-order schemes like the Runge-Kutta scheme display second-order corrections. In this

case the extrapolation can be obtained considering the minimum of the function

χ2
gen =

nmax∑
n,m

∑
∆τ

(
〈A(n)〉∆τ − αn∆τ

2 − βn
)
Σ−1

∆τ (n,m)
(
〈A(m)〉∆τ − αm∆τ2 − βm

)
, (120)

where the linear correction terms have been set to zero. We can introduce also cubic correction

to Eq. (120), obtaining

χ2
gen =

nmax∑
n,m

∑
∆τ

(
〈A(n)〉∆τ−γn∆τ3−αn∆τ

2−βn
)
Σ−1

∆τ (n,m)
(
〈A(m)〉∆τ−γm∆τ3−αm∆τ2−βm

)
.

(121)

Error propagation does not present particular subtleties once the parameters in Eqs. (117) -

(119) - (120) - (121) have been determined. We use the Gaussian sampling method. With

this tool we generate a sampling of the data using a standard multivariate distribution with

covariance matrix Σ∆τ (n,m). For each sample, we perform an order-by-order polynomial fit in

∆τ , obtaining a distribution of values for each parameter. Fitted quantities and errors are the

mean and the standard deviation of the respective distributions.

Other methods are available, such as error propagation through Automatic Differentiation

methods [49–51]. Some checks have been carried out at low perturbative orders, showing agree-

ment with Gaussian sampling.

1.6 Autocorrelations and cross-correlations
When generating configurations with a stochastic differential equation, in order to correctly com-

pute errors we need to compute and take into account the autocorrelations characteristic of the

Monte Carlo process. In addition, NSPT simulations also require evaluating cross-correlations

at different perturbative orders. We describe our methodology, based on the Gamma Function

Method [52] and the Blocking Method [53].

1.6.1 Gamma Function Method for NSPT

This method is used to estimate the autocorrelation time τint. We present below an extended

version to consider also cross-correlations. We discuss only the single-replica ensemble case,

while the extension to multiple replicas ensemble for autocorrelations is presented in [54]. We

present the Gamma Function Method using the language of NSPT simulations, i.e. taking into

account different perturbative orders.
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Consider an ensemble of measurements

{A(n)
1 , A

(n)
2 , A

(n)
3 , . . . , A

(n)
N } = {A(n)

i } , (122)

with defined average µ(n)
A , where the superscript n indicates the perturbative order. As before,

the best estimate we can assign to the variable is the mean

Ā(n) =

N∑
i=1

A
(n)
i (123)

and we are interested in its variance. In particular, we noted that

Var(Ā(n)) = 〈(Ā(n) − µ
(n)
A )(Ā(n) − µ

(n)
A )〉 = 1

N2

N∑
t=1

N∑
s=1

[
〈A(n)

t A(n)
s 〉 − (µ

(n)
A )2

]

=
1

N2

N∑
t,s=1

[
〈A(n)

t A
(n)
t+(s−t)〉 − (µ

(n)
A )2

]

=
1

N2

N∑
t,s=1

CA(n)A(n)(s− t) ,

(124)

where we defined the unnormalized autocorrelation function

CA(n)A(n)(t) = 〈A(n)
s A

(n)
s+t〉 − (µ

(n)
A )2 . (125)

Being the unnormalized autocorrelation function dependent only on index differences, it is pos-

sible to change the summation variables:

Var(Ā(n)) =
1

N2

N∑
t,s=1

CA(n)A(n)(s− t)

=
1

N2

+(N−1)∑
t=−(N−1)

CA(n)A(n)(t)(N − |t|)

=
1

N

+(N−1)∑
t=−(N−1)

CA(n)A(n)(t)

(
1− |t|

N

)

=
Var(A(n))

N

+(N−1)∑
t=−(N−1)

ρA(n)A(n)(t)

(
1− |t|

N

)
,

(126)

where we introduced the normalized autocorrelation function

ρA(n)A(n)(t) =
CA(n)A(n)(t)

CA(n)A(n)(0)
=
CA(n)A(n)(t)

Var(A(n))
. (127)

We note that in the case of correlated samples, the variance of the mean is corrected with respect

to the uncorrelated samples by a factor
+(N−1)∑

t=−(N−1)

ρA(n)A(n)(t)

(
1− |t|

N

)
. (128)
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From the properties

ρA(n)A(n)(t) = ρA(n)A(n)(−t) (129)

and

ρA(n)A(n)(0) = 1 , (130)

we can further simplify the expression to

Var(Ā(n)) =
Var(A(n))

N

{
2

(N−1)∑
t=1

ρA(n)A(n)(t)

(
1− |t|

N

)
+ 1

}

=
2Var(A(n))

N

{(N−1)∑
t=1

ρA(n)A(n)(t)

(
1− |t|

N

)
+

1

2

}
.

(131)

The normalized autocorrelation function decays such that it is negligible for t > t̂; then for

N >> t̂ we notice that the second term in the parentheses can be neglected. We obtain

Var(Ā(n)) =
2Var(A(n))

N

{(N−1)∑
t=1

ρA(n)A(n)(t) +
1

2

}
' Var(A(n))

N/2τint,A(n)
, (132)

where we have introduced the so-called integrated autocorrelation time

τ
(n)
int,f =

∞∑
t=1

ρff (t) +
1

2
. (133)

In the framework of Eqs. (117) - (121) we set

Σ∆τ (n, n) =
Var(A(n))

N/2τ
(n)

int,A(n)

. (134)

We have now only computed diagonal contributions entering any of Eqs. (117) - (121), so we

move on and consider two different perturbative order

{A(n)
1 , A

(n)
2 , A

(n)
3 , . . . , A

(n)
N } = {A(n)

i } , (135)

{A(m)
1 , A

(m)
2 , A

(m)
3 , . . . , A

(m)
N } = {A(m)

i } , (136)

with averages µ(n)
A and µ(m)

A . We can compute

Cov(Ā(n), Ā(m)) = 〈(Ā(n) − µ
(n)
A )(Ā(m) − µ

(m)
A )〉 = 1

N2

N∑
t=1

N∑
s=1

[
〈A(n)

t A(m)
s 〉 − µ

(n)
A µ

(m)
A

]

=
1

N2

N∑
t,s=1

[
〈A(n)

t A
(m)
t+(s−t)〉 − µ

(n)
A µ

(m)
A

]

=
1

N2

N∑
t,s=1

CA(n)A(m)(s− t) ,

(137)
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where we defined the unnormalized cross-correlation function

CA(n)A(m)(t) = 〈A(n)
s A

(m)
s+t〉 − µ

(n)
A µ

(m)
A . (138)

As before, we can perform a change of variable t = t− s obtaining

1

N2

N∑
t,s=0

CA(n)A(m)(s− t) =
1

N2

[N−1∑
t=1

CA(n)A(m)(t)(1− t) +

N−1∑
t=1

CA(m)A(n)(t)(1− t)

+NCA(n)A(m)(0)

]
=

1

N

[N−1∑
t=1

CA(n)A(m)(t)

(
1− t

N

)
+

N−1∑
t=1

CA(m)A(n)(t)

(
1− t

N

)
+ CA(n)A(m)(0)

]
.

(139)

Introducing the two normalized cross-correlation functions

ρA(n)A(m)(t) =
CA(n)A(m)(t)

CA(n)A(m)(0)
=

CA(n)A(m)(t)

Cov(A(n), A(m))
,

ρA(m)A(a)(t) =
CA(m)A(n)(t)

CA(m)A(n)(0)
=

CA(m)A(n)(t)

Cov(A(m), A(n))
,

(140)

we finally obtain

Cov(Ā(n), Ā(m)) =
Cov(A(n), A(m))

N

[N−1∑
t=1

ρA(n)A(m)(t)

(
1− t

N

)

+

N−1∑
t=1

ρA(m)A(n)(t)

(
1− t

N

)
+ 1

]

=
Cov(A(n), A(m))

N

[N−1∑
t=1

ρA(n)A(m)(t) +
1

2
+

N−1∑
t=1

ρA(m)A(n)(t) +
1

2

]
,

(141)

having neglected the t/N terms as before. In the end we end up with

Cov(Ā(n), Ā(m)) ' Cov(A(n), A(m))

N

[
τ
(A(n),A(m))
int + τ

(A(m),A(n))
int

]
, (142)

where

τ
(f,g)
int =

∞∑
t=1

ρf,g(t) +
1

2
. (143)

We now have an expression for non-diagonal contributions entering any of Eqs. (117) - (121),

namely

Σ∆τ (n,m) =
Cov(A(n), A(m))

N

[
τ
(A(n),A(m))
int + τ

(A(m),A(n))
int

]
. (144)
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From a numerical point of view, the sum in Eq. (133) and in Eq. (143) need to be truncated:

indeed, the larger t, the fewer data are available, possibly resulting in a noisy signal. Automatic

windowing procedures (based on specific criteria) are usually adopted [54]. In this thesis we

used a hard cut. All the autocorrelations and cross-correlations functions have been checked,

ensuring their reliability.

1.6.2 Blocking Method for NSPT

Besides the Gamma Function Method, error estimation can go through the so-called Blocking

Method. As before, we consider an ensemble of measurements

{A(n)
1 , A

(n)
2 , A

(n)
3 , . . . , A

(n)
N } = {A(n)

i } . (145)

Again, neglecting autocorrelations, the naive estimation of the error would be

σ2
naive,A(n) =

Var(A(n))

N
. (146)

Now we can divide the set of measurements into blocks of arbitrary size L. For example, we

can set L = 2. We perform the average in each block, obtaining a new ensemble of Ñ = N/2

elements

{A(n)
1 , A

(n)
2︸ ︷︷ ︸

block 1

, A
(n)
3 , A

(n)
4︸ ︷︷ ︸

block 2

, . . . , A
(n)
N } → {Ã(n)

1 , Ã
(n)
2 , Ã

(n)
3 , . . . , Ã

(n)

Ñ
} . (147)

The new naive estimation of the variance is

σ2
size=2,A(n) =

Var(Ã(n))

Ñ
. (148)

Notice that if data were uncorrelated, the variance in Eq. (148) would be the same as that given

by Eq. (146). We can repeat the procedure for increasing block size, for example setting L = 4.

We obtain a new dataset with N̄ = N/4 elements. The new estimation of the error is

σ2
size=4,A(n) =

Var(Ā(n))

N̄
. (149)

This process can be repeated an arbitrary number of times for increasing block sizes. If data were

uncorrelated, at each step the variance of the blocked data should decrease as the inverse of the

block size, compensating the decreasing number of samples (which are now the blocked data).

Because of autocorrelation effects, the different estimations of the variance will monotonically

increase, till blocked variables eventually are uncorrelated and we reach a plateau. The value of

the plateau provides the value of the error to be associated with the measurements.
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In the case of two different perturbative orders

{A(n)
1 , A

(n)
2 , A

(n)
3 , . . . , A

(n)
N } = {A(n)

i } , (150)

{A(m)
1 , A

(m)
2 , A

(m)
3 , . . . , A

(m)
N } = {A(m)

i } , (151)

Eq. (142) suggests that a naive values of the covariance of the mean can be computed as

σnaive,A(n)A(m) =
Cov(A(n), A(m))

N
. (152)

Now we implement again the blocking procedure, starting for example with block size L = 2.

Computing the average in each block, we have a new ensemble of Ñ = N/2 elements

{A(n)
1 , A

(n)
2︸ ︷︷ ︸

block 1

, A
(n)
3 , A

(n)
4︸ ︷︷ ︸

block 2

, . . . , A
(n)
N } → {Ã(n)

1 , Ã
(n)
2 , Ã

(n)
3 , . . . , Ã

(n)

Ñ
} , (153)

{A(m)
1 , A

(m)
2︸ ︷︷ ︸

block 1

, A
(m)
3 , A

(m)
4︸ ︷︷ ︸

block 2

, . . . , A
(m)
N } → {Ã(m)

1 , Ã
(m)
2 , Ã

(m)
3 , . . . , Ã

(m)

Ñ
} . (154)

The new estimation of the covariance is

σsize=2,A(n)A(m) =
Cov(Ã(n), Ã(m))

Ñ
. (155)

We repeat the procedure until we reach a plateau. For the corresponding block size, we have a

statistically independent dataset. The value of the covariance at the plateau is the value of the

covariance matrix element Σ∆τ (m,n).

1.7 Implementation on the computer
One of the fundamental properties of NSPT is the ability to implement all the order-by-order

computations automatically. In a real NSPT simulation, in a sense what we need to implement

is something very close to the non-perturbative Langevin equation. Thanks to operator over-

loading, what is actually implemented is an automatic coding of all the different perturbative

equations.

To be more precise, we note that by redefining operations as order-by-order operations in

the following way

a = b+ c → a(n) = b(n) + c(n) ,

a = b · c → a(n) =

n∑
i=0

b(i)c(n−i) ,
(156)
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every non-perturbative Monte Carlo is automatically converted into its NSPT counterpart, al-

most without further modifications. Using Eq. (156), all types of interactions can be imple-

mented, including logarithms, square roots and so on, which are defined through their Taylor

series expansion up to a fixed order.

Of course, this order-by-order machinery results in increasing memory demand and compu-

tational cost as the perturbative order grows. Given the computing resources available today,

this is not a big problem. Neglecting autocorrelations, the computational cost scales linearly

with the volume and quadratically with the perturbative order [9], namely

TNSPT ≈ Ld

(
n2max − nmax

2

)
, (157)

where d is the dimension of the lattice.

1.8 Other stochastic differential equations
The mechanism underlying NSPT is actually more general and can be implemented starting

from many stochastic differential equations. With this respect, NSPT can benefit from state-

of-the-art non-perturbative algorithms, improving efficiency. In non-perturbative simulations

Generalized Hybrid Molecular Dynamics (GHMD) algorithms have proven to be more effective

than Langevin algorithms. It is therefore not surprising that this has in recent years attracted

attention, resulting in variants of NSPT.

The approach can be interesting given the lack of high-order schemes for the Langevin

dynamics. On the contrary, for GHMD-type dynamics, based on the integration of Hamiltonian

equations, it is possible to systematically implement integrators of increasingly higher-orders

[55]: among these, to date the most used are symplectic integrators. Moreover, efficiently

implementing these integrators is often not so difficult [56].

We present NSPT implementations based on HMD dynamics [47] and Kramers dynamics

[57, 58], also referred to as HSPT and KSPT [13].

1.8.1 HMD based NSPT

HSPT is built on top of the Hybrid Molecular Dynamics (HMD) equations [59]. The general

idea is to move from the action relevant to our problem to a fictitious Hamiltonian

S[ϕ] → H[π, ϕ] =
1

2

∑
i

π2
i + S[ϕ] , (158)
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where the fictitious momenta πi are extracted according to a normal distribution

P [π] =
1

N
exp

(
−1

2

∑
i

π2
i

)
. (159)

Fields and momenta are evolved from a time τ0 to a time τ0 + τ according to the Hamilton

equations

dπi
dτ

= −∂H[ϕ, π]

∂ϕi
= −∂S[ϕ]

∂ϕi
,

dϕi

dτ
=
∂H[ϕ, π]

∂πi
= πi .

(160)

To ensure ergodicity, at the end of the trajectory we need to refresh the momenta, again according

to the distribution in Eq. (159) . All in all, we need to numerically integrate the equations of

motion with a given integrator. Since once again we cannot rely on an accept-reject step, we

will once again end up with an inexact algorithm, much the same as for the Langevin equation.

In the NSPT spirit, to get HSPT out of Eq. (160), fields and momenta are to be understood

as expanded in power series of the coupling

ϕi(τ) → ϕ
(0)
i (τ) +

nmax∑
n=1

gnϕ
(n)
i (τ) ,

πi(τ) → π
(0)
i (τ) +

nmax∑
n=1

gnπ
(n)
i (τ) .

(161)

At the beginning of each numerical integration of a trajectory, the momenta must be refreshed:

the perturbative field π
(n)
i (τ) is initialized to zeros and only the leading order component is

assigned a random Gaussian variable following the distribution in Eq. (159). During the evo-

lution, all the perturbative components of the momenta produce non-zero values through the

integration of Eq. (160) which propagate the stochastic source to all orders. Chosen a trajectory

length, let’s say τ , the system is numerically integrated by implementing a designated discrete

step τ = nsteps∆τ . In this case, several symplectic integrators are available: usually, the fourth-

order integrator OMF4 [55] is used. Let us note that HSPT algorithm as discussed so far lacks

ergodicity at the leading order. A straightforward remedy is to randomize the trajectory length

τ [60].

Implementing HSPT with high-order integration schemes is interesting because one could

think of treating systematic errors differently. In particular, it has been noted that instead

of simulating the theory for different values of ∆τ and then extrapolating to vanishing time

step, one can choose a high-order integrator and simulate the theory for a very small time step

[13]. In this case, extrapolation may not be necessary as the systematic errors are less than the
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statistical errors. This is a claim that should be taken with great care, in particular if one is

interested in high orders: the latter can hold surprises (and in general they do).

1.8.2 Kramers based NSPT

KSPT is formulated starting from the Kramers equation [57, 58], which is a second-order stochas-

tic differential equation. We can define the Stochastic Molecular Dynamics (SMD) equation as

d2ϕi(τ)

dτ2
+ γ

dϕi(τ)

dτ
= − ∂S

∂ϕi(τ)
+ ηi(τ) . (162)

Introducing the momentum πi(τ), one can trade the second-order equation Eq. (162) for a

system of two coupled first-order equations, namely

dϕi(τ)

dτ
= πi(τ) ,

dπi(τ)

dτ
= −γπi(τ)−

∂S

∂ϕi(τ)
+ ηi(τ) ,

(163)

where γ is a free parameter and ηi(τ) is a Gaussian white noise with the following normalization

〈ηi(τ)〉η = 0 , 〈ηi(τ)ηj(τ ′)〉η = 2γδijδ(τ − τ ′) . (164)

We note that performing the substitution

τ → γτ (165)

and considering the limit of γ → ∞, Eq. (162) is equivalent to the Langevin equation [61]. In

addition, for γ = 0 we recover the ordinary Molecular Dynamics.

The numerical integration of Eq. (163) displays interesting peculiarities. Consider a stochas-

tic time step ∆τ . With a given integration scheme, we perform a single integration step in

the limit of γ = 0, that is to say the system is driven forward in time (τ0 → τ0 + ∆τ) using

non-stochastic MD equations. At the end of the first integration step we introduce a refresh of

the momenta according to

π′
i(τ0 +∆τ) = exp (−γ∆τ)πi(τ0 +∆τ) +

√
1− exp (−2γ∆τ)ηi(τ0 +∆τ) , (166)

being now the Gaussian white noise normalized as follows

〈ηi(τ0)ηj(τ1)〉η = δijδτ0τ1 . (167)

This two-step procedure are iterated and this defines the Monte Carlo dynamics.
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It is interesting to point out that the stochastic update in Eq. (166) is exact. Consequently,

systematics coming from numerical integration is only given by the order of the integrator used

for the integration of the Molecular Dynamics equations [57].

The KSPT implementation proceeds in analogy with HSPT: first, the formal expansion

in power series of the coupling for fields and momenta is considered. As before, Eq. (163)

is interpreted as an order-by-order dynamical evolution. Eq. (166) shows that the refresh of

momenta in the KSPT language acts in a double way: on one hand, the field is rescaled by a

constant factor at each perturbative order; on the other hand, the stochastic noise is added only

to the leading perturbative order.
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2–| NSPT around Instantons

2.1 Non-perturbative corrections from Instantons
In theoretical physics, instantons provide a valuable approach for studying non-perturbative

effects. These are classical solutions of the euclidean equations of motion and are shown up

in barrier-penetration processes, often assumed to play a fundamental role in determining the

ground-state structure of theories such as QCD [62].

Perturbative expansions on instantonic solutions have become quite interesting also due

to their connection with Resurgence Theory (RT) [63–65]. In this mathematical framework

perturbative series are understood as “generalized series”, offering the possibility to include even

non-perturbative effects. The new series, called Trans-series, has the form (we refer the reader

to [66] for an introduction to the subject)

A(g) =

∞∑
n=0

gnA
(n)
0 +

∑
i

e−
Si
g

∞∑
n=0

gnA
(n)
i . (168)

Note that factors like e−
Si
g are genuine non-perturbative effects which can not be detected with

standard (small g) perturbation theory.

One way to physically explain the structure outlined in Eq. (168) is to consider it as per-

turbative corrections on top of saddle-point solutions. In the traditional perturbation theory,

the saddle-point solutions are minima of the Euclidean action related to constant configura-

tions. We can expand the action around a minimum, obtaining second-order fluctuations (i.e.

the Gaussian theory) and higher-order contributions (perturbative loop corrections). In these

cases the action computed at the minimum vanishes, so that we obtain the standard pertur-

bative series (i.e. the first series in Eq. (168)). However, in some special theories not all the

saddle-points are related to constant field configurations. Actually some of them can lead to

finite-action configurations [67]. In such cases we talk about Instanton configurations, which

were first introduced by A. Polyakov [68]. Instantonic configurations produce new genuinely
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non-perturbative terms in front of the usual perturbative series and for this reason are expected

to be related to non-perturbative physics. Quite interestingly, it is possible to formulate a per-

turbation theory on top of the instantons. In analogy with the standard perturbation theory, we

can expand the action around the (non-constant) solution, obtaining the Gaussian theory from

the second-order fluctuations and interaction terms from high-order corrections. The resulting

perturbation theory is cumbersome: complicated propagators and vertices do not allow for high

perturbative orders to be reached, even in the case of Quantum Mechanics.

The mathematical framework of RT has been developed to naturally include the singularities

of the series in Eq. (168) and to study its asymptotic nature. In this work, however, we are in-

terested in providing a stochastic calculation for the coefficients A(n)
i in Eq. (168). In particular,

we will focus on one-instanton corrections A(n)
1 , neglecting multi-instanton contributions.

As a matter of fact, we have not made any assumptions about the nature of the minimum

action solution around which the perturbative expansion is computer by means of NSPT. We

notice that NSPT calculations have already been used to evaluate perturbative series around

non-trivial vacua in the so-called Schrödinger functional formulation [16].

2.2 The Double Well Potential case
In this section we will discuss the Double Well Potential (DWP) for which instantons have the

key-property of resolving degeneracies in the framework of perturbation theory. We consider

the potential

V (x) = λ(x2 − x20)
2 (169)

represented in Fig. 1. Naively, the DWP has two ground states, each centered around one

of the two classically degenerate minima. This notably leads to the spontaneous breaking of

parity symmetry in perturbation theory. However, from basic quantum mechanics principles, the

spectrum of the Schrödinger operator is expected to be discrete, with a symmetric ground-state

wavefunction. Furthermore energy difference between the ground state and the first excited

state (i.e. the energy splitting) scales as e−1/λ [67].

2.2.1 Extracting the energy splitting

Let us consider the Hamiltonian operator

Ĥ =
p̂2

2m
+ λ(x̂2 − x20)

2 . (170)
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Figure 1: Left plot: Graphical representation of the Double Well Potential of Eq. (169) with

λ = 0.1 and x0 = 0.5 (blue line). The minima are indicated with yellow circles. Right plot:

representation of the inverted potential with λ = 0.1 and x0 = 0.5 (blue line). The maxima

are indicated with yellow circles, while the continuous red line indicates the Euclidean potential

hole related to the energy tunneling solution given in Eq. (184).

This commutes with the Parity operator P̂ in the coordinate space:

[Ĥ, P̂ ] = 0 . (171)

As a consequence we can construct a basis of eigenvectors for the Hamiltonian with two quantum

numbers (n, s), such that the following eigenvalue equations hold

Ĥψn,s(x) = En,sψn,s(x) , P̂ψn,s(x) = sψn,s(x) , (172)

where s = ±1. The ground state energy is expected to be in the form [67]

E0,± = E0 ∓
∆E

2
, (173)

where the first term E0 results from the standard perturbative expansion (which is usually called

the expansion in the zero-instanton sector), while ∆E denotes the energy splitting. Considering

corrections coming only from the one-instanton sector, the energy splitting comes out to be

proportional to e−
1
λ [67], and thus becomes increasingly smaller as the coupling approaches

zero. Given the definition of the partition function

Z(β) = Tr
[
e−βĤ

]
, (174)
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the ground state can be studied in the limit of β → ∞. As a matter of fact, the partition

function of the system in the limit of large β and small coupling constant reads

lim
β→∞

Z(β) = lim
β→∞

Tr
[
e−βĤ

]
= lim

β→∞

∑
n,s=±

〈n, s|e−βĤ |n, s〉 = lim
β→∞

∑
n,s=±

e−βEn,s

≈ e−βE0,+ + e−βE0,−

≈ e−
β
2 (E0,++E0,−)

(
e−

β
2 (E0,+−E0,−) + e

β
2 (E0,+−E0,−)

)
≈ 2e−

β
2 (E0,++E0,−) cosh β

2
(E0,+ − E0,−)

≈ 2e−
β
2 (E0,++E0,−) coshβ∆E

2
.

(175)

We note that the partition function given in Eq. (175) is dominated by the purely zero-instanton

sector. Conversely, the twisted partition function [67]

Za(β) = Tr
[
P̂ e−βĤ

]
(176)

displays a non-vanishing contribution from the one-instanton sectors. In fact, Eq. (176) in the

limit of β → ∞ and g → 0 reads

lim
β→∞

Za(β) = lim
β→∞

Tr
[
P̂ e−βĤ

]
= lim

β→∞

∑
n,s=±

〈n, s|P̂ e−βĤ |n, s〉 = lim
β→∞

∑
n,s=±

e−βEn,ss

≈ e−βE0,+ − e−βE0,−

≈ e−
β
2 (E0,++E0,−)

(
e−

β
2 (E0,+−E0,−) − e

β
2 (E0,+−E0,−)

)
≈ −2e−

β
2 (E0,++E0,−) sinh β

2
(E0,+ − E0,−)

≈ 2e−
β
2 (E0,++E0,−) sinhβ∆E

2
.

(177)

We immediately notice that taking the ratio of the partition functions given in Eq. (176) and

Eq. (175) we get the energy splitting ∆E

lim
β→∞

Za(β)

Z(β)
≈ β

∆E

2
. (178)

2.2.2 Path integral approach

The partition function in Eq. (174) can be represented using the path integral formalism

Z(β) =

∫
PBC

Dx e−S[x] , (179)

where S[x] is the Euclidean action and PBC indicates that we are integrating over periodic

paths, for which the following condition is imposed

x(−β/2) = x(β/2) . (180)
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On the other hand, the twisted partition function in Eq. (176) admits a representation in terms

of integrals over antiperiodic paths

Za(β) =

∫
dx 〈x|P̂ e−βĤ |x〉 =

∫
dx 〈−x|e−βĤ |x〉 =

∫
ABC

Dx e−S[x] , (181)

where
∫
ABC

denotes integration over paths that satisfy

x(−β/2) = −x(β/2) . (182)

The Euclidean action can be always written in the Lagrangian formalism, where the new po-

tential function W (x) is given by

W (x) = −V (x) . (183)

In Fig. 1 we display the new potential W (x) for the DWP case. Since we are interested in eval-

uating the functional integral saddle-points, which correspond to the minima of the Euclidean

action, we need to solve the classical equations of motion in the new inverted potential, in the

limit of β → ∞, considering periodic and antiperiodic boundary conditions. It is trivial to

verify that for periodic boundary conditions the only solutions are configurations of constant

field. On the other hand, for antiperiodic configurations we obtain the following solutions for

the saddles-points

x±c (t) = ±x0 tanh [
ω

2
(t− t0)] , ω =

√
8λx20
m

, (184)

where t0 parametrizes the family of solutions4. In Fig. 2 we show the solutions shown Eq. (184).

Let us assume that we are looking for minima of the action (179) for finite β and anti-periodic

boundary conditions. We denote this solution by qc(t). Using the saddle-point approximation,

it follows

Za(β) =

∫
ABC

Dx e−S[x]

=

∫
ABC

Dx exp
(
−S[qc]−

1

2

∫
dt

∫
dt′(x(t)− qc(t))

δ2S

δx(t)δx(t′)

∣∣∣∣
qc

(x(t′)− qc(t
′)) + . . .

)
= e−S[qc]

∫
ABC

Dr exp
(
−1

2

∫
dt

∫
dt′r(t)M(t, t′)r(t′) + . . .

)
,

(185)

where we have set

r(t) = x(t)− qc(t) (186)
4The two solutions x±

c (t) are equivalent. In the following we consider only x+
c (t), remembering at the end of the

calculation to add a factor of 2 to the integrals approximated with the saddle-points.
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Figure 2: Graphical representation of x±c (t), see Eq. (184). Left plot: we display with a blue

solid line the instantonic solution x+c (t), with a green (red) dashed line the starting (ending)

minimum. Right plot: we display with a blue solid line the anti-instantonic solution x−c (t), with

a green (red) dashed line the starting (ending) minimum. In both figures we use t0 = 0, m = 1,

x0 = 1/2, λ = 0.1.

for the (antiperiodic) fluctuations and

M(t, t′) =
δ2S

δx(t)δx(t′)

∣∣∣∣
qc

= δ(t− t′)

[
− d2

dt2
−W ′′(qc(t))

]
. (187)

We note that in Eq. (185) the dots indicate higher-order corrections. As for now, we will only

consider second-order Gaussian fluctuations, which are usually referred in the literature as 1-

loop corrections. Following the approach discussed in [67], fluctuations are given in terms of

expansions of the form

r(t) =
∑
n≥0

cnqn(t) (188)

where qn(t) are the eigenvectors of the kernel matrix, i.e. they satisfy

Mqn(t) = λnqn(t) . (189)

We can compute formally the Gaussian integral, obtaining

Za(β) ≈ e−S[qc]

∫
ABC

Dr exp
(
−1

2

∫
dt

∫
dt′r(t)M(t, t′)r(t′)

)
≈ e−S[qc]N

∫ ∏
n≥0

dcn√
2π

exp
(
−1

2

∑
n≥0

cnλncn
)

≈ e−S[qc]N
∏
n≥0

λ
− 1

2
n

≈ e−S[qc]N
(
detM

)− 1
2 ,

(190)
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where we have used the standard convention

Dr = N
∏
n≥0

dcn√
2π

, (191)

where N will be defined below. It is immediate to verify that the determinant in Eq. (190)

requires regularization. Indeed, by differentiating the equations of motion with respect to t, one

obtains [
− d2

dt2
−W ′′(qc)

]
q̇c(t) =Mq̇c(t) = 0 , (192)

from which it can be deduced that q̇c(t) is an eigenvector with vanishing eigenvalue. We will

refer to the normalized function

q0(t) = q̇c(t)/||q̇c|| (193)

as the zero-mode of the theory. In Eq. (193) the symbol || . . . || denotes

||q̇c||2 =

∫ β/2

−β/2

dt q̇c(t)
2 . (194)

The zero-mode can be treated separately by writing

Za(β) = e−S[qc]N
(
detM ′)− 1

2

∫ ∞

−∞

dc0√
2π

, (195)

where higher-order corrections are neglected and(
detM ′)− 1

2 =
∏
n6=0

λ
− 1

2
n . (196)

The divergence of the zero-mode is usually expressed as 5∫ ∞

−∞

dc0√
2π

=
β||q̇c||√

2π
. (197)

As a final step, we need to define the path integral measure, N . This can be achieved using the

harmonic oscillator with m = ω = 1. The corresponding thermal partition function reads

ZG(β) = N (detM0)
− 1

2 , (198)

where

M0 = − d2

dt2
+ 1 . (199)

Thanks to Eq. (198), the twisted partition function becomes

Za(β) = e−S[qc]ZG(β)

(
detM ′

detM0

)− 1
2 β||q̇c||√

2π
. (200)

5This result can be demostrated by interpreting any variation δc0 as a variation δt0 [67]. In fact the presence of the

zero-mode is closely related to the invariance under reparameterization of the solution x+
c (t) shown in Eq. (184).
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In the limit of β → ∞ and m = ω = 1, for the saddle-point solution x+c (t) we have

qc(t) → x+c (t) ,

S[qc] → S[x+c ] =
m2ω3

12λ
=

1

12λ
,

ZG(β) → ZG(β → ∞) = e−βE0 = e−
β
2 ,

detM ′

detM0
→ 1

12
,

||q̇c|| →

√
ω2x20
4

∫ ∞

−∞
dt sech4

(
ω(t− t0)

2

)
=

√
ω3m2

12λ
=

1√
12λ

,

(201)

where for the ratio of determinants (see fourth equation from above) the general result for

Pöschl–Teller operators has been used [67]. By also inserting the factor 2 owing to the presence

of a second saddle-point solution x−c (t) one obtains

Za(β) = 2e−
1

12λ e−
β
2 β

1√
2πλ

. (202)

The above result indicates the presence of a purely non-perturbative contribution to the twisted

partition function. By forming the ratio of the twisted partition function of Eq. (202) and the

standard leading-order partition function given by

Z(β → ∞) = 2e−β/2 (203)

we get
Za(β)

Z(β)
= e−

1
12λ β

1√
2πλ

. (204)

Therefore, by means of Eq. (178) we obtain the energy splitting that reads

∆E = 2e−
1

12λ
1√
2πλ

(
1 +O(λ)

)
, (205)

recovering thus the one-loop contribution shown in [69] and [70]. Moreover, we can consider also

higher-orders in the Taylor series expansion of the action, which are evaluated on the Gaussian

instantonic theory, yielding perturbative correction in the energy splitting. This scheme has

been implemented in [69] and [70], where two- and three-loop corrections are computed with the

use of diagrammatic perturbation theory and the Faddeev-Popov regularization (more details

about this computation is given in App. B). In that case one gets

∆E = 2e−
1

12λ
1√
2πλ

[
1 + (12λ)z(1) + (12λ)2z(2) +O(λ)3

]
,

z(1) = −71

72
,

z(2) = − 9299

10368
.

(206)

42



2.3 Two-loop correction from NSPT
It is well-known that the continuum action

Scont[x] =

∫
dt

[
1

2
mẋ2 + λ(x2 − x20)

2

]
, (207)

that describes a simple quantum mechanical system, can be regarded as a field theory in 0 + 1

dimensions which can be studied with lattice tools [71]. In this framework one can implement a

naive discretization of the derivative and the action becomes

Slatt[x] =
∑
i

a
[1
2
m
(xi+1 − xi

a

)2
+ λ(x2i − x20)

2
]
, (208)

where x(ia) = xi. The interpretation after the discretization of the path is as follows: a generic

path of length T (a configuration, in the language of field theory) is sampled at discrete times

that are multiples of the lattice spacing a. The number of sites L scales with the lattice spacing

such that T = L · a. Definition of dimensionless quantities on the lattice require the following

relationship

am = m̃

xi/a = x̃i

a5λ = λ̃

x0/a = x̃0 ,

(209)

where we have set h̄ = c = 1. It is possible now to rewrite the lattice action in terms of the

above dimensionless quantities

Slatt[x̃] =
∑
i

[1
2
m̃(x̃i+1 − x̃i)

2 + λ̃(x̃2i − x̃20)
2
]
. (210)

Notice that the definition of x̃i in the second of Eq. (209) fixes the dimensions of the coupling

λ̃ (see third of Eq. (209)), which is now also dimensionless. Therefore, it is expected that all

the perturbative corrections have the same physical dimensions. For notation simplicity in the

following we will write Slatt[x̃] ≡ S[x̃].

2.3.1 Minimum action solutions on the lattice

We are interested in the minimum solutions x̃∗ of the action given in Eq. (208), i.e. we are

looking for solutions of

δS[x̃]
∣∣
x̃∗ = 0 (211)

43



in order to use the saddle-point approximation. In general, the minimum action configurations

for the discretized theory will be different from those of the continuum theory, although we

expect that in the limit of vanishing lattice spacing the former will approach the latter. The

minimum action solutions are not known analytically for the lattice Double Well Potential, but

they can be derived numerically. A possible choice is to use the Steepest Descent Method (also

known as Gradient Descent) [72]. In the Steepest Descent Method one considers an arbitrary

initial configuration x̃i(0) and evolves it according to the equation

˙̃xi = − ∂S

∂x̃i
. (212)

The previous equation is implemented numerically introducing a small parameter ε

x̃i(j + 1) = x̃i(j)− ε
∂S

∂x̃i

∣∣∣∣
x̃(j)

(213)

and the evolution in ε goes on until a stationary point is reached, where the derivatives of the

action are zero. In Fig. 3 we display the solution found with this procedure. We note that the

lattice instanton differs from the continuum one by O(a) corrections. Additionally, the Steepest

Descent algorithm depends on the particular choice of the initial configuration. However, we

have verified that this does not change the shape of the minimum solution at all, but it only

yields different transition points. In what follows, the initial configuration will be always chosen

in such a way that the transition point coincides with the center of the lattice. In addition, we

rescale the stationary solution according to

x̃∗i = x̃0 · x̄i . (214)

Let us emphasize that the boundary conditions, either periodic or antiperiodic, enter into the

minimization of the action (213) by establishing that

PBC : x̃i+L = x̃i ,

ABC : x̃i+L = −x̃i .
(215)

Once the minimum action solution is identified through the Steepest Descent Method, we are

allowed to work in terms of the fluctuations. We introduce the dimensionless local fluctuations

as

x̃i = x̃∗i + ξ̃i = x̃0 · x̄i + ξ̃i (216)
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and we can write the corresponding action in the following form

1

2
m̃(ξ̃i+1 − ξ̃i)

2 + m̃(x̃∗i+1 − x̃∗i )(ξ̃i+1 − ξ̃i)

+ λ̃(x̃∗
2

i − x̃20)
2 + λ̃(ξ̃2i + 2ξ̃ix̃

∗
i )

2 + 2λ̃(x̃∗
2

i − x̃20)(ξ̃
2
i + 2ξ̃ix̃

∗
i )
]

= S[x̃∗] +
∑
i

[1
2
m̃(ξ̃i+1 − ξ̃i)

2 + m̃(x̃∗i+1 − x̃∗i )(ξ̃i+1 − ξ̃i) + λ̃(ξ̃2i + 2ξ̃ix̃
∗
i )

2

+ 2λ̃(x̃∗
2

i − x̃20)(ξ̃
2
i + 2ξ̃ix̃

∗
i )
]
.

(217)

The previous formula can be simplified with the use of equations of motion. In fact, from

∂SE

∂x̃j

∣∣∣∣
x̃∗

= 0

we derive ∑
i

[
m̃(x̃∗i+1 − x̃∗i )(δi+1,j − δi,j) + 2λ̃(x̃∗

2

i − x̃20)2x̃
∗
i δi,j

]
= 0 , (218)

so that

m̃(2x̃∗j − x̃∗j+1 − x̃∗j−1) = −4λ̃x̃∗j (x̃
∗2

j − x̃20) . (219)

We now notice that the mixed velocity term in the action (217) is written up to boundary terms

as ∑
i

m̃(x̃∗i+1 − x̃∗i )(ξ̃i+1 − ξ̃i) =
∑
i

m̃(2x̃∗i − x̃∗i−1 − x̃∗i+1)ξ̃i (220)

which, with the use of Eq. (219), becomes∑
i

m̃(x̃∗i+1 − x̃∗i )(ξ̃i+1 − ξ̃i) = −
∑
j

4λ̃x̃∗j (x̃
∗2

j − x̃20)ξ̃j .

The RHS of the above equation cancels out a part of the potential, so that the action becomes

S[x̃] = S[x̃∗] +
∑
i

[1
2
m̃(ξ̃i+1 − ξ̃i)

2 + λ̃(ξ̃2i + 2ξ̃ix̃
∗
i )

2 + 2λ̃(x̃∗
2

i − x̃20)ξ̃
2
i

]
= S[x̃∗] +

∑
i

[1
2
m̃(ξ̃i+1 − ξ̃i)

2 + λ̃ξ̃4i + λ̃4x̃∗
2

i ξ̃
2
i + 4λ̃x̃∗i ξ̃

3
i + 2λ̃(x̃∗

2

− x̃20)ξ̃
2
i

]
= S[x̃∗] +

∑
i

[1
2
m̃(ξ̃i+1 − ξ̃i)

2 + λ̃ξ̃4i + λ̃x̃20(6x̄
2
i − 2)ξ̃2i + 4λ̃x̃0x̄iξ̃

3
i

]
.

(221)

Following the convention in [70], it is customary to set

4λ̃x̃20 =
1

2
m̃ω̃2 (222)
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in order to recover the action of the harmonic oscillator as free theory for PBC. Indeed, given

that the minimum solution of the action with periodic boundary conditions is

x̃∗ = x0 (223)

from which

x̄i = 1 , (224)

it follows that

SPBC[x̃] = 0 +
∑
i

[1
2
m̃(ξ̃i+1 − ξ̃i)

2 +
1

2
m̃ω̃2ξ̃2 +

√
2λ̃m̃ω̃2ξ̃3 + λ̃ξ̃4i

]
(225)

In that way the usual theory with cubic and quartic vertex interactions is recovered. In the case

of solutions where antiperiodic boundary conditions have been employed (i.e. instantons) the

general action reads

SABC[x̃] = S[x̃∗] +
∑
i

[1
2
m̃(ξ̃i+1 − ξ̃i)

2 +
1

2
m̃ω̃2

(3
2
x̄2i −

1

2

)
ξ̃2i +

√
2λ̃m̃ω̃2x̄iξ̃

3
i + λ̃ξ̃4i

]
= S[x̃∗] + S[ξ̃]

(226)

where it can be noticed that, in addition to a much more complicated free theory, the cubic

interaction term depends on the site where the interaction occurs. This is actually one of

the reasons for which it is difficult to treat diagrammatically the perturbation theory of the

instantons.

2.3.2 Faddev-Popov regularization

The kinetic matrix defined by the action in Eq. (226)

Kij =
∂2SABC[ξ̃]

∂ξ̃i∂ξ̃j

∣∣∣∣
ξ̃=0

(227)

among else has a zero-mode. In the right panel of Fig. 3 the eigenvalues of the kinetic matrix are

plotted. In analogy to the continuous theory, the twisted partition function is thus ill-defined

and requires regularization. We regularize the zero-mode by implementing the Faddeev-Popov

(FP) procedure 6. Essentially, the idea is to use a convenient rewriting of the identity. Indicating

with t0 the transition point for the instantonic lattice solution, we can write∫
dt0 δ(t0 − t∗0) = 1 , (228)

6For the FP implementation in the lattice theory, we took inspiration from the continuum case presented in [73].
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Figure 3: Left plot: Minimum action solution with antiperiodic boundary conditions. The

instantonic lattice solution x̃∗i is represented with blue dots using a = 0.3, L = 500, T =

[−75, 75], m = ω = 1, λ = 0.1. For the Gradient Descent equations, we used ε = 5 · 10−5 and

Nstep = 106 configuration updates. The continuous yellow line represents the continuum solution

given in Eq. (184) with the same parameters as before. Right plot: all the set of eigenvalues of

the matrix Kij in Eq. (227) with a = 0.3, L = 500, m = ω = 1, λ = 0.1. In addition, the green

circle shows the zero eigenvalue of the kernel.

where t∗0 lies in the integration domain. For a generic function f(t0) with only one zero located

at t∗0, the following property holds

δ(t0 − t∗0) = δ(f(t0))|f ′(t∗0)| . (229)

The key-point is to select fluctuations having zero component along the zero-mode, by making

an appropriate choice of f(t0). This occurs by setting

f(τ0) =
∑
k

(x̃k − x̃∗k(−t0) ) x̃0k(−t0) (230)

where x̃∗k(−t0) is the minimum action solution with transition point at t0 and x̃0k(−t0) is the

normalized zero-mode. In other words, x̃0k(−t0) is the eigenvector of the matrix Kij with zero

eigenvalue. We show in Fig. 4 - left panel, the zero-mode shape x̃0k and the continuum counter-

part ˙̃x+c /|| ˙̃x+c ||. Let us note that the zero-mode dependence on the transition point t0 is induced

by the specific minimum x̃∗(−t0) around which we expand the action. The minus sign in the

argument of the instanton and the zero-mode reflects the functional form of their continuum

counterparts. Furthermore, this is the correct functional form that yields the proper discretiza-

tion along the transition point (see below for a detailed explanation). The derivative of Eq. (230)
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Figure 4: Left plot: zero-mode profile. The lattice zero-mode shape x̃0i is represented with

blue markers. We set a = 0.3, L = 500, T = [−75, 75], m = ω = 1, λ = 0.1. The continuous

yellow line represents the continuum zero-mode shape, see Eq. (193). Right plot: Faddeev-Popov

geometric shape vi of Eq. (242). We display in blue the lattice shape for a = 0.3, L = 500,

m = ω = 1, λ = 0.1. With the solid yellow line the continuum counterpart ẍc(t) is shown. As

before, the continuous functions were sampled at discrete steps of size a.

with respect to the transition time reads

f ′(t0) =
∑
k

˙̃x∗k(−t0)x̃0k(−t0)−
∑
k

(x̃k − x̃∗k(−t0)) ˙̃x0k(−t0) (231)

It can be shown that f ′(t0), for small values of the coupling constant λ̃, is always positive.

Therefore, it is not necessary to take the absolute value (see Eq. (229)). Moreover, since the

derivative with respect to the transition time is positive, the function vanishes at only one point

t∗0, justifying the use of the Dirac delta property in Eq. (229).

The transition time t0 can also be discretized. Although in principle the transition can occur

at points not detected by the lattice discretization, we can always achieve an approximation

whose error tends to zero in the limit of vanishing lattice spacing:

x̃∗k(−t0) = x̃∗k−j +O(a) for t0 = j · a+O(a) . (232)

The new minimum x̃∗k−j leads to a redefinition of the matrixKij . We indicate the new zero-mode

as x̃0k−j . In addition, the regularized version of Eq. (231) reads

f ′(t0) → f ′k =
∑
k

x̃k

( x̃0k−j−1 − x̃0k−j

a

)
. (233)

We use the FP procedure in the twisted partition function of the lattice theory, namely
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Za =

∫
ABC

∏
i

dx̃i e
−S[x̃]

=

∫
ABC

∏
i

dx̃i

∫
dτ0 δ(τ0 − τ∗0 ) e

−S[x̃]

=

∫
ABC

∏
i

dx̃i
∑
j

a δ
[∑

k

(x̃k − x̃∗k−j)x̃
0
k−j

] ∑
l

x̃l

( x̃0l−j−1 − x̃0l−j

a

)
e−S[x̃] .

(234)

As usual, the path of the particle can be decomposed to the classical path plus a fluctuation

field, i.e. we write

x̃i = x̃∗i−j + ξ̃i = x̃0x̄i−j + ξ̃i . (235)

Expanding the action associated to the fluctuations as we did in the similar case of Sec. 2.3.1

we obtain

Za = e−S[x̃∗]

∫
ABC

∏
i

dξ̃i
∑
j

a δ
[∑

k

ξ̃kx̃
0
k−j

] ∑
l

(x̃∗l−j + ξ̃l)
( x̃0l−j−1 − x̃0l−j

a

)
e−S[ξ̃] . (236)

To remove the zero-mode we need to introduce the orthogonal component

ξ̃k = c0x̃
0
k−j + ξ̃⊥k (237)

in the twisted partition function

Za = e−S[x̃∗]

∫
c0√
2π

∫
ABC

∏
i

dξ̃⊥i
∑
j

a δ(c0)
∑
l

(x̃∗l−j + c0x̃
0
l−j + ξ̃⊥l )

( x̃0l−j−1 − x̃0l−j

a

)
e−S[ξ̃]

=
e−S[x̃∗]

√
2π

∑
j

a

∫
ABC

∏
i

dξ̃⊥i
∑
l

(x̃∗l−j + ξ̃⊥l )
( x̃0l−j−1 − x̃0l−j

a

)
e−S[ξ̃⊥]

=
e−S[x̃∗]

√
2π

∑
j

a

∫
ABC

∏
i

dξ̃⊥i
∑
l

(x̃∗l + ξ̃⊥l+j)
( x̃0l−1 − x̃0l

a

)
e−S[ξ̃⊥]

=
e−S[x̃∗]

√
2π

∑
j

a

∫
ABC

∏
i

dξ̃⊥i
∑
l

(x̃∗l + ξ̃⊥l )
( x̃0l−1 − x̃0l

a

)
e−S[ξ̃⊥]

=
e−S[x̃∗]β√

2π

∫
ABC

∏
i

dξ̃⊥i
∑
l

(x̃∗l + ξ̃⊥l )
( x̃0l−1 − x̃0l

a

)
e−S[ξ̃⊥] ,

(238)

where in the first equality we have made explicit use of∫
ABC

∏
i

dξ̃i =

∫
dc0√
2π

∫
ABC

∏
i

dξ̃⊥i (239)

and the orthonormality property of the basis of eigenvectors. Notice that in the third equality

we shift the index l → l+ j. Additionally, in the fourth equality we also shift ξ̃l+j → ξ̃l which is
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legitimate because we are integrating over all possible fluctuations. Of the two Faddeev-Popov

terms, one represents a purely geometric quantity that has nothing to do with the sum of the

functional integral. In fact the scalar product

γ =
∑
l

x̃∗l

( x̃0l−1 − x̃0l
a

)
= x̃0

∑
l

x̄l

( x̃0l−1 − x̃0l
a

)
= x̃0γ̄ =

√
m̃ω̃2

8λ̃
γ̄ (240)

appears only in the one-loop calculation and therefore can be factorized in front of the functional

integral. It follows that

Za =
e−S[x̃∗]βγ√

2π

∫
ABC

∏
i

dξ̃⊥i

[
1 +

∑
l

ξ̃⊥l
1

γ

( x̃0l−1 − x̃0l
a

)]
e−S[ξ̃⊥]

=
e−S[x̃∗]βγ√

2π

∫
ABC

∏
i

dξ̃⊥i

[
1 +

√
λ̃
∑
l

ξ̃⊥l

√
8

m̃ω̃2

1

aγ̄
(x̃0l−1 − x̃0l )

]
e−S[ξ̃⊥]

=
e−S[x̃∗]βγ√

2π

∫
ABC

∏
i

dξ̃⊥i

[
1 +

√
λ̃
∑
l

ξ̃⊥l vl

]
e−S[ξ̃⊥]

(241)

where √
8

m̃ω̃2

1

aγ̄
(x̃0l−1 − x̃0l ) = vl . (242)

In Fig. 4 we depict an example of the profile vl at lattice spacing a = 0.3. In Eq. (241), the

zero-mode has been completely regularized and the functional integral includes only fluctuations

orthogonal to the zero-mode. In the Faddeev-Popov approach, the price to pay is an additional

term into the twisted partition function proportional to
√
λ̃. This term also has a series expan-

sion in perturbation theory, coming from the formal expansion in power series of the fluctuation

field, which is naturally interpreted in the NSPT framework.

2.3.3 Perturbative Free Energy

Let us notice that in Monte Carlo simulations the free energy, corresponding to the partition

function of Eq. (241), is the observable to be computed. However, the additional FP interaction

term is not yet an observable. We can rewrite the twisted partition function as

Za =
e−S[x̃∗]βγ√

2π
Z⊥
a 〈[1 +

√
λ̃
∑
l

ξ̃⊥l vl

]
〉⊥a , (243)

where 〈. . .〉⊥a denotes the average in the antiperiodic setting for the theory without zero-mode

and

Z⊥
a =

∫
ABC

∏
i

dξ̃⊥i e−S[ξ̃⊥] (244)
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is the regularized twisted partition function. The FP term can now be calculated through

NSPT simulations. On the other hand, the quantity in Eq. (244) can be computed considering

the equation
d

dλ̃
Z⊥
a =

∫
ABC

∏
i

dξ̃⊥i e−S[ξ̃⊥]

[
− 1

2
√
λ̃
S(1) − S(2)

]
, (245)

which by means of Eq. (226) and

S(1) =
√
2m̃ω̃2

∑
i

x̄iξ̃
⊥3

i , (246)

S(2) =
∑
i

ξ̃⊥
4

i , (247)

we get

1

Z⊥
a

d

dλ̃
Z⊥
a =

d

dλ̃
lnZ⊥

a =

〈
− 1

2
√
λ̃
S(1) − S(2)

〉⊥

a

=
1

λ̃

〈
−1

2

√
λ̃S(1) − λ̃S(2)

〉⊥

a

. (248)

The quantity in Eq. (248) can be very efficiently calculated with NSPT, from which we get the

coefficients in perturbation theory. By expanding the RHS of (248) in power of lambda, the

series is given by

1

λ̃

〈
−1

2

√
λ̃S(1) − λ̃S(2)

〉⊥

a

=
1

λ̃

(
λ̃a(1) + λ̃2a(2) + ...

)
. (249)

The coefficients a(i) are related to the perturbative series of the partition function and the free

energy. In fact, integrating Eq. (249) from λ̃′ = 0 to λ̃′ = λ̃ we obtain

lnZ⊥
a = lnZ⊥

a (λ̃ = 0) +

∞∑
n=1

λ̃n

n
an → Z⊥

a = Z⊥
a,0 · exp

[ ∞∑
n=1

λ̃n

n
an

]
, (250)

where Z⊥
a,0 is the twisted partition function for the free-theory having no zero-mode contribution.

Inserting the last expression in Eq. (243) we finally get

Za =
e−S[x̃∗]βγ√

2π
Z⊥
a,0 · exp

[ ∞∑
n=1

λ̃n

n
an

]
·
〈
1 +

√
λ̃
∑
l

ξ̃⊥l vl

〉⊥

a

. (251)

Given the functional form of Eq. (250), we will refer to the series in Eq. (249) as the (perturba-

tive) free energy.

Referring back to Eq. (178), we notice that for the calculation of the energy splitting the

computation of the partition function is also necessary. This too can be expressed in terms of
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Figure 5: Left plot: continuum limit for the action evaluated on the lattice minimum solution

S[x̃∗]. Right plot: one-loop prefactor for the lattice theory, see Eq. (253). We use the symmetric

derivative in the definition of γ (see Eq. (240)) to improve convergence. Green diamonds,

orange squares and blue triangles represent the values at finite lattice spacing, while circles of

the respective color show the extrapolation to the continuum limit by employing second-order

fits in a2. The three colors refer to three different values of the coupling λ reported in the labels,

while the other parameters have been set to m = ω = 1. The dashed gray lines represent the

values of the continuum theory given by Eq. (206) at the same value of λ.

the free energy. For β � 1 and small coupling constant the form of the partition function reads

Z =

∫
PBC

∏
i

dξ̃ie
−S[ξ̃]

= e−βE0 = e−β(E
(0)
0 +λ̃E

(0)
0 +λ̃2E

(1)
0 +...)

= Z0 exp
[ ∞∑
n=1

λ̃n

n
bn

]
,

(252)

where the coefficients bn are known since they are simply the coefficients of the perturbative

expansion of the energy in standard perturbation theory. By means of Eq. (178), the energy

splitting for the lattice theory will be given by

∆E =
2

β

Za

Z
= e−S[x̃∗]γ

√
2

π

(
Z⊥
a,0

Z0

)
· exp

[ ∞∑
n=1

λ̃n

n
(an − bn)

]
·
〈
1 +

√
λ̃
∑
l

ξ̃⊥l vl

〉⊥

a

. (253)

The above equation needs to be studied in perturbation theory by means of an expansion of the

exponential in Taylor series of the coupling, multiplied order-by-order by the FP term. This

procedure generates the perturbative corrections as the one introduced in Eq (206).
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2.3.4 Numerical Results

Before presenting the analysis of the results, we discuss the one-loop scaling to the continuum

limit. By comparing Eqs. (253) and (205), it becomes clear that in the continuum limit a → 0

we must have

S[x̃c] → 1

12λ
,

γ

√
2

π

(
Z⊥
a,0

Z0

)
→

√
2

πλ
,

(254)

where the quantities on the LHS can be deterministically calculated on the lattice. In Fig. 5,

the approach to the continuum limit for different values of λ is shown. Notice that no error bars

are associated with points since there are no statistics involved. One-loop lattice extrapolations

and continuum limit coefficients are always in agreement.

We used the NSPT algorithm to estimate the perturbative coefficients in Eq. (253). In

this work, the Langevin equation was integrated using the Euler scheme, see Eq. (78). The

numerical integration was implemented with six different time steps, namely ∆τ = 0.0025, 0.005,

0.01, 0.015, 0.02, 0.025. Moreover, the evolution was considered in terms of the dimensionless

fluctuation field ξ̃i expanded as

ξ̃i = ξ̃
(0)
i +

√
λ̃ξ̃

(1)
i + λ̃ξ̃

(2)
i + λ̃

3
2 ξ̃

(3)
i + λ̃2ξ̃

(4)
i + . . . = ξ̃

(0)
i +

∑
n>0

λ̃
n
2 ξ̃

(n)
i . (255)

The evolution occurs by means of the Langevin equation containing the gradient of the action

in Eq. (226). Since the twisted partition function regularized with the Faddeev-Popov method

requires only orthogonal fluctuations, we subtracted the zero-mode component from the fluctu-

ation field at each Monte Carlo step 7. During the stochastic evolution two observables were

measured, namely √
λ̃
∑
i

ξ̃⊥i vi = λ̃c(1) + λ̃2c(2) + . . . , (256)

−1

2

√
λ̃
√
m̃ω̃2

∑
i

x̄i(ξ̃
⊥
i )3 − λ̃

∑
i

(ξ̃⊥i )4 = λ̃a(1) + λ̃2a(2) + . . . . (257)

We emphasize that even though interactions proportional to
√
λ̃ appear in the action, terms

with non-integer powers are null in the perturbative expansion. This is exactly what also
7Since in NSPT simulations the fields are expanded in formal series, the zero-mode subtraction should be understood

as an order-by-order operation.
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Figure 6: We show the estimation of the autocorrelation (Fig. a-b) and cross-correlation times

(Fig. c) necessary for the definition of the covariance matrix Σ(n,m)∆τ in Eq. (115). The

estimates are for a = 0.4, m = ω = 1, ∆τ = 0.025. The blue markers indicate the values of ρ

and τint. as the summation window varies, see Eq. (127) and Eq. (133).
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happens in the calculation with Feynman diagrams in the continuum theory. We call the per-

turbative coefficients of the free energy and FP terms as a(i) and c(i), respectively. Although

the coefficients are related to different observables, since they are calculated on the same con-

figurations, they turn out to be correlated. Because of this fact, we need to take into account

also cross-correlations between the FP term and the free energy. We used the Gamma Function

Method introduced in Sec. 1.6.1. In Fig. 6 we show an example for a particular choice of the

lattice spacing, a = 0.4. In this study, the hard cut at ∆t = 50 works well for all the different

perturbative orders. In particular, we simulate perturbative order up to nmax = 3 8.

Notice that while in Eqs. (256) and (257) the perturbative expansions are in λ̃, in the

continuum theory typically we consider the expansion parameter to be S−1
0 = 12λ. This requires

the following rescaling

k(n) → a5n

12n
k(n) . (258)

From now on, we will use the rescaled coefficients in the expansion of Eq. (253), without changing

the notation.

The coefficients related to the expansions of Faddeev-Popov term and free energy, simulated

at fixed a, require an extrapolation to vanishing stochastic time step. Once the covariance matrix

is defined by means of the Gamma Function Method, the χ2 function is minimized as discussed

in Sec. 1.5. To check the extrapolations, both linear fits (considering the three smallest time

step values) and quadratic fits (considering all the time step values) were considered, following

Eq. (117) and Eq. (119). In Fig. 7, we show the extrapolations for a = 0.6 with m = ω = 1. The

two extrapolations agree well. For getting the values in the continuum limit, only the quadratic

extrapolations were considered.

Considering Eq. (253), it is easy to derive the first perturbative correction, namely the two-

loop correction:

∆E =e−S[x̃∗]γ

√
2

π

(
Z⊥
a,0

Z0

)
·
(
1 + (12λ)c(1) + . . .

)
·
(
1 + (12λ)(a(1) − b(1)) + . . .

)
=e−S[x̃∗]γ

√
2

π

(
Z⊥
a,0

Z0

)
·
[
1 + (12λ)(c(1) + a(1) − b(1)) + . . .

]
.

(259)

In light of Eq. (206), we can identify

z(1) = c(1) + a(1) − b(1) , (260)

8Reaching the third order in λ̃ requires simulating the system up to the sixth order in
√

λ̃, significantly increasing

the computational effort.
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(d) Second-order perturbative free energy term a(2).

Figure 7: Continuum stochastic time extrapolations for the first- and second-order Faddeev-

Popov term (Fig. a-b) and first- and second-order free energy (Fig. c-d). The NSPT com-

putations at fixed ∆τ are represented with blue and red markers with error bars. Blue points

are included in the linear fit, see Eq. (117), represented by the yellow solid lines. Blue and

red points are included in the quadratic fit, see Eq. (119), which are shown with green solid

lines. The extrapolated quantities are shown in dark red and purple for the linear and quadratic

minimization respectively, with a little shift along the ∆τ axis for convenience. The χ2
red. are

reported in the labels.
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where the coefficients on the RHS are always calculated at fixed and finite lattice spacing.

Notice that the lattice spacing has a significant impact on the stochastic evolution. In fact, the

integrated autocorrelation time is observed to grow like

τint. ≈
1

∆τ · a3
. (261)

The simulations thus experience a slowdown as the continuum limit is approached (mimicking

the critical slowing down of lattice gauge theories). For this reason, it was not possible to

simulate lattice spacings smaller than a = 0.15. In practice, we have done simulations for values

of a = 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.75 with L = 1001, 751, 601, 501, 376, 301, 251, 201 so

that β = L · a ≈ 150.

In Fig. 8 we report the continuum limit extrapolation for the one-loop coefficient z(1) defined

in Eq. (260). The extrapolation a→ 0 has been performed considering linear and quadratic fits

in a2. The two fits show complete agreement with each other. For the following, only quadratic

fits were considered. In this case, we get

c(1) = −0.81660(50) , (262)

a(1) − b(1) = −0.1657(71) , (263)

and we finally obtain

z
(1)
NSPT = −0.9823(71) , (264)

which is consistent with the continuum value given in Eq. (206). The two-loop correction error

is dominated by 99.5% from the extrapolation of the free energy, while the contribution of the

Faddeev-Popov term represents only 0.5% of the total error. Indeed, it is worth noting that the

free energy in the antiperiodic theory is of order ≈ 10 with a relative error below one-tenth of

a percent (refer to Fig. 7). The result of Eq. (263) has a rather large error since it turns out to

be a subtraction of coefficients taking similar values.

2.4 Higher-order corrections and discussions
We presented the calculation of the first perturbative correction on the one-instanton sector with

NSPT. Although it is a simple model of quantum mechanics, we have emphasized that even in

this case the calculations with Feynman diagrams are not simple. NSPT only partially solves

these issues. We have shown that we end up with a subtraction of contributions coming from
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Figure 8: Continuum limit extrapolations of the Faddeev-Popov term (plot on the left) and free

energy (plot on the right). The extrapolated values, shown by orange and red points, have been

obtained using quadratic and linear fits, respectively. We used the first 7 (6) points for the

linear fits of the FP term (free energy). For the quadratic fits, all points have been employed.

The expected χ2
red are given in the labels.

calculations on two different vacua. Incidentally, the values involved are very similar, thus re-

quiring high precision. Furthermore, reaching the continuum limit for not-so-high perturbative

orders is a challenging task and must be performed with care. In this regard, simulations at

higher orders are still ongoing, and results at the level of precision we are aiming at are not yet

available. Some of these issues could be sort of a pathology of the problem at hand, and they are

not going to stop us from exploring NSPT expansions around non-trivial vacua in other theories.

There is nevertheless something more to point out: not surprisingly, at not-so-high orders,

we found that the NSPT signal exhibits large oscillations. This last observation is of a much

more general nature, it is not that new and it is expected to involve all low-dimensional models.

For this reason, the remaining part of this thesis is mostly dedicated to confronting the large

fluctuations problem in NSPT.
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3–| High-order NSPT computations

for O(N) in the large N limit

3.1 Introduction to the large fluctuations problem
From the first formulation of NSPT, it has been clear that the estimation of perturbative co-

efficients via stochastic process leads to results that are affected by statistical and systematic

errors. Moreover, since we are obliged to work on finite volume, it is important to study the

finite volume effects on our results. Considerable progress has been achieved regarding both

issues [8, 13, 19, 20]. However, also the distributions of NSPT coefficients display features and

aspects that require attention. This remark was prompted by inconsistencies between NSPT

predictions and established results for the O(3) non-linear sigma model9. Furthermore discrep-

ancies were detected and analyzed in different zero-dimensional models: the zero-dimensional

λφ4 model, the dipole random variable model, and the Weingarten’s “pathological model” [15].

In short, NSPT simulations in low-dimensional systems display statistical properties that are

very different from those of a normal process. Normal processes show exponential suppressed

tails, while NSPT stochastic processes display long tails and rare events that introduce spikes

that challenge the traditional statistical analysis methods. Although the calculation of statistical

errors can be reliably performed using non-parametric approaches (using the bootstrap method

[15]), there still remains the practical challenge of determining whether accurate estimates can

be obtained at high perturbative orders for low-dimensional systems.

Indeed, the presence of huge deviations at high perturbative orders is not unexpected. This

can be verified even in the case of simple models as the following one. Let’s consider the case of

the zero-dimensional action

S[ϕ] =
1

2
ϕ2 +

g

3
ϕ3 (265)

9These discrepancies were observed by M. Pepe [74], known as the Pepe effect.
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for which the non-perturbative Langevin equation reads

ϕ̇ = −(ϕ+ gϕ2) + η (266)

Considering the formal series expansion shown in Eq. (68), the above equation leads to the

following order-by-order set of equations

ϕ̇(0) = −ϕ(0) + η

ϕ̇(1) = −ϕ(1) − ϕ(0)ϕ(0)

ϕ̇(2) = −ϕ(2) − 2ϕ(0)ϕ(1)

ϕ̇(3) = −ϕ(3) − (2ϕ(0)ϕ(2) + ϕ(1)ϕ(1))

. . .

(267)

It is evident that any fluctuation driven by the Gaussian noise at the leading order is amplified

as squared at the first order, resulting in a cubic effect at the second order, and so on. In

summary, a potentially large fluctuation becomes increasingly amplified at higher perturbative

orders, leading eventually to a situation in which the signal is lost. We naturally inquire about

the effectiveness of the restoring mechanism built into the Langevin equation in reabsorbing

large fluctuations (and up to which order), its impact on the autocorrelation time and on the

emerging standard deviation. A logical assumption is the problem will become progressively less

intense as more degrees of freedom are involved (coherent large fluctuations will be improbable,

and overall, the interaction among the numerous degrees of freedom is expected to lead to a

kind of self-averaging towards gaussianity). However, this leads to the question of the required

size that a system should have in order to ensure stability.

3.2 O(N) Non-Linear Sigma Model
The process outlined in Eq. (267) is quite broad. The conjecture that increasing the number

of degrees of freedom would lead to less problematic signal appears to be confirmed by Lattice

QCD simulations, where fluctuations do occur only at extremely high orders. In large systems,

the equations for different degrees of freedom are coupled so that we expect that rare deviations

with an independent impact on single degree of freedom will have less and less contribution.

All in all, it makes sense to explore the connections between NSPT stochastic distributions and

the number of degrees of freedom. From this point of view, the O(N) non-linear sigma model

becomes an ideal laboratory, as it allows for simulations of the same model with varying values
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of the parameter N , thus modifying the number of degrees of freedom. Naturally, increasing the

number of degrees of freedom leads to higher computational costs.

Two-dimensional O(N) non-linear sigma models are very important in quantum field theory.

Theoretically, these models exhibit interesting properties, such as asymptotic freedom. Phe-

nomenologically, they have successfully modeled various features across different contexts (for

an introduction to this subject, we refer the reader to [75]). From our perspective, our interest

in that model consists in the possibility of changing the number of degrees of freedom through

the choice of the value of N . In the continuum the action of the model reads

S[s] =
1

2g

∫
d2x

(
∂µs(x)

)2
, (268)

where s(x) is a N -component real scalar field with the local constrain s(x) · s(x) = 1 for all x.

Various lattice regularizations of this model are known. For our purposes, we use the simplest

2D version, namely

S[s] = −1

g

∑
x,µ

sx · sx+µ , (269)

where sx is a N -component lattice real scalar field obeying the constraint sx ·sx = 1 on all lattice

sites. Here, g is the coupling constant and µ runs over the two lattice directions. The partition

function can be expressed by incorporating the constraint into a local Dirac delta function

Z =

∫ ∏
x

dsx δ(s
2
x − 1) e

1
g

∑
x,µ sx·sx+µ . (270)

3.3 Perturbation theory setup
In the O(N) non-linear sigma models, the interaction is encoded in the local constraint. Pertur-

bation theory requires the identification of the correct degrees of freedom. Here we follow the

approach discussed in [76]. By using the decomposition

sx = (πx, σx) (271)

the partition function becomes

Z =

∫ ∏
x

dπx dσx δ(π
2 + σ2

x − 1) e
1
g

∑
x,µ

(
πx·πx+µ+σxσx+µ

)
. (272)

The σx component can be integrated-out by means of the Dirac delta function

σx = ε(x)
√

1− π2
x , (273)
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with ε(x) = ±1, and we get

δ(f(σx)) =
δ(σx − x0)

|f ′(x0)|
=
δ(σx − ε(x)

√
1− π2

x)

2ε(x)
√

1− π2
x

, f(σx) = π2 + σ2
x − 1 . (274)

The partition function now reads

Z =
∑

ε(x)=±1

∫ ∏
x

dπx dσx
δ(σx −

√
1− π2

x)

2ε(x)
√
1− π2

x

e
1
g

∑
x,µ

(
πx·πx+µ+σxσx+µ§

)
=

∑
ε(x)=±1

∫ ∏
x

dπx

ε(x)
√

1− π2
x

e
1
g

∑
x,µ

(
πx·πx+µ+ε(x)ε(x+µ)

√
1−π2

x

√
1−π2

x+µ

)
.

(275)

By defining

∆µπx = πx+µ − πx , (276)

(∆µ

√
1− π2

x)ε = ε(x+ µ)
√
1− π2

x+µ − ε(x)
√

1− π2
x , (277)

we can write the action terms as follows

(∆µπx) · (∆µπx) = (∆µπx)
2 = π2

x+µ − 2πx+µπx + π2
x , (278)

(∆µ

√
1− π2

x)ε(∆µ

√
1− π2

x)ε = (∆µ

√
1− π2

x)
2
ε (279)

= 1− π2
x+µ − 2ε(x+ µ)ε(x)

√
1− π2

x+µ

√
1− π2

x + 1− π2
x .

(280)

Adding the previous two equations we get

(∆µπx)
2 + (∆µ

√
1− π2

x)
2
ε = −2πxπx+µ − 2ε(x)ε(x+ µ)

√
1− π2

x+µ

√
1− π2

x + 2 , (281)

so the partition function is written as

Z =
∑

ε(x)=±1

∫ ∏
x

dπx√
1− π2

x

e
− 1

2g

∑
x,µ

[
(∆µπx)

2+(∆µ

√
1−π2

x)
2
ε+1

]
. (282)

The last term in the action can be neglected since it is a constant contribution to the partition

function that can be reabsorbed into the definition of the lattice functional integral. To obtain

the usual perturbation theory, it is customary to use the rescaling

π2
x → gπ2

x . (283)

In fact, using Eq. (283), the partition function reads

Z =
∑

ε(x)=±1

∫ ∏
x

dπx√
1− gπ2

x

e
− 1

2

∑
x,µ

[
(∆µπx)

2+ 1
g (∆µ

√
1−gπ2

x)
2
ε

]
. (284)
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We note that every time we choose a non-constant sign field ε(x), in Eq. (282) the constant terms

in the action no longer vanish. As a result, we obtain a contribution that scales as e−
A
g and thus

does not contribute to the perturbation theory. From now on we will therefore consider only

constant fields, namely ε(x) = 1. It is easy to see that ε(x) = −1 leads to the same perturbation

theory. The two perturbation theories can be summed, giving an additional constant in front of

the partition function that still can be reabsorbed into the definition of the functional integral.

We introduce the infrared regulator λ to set a temporary mass term to be removed at the end

of the calculations. The partition function has the form

Z = lim
λ→0

∫ ∏
x

dπx e
− 1

2

∑
x,µ

[
(∆µπx)

2+λ2π2
x− 1

g (∆µ

√
1−gπ2

x)
2

]
− 1

2

∑
x log (1−gπ2

x)
, (285)

where the logarithmic term arises from the additional integral measure term. As for the propa-

gator, this is given by

〈πi
xπ

j
y〉 = δijG(x− y) = δij

∫ +π

−π

d2k

(2π)2
eik·(x−y)

4
∑

µ sin2 (k·µ2 ) + λ2
(286)

We note that the propagator diverges like log (λ) as λ→ 0. This issue is related to the fact that

in perturbation theory, expansion occurs around a free vacuum with broken symmetry, while a

theorem prohibits this kind of symmetry breaking in 2-dimensional systems [77]. As a result, the

fundamental building block of perturbation theory, the free propagator, is ill-defined. However,

it has been noted in the context of the O(N) sigma models that any O(N) invariant quantity

can be expanded perturbatively [76, 78], with the infrared divergences precisely canceling out

order-by-order.

3.3.1 One-loop computation

In this work we consider a well-defined O(N) invariant quantity [76], which is the energy (that

is given from the propagator in terms of the original fields)

E = − 1

2V

∂ logZ

∂
(

1
g

) = − 1

2V Z

∂Z

∂
(

1
g

)
=

1

2V

∑
x,µ

〈sx · sx+µ〉 = 〈s0 · s1〉 .
(287)
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Working in perturbation theory, up to second-order terms, we get

〈s0 · s1〉 = g〈π0 · π1〉+ 〈
√

1 + gπ2
0

√
1 + gπ2

1〉

= 1 + g
(
〈π0 · π1〉(0) − 〈π2

0〉(0)
)

+ g2
(
〈π0 · π1〉(1) − 〈π2

0〉(1) +
1

4
〈π2

0π
2
1〉(0) −

1

4
〈π4

0〉(0)
)
+O(g3) ,

(288)

where in the last line we use the Taylor expansion and 〈πxπy〉(n) is the n-loop correction to the

free propagator. The leading-order energy thus is

E(0) = 1 . (289)

Given the Eq. (288), the first-order correction to the energy is given by the expression

E(1) = 〈π0 · π1〉(0) − 〈π2
0〉(0)

= lim
λ→0

(N − 1)[G(1)−G(0)]

= lim
λ→0

(N − 1)D(x = 1) = − (N − 1)

4
,

(290)

where we define

D(x) = G(x)−G(0) =

∫ +π

−π

d2k

(2k)2
eikx − 1

4
∑

µ sin2 (kµ/2) + λ2
. (291)

Notice that in the final result of Eq. (290) we have used

D(1) = −1

4
. (292)

In this case infrared divergences in 〈π0 · π1〉(0) are exactly canceled out by the additional term

〈π2
0〉(0).

3.3.2 Two-loop computation

The same cancellation takes place at the second perturbative order. The form for the second-loop

correction to the energy follows

E(2) = 〈π0 · π1〉(1) − 〈π2
0〉(1) +

1

4
〈π2

0π
2
1〉(0) −

1

4
〈π4

0〉(0) . (293)

The above equation can be rewritten using the Wick contractions

〈π2
0π

2
1〉(0) = (N − 1)2G2(0) + 2(N − 1)G2(1) ,

〈π2
0π

2
1〉(0) = (N − 1)2G2(0) + 2(N − 1)G2(0) ,

(294)
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through the use of which we get

E(2) = −(N − 1)G(1)G(1) + (N − 1)G(1)G(0) +
1

4
[(N − 1)2G2(0) + 2(N − 1)G2(1)]

− 1

4
[(N − 1)2G2(0) + 2(N − 1)G2(0)] +O(λ2)

= −(N − 1)G(1)(G(1)−G(0)) +
1

2
(N − 1)[G2(x)−G2(0)] +O(λ2)

=
1

2
[G(1)−G(0)− 2(G(1)−G(0))][G(1)−G(0)] +O(λ2)

=
1

2
(N − 1)[D2(1)− 1

2
D(1)] +O(λ2)

= −N − 1

32
+O(λ2) .

(295)

In Eq. (295) we use the expression for the first-order correction of the propagator. We report

on this computation in App. C. The second-loop correction yields still a finite result where all

the logarithmic divergences are canceled.

Higher-order computations are not simple because we have to face an intricate perturbation

theory, where not only new Feynman diagrams are generated but also new vertices appear at

each order. Until now, only the first four corrections are known analytically [76, 79] and read

E(0) = 1 ,

E(1) = −(N − 1)/4 ,

E(2) = −(N − 1)/32 ,

E(3) = −0.00726994(N − 1)− 0.00599298(N − 1)2 ,

E(4) = −0.00291780(N − 1)− 0.00332878(N − 1)2 − 0.00156728(N − 1)3 .

(296)

3.4 Perturbative computations with NSPT
We rewrite Eq. (285) for the partition function in the form

Z =

∫ ∏
x

dπx exp
{∑

x,µ

(
πx · πx+µ +

1

g

√
1− gπ2

x

√
1− gπ2

x+µ

)}
× exp

{
−1

2

∑
x

log(1− gπ2
x)
}
,

(297)

from which we define the action as

S = −
∑
x,µ

(
πx · πx+µ +

1

g

√
1− gπ2

x

√
1− gπ2

x+µ

)
+

1

2

∑
x

log(1− gπ2
x) . (298)
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Figure 9: NSPT simulations of the O(5) NLSM model in a 20×20 lattice. The figures represent

the energy at increasing loop orders, computed using configurations with zero-mode (blue solid

line) and without zero-mode (red solid line). The signals with zero-mode are much noisier.

The associated non-perturbative Langevin equation is straightforward

π̇j
y(τ) =

∑
µ

{
πj
y+µ + πj

y−µ − πj
y

(√
1− gπ2

y+µ

1− gπ2
y

+

√
1− gπ2

y−µ

1− gπ2
y

)}∣∣∣∣∣
π(τ)

+
gπj

y

1− gπ2
y

∣∣∣∣∣
π(τ)

+ ηjy(τ)

(299)

with

〈ηjy(τ)〉 = 0 , 〈ηjy(τ)ησk (τ ′)〉 = δjσδykδ(τ − τ ′) . (300)

Notice that πj
y(τ) represents the j-component of the π field at the lattice site y, evaluated at the

stochastic time τ . With NSPT we can proceed straight ahead and go beyond the fourth order,

especially (as already stated and as we will see below) in the large N regime. In fact, NSPT

simulations are completely insensitive to the increasing number of terms of the diagrammatic

perturbation theory: the order-by-order encoding of the Eq. (299) is automatically generated.

In Eqs. (297)-(299) we consider directly the limit λ → 0. In this setting the stochastic

evolution displays the zero-mode which needs to be regularized. In Eq. (288) the additional

term to the fundamental ππ propagator cancels the zero-mode contribution. In the context of

66



N nmax V Statistics ×N ∆τ

5 : 1 : 15 15 20× 20 ≈ 1.6 · 109 [18, 25, 35, 50, 75, 100] · 10−4

18 : 3 : 45 15 20× 20 ≈ 2.1 · 109 [18, 25, 35, 50, 75, 100] · 10−4

15 : 3 : 43 23 20× 20 ≈ 1.2 · 109 [18, 25, 35, 50, 75, 100] · 10−4

45 23 20× 20 ≈ 2.7 · 109 [18, 25, 35, 50, 75, 100] · 10−4

5 23 66× 66 ≈ 9 · 107 [18, 25, 35, 50, 75, 100] · 10−4

Table 1: Details of the simulations: the notation N : ∆ : M represents the set of values N ,

N +∆, N + 2∆, . . ., M . Six different time steps ∆τ were considered. The term nmax denotes

the highest perturbative order achieved for the respective set of simulations; it is important to

note that streams with varying nmax must be treated individually due to correlations among

different orders within a single stream. The statistics are normalized by N , thus different rows

carry roughly equivalent computational weight.

NSPT, this cancellation is expected to happen in a statistical sense and thus does not find an

equivalent in real-world Monte Carlo simulations.

One approach is to implement an infrared regulator λ in the same spirit as in Eq. (357)

and to remove it at the end of the simulations. This requires additional simulations and extra

extrapolations. Furthermore, based on our experience, we cannot achieve good regularizations

without considering large values of λ, which however make systematic effects increase. A more

efficient choice is to eliminate the zero-mode component by subtracting this contribution directly

from the configurations [9]. This method is convenient because it does not introduce additional

steps, while reproducing the perturbative expansion of the lattice theory in the limit of infinite

volume. It is worth noting that the subtraction of the zero-mode at each step of the Monte

Carlo process is an exact procedure at the leading order for the energy (we present in detail

this calculation in App. D). The effects of this regularization on the O(5) model are reported in

Fig. 9: at one-loop no difference can be seen, while at higher loops the signals without zero-mode

are manifestly better under control.

Most of our simulations have been performed on 20× 20 lattices for several values of N (see

Tab. 1 for the simulation details). We should stress that even in the case of these small lattices,

we observed tiny finite size effects: by comparing our results with the respective results known

analytically, which are given by Eq. (296), we found discrepancies of the order of a few per mille.

This is shown in Fig. 10 where our numerical NSPT results have been plotted together with the
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Figure 10: NSPT perturbative computations in O(N) sigma models: the energy of the model is

computed at increasing perturbative order n; blue, green and orange points refer to the O(5),

O(15) and O(45) models, respectively. Analytical results are shown in black. The larger is N ,

the higher loop corrections can be safely computed.

exact analytical results. Note that in Fig. 10, the influence ofN on the highest perturbative order

achievable becomes evident. The distinction between the regions of low and high perturbative

orders is clear: for all O(N) models considered here, we managed to compute three additional

perturbative orders beyond the known ones. However, as the perturbative order n increases,

reliable results were achieved only with progressively higher values of N . To be more specific, in

the case of theO(5) NLSM we extended the calculations from the fourth to the seventh order. For

the O(15) model, we successfully reached the tenth order, and remarkably, for the O(45) model,

we were able to compute up to the 14th order. This is due to the fluctuations in the stochastic

process and we will investigate this connection in depth in the following sections. Determining

the perturbative order at which one should stop stochastic calculations for a specific O(N)

model is a non-trivial task. We have contextually performed several sanity checks to assess

the reliability of our findings, including analyses of time series, cumulative moving averages,

cumulative moving standard deviations and scaling of relative errors.

In Fig. 10 systematic errors coming from the numerical integration scheme have been removed

(in Fig. 11 we show an example for the O(15) model). For the extrapolations we take into

account autocorrelations and cross-correlations by means of the Blocking Method (see Fig. 12)
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Figure 11: Extrapolation to the continuum stochastic process in the O(15) model for pertur-

bative orders n = 3, 4, 5. Simulations were performed using 20 × 20 lattices and the Euler

integration scheme. We consider first- and second-order corrections in ∆τ , with χ2
red ≈ 1.33.

NSPT results are shown with the blue points, while green lines represent quadratic fits. Red

diamonds show the extrapolated results.

as described in Sec. 1.6.2. In this work we mainly used the Euler integration scheme. In

Sec. 1.3.2 we have mentioned that continuum stochastic process extrapolations are still under

debate. We note that our focus here lies in higher-order computations. Therefore, we aim to

ensure the safety of extrapolations while incorporating all perturbative orders. Using high-order

schemes (see Sec. 1.8.1 and 1.8.2) one can be tempted to avoid extrapolations by considering

simulations for a single tiny time step. However, there is no way to find a time step value

that is small enough to guarantee that we cannot distinguish systematic from statistical errors.

Higher orders can always introduce new surprises, for example because different orders can be of

different orders of magnitude. In fact, this actually happens in O(N) NLSMs (see the increasing

systematic effects as the order n increases in Fig. 11). Additionally, it is worth noting that the

feasibility of stochastic time extrapolation provides further confidence that results at a specific

order are reliable and not affected by significant fluctuations. In essence, while stochastic time

extrapolation requires additional computational effort, nevertheless, we are more confident that

mean values and errors become more accurate.

As discussed in Sec. 1.4 other integration schemes are viable: we can take advantage of this

by making combined extrapolation fits using results from different integration schemes. In Fig

13 we show combined fit results using at the same time data from the Euler and the Runge-Kutta

schemes. In this case simulations were performed for the O(80) NLSM on a 32× 32 lattice.

A preliminary insight into the emergence of fluctuations can be obtained by examining the

stochastic time series. In Fig. 14, signals for O(5), O(15), and O(45) are displayed at different

perturbative orders using the same time step, namely ∆τ = 0.0035. In particular, in the first

row, we display the evolution in the stochastic time for perturbative order n = 3. Here, no huge

spikes are detected. Furthermore, the distribution of fluctuations in each case turns out to look
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Figure 12: Estimation of the matrix elements Σ∆τ (n,m) using the Blocking Method for the

O(15) sigma model. Block sizes are multiples of 100. The value of variances and covariances for

different perturbative orders (n,m) as the block sizes increase are shown with blue lines. The

estimated matrix elements Σ∆τ (n,m) are displayed with horizontal red lines, computed as the

mean in the plateau (region to the right of the green dashed line). All the data refer to a value

of ∆τ = 0.005.
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Figure 13: Combined fit extrapolations for the O(80) NLSM using two integration schemes. We

display fits for different perturbative orders, namely n = 3, 4, 5. Simulations with Euler and

Runge-Kutta schemes are depicted with blue and red symbols, respectively. For the plots on

the left, the fitting procedure includes linear extrapolations in ∆τ for Euler (magenta solid line)

and linear extrapolations in ∆τ2 for Runge-Kutta (green solid line). The three plots on the

right (using the same color code) show cubic extrapolations in ∆τ for the Euler integrator, over

a larger set of points. Yellow points on all plots show the extrapolated values.
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similar to a Gaussian process, where events in the tails are suppressed exponentially.

At perturbative order n = 8 (see the second row of Fig. 14), pronounced fluctuations appear

in the O(5) evolution. They give a substantial contribution to the mean and the standard

deviation (we will discuss this point in more detail in Sec. 3.4.1). On the contrary, the stochastic

evolution for the O(15) model still looks under control, and that for O(45) is excellent. Note

that most of the signals tend to display a band, which naturally characterizes the amplitude

of the oscillations: if we want to inspect the presence of large fluctuations by eye, we have to

compare them to the width of this band.

By inspecting higher perturbative orders, namely n = 11, 14 (third and fourth rows of

Fig. 14), large fluctuations become predominant in the O(5) model: here the evolution is com-

pletely dominated by large spikes. In addition, fluctuations emerge also in the O(15) model. It

turns out that for such a perturbative order the NSPT distributions significantly deviate from a

Gaussian distribution. The signal-to-noise ratio is very poor. In contrast, the NSPT evolution

for the O(45) model (reported in the last column of Fig. 14) still appears well-behaved. In this

case, the signal-to-noise ratio is good, and the distributions are reliable.

3.4.1 Cumulative moving averages and standard deviations

Cumulative moving average and standard deviation are statistical tools that can be helpful in

analyzing our data. Following the approach outlined in [15], here we will analyze NSPT evolu-

tions using these tools. Broadly speaking, as more data points are considered, the cumulative

moving average and standard deviation evolve, tracking the data’s spread with each new obser-

vation. By examining the evolution of the cumulative average and standard deviation, we can

naturally assess data stability in relation to the emergence of large fluctuations.

We define the cumulative moving average (in short, cumulative mean) as

〈E(n)〉τ =
1

τ

τ∑
i=1

E
(n)
i , (301)

where E(n)
i indicates the n-th perturbative order of the energy measured on the i-th Monte

Carlo configuration. The subscript 〈...〉τ indicates that the summation window extends from

the first configuration to the τ -th. Note that here we are using the same terminology as in the

non-perturbative Monte Carlo simulations. In this context, however, a field configuration refers

to a set of different field values, each field identifying a different perturbative order.
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Figure 14: Signals from NSPT simulations. We display the evolution for the O(5), O(15) and

O(45) models with blue, green and orange solid lines. The different rows refer to different

perturbative corrections, namely n = 3, 8, 11, 14, at ∆τ = 0.0035. We considered for all models

8 × 105 steps, after having previously subtracted 4000 thermalization steps (this number has

been decided based on the behaviour of the evolution at the highest order available).
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Figure 15: Cumulative moving averages of NSPT evolutions. We display cumulative means for

the O(5), O(15) and O(45) models with blue, green and orange solid lines. The different rows

refer to different perturbative orders, namely n = 3, 8, 11, 14 (same convention of Fig. 14) and

∆τ = 0.01. The y-axis is centered around the mean values, with a fixed relative window for

each perturbative order. Furthermore, comparisons are made by considering approximately the

same amount of statistics.

In the same way we can define the cumulative standard deviation as

σ(E(n))τ =
√
〈E(n)2〉τ − 〈E(n)〉2τ . (302)

It is expected that in a good Monte Carlo simulation, the evolution of the quantities in Eqs. (301)-(302)

will converge towards an asymptotic constant value, effectively exploring a well-defined distri-

bution. Notice that to achieve a fair comparison of the cumulative evolutions at different values

of N , given that loop corrections vary significantly by orders of magnitude (see the analytical

results in Eq. (296) and also the plot in Fig. 10), we need to focus exclusively on relative fluc-

tuations with respect to the estimates of the mean and the standard deviation. Furthermore,

a reasonable comparison should consider the fact that different O(N) models require different
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computational costs. With this in mind, we will show in the following cumulative evolutions at

the same computational time rather than at the same statistics.

In Fig. 15, we show the cumulative means for the O(5), O(15) and O(45) models at pertur-

bative orders n = 3, 8, 11, 14 and ∆τ = 0.01. The color code is the same as in Fig. 14. The

overall scenario is consistent with what we have broadly seen before: at low perturbative order

n = 3 (see the plots on the first row of Fig. 15), the cumulative means tend to flatten across all

values of N , consistently with expectations. On the contrary, as the loop order rises from n = 3

to n = 8 (second row plots in Fig. 15), the cumulative mean for O(5) is prone to considerable

fluctuations, despite a substantial amount of statistics. In the plots of the third row of the

same figure, we display results concerning the perturbative order n = 11: here, fluctuations

also affect the O(15) model, while the cumulative average for the O(5) model flattens even less

than at n = 8. On the other hand, the O(45) model can still be considered unaffected by any

pathologies at the order n = 11 up to perturbative order n = 14 (see and compare plots in the

last column of Fig. 15); in this cases, we obtain a well-behaved determination of the mean. This

last observation turns out to be independent of the time step ∆τ considered, and the respective

extrapolation to the continuum process turns out to be under control.

In the case of smaller N values, the analysis of the cumulative standard deviation presents

even more challenging issues. We display in Fig. 16 the cumulative standard deviation (with the

same conventions as in Fig. 15). As a matter of fact, due to the definition itself (Eq. (302)), any

fluctuations result in an increased estimation. Specifically, for cases where [N = 5, n ≥ 8] and

[N = 15, n ≥ 11], we cannot be sure that our estimations of the variance are reliable (see plots

on the third and fourth rows of Fig. 16). Nonetheless, for sufficiently large N values, evidence

of finite and well-determined standard deviation can be noticed. Notably, for the O(45) model,

no pathological effects were detected up to n = 14 (see the plot in the last column of Fig. 16).

The reliability of NSPT evolutions at N = 45 is additionally validated by the observation that

statistical errors scale properly as ∼ 1/
√
Nsamples. This last empirical finding will be further

discussed in Sec. 3.4.3.

All in all, we ended up with the conclusion that our best estimations of means and standard

deviations can be unreliable: we will later look for criteria to finally discard some and retain

only those that we can trust. This will finally make us decide at which perturbative order n we

can push our computations at a given value of N .
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Figure 16: Cumulative moving standard deviation for NSPT evolutions. We display cumulative

standard deviations for the O(5), O(15) and O(45)models with blue, green and orange lines. The

different rows refer to different perturbative orders, namely n = 3, 8, 11, 14 (same convention as

in Figs. 14 and 15) and ∆τ = 0.01. The y-axis is centered around the mean values, with a fixed

relative window for each perturbative order. Furthermore, comparisons are made by considering

approximately the same amount of statistics.

3.4.2 Large N and Large L

A crucial aspect of Monte Carlo simulations on the lattice is the self-averaging property: in a

given theory, increasing the lattice size should yield more stable statistical averages. In principle,

employing progressively larger lattices for the computation of local quantities (this is the case of

the energy in NLSMs, see Eq. (287)) will lead to a reduced standard deviation. Conversely, we

have observed that, at a specific NSPT perturbative order, fluctuations are tamed at large N

(where we are considering an increasing number of local degrees of freedom). At first glance, one

might wonder about the relation between these two effects: it turns out, perhaps unsurprisingly,

that these effects are fundamentally different. In this context, it might seem reasonable to
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Figure 17: Large L limit for the O(5) non-linear sigma model. Left plot: first-order correction

for the energy. We show results for lattice sizes 20 × 20 and 66×66 with solid red and yellow

lines, respectively. Lattice self-averaging effects are evident. Right plot: comparison between

the O(5) model on a 66 × 66 lattice (solid blue line) and the O(45) model on a 20 × 20 lattice

(solid green line). The large N limit behaves much better than the large L limit.

compare simulations with the same total number of degrees of freedom (specifically, comparing

the large N - small L scenario with the small N - large L scenario). Roughly speaking, we may

wonder about the true size of the system from the NSPT point of view.

In Fig. 17, left panel, we display the effect of large L simulations for N = 5 and n = 1. We

show NSPT evolutions for two lattices, namely L2 = 20 × 20 and L2 = 66 × 66. In this case,

simulations on larger lattices result in a reduced standard deviation of the signals, as anticipated.

On the contrary, in the right panel of Fig. 17, we consider high-order corrections, namely n =

13. Here we compare cumulative means of the O(5) model on a 66× 66 lattice with the O(45)

model on a 20 × 20 lattice. Notice that the two simulations involve roughly the same amount

of total degrees of freedom. In order to compare the evolution of the cumulative mean, we

need to consider that different O(N) models display various orders of magnitude of perturbative

corrections. We normalize the evolution of the cumulative mean using the best estimate of the

mean, namely we study the quantity

〈Ē(n)〉τ = 〈E(n)〉τ/〈E(n)〉τ=Tend , (303)

where 〈E(n)〉τ=Tend indicates the mean over the complete dataset. In other words, the evolution

of the cumulative mean has been normalized to have 1 as its final value of the series. It is

noteworthy that the cumulative mean yields the wrong sign for almost half of the evolution for

the O(5) model. In contrast, the evolution for N = 45 displays a not-so-long thermalisation

phase toward a stable value. In short, taming large deviations appears to be a genuine large N
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Figure 18: Scaling of relative errors at increasing loop order. The points reported in Fig. 10 are

shown here with full circles, while the points in the region of scaling violation are indicated with

empty circles. Notice that the two different regions are separated by a dashed red line. The

color code is the same as in Fig. 10.

effect.

3.4.3 Relative error scaling

In Sec. 3.4.1 and 3.4.2 we provided evidence that fluctuations are naturally tamed by the stochas-

tic process in the large N limit. This raises an important question: up to what perturbative

order do NSPT computations maintain stability for a given O(N) model? Alternatively, for

a specific target loop order, how large must N be to compute corrections reliably up to that

order? Although a comprehensive and rigorous explanation for the origins of fluctuations is not

yet established, a sanity check would be advantageous. We present numerical evidence suggest-

ing that the emergence of fluctuations can be identified by the breakdown of two simple yet

reliable hypotheses concerning the scaling of relative errors.

In Monte Carlo simulations, analyzing the scaling of relative errors plays a key role in deter-

mining the robustness of the computations; unsurprisingly, NSPT also benefits from this kind

of statistical analysis. Using relative error analysis, we illustrate how to determine a posteriori

N regions where large fluctuations have not yet affected the precision of high-order NSPT com-

putations, and areas where fluctuations are predominant. Our primary goal is to empirically

establish a first meaning of large N in NSPT computations at any specified perturbative order

n.
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n-scaling

For a given O(N) model let us call the relative errors of the energy as

∆
(n)
N =

δE(n)

E(n)

∣∣∣∣
N

, (304)

which are explicitly dependent on the order n; E(n)|N and δE(n)|N stand, respectively, for the

values of the energy and its error for a given value of N . Notice that these values are the

results of the extrapolation procedure in the continuum stochastic process limit and for this

reason relative errors are supposed to contain all the information about autocorrelations and

cross-correlations. It is worth noticing that we compute relative errors from our best estimation

of E(n) and δE(n). Given that at high-orders large uncertainties in the estimation of the mean

and the standard deviation show up, we will find that some of these estimations may prove to

be unreliable.

A quite natural hypothesis is that relative errors are expected to exhibit monotonic growth

with respect to n; this assertion is suggested (also) by the observation of increasing values for

the standard deviations as n increases. Furthermore, we also expect to observe increasing cross-

correlations for increasing values of n, since at a given perturbative order the values of the fields

depend on all the fields of lower orders.

In Fig. 18 we display the scaling of relative errors for the O(5), O(15), and O(45) models

(color code as in Fig. 10). Our hypothesis is confirmed in the case of the O(45) model up to loop

order n = 14. Moreover, for the O(5) and O(15) models the relative errors exhibit a smooth

exponential trend up to n = 7 and n = 10, respectively (a behaviour which is similar to the

O(45) case). However, for loop corrections greater than n = 7 for the O(5) model and n = 10

for the O(15) model, the scaling behaviour violates our hypothesis. In the second and third

plots of Fig. 18 the value of n at which this occurs (i.e. the breakdown of our hypothesis) for

the O(5) and O(15) models, respectively, is indicated with a dashed red line. It is worth noting

that as the parameter N increases, the region of breakdown shifts towards higher perturbative

orders. Fig. 18 motivates our plot in Fig. 10: in any O(N) model the maximum order of the

loop corrections that can produce reliable results is strictly determined by the value of N .

N-scaling

In this paragraph we investigate how relative errors scale for different values of N . We now

define the relative error as a function of the parameter N through

∆̄
(n)
N =

δE(n)

E(n)

∣∣∣∣
N

· Γ(N) . (305)
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Figure 19: First row: scaling of relative errors per unit of statistics for increasing values of N .

The empty black circles indicate the value of ∆̄(n)
N for N = [5 : 45] at different loop orders n =

7, 10, 14 (see labels). The solid colored circles represent the respective values for the O(5),

O(15), and O(45) models, also shown in Fig. 10 (color code as before). Second row: we display

zoomed figures related to the determination of mean and cumulative standard deviation for

the O(5) and O(45) models at loop order n = 14 for 10 different runs. In the large N limit,

precise estimates are undoubtedly obtained. For the O(5) model different runs yield completely

different determinations for both quantities.

In the above definition, relative errors include an additional factor Γ(N). This acts as a correc-

tion factor: we took into account all the data that are available for each value of N and then

computed a factor Γ(N) such that comparisons are made for the same number of independent

measurements. In other words, we have one single effect left: different relative errors can only

be due to different values of N .

Actually a quite natural hypothesis can be formulated regarding the scaling of relative errors

defined in Eq. (305): as N increases, it is expected, on very general grounds, that ∆̄(n)
N should

exhibit a monotonically decreasing trend. In fact, through the use of the factor Γ(N), we are

considering systems with an increasing number of degrees of freedom as N gets larger, while

maintaining the same amount of statistics. In Fig. 19 we display the properties of the scaling for

all the O(N) models employed in our analysis (see Tab. 1) at perturbative orders n = 7, 10, 14.
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At small perturbative order, namely n ≤ 7, the expected scaling is perfectly observed. This is

no longer true at perturbative orders n = 10 and n = 14 (see first row, central and right plots):

in these cases, we identified regions that deviate from this hypothesis (see the regions on the left

of the red dashed lines). All in all, we need to look at largest values of N to inspect the expected

behavior at high order n. Notice that in Fig. 19 we depict with filled circles the estimates of

the relative error, defined in Eq. (305), for the O(5), O(15) and O(45) models (color code as

in Fig. 10): the emerging scenario is perfectly consistent with those presented in Sec. 3.4.1 and

Fig. 18. As a matter of fact, the threshold loop orders are in agreement with each other, as

summarized in Fig. 10.

The four plots in the second row of Fig. 19 show the time evolution of the cumulative mean

value of energy and the respective cumulative standard deviation concerning the models O(5)

and O(45), computed at fixed perturbative order, namely n = 14. In all plots we show data

produced in 10 independent runs; it is quite clear that while in the case of the O(45) model the

cumulative mean and standard deviation estimates from the different runs are consistent with

each other, the different runs in the case of the O(5) model however lead without any doubt to

opposite conclusions: different runs yield much different values for the cumulative energy mean

and standard deviation.

We have thus motivated what is depicted in Fig. 10: for lower values of N we could not

compute to very large perturbative orders n, since large fluctuations affect high-orders. On the

other side, we provided quite clear numerical evidence that large fluctuations are tamed in the

large N limit.
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4–| O(N) NLSM renormalons in the

Large N limit

An intriguing property of asymptotically free theories is the emergence of renormalons (we

refer the reader to [17] for a complete introduction to the topic). Renormalons are related

to a certain pattern of divergence in perturbative expansions and are crucial in understanding

non-perturbative aspects of quantum field theories.

Renormalons have been probed in Lattice QCD using NSPT, by simulating the theory at

incredibly high perturbative orders. By assessing the asymptotic factorial growth of loop correc-

tions, renormalons have been observed in SU(3) gluodynamics [18–20] and in QCD with fermions

[21]. Additionally, in recent years, NSPT has been used to study renormalons in the Principal

Chiral Model [22].

In Sec. 3 we have shown that reliable NSPT predictions can be obtained in large N limit

at high orders. In this section we want to explore the asymptotic perturbative regime of O(N)

sigma models. By studying a large enough N , namely the O(80) sigma model, we will provide

insights on renormalons in these low-dimensional models. Finite size effects will turn out to be

extremely important, so we will try to carefully describe them.

4.1 Infrared renormalons
We revisit the standard infrared renormalon analysis as discussed in [80]. On very general

grounds, the perturbative contribution to the expectation of a composite operator reads

W =

∫ Q2

0

dk2

k2

(
k

Q

)2σ

f(k) , (306)

where 2σ is the dimension of the operator and Q is a UV cutoff. In lattice simulations, Q ∼ 1/a.

Furthermore f(k) is a dimensionless and renormalization group invariant function. From now
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on we consider the case where f(k) = g(k), where g(k) is the running coupling constant (this

choice can be shown not to be restrictive). In the following, we will obtain a power series from

the integral in Eq. (306).

We consider the one-loop definition of the β-function, namely 10

β(g) = k
dg

dk
=

dg

d ln k
= −β0g2 . (307)

By integrating the above equation, we get

1

g(k)
=

1

g(k0)
+ β0 ln

k

k0
=

1

g(k0)

(
1 + g(k0)β0 ln

k

k0

)
, (308)

At first-order we can write

g(k) =
g(k0)

1 + g(k0)β0 ln k
k0

≈ g(k0)

(
1− g(k0)β0 ln

k

k0
+ . . .

)
, (309)

The ratio of scale which we need in the integral of Eq. (306) reads

(
k

Q

)2σ

= e
− 1

g(Q)
2σ
β0

(
1− g(Q)

g(k)

)
. (310)

We now change the integration variable according to [80]

z =
2σ

β0

(
1− g(Q)

g(k)

)
= z0

(
1− g(Q)

g(k)

)
, z0 =

2σ

β0
. (311)

and obtain (
k

Q

)2σ

= e−
z

g(Q)

dk2

k2
g(k) = − 2

z0β0

dz

1− z
z0

(312)

The integral in Eq. (306) now has the structure of a Borel integral

W =

∫ Q2

0

dk2

k2

(
k

Q

)2σ

g(k) =
2

z0β0

∫ ∞

0

dz
e−

z
g

1− z
z0

(313)

where g is the coupling defined at the hard scale g = g(Q). In the lattice case, Q = a−1 and

g is the bare lattice coupling. The integral in Eq. (313) is divergent due to the presence of

the pole and one needs a prescription to compute it. Typically this asks for a detour in the

complex plane and as a result one picks up an imaginary part proportional to e−
z0
g . This is the

10It is also feasible to consider the two-loop definition. In this scenario, we would obtain 1/n corrections in the scaling

of the renormalon, where n is the perturbative order (see Eq. (316) for more details).
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same ambiguity that will plague the resummation of the asymptotic series which we are now

going to obtain from the Borel integral. The series will display a factorial divergence: this is

the signature of the renormalon. Basically, we ignore the pole and expand the geometric series

in Eq. (313), namely

W =
2

β0z0

∫ +∞

0

dze−
z
g

∞∑
n=0

(
z

z0

)n

=
2

β0

∞∑
n=0

gn+1

zn+1
0

∫ ∞

0

dte−ttn

=
2

β0

∞∑
n=0

gn+1Γ(n+ 1)

zn+1
0

=

∞∑
n=0

gn+1E(n+1) .

(314)

Of course one is not claiming we computed the exact perturbative expansion: this is supposed

to be the dominant contribution in an asymptotic regime. In view of Eq. (314), the ratio of

two consecutive perturbative coefficients, divided by the perturbative order, should approach a

constant value, i.e.
E(n+1)

E(n) · n
∼ β0

2σ
, for n >> 1 . (315)

We notice that our calculation doesn’t provide any insight about the perturbative order at which

the asymptotic scaling sets in: NSPT high-order computations can detect whether and when

(asymptotically) the renormalon behavior shows up.

We can also consider two-loop corrections to the Eq. (315). Starting from the two-loop

definition of the β-function

k
d

dk
g(k) = −β0g2 − β1g

3 +O(g4) , (316)

we get (see App. E for the sketch of the computation)

E(n+1)

E(n) · n
∼ β0

2σ

(
1 +

1

n

2σβ1
β2
0

)
, as n� 1 . (317)

4.2 Finite volume corrections to renormalons
Eq. (315) and Eq. (317) display the expected scaling in an asymptotic regime. In our compu-

tation we integrated over all momenta up to a UV hard cutoff, as in Eq. (306). This scenario

is not what typically occurs in a lattice computation, where finite volume effects are inevitably

encountered: the finite volume sets an explicit IR cutoff. Notice that different perturbative
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orders are differently affected by this cutoff (finite size effects): the coefficients for increasing

perturbative order become more and more sensitive to the IR region. Because of this, the effects

of finite volume are expected to become increasingly significant.

In the literature, in the detection of renormalons from NSPT computations finite volume

effects have been treated differently. When feasible, extrapolations to infinite volume have been

considered [20, 22]. It could also be that finite volume effects turn out to be smaller than the

statistical errors: various attempts at renormalon detection on different lattice sizes were found

to be compatible without any extrapolation in [21]. In the case at hand, we deal with low-

dimensional models and we expect finite size effects to be significant. To address this issue, we

choose not to attempt any extrapolation of data to V → ∞, but we directly looked at how the

factorial growth resulting in Eq. (315) (or Eq. (317)) is corrected by an IR cutoff. In a sense,

our calculation is a first-principles one and in particular it will contain no free parameters to

fine-tune: we will directly compare our data to a given expression.

For simplicity, we discuss IR corrections sticking to one-loop (the two-loop calculation is

presented in App. E). We consider a lattice of finite volume V = (a ·N)d where a is the lattice

spacing, N is the number of lattice sites in each direction (we consider for simplicity only cubic

lattices) and d is the number of dimensions (in our case d = 2). We used Periodic Boundary

Conditions. In this lattice setting, one gets the following maximum and minimum momenta

(keep in mind that magnitude of momentum enters our integral in Eq. (306) )

Q =
2π

a

√
d , Qir =

2π

aN
. (318)

Q is, as before, the UV cutoff, while now an IR cutoff is there as well, which we now plug into

the integral in Eq. (306)

W =

∫ Q2

Q2
ir

dk2

k2

(
k

Q

)2σ

g(k) . (319)

After the change of variable in Eq. (311), we get

W =
2

z0β0

∫ zir

0

dz
e−

z
g

1− z
z0

=
2

β0z0

∫ zir

0

dz e−
z
g

∞∑
n=0

(
z

z0

)n

, (320)

where the lower limit stays the same as before (this is coming from the upper limit Q of the

original integral), while the upper limit is now (remember g = g(Q))

zir = −z0gβ0 ln
Qir

Q
= z0gβ0 lnN

√
d . (321)
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Considering Eq. (320), the asymptotic scaling reads

W =
2

β0

∞∑
n=0

gn+1 1

zn+1
0

∫ z0β0 ln
√
dN

0

dte−tt(n+1)−1

=
2

β0

∞∑
n=0

gn+1 1

zn+1
0

Γir(n+ 1) ,

(322)

where Γir(n + 1) is the lower incomplete gamma function. Integrating by parts the incomplete

gamma function

Γir(n+ 1) =

∫ A

0

dte−tt(n+1)−1 =

[
−e−tt(n+1)−1

]A
0

+ n

∫ A

0

dte−ttn−1 , (323)

we recover the well-known property

Γir(n+ 1) = nΓir(n)− e−AAn . (324)

In the above equation, we use the notation

A = z0β0 ln
√
dN (325)

for brevity. Using Eq. (324) we can rewrite the incomplete gamma function as

Γir(n+ 1) = n!

(
1− e−A

n∑
n=0

Ak

k!

)
, (326)

so that the ratio in Eq. (315) can be expressed as

E(n+1)

E(n) · n
∼ β0

2σ

Γir(n+ 1)

nΓir(n)
=
β0
2σ

1− e−A
∑n

k=0
Ak

k!

1− e−A
∑n−1

k=0
Ak

k!

, as n� 1 . (327)

Notice that, from Eq. (327), in the limit of infinite volume N → ∞, A → ∞ so that volume

corrections are exponentially suppressed restoring the pure factorial growth. However, at finite

volume, the series in Eq. (326) approach the exponential eA for increasing loop order n, so in the

asymptotic limit n � 1 the finite volume effects completely kill the signals. It is worth noting

that finite volume corrections to the factorial growth depend on the dimension of the composite

operator σ and the dimension of the lattice d by means of Eq. (325).

If we consider finite volume correction with two-loop contribution, the following equation

holds(see App. E for more details)

E(n+1)

E(n) · n
→ 1

z0

(
1 +

γ

n

)[(1− e−A
∑n

k=0
Ak

k!

)
− β1z0

β0(γ+1)

(
1− e−A

∑n−1
k=0

Ak

k!

)]
[(

1− e−A
∑n−1

k=0
Ak

k!

)
− β1z0

β0(γ+1)

(
1− e−A

∑n−2
k=0

Ak

k!

)] , (328)

where

γ =
2σβ1
β2
0

. (329)
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4.3 Probing renormalons for O(N) at large N

Being the theory asymptotically free, O(N) should admit perturbative expansions displaying

renormalons. If we want to detect them we need to probe perturbative orders n >> 1. Since we

want to prevent the onset of fluctuations, we know that it is a good idea to compute at large

N . We selected O(80) on a 20× 20 lattice. In this discussion we analyze the asymptotic scaling

of the observable

W = E − 1 =
∑
n≥0

gn+1E(n+1) (330)

where the energy E is defined by Eq. (287). Since the energy density has mass dimension d = 2,

we will have σ = 1.

Eqs. (315)-(317)-(327)-(328) require to know the value of the perturbative β-function. The

first two coefficients are universal and are given by [81]

β0 =
N − 2

2π
β1 =

N − 2

4π2
(331)

Notice that, differently from the Principal Chiral Models [22], here the renormalon asymptotic

depends on the value of N . In other words, different O(N) models have different values of the

ratio E(n+1)/(E(n)n).

In Fig. 20 we plot the ratio E(n+1)

E(n)n
for the coefficients in Eq. (330), as evaluated by our

NSPT computations. The renormalon ratios in Eqs. (315)-(317)-(327)-(328) are depicted as

solid and dashed lines. As expected, the finite volume effects are not at all negligible. The

infrared corrected ratio in Eq. (327) (or Eq. (328); the two are hard to distinguish) fits data

very well for n & 10.

It is pretty clear that finite size corrections are crucial to describe data; there is no sign of

flattening on the infinite volume value for the ratio; there is indeed quite some distance to cover.

We stress that we are trying to make contact with a first-principles calculation modeling finite

size effects on top of the renormalon behavior: the model has no fine-tuning of any additional free

parameter. Given this, the agreement within errors of our data with the theoretical prediction

is very good. Can this be a pure numerical accident? First of all, we would like to have data

with less errors. Moreover (and more important) we are pursuing the computation on a 32× 32

lattice, to check that the ratio of subsequent coefficients indeed moves to fit the different curve

that the model predicts for this larger volume.
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Figure 20: Renormalon asymptotics for the O(80) non-linear sigma model. The ratios obtained

from our NSPT computations are depicted as blue markers. The values of the ratio as predicted

by renormalon analysis in infinite volume at the leading order (Eq. (315)) and next to leading

order (Eq. (317)) are plotted as a solid green line and a dashed red line. Additionally, the ratios

computed from renormalon analysis including finite volume corrections for a 20 × 20 lattice

volume are plotted as a solid purple line (leading order, Eq. (327)) and a dashed yellow line

(next to leading order, Eq. (328)).
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5–| Conclusions

In this thesis we analyzed a couple of different applications of NSPT. In Sec. 2 we pursued

NSPT perturbative computations around instanton-like vacua, probing the energy splitting for

the double-well potential in 1D Quantum Mechanics. The underlying idea is that NSPT can, in

principle, circumvent the complications of diagrammatic perturbation theory around non-trivial

vacua. The first non-trivial coefficients were computed in the continuum limit, with a decent

accuracy. This per se encouraging result has however highlighted that going to higher loops is

extremely hard. Not only our computational strategy ended up in subtle cancellations. More

importantly, the emergence of severe fluctuations hinders the path to high-order perturbative

calculations. This was not really unexpected, given an already available warning, i.e. when

applied to small systems, NSPT produces huge fluctuations (not normally distributed) at or-

ders that the method can successfully manage to compute for larger ones. The challenge of

confronting large fluctuations for low-dimensional systems thus became the main subject of this

work.

In Sec. 3 we discussed high-order NSPT computations in the O(N) Non Linear Sigma Mod-

els. This model has proven to be an ideal testing ground for studying the emergence and taming

of fluctuations while varying the number of degrees of freedom. In particular, we have shown

that in the large N limit, NSPT simulations are not affected by fluctuations at high perturbative

orders. Our conclusions are supported by extensive numerical simulations and analyses. For

the O(N) NLSM, the larger the value of N , the more perturbative orders we can calculate with

NSPT. Indeed the perturbative energy calculation has been extended from the previously known

fourth loop-order first up to the fourteenth perturbative order and then to even higher orders.

In Sec. 4 we explored large N NSPT computations in O(N) NLSM to hunt for renormalons.

Low-dimensional models are more affected by finite size effects, so the renormalon asymptotic
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behavior had to be corrected to incorporate finite volume effects from first-principles. Once finite

volume effects are properly modeled, our results show full agreement between high-order NSPT

computations and the predicted renormalon behavior. As a byproduct, this study provided

an opportunity to discuss the subtleties connected to the removal of the systematic effects con-

nected to the finite stochastic time step used in the numerical integration of the (order-by-order)

Langevin equation. To gain confidence with high-order results, we tried an unconventional ap-

proach to∆τ → 0 extrapolations, in which we made use of both Euler and Runge Kutta schemes.

Remarkably, the CP (N − 1) model represents an ideal extension for this work. For these

theories, in a safe large N limit, we plan to go back to expansions around non-trivial saddle

points. Quite interestingly, these models were among the very first related to resurgence scenarios

[82] which we could in principle try to probe.
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Appendix A: Kramers-Moyal expansion

A discrete Langevin stochastic dynamics can be summarized by the equation

ϕi(τ +∆τ) = ϕi(τ)− Fi(τ) , (332)

where ϕi(τ) denotes the field at lattice site i and stochastic time τ and the function Fi(τ) is

an integrator-dependent function (see for example Eq. (82)). At the stochastic time τ +∆τ the

probability of generating a certain configuration ϕ is

P [ϕ, τ +∆τ ] =

∫
Dϕ′ W (ϕ′ → ϕ) P [ϕ′, τ ]

=

∫
Dϕ′Dη [

∏
i

δ(ϕi − ϕ′
i + Fi)] P [ϕ

′, τ ] .
(333)

The function Fi is typically a quantity of O(∆τ
1
2 ) so that we can think of expanding the Dirac

delta function for each degree of freedom in Taylor series:

∏
i

δ(ϕi − ϕ′
i + Fi) =

∏
i

[ ∞∑
ni=0

1

ni!
δni(ϕi − ϕ′

i)F
ni

i

]
. (334)

By integrating by parts with respect to the variable ϕ′
i and rearranging all terms, one realizes

that it is always possible to integrate over all fields with the Dirac delta functions δ(ϕi −ϕ′
i) to

get the expression

P [ϕ, τ +∆τ ] = P [ϕ, τ ] +

∞∑
n=1

1

n!

∫
Dη

∂

∂ϕi1

. . .
∂

∂ϕin

(
Fi1 . . . FinP [ϕ]

)

= P [ϕ, τ ] +

∞∑
n=1

1

n!

∂

∂ϕi1

. . .
∂

∂ϕin

(
〈Fi1 . . . Fin〉P [ϕ]

)
.

(335)

Eq. (335) is the Kramers-Moyal expansion [83, 84] for the Langevin discrete dynamics.
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Appendix B: Complete expression for the energy splitting (con-

tinuum theory)

In what follows, we explicitly express the dependence of the solution in Eq. (184) on the transition

parameter t0 as x±c (t − t0). Furthermore, we note that the solution in Eq. (184) has constant

energy E = T +W , where

T =
1

2
ẋ2 and W = −λ(x2 − x20)

2 (336)

and this is also a solution in the zero-energy shell, such that we have T = V . We can therefore

note that the following holds

||ẋ+c || =

√∫ +∞

−∞
ẋ+c (t− t0)2dt

=

√∫ +∞

−∞

[
1

2
ẋ+c (t− t0)2 + λ(x+c (t− t0)2 − x20)

2

]
dt

=

√
S[x+c ] .

(337)

Consider the twisted partition function

Za(β) =

∫
ABC

Dx e−S[x] . (338)

We can implement a useful rewriting of the identity

1 =

∫
dt0 δ(t0 − t∗0) =

∫
dt0 δ(f(t0))|f ′(t0)| , (339)

where we have used the well-known property of the Dirac delta function and t∗0 is a zero of

the function f(t0). An appropriate choice of the function f(t0) leads to the regularization of

the zero-mode: this must be done by projecting the fluctuations onto the subspace without a

zero-mode component, namely:

f(t0) =

∫
dt(x(t)− x+c (t))

ẋ+c (t− t0)√
S[x+c ]

. (340)
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We notice that the last term in the previous equation is exactly the zero-mode profile. We can

compute the derivative of the function in the following way

f ′(t0) =

∫
dt
(
ẋ+c (t− t0)

ẋ+c (t− t0)√
S[x+c ]

)
−
∫
dt (x(t)− x+c (t− t0))

ẍ+c (t− t0)√
S[x+c ]

=

∫
dt
(
ẋ+c (t− t0)

ẋ+c (t− t0)√
S[x+c ]

)
−
∫
dt x(t)

ẍc(t− t0)√
S[x+c ]

+

∫
dt x+c (t− t0)

ẍc(t− t0)√
S[x+c ]

=

∫
dt
(
ẋ+c (t− t0)

ẋ+c (t− t0)√
S[x+c ]

)
−
∫
dt x(t)

ẍ+c (t− t0)√
S[x+c ]

−
∫
dt ẋ+c (t− t0)

ẋ+c (t− t0)√
S[x+c ]

=

∫
dt ẋ(t)

ẋ+c (t− t0)√
S[x+c ]

.

(341)

It can be shown that this derivative, at least for small values of the coupling constant, is always

positive. So in practice we do not have to apply the absolute value on it. Furthermore, since

the derivative with respect to the transition time is positive, if the function vanishes, it vanishes

at only one point, justifying the use of the aforementioned property of the Dirac delta. Using

the Dirac delta propriety with the choice in Eq. (340) we obtain

Za =

∫
ABC

Dx

∫
dt0

[∫
dt ẋ(t)

ẋ+c (t− t0)√
S[x+c ]

]
δ
[∫

dt (x(t)−x+c (t− t0))
ẋ+c (t− t0)√

S[x+c ]

]
e−S[x] . (342)

Since we are integrating over all possible configurations, we can make use of the shift t→ t+ t0,

which in any case can be reabsorbed in the definition of the integral measure. So we have 11

Za =

∫
ABC

Dx

∫
dt0

[∫
dt ẋ(t)

ẋ+c (t)√
S[x+c ]

]
δ
[∫

dt (x(t)− x+c (t))
ẋ+c (t)√
S[x+c ]

]
e−S[x]

= β

∫
ABC

Dx
[∫

dt ẋ(t)
ẋ+c (t)√
S[x+c ]

]
δ
[∫

dt (x(t)− x+c (t))
ẋ+c (t)√
S[x+c ]

]
e−S[x] .

(343)

We can introduce the fluctuation ξ by setting

x(t) = x+c (t) + ξ(t) , (344)

and we obtain

Za = β

∫
ABC

Dξ
[∫

dt
(
ẋ+c (t) + ξ̇(t)

) ẋ+c (t)√
S[x+c ]

]
δ
[∫

dt ξ(t)
ẋ+c (t)√
S[x+c ]

]
e−S[x] . (345)

11This is similar to the shift that is discussed for the quartic theory in [85].
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We now make use of the decomposition of the fluctuation in the components of the zero-mode

and the modes that are orthogonal to it:

ξ(t) = c0
ẋc(t)√
S[x+c ]

+ ξ⊥ (346)

and we obtain the following relations

Dξ =

∫
dc0√
2π

∫
Dξ⊥ , (347)∫

dt(ẋ+c (t) + ξ̇(t))
ẋ+c (t)√
S[x+c ]

=

∫
dt (ẋc(t) + ξ̇⊥(t))

ẋc(t)√
S[x+c ]

, (348)

δ
[∫

dt ξ(t)
ẋ+c (t)√
S[x+c ]

]
= δ
[∫

dt

(
c1

ẋ+c (t)√
S[x+c ]

+ ξ⊥(t)

)
ẋ+c (t)√
S[x+c ]

]
= δ(c0) , (349)

where we used ∫
dt ẋ+c (t)ẍ

+
c (t) = 0 and

∫
dt ẋ+c (t)ξ⊥(t) = 0 . (350)

Then the twisted partition function can be expressed as

Za = e−S[x+
c ]β

∫
ABC

Dξ⊥

∫
dc1√
2π

[∫
dt (ẋ+c (t) + ξ̇⊥(t))

ẋ+c (t)√
S[x+c ]

]
δ(c1)e

−S[ξ]

=
βe−S[x+

c ]

√
2π

∫
ABC

Dξ⊥

[∫
dt (ẋ+c (t) + ξ̇⊥(t))

ẋ+c (t)√
S[x+c ]

]
e−S[ξ⊥]

=
βe−S[x+

c ]
√
S[x+c ]

√
2π

∫
ABC

Dξ⊥

[
1 +

∫
dt

ξ̇⊥(t)ẋ
+
c (t)

S[x+c ]

]
e−S[ξ⊥]

=
βe−S[x+

c ]
√
S[x+c ]

√
2π

〈1 + S[x+c ]
−1

∫
dt ξ̇⊥(t)ẋ

+
c (t)〉a,⊥Za,⊥ ,

(351)

where 〈. . .〉a,⊥ indicates the expectation value in the theory with antiperiodic boundary condi-

tions and without zero-mode. In addition Za,⊥ is the twisted partition function for the theory

without zero-mode. It is always possible to write the partition functions as

Za(λ) = Z
(0)
a,⊥e

Wa,⊥ , (352)

Z(λ) = Z(0)eW , (353)

where Z(0)
a,⊥ and Z(0) are respectively the free partition functions for anti-symmetric theory

without zero mode and for the usual theory with periodic boundary conditions. Additionally,

Wa,⊥ and W are perturbative series coming from the evaluation of the interacting part of the

action (we refer to the discussion in Sec. 2.3 for details).
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Finally, using also the relations in Eq. (201), we obtain

Za

Z
=
βe−

1
12λ

√
2πλ

〈1 + S[x+c ]
−1

∫
dt ξ̇⊥(t)ẋc(t)〉a,⊥eWa,⊥−W . (354)
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Appendix C: First-order correction to the propagator

Here we will show how the corrections to the propagator up to the first perturbative order can

be calculated. This will provide the perturbation theory at the second-order for the energy - see

Eq. (288). We note that the interacting terms of the action in Eq. (285) can be expanded in a

Taylor series up to O(g2)

log (1− gπ2
x) = −gπ2

x +O(g2) , (355)

− 1

2g

[
(∆µ)

√
1− gπ2

x

]2
= − 1

2g

[√
1− gπ2

x+µ −
√
1− gπ2

x

]2
= − 1

2g

[
1− g

2
π2

x+µ −
(
1− g

2
π2

x

)]2
+O(g2)

= −g
4

(
π4

x − π2
xπ

2
x+µ

)
+O(g2) .

(356)

The standard approach in perturbation theory then requires the Taylor expansion in terms of

the weak coupling of the partition function written in Eq. (285). We have

Z = lim
λ→0

∫ ∏
x

dπx e
− 1

2

∑
x,µ

[
(∆µπx)

2+λ2π2
x

]
e−

∑
x,µ

1
2g (∆µ

√
1−gπ2

x)
2− 1

2

∑
x log (1−gπ2

x)

= lim
λ→0

∫ ∏
x

dπx e
− 1

2

∑
x,µ

[
(∆µπx)

2+λ2π2
x

]
e
−

∑
x,µ

g
4

(
π4

x−π2
xπ

2
x+µ

)
+ g

2

∑
x π2

x+O(g2)

= lim
λ→0

∫ ∏
x

dπx e
− 1

2

∑
x,µ

[
(∆µπx)

2+λ2π2
x

](
1−

∑
x,µ

g

4

(
π4

x − π2
xπ

2
x+µ

)
+
g

2

∑
x

π2
x +O(g2)

)
.

(357)

By taking into account Eq. (357) we obtain the following expression for the propagator ππ up

to O(g2)

〈π0πx〉 =
1

Z

∫ ∏
x

dπx e
− 1

2

∑
x,µ

[
(∆µπx)

2+λ2π2
x

](
1−

∑
x,µ

g

4

(
π4

x − π2
xπ

2
x+µ

)
+
g

2

∑
x

π2
x +O(g2)

)
π0πx

= 〈π0πx〉(0) + g
〈
−
(∑

y,µ

1

4

(
π4

y − π2
yπ

2
y+µ

)
+

1

2

∑
y

π2
y

)
π0πx

〉(0)
c

+O(g2) ,

(358)

where in the last line we are considering only connected Wick contraction (the disconnected

contributions are canceled out by the partition function contribution). At the leading order, we

have

〈π0πx〉(0) = (N − 1)G(x) = (N − 1)

∫ +π

−π

d2k

(2π)2
eik·(x−y)

4
∑

µ sin2 (k·µ2 ) + λ2
, (359)
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getting thus the result provided in Eq. (286). Concerning the first-order correction, we apply

the Wick contractions and we get the following results〈
π0πx

∑
y

π2
y

〉(0)

c

=
∑
y

〈π0πy〉(0)〈πxπy〉(0) +
∑
y

〈π0πy〉(0)〈πxπy〉(0)

= 2(N − 1)
∑
y

G(y)G(y − x) ,

(360)

〈
π0πx

∑
y

π2
yπ

2
y+µ

〉(0)

c

= (N − 1)
∑
y

[
2G(y)G(y − x)G(0) + 4G(y)G(y + µ− x)G(µ)

+ 4G(y + µ)G(y − x)G(µ) + 2G(y + µ)G(y − µ− x)G(0)
]

= (N − 1)
∑
y

[
2G(y)G(y − x)G(0) + 4G(y)G(y + µ− x)G(µ)

+ 4G(y)G(y − µ− x)G(µ)︸ ︷︷ ︸
4G(y)G(y−µ−x)G(−µ)

+2G(y + µ)G(y − µ− x)G(0)
]
,

(361)

〈
π0πx

∑
y

π2
yπ

2
y

〉(0)

c

= (N − 1)
∑
y

[
2G(y)G(y − x)G(0) + 4G(y)G(y − x)G(0)

+ 4G(y)G(y − x)G(0) + 2G(y)G(y − x)G(0)
]
.

(362)

Hence we obtain

−g
4

〈∑
y,µ

(
π4

y − π2
yπ

2
y+µ

)
π0πx

〉(0)
c

= (N − 1)
∑
y,µ

(
G(y)G(y + µ− x)G(µ)

+G(y)G(y − µ− x)G(−µ)− 2G(y)G(y − x)G(0)
)

= (N − 1)
∑
y

G(y)∆z

[
G(x− z)G(z − y)

]
z=y

,

(363)

where we used the notation

∆zf(x) =
∑
µ

(
f(x+ µ) + f(x− µ)− 2f(x)

)
. (364)

The first-order correction reads

g〈π0πx〉(1) = (N − 1)
∑
y

G(y)G(y − x) + (N − 1)
∑
y

G(y)∆z

[
G(x− z)G(z − y)

]
z=y

. (365)
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We note that

∆xG(x) =
∑
µ

G(x+ µ) +G(x− µ)− 2G(x) =

∫ +π

−π

d2k

(2k)2
eik(x+µ) + eik(x−µ) − 2eikx

4
∑

µ sin2 (kµ/2) + λ2

=

∫ +π

−π

d2k

(2k)2
eikx

∑
µ(2 cos (kµ/2)− 2− λ2)

4
∑

µ sin2 (kµ/2) + λ2︸ ︷︷ ︸
=−1

+

∫ +π

−π

d2k

(2k)2
eikx

λ2

4
∑

µ sin2 (kµ/2) + λ2

= −δx,0 + λ2G(x) .

(366)

In addition, we have

∆z

[
G(x− z)G(z − y)

]
z=y

=
∑
µ

[
G(x− z − µ)G(z + µ− y) +G(x− z + µ)G(z − µ− y)−

− 2G(x− z)G(0)
]
z=y

=
∑
µ

[
G(x− y − µ)G(µ) +G(x− y + µ)G(−µ)− 2G(x− y)G(0)

]
= G(1)

∑
µ

[
G(x− y + µ) +G(x− y − µ)

]
− 4G(x− y)G(0)

= G(1)
∑
µ

[
G(x− y + µ) +G(x− y − µ)− 2G(x− y)

]
+ 4G(1)G(x− y)− 4G(0)G(x− y)

= G(1)∆yG(x− y)− 4(G(0)−G(1))G(x− y) .

(367)

The last term can be evaluated using the property of Eq. (366) in x = 0, namely

∆xG(x)|x=0 =
∑
µ

[
G(x+µ)+G(x−µ)−2G(x)

]
|x=0 = 4G(1)−4G(0) = −δ0,0+λ2G(0) , (368)

from which it follows that

G(0)−G(1) =
1

4
− λ2

4
G(0) . (369)

In the end, we obtain the first-order correction to the propagator, which is given by

〈π0π1〉(1) = −(N − 1)G(1)G(x) + µ2(N − 1)(G(1)−G(0))
∑
y

G(y)G(x− y)

= −(N − 1)G(1)G(x) +O(λ2) .

(370)
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Appendix D: Leading-order zero-mode regularization

In this Appendix we will show that at the leading order Eq. (290) can also be computed using

configurations without zero-mode. In the Fourier representation we have

πj
n =

∑
p

eip·n π̃j
p , (371)

so that we can calculate

〈πj
nπ

j
m〉 =

∑
k′

∑
k′′

ei(k
′·n+k′′·m)〈πj

k′π
j
k′′〉

=
∑
k′

∑
k′′

ei(k
′·n+k′′·m) δk′,−k′′

f(k′)

=
∑
k

eik·(n−m) 1

f(k)
.

(372)

In the previous equation, f(k) is the propagator that is given in Eq. (286).

The O(N) invariant leading order propagator reads

〈πj
nπ

j
m〉 − 〈πj

nπ
j
n〉 =

∑
k′

∑
k′′

ei(k
′·n+k′′·m)〈πj

k′π
j
k′′〉 −

∑
k′

∑
k′′

ei(k
′·n+k′′·n)〈πj

k′π
j
k′′〉

=
∑
k

eik·(n−m) 1

f(k)
−
∑
k

eik·0
1

f(k)

=
∑
k

eik·(n−m) 1

f(k)
−
∑
k

1

f(k)

=
∑
k

(
eik·(n−m) − 1

) 1

f(k)

=
∑
k

eik·(n−m) 1− e−ik·(n−m)

f(k)︸ ︷︷ ︸
=g(k)

=
∑
k

eik·(n−m) 1

g(k)
,

(373)

where it is easy to notice that the new signal does not have the zero mode, namely

g(0) = 0 . (374)

We observe that in such a case, cancellation occurs only in a statistical sense, that is, after

calculating 〈...〉.

On the other hand, in NSPT simulations we are aiming at calculating propagators by em-
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ploying configurations free of zero-modes. In that case we have

〈(πj
n − 1

V

∑
n′

πj
n′)(π

j
m − 1

V

∑
m′

πj
m′)〉

= 〈πj
nπ

j
m〉 − 1

V

∑
n′

〈πj
n′π

j
m〉 − 1

V

∑
m′

〈πj
nπ

j
m′〉+

1

V 2

∑
m′

∑
n′

〈πj
n′π

j
m′〉

=
∑
k

eik·(n−m) 1

f(k)
−
∑
k

e−ik·m δk,0
f(k)

−
∑
k

eik·n
δk,0
f(k)

+
1

V

∑
m′

∑
k

e−ik·m′ δk,0
f(k)

=
∑
k

eik·(n−m) 1

f(k)
− 1

f(0)
.

(375)

As expected, this signal does not have a zero-mode, even before performing the subtraction

with its counterpart as in Eq. (290). The O(N) invariant leading order propagator, using

configurations without zero-more reads

〈(πj
n − 1

V

∑
n′

πj
n′)(π

j
m − 1

V

∑
m′

πj
m′)〉 − 〈(πj

n − 1

V

∑
n′

πj
n′)(π

j
n − 1

V

∑
m′

πj
m′)〉

=
∑
k

eik·(n−m) 1

f(k)
− 1

f(0)
−
(∑

k

eik·0
1

f(k)
− 1

f(0)

)
=
∑
k

eik·(n−m) 1

f(k)
−
∑
k

eik·0
1

f(k)

=
∑
k

eik·(n−m) 1

f(k)
−
∑
k

1

f(k)

= 〈πj
nπ

j
m〉 − 〈πj

nπ
j
n〉 .

(376)

Thus the result of Eq. (376) demonstrates the assertion we made in the discussion of Sec. 3.4.
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Appendix E: Infrared corrections to the renormalon scaling at

two-loops

We are interested in calculating the integral∫ Q2

0

dk2

k2

(
k

Q

)2σ

g(k) (377)

at two-loop. We take into account the definition of the β-function at second-order

k
d

dk
g(k) = −β0g2 − β1g

3 +O(g4) . (378)

Integrating the previous equation we obtain

−β0(ln k − ln k0) = −
(

1

g(k)
− 1

g(k0)

)
−β1
β0

ln g(k)

g(k0)
, (379)

so that (
k

k0

)2σ

= e
2σ
β0

(
1

g(k)
− 1

g(k0)

)(
g(k)

g(k0)

) 2σβ1
β2
0
. (380)

We set
2σ

β0
= z0 z = z0

(
1− g(k0)

g(k)

)
. (381)

In this way, the following holds (
k

k0

)2σ

= e
− z

g(k0)

(
1− z

z0

)−γ

, (382)

where

γ =
2σβ1
β2
0

. (383)

The integral measure changes to

dz = z0

(
− d

dk

g(k0)

g(k)

)
dk = z0

(
1

g(k)2
dg(k)

dk
g(k0)

)
dk

k
= −z0β0

(
1 +

β1
β0
g(k)

)
g(k0)

dk

k
. (384)

Inserting Eq. (384) and Eq. (382) in Eq. (377), we obtain the equation∫ k0

0

dk2

k2

(
k

k0

)2σ

g(k) = 2

∫ ∞

0

dz

z0β0
e
− z

g(k0)

(
1− z

z0

)−γ−1(
1− β1

β0
g(k)

)
= C +B , (385)

where

C = 2

∫ ∞

0

dz

z0β0
e
− z

g(k0)

(
1− z

z0

)−γ−1

, (386)

B = −2

∫ ∞

0

dzβ1g(k0)

z0β2
0

e
− z

g(k0)

(
1− z

z0

)−γ−2

. (387)
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The first integral can be computed by setting

z

g(k0)
= t , (388)

so that we get

C = 2

∫ ∞

0

g(k0)dt

z0β0
e−t

(
1− tg(k0)

z0

)−1−γ

. (389)

We note that using the Taylor expansion(
1− tg(k0)

z0

)−1−γ

= 1 +
tg(k0)

z0
(γ + 1) +

1

2

t2g(k0)
2

z20
(γ + 1)(γ + 2)+

+
1

3!

t3g(k0)
3

z30
(γ + 1)(γ + 2)(γ + 3) + . . .

=

∞∑
n=0

tng(k0)
n

zn0

Γ(γ + n+ 1)

Γ(γ + 1)Γ(n+ 1)
,

(390)

we obtain

C = 2

∫ ∞

0

g(k0)dt

z0β0
e−t

∞∑
n=0

tng(k0)
n

zn0

Γ(γ + n+ 1)

Γ(γ + 1)Γ(n+ 1)

=
2

β0

∞∑
n=0

g(k0)
n+1

zn+1
0

Γ(γ + n+ 1)

Γ(γ + 1)Γ(n+ 1)

∫ ∞

0

dte−tt(n+1)−1

=
2

β0

∞∑
n=0

gn+1

zn+1
0

Γ(γ + n+ 1)

Γ(γ + 1)
.

(391)

In a similar way we work for the integral B; we have

B = −2

∫ ∞

0

β1g(k0)
2dt

z0β2
0

e−t

(
1− tg(k0)

z0

)−2−γ

. (392)

The Taylor expansion of (1− tg(k0)/z0)−2−γ is derived from Eq. (390) by considering γ → γ+1

and thus (
1− tg(k0)

z0

)−2−γ

=
∞∑

n=0

tng(k0)
n

zn0

Γ(γ + n+ 2)

Γ(γ + 2)Γ(n+ 1)
. (393)

Inserting the previous identity in Eq. (392) we get

B =− 2β1
β2
0

∫ ∞

0

g(k0)
2dt

z0
e−t

∞∑
n=0

tng(k0)
n

zn0

Γ(γ + n+ 2)

Γ(γ + 2)Γ(n+ 1)

= −2β1z0
β2
0

∞∑
n′=0

g(k0)
n′+2

zn
′+2

0

Γ(γ + n′ + 2)

Γ(γ + 2)
.

(394)

To sum order-by-order C and B, it is necessary to consider only the terms that satisfy n+ 1 =

n′ + 2, where n is the perturbative order of the series C and n′ is the perturbative order of the
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series B, which means that n′ = n− 1. So we get

C +B =

∞∑
n=0

g(k0)
n+1

{
2

β0

Γ(γ + n+ 1)

Γ(γ + 1)zn+1
0

− 2β1z0
β2
0

Γ(γ + n+ 1)

Γ(γ + 2)zn+1
0

}

=

∞∑
n=0

g(k0)
n+1Γ(γ + n+ 1)

zn+1
0

(
2

β0Γ(γ + 1)
− 2z0β1
β0Γ(γ + 2)

)
︸ ︷︷ ︸

=χ

= χ

∞∑
n=0

g(k0)
n+1Γ(γ + n+ 1)

zn+1
0

.

(395)

In this case we obtain the two-loop renormalon asymptotic, i.e.

E(n+1) =
Γ(γ + n+ 1)

zn+1
0

→ E(n+1)

E(n) · n
=

1

z0

(
1 +

γ

n

)
, (396)

recovering Eq. (317). We consider finite volume effects as for the one-loop case. This amounts

to adjusting the limits of the integrals C and B, namely

C =
2

β0

∞∑
n=0

g(k0)
n+1

zn+1
0

Γ(γ + n+ 1)

Γ(γ + 1)Γ(n+ 1)

∫ z0β0 ln
√
2N

0

dte−tt(n+1)−1 , (397)

B = −2β1
β2
0

∞∑
n=0

g(k0)
n+2

zn+1
0

Γ(γ + n+ 2)

Γ(γ + 2)Γ(n+ 1)

∫ z0β0 ln
√
2N

0

dte−tt(n+1)−1 . (398)

From now on, we set A = z0β0 ln
√
2N . The calculation of the first integral yields

C =
2

β0

∞∑
n=0

g(k0)
n+1

zn+1
0

Γ(γ + n+ 1)

Γ(γ + 1)Γ(n+ 1)

∫ A

0

dte−tt(n+1)−1

=
2

β0

∞∑
n=0

g(k0)
n+1

zn+1
0

Γ(γ + n+ 1)

Γ(γ + 1)Γ(n+ 1)
n!

(
1− e−A

n∑
k=0

Ak

k!

)

=
2

β0

∞∑
n=0

g(k0)
n+1

zn+1
0

Γ(γ + n+ 1)

Γ(γ + 1)

(
1− e−A

n∑
k=0

Ak

k!

)
,

(399)

while for the integral B we have

B = −2β1
β2
0

∞∑
n=0

g(k0)
n+2

zn+1
0

Γ(γ + n+ 2)

Γ(γ + 2)Γ(n+ 1)

∫ z0β0 ln
√
2N

0

dte−tt(n+1)−1

= −2β1z0
β2
0

∞∑
n′=0

g(k0)
n′+2

zn
′+2

0

Γ(γ + 2 + n′)

Γ(γ + 2)Γ(n′ + 1)
n′!

(
1− e−A

n′∑
k=0

Ak

k!

)

= −2β1z0
β2
0

∞∑
n′=0

g(k0)
n′+2

zn
′+2

0

Γ(γ + 2 + n′)

Γ(γ + 2)

(
1− e−A

n′∑
k=0

Ak

k!

)
.

(400)
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Finally we consider the sum of integrals C and B, i.e.

C +B = 2

∞∑
n=0

g(k0)
n+1

zn+1
0

(
Γ(γ + n+ 1)

(
1− e−A

∑n
k=0

Ak

k!

)
β0Γ(γ + 1)

− β1z0
β2
0

Γ(γ + n+ 1)
(
1− e−A

∑n−1
k=0

Ak

k!

)
Γ(γ + 2)

)
=

2

β0Γ(γ + 1)

∞∑
n=0

g(k0)
n+1

zn+1
0

Γ(γ + n+ 1)

[(
1− e−A

n∑
k=0

Ak

k!

)

− β1z0
β0(γ + 1)

(
1− e−A

n−1∑
k=0

Ak

k!

)]
.

(401)

In this case, the perturbative coefficients read

E(n+1) =
1

zn+1
0

Γ(γ + n+ 1)

[(
1− e−A

n∑
k=0

Ak

k!

)
− β1z0
β0(γ + 1)

(
1− e−A

n−1∑
k=0

Ak

k!

)]
. (402)

The asymptotic behavior can be computed considering the ratio

E(n+1)

E(n) · n
=

1

z0

(
1 +

γ

n

)[(1− e−A
∑n

k=0
Ak

k!

)
− β1z0

β0(γ+1)

(
1− e−A

∑n−1
k=0

Ak

k!

)]
[(

1− e−A
∑n−1

k=0
Ak

k!

)
− β1z0

β0(γ+1)

(
1− e−A

∑n−2
k=0

Ak

k!

)] , (403)

which is the form of Eq. (328).
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