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Abstract

Perturbation theory is universally recognized as a fundamental tool in modern theoretical
physics. In functional integral formalism, perturbation theory provides a method for study-
ing field theories, offering both mathematical rigor and substantial physical insights. It is
challenging to name an area of theoretical physics where perturbation theory does not play a
fundamental role: even in theories specifically designed for a non-perturbative approach like
lattice gauge theories, perturbation theory remains relevant and interesting. Lattice gauge
theories offer a powerful framework for understanding non-perturbative aspects of quantum
field theories. By discretizing space-time on a lattice, these theories enable detailed Monte
Carlo simulations that are crucial for probing phenomena beyond the reach of perturbation
theory, shedding light on subtle features such as quark confinement in QCD and many others.
In the mid-1990s, a new method was developed that in a sense integrates traditional per-
turbation theory with Monte Carlo simulations of lattice field theories (in particular lattice
gauge theories, for which traditional diagrammatic perturbation theory is cumbersome). This
approach is known as Numerical Stochastic Perturbation Theory (NSPT). NSPT offers a fully
automated stochastic method for calculating loop corrections in lattice field theories, using the
power of Monte Carlo simulations. Its numerical implementation requires minimal changes
with respect to traditional Monte Carlo simulations; (also due to this) NSPT enables the cal-
culation of loop corrections at very high perturbative orders. The ease of implementation and
advanced capability explain why NSPT has captured the attention of lattice practitioners.

A not-well-explored feature of NSPT is the freedom to choose any vacuum for calculating
perturbation theory, in principle without encountering the intricacies of the diagrammatic
perturbation theory. If one had to make a natural choice, low-dimensional models are the
best candidates for exploratory analysis of the feasibility of perturbative expansions on top of
non-trivial vacua. This way, one immediately encounters problems: it is known that NSPT
simulations exhibit large fluctuations in low-dimensional models. As the perturbative order
increases, huge fluctuations show up, completely obscuring the signal at even not-so-high per-

turbative orders.

In this thesis, we discuss NSPT simulations for a class of highly interesting low-dimensional
models, the two-dimensional O(N) Non-Linear Sigma Models (NLSMs). O(N) non-linear
sigma models can be regarded as a valuable theoretical laboratory in quantum field theory,
as they display in a relatively simple framework interesting features like asymptotic freedom.
From a more phenomenology-oriented point of view, NLSM proved to be effective in modeling
different features in different contexts. As we will see, in this work our interest in O(N)

models is motivated by the possibility of tuning N. On general grounds, we expect that



huge fluctuations in simulations of low-dimensional models are somehow connected to the
limited number of degrees of freedom. From this perspective, O(N) NLSMs are an ideal
laboratory: in fact we can modify the number of degrees of freedom by tuning the parameter
N. Our numerical results show that in the large N limit NSPT simulations are not affected
by the large fluctuations issue at high orders, in contrast to what occurs in the small N
regime. Our conclusions are supported by extensive numerical studies of the properties of
NSPT distributions as function of the perturbative order n and the parameter N. While
a fundamental comprehension is admittedly lacking, we will consider different indicators for
assessing if (and to what extent) large enough N computations are to be regarded as safe at
a given perturbative order n. In particular, the study of relative errors has been particularly
fruitful: in this context, the onset of fluctuations has been probed through violations of very
generally expected scaling behaviors. Our numerical simulations strongly suggest that indeed
for each perturbative order n, an NSPT computation in O(N) can always be found safe with
respect to fluctuations if we take a large enough N. As a result, the larger the value of N,
the more perturbative corrections we could compute, significantly extending the previously
known results from lattice diagrammatic perturbation theory.

Once for large enough N high perturbative orders can be safely computed, we expect we
can explore the asymptotic behavior of perturbative expansions. In the context of lattice
gauge theories, NSPT has proven to be effective in probing infrared renormalons. In the
final part of the thesis, we discuss O(NN) renormalon effects in the large N limit. We will
perform computations on a pretty small lattice size, but we will provide new insight on the
role of finite-volume effects. In particular, by explicitly taking into account the infrared
cutoff, we obtained an analytic (first-principles) estimate of finite-volume effects, assessing
how they modify the factorial scaling of coefficients. Once we have such modeling, we can
compare analytical predictions and numerical results, finding agreement in the asymptotic
perturbative region. We stress that this will be a parameter-free comparison (there is no
space for any parameter to adjust). Large N NSPT simulations for O(N) models can also be
regarded as a preliminary step towards going back to perturbative expansions around non-
trivial vacua. Quite interestingly, such computations in the (quite close) CP(N — 1) models

are connected to resurgence scenarios.
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Preface

Motivations

Numerical Stochastic Perturbation Theory (NSPT) [1] is a computational tool that uses stochas-
tic methods to perform perturbative calculations in quantum field theory. This technique em-
ploys lattice simulations to systematically compute series expansions in the coupling constant,
providing high loop-order results in theories for which traditional diagrammatic perturbation
theory is cumbersome (this is the case for Lattice QCD). NSPT has emerged as a key tool
to explore perturbative and non-perturbative aspects in quantum chromodynamics (QCD) and
other field theories.

Thirty years after its first appearance [2, 3], today a lot of experience with NSPT simula-
tions has been accumulated, with contributions coming from many lattice practitioners. Once
the possibility to compute perturbative expansions using Monte Carlo techniques has been es-
tablished, NSPT has been applied to many problems. In particular, NSPT has proven to be
effective in studying observables for which a very limited number of perturbative coeflicients
were known [41-8]. It was noticed that the introduction of dynamical fermions in Lattice QCD
[9] results in a far smaller computational overhead than for non-perturbative Monte Carlo simu-
lations. Furthermore, significant applications of NSPT also involve Lattice QED [10], and many
others [11, 12]. Later on, we will see how NSPT has been precious in probing the asymptotic
behavior dictated by infrared renormalons. It is quite funny that one can directly inspect such
an asymptotic effect in a perturbative scheme (the lattice) for which it has been traditionally
thought that going to high-orders was impossible.

In recent years there has been a growing interest in the study of alternative underlying
stochastic processes for NSPT simulations. Although historically NSPT has been formulated as
the systematic order-by-order integration of a Langevin stochastic process, there are now many

versions of NSPT based on different stochastic equations. Beyond the theoretical importance



of recognising different legitimate formulations, variants of NSPT aim to use the technology
derived from state-of-the-art Monte Carlo algorithms for non-perturbative simulations, such as
GHMD-based algorithms [8, 13]. Furthermore, NSPT has been in a sense reinterpreted in deep
connection with Automatic Differentiation [14].

Despite the three-decade-long literature, there are specific features of NSPT that have not
yet been fully understood. This is the case of high-order perturbative NSPT simulations for
low-dimensional models. It is a well-known fact that significant fluctuations in high-orders
NSPT simulations show up for small systems (let’s say much smaller than Lattice QCD) [15].
As a matter of fact, the onset of large fluctuations prevents a systematic study of perturbative
coefficients in the asymptotic region for low-dimensional models. Many of these models are
interesting. For example, NSPT expansions around non-trivial vacua are intriguing (it should
be possible to formulate a weak coupling perturbation theory in a much easier way than in
diagrammatic perturbation theory). While NSPT appears to be an ideal tool for computing high-
order corrections on top of non-trivial vacua (a similar case has been worked out for Lattice QCD
in the Schrédinger functional formalism [16]), one would attack at first low dimensional problems
displaying non-trivial vacua to start from. Because of the fluctuations issue we mentioned, we
currently lack these high-order computations.

Furthermore, low-dimensional models can be asymptotically free, and it would be inter-
esting to study the asymptotic perturbative behavior, to verify their fundamental properties
numerically. Infrared renormalons [17] are among the most interesting. NSPT is an excellent
numerical framework for the detection of renormalon scaling, since renormalon analysis provides
predictions in the asymptotic limit, requiring calculations at very high perturbative orders. As
a matter of fact, renormalons have been studied with fruitful results in SU(3) gluodynamics
[18-20] and Lattice QCD with massless staggered fermions [21] by means of NSPT simulations.
Despite some success claimed for PC'(N) models [22], there has been no systematic attempt at
assessing how good the assessment of renormalon behavior can be with respect to the onset of
fluctuations in low-dimensional models.

In this thesis, we study NSPT simulations in low-dimensional models. As expected, we will
see that large fluctuations emerge at (not even that) high-orders when attempting to expand a
theory around non-trivial vacua in low-dimensional models. For this reason, we moved to study
the O(N) non-linear sigma model. In this model we varied the number of degrees of freedom
by tuning the parameter N. Using O(N) NSLMs we can probe a general conjecture that we

have fewer problems simulating more degrees of freedom. This seems to be further justified by

vi



the fact that NSPT distributions exhibit a trend towards Gaussianity in the large N limit at
lower orders, as detailed in [11]. Furthermore, since the O(N) model is asymptotically free, we
can study the asymptotic scaling of perturbative coefficients, hunting for infrared renormalons.
It is worth noting that the CP(N — 1) model, a natural extension of the O(N) sigma model,
displays instantons [23]. For all these reasons it is expected that a comprehensive study of NSPT
simulations for the O(N) sigma models will lead to insights of general interest regarding new

possible NSPT applications.

Thesis organization

This thesis is organized as follows. In Sec. 1 we introduce the main aspects related to Numerical
Stochastic Perturbation Theory. We adhere to the historical path that led to the first imple-
mentation of NSPT, starting from the Stochastic Quantization. Special emphasis is given to
the statistical analysis of data. At the end of the section, alternative approaches using different
stochastic equations are briefly discussed. In Sec. 2 we present a first example of an unconven-
tional application of NSPT, which involves weak coupling expansion around instantonic vacua
for a 0 4+ 1-dimensional field theory: the Double-Well Potential. We discuss all the key as-
pects of this method, critically analyzing its limitations in relation both to the continuum limit
and to the emergence of fluctuations. In Sec. 3 we show NSPT results for the lattice O(N)
non-linear sigma model. Particular attention was given to the perturbation theory setup. In
this context, high-order spikes and statistical distributions were studied and related to the pa-
rameter IV, which represents the number of degrees of freedom. In Sec. 4 we present a direct
application of what we have learned from O(N) NSPT simulations: the study of renormalons
in low-dimensional models. Finite volume effects have been taken into account by introducing
a first-principles estimate of the infrared cutoff in the factorial scaling of loop corrections. In

Sec. 5 we report our conclusions, discussing future prospects and new immediate applications.
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1 | Introduction to NSPT

1.1 Stochastic Quantization

Stochastic Quantization (SQ) represents per se an original approach to field theory quantization.
It was introduced in an innovative article by Parisi and Wu [29]. Since then, the method has
evolved into an effective instrument across various domains of quantum field theory. As said, it
can be regarded as yet another brand-new quantization scheme. This is particularly interesting
in the framework of gauge theories, since in this context one could in principle stay away from
the theoretical issue of how gauge fixing interacts with the construction of the theory (think
about Gribov copies) [30]. At the same time, the Langevin equation on which SQ is based has
been regarded as an alternative to standard Monte Carlo methods in the non-perturbative study
of lattice quantum field theories. As we will see, we will be mainly interested in yet another
aspect, namely SQ gives rise to a novel approach to perturbation theory. For a quite old review,
which is still very interesting, see [31]. For the purposes of this thesis, we present its formulation
explicitly targeting Euclidean scalar field theories.

Following the historical introduction of SQ, the starting point is the notable parallel be-
tween Fuclidean quantum field theory and statistical mechanics: in straightforward terms, the
Euclidean path integral measure is intimately linked to a statistical system at the equilibrium in
accordance with the Boltzmann distribution. It follows that n-points Euclidean Green functions

in the Path Integral (PI) formalism

(plap(en) ... ol@n) = 5 [ Doexp (- 152 ) elelaa) . o(e) (1)

can be deduced as correlation functions of statistical systems. In Eq. (1), Sg represents the
Euclidean action. By setting 1/h = 1/kT, Eq. (1) can be interpreted as a statistical expectation
value for a system in thermal equilibrium at temperature 7. From now on, we consider physical
units h = 1.

Solving a Euclidean quantum field theory means knowing how to compute correlation func-



tions in Eq. (1). This is typically challenging and starting from the path integral one could think
of providing solutions in a variety of ways, ranging from Perturbation Theory (PT) to numerical
simulation of a Lattice Regularization (LR) version of the theory. Stochastic Quantization offers
an alternative formulation of the problem. The starting point is the passage to a system with

one more degree of freedom than the original problem

p(@) = oz, 7). (2)

Thinking of this extra degree of freedom as a time, we will prescribe an evolution of the fields
such that the system is led to an equilibrium distribution as stochastic time 7 progresses. The
evolution of the scalar field p(x, 7) through stochastic time is governed by a stochastic differential
equation, namely the Langevin equation

Op(x, ), _ 0SE
or do(x, T)y

+n(x, 7). (3)

We note that the vanishing of the first term in the RHS of Eq. (3)

0SE

do(x, T) =0 4)

selects the classical field equations, altered only to include 7-dependency. The last term in

Eq. (3) is a Gaussian white noise with defined correlations, namely
(n(, T)n(2, 72))y = 200 (1 — @2)3(T1 — 72) (5)
and in general
(1, 71) - N(B2k41, T2kt1))y = 0, (6)

(@1, 71) - @2k, T2k))y = Z H<77(5'3z‘7ﬁ)77(5'3j,7j)>n7 (7)
w

being W the set of all possible Wick contractions. In this context, the expectation values (...),

are defined as averages over all possible noise realizations

(-on = [ Dnexp [~5 [ drdz n*(z,7)] ...
T T Dnexp <1 [drda (. 7)]

Fields evolving according with Eq. (3) depend on the white noise realization (this motivates the

(8)

subscript notation ¢(x,7),) and for a given stochastic realization a formal solution of Eq. (3)

has the form

oz, T)y = o(x, 70) — /T dT'(;iS + /T dr'n(z, 7). (9)

T0 6g0<w77-l) 0



The main assertion of stochastic quantization is that in the limit of 7 approaching infinity,
equilibrium is achieved, and the equal-time correlation functions converge to the corresponding

Green’s functions in Eq. (1), that is to say

lim (p(z1, 7)pe(T2, ) - - Q(Tns Ty = (P(T1)p(T2) - - - p(T0)) (10)

T—00
being the correlation functions defined as follows

_ | Dnexp [—i [ drdx 772(33,7')](,0(1:1,7')7, (@, Ty
[ Dnexp [-1 [drdz n?(z, )]
The statements suggest that the PI approach to field theories may be traded for a quantization

(11)

<(p(.’131, 7—)7] cee 90(:13”, T)TI>77

scheme built on a nonlinear stochastic differential equation. For simplicity, from now on, we will
omit the notation with the subscript ¢(x,7), assuming the dependence is understood.

Since the initial introduction of the Langevin equation in field theory applications, numerous
developments have been achieved. On one hand, in the very original spirit, SQ was conceived
for developing a perturbative evaluation of gauge theories without fixing the gauge. On the
other hand, the Langevin equation has been widely employed as a simulation algorithm for

non-perturbative calculations in lattice field (and in particular gauge) theories.

1.1.1 Fokker-Plank formulation

In Eq. (10) we are considering expectation values of fields, averaging over the white noise re-
alizations. In general we can compute much more general functions of the fields in the SQ

framework, namely

(Alp(x1,7) ... p(xpn, 7))y = /Dn exp {—i /de:B 772(:12,7')} Alp(x1,7) ... o(xn,7)], (12)
where
Dn

- [ Dnexp [—1 [ drdx n?(x,7)]
is the normalized measure for the stochastic source.

Dn

(13)

One way to demonstrate the fundamental assertion in Eq. (10) is to study the (stochastic
time dependent) probability distribution associated with a field configuration, which is dictated
by the so-called Fokker-Planck (FP) formulation. Basically Eq. (12) can be rephrased as an

average over the probability distribution P[p, 7]! according to

(Alp(T) .. p(@n, T)])y = /DwP[%T]A[@(azl)---w(wn)]- (14)

IFormally, a formulation in terms of probability distribution P[p, 7] is encoded in the relation Plp, 7] = (5(p —
e(T)n))n



We are now interested in finding the equation that describes the dynamics of this probability
distribution in the stochastic time and in evaluating its equilibrium solutions. The fundamental
statement in Eq. (10) will thus be verified if a stationary solution can be found which corresponds
precisely to the measure of the functional integral. First, consider the derivative with respect

to stochastic time of Eq. (12) and Eq. (14):

2 Ao = [ DT, (15)
L Algy = [Presp [~ [ drde (e, n) AT
- 1 2 ] 6A[g] dy
= /DneXp _—4/d7’d$ n (:B,T)- /dw&p(mﬁ)a (16)
_ [ 1 T SA[y] 655
= /Dnexp 1 /de:n 772(:1:77)_ /dw&p(m,T) (— 5@, ), +77(w,7)> )

where in the last line of Eq. (16) we used Eq. (3). We can manage the second term in the last
line of Eq. (16) as follow

o fon oo (- o) 45
oo [ (- oo ) e

:/Dr]/dwexp (—le/defB n2($77)>M‘

We note that in the second line of Eq. (17) we use the formal solution in Eq. (9), namely

dp(y,7) .
on(z.7) =0(0)d(z —y), (18)

being 0(7) the Heaviside step function defined with the mid-point prescription rule (0) = 1/2.
We obtain

sl = [ [ ome H fares ”2@’7)} (_w((sj,E ) 521(451) * 522(3,@)2)

_ B 0SE JA[p)] 52A[<p] .
= [pe ] dw( 5o ), 6so<wm>+6so<w>2>P[““ ] (19)

= [ peaia [ eg o (e * st P )

By matching Eq. (15) and Eq. (19) we derive the Fokker-Plank equation

dpc[li’ - /dw 5¢(i,r) Kéfps(i) M 530(2,7))13[%7}] : (20)




1.1.2 Solution of the Fokker-Plank equation

Eq. (20) prescribes the evolution of the probability density as the stochastic time progresses.
Although we are only interested in the stationary solution, we show how this can be directly
obtained from a more general solution, evaluated at 7 — oco. In our discussion, we will consider
systems with a finite number of discrete degrees of freedom: it is not a restriction as we are

interested in simulating the system on a computer. Nevertheless, generalizations to systems

with infinite degrees of freedom are also possible [32, 33]. We now start from the Fokker-Plank
equation
dP[e, 7] 0 [( 0SE ) >
= + Plp,7]| . (21)
dr dp(x) [\ dp(x)  bp(x)

We introduce the transformation

_Slel
P[QO,T] = 1/)(9037_)6 2 (22)
and the Fokker-Planck equation can be rewritten as
: _ Sle] 0 oY _stel 1 _slel OS
Ylo,Tle” 2 = ——|z—=¢e 2 + ¢(p,T)e 2 23
o, 5o(@) | Do) 2V Bta) 2

We can recast the equation as follow

o= 2| b L (52 Tuten, (24

20p(x)?  40p(x)? dp(x)
Setting
192 1 825 1/ 95 \*
_ 1 ! i1 , (25)
200(x)?  40p(x)? 8\ 0p(x)
we recognize the familiar Schréedinger equation
)= —2Hy. (26)

By simplifying to a single degree of freedom (we can extend our conclusions also to more vari-

ables), we can assert that the Hamiltonian

H__li?_lazi_’_l @ 2—1 _2_’_5 +£+§/ (27)
T 2022 49022 8\dz/) 2 or 2 or 2

thus factorized, is self-adjoint and exhibits a non-negative spectrum. Furthermore, the spectrum

is entirely discrete. The transformations in Eq. (22) can be expressed in the eigenstates basis as

1#[% 7—} = Z anwn[tp]e_EnT = apto [‘P] + Z an'(/)n[@]e_EnT ) (28)
n=0 n=1



being 1o the zero-eigenvector of Hamiltonian in Eq. (27), namely

Sle]

dolpl =e” 2. (29)
In the limit of large stochastic time we obtain

Sle]

lim Plp, 7] = li_>m Y(p,T)e” 2

T—> 00

o)
= age S +Tan;O Z antn [cp}e*E"Tefy = age 5. (30)
n=1

The normalization constant can be fixed by means of

/dgpP[gp,T — o0 =1. (31)

Stochastic Quantization thus leads in the limit of large stochastic times to probability distri-
butions in agreement with Euclidean field theory. In other words, this can be considered as a
demonstration of the equivalence between quantization via Path Integral and Stochastic Quan-
tization.

Another way to prove this result goes through the expansion of the probability distribution
into a power series in the coupling constant and writing the Fokker-Planck equation order-
by-order [34]. One ends up with equations coupling the distribution at the k-th order with
the distribution at the k& — 1 order. The proof then proceeds by induction, thus proving the
equivalence at any fixed order. We can show the equivalence also using the formalism of the
Langevin equation [35], again in the framework of perturbation theory, as we will see in the next

section.

1.2 Stochastic Perturbation Theory

As anticipated, many results from the theory of Stochastic Quantization are closely related to
perturbation theory. Indeed, the title of the original paper was “Perturbation theory without
gauge fixing”, highlighting the interest in perturbation theory for systems with gauge symmetry
while avoiding the intricacies of Faddeev-Popov ghosts [29].

Perturbative expansions of the Langevin equation solutions are derived, as formal expansions
in the coupling constant, from Eq. (3) through its recursive solution in the coupling constant
itself. One of the simplest and paradigmatic examples, involving only scalar degrees of freedom,

is the self-interacting theory defined by the action [31]

5= [do @000+ m2 + 568 (32)



The associated Langevin equation follows straightforward

%@(%,T) = (0,0, — m*)p(z,T) — %gp(wﬂ') +n(x, 7). (33)

As usual, it is convenient to switch to momentum space via Fourier transformation (in the spatial

variables only), through

plhr) = [ dw e*p(a,7) (34)
and the equivalent of Eq. (33) in Fourier space reads
d A [ dpd
etk ) = (ke mpler) = 5 [ P otpr)e(a. ok —p—a) +akr). (39)

where now (the Fourier transform of a Gaussian noise in position space is still Gaussian in

momentum space)
(n(k, )n(k’, 7))y = 2(2m)"0(k — k)o(1 — 7'). (36)
From a practical point of view, Eq. (35) can be solved by iteration, obtaining an exact expression

up to a fixed perturbative order.

1.2.1 Free scalar field theory

To construct solutions up to a generic perturbative order, it is necessary to first look at the

basic building block, namely the free theory solution. As expected, the free Langevin equation
& (b ) = (ke + m)p(k, ) (s, 7) (37)
can be explicitly solved in the Green Functions (GF) formalism in Fourier space, namely
%G(km) = —(k-k—m*G(k,7) +0(1), with  G(k,7) =0, 7<0, (38)
where the constraint in Eq. (38) selects only the retarded GFs. The solution of Eq. (38) is
G(k,7) =exp{—(k-k+m*)7}0(7). (39)
The retarded GF in Eq. (39) can be used to construct the solution of Eq. (37) as follow
oo
ok, 7) = / 4r'Glk, 7 — )k, ™) + aexp {~(k - k +m2)r}, (40)
—o0

where a is a constant fixed by the initial conditions. We can remove a evaluating the previous

equation in 7 =0

(k. 0) = go(k) = / dr' exp {(k -k +m2)r" Yk, ') + a., (41)



obtaining o
0= po(k) - / dr' exp {(k - k + m?)7 Yk, 7' (42)

so that

o(k,7) = /T dr’ exp {—(k -k +m?*) (1 — ') In(k,7)

—00

0
+ (ot [ ar'exp (bt m®)r Yt ) ) exp (- e )7}
= / dr' exp{—(k -k +m?)(r — ') }n(k,7") + o(k) exp {—(k - k +m®)r}.
0
Let us note that the dependence of the field at time 7 on the field at time 79 = 0 is exponentially

suppressed, as expected. For this reason, for the sake of brevity, we can set the initial condition

po(k) =0, (43)

taking for granted that these terms cannot contribute in the evaluation of the correlation func-
tions in the limit of large stochastic time. In this setting we obtain a simple expression for the

stochastic free field
ok, 7) = /OT dr’ exp {—(k -k +m*) (1 — ") }n(k, ") (44)
and we are able to compute the free two-point function at different stochastic time
D(k.k',7,7") = (p(k,7)p(k', ")y (45)

Inserting Eq. (44) in Eq. (45) we obtain
< / "dsexp{—(k -k + m?)(r — )}k, s) / " dtexp {—(K K + ) — )}k 1),
- / s / dtexp {— (k- k +m?)(r — )} exp {— (k' - K + m2)(r’ — )} (k. ) (K, ),

— /OT /oT ds dtexp {(k -k +m?)(s — 1)} exp {(k' - k' +m?)(t — 7)}2(2m)"6(k — K')5(s — 1) ,

(46)
where in the last line we use Eq. (36). Integrating in the stochastic time we obtain
min(7,7")
D(k, K, 7,7') =2(27)" / dsexp {(k -k +m2)(2s — 7 — 7)}6(k — K)
0
_(2n) exp{—(k-k+m?)(r+ T’)}(exp {2(k - k +m*)min(r,7")} — 1) 5k — k).
(k- k+m?)
(47)



We note that
exp{—(k-k+m?)(r+7 —2min(r, 7))} = exp{—(k-k+m?)(r —7)}, 7>7, (48)
exp{—(k-k+m?)(r+ 7 —2min(r, 7))} =exp {~(k-k+m?) (7' —7)}, 7 >7, (49)
and we can write
exp {—(k-k+m?)(r +7 — 2min(r, 7))} = exp {—(k -k +m?)|T — 7’|} (50)

In the end, the two point propagator reads

ok —K)
2 2
Dl K, 7,7') = <27r>”(e><p{—<k-k+m e =} —exp{—(k-k+m ><T+T'>})M+mz-
(51)
Additionally, Eq. (51) highlights the property
D(k,kK',7,7") = D(k,7,7'). (52)

Given the propagator in Eq. (51), we can provide an explicit proof of the statement in Eq. (10)
for the free theory. Indeed, we note that the propagator can be evaluated at equal stochastic
time, providing

5(k — k')

— n 2
and we can calculate the limit for large stochastic times as follows
. n 0(k—FK)
TILH(}OD(va) = (p(k,7)p(k, 7))y = (27) k-k+tm2’ (54)

reproducing, as expected, the well-known propagator of the associated Euclidean theory [36].

1.2.2 Diagrammatic stochastic perturbation theory

The free solution in Eq. (44) can be naturally seen as a solution of the interacting theory up to
an O(A). The underlying idea of Stochastic Perturbation Theory is to substitute this solution
in the formal solution of Eq. (35), namely

A

pthr) = [ exp (ke )7 = 0} o) 5 [ L ot ol o Ck-p-a)|.
(5)

The solution in Eq. (55) is obtained noting that Eq. (35) is equivalent to Eq. (37) after the

replacement of

A

wler) = nler) = 5 [ G )ela. )ik —p—a). (56)
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A solution can be constructed from Eq. (44) using the same replacement as before. By substi-
tuting the free solution in Eq. (55) we generate a solution to Eq. (35) up to O(A\?). Furthermore,
one can think of continuing in this manner with the newly found solution, and generate a solu-
tion up to O(\3). Tteratively, solutions can be constructed in principle up to a fixed order. The
solutions obtained are naturally written as power series in the coupling constant up to a fixed
order. Here we present an outline of the procedure.

Writing symbolically the zero-order solution

@Ozt/anu (57)

where the superscript ¢ indicates the order of the recursion procedure, we can construct by

means of Eq. (55) a first-order solution

o= [en-5 [c[ee=[an-5 [ [ [a@nen (58)

and a second-order solution

e=[an-3 [ [ [eanen+y [ [[[[acncanen o)

and so on up to a desired order. Typically a graphical representation is given for the perturba-

tive series in Eq. (59) [31]. These are diagrams very similar to the Feynman diagrams

@ = + ¢+—<§ +H+¢ +...

In this description, we characterize G by a line and 7 by a cross. The process involves integrat-
ing over the momenta at the connection points and considering the fictitious times at both the
junctions and the cross points. The Diagrammatic Stochastic Perturbation Theory proceeds in
building the two-point correlation function from the diagrams presented above. In particular,

for the action in Eq. (32) we have the following stochastic diagrams

ot = ——+ —(O—+ - —



where the symbol “x” denotes the average over the gaussian white noise. Each of these stochas-
tic diagrams resemble a typical Feynman diagram, with the exception of crosses marking the
conjunction of two stochastic noises on the lines.

On the other hand for each Feynman diagram a set of stochastic diagrams sharing the same
structure exists. Additionally, it can be shown that the sum of all the stochastic diagrams
of a given topology reconstructs exactly, in the limit of large stochastic time 7 — oo, the
contribution of the Feynman diagram with that topology [35]. Of course, this can be considered
as an additional perturbative proof of the equivalence between Stochastic Quantization and
Canonical Quantization. For a more complete presentation of the Diagrammatic Stochastic

Perturbation Theory we refer the reader to the review [31] or the original work of Parisi and

Wu [29].

1.3 Numerical Stochastic Perturbation Theory

As said, Stochastic Quantization provides an alternative to Canonical Quantization. In this
framework the evaluation of the functional integral in Eq. (1) is traded for a new stochastic
dynamics taking place in the fictitious time 7, recovering all the well-known results of Euclidean
field theory in the (equilibrium) limit of 7 — oo, after averaging over all possible realizations of
stochastic noise.

Notably, the perspective of solving a stochastic differential equation fits particularly well
to a Monte Carlo implementation: averages over the distribution defined by the path integral
are traded for time averages of expressions built out of solution of the Langevin equation,
evaluated in the asymptotic time limit, in which we recover the functional integral measure as the
equilibrium distribution of the stochastic process. From this viewpoint, the Langevin dynamics
has been implemented in what is now called Langevin Monte Carlo, providing an alternative tool
in numerical simulations of statistical systems [37-39]. Moreover, these algorithms have been
also used for simulations of Lattice Gauge Theories (LGT) [10-42]. Given the close relationship

with Monte Carlo, we digress briefly and discuss the latter.

1.3.1 Monte Carlo methods

Monte Carlo simulations are a computational technique used to approximate multi-dimensional
integrals [43, 44], especially in cases where analytical solutions are difficult to obtain. These sim-

ulations utilize random sampling to estimate the properties of complex systems. The main goal

12



of a Monte Carlo simulation is the evaluation of an observable Ay, ..., p,] for a system with
degrees of freedom {1, ..., ¢, } distributed according to the probability density P(®1,...,®n).

Basically we want an estimate of

(A) = /dgpl...dcpn Alp1, - 0n] P(@1,---0n)- (60)

For what we are mainly interested in, the probability density is expressed as (Z is the partition

function)
efs(tpl‘w"v‘pn)
P(‘)Ola'”v@n): 7 ’ (61)
where S(1,...,p,) is the action describing the system. The partition function is given by
Z = /d<p1 codipy e S$1nen) (62)
in which we sum over all possible configurations of the system.
To compute the expectation value of Alp,...,¢,], a Monte Carlo simulation generates a
sequence of states
{o1,--yont1 = {p1,.-yonta— oo = {o1, o @ntm — o (63)

sampled according to the probability density in Eq. (61): this is known as importance sampling.
If importance sampling is guaranteed, as a simple application of the law of large numbers the

expectation value in Eq. (60) can be approximated by the average over the sample

(4) ~ %ZA[{%-..A%M, (64)

where N is the total number of sampled states and A[{¢1, ..., ¢n}:] is the value of the observable
Alp1, ..., pn] computed on the i-th configuration. As N grows, the Monte Carlo estimate
converges to the true expectation value, with the statistical error diminishing as 1/ VN. In
a sense, we have simply traded the original problem with that of implementing importance
sampling. In practice, all the Monte Carlo methods that are extensively used are built out of
stochastic processes (Markov processes, actually), the requirement being that asymptotically
the process is distributed according to the probability distribution we want to sample. There
are various algorithms implementing stochastic processes with the desired property we have just
described. The Metropolis—Hastings algorithm [45, 46] is to some extent a prototype (this is
true in a quite sad sense, with many people actually thinking of Metropolis as Monte Carlo tout

court). In more recent years, newer and more efficient algorithms have been introduced, such

13



as Hybrid Monte Carlo (HMC)[47], which is probably the preferred choice in most interesting
cases (including Lattice QCD). Notice that taking for stochastic sampling the solution of a
stochastic differential equation is another natural choice. With this respect, Langevin is one
of the possibilities: as seen, after equilibrium is reached, the configurations are distributed
according to the probability measure in Eq. (61). We should now point out that we have till
now discussed the analytic solution of Langevin equation. When it comes to its implementation
in the sense of a Monte Carlo, the Langevin equation requires numerical integration: this means
discretizing the stochastic time in discrete steps, so that evolution over a given stochastic time
extent is given by 7 = Ngeps AT. We indicate the value of A7 as stochastic time step. The

simplest discretized Langevin equation (Euler scheme) reads

oS
o(x, 70 + AT) = (T, 70) — AT—— + V2ATNH(2,70) | (65)
850(1’.77—0)

being now the Gaussian white noise normalized with zero mean and unit standard deviation

(n(x,70)) =0, (@, 70)n(y, 1)) = 6(x — Y)dry 7, - (66)

We note that in Eq. (65) we replaced functional derivatives in Eq. (3) with partial derivatives:
this is because in order to solve the Eq. (65) on the computer, we will discretize the degrees of
freedom and place them in a finite volume, thus obtaining a finite number of degrees of freedom.

Solutions to Eq. (65) no longer satisfy the Fokker-Planck equation introduced in Eq. (20) [41].
Discretised Langevin equation (here we are talking of the discretization in terms of stochastic
time steps) introduces systematic effects (typically in the form of polynomial correction in the
stochastic time step A7) that need to be removed. Since these technical details are common to

NSPT simulations, all aspects will be treated in detail in the NSPT section.

1.3.2 From SQ(PT) to NSPT

Numerical Stochastic Perturbation Theory (NSPT) roughly lies at the midpoint between Stochas-
tic Perturbation Theory and non-perturbative Monte Carlo Langevin methods. First introduced
by the pioneering works of the lattice group of Parma University [1], it has evolved significantly
over the years, becoming nowadays one of the main numerical tools for calculations in pertur-
bation theory. In our discussion, we will only present NSPT in its position space formulation
(which is typically used in Monte Carlo simulations). We omit the presentation in Fourier space,
which does not present any difference.

We consider a generic action of a Euclidean field theory S[¢], in a simplified setting in which

the action contains only one coupling constant g and a scalar field p(x) (these conditions are not
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at all stringent; they only simplify the notation)?. In the framework of Stochastic Quantization,
the degrees of freedom are promoted to depend on stochastic time p(x) — ¢(x,7) and evolved

according to the Langevin equation

Op(x,T) 6S
or do(x, T) (@, 7). (67)

The key element of Numerical Stochastic Perturbation Theory is that at each fixed stochastic
time it is always possible to expand the fields in a formal power series in the coupling constant,

namely
o(@,7) = (@,7) + gV (@, 7) + %P (@, 7) + ... = 0@, 7) + D g™ (@, 7). (68)
n=1

We can insert the series expansion given by Eq. (68) in the Langevin equation. We make the
point that the expansion is a formal one: no particular value of the coupling will be considered
at any time, but everything will be expanded order by order in the coupling. We note that this
is exactly what happens in the standard approach to perturbation theory. This means that we
can reorganize the Langevin dynamics into a tower of differential equations, each for any given

perturbative order. Let us introduce a convenient notation: let

5S -
s N ne(n)
= g by (:EaT)7 (69)
0p(2,7) 5200 | g (a,7) r;)

where we mean that the gradient of the action should be calculated on the field and then the field
should be substituted with its series expansion in Eq. (68). We can then organise all operations

on fields as order-by-order operations; for example

ool ) + oo, 7) = (sogo><w>+so£°><w>)+g (sog”(w, ., soé”(ac,ﬂ)
(70)

g (soff)(wﬁ) ol (w,7>)+ .

val@,7) - (@, 7) = O (x, 7)) (=, 7) +g( O (@, 7)o" (@, 7) + oD (2, 7)) <w,T>)
(71)
+ g2( Oz, 7)o (@,7) + ¢O(@, 7)) (=, 7) + sag”(mm)soé‘”(m)) :

As seen, the gradient of the action itself is expanded in power series of the coupling constant

with coefficients (™) (z, 7). To clarify the meaning of Eq. (69), we observe that for every theory

2Tt can be shown that we can very well consider more than one coupling constant and several degrees of freedom

(scalars, matrices, fermions and so on) simultaneously.
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whose action can be decomposed into a free part and an interacting part proportional to the
coupling constant

S=5y+95r, (72)

the coefficients in Eq. (69) take the form:
S (@,7) = Gy o™ (@,7) = D (0 (@, 7), oV (2, 7), ..., 0" V(@ 7)), (73)

where D™ (o) (2, 7),..., 0™ Y (x, 7)) is a source term that couples different perturbative or-
ders and changes with the considered order n. D(™ depends only on the values of the fields at
perturbative orders m < n. In Eq. (73) G is the free propagator of the theory, namely:

0S
5@(33(,)7) o) (a,7) =GoleM@ ), ™)
and its structure is independent of the considered perturbative order. Moreover, it does not mix
different orders.

Given the decomposition in Eq. (73), inserting the series expansion of Eq. (68) in the Langevin

Eq. (67) we obtain a set of hierarchical stochastic differential equations, namely

(0)
M — _G614p(0)(m7 7)+n(x,7),
or
(1)
20 @) _ 10 @) + DO a.7)
T
D@ (x,7) —1,(2) (2)(,,(0) (1)
T = _GO ) (df,T) +D ((P ((L’,T), ® ($,T)), (75)
(n)
&”T(“) =G5l (@, 1) + DM (O (@, 7), 0D (2, 7),...,0" D (z, 7)),
T

We emphasize that only the first equation (the free theory equation) is a properly stochastic
equation, containing the dependence on the realization of the stochastic noise. The other equa-
tions contain the stochastic source by means of the dependence on the zero-order. Furthermore
we note that the set of equations is exact at any fixed truncation in perturbation theory (in
particular this will be the case whenever we consider numerical simulations): given a truncation
order n, all the equations depend only on fields defined at orders m < n.

Numerical Stochastic Perturbation Theory consists in integrating Eq. (75) on the computer,
effectively outlining a strategy for a perturbative Monte Carlo. A key practical feature of this
approach is its implementation ease, requiring minimal changes to existing non-perturbative

Monte Carlo routines (see also Sec. 1.7).
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We have discussed the perturbative expansion of the Langevin equation. It is important to
note that also other stochastic equations can be used [3, 13] (we discuss two of them in the fol-
lowing sections). However, no accept/reject Metropolis update algorithms can be implemented.
This is inherent in the nature of the perturbative expansion mechanism: the latter makes sense
only provided an analytic solution exists, which is unavoidably lost in a process like an ac-
cept/reject mechanism. As a matter of fact, this consideration has to do with the “exactness” of
NSPT simulations, which is still under debate.

In NSPT obtaining the perturbative expansion of a given generic observable A[p] is pretty

simple

Alel = A g™ = AQ[pO] 4+ gAW [, oM] + g2 AP ) 1) ()]
= (76)
=> gt AMO, M,

being the A the coefficients we are interested in.

1.4 Numerical integration

The NSPT program proceeds by numerically integrating the Eq. (75). From now on, we switch

from the continuous space-time notation to the lattice notation

p(x,7) = pi(T) (77)
and we will imply that perturbative operations are performed up to a fixed order, discarding

contributions of higher order.

1.4.1 Euler Integrator

The simplest choice is to use the Euler scheme. In this case, one obtains

U+ an) = @ (1) = ATG G (1) + V2ATI(T)

"2 i
o+ Ar) = (1) = MG ol (1) + ArDW (6O(7))
P (1 + A7) = o2 (1) — ArGy P (1) + ArD@ (0O (1), oV (7)), (78)

(1 + A7) = M (1) = ATGy 9" (r) + ArD (¢ (1), V(7). . oM (7).
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The discretization of the stochastic time 7 = ngeps A7 implies that the evolution in Eq. (78) no
longer satisfies the Fokker-Planck equation. The stochastic process can still be considered as a
stationary process, because the corrections to the Fokker-Planck equation can be obtained from
the leading order Fokker-Planck equation with a redefinition of the action.

A Langevin discrete dynamics can be written as
@i(T + AT) = @i(T) — Fi(T) (79)

where F;(7) is a scheme-dependent function. We consider the Kramers-Moyal asymptotic ex-
pansion (see App. A for a hint of the proof)

o0

Plp, 7+ At] = Plp, 7] _izi o
AT AT nl 0p;, ...0p;,

n=1

(Fi,(1)... Fi (7)) Plp,7]| . (80)

For a stochastic dynamics at the equilibrium, the LHS of Eq. (80) vanishes for each value of At

oo

1 1 o"
A 2 e o |\ "'WP[“’@ -0 oy

n=1

where we dropped the trivial dependence on the stochastic time. In the Euler scheme we have

oS
Fi(r) = AT@%(T) — V2ATn(7). (82)

The idea is to evaluate the first correction in A7 to Eq. (81), so that expectation values up to

the second order need to be computed:

oS
F’i =A )
< 1> 7—8901:1
<Fi1Fi2>=AT2 aS 8S +2A7—5i1i2,
iy Opi,
oS oS oS (8)
F; F3 F;) = 2A7? Oini Oiziy + 5 0ini o(Ar?
<1 2 3> T<a¢i1 23+8(Pi2 31"'8901_3 21>+ (T),

(Fi, Fiy Fi, Fi,) = ANT? (83,3, 0i555 + 0y40i0iy + 0iyiyOigis) + O(AT?).

18



Inserting Eq. (83) in the expansion (81) we obtain
0 1 02
2 (myP|+-—L
890751 |:< > :| * 2 ‘9%‘13%‘2
1 ot
4+
24 03, Opi, 0piy 0,
0 oS 1 02 as 9ds
= —P — A 28; o P
8501'1 |:8@i1 ] 2 8()07:18()0712 |:< Ta(p'h 8(10’52 * ' > :|
1 o° 08 oS oS
o A (S’L i3 76’1:3’1:1 76’i2i1 P
300000001, { T<3<ﬂi1 T o T B, ) } (84)
6 a(p'LIagp’Lza@zga(phl T 21%2713%4 21137124 212471213

0 {85 ] 1 92 KA oS oS

1 o3

F; F;,)P -
|:< ' > :|+ Ga(p’ila(pba(pis

[(FilFi2Fi3>P] +

[(FilFizFisFu)P}

—+ 251'11'2) P:|

:6801'1 0vi, 58‘:01'18(;01‘2 T&Pil dpi,
? as 1 o
= p 2 _ g
. i 093,004, [AT<8%1)P} " 2 04, 0pi, 0, 0pi, {AT ] TO(Ar) =0

The leading order Kramers-Moyal expansions gives

0 oS 0?
P P| = 85
04, [&Pil } * i, 0ps, [ ] 0 (85)

which is the Fokker-Planck equation introduced in Eq. (20) for the Langevin discrete dynamics.
The first-order correction is

1 0 928 aS a8 928 aS 28 \ 2
AT = P P (= P
T{ 2 8907:1 [(a@ba@il ) (5’%‘2) * <690i1 ) (3%‘23%2 ) (3%‘1 ) (8@7:2 ) :|
o3 a8 1 ot
Plyr-———"F P
T 0 0vnpis [(3%‘1) } "2 d¢3 093, }
1 0 [[ &8 S a8 928 S S \? ]
B AT{M% _(6%8%> (&%)P * <3%> <8s0i23<m2>P - (3%1) (3%2) P_
1 o3 S
3 0pi, 0pi, i, [(3%1 )P} }
1 0 [/ 928 a8 a8 928 a8 9S8 \? ]
= Ard= P P— P
T{ 2 0ps;, _(3901-25%'1) (3%2) - (5%1) (3%25%’2) (3%1) (5%‘2) |
3 2 2
+18 938 o 928 S P 928 a8 P
2 3%’1 a@il a(p":2 890752 8907318901'2 a@'b 8901'1 a@'b a(pi2
a8 928 a8 98 \?
- (3% ) <8<p1'23s0¢2 ) = (8% ) (8% > P} }

CAr( 0 PSS N\, (05\(_ PS5\,
2 | 9¢s, [\ Opi, 004,004, 0pi, ) \ i, 004, ’

where we use the relation

08 oP
Dor. P = " P + O(AT), (87)
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obtained from the leading order term in Eq. (85). The same leading correction can be obtained

starting directly from Eq. (85) and considering the modified action

S — S+ ATS, (88)

_ 1/ a8 \? 928

As a consequence, the observables display leading A7 corrections, namely

where

_ | Dy Aly] e~ (S+ATS) B [ Dy Alp] e=5(1 — ATS) B

War = s = [ D e 5 Brg) ~ W OB, (90)

approaching the correct expectation value for the continuous stochastic process AT — 0.

We note that in this context stochastic equations differ significantly from partial differential
equations. In the stochastic case we are not interested in the single update step being executed
with a chosen precision O(A7™). In contrast, given such an integrator, we look at corrections to
the Fokker-Planck equation. This is quite different compared to partial differential equations,

where different integration schemes can be implemented requiring a fixed single-step precision.

1.4.2 Runge-Kutta Integrator

We can build for the Langevin equation a second-order scheme. In this section we consider the
same analysis as before but changing the function F;(7). While there is no systematic study to
date in terms of high-order integrators for stochastic equations, we can derive a second-order
integrator taking inspiration from the general structure of Runge-Kutta integrators.

We consider the following discrete Langevin parametric equation

0i(7+ A7) = (1) — AT [G(SZ)T + b(§Z>T+Mk] +V2A7n(7) (91)

where the subscript 7 means that the gradient is computed on ¢(7) and the subscript 7 + A7k

means that the gradient is computed on (7 + A7k), updated with a parametric Euler step, i.e.

(52). . = (52) (st ~ har(95), +ovaRma(r) ). 02)
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We can consider the Taylor expansion of Eq. (92), namely

oS oS 928 ) { ( oS ) }
=—) + = —kAT — oV2ATn, (T)|+
(3%)7%% (5%1)7 (6%13% - 0pi, ) , i (7)

1 938 oS oS 3
Y (R R T N — oA, N — ov2AT; A7
+2 (5%13%25%3>T{ g T(a@b)q— 7 Tn 2(7-):| |: g T(a@i3>7— 7 Tn 3(7—):| +O( ! )

oS 028 oS 028
_ — kA — oV2AT, (1) [ 22—
(3¢h>7 g T<5@n3¢m)r<awu)f 7 Tn20v<5@n3¢m>r+

03S ) )
00,004,004, AT, (7)1 Ar3).
" <8S0i16<,01’28<pi3 >TU TNiy (T35 (T) + O(AT2)

(93)

Inserting Eq. (93) in Eq. (91) we obtain an explicit form for F;(7) up to O(A732) correction as

follows
oS oS 928 oS 9%S
F; =A — bkA —boV2ATH; | ——————
' ! |:a (atpll ) * b<a§011 ) bk T<830i1 89012) (89012 ) bo T (8907:1 8(,01'2 )
038 5
A = o1 2A i AT2).
+ Atbo (3%13(,01'25@@'3)”2773}4_\/ i, + O(AT?)

(94)
We set

a+b=1 (95)

for first-order consistency. In this case Eq. (94) simplifies to

F;, —m(ip‘i) - bkAT2< s ) ( 05 > — boV2(AT) 21, <625> (96)

003,093, ) \ Opi, 003, 0pi,
- 95 VoA 5
+ AT°bo m NiyNis + 2A’T’I]i1 + O(ATQ) . (97)

As before, we need to compute the expectation values over the gaussian white noise, namely

(Fy,) = AT( 95 ) - kAT2b( 05 >( 05 ) +A72b02(835> +0(AT?),

0pi, i, 0pi, ) \ Opi, 0pi, Opi, Opi,
(98)
oS oS %S 5
F; F;))=A 2 —dbo AT ——— 2AT;, 4 AT2
< ' 2> ! <6<p11> (8907-2> 7T (6907-189012> * 0 e +O( ! )7 (99)
o8 oS oS 5
F; F; F; = 2A72 — ) 0i.4 — )i, 4. — ) i.4 AT?), 1
(i) = 2872 (o Yoy + (o Jouss + (o )ousa| +O(OTH. (100)
F; F; F;. F; = 4A7? 0414004030 + 0313204504, + 04140404 —I—OATg s 101
184 i3 Uy 142043144 11304214 18404213
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(Fy, F3, F3, Fi, Fy, ...) = O(AT3). (102)

Using the Kramers-Moyal expansion® in Eq. (81) we recover the leading order equation

d ds o?
oo (o) 7] * B 2] =0 (103)

Additionally, the first-order correction to Eq. (103) reads

0 928 )(as> 2( 9 ) }
—kb P4+bo?| ——— |P|+
a‘ph |: ( 8901'1 8@1'3 89013 8901'3 3901'3 8901'1
2 2 2
10 S N(0S\p ., (9S\(_0*S N\, (0S\(95\
2 0¢;, [\ 0vi,0p;, ) \ 0pi, 0pi, ) \ s, 004, 0ps, ) \ Opi,
938 928 oS
b ( 005, 01,03, > P b < 03, 04, ) <8%2 > P]

3 09 1 o
* 0pi, 02, K&ml )P] T3 D2 3, .

As before, we can use Eq. (87) to handle the last equation

0 025 aS ) 038
&Pil |:_kb<89011 a(p'ig > <69013 > P bo (8307:3890733 690751 > P] *
1 0 028 oS oS 028 oS 25 \2
* 2 0¢;, K&mza%) (W@)PJF <3%> (8%28%)]3 - (3%) (8%2) P
938 028 oS 1 93 0S8
b (3%18% i, ) P-dbo (3%1 0pi, ) (3% ) P} T3 i, 03, [(3% )P}
) 928 )(85) 2( 9 ) }
= |—kb Pt+bo?(——2—|P|+
890751 |: (a(plla(pl's 89013 89013830138907‘1
2 2 2
YR 05\, 1( 05 S \p_ 1(05\( 95\,
O0pi, |2\ 0pi,00i, ) \ Opi, 2\ 0v;i, ) \ Op;, 004, 2\ 0ps, ) \ Opi,
938 028 oS
~ 2o ((9%5%2 94, ) F-2bo (5%1 dpi, > (8% ) P} *

1 02 %S a8 oS
41 p— (22 r|.
2 84,01‘,1 8501'2 890’&'1 8@7:2 890’&'1 8907:2

=A

(104)

(105)

The last term can be written as

2 2
At 0 928 P a8 S P
2 a@‘h a‘Piz 8(,01‘,1 8901'2 8901:1 8901'2
1 0 23S 928 a8 928 S
T 20yp;, [(8%3%8% )P - <5<m13% ) (&mz)P N <8%’28%1 > (8% > P= (106)

a8 928 o8 28 \?
— P Pl .
(3%‘1 ) (acpiz 8Q0'i2 > * (a@il ) (89015 ) :|

3We note that Eq. (81) holds for every discrete stochastic process.
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Considering the previous equation, the first-order correction reads

0 028 oS 9 938
oo ["“b<awi16% ) (a% ) Pabe (awisa%a% )P } !
2 2 2
n 0 1 04S oS P—i-l oS 04S P—l oS oS p_
a@h 8(,01'2 a@il atpiz 8301'1 890158901'2 2 3%'1 a(plé
938 0 oS
-2 P+2 P
" (asonas% a%> * b"(@wna@m) ()7
0 1 838 1 oS p_ 1 %S oS p_
890731 89012 8@1268011 2 89011 8@12 890752 2 a@ba(opil 850752
1 as %8 1 g
2 a@‘tl 8@12 8@12 2 8@11 8301,2

0 025 933 , 1
~ 9, Ké’%@%) (3%3>P( Kbt 2bo = ) <8%33%38% >P<ba s 2o 2)] '

(107)

We can set the parameters to cancel the first-order correction in the time step. The equations

to be solved are
a+b=1
b+ 2bo — % ~0 (108)
bo? —2ba+%:().

In the standard Runge-Kutta methods one sets [18]

The corresponding discrete Langevin dynamics reads

pi(T+ AT) = 9i(T) — % Kfii)f + (SZ)TMT] +V2A7ni(7), (110)

where the second gradient in Eq. (110) is calculated in the tentative update
o(1) = (1) — AT(VS); + V2ATn(7) . (111)

In this way we obtain vanishing corrections in A7, yielding

/Dy Alp] e”SHATS) [ Dy Alg] e=5(1 — Ar?5)
[ D e~ (5+AT25) [ Dy e=5(1 — AT25)

(A)ar = = (A) + O(AT?). (112)

Eq. (112) shows that for a fixed tiny stochastic time step, the systematic effects using Runge-
Kutta integrator can be in principle smaller compared to the Euler integrator. However, Runge-
Kutta scheme requires extra calculations of the gradient. In the case we presented, the compu-

tational cost doubles for each Monte Carlo step.
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1.5 Continuum stochastic time extrapolations

We consider NSPT measurements of an observable A, namely
A(An‘z’i’ 1= ]-7~~~aNsampIesy (113)

where n is the perturbative order and A7 is the time step. The best estimate for A is the mean

Ngamples
1
Ay = = A 114
< >A Nsamplcs 122; AT, ( )
Furthermore, we can define the covariance matrix
EAT,AT’ (n7 m) = COV(AXQ7 AX:L_)/) ’ (115)

being COV(AXLT), A(A";),) the covariance of the mean. In this section we will not consider autocorre-

lated or cross-correlated data. In the next section we discuss how to introduce autocorrelations
and cross-correlations in the matrix element of Eq. (115). Moreover we are always implying
that measurements are taken on thermalized histories, excluding configurations in the transient
region.

Being the samples uncorrelated for different time steps, the matrix in Eq. (115) is a block

diagonal matrix, namely
ZAT,AT’(”? m) = 6AT,AT’ZAT (’I’L, m) = 6AT,AT'COV<A(AH-27 A(AW;—)) . (116)

Extrapolations to vanishing time step can be obtained considering a dedicated x2. Using first-
order scheme such as the Euler scheme, we consider the minimum of the function [21]

Mmax

Xoen = D D ((A™)ar — an AT = B,) 557 (0, m) (AT ar — 0 AT — Bn) (117)

n,m At

in terms of the parameters a,, and (3,. It is evident then the order-by-order identification
(A™) =B, (118)

If there is sufficient statistic to also consider higher-order corrections, the previous formula can

be extended as

Xien = Z ((A(")>AT — T AT? — a, AT — Bn)Egi(n, m)((A(m)>AT — Y AT? — @ AT — ,Bm) )
n,m,At

(119)
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Second-order schemes like the Runge-Kutta scheme display second-order corrections. In this
case the extrapolation can be obtained considering the minimum of the function

TMmax

XZen = Z Z (<A(n)>AT - O‘nATZ - BTL)ZK}—(n7m)(<A(m)>AT - O‘mAT2 - Bm) ) (120)

n,m At
where the linear correction terms have been set to zero. We can introduce also cubic correction
to Eq. (120), obtaining

TMmax

Xoen = Z Z (AT Ay =y AT — i, AT? = 8,511 (0, m) ((A(m)>AT — Y AT = AT = B,) .
n,m At

(121)

Error propagation does not present particular subtleties once the parameters in Egs. (117) -

(119) - (120) - (121) have been determined. We use the Gaussian sampling method. With

this tool we generate a sampling of the data using a standard multivariate distribution with

covariance matrix Ya,(n,m). For each sample, we perform an order-by-order polynomial fit in

AT, obtaining a distribution of values for each parameter. Fitted quantities and errors are the
mean and the standard deviation of the respective distributions.

Other methods are available, such as error propagation through Automatic Differentiation

methods [49-51]. Some checks have been carried out at low perturbative orders, showing agree-

ment with Gaussian sampling.

1.6 Autocorrelations and cross-correlations

When generating configurations with a stochastic differential equation, in order to correctly com-
pute errors we need to compute and take into account the autocorrelations characteristic of the
Monte Carlo process. In addition, NSPT simulations also require evaluating cross-correlations
at different perturbative orders. We describe our methodology, based on the Gamma Function

Method [52] and the Blocking Method [53].

1.6.1 Gamma Function Method for NSPT

This method is used to estimate the autocorrelation time 73,,. We present below an extended
version to consider also cross-correlations. We discuss only the single-replica ensemble case,
while the extension to multiple replicas ensemble for autocorrelations is presented in [54]. We
present the Gamma Function Method using the language of NSPT simulations, i.e. taking into

account different perturbative orders.
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Consider an ensemble of measurements

(A AP AP A} = (A7),
with defined average u'"

(122)
A

where the superscript n indicates the perturbative order. As before,
the best estimate we can assign to the variable is the mean

S (n)
= Ai"

(123)
and we are interested in its variance. In particular, we noted that
Var(ﬁ(n)) — <(A( (n))(A (n) ZZ{ A(n)A(n _ (ME:))Q
- -
72 Z |: A(n)At-‘r (s— t)> - (ng))2:| (124)
1
=2 Z Camyam(s—1t),

where we defined the unnormalized autocorrelation function

Coaom aom () = (AT ALY — (1) (125)

Being the unnormalized autocorrelation function dependent only on index differences, it is pos-
sible to change the summation variables

Var(A™) = Z Camam (s —1)
t,s=1
1 +(N-1)
=3 Z CA(n>A<n>( YV —[¢])
t——(N
1 T id "
=¥ Z CA<n>A<n>( )( N)
t=—(N~—

Var(A™ +(N_ ) t
= % Z pam e (t) (1 - |> ;

N
t=—(N-1)
where we introduced the normalized autocorrelation function

C yn) gy (T C yn) g (T
pA(n)A(n)(t) — Aln) A ( ) _ Aln) A ( )

= 127
Camam (0) — Var(AM) (127)

We note that in the case of correlated samples, the variance of the mean is corrected with respect
to the uncorrelated samples by a factor

+(N-1) |t|
Z PAM) A(n) (t) (1 — N) . (128)
t=—(N—1)
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From the properties
pam am (£) = paon am (—t) (129)
and

pamam(0) =1, (130)

we can further simplify the expression to

(N-1)
- Var(A™) [t]
Var(AW) = ———=42 ) mam @) (1-2) +1

) (131)

- D (5 (1~ W) )

The normalized autocorrelation function decays such that it is negligible for ¢ > ¢; then for

N >> t we notice that the second term in the parentheses can be neglected. We obtain

(N-1)
. 2Var(A™) 1 Var(A™)
Var(AMW) = ==~ wam () 5 132
ar(A™) N pawm am (1) + 3 N v (132)
t=1 ;
where we have introduced the so-called integrated autocorrelation time
m _ N 1
Taek = Do)+ 5 (133)
t=1
In the framework of Eqgs. (117) - (121) we set
Var(A™
Yar(n,n) = L) (134)
N/ Tlllt A

We have now only computed diagonal contributions entering any of Egs. (117) - (121), so we

move on and consider two different perturbative order

(A Al Al Ay = Ay (135)
(A Al A Ay = (Al (136)

(n)

with averages p,~ and ;L( ™)

. We can compute

N
o _ 1
Cor(AP AC) = (A~ YA ) = 3757 1af ) - 2
t=1 s=1
IS (n) 4( (n), (m)
= [<A WA )= ] (137)
t,s=1
1 N
=3 Z Cumaom (s —t),
t,s=1
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where we defined the unnormalized cross-correlation function
Catm aem (8) = (AT AT =y G (138)

As before, we can perform a change of variable t =t — s obtaining

1 N 1 N—-1 N—-1
e t;() Camam (s —1) = < [; Camaom (1)1 —1t) + ; Caom am (1) (1 = 1)

+ NOA(n)A(m) (0)]

1 [ t
—N{ZCAM)AW( (1> ZCA(M)A(W (IN)

t=1
+ Can) gtm) (0):| .
(139)
Introducing the two normalized cross-correlation functions
(t) = Catm) aem) (1) _ C atm) pm) (2)
Pam AGm CA(H)A(TN) (0) COV(A(”)7 A(m)) ’ (140)
) = Caemam(®) _ Caemam(t)
PA(m) Ala) CA(m)A(n) (0) COV(A(m)7A(n)) )

we finally obtain

. . Cov( A(”) A(m) t
COV(A(TL)’ A(m)) - |:Z pA(n)A(m) (1 — N)

t
+ Z P aim A (t (1 - N) + 1} (141)

Cov(A(”) Alm) LN )
- N ZPAWA“") +35 +;PA<m>A<n)(t)+2 ,

having neglected the ¢/N terms as before. In the end we end up with

Cov(A™, AM) ~

Cov(A™), A1) [ (A g a) (142)

N int int

where

49 = Zp » (143)

We now have an expression for non-diagonal contributions entering any of Egs. (117) - (121),

namely

SATL A (A A0

EAT(”? m) = int 1nt (144)

Cov(AM, Am)
N
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From a numerical point of view, the sum in Eq. (133) and in Eq. (143) need to be truncated:
indeed, the larger t, the fewer data are available, possibly resulting in a noisy signal. Automatic
windowing procedures (based on specific criteria) are usually adopted [54]. In this thesis we
used a hard cut. All the autocorrelations and cross-correlations functions have been checked,

ensuring their reliability.

1.6.2 Blocking Method for NSPT

Besides the Gamma Function Method, error estimation can go through the so-called Blocking

Method. As before, we consider an ensemble of measurements
(A A A Al = Ay (145)

Again, neglecting autocorrelations, the naive estimation of the error would be

9 Var(A™)

O naive, A(n) = N (146)

Now we can divide the set of measurements into blocks of arbitrary size L. For example, we

can set L = 2. We perform the average in each block, obtaining a new ensemble of N=N /2

elements
(A7, A7), AP A ARy (A AR AR A (147)
block 1 block 2

The new naive estimation of the variance is

9 Var(A™)

Osize=2,A(n) =
size=2,A N

(148)

Notice that if data were uncorrelated, the variance in Eq. (148) would be the same as that given
by Eq. (146). We can repeat the procedure for increasing block size, for example setting L = 4.
We obtain a new dataset with N = N /4 elements. The new estimation of the error is

2 Var(fi(”))

Usize=4,A(") = N

(149)

This process can be repeated an arbitrary number of times for increasing block sizes. If data were
uncorrelated, at each step the variance of the blocked data should decrease as the inverse of the
block size, compensating the decreasing number of samples (which are now the blocked data).
Because of autocorrelation effects, the different estimations of the variance will monotonically
increase, till blocked variables eventually are uncorrelated and we reach a plateau. The value of

the plateau provides the value of the error to be associated with the measurements.
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In the case of two different perturbative orders

(A7, 487,487, APY = (A (150)
A, AP Al AGYY = (A (151)

Eq. (142) suggests that a naive values of the covariance of the mean can be computed as

Cov(AM, Am)
Unaive,A(")A(m) = % . (152)

Now we implement again the blocking procedure, starting for example with block size L = 2.

Computing the average in each block, we have a new ensemble of N = N /2 elements

(A7, A5, A0 A ARy (AT AR ALY A (153)
block 1 block 2

{Af™, AT AG A LAY {ATY AR AR, ATy (154)
block 1 block 2

The new estimation of the covariance is

Cov(AM Am))

< (155)

Osize=2,A(m) A(m) =

We repeat the procedure until we reach a plateau. For the corresponding block size, we have a
statistically independent dataset. The value of the covariance at the plateau is the value of the

covariance matrix element YA, (m,n).

1.7 Implementation on the computer

One of the fundamental properties of NSPT is the ability to implement all the order-by-order
computations automatically. In a real NSPT simulation, in a sense what we need to implement
is something very close to the non-perturbative Langevin equation. Thanks to operator over-
loading, what is actually implemented is an automatic coding of all the different perturbative
equations.

To be more precise, we note that by redefining operations as order-by-order operations in

the following way
a=b+c N a™ = p) 4 ()

n (156)
a=b-c — a™ = Z b e(n=i)
i=0
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every non-perturbative Monte Carlo is automatically converted into its NSPT counterpart, al-
most without further modifications. Using Eq. (156), all types of interactions can be imple-
mented, including logarithms, square roots and so on, which are defined through their Taylor
series expansion up to a fixed order.

Of course, this order-by-order machinery results in increasing memory demand and compu-
tational cost as the perturbative order grows. Given the computing resources available today,
this is not a big problem. Neglecting autocorrelations, the computational cost scales linearly

with the volume and quadratically with the perturbative order [9], namely

2 _
Tspr ~ L? <nmax 5 nmax) ) (157)

where d is the dimension of the lattice.

1.8 Other stochastic differential equations

The mechanism underlying NSPT is actually more general and can be implemented starting
from many stochastic differential equations. With this respect, NSPT can benefit from state-
of-the-art non-perturbative algorithms, improving efficiency. In non-perturbative simulations
Generalized Hybrid Molecular Dynamics (GHMD) algorithms have proven to be more effective
than Langevin algorithms. It is therefore not surprising that this has in recent years attracted
attention, resulting in variants of NSPT.

The approach can be interesting given the lack of high-order schemes for the Langevin
dynamics. On the contrary, for GHMD-type dynamics, based on the integration of Hamiltonian
equations, it is possible to systematically implement integrators of increasingly higher-orders
[55]: among these, to date the most used are symplectic integrators. Moreover, efficiently
implementing these integrators is often not so difficult [56].

We present NSPT implementations based on HMD dynamics [17] and Kramers dynamics

[57, 58], also referred to as HSPT and KSPT [13].

1.8.1 HMD based NSPT

HSPT is built on top of the Hybrid Molecular Dynamics (HMD) equations [59]. The general

idea is to move from the action relevant to our problem to a fictitious Hamiltonian

Skl > Hingl =33 72 +Slel, (15%)
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where the fictitious momenta m; are extracted according to a normal distribution
Plr] ! 1 > w3 (159)
)= —exp|—= ;.
NP\ T LT
Fields and momenta are evolved from a time 7y to a time 7y 4+ 7 according to the Hamilton
equations

dry _ OH[p,m] _ 0S[y]

dr Op; dpi

160
dpi _ OHlp,m] _ (160)
dr or; i

To ensure ergodicity, at the end of the trajectory we need to refresh the momenta, again according
to the distribution in Eq. (159) . All in all, we need to numerically integrate the equations of
motion with a given integrator. Since once again we cannot rely on an accept-reject step, we
will once again end up with an inexact algorithm, much the same as for the Langevin equation.

In the NSPT spirit, to get HSPT out of Eq. (160), fields and momenta are to be understood

as expanded in power series of the coupling

Mmax

pilr) = P+ g (),
n=1 (161)

max

73 (7) — WEO) (1) + Z gnﬂ'gn) (7).

=1
At the beginning of each numerical integration of a trajectory, the momenta must be refreshed:
the perturbative field 7r§n) (7) is initialized to zeros and only the leading order component is
assigned a random Gaussian variable following the distribution in Eq. (159). During the evo-
lution, all the perturbative components of the momenta produce non-zero values through the
integration of Eq. (160) which propagate the stochastic source to all orders. Chosen a trajectory
length, let’s say 7, the system is numerically integrated by implementing a designated discrete
step T = Ngeps AT. In this case, several symplectic integrators are available: usually, the fourth-
order integrator OMF4 [55] is used. Let us note that HSPT algorithm as discussed so far lacks
ergodicity at the leading order. A straightforward remedy is to randomize the trajectory length
7 [60].

Implementing HSPT with high-order integration schemes is interesting because one could
think of treating systematic errors differently. In particular, it has been noted that instead
of simulating the theory for different values of A7 and then extrapolating to vanishing time
step, one can choose a high-order integrator and simulate the theory for a very small time step

[13]. In this case, extrapolation may not be necessary as the systematic errors are less than the
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statistical errors. This is a claim that should be taken with great care, in particular if one is

interested in high orders: the latter can hold surprises (and in general they do).

1.8.2 Kramers based NSPT

KSPT is formulated starting from the Kramers equation [57, 58], which is a second-order stochas-

tic differential equation. We can define the Stochastic Molecular Dynamics (SMD) equation as
dp;(T) oS

e} (162)

Introducing the momentum ;(7), one can trade the second-order equation Eq. (162) for a

system of two coupled first-order equations, namely

d‘Pi(‘r) _ 7_(_7:(7_)
i 95 (163)
5 - —ymi(T) — 3oi(7) +ni(7)

where 7 is a free parameter and 7;(7) is a Gaussian white noise with the following normalization
Ty =0, (a(r)ng (")) = 290550(7 — 7). (164)

We note that performing the substitution
T — ~yT (165)

and considering the limit of v — oo, Eq. (162) is equivalent to the Langevin equation [61]. In
addition, for v = 0 we recover the ordinary Molecular Dynamics.

The numerical integration of Eq. (163) displays interesting peculiarities. Consider a stochas-
tic time step A7r. With a given integration scheme, we perform a single integration step in
the limit of v = 0, that is to say the system is driven forward in time (79 — 79 + A7) using
non-stochastic MD equations. At the end of the first integration step we introduce a refresh of

the momenta according to

i (10 + AT) = exp (—yAT) 7w (10 + AT) + /1 — exp (=2yAT)ns (10 + AT), (166)
being now the Gaussian white noise normalized as follows

(:(10)15(11))y = 00 - (167)

This two-step procedure are iterated and this defines the Monte Carlo dynamics.
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It is interesting to point out that the stochastic update in Eq. (166) is exact. Consequently,
systematics coming from numerical integration is only given by the order of the integrator used
for the integration of the Molecular Dynamics equations [57].

The KSPT implementation proceeds in analogy with HSPT: first, the formal expansion
in power series of the coupling for fields and momenta is considered. As before, Eq. (163)
is interpreted as an order-by-order dynamical evolution. Eq. (166) shows that the refresh of
momenta in the KSPT language acts in a double way: on one hand, the field is rescaled by a
constant factor at each perturbative order; on the other hand, the stochastic noise is added only

to the leading perturbative order.
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2 | NSPT around Instantons

2.1 Non-perturbative corrections from Instantons

In theoretical physics, instantons provide a valuable approach for studying non-perturbative
effects. These are classical solutions of the euclidean equations of motion and are shown up
in barrier-penetration processes, often assumed to play a fundamental role in determining the
ground-state structure of theories such as QCD [62].

Perturbative expansions on instantonic solutions have become quite interesting also due
to their connection with Resurgence Theory (RT) [63—05]. In this mathematical framework
perturbative series are understood as “generalized series”, offering the possibility to include even
non-perturbative effects. The new series, called Trans-series, has the form (we refer the reader

to [66] for an introduction to the subject)
S g A R )
Alg) =D _g" A +> e T Y gAY (168)
n=0 % n=0

Note that factors like 6_% are genuine non-perturbative effects which can not be detected with
standard (small g) perturbation theory.

One way to physically explain the structure outlined in Eq. (168) is to consider it as per-
turbative corrections on top of saddle-point solutions. In the traditional perturbation theory,
the saddle-point solutions are minima of the Euclidean action related to constant configura-
tions. We can expand the action around a minimum, obtaining second-order fluctuations (i.e.
the Gaussian theory) and higher-order contributions (perturbative loop corrections). In these
cases the action computed at the minimum vanishes, so that we obtain the standard pertur-
bative series (i.e. the first series in Eq. (168)). However, in some special theories not all the
saddle-points are related to constant field configurations. Actually some of them can lead to
finite-action configurations [67]. In such cases we talk about Instanton configurations, which

were first introduced by A. Polyakov [68]. Instantonic configurations produce new genuinely
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non-perturbative terms in front of the usual perturbative series and for this reason are expected
to be related to non-perturbative physics. Quite interestingly, it is possible to formulate a per-
turbation theory on top of the instantons. In analogy with the standard perturbation theory, we
can expand the action around the (non-constant) solution, obtaining the Gaussian theory from
the second-order fluctuations and interaction terms from high-order corrections. The resulting
perturbation theory is cumbersome: complicated propagators and vertices do not allow for high
perturbative orders to be reached, even in the case of Quantum Mechanics.

The mathematical framework of RT has been developed to naturally include the singularities
of the series in Eq. (168) and to study its asymptotic nature. In this work, however, we are in-
terested in providing a stochastic calculation for the coefficients Agn) in Eq. (168). In particular,
we will focus on one-instanton corrections Aﬁ"), neglecting multi-instanton contributions.

As a matter of fact, we have not made any assumptions about the nature of the minimum
action solution around which the perturbative expansion is computer by means of NSPT. We
notice that NSPT calculations have already been used to evaluate perturbative series around

non-trivial vacua in the so-called Schréodinger functional formulation [16].

2.2 The Double Well Potential case

In this section we will discuss the Double Well Potential (DWP) for which instantons have the
key-property of resolving degeneracies in the framework of perturbation theory. We consider
the potential

V(x) = Ma? — 23)? (169)

represented in Fig. 1. Naively, the DWP has two ground states, each centered around one
of the two classically degenerate minima. This notably leads to the spontaneous breaking of
parity symmetry in perturbation theory. However, from basic quantum mechanics principles, the
spectrum of the Schrédinger operator is expected to be discrete, with a symmetric ground-state
wavefunction. Furthermore energy difference between the ground state and the first excited

state (i.e. the energy splitting) scales as e /A [67].

2.2.1 Extracting the energy splitting

Let us consider the Hamiltonian operator

3 p .
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Figure 1: Left plot: Graphical representation of the Double Well Potential of Eq. (169) with
A = 0.1 and z¢p = 0.5 (blue line). The minima are indicated with yellow circles. Right plot:
representation of the inverted potential with A = 0.1 and zy = 0.5 (blue line). The maxima
are indicated with yellow circles, while the continuous red line indicates the Euclidean potential

hole related to the energy tunneling solution given in Eq. (184).

This commutes with the Parity operator P in the coordinate space:
[H,P]=0. (171)

As a consequence we can construct a basis of eigenvectors for the Hamiltonian with two quantum

numbers (n, s), such that the following eigenvalue equations hold

ﬁwn,s(-ﬁ) = En,swn,s(x) y P¢n,s($) = Swn,s(x) 5 (172)

where s = £1. The ground state energy is expected to be in the form [67]

AFE
Eor=FEyF — (173)
where the first term Ey results from the standard perturbative expansion (which is usually called
the expansion in the zero-instanton sector), while AE denotes the energy splitting. Considering
corrections coming only from the one-instanton sector, the energy splitting comes out to be
proportional to e x [67], and thus becomes increasingly smaller as the coupling approaches

zero. Given the definition of the partition function

Z(B) = Tr[e #1], (174)
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the ground state can be studied in the limit of 8 — oco. As a matter of fact, the partition

function of the system in the limit of large 5 and small coupling constant reads

1 — 1 _ﬁI:I — ] _BI:I — ] —BEn,s
Bl;rrgo Z(B) Bl;rrgo Tr[e 7" ] Bl;rréo n;i<n,s|e In, s) Bl;rréo n;ie

~ e—BEo+ | o—BEo.-

~ o~ 5 (Bo,++Eo,-) (e—§<Eo,+—Eo,_> n e§<E0,+—Eo,_>) (175)

~ 22 (Bo++E0.-) cogh g(E07+ —Ep-)

5 (Bo++F0,-) ogh B% .

~ 2e”
We note that the partition function given in Eq. (175) is dominated by the purely zero-instanton

sector. Conversely, the twisted partition function [67]
Z4(B) = Tr[Pe 1] (176)

displays a non-vanishing contribution from the one-instanton sectors. In fact, Eq. (176) in the

limit of 8 — oo and g — 0 reads

lim Z, = lim Tr[Pe PH] = lim n,spe_'gﬁ n,s) = lim e PEns g
B—o0 (ﬂ) B—o0 [ ] ﬁ—)oon;i< ‘ | > ﬁ~>oon§::i

~ ¢ PPo+ _ o=PEo, -

~ e—g(E0,++E0,—) (e—g(Eo,+—Eo,—) _ eg(Eo,+—Eo,—)) (177)

~ —2¢~ 7 (Bo.++E0.-) ginh g(EQ+ — Ep,_)
~ 2¢~ 5 (Bo.++Fo.-) ginhy ﬁﬁ .
2

We immediately notice that taking the ratio of the partition functions given in Eq. (176) and
Eq. (175) we get the energy splitting AFE
ZJ(B) _ JAE

ﬁlirr;o 70~ 67 . (178)

2.2.2 Path integral approach
The partition function in Eq. (174) can be represented using the path integral formalism
Z(B) = Dz e~ 5l (179)

PBC

where S[z] is the Euclidean action and PBC' indicates that we are integrating over periodic

paths, for which the following condition is imposed
x(—=B/2) = z(8/2). (180)
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On the other hand, the twisted partition function in Eq. (176) admits a representation in terms
of integrals over antiperiodic paths

Za(ﬁ):/dx <x|ﬁe—ﬂﬁ|x>=/dx (wale™ ) = [ Do, (181)

where [, ¢ denotes integration over paths that satisfy

x(=p/2) = —x(B/2). (182)

The Euclidean action can be always written in the Lagrangian formalism, where the new po-
tential function W (x) is given by

W(z) = —V(z). (183)

In Fig. 1 we display the new potential W (x) for the DWP case. Since we are interested in eval-
uating the functional integral saddle-points, which correspond to the minima of the Euclidean
action, we need to solve the classical equations of motion in the new inverted potential, in the
limit of B — o0, considering periodic and antiperiodic boundary conditions. It is trivial to
verify that for periodic boundary conditions the only solutions are configurations of constant

field. On the other hand, for antiperiodic configurations we obtain the following solutions for

2
#E(t) = +x0 tanh [%(t — )], w= /2% (184)
m

where t, parametrizes the family of solutions®. In Fig. 2 we show the solutions shown Eq. (184).

the saddles-points

Let us assume that we are looking for minima of the action (179) for finite 8 and anti-periodic
boundary conditions. We denote this solution by ¢.(¢). Using the saddle-point approximation,

it follows

Z.(B) = Dz =5l

(185)

where we have set

r(t) = z(t) — qc(t) (186)
4The two solutions xét (t) are equivalent. In the following we consider only a:ér(t), remembering at the end of the

calculation to add a factor of 2 to the integrals approximated with the saddle-points.
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Figure 2: Graphical representation of zF(t), see Eq. (184). Left plot: we display with a blue

solid line the instantonic solution z}(¢), with a green (red) dashed line the starting (ending)

minimum. Right plot: we display with a blue solid line the anti-instantonic solution x (), with
a green (red) dashed line the starting (ending) minimum. In both figures we use to =0, m = 1,

z0=1/2, A=0.1.

for the (antiperiodic) fluctuations and

2

o°S =&w¢v}d—ww%@>. (187)

MY) = 55 P

qe
We note that in Eq. (185) the dots indicate higher-order corrections. As for now, we will only
consider second-order Gaussian fluctuations, which are usually referred in the literature as 1-
loop corrections. Following the approach discussed in [67], fluctuations are given in terms of

expansions of the form

r(t) = Z cnqn(t) (188)

n>0

where ¢, (t) are the eigenvectors of the kernel matrix, i.e. they satisfy
Man(t) = Aaat) (189)
We can compute formally the Gaussian integral, obtaining
Zq(B) ~ e~ Slae Dr exp (—1 /dt / dt'r(t)M(t, t’)r(t’))
ABC 2
~ e—S[qc]j\//};[o 302% exp (—% gcn)\ncn)

~ e Slad v T An?

n>0

(190)

_1
2

~ e*S[qc]J\/'(det M) 2,
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where we have used the standard convention

(191)

where A will be defined below. It is immediate to verify that the determinant in Eq. (190)
requires regularization. Indeed, by differentiating the equations of motion with respect to ¢, one

obtains

-~ W00 = 2o ~o. (192

from which it can be deduced that ¢.(t) is an eigenvector with vanishing eigenvalue. We will

refer to the normalized function

q0(t) = 4e(t)/1de| (193)
as the zero-mode of the theory. In Eq. (193) the symbol ||...|| denotes
2 oz 2
il = [ dear. (194)
—B/2
The zero-mode can be treated separately by writing
_ _1 [ dcg
Za(B) = e SN (det M') 2 _—= 195
2(8) (det M) 2 [ o= (195)
where higher-order corrections are neglected and
_1 _1
(det M) "2 = T Au? (196)

The divergence of the zero-mode is usually expressed as °

> deg _/BHQCH
/m o Ol (197)

As a final step, we need to define the path integral measure, N. This can be achieved using the

harmonic oscillator with m = w = 1. The corresponding thermal partition function reads

Za(B) = N(det My) "%, (198)
where
d2
Moz—ﬁ—i—l. (199)

Thanks to Eq. (198), the twisted partition function becomes

1
det M'\ 2 B qc||
Z.(B) = e Slelz <. 200
a (ﬁ) G (ﬂ) det MO m ( )
5This result can be demostrated by interpreting any variation dco as a variation §tg [67]. In fact the presence of the

zero-mode is closely related to the invariance under reparameterization of the solution zg (t) shown in Eq. (184).
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In the limit of 3 — oo and m = w = 1, for the saddle-point solution =} (¢) we have

(&

@(t) = xl(t),

2,3
fomwn L
Slee = Skl =T = ox
_ _B
Za(B) = Zo(Booo)=e =T, (201)
det M’ R i
detMO

12°
. w2ad [ a(wt—to)\  JwPm? 1
|Igell - \/ 1 [wdtsech <2 “V12xn T Uy

where for the ratio of determinants (see fourth equation from above) the general result for
Poschl-Teller operators has been used [67]. By also inserting the factor 2 owing to the presence

of a second saddle-point solution z (t) one obtains

(202)

The above result indicates the presence of a purely non-perturbative contribution to the twisted
partition function. By forming the ratio of the twisted partition function of Eq. (202) and the

standard leading-order partition function given by
Z(B — o0) = 2eP/2 (203)

we get
ZCL(/B) — eiﬁﬁ 1
Z(B) V2T

Therefore, by means of Eq. (178) we obtain the energy splitting that reads

(204)

AE = 2¢" T (1+0(), (205)

2mA
recovering thus the one-loop contribution shown in [69] and [70]. Moreover, we can consider also
higher-orders in the Taylor series expansion of the action, which are evaluated on the Gaussian
instantonic theory, yielding perturbative correction in the energy splitting. This scheme has
been implemented in [69] and [70], where two- and three-loop corrections are computed with the
use of diagrammatic perturbation theory and the Faddeev-Popov regularization (more details

about this computation is given in App. B). In that case one gets

AE = 2¢” 1% 1+ (120)20 + (120)223) £ O(N)?] |
27\
Lo (206)
72
L2 _ 9299
10368
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2.3 Two-loop correction from NSPT

It is well-known that the continuum action
1 2 2\2
Seont[2] = [ dt 5 md + Az —zg)*|, (207)

that describes a simple quantum mechanical system, can be regarded as a field theory in 0 + 1
dimensions which can be studied with lattice tools [71]. In this framework one can implement a
naive discretization of the derivative and the action becomes

Shatt[z] = Za[%m(%f + M\z? - x%)z , (208)

where z(ia) = z;. The interpretation after the discretization of the path is as follows: a generic
path of length T (a configuration, in the language of field theory) is sampled at discrete times
that are multiples of the lattice spacing a. The number of sites L scales with the lattice spacing

such that T'= L - a. Definition of dimensionless quantities on the lattice require the following

relationship
am=m
mi/a = (209)
a®) =\
ro/a = Ty,

where we have set h = ¢ = 1. It is possible now to rewrite the lattice action in terms of the
above dimensionless quantities
- 1. - S~ -
State [T] = Z [im(l"wl - Iz’)z + /\(1712 - 173)2] . (210)

i

Notice that the definition of Z; in the second of Eq. (209) fixes the dimensions of the coupling
A (see third of Eq. (209)), which is now also dimensionless. Therefore, it is expected that all
the perturbative corrections have the same physical dimensions. For notation simplicity in the

following we will write Siu[Z] = S[Z].

2.3.1 Minimum action solutions on the lattice

We are interested in the minimum solutions Z* of the action given in Eq. (208), i.e. we are
looking for solutions of

55|7]

.. =0 (211)
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in order to use the saddle-point approximation. In general, the minimum action configurations
for the discretized theory will be different from those of the continuum theory, although we
expect that in the limit of vanishing lattice spacing the former will approach the latter. The
minimum action solutions are not known analytically for the lattice Double Well Potential, but
they can be derived numerically. A possible choice is to use the Steepest Descent Method (also
known as Gradient Descent) [72]. In the Steepest Descent Method one considers an arbitrary

initial configuration Z;(0) and evolves it according to the equation

B oS
f=- 25 (212)

The previous equation is implemented numerically introducing a small parameter €

oS

e
9%; |55

Zi(+1) = 7)) (213)

and the evolution in € goes on until a stationary point is reached, where the derivatives of the
action are zero. In Fig. 3 we display the solution found with this procedure. We note that the
lattice instanton differs from the continuum one by O(a) corrections. Additionally, the Steepest
Descent algorithm depends on the particular choice of the initial configuration. However, we
have verified that this does not change the shape of the minimum solution at all, but it only
yields different transition points. In what follows, the initial configuration will be always chosen
in such a way that the transition point coincides with the center of the lattice. In addition, we

rescale the stationary solution according to
T =230 T;. (214)

Let us emphasize that the boundary conditions, either periodic or antiperiodic, enter into the
minimization of the action (213) by establishing that
PBC: ji-&-L = .i‘i,
(215)
ABC: .;f;iJrL = —i‘i .
Once the minimum action solution is identified through the Steepest Descent Method, we are
allowed to work in terms of the fluctuations. We introduce the dimensionless local fluctuations
as

Bi=3 4+ & =0 T+ & (216)
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and we can write the corresponding action in the following form

(€1 — &)+ m(@Ef, — 37) (& — &)

A - 3)? + ME + 26T+ 2@ - B)(E + 263))|

2

o (217)
]+ Z{ (Giva — &) + (@ — 7)) (Girr — &) + A& + 26:E))°

+ 8@ - )€ + 26|

The previous formula can be simplified with the use of equations of motion. In fact, from

5'<S:E _0
8mj F*
we derive
S [ = 8By — 8i) + 23— B)2376:5] = 0. (218)
so that
~ ~ % ~ % ~ % N ok [ 2 ~
m2E; — &5y, — &) = —4NT(F] - 57). (219)

We now notice that the mixed velocity term in the action (217) is written up to boundary terms

as
Z m(T; — §z+1 Z m(2%] — ]y — jfﬂ)gi (220)
which, with the use of Eq. (219), becomes

Zm Tip1 — (§z+1 24)‘ - x(z))g

The RHS of the above equation cancels out a part of the potential, so that the action becomes
+§j[ (Biv1 — )7 + NE +2831)2 + 23, - )]
I+ Z[ (41 — &) + A6 + MBS E + 405180 + 205" - 933)53} (221)
+z[ (Eia = &7 + 38} + Aad(6a? - 2)87 + ahzomdl].
Following the convention in [70], it is customary to set

4NTE = o (222)



in order to recover the action of the harmonic oscillator as free theory for PBC. Indeed, given

that the minimum solution of the action with periodic boundary conditions is
" =mg (223)

from which

Zi=1, (224)

it follows that

Sppc[® —04—2[ (i1 —&)% + ~~25 + V 2himd? 3+)\5] (225)

In that way the usual theory with cubic and quartic vertex interactions is recovered. In the case
of solutions where antiperiodic boundary conditions have been employed (i.e. instantons) the
general action reads
~ 1. _5,7/3_ 1\ =~ T o =
Sapc(7] ]+ Z{ G — &)+ §mw2<§ ;- 5)53 + V2Nm@2EE + )‘514:|
(226)
= S[&"] + S[¢]

where it can be noticed that, in addition to a much more complicated free theory, the cubic
interaction term depends on the site where the interaction occurs. This is actually one of
the reasons for which it is difficult to treat diagrammatically the perturbation theory of the

instantons.

2.3.2 Faddev-Popov regularization
The kinetic matrix defined by the action in Eq. (226)

Kij = & Savolé] (227)

06,0¢; lé=o
among else has a zero-mode. In the right panel of Fig. 3 the eigenvalues of the kinetic matrix are
plotted. In analogy to the continuous theory, the twisted partition function is thus ill-defined
and requires regularization. We regularize the zero-mode by implementing the Faddeev-Popov

(FP) procedure °. Essentially, the idea is to use a convenient rewriting of the identity. Indicating

with tg the transition point for the instantonic lattice solution, we can write

/ dto 6(to —t5) =1, (228)

6For the FP implementation in the lattice theory, we took inspiration from the continuum case presented in [73].
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Figure 3: Left plot: Minimum action solution with antiperiodic boundary conditions. The
instantonic lattice solution ] is represented with blue dots using a = 0.3, L = 500, T =
[~75,75], m = w = 1, A = 0.1. For the Gradient Descent equations, we used € = 5- 107> and
Nitep = 106 configuration updates. The continuous yellow line represents the continuum solution
given in Eq. (184) with the same parameters as before. Right plot: all the set of eigenvalues of
the matrix K,; in Eq. (227) with ¢ = 0.3, L =500, m = w =1, A = 0.1. In addition, the green

circle shows the zero eigenvalue of the kernel.

where ¢ lies in the integration domain. For a generic function f(ty) with only one zero located

at 3, the following property holds

d(to — t5) = 6(f (to)) 1" (£5)] - (229)
The key-point is to select fluctuations having zero component along the zero-mode, by making
an appropriate choice of f(tg). This occurs by setting

F(r0) = (@ — &4 (—to) ) E(—t0) (230)

k
where 7} (—to) is the minimum action solution with transition point at ¢y and @9 (—to) is the
normalized zero-mode. In other words, Z9(—to) is the eigenvector of the matrix K;; with zero
eigenvalue. We show in Fig. 4 - left panel, the zero-mode shape 552 and the continuum counter-
part 2 /||2F||. Let us note that the zero-mode dependence on the transition point ¢, is induced
by the specific minimum #*(—tg) around which we expand the action. The minus sign in the
argument of the instanton and the zero-mode reflects the functional form of their continuum
counterparts. Furthermore, this is the correct functional form that yields the proper discretiza-

tion along the transition point (see below for a detailed explanation). The derivative of Eq. (230)
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Figure 4: Left plot: zero-mode profile. The lattice zero-mode shape #¥ is represented with
blue markers. We set a = 0.3, L = 500, T' = [-75,75], m = w = 1, A = 0.1. The continuous
yellow line represents the continuum zero-mode shape, see Eq. (193). Right plot: Faddeev-Popov
geometric shape v; of Eq. (242). We display in blue the lattice shape for a = 0.3, L = 500,
m =w =1, A = 0.1. With the solid yellow line the continuum counterpart Z.(t) is shown. As

before, the continuous functions were sampled at discrete steps of size a.

with respect to the transition time reads
ka —to)@ ) = Y (@ — F(—t0))F(—to) (231)
k

It can be shown that f’(tp), for small values of the coupling constant A, is always positive.
Therefore, it is not necessary to take the absolute value (see Eq. (229)). Moreover, since the
derivative with respect to the transition time is positive, the function vanishes at only one point
t5, justifying the use of the Dirac delta property in Eq. (229).

The transition time ¢y can also be discretized. Although in principle the transition can occur
at points not detected by the lattice discretization, we can always achieve an approximation

whose error tends to zero in the limit of vanishing lattice spacing:
Ty (—to) = Tj_; + O(a) for to=j-a+0(a). (232)

The new minimum 7 _ - leads to a redefinition of the matrix K;;. We indicate the new zero-mode

as i‘g_ e In addition, the regularized version of Eq. (231) reads

~0 _ 50
f'(to) = fi = Zxk(M) : (233)

a
k

We use the FP procedure in the twisted partition function of the lattice theory, namely
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= 7. oSl
Za /ABC’deZ e
/ABCdeI /dro (10 — 1) e~ 5l (234)
=0 =0 )
/ABCdel Za 5[2 Tk, —j‘cz_j)j}g_j} Zj{;(%) oSl

l

As usual, the path of the particle can be decomposed to the classical path plus a fluctuation

field, i.e. we write

Bi= 46 =TT+ . (235)

Expanding the action associated to the fluctuations as we did in the similar case of Sec. 2.3.1

we obtain

NO —_ NO . ~.
Z, = e 5] /ABCdel Za 5{Z§k:pk j} Z T + &) (H%xlﬂ) e Sl (236)
1

To remove the zero-mode we need to introduce the orthogonal component
& = coff_; + & (237)
in the twisted partition function
st o ey Tmimi T ELY gy
_ _—S[z - —j— -3\ .-
Zg=¢ \/%/ABcHdg Za&co zl:xl_j—l—coxl_j—&-&l)(a)e
75’[{1} €T jo . ~
SN / [Tae 3o, + &) (F==g—) ¢
ABC a
x 79 79 F1
df x+£ <z1 l)efs[g]
e, I z i) (M
[, Tl s () e
ABC : :

e S ﬂ/ABCde 29514'51 (xl 1 jo) -S[EY]

e

(238)
where in the first equality we have made explicit use of
/ H dé, — [ oo H dé> (239)
ABC V2r Jase

and the orthonormality property of the basis of eigenvectors. Notice that in the third equality
we shift the index I — [+ j. Additionally, in the fourth equality we also shift & ; — & which is
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legitimate because we are integrating over all possible fluctuations. Of the two Faddeev-Popov
terms, one represents a purely geometric quantity that has nothing to do with the sum of the

functional integral. In fact the scalar product

700 0 0 [ 2
V= Zif (71—1@ l ) =1Io Zﬂ_ﬂl(il_la L ) = Toy = Wg}\} v (240)
7 7

appears only in the one-loop calculation and therefore can be factorized in front of the functional

integral. It follows that
o= T [ ()
- [ Tl A et ] e
ST o T B ]

/ 8 1 . -
mﬁ(ﬂc?ﬂ — &) =u. (242)

In Fig. 4 we depict an example of the profile v; at lattice spacing a = 0.3. In Eq. (241), the

where

zero-mode has been completely regularized and the functional integral includes only fluctuations
orthogonal to the zero-mode. In the Faddeev-Popov approach, the price to pay is an additional
term into the twisted partition function proportional to \f:\ This term also has a series expan-
sion in perturbation theory, coming from the formal expansion in power series of the fluctuation

field, which is naturally interpreted in the NSPT framework.

2.3.3 Perturbative Free Energy

Let us notice that in Monte Carlo simulations the free energy, corresponding to the partition
function of Eq. (241), is the observable to be computed. However, the additional FP interaction
term is not yet an observable. We can rewrite the twisted partition function as

o—SIE

*]BW 1 N Ll 1
Z, T 2L ﬂ;gl ulba , (243)

where (...)+ denotes the average in the antiperiodic setting for the theory without zero-mode

and

zi :/ [ aét e (244)
A

BC
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is the regularized twisted partition function. The FP term can now be calculated through
NSPT simulations. On the other hand, the quantity in Eq. (244) can be computed considering

the equation

d ~ ; 1

doi= [ TLagr @[~ oso -], (215
ABC 7

dx 2v/A

which by means of Eq. (226) and
SO =voama? 3 7 (246)

S =3, (247)

(2
we get

1
<—;\55(1> - 5\5(2)> : (248)

a

1L
Ldg dy g <— LI S(2>> _ 1
ZEdx""  dax 2v/\ . A
The quantity in Eq. (248) can be very efficiently calculated with NSPT, from which we get the
coefficients in perturbation theory. By expanding the RHS of (248) in power of lambda, the

series is given by

1
L _LERsm 3@ i(f\a“) +32a® 4+ ) . (249)
A\ 2 X

a
The coefficients a(?) are related to the perturbative series of the partition function and the free
energy. In fact, integrating Eq. (249) from X' =0 to A’ = X we obtain
ImZr=mZ:(A=0)+ i &an - Zr=2Zl -exp [i Xnan} , (250)
n ' o1

where ijo is the twisted partition function for the free-theory having no zero-mode contribution.

Inserting the last expression in Eq. (243) we finally get

Uy IR i)
= —_—— . P . 1
Z, Nirs ZFy - exp L; nan] < +\5;§l vl>a (251)

Given the functional form of Eq. (250), we will refer to the series in Eq. (249) as the (perturba-
tive) free energy.
Referring back to Eq. (178), we notice that for the calculation of the energy splitting the

computation of the partition function is also necessary. This too can be expressed in terms of
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Figure 5: Left plot: continuum limit for the action evaluated on the lattice minimum solution
S[z*]. Right plot: one-loop prefactor for the lattice theory, see Eq. (253). We use the symmetric
derivative in the definition of v (see Eq. (240)) to improve convergence. Green diamonds,
orange squares and blue triangles represent the values at finite lattice spacing, while circles of
the respective color show the extrapolation to the continuum limit by employing second-order
fits in @. The three colors refer to three different values of the coupling A reported in the labels,
while the other parameters have been set to m = w = 1. The dashed gray lines represent the

values of the continuum theory given by Eq. (206) at the same value of \.

the free energy. For § > 1 and small coupling constant the form of the partition function reads

7 = / dé;eSIE]
PBC 1:[

— BB — ,—BEP+IEP+X BN +..) (252)
oo ')'\n
= Z —by, )
pexp [Z_: . }
where the coefficients b,, are known since they are simply the coefficients of the perturbative
expansion of the energy in standard perturbation theory. By means of Eq. (178), the energy
splitting for the lattice theory will be given by
27 - 2 (75, 2\ = - L
AE:a:—sw[ a0 ) 2 lan—ba)| - {1+ VAS & . (253
57 ¢ a7z eXp;n(a ) + El:&vza (253)
The above equation needs to be studied in perturbation theory by means of an expansion of the
exponential in Taylor series of the coupling, multiplied order-by-order by the FP term. This

procedure generates the perturbative corrections as the one introduced in Eq (206).
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2.3.4 Numerical Results

Before presenting the analysis of the results, we discuss the one-loop scaling to the continuum
limit. By comparing Eqgs. (253) and (205), it becomes clear that in the continuum limit a — 0
we must have

1
2%’

7 /71, S (254)
7\/;< Z ) - -y

where the quantities on the LHS can be deterministically calculated on the lattice. In Fig. 5,

S[a.] -

the approach to the continuum limit for different values of A is shown. Notice that no error bars
are associated with points since there are no statistics involved. One-loop lattice extrapolations
and continuum limit coefficients are always in agreement.

We used the NSPT algorithm to estimate the perturbative coefficients in Eq. (253). In
this work, the Langevin equation was integrated using the Euler scheme, see Eq. (78). The
numerical integration was implemented with six different time steps, namely A7 = 0.0025, 0.005,
0.01, 0.015, 0.02, 0.025. Moreover, the evolution was considered in terms of the dimensionless
fluctuation field fi expanded as

&= &0 4 VAW AP § ABEE 4 REW 4 = 4 3 AEEM (255)

n>0
The evolution occurs by means of the Langevin equation containing the gradient of the action
in Eq. (226). Since the twisted partition function regularized with the Faddeev-Popov method
requires only orthogonal fluctuations, we subtracted the zero-mode component from the fluctu-
ation field at each Monte Carlo step *. During the stochastic evolution two observables were

measured, namely
VIS Ero = A 4 X2 4 (256)
VW —(FL\3 Fiva _ 5, (1) 4 32.(2)
—5\& mwgzi:xi(fi) —A;(fi) =Xa"V + XN+ (257)

We emphasize that even though interactions proportional to \fj\ appear in the action, terms

with non-integer powers are null in the perturbative expansion. This is exactly what also

Since in NSPT simulations the fields are expanded in formal series, the zero-mode subtraction should be understood

as an order-by-order operation.
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(a) Estimation of the normalized autocorrelation function
and of the integrated autocorrelation time for the first-
order Faddeev-Popov term. The functional dependence

on At indicates the summation region.

(b) Estimation of the normalized autocorrelation func-
tion and of the integrated autocorrelazion time for the
first-order perturbative free energy. The functional de-

pendence on At indicates the summation region.
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(c) Estimation of the normalized cross-correlation function and of the integrated cross-correlation time between the

first-order Faddeev-Popov term and the first-order perturbative free energy. As before, the functional dependence

on At indicates the summation region.

Figure 6: We show the estimation of the autocorrelation (Fig. a-b) and cross-correlation times
(Fig. c¢) necessary for the definition of the covariance matrix X(n,m)a, in Eq. (115). The
estimates are for a = 0.4, m = w = 1, A7 = 0.025. The blue markers indicate the values of p

and 7y, as the summation window varies, see Eq. (127) and Eq. (133).
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happens in the calculation with Feynman diagrams in the continuum theory. We call the per-
turbative coefficients of the free energy and FP terms as a(? and ¢, respectively. Although
the coefficients are related to different observables, since they are calculated on the same con-
figurations, they turn out to be correlated. Because of this fact, we need to take into account
also cross-correlations between the FP term and the free energy. We used the Gamma Function
Method introduced in Sec. 1.6.1. In Fig. 6 we show an example for a particular choice of the
lattice spacing, a = 0.4. In this study, the hard cut at At = 50 works well for all the different
perturbative orders. In particular, we simulate perturbative order up to nya = 3 °.

Notice that while in Egs. (256) and (257) the perturbative expansions are in X, in the
continuum theory typically we consider the expansion parameter to be S, 1'— 12). This requires

the following rescaling
a5n

(n)
1 27L

k™) —

(258)

From now on, we will use the rescaled coefficients in the expansion of Eq. (253), without changing
the notation.

The coefficients related to the expansions of Faddeev-Popov term and free energy, simulated
at fixed a, require an extrapolation to vanishing stochastic time step. Once the covariance matrix
is defined by means of the Gamma Function Method, the x? function is minimized as discussed
in Sec. 1.5. To check the extrapolations, both linear fits (considering the three smallest time
step values) and quadratic fits (considering all the time step values) were considered, following
Eq. (117) and Eq. (119). In Fig. 7, we show the extrapolations for a = 0.6 with m = w = 1. The
two extrapolations agree well. For getting the values in the continuum limit, only the quadratic
extrapolations were considered.

Considering Eq. (253), it is easy to derive the first perturbative correction, namely the two-
loop correction:

. Zk
AE = 51 ]A/\/Z(ZO> (14 @20 ) (T (120 (@ = by L)

0

! (259)
—sial,, [ 2 Zao M) 4 o) _ p0
—e === ) [1+ @22 () +a'P =o)L .
i ZO
In light of Eq. (206), we can identify
S Z 1) 4 0 ) (260)

8Reaching the third order in by requires simulating the system up to the sixth order in \fS\, significantly increasing

the computational effort.
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Figure 7: Continuum stochastic time extrapolations for the first- and second-order Faddeev-
Popov term (Fig. a-b) and first- and second-order free energy (Fig. c-d). The NSPT com-
putations at fixed A7 are represented with blue and red markers with error bars. Blue points
are included in the linear fit, see Eq. (117), represented by the yellow solid lines. Blue and
red points are included in the quadratic fit, see Eq. (119), which are shown with green solid

lines. The extrapolated quantities are shown in dark red and purple for the linear and quadratic

minimization respectively, with a little shift along the A7 axis for convenience. The 2 , are

reported in the labels.
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where the coefficients on the RHS are always calculated at fixed and finite lattice spacing.
Notice that the lattice spacing has a significant impact on the stochastic evolution. In fact, the

integrated autocorrelation time is observed to grow like

1

Ara (261)

Tint. =

The simulations thus experience a slowdown as the continuum limit is approached (mimicking
the critical slowing down of lattice gauge theories). For this reason, it was not possible to
simulate lattice spacings smaller than a = 0.15. In practice, we have done simulations for values
of a = 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.75 with L = 1001, 751, 601, 501, 376, 301, 251, 201 so
that 8 = L - a =~ 150.

In Fig. 8 we report the continuum limit extrapolation for the one-loop coefficient z(!) defined
in Eq. (260). The extrapolation a — 0 has been performed considering linear and quadratic fits
in a?. The two fits show complete agreement with each other. For the following, only quadratic

fits were considered. In this case, we get

M = —0.81660(50) (262)
aM — M = —0.1657(71), (263)

and we finally obtain
2o = —0.9823(71), (264)

which is consistent with the continuum value given in Eq. (206). The two-loop correction error
is dominated by 99.5% from the extrapolation of the free energy, while the contribution of the
Faddeev-Popov term represents only 0.5% of the total error. Indeed, it is worth noting that the
free energy in the antiperiodic theory is of order ~ 10 with a relative error below one-tenth of
a percent (refer to Fig. 7). The result of Eq. (263) has a rather large error since it turns out to

be a subtraction of coefficients taking similar values.

2.4 Higher-order corrections and discussions

We presented the calculation of the first perturbative correction on the one-instanton sector with
NSPT. Although it is a simple model of quantum mechanics, we have emphasized that even in
this case the calculations with Feynman diagrams are not simple. NSPT only partially solves

these issues. We have shown that we end up with a subtraction of contributions coming from
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Figure 8: Continuum limit extrapolations of the Faddeev-Popov term (plot on the left) and free
energy (plot on the right). The extrapolated values, shown by orange and red points, have been
obtained using quadratic and linear fits, respectively. We used the first 7 (6) points for the
linear fits of the FP term (free energy). For the quadratic fits, all points have been employed.

The expected X?ed are given in the labels.

calculations on two different vacua. Incidentally, the values involved are very similar, thus re-
quiring high precision. Furthermore, reaching the continuum limit for not-so-high perturbative
orders is a challenging task and must be performed with care. In this regard, simulations at
higher orders are still ongoing, and results at the level of precision we are aiming at are not yet
available. Some of these issues could be sort of a pathology of the problem at hand, and they are

not going to stop us from exploring NSPT expansions around non-trivial vacua in other theories.

There is nevertheless something more to point out: not surprisingly, at not-so-high orders,
we found that the NSPT signal exhibits large oscillations. This last observation is of a much
more general nature, it is not that new and it is expected to involve all low-dimensional models.
For this reason, the remaining part of this thesis is mostly dedicated to confronting the large

fluctuations problem in NSPT.
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3 | High-order NSPT computations
for O(N) in the large N limit

3.1 Introduction to the large fluctuations problem

From the first formulation of NSPT, it has been clear that the estimation of perturbative co-
efficients via stochastic process leads to results that are affected by statistical and systematic
errors. Moreover, since we are obliged to work on finite volume, it is important to study the
finite volume effects on our results. Considerable progress has been achieved regarding both
issues [8, 13, 19, 20]. However, also the distributions of NSPT coefficients display features and
aspects that require attention. This remark was prompted by inconsistencies between NSPT
predictions and established results for the O(3) non-linear sigma model”. Furthermore discrep-
ancies were detected and analyzed in different zero-dimensional models: the zero-dimensional
A¢* model, the dipole random variable model, and the Weingarten’s “pathological model” [15].

In short, NSPT simulations in low-dimensional systems display statistical properties that are
very different from those of a normal process. Normal processes show exponential suppressed
tails, while NSPT stochastic processes display long tails and rare events that introduce spikes
that challenge the traditional statistical analysis methods. Although the calculation of statistical
errors can be reliably performed using non-parametric approaches (using the bootstrap method
[15]), there still remains the practical challenge of determining whether accurate estimates can
be obtained at high perturbative orders for low-dimensional systems.

Indeed, the presence of huge deviations at high perturbative orders is not unexpected. This
can be verified even in the case of simple models as the following one. Let’s consider the case of

the zero-dimensional action

1
Slel = 54 + 2¢° (265)
2 3
9These discrepancies were observed by M. Pepe [74], known as the Pepe effect.
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for which the non-perturbative Langevin equation reads

¢ =—(p+g9>) +1 (266)

Considering the formal series expansion shown in Eq. (68), the above equation leads to the

following order-by-order set of equations

2O = _p0 |

o) = _p(1) _ 50 ,0)
2@ = _po® _ 90,0 (267)
3 = ) _ (2002 | 51,0

It is evident that any fluctuation driven by the Gaussian noise at the leading order is amplified
as squared at the first order, resulting in a cubic effect at the second order, and so on. In
summary, a potentially large fluctuation becomes increasingly amplified at higher perturbative
orders, leading eventually to a situation in which the signal is lost. We naturally inquire about
the effectiveness of the restoring mechanism built into the Langevin equation in reabsorbing
large fluctuations (and up to which order), its impact on the autocorrelation time and on the
emerging standard deviation. A logical assumption is the problem will become progressively less
intense as more degrees of freedom are involved (coherent large fluctuations will be improbable,
and overall, the interaction among the numerous degrees of freedom is expected to lead to a
kind of self-averaging towards gaussianity). However, this leads to the question of the required

size that a system should have in order to ensure stability.

3.2 O(N) Non-Linear Sigma Model

The process outlined in Eq. (267) is quite broad. The conjecture that increasing the number
of degrees of freedom would lead to less problematic signal appears to be confirmed by Lattice
QCD simulations, where fluctuations do occur only at extremely high orders. In large systems,
the equations for different degrees of freedom are coupled so that we expect that rare deviations
with an independent impact on single degree of freedom will have less and less contribution.
All in all, it makes sense to explore the connections between NSPT stochastic distributions and
the number of degrees of freedom. From this point of view, the O(N) non-linear sigma model

becomes an ideal laboratory, as it allows for simulations of the same model with varying values
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of the parameter IV, thus modifying the number of degrees of freedom. Naturally, increasing the
number of degrees of freedom leads to higher computational costs.

Two-dimensional O(N) non-linear sigma models are very important in quantum field theory.
Theoretically, these models exhibit interesting properties, such as asymptotic freedom. Phe-
nomenologically, they have successfully modeled various features across different contexts (for
an introduction to this subject, we refer the reader to [75]). From our perspective, our interest
in that model consists in the possibility of changing the number of degrees of freedom through

the choice of the value of N. In the continuum the action of the model reads

Sls] = % / Az (aﬂs(z))Q, (268)

where s(x) is a N-component real scalar field with the local constrain s(z) - s(z) =1 for all x.
Various lattice regularizations of this model are known. For our purposes, we use the simplest

2D version, namely
1
Sls] = Y Z Szt Sty (269)
T,

where s, is a N-component lattice real scalar field obeying the constraint s,-s, = 1 on all lattice
sites. Here, g is the coupling constant and p runs over the two lattice directions. The partition

function can be expressed by incorporating the constraint into a local Dirac delta function

Z = /H dsy 0(s2 — 1) e Sau o Satu (270)

3.3 Perturbation theory setup

In the O(N) non-linear sigma models, the interaction is encoded in the local constraint. Pertur-
bation theory requires the identification of the correct degrees of freedom. Here we follow the

approach discussed in [76]. By using the decomposition
8y = (73,04) (271)
the partition function becomes
Z = /H dm, do, 6(m* + 02 —1) SR (e masutoronss) . (272)
The o, component can be integrated-out by means of the Dirac delta function
0 = e(a)y/1 -2, (273)
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with e(z) = £1, and we get

_ 0(0p —x0) 00z —e()\/1— 2) a2

The partition function now reads

7= % / I] dn. o272~ @) IR O,
e(x)=%1 z 2¢(x )m

— Z /H L 6% Zm)”(ﬂm-wm+,4,+e(m)e(a:+,u)\/1771'%,/177Ti+u) .

1—m

(275)

By defining

ATty =Tpyy — Ta, (276)

(A1 =72) =@+ p)y/1 =75, , —e(x)y/1 — 72, (277)

we can write the action terms as follows

(Aumy) - (Aumy) = (Aumy)? = ﬂ-iﬂt — 2Ty Ty + T (278)

(A1 =m2)e(Apv1=73)e = (Apy 1—72)? (279)
zl—wiﬂt 2e(x + p)e(x)4/1 I+H\/1—7T2+1—

(280)

Adding the previous two equations we get

(A7) + (A1 —7w2)2 = 27, m,y, — 2e(x)e(z + p)y /1 — w2 /1-7w2 42, (281)

so the partition function is written as

Z /H 219 Zm,u |:(Au7"m)2+(AuV 17”%)Z+1j| . (282)

e(x)=%1
The last term in the action can be neglected since it is a constant contribution to the partition
function that can be reabsorbed into the definition of the lattice functional integral. To obtain

the usual perturbation theory, it is customary to use the rescaling

2 — gmt. (283)

x

In fact, using Eq. (283), the partition function reads

Aume) 2+ (A, /1— 71'33
= > /H "’Z“"’“{( nre) g (BuvImgma)e | (284)

— " —om2
e(x)=%1 1 gﬂ-
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We note that every time we choose a non-constant sign field e(z), in Eq. (282) the constant terms
in the action no longer vanish. As a result, we obtain a contribution that scales as ¢~ 7 and thus
does not contribute to the perturbation theory. From now on we will therefore consider only
constant fields, namely e(x) = 1. It is easy to see that ¢(z) = —1 leads to the same perturbation
theory. The two perturbation theories can be summed, giving an additional constant in front of
the partition function that still can be reabsorbed into the definition of the functional integral.
We introduce the infrared regulator A to set a temporary mass term to be removed at the end
of the calculations. The partition function has the form

Z = lim

1 AT+ N2 - (A, /T—gm2)? | -1 5 log (1—g72
HO/Hdwme Ev*‘[( pe) AT (B VImgm)T | 7o e los (1 mm). (285)

where the logarithmic term arises from the additional integral measure term. As for the propa-
gator, this is given by

+T o 2k eik-(mfy)

(mpml) = 69 Gz —y) = 67 [W o 5 - (kT“) Y (286)

We note that the propagator diverges like log (A) as A — 0. This issue is related to the fact that
in perturbation theory, expansion occurs around a free vacuum with broken symmetry, while a
theorem prohibits this kind of symmetry breaking in 2-dimensional systems [77]. As a result, the
fundamental building block of perturbation theory, the free propagator, is ill-defined. However,
it has been noted in the context of the O(N) sigma models that any O(N) invariant quantity
can be expanded perturbatively [76, 78], with the infrared divergences precisely canceling out

order-by-order.

3.3.1 One-loop computation

In this work we consider a well-defined O(NN) invariant quantity [76], which is the energy (that

is given from the propagator in terms of the original fields)

1 OlogZ 1 07
T2V o1\ 2VZ a(1
a(g) 8<9) (287)
1
=37 (8g * Soqp) = (S0 - 81).

T,
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Working in perturbation theory, up to second-order terms, we get

(50 s1) = glmo - m1) + (/1 + gmdy /1 + gd)
—1 +g(<7r0 ) <ng><0>) (288)

1 1
+ 9% ({mo - m) W = (mh) D 4 2 (mdad)© — 2(x)©) + O(g"),

where in the last line we use the Taylor expansion and <1rmﬂ'y>(”) is the n-loop correction to the

free propagator. The leading-order energy thus is
EO® =1, (289)
Given the Eq. (288), the first-order correction to the energy is given by the expression

EW = (zg- 7)) — (x2)©

= Jim (N~ 1)[G(1) — G(0)] (200)
o N ()
_}\%(N 1)D(zx=1)= 1
where we define
+7 ko eikz -1
D(z) = G(z) — G(0) = . 291
(x) (z) (0) [ﬂ (2k)? 42# sin2 (k#/Z) A2 (291)
Notice that in the final result of Eq. (290) we have used
1
D(1) =~ (292)

In this case infrared divergences in (g - 1)(?) are exactly canceled out by the additional term

(m) (.

3.3.2 Two-loop computation

The same cancellation takes place at the second perturbative order. The form for the second-loop

correction to the energy follows

1 1
B = (my - 7)) — () ) 4 () ©) - (). (293)

The above equation can be rewritten using the Wick contractions

(mom]) ) = (N = 1)°G2(0) + 2(N — 1)G*(1), (204)
(o) = (N = 1)°G3(0) + 2(N — 1)G*(0),
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through the use of which we get

E® = (N - 1)G(1)G(1) + (N —1)G1)G(0) + i[(]\f —1)2G?(0) 4+ 2(N — 1)G?(1)]
LN - 17G7(0) +2(N — 1)E(0)] + O(¥)

=-(N-1)GM(GA) - G(0) + %(N = 1[G*(z) = G*(0)] + O(N?)

1 (295)
= £16() - G(0) ~ 2(G(1) ~ GO)][EN) - G(0)] + O(?)
= J(N = 1)[D*(1) ~ 5D()] +0(?)
N -1

_ 2
=55 TON).

In Eq. (295) we use the expression for the first-order correction of the propagator. We report
on this computation in App. C. The second-loop correction yields still a finite result where all
the logarithmic divergences are canceled.

Higher-order computations are not simple because we have to face an intricate perturbation

theory, where not only new Feynman diagrams are generated but also new vertices appear at

each order. Until now, only the first four corrections are known analytically [76, 79] and read
E© =1,
EW = (N -1)/4,
E® = (N -1)/32, (296)

E®) = —0.00726994(N — 1) — 0.00599298(N — 1)2,

E®W = —0.00291780(N — 1) — 0.00332878(N — 1)2 — 0.00156728(N — 1)3.

3.4 Perturbative computations with NSPT

We rewrite Eq. (285) for the partition function in the form

Z:/H dm, exp{Z(Trm~7rx+,,+§\/1—g7T;% 1_97"§+p>}
P @,p (297)
X exp {—% Zlog(l - 97"3;)} 5

from which we define the action as

1 1
S = _Z(wx.mer VI gm 1 —gﬂ'i+u) +5 2 log(1—gm?). (298)

@,p
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Figure 9: NSPT simulations of the O(5) NLSM model in a 20 x 20 lattice. The figures represent
the energy at increasing loop orders, computed using configurations with zero-mode (blue solid

line) and without zero-mode (red solid line). The signals with zero-mode are much noisier.

The associated non-perturbative Langevin equation is straightforward

. . , . 1—gn2, 1—gm2_ gl .
#](T):Z{ﬂ.] 4+l _ﬂ.]<\/ Y u+\/ y—p Y + (1)
Y yt+u y—p Y _ 2 _ 2 _ 2 Y
" 1—gmy 1—gm; () 1—gm; )
(299)
with
(m()) =0, (my (g (")) = 80 bywd(r —7') . (300)

Notice that Wg(r) represents the j-component of the 7r field at the lattice site y, evaluated at the
stochastic time 7. With NSPT we can proceed straight ahead and go beyond the fourth order,
especially (as already stated and as we will see below) in the large N regime. In fact, NSPT
simulations are completely insensitive to the increasing number of terms of the diagrammatic
perturbation theory: the order-by-order encoding of the Eq. (299) is automatically generated.
In Egs. (297)-(299) we consider directly the limit A — 0. In this setting the stochastic
evolution displays the zero-mode which needs to be regularized. In Eq. (288) the additional

term to the fundamental 7w propagator cancels the zero-mode contribution. In the context of
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N Nomax VvV Statistics xN AT
5:1:15 15 20 x 20 ~ 1.6 -10° [18, 25, 35, 50, 75, 100]-10~*
18:3:45 15 20 x 20 ~2.1-10° [18, 25, 35, 50, 75, 100]-10~*
15:3:43 23 20 x 20 ~1.2-10° [18, 25, 35, 50, 75, 100] - 104
45 23 20 x 20 ~ 2.7-10° [18, 25, 35, 50, 75, 100] - 104
5 23 66 x 66 ~9-107 [18, 25, 35, 50, 75, 100]-10~*

Table 1: Details of the simulations: the notation N : A : M represents the set of values N,
N+ A, N+2A, ..., M. Six different time steps A7 were considered. The term n,, 4, denotes
the highest perturbative order achieved for the respective set of simulations; it is important to
note that streams with varying n,,., must be treated individually due to correlations among
different orders within a single stream. The statistics are normalized by N, thus different rows

carry roughly equivalent computational weight.

NSPT, this cancellation is expected to happen in a statistical sense and thus does not find an
equivalent in real-world Monte Carlo simulations.

One approach is to implement an infrared regulator A in the same spirit as in Eq. (357)
and to remove it at the end of the simulations. This requires additional simulations and extra
extrapolations. Furthermore, based on our experience, we cannot achieve good regularizations
without considering large values of A, which however make systematic effects increase. A more
efficient choice is to eliminate the zero-mode component by subtracting this contribution directly
from the configurations [9]. This method is convenient because it does not introduce additional
steps, while reproducing the perturbative expansion of the lattice theory in the limit of infinite
volume. It is worth noting that the subtraction of the zero-mode at each step of the Monte
Carlo process is an exact procedure at the leading order for the energy (we present in detail
this calculation in App. D). The effects of this regularization on the O(5) model are reported in
Fig. 9: at one-loop no difference can be seen, while at higher loops the signals without zero-mode
are manifestly better under control.

Most of our simulations have been performed on 20 x 20 lattices for several values of N (see
Tab. 1 for the simulation details). We should stress that even in the case of these small lattices,
we observed tiny finite size effects: by comparing our results with the respective results known
analytically, which are given by Eq. (296), we found discrepancies of the order of a few per mille.

This is shown in Fig. 10 where our numerical NSPT results have been plotted together with the
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Figure 10: NSPT perturbative computations in O(N) sigma models: the energy of the model is
computed at increasing perturbative order n; blue, green and orange points refer to the O(5),
O(15) and O(45) models, respectively. Analytical results are shown in black. The larger is N,

the higher loop corrections can be safely computed.

exact analytical results. Note that in Fig. 10, the influence of N on the highest perturbative order
achievable becomes evident. The distinction between the regions of low and high perturbative
orders is clear: for all O(N) models considered here, we managed to compute three additional
perturbative orders beyond the known ones. However, as the perturbative order n increases,
reliable results were achieved only with progressively higher values of N. To be more specific, in
the case of the O(5) NLSM we extended the calculations from the fourth to the seventh order. For
the O(15) model, we successfully reached the tenth order, and remarkably, for the O(45) model,
we were able to compute up to the 14th order. This is due to the fluctuations in the stochastic
process and we will investigate this connection in depth in the following sections. Determining
the perturbative order at which one should stop stochastic calculations for a specific O(N)
model is a non-trivial task. We have contextually performed several sanity checks to assess
the reliability of our findings, including analyses of time series, cumulative moving averages,
cumulative moving standard deviations and scaling of relative errors.

In Fig. 10 systematic errors coming from the numerical integration scheme have been removed
(in Fig. 11 we show an example for the O(15) model). For the extrapolations we take into

account autocorrelations and cross-correlations by means of the Blocking Method (see Fig. 12)
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Figure 11: Extrapolation to the continuum stochastic process in the O(15) model for pertur-
bative orders n = 3,4,5. Simulations were performed using 20 x 20 lattices and the Euler
integration scheme. We consider first- and second-order corrections in A7, with Xr2ed ~ 1.33.
NSPT results are shown with the blue points, while green lines represent quadratic fits. Red

diamonds show the extrapolated results.

as described in Sec. 1.6.2. In this work we mainly used the Euler integration scheme. In
Sec. 1.3.2 we have mentioned that continuum stochastic process extrapolations are still under
debate. We note that our focus here lies in higher-order computations. Therefore, we aim to
ensure the safety of extrapolations while incorporating all perturbative orders. Using high-order
schemes (see Sec. 1.8.1 and 1.8.2) one can be tempted to avoid extrapolations by considering
simulations for a single tiny time step. However, there is no way to find a time step value
that is small enough to guarantee that we cannot distinguish systematic from statistical errors.
Higher orders can always introduce new surprises, for example because different orders can be of
different orders of magnitude. In fact, this actually happens in O(NN') NLSMs (see the increasing
systematic effects as the order n increases in Fig. 11). Additionally, it is worth noting that the
feasibility of stochastic time extrapolation provides further confidence that results at a specific
order are reliable and not affected by significant fluctuations. In essence, while stochastic time
extrapolation requires additional computational effort, nevertheless, we are more confident that
mean values and errors become more accurate.

As discussed in Sec. 1.4 other integration schemes are viable: we can take advantage of this
by making combined extrapolation fits using results from different integration schemes. In Fig
13 we show combined fit results using at the same time data from the Euler and the Runge-Kutta
schemes. In this case simulations were performed for the O(80) NLSM on a 32 x 32 lattice.

A preliminary insight into the emergence of fluctuations can be obtained by examining the
stochastic time series. In Fig. 14, signals for O(5), O(15), and O(45) are displayed at different
perturbative orders using the same time step, namely A7 = 0.0035. In particular, in the first
row, we display the evolution in the stochastic time for perturbative order n = 3. Here, no huge

spikes are detected. Furthermore, the distribution of fluctuations in each case turns out to look
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similar to a Gaussian process, where events in the tails are suppressed exponentially.

At perturbative order n = 8 (see the second row of Fig. 14), pronounced fluctuations appear
in the O(5) evolution. They give a substantial contribution to the mean and the standard
deviation (we will discuss this point in more detail in Sec. 3.4.1). On the contrary, the stochastic
evolution for the O(15) model still looks under control, and that for O(45) is excellent. Note
that most of the signals tend to display a band, which naturally characterizes the amplitude
of the oscillations: if we want to inspect the presence of large fluctuations by eye, we have to
compare them to the width of this band.

By inspecting higher perturbative orders, namely n = 11,14 (third and fourth rows of
Fig. 14), large fluctuations become predominant in the O(5) model: here the evolution is com-
pletely dominated by large spikes. In addition, fluctuations emerge also in the O(15) model. Tt
turns out that for such a perturbative order the NSPT distributions significantly deviate from a
Gaussian distribution. The signal-to-noise ratio is very poor. In contrast, the NSPT evolution
for the O(45) model (reported in the last column of Fig. 14) still appears well-behaved. In this

case, the signal-to-noise ratio is good, and the distributions are reliable.

3.4.1 Cumulative moving averages and standard deviations

Cumulative moving average and standard deviation are statistical tools that can be helpful in
analyzing our data. Following the approach outlined in [15], here we will analyze NSPT evolu-
tions using these tools. Broadly speaking, as more data points are considered, the cumulative
moving average and standard deviation evolve, tracking the data’s spread with each new obser-
vation. By examining the evolution of the cumulative average and standard deviation, we can
naturally assess data stability in relation to the emergence of large fluctuations.

We define the cumulative moving average (in short, cumulative mean) as
my 1 ‘ (n)
(B == B, (301)
i=1

where El(") indicates the n-th perturbative order of the energy measured on the i-th Monte
Carlo configuration. The subscript (...), indicates that the summation window extends from
the first configuration to the 7-th. Note that here we are using the same terminology as in the
non-perturbative Monte Carlo simulations. In this context, however, a field configuration refers

to a set of different field values, each field identifying a different perturbative order.
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Figure 14: Signals from NSPT simulations. We display the evolution for the O(5), O(15) and
0(45) models with blue, green and orange solid lines. The different rows refer to different
perturbative corrections, namely n = 3, 8, 11, 14, at A7 = 0.0035. We considered for all models
8 x 10° steps, after having previously subtracted 4000 thermalization steps (this number has

been decided based on the behaviour of the evolution at the highest order available).
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Figure 15: Cumulative moving averages of NSPT evolutions. We display cumulative means for
the O(5), O(15) and O(45) models with blue, green and orange solid lines. The different rows
refer to different perturbative orders, namely n = 3, 8, 11, 14 (same convention of Fig. 14) and
A1 = 0.01. The y-axis is centered around the mean values, with a fixed relative window for
each perturbative order. Furthermore, comparisons are made by considering approximately the

same amount of statistics.

In the same way we can define the cumulative standard deviation as

o (E™), = \/(E®?), —(Bm)z. (302)

It is expected that in a good Monte Carlo simulation, the evolution of the quantities in Egs. (301)-(302)
will converge towards an asymptotic constant value, effectively exploring a well-defined distri-
bution. Notice that to achieve a fair comparison of the cumulative evolutions at different values
of N, given that loop corrections vary significantly by orders of magnitude (see the analytical
results in Eq. (296) and also the plot in Fig. 10), we need to focus exclusively on relative fluc-
tuations with respect to the estimates of the mean and the standard deviation. Furthermore,

a reasonable comparison should consider the fact that different O(N) models require different
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computational costs. With this in mind, we will show in the following cumulative evolutions at
the same computational time rather than at the same statistics.

In Fig. 15, we show the cumulative means for the O(5), O(15) and O(45) models at pertur-
bative orders n = 3, 8, 11, 14 and A7 = 0.01. The color code is the same as in Fig. 14. The
overall scenario is consistent with what we have broadly seen before: at low perturbative order
n = 3 (see the plots on the first row of Fig. 15), the cumulative means tend to flatten across all
values of N, consistently with expectations. On the contrary, as the loop order rises from n = 3
to n = 8 (second row plots in Fig. 15), the cumulative mean for O(5) is prone to considerable
fluctuations, despite a substantial amount of statistics. In the plots of the third row of the
same figure, we display results concerning the perturbative order n = 11: here, fluctuations
also affect the O(15) model, while the cumulative average for the O(5) model flattens even less
than at n = 8. On the other hand, the O(45) model can still be considered unaffected by any
pathologies at the order n = 11 up to perturbative order n = 14 (see and compare plots in the
last column of Fig. 15); in this cases, we obtain a well-behaved determination of the mean. This
last observation turns out to be independent of the time step A7 considered, and the respective
extrapolation to the continuum process turns out to be under control.

In the case of smaller N values, the analysis of the cumulative standard deviation presents
even more challenging issues. We display in Fig. 16 the cumulative standard deviation (with the
same conventions as in Fig. 15). As a matter of fact, due to the definition itself (Eq. (302)), any
fluctuations result in an increased estimation. Specifically, for cases where [N = 5,n > 8] and
[N =15,n > 11], we cannot be sure that our estimations of the variance are reliable (see plots
on the third and fourth rows of Fig. 16). Nonetheless, for sufficiently large N values, evidence
of finite and well-determined standard deviation can be noticed. Notably, for the O(45) model,
no pathological effects were detected up to n = 14 (see the plot in the last column of Fig. 16).
The reliability of NSPT evolutions at IV = 45 is additionally validated by the observation that
statistical errors scale properly as ~ 1/ \/m This last empirical finding will be further
discussed in Sec. 3.4.3.

All in all, we ended up with the conclusion that our best estimations of means and standard
deviations can be unreliable: we will later look for criteria to finally discard some and retain
only those that we can trust. This will finally make us decide at which perturbative order n we

can push our computations at a given value of V.
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Figure 16: Cumulative moving standard deviation for NSPT evolutions. We display cumulative
standard deviations for the O(5), O(15) and O(45) models with blue, green and orange lines. The
different rows refer to different perturbative orders, namely n = 3, 8, 11, 14 (same convention as
in Figs. 14 and 15) and A7 = 0.01. The y-axis is centered around the mean values, with a fixed
relative window for each perturbative order. Furthermore, comparisons are made by considering

approximately the same amount of statistics.

3.4.2 Large N and Large L

A crucial aspect of Monte Carlo simulations on the lattice is the self-averaging property: in a
given theory, increasing the lattice size should yield more stable statistical averages. In principle,
employing progressively larger lattices for the computation of local quantities (this is the case of
the energy in NLSMs, see Eq. (287)) will lead to a reduced standard deviation. Conversely, we
have observed that, at a specific NSPT perturbative order, fluctuations are tamed at large N
(where we are considering an increasing number of local degrees of freedom). At first glance, one
might wonder about the relation between these two effects: it turns out, perhaps unsurprisingly,

that these effects are fundamentally different. In this context, it might seem reasonable to
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Figure 17: Large L limit for the O(5) non-linear sigma model. Left plot: first-order correction
for the energy. We show results for lattice sizes 20 x 20 and 66x66 with solid red and yellow
lines, respectively. Lattice self-averaging effects are evident. Right plot: comparison between
the O(5) model on a 66 x 66 lattice (solid blue line) and the O(45) model on a 20 x 20 lattice
(solid green line). The large N limit behaves much better than the large L limit.

compare simulations with the same total number of degrees of freedom (specifically, comparing
the large N - small L scenario with the small N - large L scenario). Roughly speaking, we may
wonder about the true size of the system from the NSPT point of view.

In Fig. 17, left panel, we display the effect of large L simulations for N =5 and n = 1. We
show NSPT evolutions for two lattices, namely L? = 20 x 20 and L? = 66 x 66. In this case,
simulations on larger lattices result in a reduced standard deviation of the signals, as anticipated.
On the contrary, in the right panel of Fig. 17, we consider high-order corrections, namely n =
13. Here we compare cumulative means of the O(5) model on a 66 x 66 lattice with the O(45)
model on a 20 x 20 lattice. Notice that the two simulations involve roughly the same amount
of total degrees of freedom. In order to compare the evolution of the cumulative mean, we
need to consider that different O(N) models display various orders of magnitude of perturbative
corrections. We normalize the evolution of the cumulative mean using the best estimate of the

mean, namely we study the quantity
(EM), = (EM) (E™) ot s (303)

where (E(™)__r  indicates the mean over the complete dataset. In other words, the evolution
of the cumulative mean has been normalized to have 1 as its final value of the series. It is
noteworthy that the cumulative mean yields the wrong sign for almost half of the evolution for
the O(5) model. In contrast, the evolution for N = 45 displays a not-so-long thermalisation

phase toward a stable value. In short, taming large deviations appears to be a genuine large N
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Figure 18: Scaling of relative errors at increasing loop order. The points reported in Fig. 10 are
shown here with full circles, while the points in the region of scaling violation are indicated with
empty circles. Notice that the two different regions are separated by a dashed red line. The

color code is the same as in Fig. 10.

effect.

3.4.3 Relative error scaling

In Sec. 3.4.1 and 3.4.2 we provided evidence that fluctuations are naturally tamed by the stochas-
tic process in the large N limit. This raises an important question: up to what perturbative
order do NSPT computations maintain stability for a given O(N) model? Alternatively, for
a specific target loop order, how large must N be to compute corrections reliably up to that
order? Although a comprehensive and rigorous explanation for the origins of fluctuations is not
yet established, a sanity check would be advantageous. We present numerical evidence suggest-
ing that the emergence of fluctuations can be identified by the breakdown of two simple yet
reliable hypotheses concerning the scaling of relative errors.

In Monte Carlo simulations, analyzing the scaling of relative errors plays a key role in deter-
mining the robustness of the computations; unsurprisingly, NSPT also benefits from this kind
of statistical analysis. Using relative error analysis, we illustrate how to determine a posteriori
N regions where large fluctuations have not yet affected the precision of high-order NSPT com-
putations, and areas where fluctuations are predominant. Our primary goal is to empirically
establish a first meaning of large N in NSPT computations at any specified perturbative order

n.
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n-scaling
For a given O(N) model let us call the relative errors of the energy as

SE™
AP ==\ (304)
N EM |

which are explicitly dependent on the order n; E(”)| ~ and 6E(”)| ~ stand, respectively, for the
values of the energy and its error for a given value of N. Notice that these values are the
results of the extrapolation procedure in the continuum stochastic process limit and for this
reason relative errors are supposed to contain all the information about autocorrelations and
cross-correlations. It is worth noticing that we compute relative errors from our best estimation
of E(™ and §E™). Given that at high-orders large uncertainties in the estimation of the mean
and the standard deviation show up, we will find that some of these estimations may prove to
be unreliable.

A quite natural hypothesis is that relative errors are expected to exhibit monotonic growth
with respect to n; this assertion is suggested (also) by the observation of increasing values for
the standard deviations as n increases. Furthermore, we also expect to observe increasing cross-
correlations for increasing values of n, since at a given perturbative order the values of the fields
depend on all the fields of lower orders.

In Fig. 18 we display the scaling of relative errors for the O(5), O(15), and O(45) models
(color code as in Fig. 10). Our hypothesis is confirmed in the case of the O(45) model up to loop
order n = 14. Moreover, for the O(5) and O(15) models the relative errors exhibit a smooth
exponential trend up to n = 7 and n = 10, respectively (a behaviour which is similar to the
0(45) case). However, for loop corrections greater than n = 7 for the O(5) model and n = 10
for the O(15) model, the scaling behaviour violates our hypothesis. In the second and third
plots of Fig. 18 the value of n at which this occurs (i.e. the breakdown of our hypothesis) for
the O(5) and O(15) models, respectively, is indicated with a dashed red line. It is worth noting
that as the parameter N increases, the region of breakdown shifts towards higher perturbative
orders. Fig. 18 motivates our plot in Fig. 10: in any O(N) model the maximum order of the

loop corrections that can produce reliable results is strictly determined by the value of V.

N-scaling
In this paragraph we investigate how relative errors scale for different values of N. We now

define the relative error as a function of the parameter N through

I'(N). (305)
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Figure 19: First row: scaling of relative errors per unit of statistics for increasing values of V.
The empty black circles indicate the value of Ag\?) for N =[5 : 45] at different loop orders n =
7, 10, 14 (see labels). The solid colored circles represent the respective values for the O(5),
0(15), and O(45) models, also shown in Fig. 10 (color code as before). Second row: we display
zoomed figures related to the determination of mean and cumulative standard deviation for
the O(5) and O(45) models at loop order n = 14 for 10 different runs. In the large N limit,
precise estimates are undoubtedly obtained. For the O(5) model different runs yield completely

different determinations for both quantities.

In the above definition, relative errors include an additional factor I'(N). This acts as a correc-
tion factor: we took into account all the data that are available for each value of N and then
computed a factor I'(N) such that comparisons are made for the same number of independent
measurements. In other words, we have one single effect left: different relative errors can only
be due to different values of N.

Actually a quite natural hypothesis can be formulated regarding the scaling of relative errors
defined in Eq. (305): as N increases, it is expected, on very general grounds, that Ag\?) should
exhibit a monotonically decreasing trend. In fact, through the use of the factor I'(N), we are
considering systems with an increasing number of degrees of freedom as N gets larger, while
maintaining the same amount of statistics. In Fig. 19 we display the properties of the scaling for

all the O(IN) models employed in our analysis (see Tab. 1) at perturbative orders n = 7,10, 14.
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At small perturbative order, namely n < 7, the expected scaling is perfectly observed. This is
no longer true at perturbative orders n = 10 and n = 14 (see first row, central and right plots):
in these cases, we identified regions that deviate from this hypothesis (see the regions on the left
of the red dashed lines). All in all, we need to look at largest values of N to inspect the expected
behavior at high order n. Notice that in Fig. 19 we depict with filled circles the estimates of
the relative error, defined in Eq. (305), for the O(5), O(15) and O(45) models (color code as
in Fig. 10): the emerging scenario is perfectly consistent with those presented in Sec. 3.4.1 and
Fig. 18. As a matter of fact, the threshold loop orders are in agreement with each other, as
summarized in Fig. 10.

The four plots in the second row of Fig. 19 show the time evolution of the cumulative mean
value of energy and the respective cumulative standard deviation concerning the models O(5)
and O(45), computed at fixed perturbative order, namely n = 14. In all plots we show data
produced in 10 independent runs; it is quite clear that while in the case of the O(45) model the
cumulative mean and standard deviation estimates from the different runs are consistent with
each other, the different runs in the case of the O(5) model however lead without any doubt to
opposite conclusions: different runs yield much different values for the cumulative energy mean

and standard deviation.

We have thus motivated what is depicted in Fig. 10: for lower values of N we could not
compute to very large perturbative orders n, since large fluctuations affect high-orders. On the
other side, we provided quite clear numerical evidence that large fluctuations are tamed in the

large N limit.
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4 | O(N)NLSM renormalons in the
Large N limit

An intriguing property of asymptotically free theories is the emergence of renormalons (we
refer the reader to [17] for a complete introduction to the topic). Renormalons are related
to a certain pattern of divergence in perturbative expansions and are crucial in understanding
non-perturbative aspects of quantum field theories.

Renormalons have been probed in Lattice QCD using NSPT, by simulating the theory at
incredibly high perturbative orders. By assessing the asymptotic factorial growth of loop correc-
tions, renormalons have been observed in SU(3) gluodynamics [18-20] and in QCD with fermions
[21]. Additionally, in recent years, NSPT has been used to study renormalons in the Principal
Chiral Model [22].

In Sec. 3 we have shown that reliable NSPT predictions can be obtained in large N limit
at high orders. In this section we want to explore the asymptotic perturbative regime of O(N)
sigma models. By studying a large enough N, namely the O(80) sigma model, we will provide
insights on renormalons in these low-dimensional models. Finite size effects will turn out to be

extremely important, so we will try to carefully describe them.

4.1 Infrared renormalons

We revisit the standard infrared renormalon analysis as discussed in [80]. On very general

grounds, the perturbative contribution to the expectation of a composite operator reads

where 20 is the dimension of the operator and @ is a UV cutoff. In lattice simulations, @ ~ 1/a.

Furthermore f(k) is a dimensionless and renormalization group invariant function. From now
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on we consider the case where f(k) = g(k), where g(k) is the running coupling constant (this
choice can be shown not to be restrictive). In the following, we will obtain a power series from
the integral in Eq. (306).

We consider the one-loop definition of the -function, namely '°

_,dg _ dg 2

Blg) =k =7 = Py (307)

By integrating the above equation, we get

1 1 k 1 k
——=——+BIn— = 1+ g(ko)Boln — ), 308
g(k)  g(ko) o ko g(ko) < 9(ko)fo ko) (308)
At first-order we can write
g(ko) ( k )

k)= ~g(ko)|[1—g(k In—+... ), 309
g(k) T+ a(ko)foln £ 9(ko) 9(ko)Bo n (309)

The ratio of scale which we need in the integral of Eq. (306) reads

(k>20 . R (IZ(&) . (310)

Q

We now change the integration variable according to [30]

z—2‘7<1—9(@)=z0<1—9(@), 0=22. (311)

" B g(k) g(k) °" B
and obtain
< k )20’ .
kil — ¢ W@
Cf (312)
ﬂ (k) = — 2 dz
I T T B 1 =

The integral in Eq. (306) now has the structure of a Borel integral

dik2 k 20 9 S e—g
W = — = k) = dz —— 313
/O k2<Q) o(k) 5/ S (313)

20

1

where g is the coupling defined at the hard scale g = ¢g(Q). In the lattice case, @ = a~' and

g is the bare lattice coupling. The integral in Eq. (313) is divergent due to the presence of
the pole and one needs a prescription to compute it. Typically this asks for a detour in the

complex plane and as a result one picks up an imaginary part proportional to e~ 9. This is the

10Tt is also feasible to consider the two-loop definition. In this scenario, we would obtain 1 /m corrections in the scaling

of the renormalon, where n is the perturbative order (see Eq. (316) for more details).
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same ambiguity that will plague the resummation of the asymptotic series which we are now
going to obtain from the Borel integral. The series will display a factorial divergence: this is
the signature of the renormalon. Basically, we ignore the pole and expand the geometric series
in Eq. (313), namely

[e )

W 2) /+OO d . Z( . >n
= ze 9 —
Bozo Jo —\ %
) s n+1 o)

- /O dte™"

60 n=0 ZO

(314)

2 o= o l(n+1
7Zg+1g

n+1
BO n—0 ZO

— Zgn+1E(n+1) )

n=0

Of course one is not claiming we computed the exact perturbative expansion: this is supposed
to be the dominant contribution in an asymptotic regime. In view of Eq. (314), the ratio of
two consecutive perturbative coefficients, divided by the perturbative order, should approach a

constant value, i.e.
E(n+1) Bo

E® -n 257

for n>>1. (315)

We notice that our calculation doesn’t provide any insight about the perturbative order at which
the asymptotic scaling sets in: NSPT high-order computations can detect whether and when
(asymptotically) the renormalon behavior shows up.

We can also consider two-loop corrections to the Eq. (315). Starting from the two-loop

definition of the S-function

d
krg(k) = —Bog® — B1g®> + O(g*), (316)

we get (see App. E for the sketch of the computation)

E(n+1) 12
EM™.n 20 n B§

) , as n>1. (317)

4.2 Finite volume corrections to renormalons

Eq. (315) and Eq. (317) display the expected scaling in an asymptotic regime. In our compu-
tation we integrated over all momenta up to a UV hard cutoff, as in Eq. (306). This scenario
is not what typically occurs in a lattice computation, where finite volume effects are inevitably

encountered: the finite volume sets an explicit IR cutoff. Notice that different perturbative
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orders are differently affected by this cutoff (finite size effects): the coefficients for increasing
perturbative order become more and more sensitive to the IR region. Because of this, the effects
of finite volume are expected to become increasingly significant.

In the literature, in the detection of renormalons from NSPT computations finite volume
effects have been treated differently. When feasible, extrapolations to infinite volume have been
considered [20, 22]|. Tt could also be that finite volume effects turn out to be smaller than the
statistical errors: various attempts at renormalon detection on different lattice sizes were found
to be compatible without any extrapolation in [21]. In the case at hand, we deal with low-
dimensional models and we expect finite size effects to be significant. To address this issue, we
choose not to attempt any extrapolation of data to V' — oo, but we directly looked at how the
factorial growth resulting in Eq. (315) (or Eq. (317)) is corrected by an IR cutoff. In a sense,
our calculation is a first-principles one and in particular it will contain no free parameters to
fine-tune: we will directly compare our data to a given expression.

For simplicity, we discuss IR corrections sticking to one-loop (the two-loop calculation is
presented in App. E). We consider a lattice of finite volume V = (a - N)? where a is the lattice
spacing, N is the number of lattice sites in each direction (we consider for simplicity only cubic
lattices) and d is the number of dimensions (in our case d = 2). We used Periodic Boundary
Conditions. In this lattice setting, one gets the following maximum and minimum momenta
(keep in mind that magnitude of momentum enters our integral in Eq. (306) )

_271'

2
a T aN’

Q=2Vi, Q. (318)

Q is, as before, the UV cutoff, while now an IR cutoff is there as well, which we now plug into

the integral in Eq. (306)

Q qk2 [ kN
w=[ (2} 4.
% (Q) g(k) (319)

After the change of variable in Eq. (311), we get

2 Fir e d 2 Fir s/ 2\"
W = / de——F = —/ dz e 9 <> , 320
z0Po Jo 1—2 fozo Jo 2 20 (320)

n=0

where the lower limit stays the same as before (this is coming from the upper limit @ of the

original integral), while the upper limit is now (remember g = ¢(Q))

Zir = —20900 In % = 20980 In NVd. (321)
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Considering Eq. (320), the asymptotic scaling reads

9 00 1 z0Bo In VAN
W == Zgn—i-l — / dte—tt(n+1)—1
ﬂO n—0 0 0
(322)

p— 1
- = ntl 1—‘ir n+ 1 )
Bo nz:%g ZS'H ( )

where T (n + 1) is the lower incomplete gamma function. Integrating by parts the incomplete

gamma function
A A A
Typ(n+1) = / dte~ b+ —1 — {—e—tﬂ”“)—l} + n/ dte=t" 1, (323)
0 0 0
we recover the well-known property
Ti(n+1) =nly(n) —e A A™. (324)
In the above equation, we use the notation
A = z0BoIn VdN (325)

for brevity. Using Eq. (324) we can rewrite the incomplete gamma function as

n k
Ty(n+1) =n! (1 —e Ay f;) , (326)
n=0

so that the ratio in Eq. (315) can be expressed as

E™D ByTu(n+1)  fol—e4Y0 Al

EM " 20 nly(n)  201—e-Ay AL

as n>1. (327)

Notice that, from Eq. (327), in the limit of infinite volume N — oo, A — oo so that volume
corrections are exponentially suppressed restoring the pure factorial growth. However, at finite
volume, the series in Eq. (326) approach the exponential e? for increasing loop order n, so in the
asymptotic limit n > 1 the finite volume effects completely kill the signals. It is worth noting
that finite volume corrections to the factorial growth depend on the dimension of the composite
operator o and the dimension of the lattice d by means of Eq. (325).

If we consider finite volume correction with two-loop contribution, the following equation

holds(see App. E for more details)

_ n Ak Biz _ n—1 Ak

En+1) 1 ~y [(1 —e A Zk:O k:') _ﬁ (1 —e A Zk:O k'>:|
E(”) n — % (1 * TL) A n—1 Ak B1z A n—2 Ak ’ (328)

[(1 —e 43 k') _ﬁo(iy—;—)l) (1 —e 4 o k‘>:|

where
201
- . (329)
8
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4.3 Probing renormalons for O(N) at large N

Being the theory asymptotically free, O(NN) should admit perturbative expansions displaying
renormalons. If we want to detect them we need to probe perturbative orders n >> 1. Since we
want to prevent the onset of fluctuations, we know that it is a good idea to compute at large
N. We selected O(80) on a 20 x 20 lattice. In this discussion we analyze the asymptotic scaling
of the observable

W=E-1=Y g"tpr+ (330)
n>0

where the energy F is defined by Eq. (287). Since the energy density has mass dimension d = 2,
we will have o = 1.

Egs. (315)-(317)-(327)-(328) require to know the value of the perturbative S-function. The

first two coefficients are universal and are given by [31]

N -2 N -2
Bo = o ﬁ17747r2

(331)

Notice that, differently from the Principal Chiral Models [22], here the renormalon asymptotic
depends on the value of N. In other words, different O(NN) models have different values of the

ratio BT /(E(Mn).
g+
E(m)n

NSPT computations. The renormalon ratios in Eqgs. (315)-(317)-(327)-(328) are depicted as

In Fig. 20 we plot the ratio for the coefficients in Eq. (330), as evaluated by our
solid and dashed lines. As expected, the finite volume effects are not at all negligible. The
infrared corrected ratio in Eq. (327) (or Eq. (328); the two are hard to distinguish) fits data
very well for n 2 10.

It is pretty clear that finite size corrections are crucial to describe data; there is no sign of
flattening on the infinite volume value for the ratio; there is indeed quite some distance to cover.
We stress that we are trying to make contact with a first-principles calculation modeling finite
size effects on top of the renormalon behavior: the model has no fine-tuning of any additional free
parameter. Given this, the agreement within errors of our data with the theoretical prediction
is very good. Can this be a pure numerical accident? First of all, we would like to have data
with less errors. Moreover (and more important) we are pursuing the computation on a 32 x 32
lattice, to check that the ratio of subsequent coefficients indeed moves to fit the different curve

that the model predicts for this larger volume.
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Figure 20: Renormalon asymptotics for the O(80) non-linear sigma model. The ratios obtained
from our NSPT computations are depicted as blue markers. The values of the ratio as predicted
by renormalon analysis in infinite volume at the leading order (Eq. (315)) and next to leading
order (Eq. (317)) are plotted as a solid green line and a dashed red line. Additionally, the ratios
computed from renormalon analysis including finite volume corrections for a 20 x 20 lattice
volume are plotted as a solid purple line (leading order, Eq. (327)) and a dashed yellow line
(next to leading order, Eq. (328)).
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5 | Conclusions

In this thesis we analyzed a couple of different applications of NSPT. In Sec. 2 we pursued
NSPT perturbative computations around instanton-like vacua, probing the energy splitting for
the double-well potential in 1D Quantum Mechanics. The underlying idea is that NSPT can, in
principle, circumvent the complications of diagrammatic perturbation theory around non-trivial
vacua. The first non-trivial coefficients were computed in the continuum limit, with a decent
accuracy. This per se encouraging result has however highlighted that going to higher loops is
extremely hard. Not only our computational strategy ended up in subtle cancellations. More
importantly, the emergence of severe fluctuations hinders the path to high-order perturbative
calculations. This was not really unexpected, given an already available warning, i.e. when
applied to small systems, NSPT produces huge fluctuations (not normally distributed) at or-
ders that the method can successfully manage to compute for larger ones. The challenge of
confronting large fluctuations for low-dimensional systems thus became the main subject of this

work.

In Sec. 3 we discussed high-order NSPT computations in the O(N) Non Linear Sigma Mod-
els. This model has proven to be an ideal testing ground for studying the emergence and taming
of fluctuations while varying the number of degrees of freedom. In particular, we have shown
that in the large N limit, NSPT simulations are not affected by fluctuations at high perturbative
orders. Our conclusions are supported by extensive numerical simulations and analyses. For
the O(N) NLSM, the larger the value of N, the more perturbative orders we can calculate with
NSPT. Indeed the perturbative energy calculation has been extended from the previously known

fourth loop-order first up to the fourteenth perturbative order and then to even higher orders.

In Sec. 4 we explored large N NSPT computations in O(N) NLSM to hunt for renormalons.

Low-dimensional models are more affected by finite size effects, so the renormalon asymptotic
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behavior had to be corrected to incorporate finite volume effects from first-principles. Once finite
volume effects are properly modeled, our results show full agreement between high-order NSPT
computations and the predicted renormalon behavior. As a byproduct, this study provided
an opportunity to discuss the subtleties connected to the removal of the systematic effects con-
nected to the finite stochastic time step used in the numerical integration of the (order-by-order)
Langevin equation. To gain confidence with high-order results, we tried an unconventional ap-

proach to AT — 0 extrapolations, in which we made use of both Euler and Runge Kutta schemes.

Remarkably, the CP(N — 1) model represents an ideal extension for this work. For these
theories, in a safe large N limit, we plan to go back to expansions around non-trivial saddle
points. Quite interestingly, these models were among the very first related to resurgence scenarios

[82] which we could in principle try to probe.
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Appendix A: Kramers-Moyal expansion
A discrete Langevin stochastic dynamics can be summarized by the equation
pi(T + AT) = @i(1) — Fi(7), (332)

where ;(7) denotes the field at lattice site ¢ and stochastic time 7 and the function F;(7) is
an integrator-dependent function (see for example Eq. (82)). At the stochastic time 7+ A7 the

probability of generating a certain configuration ¢ is

P[@)T + AT] = /D(p/ W((,O/ — (p) P[(ﬂ,77—]
(333)
_ / D' Dy ([[oi — ¢ + o)) Pl 7).

The function F; is typically a quantity of O(AT%) so that we can think of expanding the Dirac

delta function for each degree of freedom in Taylor series:

[Totes - i+ 7 = TT| 3 ol = by (334)
i i tng=0""%

By integrating by parts with respect to the variable ¢} and rearranging all terms, one realizes
that it is always possible to integrate over all fields with the Dirac delta functions 6(p; — ¢}) to

get the expression

=1 0 0
P[<p,7'+A7']:P[@,T]+ZE/D778SD. o

n=1 ' (335)
d d

1
=Plp.7]+ ) o T <<F ...Fin>P[¢]> .
n=1 1 in

Eq. (335) is the Kramers-Moyal expansion [83, 84] for the Langevin discrete dynamics.
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Appendix B: Complete expression for the energy splitting (con-
tinuum theory)

In what follows, we explicitly express the dependence of the solution in Eq. (184) on the transition
parameter ty as xF(t — tp). Furthermore, we note that the solution in Eq. (184) has constant

energy E =T + W, where
1
T= 59’52 and W = —\z? — 22)? (336)

and this is also a solution in the zero-energy shell, such that we have T = V. We can therefore

note that the following holds

+oo
i) = \// FH(E— to)2dt

teory 337
= / {23;«3(15 —t0)2 + A(zd (t —t9)2 — x2)2|dt (337)
=4/S[zd].
Consider the twisted partition function
Z.(B) = Dz e~ 5l (338)
ABC
We can implement a useful rewriting of the identity
1= [dto 8(to ~ t5) = [ dta s(s IS (1) (339)

where we have used the well-known property of the Dirac delta function and tj is a zero of
the function f(tp). An appropriate choice of the function f(tg) leads to the regularization of
the zero-mode: this must be done by projecting the fluctuations onto the subspace without a

zero-mode component, namely:
it (t—to)

f(to) = / dt(x(t) - mt(t»? | (340)
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We notice that the last term in the previous equation is exactly the zero-mode profile. We can

compute the derivative of the function in the following way

f'(to) = /dt (:’cj(t—to)M) ,/dt (2(t) — 2t (¢ — o)) T (L T0)

(7] S[zd]
o @m_to)wgggw Ja H/ ' <><H
/dt ; t_to) t_to /dt /dt x Iér(t —f_O)
Slad]
= /dt :b(t)m~
S[zd]
(341)

It can be shown that this derivative, at least for small values of the coupling constant, is always
positive. So in practice we do not have to apply the absolute value on it. Furthermore, since
the derivative with respect to the transition time is positive, if the function vanishes, it vanishes
at only one point, justifying the use of the aforementioned property of the Dirac delta. Using

the Dirac delta propriety with the choice in Eq. (340) we obtain

Za _/ABC Dx/dto /dt /dt to))fbj(;[;;(]))}e_s[x]. (342)

Since we are integrating over all possible configurations, we can make use of the shift t — ¢+,

which in any case can be reabsorbed in the definition of the integral measure. So we have !

Za —/ABCDx/dto [ atit /dt — ot 1)) =] s

Slxd] (343)
343
_ . i ij(t) o) — 2t it (t) o—Sle]
gl D [/dt (t) S[xj]}é[/dt (x(t) — 2 () S[mi]} :
We can introduce the fluctuation £ by setting
a(t) =zl (t) + (1), (344)

and we obtain

Zo=5| D /dt 1) + £(t)) /dt§ } 5k (345)

]

HThis is similar to the shift that is discussed for the quartic theory in [85].
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We now make use of the decomposition of the fluctuation in the components of the zero-mode

and the modes that are orthogonal to it:

+&0 (346)

and we obtain the following relations

D¢ = / deg / DE. , (347)

£+ &, () el (348)

[ st F fae 0

6[/dt s(t)x;(:iﬂ] = 5[/ dt (01 te () +5J_(t)) &2 (1) } = §(co) (349)

where we used
/ dt ¥ ()it (t)=0  and / dt #5(t)€L(t) = 0. (350)

Then the twisted partition function can be expressed as

Za — e—S[ﬂcj]ﬁ Dfl dCI /dt + 51.( ))

ABC

Be_s[xj]

_ () ] ,-ste)
Ve ABCDEi /dt D+ 0) S[xZ’]}

) Be_s[mj]%/% e, {H/dt Q(t)ﬂ}e—sm

ABC Sl d]

(351)

-+ S / 0t €4 (8)iF (D))o s Za s

where (...), 1 indicates the expectation value in the theory with antiperiodic boundary condi-

tions and without zero-mode. In addition Z, ; is the twisted partition function for the theory

without zero-mode. It is always possible to write the partition functions as

Zo(\) = Z0) War | (352)

Z(\) = 20V (353)

where Z((I?J)_ and Z(© are respectively the free partition functions for anti-symmetric theory
without zero mode and for the usual theory with periodic boundary conditions. Additionally,
W, 1 and W are perturbative series coming from the evaluation of the interacting part of the

action (we refer to the discussion in Sec. 2.3 for details).
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Finally, using also the relations in Eq. (201), we obtain

Zo _ e

Z 271\

(1+ Sz /dt EL()E(t))q, eVt ™W (354)
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Appendix C: First-order correction to the propagator

Here we will show how the corrections to the propagator up to the first perturbative order can
be calculated. This will provide the perturbation theory at the second-order for the energy - see
Eq. (288). We note that the interacting terms of the action in Eq. (285) can be expanded in a
Taylor series up to O(g?)

log (1 — gm3) = —gm3 + O(g°) , (355)
] e e e
— 14w (1= 4] o) (356)
= 9wt minl,,) + O,

The standard approach in perturbation theory then requires the Taylor expansion in terms of

the weak coupling of the partition function written in Eq. (285). We have

1 2,42 2
7 — lim /H dm, e 5 X _(Au""m) +A T | o e i(A;ﬂ/l—g""i)Q_%Ez log (1—g72)
A—0
x

@t eninz| o, 4 (wiowint, ) 445, w06

Il
>
LE
—
g
IS H
3
8
)
Iy
*

. DI (A7 g g
:)1\13})/1;[ dmy e * L .(1—24(7ri—7ri7ri+u)—&—2;#54—0(92)).

x,p

(357)

By taking into account Eq. (357) we obtain the following expression for the propagator wwa up

to O(¢?)

1 ]
(71'071'95):?/1_[ dm, e 2 2o | (Burs) N (1_Zg(77i_7"§7792@+#)

z,p

N

9 2 2
+ 3 zx:ww +O(g ))ﬂ'oﬂ'w (358)

1 1
om0 o (S 4 (- i) 5 S o)
Y1 Y

where in the last line we are considering only connected Wick contraction (the disconnected

)
+0(g°),

(&

contributions are canceled out by the partition function contribution). At the leading order, we

have
+m 2k eik-(zfy)

(moma)© = (N~ 1)G(x) = (N — 1) / (359)

—x (2m)2 4% sin® () + 27
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getting thus the result provided in Eq. (286). Concerning the first-order correction, we apply

the Wick contractions and we get the following results

(0)
<ﬂ-0m Z 7‘-3> = Z<ﬂ-0ﬁy>(0) (mram,)© + Z(Woﬂy>(o) (mram,)(©)
Yy ¢ Yy Yy (360)

=2(N-1)) GGy —x),

Y

(0)
(mome Yo ) = (V= 1) 326G~ 0G0 + 4G+ = 2)G(

+ 4Gy + Gly — 2)G ) + 2G(y + WGy — = 2)G(O)|
= (N = 1)) [26GW)G(y — 2)G(0) + 4G(y)Gly + 4 — 2)G(n)

+4G(y)Gly — p = 2)G() +2G(y + WGy — p — 2)G(0)]

4G(y)G(y—p—2)G(—p)

(361)

= (N = 1)) [2GW)G(y - 2)G(0) + 4G(y)Gly - 2)G(0) .
Yy 362

+4G(y)Gly — )G(0) + 26(y)G(y — 2)GO)]

(0)

<7r07rm ) wgﬂr;>
Yy

Hence we obtain

Zg};(’ffﬁ - “§ﬂ§+u)ﬂom>(0) = (N =1 (GWw)Gly + i~ 2)G(n)

Y1

+ G(y)Gly — p— 2)G(—p) = 2G(y)Gly — ©)G(0))  (363)

= (N =1) Y Gy)A.[Glz - )Gz~ y)]

)
z=y

where we used the notation

Af(@) =Y (fl+n) + flo—p) = 2f(@)). (364)

m

The first-order correction reads

g(mom) V) = (N = 1) 3 G(y)Gly —2) + (N = 1) Y- GW)A: [Gla - )G(z — y)|
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We note that

T 2k eik(atn) 4 gik(e—p) _ 9gike

/_ « (2k)2 43 sin® (k,/2) + A2
PRk g 2o (2c0s (ku/2) =2 =2 Pk . 22

- /_ L @20 A s (k2) + X2 +/_ﬂ k)2 4%, sin® (ku/2) + X2

=1

A,G(x) =3 Gz + ) + Gz — p) — 2G(z) =

= —(5:1;’0 + )\QG(,’E) .
(366)

In addition, we have

MGl -G —y)| =3 [Gla—2-wG+p—y)+ Gl -2+ p)G(z - p—y)-

z=y
m

—2G(x — z)G(O)}

zZ=y

=[Gl —y— WG +Glo -y + WG(—p) — 2G(z — y)G(0)]

=G Y |Gl —y+p) +Gle —y - )] ~ 4G (@ — y)G(0)

m

=G Y [Gla—y+p) +Gle—y—p) — 26— y)|

+4G(1)G(xz —y) —4G(0)G(z — y)
=G(1)AG(z —y) —4G(0) - G(1))G(x —y).
(367)

The last term can be evaluated using the property of Eq. (366) in = 0, namely

BeG(@)lamo = Y [Glat )+ Gla—p) —2G(@)]lomo = 4G(1)~4G(0) = —500+N*G(0), (368)

from which it follows that

G(0) — G(1) = i - )\;G(O) . (369)

In the end, we obtain the first-order correction to the propagator, which is given by

(mom1)D) = =(N = DG(1)G(x) + p*(N = 1)(G(1) = G(0) Y G(y)G(z —y)
v (370)

— (N = 1)G(1)G(x) + O(\?).
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Appendix D: Leading-order zero-mode regularization

In this Appendix we will show that at the leading order Eq. (290) can also be computed using

configurations without zero-mode. In the Fourier representation we have
mho=ernal, (371)
P

so that we can calculate

j i(k"-n+k'-m
ﬂ-nﬂ-m Z Z € 7Tk/ 7Tk//>

2

’ ", (5 N7
_ (k' n+k k', —k
=D ) = (372)

k! k!

— ik-(n—m)i
? fk)

In the previous equation, f(k) is the propagator that is given in Eq. (286).

The O(N) invariant leading order propagator reads

. ’ 1"
(mimd) — (mhmd) = DN e Wt m e pl ) NN el E R (1 )

/ k‘” / k//
_ ik»(n—m)i _ ik-Oi
%:e F(k) ; f()
N\ ikn-my L g~ L

Z F(k) %m

_ ik-(n—m 1 373
- 2};(6 ke(n—m) _ 1) W (373)
e—ik~(n—m)

, 1—
_ Z ik-(n—m)
= e _
4 7(8)
=g(k)
- 1
_ Z ik-(n—m)
= e ,
- g(k)
where it is easy to notice that the new signal does not have the zero mode, namely
9(0) =0. (374)

We observe that in such a case, cancellation occurs only in a statistical sense, that is, after
calculating (...).

On the other hand, in NSPT simulations we are aiming at calculating propagators by em-
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ploying configurations free of zero-modes. In that case we have

_ ik-(n—m) L _ikem Ok,0
= £(k) Zk: 1) (375)

N gknemy L1
2 7w 0

As expected, this signal does not have a zero-mode, even before performing the subtraction
with its counterpart as in Eq. (290). The O(N) invariant leading order propagator, using
configurations without zero-more reads

(= 5 S m ) = 5 S ) — (= 5 S m)wh = - o))

n’ m/’

_N“pkemy L L ko L 1

zk: f(k)  f(0) Q; f(k) f(O))
:zkzeu )%‘?“% (376)
N ikemy L1

2 TGREINIG

= (mhh,) — (M) -

Thus the result of Eq. (376) demonstrates the assertion we made in the discussion of Sec. 3.4.
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Appendix E: Infrared corrections to the renormalon scaling at

two-loops
We are interested in calculating the integral
Q ak? [k \*
| (5) e
o Kk \@Q
at two-loop. We take into account the definition of the S-function at second-order

d
kra(k) = —fog® = Brg” + O(g").

Integrating the previous equation we obtain

_ (L L\ By gk)
_ﬁo(lnk‘—lnko)— (g(k‘) g(ko)) 501 g(k0)7

so that

We set

where

The integral measure changes to

k k

dz = zo( dg(ko))dk - z0< ! dg(k)g(ko)> dak _ 2060<1 + Blg(k))g(ko)dk .

~dk g(k) g(k)? dk Bo

Inserting Eq. (384) and Eq. (382) in Eq. (377), we obtain the equation

ko qk? [k \*7 © dr . 2\ ! 5
| = k) =2 gko) [ ] — — 1—=—gk)|=C+B,
/0 k2 (k’0> 9(k) /0 Zoﬂoe ( Zo) ( 509( )>

where )
o0 o
C = / dz P TC) (1 — z) ,
o 2080 )

[e%e) —y—2
B:,Q/ dzﬁlgUfo)eme)(l»Z) .
0

z0B2 20

108

(377)

(378)

(379)

(380)

(381)

(382)

(383)

(384)

(385)

(386)

(387)



The first integral can be computed by setting

z
) =t, (388)
so that we get
o) —1—x
C= 2/ glho)dt ('} _ tgko) . (389)
o 20bo 20

We note that using the Taylor expansion

(1) g o)y LB 4

20 20 2 0
1 t3g(ko)?
5278(74'1)(7‘*‘2)(’74‘3)‘*'--- (390)
Z t"g(ko)” T(y+n+1)
2§ Ty+1L(n+1)°
we obtain
g(ko)dt t"g(ko)" T(y+n+1)
C= 2/ -t
0 Zoﬁo Z zp T(y+1)I'(n+1)
g(ko)" ! (’Y+n+1) / —ty(n+1)—1
dte 1Y) 391
Z 47 TO+UTr D Jy M (381)
2 9" Ty +n+1)
" B =t T(y+1)

In a similar way we work for the integral B; we have

B=-2 00519(]“(3)2‘”6_1(1_759(]%))27.

392
0 z0B8 20 (392)

The Taylor expansion of (1 —tg(ko)/z0) 277 is derived from Eq. (390) by considering v — v+ 1

and thus )

tgko)\ =7 ~=t"g(ko)" T 2

20 — oz T(y+2)T(n+1)
Inserting the previous identity in Eq. (392) we get
p__ 2 / g(ko)®dt_, i trg(ko)” T(y+n+2)
52 20 — F'(y+2)I'(n+1) (300)
2512029160“4-2 40 +2)
0 Thv+2)

n’/=0
To sum order-by-order C' and B, it is necessary to consider only the terms that satisfy n+ 1 =

n' + 2, where n is the perturbative order of the series C and n’ is the perturbative order of the
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series B, which means that n’ =n — 1. So we get

Nyt 2 F<v+n+1) 2Bz F(’y+n+1)}

_ Zg n+1 ’7 +n+ 1) ( 2 . 220031 )
23t Bol'(v+1)  Bol'(y+2) (395)
=X
> nrel Ly +n+1
=x>_ glko) H% '
n=0 20
In this case we obtain the two-loop renormalon asymptotic, i.e.
L(y+n+1) Er+D v
P EM.n 2z + n)’ (396)

recovering Eq. (317). We consider finite volume effects as for the one-loop case. This amounts

to adjusting the limits of the integrals C' and B, namely

Z g(ko)"! T(y+n+1) /z°ﬁ° e dte—tynrD-1 (397)
50 2t T(y+Dl(n+1) 7
2 ]f n+2 2 2080 In V2N
LDy Z o 2+1 lh4nt?) / dte~tt(n+D-1 (398)
o F'(y+2)I'(n+1)

From now on, we set A = 2,3y Inv/2N. The calculation of the first integral yields

Z g(ko)™™ T(y+n+1) /A die—tin+1—1
50 20t T(y+1)T(n+1) Jo

glko)"! T(y+n+1) [ = AF

BOZ T T i\ ° ZO il (399)
g(ko) "+1F7+n+1 ( A

ﬁoz Zgtt Ly +1 Z

while for the integral B we have

2B Z g(ko)"** T(y+n+2) /ZOQO I V2N dte—tpn+)-1
2 T T D+ )

261z0 (ko)™ +2 F(fy+2+n’) " e A
= E H1—e "> —
27 T+ 20w + 1) ¢ 4 (400)

n’/=

25lzozgko"+2r y+2+n') 1_€—Ai:‘ik
WA T(742) 21 )

n’=0
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Finally we consider the sum of integrals C' and B, i.e.

g(ko) ntl (F(7+”+1)(1_6_A2k =0 k')

b= 2;) e Bol'(7 + 1)
CBia Ty +n+1)(1-e? i ﬁ))
2
B I'(y+2) (401)

n

50r7+ ng2+i+lr(7+n+1)[<1—eAZ‘i?)
g5

C Bo(y+1)

In this case, the perturbative coefficients read

n—1
E(n+1>:Lp(y+n+1 1—e*AZ A & 1—6*A2A—k . (402)
20+t k') Bo(v+1) = K

0

The asymptotic behavior can be computed considering the ratio

—Axn AF 2 —Axn—1 Ak
Kle k=0 k'> ﬁﬁ;ﬁn (1 e ko k‘)}

(n+1) 1
E(n) S (1 + 7) . (403)
E -n 20 n |:<1_6_Azn—1,4k>_ ﬁlzo (1_6_1422:512]:)]

k=0 K | T Bo(r+1)

which is the form of Eq. (328).
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