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9.1 Motivations

A common prediction of weakly coupled models like the standard model (SM)
and minimal SUSY as well as strongly coupled composite models of the Higgs
boson is that the breaking of the electro-weak (EW) symmetry is due to a
light—that is, with a mass less than 300 GeV—Higgs boson.

What happens if the LHC will not discover any light Higgs boson? Most
likely, this would mean that the EW symmetry must be broken by a new and
strongly interacting sector.

In this scenario—in which there is no SUSY and no light (fundamental or
composite) Higgs boson to be seen—it becomes particularly relevant to analyze
the physics of gauge boson scattering—WW , WZ and ZZ—Dbecause it is here
that the strongly interacting sector should manifest itself most directly. For a

short review, see these proceedings 1),

Gauge boson scattering in this regime looks similar in many ways to 7w
scattering in QCD and similar techniques can be used. The natural language is
that of the effective electro-weak lagrangian introduced in 2). This lagrangian
contains all dimension four operators for the propagation and interaction of
the Goldstone bosons of the breaking of the global SU(2) x U(1) symmetry.
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If we knew the coefficients of these operators we could predict the physics of
gauge boson scattering at the LHC. Unfortunately the crucial coefficients do
not, enter directly in currently measured observables. We do not know their
values and constraints on them can only be inferred by their effect in small
loop corrections to the EW observables. Accordingly they are rather weak. In
addition, even though the LHC will explore these terms directly, its sensitivity
is not as good as we would like it to be and an important range of values will
remain unexplored.

This lack of predictive power can be ameliorated if we assume some model
of the strong dynamics responsible of the electro-weak symmetry breaking. In
this case, additional relations among the coefficients can be found and used
to relate them to known constraints. Our strategy is therefore to use our
prejudices—that is, model-dependent relationships among the coefficients of
the effective lagrangian—plus general constraints coming from causality and
analyticity of the amplitudes to see what values the relevant coefficients of
the effective electro-weak lagrangian can assume without violating any of the
current bounds.

We are aware that in many models the relations among the coefficients
we utilize can be made weaker and therefore our bounds will not apply. Nev-
ertheless we find it useful to be as conservative as possible and explore—given
what we know from electro-weak precision measurements and taking the mod-
els at their face values—what can be said about gauge boson scattering if
electro-weak symmetry is broken by a strongly interacting sector. Within this
framework, we find that the crucial coefficients are bound to be smaller than
the expected sensitivity of the LHC and therefore they will be probably not be
detected directly.

This is not the end of the story though. The cutoff scale of the effective
theory is given by the energy at which unitarity is lost. This is around 1.3 TeV
in the case of the electro-weak theory as described by the effective lagrangian at
the tree level. Unitarity is recovered after introducing additional states which
are the Higgs boson in the case of the standard model while they are reso-
nances made of bound states of the strongly interacting sector in our case. On
a more practical level, there exist unitarization procedures that move the scale
at which unitarity is lost to higher values and we will consider one of them.
It is characteristic of these procedures to automatically include the necessary
resonances in the spectrum. The presence of resonances is particularly inter-
esting if the coefficients of the effective lagrangian cannot be measured. They
may well be the only signatures of the strongly interacting sector accessible at
the LHC. We discuss in same detail the most likely masses and widths of these
resonances and their experimental signatures.
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9.2 Gauge boson scattering

Consider the case in which the LHC will not find any new particle propagat-
ing under an energy scale A around 2 TeV. By new we mean those particles,
including the scalar Higgs boson, not directly observed yet. In this case—since
A > myy—the physics of gauge boson scattering is well described by the stan-
dard model (SM) with the addition of the effective lagrangian containing all the
possible electro-weak (EW) operators for the Goldstone bosons (GB)—r®, with
a = 1,2,3—associated to the SU(2);, x U(1)y — U(1)em symmetry breaking.
The GB are written as an SU(2) matrix

U = exp (ir%c"/v) , (9.1)

where 0 are the Pauli matrices and v = 246 GeV is the electro-weak vacuum.
The GB couple to the EW gauge and fermion fields in an SU(2) x U(1)y
invariant way. As usual, under a local SU(2)r x U(1)y transformation U —
LUR', with L and R an SU(2)r, and U(1)y transformation respectively. The
EW precision tests require an approximate SU(2)¢ custodial symmetry to be
preserved and therefore we assume R C SU(2)g.

The most general lagrangian respecting the above symmetries, together
with C' and P invariance, and up to dimension 4 operators is given in the

references in 2) of which we mostly follow the notation:
v? t L 99 o 1 / v
L = ZTr (D, O)Y(D*U)] + 1097Y [Tr(TV,)]* + 50199 B, Tr(TWH")
1
+ iiagg’B,“,Tr(T [VH,VY]) + dasgTr(W,,[V*, VY]

as[Tr(V, V) + as[Tr(V, V) + asTr(V,V,)Tr(TV*)Tr(TV")
1
a7 Tr(V,VE)Tr(TV,)Tr(TV") + 1agg? [Tr(TW,,,)]?
1 1
+ 5z‘agTr(TW,W)Tr(T[V“, VY] + §a10[T7’(TVH)Tr(TV,,)]2
ar1ge" P Tr(TV,)Tr(V, W,y) . (9.2)
In (9.2), V,, = (D,U)UT, T = Uo®UT and

.Uk k . 0'3
D, U =09,U + Z7WHU —ig UEB“ , (9.3)

with W, = O'kWZfV/Z = 0,W, — 0,W, +ig[W,,W,] is expressed in matrix
notation.

This lagrangian, as any other effective theory, contains arbitrary coef-
ficients, in this case called a;, which have to be fixed by experiments or by
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matching the theory with a UV completion. The coefficients as, as, ag, a11 and
a4, as, ag, a7, a1g contribute at tree level to the gauge boson scattering and rep-
resent anomalous triple and quartic gauge couplings respectively. They are
not directly bounded by experiments. On the other hand, the coefficients ay,
ay and ag in (9.2) are related to the electro-weak precision measurements pa-

rameters S, T and U 3) and therefore directly constrained by LEP precision
measurements.’

9.2.0.1 Precision tests, custodial symmetry and the effective lagrangian

The EW precision measurements test processes in which oblique corrections
play a dominant role with respect to the vertex corrections. This is why we can
safely neglect the fermion sector (in our approximate treatment) and why the
parameters S, T, U, W and Y represent such a stringent phenomenological set
of constraints for any new sector to be a candidate for EW symmetry breaking
(EWSB). The good agreement between experiments and a single fundamental
Higgs boson is encoded in the very small size of the above EW precision tests
parameters. The idea of a fundamental Higgs boson is perhaps the most ap-
pealing because of its extreme economy but it is not the only possibility and
what we do here is to consider some strongly interacting new physics whose
role is providing masses for the gauge bosons in place of the Higgs boson.

To express the precision tests constraints in terms of bounds for the co-
efficients of the low-energy lagrangian in eq. (9.2) we have to take into account
that the parameters S, T' and U are defined as deviations from the SM predic-
tions evaluated at a reference value for the Higgs and top quark masses. Since
we are interested in substituting the SM Higgs sector, we keep separated the
contribution to S of the Higgs boson and write

Su+S=Sewss, (9.4)

and analog equations for T' and U. The contributions coming from the SM
particles, including the GB, are not relevant because they appear on both
sides of the equation. Sy is given by diagrams containing at least one SM
Higgs boson propagator while Sgyw sp represents the contribution of the new
symmetry breaking sector, except for contributions with GB loops only. We

I'The authors of 4) defined the complete set of EW parameters which
includes—in addition to S, T and U—W and Y. These latter come from
O(p®) terms and can be neglected in the present discussion.
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thus find that, in the chiral lagrangian (9.2) notation,

Sewsp = —16ma;
aemTEwss = 29%ag
UEWSB = —167TCL8 (95)

The coefficients ag, a1 and ag typically have a scale dependence (and the same
is true for Sy, Ty and Up) because they renormalize the UV divergences of
the GB loops which yields a renormalization scale independent S, T and U.
One expects by dimensional analysis that U ~ (m%/A?)T < T and therefore

U is typically ignored. The relationships (9.5) have been used in 5) to study
the possible values of the effective lagrangian coefficients in the presence of SM
Higgs boson with a mass larger than the EW precision measurements limits.

Using the results of the analysis presented in 4), taking as reference values
myg = 115 GeV, my = 178 GeV and summing the 1-loop Higgs contributions,
we obtain:

Spwss = —0.0540.15
demTewss = (0.340.9) %1073 (9.6)

at the scale p = mz. We shall use these results to set constraints to the
coefficients of the effective lagrangian (9.2).

The smallness of the parameter T' can be understood as a consequence
of an approximate symmetry of the underlying theory under which the matrix
U carries the adjoint representation. In fact, if we require a global SU(2), x
SU(2)r — SU(2)¢ pattern the T = Uo®UT operator would not be present in
the non-gauged chiral lagrangian. The gauge interactions break explicitly this
symmetry through SU(2)g D U(1)y (and consequently by SU(2)¢c D U(1)em)
thus producing a non-vanishing 7' parameter as a small loop effect proportional
to ¢g’%. Moreover, any new EWSB sector must eventually be coupled with some
new physics responsible for the fermions masses generation and thus requir-
ing a breaking of the SU(2)¢. Due to this approximate symmetry we expect
the couplings o 2,6,7,8,9,10,11 to be subdominant with respect to the custodial
preserving ones.

Most of the strongly coupled theories have large and positive Sgpwsp
and the assumption that this sector respects an exact custodial symmetry is
in general in contrast with smaller values of the S parameter. In fact, a small
deviation from the point Trwsp = 0 can lead to a negative correction of the
same order in the S parameter. Using the effective lagrangian formalism and
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going to the unitary gauge we find

4
Sewsp =~ (styAz — iy Aa)
8%,
Uswsp = - (Az +Ax) (9.7)

where the A4 z are the shifts in the photon and 79 kinetic terms due to new
physics—once the shifts in the W propagators have been rescaled to write its
kinetic term in the canonical way 6). If a new theory has A = A® + A with
A a custodial symmetric term and A small custodial-symmetry breaking term
satisfying S%VAZ — c%VAA = —cQey, then Spwsp = S° —4e and Ugwsp =
O(e). This result agrees with the experiments: a large and positive S can only
be consistent with data if T is greater than zero.

Bearing the above arguments in mind, we can, in first approximation,
consider the custodial symmetry to be exact and therefore discuss only those
terms in the lagrangian (9.2) that are invariant under this symmetry. Gauge
boson scattering is then dominated by only two coefficients: a4 and as.

9.2.0.2 Scattering amplitude

Being interested in the EW symmetry breaking sector, we will mostly deal with
longitudinally polarized vector bosons scattering because it is in these processes
that the new physics plays a dominant role. We can therefore make use of the
equivalence theorem (ET) wherein the longitudinal W bosons are replaced by

the Goldstone bosons 7). This approximation is valid up to orders m%V /s,
where s is the center of mass (CM) energy, and therefore—by also including
the assumptions underlaying the effective lagrangian approach—we require our
scattering amplitudes to exist in a range of energies such as m%, < s < A2
Assuming exact SU(2)¢, the elastic scattering of gauge bosons is de-
scribed by a single amplitude A(s,t,u). Up to O(p*), and by means of the

lagrangian (9.2) we obtain 8)
s
4 1 10s? 4+ 13(t* + u?)
29 2 2 2
+ e [ as(p)s” + aq(p)(t° 4+ u’) + e = }

1 —t —Uu 2 —s
- e [t(s + 2t) log(ﬁ) + u(s + 2u) log(ﬁ) + 3s 1og(u2)}
where s, ¢, u are the usual Mandelstam variables satisfying s+t+u = 0 which in
the CM frame and for any 1+2 — 1’42’ process can be expressed as a function

of s and the scattering angle 6 as ¢t = —s(1 —cos6)/2 and u = —s(1+ cos6)/2.
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The couplings a45(p) appearing in (9.8) are the effective coefficients
renormalized using the minimal subtraction scheme and they differ by an ad-
ditive finite constant from those introduced in ). In the latter non-standard
renormalization, the numarator of the one loop term in the first bracket of (9.8)
is shifted from 10s? + 13(t? 4+ u?) to 4s% + 7(t? + u?).

The GB carry an isospin SU(2)¢ charge I = 1 and we can express any
process in terms of isospin amplitudes Aj(s,t,u) for I =0,1,2:

Ao(s,t,u) = 3A(s,t,u) + A(t, s,u) + Au, t, s)
Ai(s,t,u) = At s,u) — A(u,t, s)
As(s,t,u) = Alt,s,u) + Au,t,s). (9.9)

From the above results, we obtain the amplitudes for the scattering of the
physical longitudinally polarized gauge bosons as follows:

AWIW™ - WTw™) = %AO + %Al + éAg
AWIW™ = 22) = %AO - %AQ
AZZ —27) = %Ao + %Ag
AWZ -WZ) = %Al + %Ag
AWEWE - wEWE) = A, (9.10)

It is useful to re-express the scattering amplitudes in terms of partial
waves of definite angular momentum J and isospin [ associated to the custodial
SU(2)c group. These partial waves are denoted ¢7; and are defined, in terms
of the amplitude A; of (9.9), as

1 1
trg = —/ d(cos ) Py(cos ) Ar(s,t,u) . (9.11)
647 —1
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Explicitly we find:

@ S
00 16 wv2’
O s [16(11as + 7a4) . 101/9 — 501log(s/p?)/9 +4in
00 64 ot | 3 16 72 ’
@ S
1 96 Tv2’
2 r .
(4) S 1 1 in
t) = —Z— |4(ay —2 — =+ =
1 56 wot | 101~ 205) + 35 <9 % ﬂ ’
2 =S
20 322’
2 r 2 .
(4) s 32(as +2a4) 273/54 —20log(s/p?)/9+ i
ts) = 9.12
20 64 ot | 3 * 16 72 - (912)

where the superscript refers to the corresponding power of momenta.

The contributions from J > 2 starts at order p4 and turn out to be
irrelevant for our purpose. The I = 1 channel is related to an odd spin field
due to the Pauli exclusion principle. The (I = 2,.J = 0) channel has a dominant
minus sign which, from a semiclassical perspective, indicates that this channel
is repulsive and we do not expect any resonance with these quantum numbers.

The effective lagrangian (9.2) and gauge boson scattering were extensively

discussed in 9) .

9.2.0.3 Unitarity violation

The amplitudes (9.8) (or, equivalently (9.12)) show that, for s > m3,, the
elastic scattering of two longitudinal polarized gauge bosons is observed with a
probability that increases with the CM energy s. We expect that for sufficiently
large energies the quantum mechanical interpretation of the S-matrix will be
lost. This fact can be restated more formally in terms of the partial waves
defined in eq. (9.12). The unitarity condition for physical values of the CM
energy s < A2 can be written as

Ith(s) :| t]J(S) ‘2, (913)

which, up to order p* terms, reads Im t(f,) (s) =| tf])(s) |2. This relation leads
to an upper bound on the cut-off scale A above which the theory is no more
unitary. A necessary condition to satisfy is therefore that Re(t7;) < 1/2, which
at tree level yields A < 1.3 TeV. This constraint holds irrespective of the value
of the a; and is even lower when loops are included. We explicitly show the
unitarity bound thus obtained as a dashed line in the plots presented below in
Figures (9.3) and (9.4) at the end of the paper.
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9.2.1 Limits and constraints

If we knew all the coefficients of the lagrangian (9.2), and a4 and as in partic-
ular, we could fully predict gauge boson scattering at the LHC. We therefore
turn now to what is known about them in order to review all current constraints
on their possible values and compare them with the limits on their values which
are going to be explored given the expected LHC sensitivity. As we shall see,
these two crucial coefficients are poorly known quantities which furthermore
will not be fully explored at the LHC.

9.2.1.1 LHC sensitivity

First of all, let us consider the capability of the LHC of exploring the coeffi-
cients a4 and as of the effective lagrangian (9.2). This has been discussed most

recently in 10) by comparing cross sections with and without the operator con-
trolled by the corresponding coefficient. They consider scattering of W+W —,
W*Z and ZZ (WTW+ gives somewhat weaker bounds) and report limits (at
99% CL) that we take here to be

~77%x 1073 <ay <15 x 1073
—12x103 < a5 <10x 1073, (9.14)

The above limits are obtained considering as non-vanishing only one coefficient
at the time. It is also possible to include both coefficients together and obtain a
combined (and slightly smaller) limit. We want to be conservative and therefore

use (9.14). Comparable limits were previously found in the papers of ref. 1)
To put these results in perspective, limits roughly one order of magnitude

better can be achieved by a linear collider 12)

9.2.1.2 EW precision measurements: indirect bounds

Bounds on the coefficients a4 and a5 can be obtained by including their effect
(at the one-loop level) into low-energy and Z physics precision measurements.
They are refereed as indirect bounds since they only come in at the loop level.

As expected, these bounds turn out to be rather weak 10) :
—320x 107® < ag <85 x 107?

—810 x 1073 < a5 < 210 x 1073 (9.15)

at 99% C.L. and for A = 2 TeV. Comparable bounds were previously found in

the papers in ref. 13) As before, slightly stronger bounds can be found by a
combined analysis.



214 M. Fabbrichesi, A. Tonero, L. Vecchi

Notice that the SU(2)¢ preserving triple gauge coupling as has not been
considered in the computations leading to the previous limits. Once its con-
tribution is taken into account, the LHC sensitivity and the indirect bounds
presented here are slightly modified although the ranges shown are not changed
drastically.

0.125 ¢
0.1
0.075 ¢
0.05¢
0.025 ¢

Excluded (indirect bounds)

a

0.025 | Excluded (causality)

005 0 005 0.1 015 02 025
as

Figure 9.1: The region of allowed values in the as-as plane (in gray) as
provided by combining indirect bounds and causality constraints. Also
depicted, the region below which LHC will not able to resolve the coef-
ficients (Black box).

9.2.1.3 Unitarity, analyticity and causality

The requirement of unitary of the theory, as we have seen, forces the cut off of
the lagrangian (9.2) to be A < 1.3 TeV but does not impose any constraint on
the coefficients a;. Other fundamental assumptions like causality and analyt-
icity of the S-matrix do give rise to interesting constraints.

In particular, the causal and analytic structure of the amplitudes leads to
bounds on the possible values the two coefficients a4 and a5 can assume. This is

well known in the context of chiral lagrangians for the strong interactions 14)
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and can be extended with some caution to the weak interactions. It can be
shown in fact that the second derivative with respect to the center of mass
energy of the forward elastic scattering amplitude of two GB is bounded from
below by a positive integral of the total cross section for the transition 27 —
everything. The coefficients a4 and as enter this amplitude and one can use
the mentioned result to bound them.

The most stringent bounds come from the requirement that the under-

lying theory respects causality 15)  The causality bound can be understood
by noticing that, given a classical solution of the equations of motion, one can
study the classical oscillations around this background interpreting the motion
of the quanta as a scattering process on a macroscopic object 16) 1f the back-
ground has a constant gradient, the presence of superluminal propagations sum
up and can in principle become manifest in the low-energy regime. Following
the argument in 16)7 we obtain the free equations of motion by considering
oscillations around one of the possible backgrounds mg = oC,z", where o is a
general direction is isospin space. They can be written as

P* (14 0(a) + = (C-p)* =0, (9.16)

with @ = a4 or a = a4 + a5. In this derivation we made use of the assumption
C? < A* which is necessary to ensure a perturbative expansion in the frame-
work of the effective theory. The above relations imply a subluminal group
velocity only in the case a > 0. These classical results can be implemented in a
quantum framework provided we take into account that all of the coefficients a;
are formally evaluated at a scale 1 < A through a matching procedure between
the UV theory and the lagrangian (9.2).
In conclusion, the causality constraints can be taken to be

as(p) >
>

0
as(p) +as(p) 0. (9.17)

Notice that the constraints in eq. (9.17) remove a quite sizable region
(most of the negative values, in fact) of values of the parameters ay and as
allowed by the indirect bounds alone. Fig. 9.1 summarizes the allowed values
in the a4-as plane and compare it with LHC sensitivity.

9.2.2 EW precision measurements: direct (model dependent) bounds

Given the results in Fig. 9.1, we can ask ourselves how likely are the different
values for the two coefficients a4 and as among those within the allowed re-
gion. Without further assumptions, they are all equally possible and no definite
prediction is possible about what we are going to see at the LHC.
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In order to gain further information, we would like to find relationships
between these two coefficients and between them and those of which the exper-
imental bounds are known. In order to accomplish this, we have to introduce
some more specific assumptions about the ultraviolet (UV) physics beyond the
cut off of the effective lagrangian. We do it in the spirit of using as much as
we know in order to guess what is most likely to be found.

As a first step, simple relations for a4 and as are found by means of
assuming that their values are dominated by the integration of particles with
masses larger than the cut off. It is what is successfully done in QCD, following
vector meson dominance, and estimating the coefficient of the chiral lagrangian
by integrating out the p meson.

The spin 1, I = 1 particles can be introduced as gauge vectors of a hidden
local symmetry and in this case ay = —as > 0. The integration of a scalar I = 0
particle gives a5 > 0 and a4 = 0. Scalar I = 2 particles give ay = —3as > 0.
Massive spin 2 particles yield, for the isoscalar a4y = —3as > 0, while for the
I=2a5>0and a4 =0.

This kind of matching is what we would expect from a weakly coupled
model or even from a strongly coupled theory in a large- N approximation. This
exercise provides us with some insight into the possible and most likely values
for the coefficients. In particular we can see the characteristic relations between
a4 and as depending on the different quantum numbers of the resonance being
integrated.

A further step consists in assuming a specific UV completion beyond the
cut off of the effective lagrangian in eq. (9.2). The two most likely scenarios
which can be studied with the effective lagrangian approach are a confining the-
ory (essentially the gauge sector of a strongly interacting model of a rescaled
QCD) and the strongly coupled regime of a model like the SM Higgs sector in
which the Higgs boson is heavier than the cut off. For each of these two scenar-
ios it is possible to derive more restrictive relationships among the coefficients
of the EW lagrangian and in particular we can relate parameters like ag and
ay to as and as. These new relationships make possible to use EW precision
measurements to constrain the possible values of the coefficients a4 and as.

9.2.2.1 Large-N scenario

This scenario is based on a new SU(N) gauge theory coupled to new fermions
charged under the fundamental representation. By analogy with QCD these
particles are invariant under a flavor chiral symmetry containing the gauged
SU(2)r, xU(1)y as a subgroup. Let us consider the case in which no other GB
except the 3 unphysical ones are present and therefore the chiral group has to
be SU(2)L x SU(2)g, with U(1)y C SU(2)g. The new strong dynamics leads
directly to EWSB through the breaking of the axial current under the confining
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scale around 47v and to the appearance of an unbroken SU(2)r4+r = SU(2)c
custodial symmetry. Following these assumptions, there are no bounds on the
new sector from the parameter T' and the relevant constraints come from the
S parameter only.?

At energies under the confining scale, the strong dynamics can be de-
scribed in terms of the hadronic states. Their behavior can be simplified
by making use of the large-IV approximation. The main result is that the
resonances appearing as low-energy degrees of freedom have negligible self-
interactions with respect to the couplings to the GB. This limit turns out to
be a good approximation of low-energy QCD even if N is not large.

The large-N approximation allows us to readily estimate the coefficients
of the effective lagrangian. At the leading order, we find that a4 and as are

finite and (by transforming the result of 17) for QCD)
1
a4 = —2a5 = —301, (9.18)

which provide us with the link between gauge boson scattering and EW preci-
sion measurements—the coefficient a; being directly related to the parameter
S as indicated in eq. (9.5).

In a more refined approach, the non-perturbative effects have been inte-
grated out giving rise to a constituent fermion mass and a gauge condensate.
The chiral lagrangian is a consequence of the integration of these massive states.

The result becomes 18):
_ N
T 1o(4n)2
1 6
as = — (2 + 5<G2>> as, (9.19)

where (G?) is an average over gauge field fluctuations. The latter is a positive
and order 1 free parameter that encodes the dominant soft gauge condensate
contribution which there is no reason to consider as a negligible quantity. With-
out these corrections the result is equivalent to those obtained considering the
effect of a heavier fourth family. Causality requires g(GQ> < % and therefore
we will consider values of (G2) ranging between 0 < (G?) < 0.5.

The coefficients a; are scale independent at the leading order in the 1/N
expansion.

2We are not concerned here with the fermion masses and therefore we can
bypass most of the problems plaguing technicolor models.
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The S parameter gives stringent constraints on NV:
N 6
S =— 1+ 2(G? 9.20
EWSB 67r< +5< >) (9:20)

which is slightly increased by the strong dynamics with respect to the pertur-
bative estimate, in good agreement with the non-perturbative analysis given
in 3). From the bounds on Sepwsp, we have N < 4 (20) and N < 7 (30)
respectively.

The relevant bounds on a4 is then obtained via a; and yields

SeEwsB
327

We are going to use the bounds given in eq. (9.19) and eq. (9.21).

Taking a; at the central value of Sgwsp gives ay < 0, which is outside
the causality bounds. This is just a reformulation in the language of effective
lagrangians of the known disagreement with EW precision measurements of
most models of strongly interacting EW symmetry breaking.

We expect vector and scalar resonances to be the lightest states. The high
spin or high SU(2)¢ representations considered earlier are typically bound
states of more than two fermions and therefore more energetic. Their large
masses make their contribution to the a; coefficients subdominant.

The relations (9.17) and (9.19) satisfied by the model imply that —ay <
as < —ay/2, an indication that scalar resonances give contributions comparable
with the vectorial ones in the large-IV limit. If vectors had been the only
relevant states, the relation would have been a4 = —as.

It is useful to pause and compare this result with that in low-energy QCD.

Whereas in the EW case we find that the large-N result indicates the
importance of having low-mass scalar states, the chiral lagrangian of low-energy
QCD has the corresponding parameters L; and Lo saturated by the vector
states alone. This vector meson dominance is supported by the experimental
data and in agreement with the large-N analysis, which in the case of the group
SU(3) is different from that of the EW group SU(2) x U(1).

Even though the scalars have little impact on the effective lagrangian
parameters of low-energy QCD, they turn out to be relevant to fit the data
at energies larger than the p mass where the very wide o resonance appearing
in the amplitudes is necessary 19), One may ask if something similar applies
to the EWSB sector, it being described by a similar low-energy action. This
can be seen by looking at the contribution of a single vector to the tree-level
fundamental amplitude:

0<as< (9.21)

s  3MZs M} [ u-—s t—s
A(s, t,u) = T et Tt \ i 7 + e (9.22)
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with g (not to be interpreted as a gauge coupling) and M7 representing the
only two parameters entering up to order p*. The limit s < M2 corresponds to
integrate the vector out and gives the low energy theorem with the previously
mentioned aq = —as = 1/(4¢%), while the opposite limit s > M2 is not well
defined. The condition M‘z, = §%v?/3 erases the linear term but cannot modify
the divergent behavior of the forward and backward scattering channels. In
fact we still find the asymptotic form too(s) ~ §°/(367)log(s/M%) which has
to be roughly less than one half to preserve unitarity. This shows why models
with only vector resonances cannot move the UV cut off too far from the vector
masses, as opposed to what happens in the case of scalar particles.

The larger dark triangle in Fig. 9.2 shows the allowed values for the coef-
ficients a4 and as as given by eq. (9.19) and eq. (9.21). The gray background is
drawn according to the causality constrain which is assumed scale independent
to be consistent with the leading large-N result.

9.2.2.2 Heavy-Higgs scenario

This scenario is a bit more contrived than the previous one and a few prelimi-
nary words are in order.

A scalar Higgs-like particle violates unitarity for masses of the order of
1200 Gev  20). Moreover, the mass of the Higgs is proportional to its self
coupling and from a naive estimate we expect the perturbation theory to break
down at A ~ 47, that is my ~ 1300 GeV. What actually happens in the case of
a non-perturbative coupling is not known. Problems connected with triviality
are not rigorous in non-perturbative theories and therefore the hypothesis of a
heavy Higgs cannot be ruled out by this argument.

As long as we intend such a heavy Higgs boson only as a modeling of
the UV completion of the EW effective lagrangian, we can study this scenario
by assuming a Higgs mass between 2 and 2.5 TeV. Even though we cannot
expect the perturbative calculations to be reliable at these scales, they may
still provide some insight into the strongly interacting behavior.

The effective lagrangian parameters in the case of a heavy Higgs can be
computed by retaining only the leading logarithmic terms to yield:

as = —a; and a4 = 2as5, (9.23)
which contains the link between gauge boson scattering and the coefficient aq
we need. A more complete computation 21) gives

1 1 17 m?,
as(mz) = ——+—3 < —log )
12 (47)2 \ 6 my
v? 1 1 79 27w m?,
= —————|———%=—-log—= 9.24
as(mz) 8m?, 24 (4m)? < 3 2V3 ©8 m2Z> (9:24)
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and )
1 m 5
=— (log—& -2 . 2
SEwsB Ton (Og m2 6> (9.25)

The causality constrain (9.17) applied to the above equations implies a
bound on the possible values of the cutoff A compared to mpy. An effective
lagrangian cutoff consistent with LHC physics yields a Higgs mass at least of
the order of 2 TeV.

Putting these equations together, we obtain:

a=— (s 1
4_1671' EWSB 61

v? 1 1 141 27xn
mZ, T 12 ) ( 6 Ng)
As before in the large-N scenario, the central value of Sgpwsp yields a value of
a4 outside the causality bounds.

At this point we can collect these results with those of the previous section
and conclude that in both scenarios under study, the limits on the coefficients
ays and aj are well below LHC sensitivity (compare Fig. 9.1 and Fig. 9.2). If
this is the case, the LHC will probably not be able to resolve the value of these
coefficients because they are too small to be seen. It goes without saying that
this can only be a provisional conclusion in as much as in many models the
relations among the coefficients we utilize can be made weaker by a variety
of modifications which make the models more sophisticated. Accordingly, our
bounds will not apply and the LHC may indeed measure a4 or as and we will
then know that the UV physics is not described by the simple models we have
considered.

as = 2a5 — (9.26)

9.2.2.3 A comment about Higgsless models

Higgsless models 22) have been proposed to solve the hierarchy problem. They
describe a gauge theory in a 5D space-time that produces the usual tower of
massive vectors on the 4 dimensional brane (our world). The lightest Kaluza-
Klein modes are interpreted as the W* and Z° while those starting at a mass
scale A, represent a new weakly coupled sector.

The scale of unitarity violation is automatically raised to energies larger
than 1.3 TeV because the term in the amplitude linearly increasing with the
CM energy s is not present in these models. Every 5D model, whatever the
curvature, has this property and fine tuning is neither required nor possible.
For this reason, a saturation of the unitarity bound of the term of the amplitude

23)

linear in s with just a few vector states, as done in , cannot be considered

a characteristic signature of the Higgsless models.
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These 5D models fear no better than technicolor when confronted by EW
precision measurements. There exists an order 1 mixing among the heavy
vectors which contribute a tree level VVS’ — B, exchange and consequently a
Sewss x 1/(gg’). In 5D notation and for the simplest case of a flat metric,

Spwsp = 0(1)/g? ~ R/g(25), in agreement with 24) " This result can be
ameliorated by the introduction of a warped 5D geometry, or boundary terms
or even by a de-localization of the matter fields 25). n a certain sense these
fine tuning can be seen as a 5D analog of the walking effect on a QCD-like
Technicolor.

As it will become clear in the next section, our general analysis of the
resonant spectrum relies on the presence of the linear term in s and therefore
any 5D Higgsless model is a priori excluded. Nevertheless, since we already
know what is the spectrum, we can give some indicative result of what an
Higgsless model implies for the coefficients a4 and as.

These models present the relation ay = —as which is characteristic of all
models with vector resonances only. This line in the a4 — a5 plane of Fig. 9.2 lies
on the causality bound and coincides with the large-N scenario in which the
strong dynamical effect (G?) is maximal or, equivalently, in the case in which
the scalar resonances are excluded. If we content ourselves with an estimate
in the 5D flat space approximation we can write some explicit result 26) For
example, the asymptotic behavior of gy in the case of a flat 5D geometry is
found to be

M? s

and represents an upper bound on the mass M; of the lightest massive excita-
tion of the W+, Z0.
The coefficient a4 is related to a;. We find that

1
as = 7Ea1 5 (928)

and therefore,
2 2
™ v°  Spwss

T 120M2 1607

The constraints on S of eq. (9.6) lead to M; > 2.5 TeV which implies a violation
of unitarity, and consequently the need of a UV completion for the 5D theory,
at the scale ~ MZ.

The parameters a4 and a5 are—as in the other scenarios considered—too
small to be directly detected at the LHC. The large mass M; of the first vector
state makes it hard for the LHC to find it.

(9.29)

a4 = —as
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In case of a warped fifth dimension these relations are slightly changed
but the tension existing between the unitarity bound (9.27) (which requires
a small M} to raise the cut off above 1.3 TeV) and the S parameter (which
requires a large M?) remains a characteristic feature of these models.

Figure 9.2: Model-dependent bounds for the coefficients. Horizontal lines
mark the bounds from EW precision tests for the large-N scenario (lower
line) and heavy-Higgs scenario (higher line). Four representative points
are indicated: P; and P» for the large-IN scenario and P3 and Py for
the heavy Higgs. The two oblique dashed lines represent, respectively,
the region of vector resonances (left side of dashed line with positive
angular coefficient) and of scalar resonances (right side of dashed line
with negative angular coefficient). Also indicated (large dots with dark

circles) the points discussed in ref. 30). Notice that the range of this
figure is all within the black box of Fig. 9.1.

9.3 Experimental signatures: resonances

Even though the values of the coefficients may be too small for the LHC, the
unitarity of the amplitudes is going to be violated at a scale around 1.3 TeV
unless higher order contributions are included. Following the well-established
tradition of unitarization in the strong interactions, we consider the Padé ap-

proximation, also known as the inverse amplitude method (TAM) 27) | Other
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unitarization procedure have been used in the literature but we find them less
compelling than TAM because they introduce further (unknown) parameters.

This procedure is carried out in the language of the partial waves intro-
duced in (9.12). In fact, using analytical arguments we find that

(2)
() = — L 1 O(s"). (9.30)
1=ty /ty;
Equation (9.30) is the TAM, which has given remarkable results describing
meson interactions, having a symmetry breaking pattern almost identical to
our present case. Note that this amplitude respects strict elastic unitarity,
while keeping the correct low energy expansion. Furthermore, the extension
of (9.30) to the complex plane can be justified using dispersion theory. In
particular, it has the proper analytical structure and, eventually, poles in the
second Riemann sheet for certain a4 and as values, that can be interpreted as
resonances. Thus, IAM formalism can describe resonances without increasing
the number of parameters and respecting chiral symmetry and unitarity.
By inspection of eq. (9.30), the IAM yields the following masses and
widths of the first resonances:

4v? ms
2 s
ms = o1 s0loa(rZ/p)] 15 = 27
1 [1as () + Tas(u)] + g | g 1o
(9.31)
for scalar resonances, and
2 3
2 v my
my = , 'y =——, 9.32
U dlan) < 205(0)] + 5mh | 96 (9:32)

for vector resonances.

A few words of caution about the IAM approach are in order.

The resonances thus obtained represent the lightest massive states we
encounter (above the Z pole) in each channel which are necessary in order for
the amplitude to respect unitarity. These resonances are not the only massive
states produced by the non-perturbative sector but those with higher masses
give a contribution that is subdominant with respect to the TAM prediction
and can safely be ignored.

Since we neglect O(s®) terms, the regime s ~ m2_, is not completely
trustable. The larger the resonance peak, the larger the error and therefore we
expect the TAM prediction to give good results only in the case of very sharp
resonances. This is the reason behind the success of the IAM for the vector
resonances in QCD as opposed to the more problematic very broad scalar o.
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Similarly, if we integrate a Higgs boson at the tree level and substitute
the a4 and a5 parameters we find in the IAM formula, we obtain a value for the
scalar resonance mass given by eq. (9.31) which is smaller, that is mg = 3my /4.

Nevertheless, we consider the TAM result a remarkable prediction, given
the very small amount of information needed.

One way to check the reliability of this method consists in separating the
a4 5 plane into three areas depending on the predicted lowest laying resonances
being a vector, a scalar or even both of them. This partition follows the co-
efficients patterns one expects by studying the tree level values for a4 and as
as given in section 9.2.2. It is represented in Fig. 9.2 by the two oblique and
dashed lines which mark the limit where I'/M is less or more than 1/4 for
the case of scalar (oblique line with negative angular coefficient) and vector
(oblique line with positive angular coefficient) resonances.

Another check on the consistency of the method is obtained by taking
the unrealistic example in which a4 = a5 = 0. In this case one finds a pole at
an energy s > (4mv)?—at which we already know unitarity is violated—thus
indicating the unreliability of the input. More generally, a naive estimate—
based on integrating out massive states like in the vector meson dominance of
QCD—shows that for resonance masses M between the range of hundreds GeV
and a few TeV we should expect a ~ v?/M? from 1072 to 10~3 which agrees
with the TAM formula.

Gauge boson scattering and the presence of resonances have previously

been discussed in a number of papers 28, 29)

9.3.1 Parton-level cross sections

Our plan is to choose two representative points for each of the considered sce-
narios in the allowed a4 — a5 region and then find the first resonances appearing
in the W W, elastic scattering using the ITAM approximations. The points are
shown in Fig. 9.2. We take

as = 1.7x1073

fas = 35x1073 .
P { a; = —25x10-3 nd Fa { 4 = —13x10-3 (933
for the large-N scenario and
) ag = 5.7x1073 ) ag = 3.5x1073
Fs: { a; = 60x10°8 d P { a5 = 07x108 (O34
for the heavy-Higgs scenario.
The first pair corresponds to having vector resonances at
my = 1340 GeV my = 1870 GeV
{ ry = 128Gev ™ Ty = 346 Gev (9:35)
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Figure 9.3: Parton-level cross sections for WW scattering. In both fig-
ures, the continuous line is the result of the effective lagrangian. The
long-dashed line is the limit after which unitarity is lost. The dashed
line with a peak is the amplitude in presence of a vector resonance in the
large-N scenario. The two figures correspond to the two representative
points P; and P, discussed in the text.
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Figure 9.4: Parton-level cross sections for WW scattering. The continu-
ous line is the result of the effective lagrangian. The long-dashed line is
the limit after which unitarity is lost. The dashed line with a peak is the
amplitude in presence of a scalar resonance in the heavy-Higgs scenario.
The two figures correspond to the two representative points P3 and P
discussed in the text. Notice that the second plot has rescaled vertical
axis because of the smallness of the resonant peak.
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together with heavier (2 TeV) and very broad scalar states, while the second
pair to scalar resonances at

mg = 712 GeV and mg = 1250 GeV
Iy = 78GeV . s = 237CGeV

These points are representative of the possible values and span the allowed
region. The resonances become heavier, and therefore less visible at the LHC,
for smaller values of the coefficients. Accordingly, whereas points P; and P;3
give what we may call an ideal scenario, the other two show a situation that
will be difficult to discriminate at the LHC.

We can now consider the physical process pp — WyWprjj + X and plot
its differential cross section in the WW CM energy +/s for the values of the
coefficients a4 and as we have identified. To simplify, we will use the effective
W approximation 31),

Once the amplitude A(s,t,u) is given, the differential cross-section for
the factorized WW process is

dO’WW _ |A(s,t,u)|2. (937)
dcosf 327 s

while the differential cross section for the considered physical transition pp —
WirWerjj + X reads:

ds i ’ j ; d 0
ds izj/s/spp /5/(wlspp) xlm?sppf (1,8) fj (@2, ) dr /,1 dcosf "
(9.38)

where /s, is the CM energy which we take to be 14 TeV, as appropriate for
the LHC, and

dLWW - «
dr

(9.36)

2

1
T s 9W) . [(14+7)In(1/7) —2(1 —7)] (9.39)
where 7 = s/(z1225,p). For the structure functions f; we use those of ref. 32),

The high-energy regime will be very much suppressed by the partition
functions so that the resonances found by (9.31) and (9.32) turn out to be the
only phenomenologically interesting ones. Because of this, we can safely make
use of the approximation (9.30) in the whole range from 400 GeV to 2 TeV and
thus we take A(s,t,u) to be given by the IAM unitarization of (9.10).

Figures 9.3 and 9.4 give the cross section for the large-N and heavy-Higgs
scenario, respectively. The scalar resonance corresponding to Pj is particularly
high and narrow and a very good candidate for detection. For a LHC luminosity
of 100 fb~1, it would yield 10* events after one year. If it exists, it will appear as
what we would have called the Higgs boson even though it is not a fundamental
state and its mass is much heavier than that expected for the SM Higgs boson.
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9.4 Experimental analysis

The actual signal at the LHC requires that the parton-level cross sections de-
rived here be included in a Montecarlo simulation (of the bremsstrahlung of
the initial partons, QCD showers as well as of the final hadronization) and
compared with the expected background and the physics of the detector. In

the papers of ref. 29, 30) it has been argued that resonances in the range here
considered can be effectively identified at the LHC. Similar signals have also
been analyzed in 33).

Our plan is to do a preliminary study choosing the scalar resonance cor-
responding to the rappresentative point P35 because it is narrow and relatively
light and therefore good candidate for the detection.

We use PYTHIA 34) as Monte Carlo event generator to simulate a
proton-proton collison events taking into account intial state and final state
radiation, QCD showers, final hadronization and decaying. The fast detector

simulator used in our study is PGS 35) . The analysis of the PGS output has

been done using CHAMELEON 36), 2 MATHEMATICA package.
The PYTHIA Monte Carlo generator has been modified to include the

EW effective approach using the IAM protocol 30), Signal samples containing
the WEW final state (including all charge combinations) have been generated
using PYTHIA 6.4 with the TAM unitarization scheme.

The relevant backgrounds are QCD tt production and QCD radiative
W + jets production, as illustrated in Fig. 9.5. These backgrounds have been
generated using the standard version of PYTHIA 6.4. The generated statistics
for each process are described in Table 9.1.

Process N events | o(fb) Lequiv(f01)
WLWL — WLWL 105 ~ 102 (PY’I‘HlA) 103
tt 10° ~ 105 (MCatNLO) 107!
W + jets 10° | ~ 108 (PYTHIA) 10-3

Table 9.1: Number of events generated for the signal and the backgrounds
with the cross section (order of magnitude) and integrated equivalent
luminosity (N = 0 - Lequiv)-



M. Fabbrichesi, A. Tonero, L. Vecchi 229
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Figure 9.5: Typical leading order Feynman diagrams for the signal (a)
and backgrounds: t¢ (b) e W + jets (c).

9.4.1 Extracting the signal

We focus on the selection of the semileptonic decay mode for the WW sys-
tem because this channel is cleaner with respect to the statistics. To identify
semileptonic decays and isolate the signal we select first the leptonically de-
caying W (charge lepton and missing transverse energy), then the hadronically
decaying W (jet invariant mass) and finally we select the event enviroment (tag-
ging jets, top veto). We only keep events with 1 charged lepton with p; > 40
GeV and missing transverse energy (MET) > 40 GeV in order to eliminate
leptons from non leptonically decayin W. The charged lepton+MET system is
the leptonic W candidate. We next cut on the pr of the leptonic W candidate
selecting events in which this W candidate has pr > 250 GeV.

To identify the hadronic W candidate we select events in which the invari-
ant mass of the system (hardest jet+second or third hardest jet) reconstructs
the W mass. The range of this mass reconstruction is from 70 GeV to 90 GeV.

Finally, to further reduce the backgrounds, cuts related to the event en-
viroment must be applied:

e in the WW scattering process the gauge bosons are radiated from quarks
in the initial state (see Fig. 9.5). The quark from which the boson is
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radiated will give a jet at high pseudorapidity (i.e. close to the direction
of the hadron from which it emerged). A forward (backward) tag jet
is defined as the highest transverse energy jet in the forward (backward)
region. For an event to be included it must have a tag jet with the forward
and backward regions satisfying pr > 20 GeV and 2 < |n| < 4.

e in the remaining #f events containing a genuine leptonic W, this W will
combine with a jet other than the hadronic W candidate to give a mass
close to the top mass. Any event with a mass in the region 130 GeV
< Myj; < 240 GeV is rejected.

The cut flow and the effect of each cut on signal and background are shown in
Table 9.2.

9.4.2 Results

Even though our study is only preliminary, the results obtained from the anal-
ysis can be considered encouraging. The selection of events imposing the cuts
described in Table 9.2 allows us to eliminate completely the background with
1.3 % of efficiency on the signal. In Fig. 9.6 is shown the reconstuction of the
resonance corresponding to the rappresentative point P3; and, for comparison,
the continuum corrisponding to the choice a4 = a5 = 0.
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