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sergey.pavluchenko@gmail.com

Abstract: In the current review, we provide a summary of the recent progress made in the cosmo-

logical aspect of extra-dimensional Lovelock gravity. Our review covers a wide variety of particular

model/matter source combinations: Einstein–Gauss–Bonnet as well as cubic Lovelock gravities with

vacuum, cosmological constant, perfect fluid, spatial curvature, and some of their combinations.

Our analysis suggests that it is possible to set constraints on the parameters of the above-mentioned

models from the simple requirement of the existence of a smooth transition from the initial singularity

to a realistic low-energy regime. Initially, anisotropic space naturally evolves into a configuration

with two isotropic subspaces, and if one of these subspaces is three-dimensional and is expanding

while another is contracting, we call it realistic compactification. Of course, the process is not devoid

of obstacles, and in our paper, we review the results of the compactification occurrence investigation

for the above-mentioned models. In particular, for vacuum and Λ-term EGB models, compactification

is not suppressed (but is not the only possible outcome either) if the number of extra dimensions is

D ⩾ 2; for vacuum cubic Lovelock gravities it is always present (however, cubic Lovelock gravity

is defined only for D ⩾ 3 number of extra dimensions); for the EGB model with perfect fluid it is

present for D = 2 (we have not considered this model in higher dimensions yet), and in the presence

of spatial curvature, the realistic stabilization of extra dimensions is always present (however, such a

model is well-defined only in D ⩾ 4 number of extra dimensions).

Keywords: modified gravity; Einstein–Gauss–Bonnet gravity; Lovelock gravity; extra-dimensional

theory; cosmology

PACS: 04.50.-h; 11.25.Mj; 98.80.Cq

1. Introduction

By now, mathematical modeling has become an integral part of any quantitative or
qualitative study in natural or life sciences and beyond. The very first models in the history
of humankind were what we could call “cosmological models”, as they described the whole
world surrounding the ancient scientists—the planets revolving around the Earth. The de-
velopment of differential calculus by Newton and Leibniz became an important milestone,
which boosted both physics and mathematics and, through this, the modeling. However,
it took three more centuries and the development of even more powerful tensor calculus
for cosmological modeling to become a full-fledged discipline. Nowadays, modeling is an
essential part of cosmology and we rely on models for all of its aspects.

The typical workflow in cosmology is the same as in other natural sciences—we
formulate a hypothesis, build a model based on this hypothesis, calculate predictions, and
confront them with experimental data to decide if the model is viable, and if so, to find
a realistic range of parameters. However, there are exceptions from this workflow and
one of them is the Very Early Universe. Indeed, there is not much experimental and/or
observational evidence from the early stages of the Universe’s evolution and most of them
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are indirect; the earlier the stage, the less evidence we have. In this case, we can rely only
on models and use only the most general assumptions of what to expect.

A good example of such a situation is the topic of the current review—Lovelock gravity
in the Early Universe. Lovelock gravity is the generalization of General Relativity (GR) in
the following way: we know [1–3] that the Einstein tensor is, in any dimension, the only
symmetric and conserved tensor depending only on the metric and its first and second
derivatives (with a linear dependence on second derivatives). If we drop the requirement
of linear dependence of the second derivatives and use a similar procedure as in GR, we
naturally obtain the Lovelock tensor [4]. Lovelock gravity manifests itself as a curvature
correction to GR: the zeroth (constant) term is just the boundary term associated with the
cosmological constant, the first (linear) term is GR, the second (quadratic) term is known as
the Gauss–Bonnet (GB) term, and so on. Due to the Lovelock tensor construction procedure,
nontrivial—higher-than-GR—contributions from Lovelock gravity manifest themselves
only in a higher-than-three number of spatial dimensions, making it extra-dimensional
theory. For the Gauss–Bonnet contribution to become nontrivial, we need at least four
spatial dimensions, and for the cubic Lovelock term, at least six, and so on. As we just
mentioned, Lovelock gravity manifests itself as a curvature correction, so this theory is
distinguishable from GR only in the high-curvature regime, which is naturally achieved
during the early stages of the Universe’s evolution. That is why it is mostly an Early
Universe theory.

A nonlinear theory, Lovelock gravity shares the same curse with other nonlinear
theories—unwanted singularities, which we call “nonstandard singularities”, in contrast
with standard cosmological singularities. These nonstandard singularities are referred to
as a situation when some of the dynamical variables diverge while others are regular at
some finite time; they are considered “weak” by Tipler’s classification [5], and “type II” in
tje classifications by Kitaura and Wheeler [6,7]. Studies demonstrate that they naturally
appear during evolution and, being physical singularities (they cause curvature invariants
to diverge), cease the Universe’s evolution.

On the other hand, Lovelock gravity is formulated in a greater-than-three number of
spatial dimensions, while we clearly live in a three-dimensional world.1 So, the natural ques-
tion here is how to connect these two within the same theory. The widely accepted answer
is that extra dimensions are compact—their scale is much smaller than that of three dimen-
sions, so we do not “sense” them. This explanation, however, raises another question—how
did this compactification occur? In the most elegant way, this compactification should
happen naturally during the Universe’s evolution. In other words, compactification should
be a natural attractor of the system.

So, we have Lovelock gravity, which is formulated in a higher number of spatial
dimensions, and we want it to describe our Universe at late times. However, there are
next to no observational data from the very early times of the Universe’s evolution, so,
heeding in mind the previously mentioned potential problems, we want the following
natural assumptions to be held: (1) the late-time regime should be low-curvature (GR);
(2) the late-time regime should have three expanding dimensions while the remaining
should be compact (contracting or constant with the scale much smaller than “our” three
dimensions); (3) the late-time regime should be achieved smoothly (i.e., without any
nonstandard singularities). These three assumptions sound reasonable but we will see that
they are sufficient to set constraints on the theory under consideration.

As we already mentioned, the models under consideration have two features: (a) they
are multidimensional and (b) we consider them within Lovelock gravity. Each of these
features has mechanisms that may prevent the model from reaching the realistic regime.
Since the model is multidimensional, it may compactify into wrong spatial splitting—it
could be that there is no three-dimensional subspace after compactification and the resulting
regime is unrealistic—findings on this feature are summarized in Section 9. Another feature
is that we consider Lovelock gravity in action, and it brings additional possibilities for
interfering with the evolution—this includes unrealistic late-time asymptotes (such as
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power-law regimes) or even finite-time nonstandard singularities; the rest of the sections are
dedicated to the study of these possibilities. And since we are living in three-dimensional
space, which experiences accelerated expansion, that is what we are aiming for as a late-
time asymptote.

Let us emphasize that we focus on cosmological behavior in the very early Universe—
indeed, Lovelock gravity contains terms that are higher-order in curvature and these
terms manifest themselves only when the curvature itself is high, and for cosmological
context (especially since we are working mostly with spatially flat models) it is usually
near the initial singularity (or recollapse, but this is an undesired outcome). This way,
we ensure that if realistic compactification is reached, the future asymptote is GR and its
behavior is considered the same as in standard GR, as will its manifestations—direct and
indirect observables, qualitative behavior, and so on (BBN predictions, cosmic expansion
history, structure formation, etc.). So, to put it simply, in the current manuscript, we are
summarizing findings on constraints on the parameters of the theory, which allows realistic
compactification for Lovelock gravity.

The manuscript is organized as follows: first, we shall provide a brief historical outline
of the research in cosmological aspects of Lovelock gravity, and after that we will set up a
model. With the model being set up, we will consider different Lovelock corrections and
matter sources—vacuum and cosmological term in Einstein–Gauss–Bonnet (EGB) gravity
(Sections 4 and 5, respectively), vacuum in cubic Lovelock gravity (Section 6), perfect fluid
in EGB gravity (Section 7), spatial curvature in EGB gravity (Section 8), and finally, general
anisotropic case in EGB gravity (Section 9). After that, we discuss the results and draw
some conclusions.

2. Historical Outline

Surprisingly, the very idea of extra dimensions precedes GR—the first extra-dimensional
theory was formulated by Nordström in 1914 [8] and it represents the unification of
Nordström’s second gravity theory [9] with Maxwell’s electromagnetism. However, soon
after that, Albert Einstein introduced GR [10], which competed with Nordström’s scalar
gravity for being the correct theory. This competence was resolved in 1919 in favor of
GR: Nordström’s scalar gravity, similarly to most other scalar gravities, predicts no light
bending near massive bodies, while observations made during the solar eclipse in 1919
clearly demonstrated that the deflection angle is in agreement with GR predictions.

With that, Nordström’s scalar gravity was abandoned but his brilliant idea survived.
Kaluza proposed [11] a similar model but based on GR: five-dimensional Einstein equations
could be decomposed into four-dimensional Einstein equations and Maxwell’s electromag-
netism. His model has one extra dimension and it should be “curled” (or compactified)
into a circle of a very small size and “cylindrical conditions” should be imposed in order to
perform dimensional decomposition. That was followed by Klein who proposed [12,13] an
interesting quantum mechanical interpretation of this extra dimension and the resulting
theory was named Kaluza–Klein, after its founders. It is worth mentioning that the Kaluza–
Klein theory united all interactions known at that time. As time passes, new interactions
were discovered and it became clear that, to unite all of them, one needs a larger number of
extra dimensions. As of now, a few models unite all interactions and M/string theory is
one of the most promising of them.

In recent times, theories similar to (or, rather, generalizing) the Kaluza–Klein theory2

are used to address a number of problems in modern physics, with the hierarchy problem
being one of the most important of them. In particular, Arkani-Hamed, Dimopoulos, and
Dvali [15,16] proposed a model that involves large extra dimensions with the effective
Planck mass at about 1 TeV, while Randall and Sundrum considered a couple of models with
warped extra dimensions [17,18], addressing the same hierarchy problem. Observations do
not rule out such models but severely constrain them (see, e.g., [19] for a constraint coming
from neutron stars observations by Fermi-LAT telescope), but it is worth mentioning that
the models with really large extra dimensions (at least about the length of gravitational
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waves (∼100 km)) are literally undetectable (see, e.g., [20] for constraints coming from
the analysis of the gravitational waves damping). Extra-dimensional theories, as well as
the manifestations of the background theories (M/string), could be detected in particle
experiments, but so far, results are discouraging [21,22].

From the gravitational standpoint, one of the distinguishing features of M/string
theories is the presence of the curvature-squared corrections in the Lagrangian. Scherk
and Schwarz [23] noted the presence of the R2 and RµνRµν terms in the Lagrangian of
the Virasoro–Shapiro model [24,25]; Candelas et al. [26] demonstrated the presence of
the curvature-squared term of the RµνλρRµνλρ type in the low-energy limit of the E8 × E8
heterotic superstring theory [27] to compensate the kinetic term of the Yang–Mills field.
Later on, Zwiebach showed [28] that in order to keep the theory ghost-free, one has to use a
specific combination of quadratic terms known as the Gauss–Bonnet (GB) term, as follows:

LGB = RµνλρRµνλρ − 4RµνRµν + R2.

This term, originally discovered by Lanczos [29,30] (and thus sometimes called the Lanczos
term) is an Euler topological invariant in (3 + 1)-dimensional spacetime, but starting from
(4 + 1), and in higher dimensions, it gives a nontrivial contribution to the equations of
motion. Zumino [31] extended Zwiebach’s analysis with the higher-than-squared curvature
terms taken into account; his results suggested that the low-energy limit of the unified
theory might have a Lagrangian density represented by a sum of different powers of
curvature—then, the earlier-mentioned Lovelock gravity would be a natural candidate for
such a theory.

There are two approaches to the compactification problem, with the first of them
being “spontaneous compactification” [32,33] (see also [34] for more cosmology-relevant
solutions) and the other is “dynamical compactification”. Roughly speaking, the difference
between these two is as follows: in the former, you make extra dimensions compact “by
hand” and see if the resulting setup is viable within the gravity theory under consideration,
while in the latter, you do not impose small extra dimensions in the beginning, but they
become small in the process of the evolution. As “dynamical compactification” proposes
a more elegant way, it involves different approaches [35,36] and setups [37,38]. Apart
from cosmology, studies of extra dimensions include the investigation of black holes in
Gauss–Bonnet [39–46] and Lovelock [47–51] gravities, features of the gravitational collapse
in these theories [52–54], general peculiarities of spherical-symmetric solutions [55], the
formation of shock due to nonlinearity [56], and many others.

The structure of the equations of motion in EGB and more general Lovelock grav-
ity is more complicated than that in GR, as the former are nonlinear theories, unlike the
latter. Thus, finding exact solutions within these theories is a very non-trivial task, and
to overcome it, one usually applies metric ansatz of some sort. For cosmology, the usual
ansätzen are power-law and exponential; the former of them resembles the Friedmann
stage while the latter, the accelerated expansion nowadays or inflationary stage in the Early
Universe—the de Sitter stage. The cosmological power-law solution within Lovelock and
EGB gravities was studied in [33,57] and more recently in [58–63], resulting in some un-
derstanding of their dynamics. One of the first considerations of the exponential solutions
within the considered theories could be found in [64], while recent works include [65–75];
the separate description of the exponential solutions with variable and constant volume
was performed in [76] and [77], respectively; we could also refer to [78] for the discussion
about the link between the existence of power-law and exponential solutions and for the
discussion about the physical manifestations of different branches of the solutions within
these theories. We also offer the full description of the general scheme for finding all possi-
ble exponential solutions in arbitrary dimensions and with arbitrary Lovelock contributions
taken into account in [79]. A deeper investigation of the exponential solutions reveals that
not all of the solutions found in [79] are stable [80]; a more general approach to the stability
of exponential solutions in EGB gravity could be found in [81], while in [82–85], some
particular cases are described more closely.
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The above-mentioned exponential and power-law ansätzen are considered as dynami-
cal late-time attractors for the Universe’s evolution; however, there could be static attractors
as well. As we demonstrated in [86,87] (and further investigated in [88]) if we consider extra
dimensions to have negative spatial curvature, for some parameter combinations, there ex-
ist asymptotic regimes with expanding three and constant-size extra dimensions. Generally,
in GR, positive spatial curvature is considered; say, positive spatial curvature could change
inflationary asymptotic [89,90]. However, in EGB gravity, it is negative curvature which
gives rise to the stabilization of extra dimensions; positive curvature could stabilize as well
but for a very narrow range of parameters [91]; see also [92,93] for some more details on
the difference between the cases with positive and negative spatial curvature.

This finalizes our review of preliminary studies dedicated to cosmological solutions in
EGB and more general Lovelock gravity. With power-law and exponential solutions being
well-described, it is time to find out if they could be realized during the natural evolution
of the model, which is exactly what the rest of the paper is dedicated to.

3. The Model

As we already mentioned, we work with extra-dimensional theory and we are partic-
ularly interested in obtaining compactification in a natural way, meaning that the Universe
ends up with three expanding dimensions while extra dimensions remain compact. Then,
it is natural to consider the metric ansatz for such a model as spatially flat anisotropic
(Bianchi-I-type), as follows:

ds2 = diag(−1, a2
1(t), a2

2(t), . . . , a2
D̃
(t)), (1)

where ai(t) is the scale factor corresponding to ith spatial dimension and D̃ is the total
number of spatial dimensions. To obtain equations of motion, we remind the reader how
Lovelock gravity is structured: Lovelock invariants have the form [4]

Ln =
1
2n

δ
i1i2 ...i2n
j1 j2 ...j2n

R
j1 j2
i1i2

. . . R
j2n−1 j2n

i2n−1i2n
,

where δ
i1i2 ...i2n
j1 j2 ...j2n

is the generalized Kronecker delta of the order 2n. Then, the Lagrangian
density has a form

L =
√−g ∑n αnLn, (2)

with g being the determinant of the metric tensor, αn being the coupling constant, and
the summation over all n in consideration is assumed. The rest of the derivation is quite
straightforward (see, e.g., [58]), and resulting equations, rewritten in terms of Hubble
parameters (Hi = ȧi/ai), read as follows:

(2n− 1) ∑
k1>k2>...k2n

Hk1
Hk2

. . . Hk2n
= 0 (3)

for constraint equation and

D

∑
m=1
m ̸=i









(Ḣm + H2
m) ∑
{j1, j2, ... j2n−2}̸={i,m}

j1>j2>...j2n−2

Hj1 Hj2 . . . Hj2n−2









+

+(2n− 1) ∑
{k1,k2,...k2n}̸=i

k1>k2>...k2n

Hk1
Hk2

. . . Hk2n
= 0

(4)

for dynamical equation corresponding to ith spatial coordinate. Please mind that the
equations above are obtained for the vacuum case; in the presence of a nontrivial source,
the right-hand sides of (3) and (4) are modified appropriately by adding density and
pressure, respectively.
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Our studies demonstrated that (3 + D) spatial splitting3 could be realized under some
conditions (see Section 9 for details), so that we can use this splitting to study the dynamics
of the corresponding model. Then, the (3 + D) spatial splitting (D now stands for number
of extra dimensions) metric has the form

ds2 = diag(−1, a2(t), a2(t), a2(t), b2(t), . . . , b2(t)), (5)

and the resulting equations of motion could be obtained from (3) and (4) by applying metric
ansatz (5). Then, if we limit ourselves with the most cubic Lovelock contribution (n = 1, 2, 3
in (2); that is, the highest Lovelock order we are dealing with in this review) and normalize
Gauss–Bonnet and cubic Lovelock couplings to GR coupling (α1 ≡ 1, α2 ≡ α, α3 ≡ β), and
use notations H ≡ ȧ/a, h ≡ ḃ/b, dynamical equations could be rewritten as

2
[

2Ḣ + 3H2 + Dḣ +
D(D + 1)

2
h2 + 2DHh

]

+ 8α

[

2Ḣ

(

DHh +
D(D− 1)

2
h2
)

+

+Dḣ

(

H2 + 2(D− 1)Hh +
(D− 1)(D− 2)

2
h2
)

+ 2DH3h +
D(5D− 3)

2
H2h2+

+D2(D− 1)Hh3 +
(D + 1)D(D− 1)(D− 2)

8
h4
]

+

+144β

[

Ḣ

(

Hh3 D(D− 1)(D− 2)
3

+ h4 D(D− 1)(D− 2)(D− 3)
12

)

+

+Dḣ

(

H2h2 (D− 1)(D− 2)
2

+ Hh3 (D− 1)(D− 2)(D− 3)
3

+

+ h4 (D− 1)(D− 2)(D− 3)(D− 4)
24

)

+ H3h3 D(D− 1)(D− 2)
3

+

+H2h4 D(D− 1)(D− 2)(7D− 9)
24

+ Hh5 D2(D− 1)(D− 2)(D− 3)
12

+

+ h6 (D + 1)D(D− 1)(D− 2)(D− 3)(D− 4)
144

]

−Λ = 0

(6)

for a dynamical equation that corresponds to H

2
[

3H2 + 3DHh +
D(D− 1)

2
h2
]

+ 24α

[

DH3h +
3D(D− 1)

2
H2h2+

+
D(D− 1)(D− 2)

2
Hh3 +

D(D− 1)(D− 2)(D− 3)
24

h4
]

+ 720β

[

H3h3 D(D− 1)(D− 2)
6

+

+H2h4 D(D− 1)(D− 2)(D− 3)
8

+ Hh5 D(D− 1)(D− 2)(D− 3)(D− 4)
40

+

+h6 D(D− 1)(D− 2)(D− 3)(D− 4)(D− 5)
720

]

= Λ

(7)

for a constraint equation and
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2
[

3Ḣ + 6H2 + (D− 1)ḣ +
D(D− 1)

2
h2 + 3(D− 1)Hh

]

+ 8α
[

3Ḣ
(

H2+

+2(D− 1)Hh +
(D− 1)(D− 2)

2
h2
)

+ (D− 1)ḣ
(

3H2 + 3(D− 2)Hh+

+
(D− 2)(D− 3)

2
h2
)

+ 3H4 + 9(D− 1)H3h + 3(D− 1)(2D− 3)H2h2+

+
3(D− 1)2(D− 2)

2
Hh3 +

D(D− 1)(D− 2)(D− 3)
8

h4
]

+

+144β

[

Ḣ

(

H2h2 3(D− 1)(D− 2)
2

+ Hh3(D− 1)(D− 2)(D− 3)+

+ h4 (D− 1)(D− 2)(D− 3)(D− 4)
8

)

+ (D− 1)ḣ
(

H3h(D− 2)+

+ H2h2 3(D− 2)(D− 3)
2

+ Hh3 (D− 2)(D− 3)(D− 4)
2

+

+h4 (D− 2)(D− 3)(D− 4)(D− 5)
24

)

+ H4h2 3(D− 1)(D− 2)
2

+

+H3h3 (D− 1)(D− 2)(11D− 27)
6

+ H2h4 3(D− 1)(D− 2)2(D− 3)
4

+

+Hh5 (D + 1)(D− 1)(D− 2)(D− 3)(D− 4)
12

+

+h6 D(D− 1)(D− 2)(D− 3)(D− 4)(D− 5)
144

]

−Λ = 0

(8)

for a dynamical equation that corresponds to h.
Finally, the last metric configuration we are going to consider in this review is the case

with the spatial curvature. In this case, the metric takes a form

ds2 = −dt2 + a(t)2dΣ2
(3) + b(t)2dΣ2

(D) , (9)

where dΣ2
(3) and dΣ2

(D) stand for the metric of two constant curvature manifolds Σ(3)

and Σ(D)
4. It is worth pointing out that even a negative constant curvature space can be

compactified by making the quotient of the space from a freely acting discrete subgroup of
O(D, 1) [94].

The complete derivation of the equations of motion is similar to the previous cases
and could be found in [86,87]; if we use the following rescaling of the coupling constants

α =
(D + 3)(D + 2)(D + 1)

6
c0 , β =

(D + 1)D(D− 1)
6

c1 , γ =
(D− 1)(D− 2)(D− 3)

6
c2 , (10)

and the following notations
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A(1) =

..
a

a
, C =

.
a

.
b

ab
, B(1) =

..
b

b
,

A(2) =

[

γ(3) +
( .
a
)2
]

a2 , B(2) =

[

γ(D) +
( .

b
)2

]

b2 (11)

the equations of motion could be written in the following form:

E0 = 0⇔ 0 = α + β

(

B(2) +
6

D− 1
C +

6
D(D− 1)

A(2)

)

+ γ

(

B2
(2) +

12A(2)B(2)

(D− 2)(D− 3)
+

+
24C2

(D− 2)(D− 3)
+

12B(2)C

(D− 3)
+

24A(2)C

(D− 1)(D− 2)(D− 3)

)

,

(12)

Ei = 0⇔ 0 = α + β

(

B(2) +
4A(1)

D(D− 1)
+

2B(1)

D− 1
+

2A(2)

D(D− 1)
+

4C

(D− 1)

)

+ γ
(

B2
(2)+

+
16A(1)C

(D− 1)(D− 2)(D− 3)
+

8B(2)C

D− 3
++

8A(1)B(2)

(D− 2)(D− 3)
+

8A(2)B(1)

(D− 1)(D− 2)(D− 3)
+

+
16B(1)C

(D− 2)(D− 3)
+

4B(1)B(2)

(D− 3)
+

4A(2)B(2)

(D− 2)(D− 3)
+

8C2

(D− 2)(D− 3)

)

, (13)

while the equation Ea = 0 reads

Ea = 0⇔ 0 =
D

(D− 4)
α +

(D− 2)
(D− 4)

β

(

B(2) +
6A(1)

(D− 1)(D− 2)
+

2B(1)

D− 2
+

6A(2)

(D− 1)(D− 2)
+

+
6C

(D− 2)

)

+ γ

(

B2
(2) +

48A(1)C

(D− 2)(D− 3)(D− 4)
+

12B(2)C

D− 4
+

24C2

(D− 3)(D− 4)
+

+
12A(1)B(2)

(D− 3)(D− 4)
+

24A(2)B(1)

(D− 2)(D− 3)(D− 4)
+

24B(1)C

(D− 3)(D− 4)
+

4B(1)B(2)

(D− 4)
+

+
12A(2)B(2)

(D− 3)(D− 4)
+

24A(2)C

(D− 2)(D− 3)(D− 4)
+

24A(1)A(2)

(D− 1)(D− 2)(D− 3)(D− 4)

)

. (14)

This finalizes the list of the models we will use throughout this review. The equations
of motion are provided here for the general case (for the arbitrary number of spatial
dimensions) and for a vacuum; however, particular cases we will be considering have
specified a number of dimensions, so terms of a different nature but the same structure will
be summarized and the final equations of motion will look simpler. As for the source, we
will consider vacuum, cosmological constant (Λ-term), and perfect fluid; for non-vacuum
cases, these equations need to be appropriately modified—density added to the constraint
equation and pressure to dynamical equations corresponding to spatial dimensions.

4. EGB: Vacuum Case

In this section, we review the results for EGB gravity (i.e., maximally with quadratic
contribution taken into account) and with no matter source (vacuum model). In this case,
the equations of motion are exactly as in (6) and (7) with Λ = 0 and β = 0. We shall use
D = 1 as an example of the method and of the features and consider it in more detail.
The equations of motion for the D = 1 vacuum case reads (H-equation, h-equation, and
constraint, respectively)

4Ḣ + 6H2 + 2ḣ + 2h2 + 4Hh + 8α
(

2(Ḣ + H2)Hh + (ḣ + h2)H2
)

= 0, (15)

6Ḣ + 12H2 + 24α(Ḣ + H2)H2 = 0, (16)
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6H2 + 6Hh + 24αH3h = 0, (17)

where H is the Hubble parameter corresponding to the three-dimensional world, h is the
Hubble parameter corresponding to extra dimensions, and α is Gauss–Bonnet coupling.

From (17), we can easily see that

h = − H

1 + 4αH2 , (18)

and so H and h have opposite signs for α > 0, but could have the same sign in the α < 0
case. Also, we can resolve (16) with respect to Ḣ to obtain

Ḣ = −2H2(1 + 2αH2)

1 + 4αH2 ; (19)

and after that, with the use of (19), one can solve (15) to obtain

ḣ = − 2H2(8α2H4 + 2αH2 − 1)
(1 + 4αH2)(16α2H4 + 8αH2 + 1)

. (20)

One can see (1 + 4αH2) in the denominator of (18)–(20); it becomes zero at
H2 = −1/(4α) and it corresponds to what we called nonstandard singularity in the Intro-
duction: H is finite while h and curvature become infinite. Later on, for more complicated
cases, we shall see that nonstandard singularities could happen for both H and h being
finite, and nonstandard singularities form smooth lines on the (H, h) plane.

For given α, Equations (19) and (20) form a system of equations that govern the
evolution of the Universe. In [95], we performed a full analysis of the system with all
technical details (see also [96] for another review) while here we just provide the idea: for a
given α, (19) and (20) could be analyzed to see the asymptotic regimes and stable points
and then combined together. The result of this analysis is presented in Figure 1. On the
(a) panel we provided the evolutionary behavior on the (H, h) plane for α > 0, while on
the (b) panel, for α < 0, arrows correspond to the direction of evolution.

P(1, 0)

P(1, 0)

K1

P(1, 0)

P(1, 0)

K1

Eiso

Eiso

nS

nSnS

nS

(a) (b)

Figure 1. Resulting regimes for the D = 1 vacuum case: α > 0 on (a) and α < 0 on (b) (see the text for
more details).

Let us have a closer look at Figure 1a: within the (H > 0, h < 0) quadrant we have
P(1,0) → K1 regime transition. These regimes stand for the following: P(1,0) stands for
the power-law regime with pH = 1 and ph = 0, where pH and ph are Kasner exponents:
pi = −H2

i /Ḣi (they characterize the power of power-law behavior a(t) ∝ tp). Then, K1 is
another power-law regime, namely, the Kasner regime in GR [97] (that is why “1” index—in
GR for Kasner regime ∑

p
= 1). Then, for α > 0, we have a regime with H > 0 (our three-
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dimensional Universe is expanding) and h < 0, where extra dimensions are contracting
with the Kasner regime as a future asymptote, meaning that the mentioned expansion
and contractions are power-law. However, the observed expansion of our Universe is
accelerated, which corresponds to the exponential solution. That derived regime could
explain the Friedmann stage of the Universe’s evolution, but the exponents are different
from what is expected in standard cosmology (see [95] for details). Thus, the resulting
regime cannot describe our current state of evolution. The other branch, which exists
in the (H < 0, h > 0) quadrant, is just the time-reversal of the just-described transition:
K1 → P(1,0).

Now, let us have a closer look at Figure 1b and focus on the H > 0 half-plane (another
H < 0 half-plane is just a time-reversal of the H > 0 one). This particular example is a plot
for α = −1 so that there is a nonstandard singularity (designed as nS) at H2 = 1/4 and we
clearly see it at H = 1/2: h diverges both from the left and the right. Then, for small H, we
have the nS→ K1 transition, and for larger H, there are two: nS→ Eiso and P(1,0) → Eiso.
The Eiso is the isotropic exponential solution (isotropic in an extra-dimensional sense so
that all four spatial dimensions are expanding and equal to each other) and obviously it
contradicts observations. Then, we are left with no viable regimes in this case.

Summarizing the D = 1 vacuum case, for α > 0 there is a “would-be” viable transition
P(1,0) → K1, but the late-time asymptote is the Kasner solution, which is not favorable
according to observations; for α < 0, there are no viable transitions at all.

Quite similarly, we perform an analysis for the vacuum model with another D: D = 2,
D = 3, and general D ⩾ 4 cases (equations of motion (6) and (7) have different structures for
cases D = 1, 2, and 3, while for all D ⩾ 4, they remain the same—that is why we consider
these cases separately). The difference appears in the number of branches—for D = 1, the
constraint Equation (17) has only one root for h—Equation (17); however, for D = 2, there
will be two, and for D ⩾ 3, there will be three; then, the number of branches of solutions
will also increase accordingly. The results for the analysis, similar to those presented for
D = 1, are presented in Figure 2. There, on the (a) and (b) panels, we presented the results
for D = 2 (α > 0 on (a) and α < 0 on (b)), on the (c) and (d) panels—for D = 3 (α > 0 on (c)
and α < 0 on (d)), and on (e) and (f)—for general D ⩾ 4 case (α > 0 on (e) and α < 0 on (f));
different colors correspond to different branches.

Browsing α < 0 cases (panels (b), (d), and (f)), we can conclude that there are no viable
regimes—there is a K3 → K1 regime (where K3 is GB Kasner with ∑

p
= 3 (see, e.g., [58]

for the generalization of Kasner regimes on higher Lovelock orders)), but the late-time
asymptote is K1. On the contrary, for α > 0 and D ⩾ 2, there is always a viable transition
K3 → E3+D. There, E3+D stands for an exponential solution with different exponents for
three and extra dimensions. Since the solution in question is found in the (H > 0, h < 0)
quadrant, it has expanding three and compacting extra dimensions, which is exactly what
we are looking for. Let us note that for D = 3, since both subspaces are three-dimensional,
it does not matter which of them is expanding and which is contracting, as there are two
different exponential solutions E3+3 that satisfy our conditions.

Concluding EGB vacuum cases, for α > 0 and for all D ⩾ 2, there always exists
the K3 → E3+D transition, which is viable as the late-time regime is exponential with
expanding three and contracting extra dimensions.

Before moving to the next case, let us support our choice of discarding power-law but
not exponential regimes: the widely accepted parameter, which quantifies the acceleration
of the Universe, is the deceleration parameter defined as

q = − äa

ȧ2 ,

where a is the scale factor. For the exponential ansatz, the scale factor reads a(t) = exp(Ht),
so that ȧ = H exp(Ht) and ä = H2 exp(Ht), leading to qexp ≡ −1, meaning that the
exponential solution always expands with acceleration. On the other hand, for the power-
law ansatz, the scale factor reads a(t) = a0tp, so ȧ = ptp−1 and ä = p(p− 1)tp−2, resulting in
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qpower = −
p(p− 1)tp−2+p

p2t2(p−1)
= −1 +

1
p

.

K1

K1

K3

P(1, 0)

K3

E3+2

E3+2

nSnS

nS

nS

P(1, 0) K3

K3

P(1, 0)

P(1, 0)

K1

K1

nSnS

nSnS

Eiso

Eiso

P(1, 0)

P(0, 1)

P(1, 0)

P(0, 1)

K3

K3

K3

K3

E3+3

E3+3

nS

nS

K1

K1

E3+3

E3+3

nS

nS

P(1, 0)

P(1, 0)

P(0, 1)

P(0, 1)

K3

K3

K3

K3

K1

K1

Eiso

Eiso

K3

K3

K3

K3

K3

K3

K1

K1

nS
nS

nS

nS

E✸�✁

E✸�✁

P(1, 0)

P(1, 0)

E✸�✁

E✸�✁

K3

K3K3

K3

K3

K3

P(1, 0)

P(1, 0)

K1K1

Eiso

Eiso

(a) (b)

(c) (d)

(e) (f)

Figure 2. Resulting regimes for EGB vacuum cases: D = 2 (panel (a) for α > 0 and panel (b) for
α < 0), D = 3 (panel (c) for α > 0 and panel (d) for α < 0), and general D ⩾ 4 case (panel (e) for
α > 0, and panel (f) for α < 0) (see the text for more details).

For accelerated expansion, we need q < 0, and for that, p > 1 is required. Apparently,
all values for pH—power-law exponents corresponding to three-dimensional subspace—
originally found in [95], are 0 < pH < 1, so all asymptotic K1 regimes cannot be called
realistic. The same is true for P(1,0), as it has pH = 1, which leads to qpower ≡ 0, which is
still not accelerated expansion. Concluding, exponential solutions are always viable, while
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power-law solutions could be viable, if pH > 1 which, however, is not the case according
to [95], they are 0 < pH < 1. So, hereafter, we consider E3+D realistic compactification
regimes while K1 is not viable.

5. EGB: Λ-Term Case

Our next step is to consider EGB gravity but with Λ-term as a source. The equations
of motion are (6)–(7) but with β = 0. The equations of motion seem to be slightly different—
we only added Λ to the right-hand side—but the resulting dynamics change drastically.
First of all, there is no more low-energy Kasner regime K1—Kasner regime is a vacuum
regime—it approaches (H = 0, h = 0) in a power-law way, and for vacuum, (H = 0, h = 0)
is a solution (though a trivial solution), as seen from (7). For the Λ-term case, however, r.h.s.
of (7) is replaced with nonzero Λ and so (H = 0, h = 0) is no longer a solution.

An analysis of all possible transitions also becomes more complicated—instead of
only one parameter α in the vacuum case, now we have two— α and Λ—and transition
availability is now a function of both.

The procedure for the Λ-term case is the same as for the vacuum case, so we immedi-
ately turn to the results; the detailed analysis with all technical details could be found in [98]
for D = 1, 2 and in [99] for D = 3 and general D ⩾ 4 cases; see also [96] for the shorter
review version. Analysis suggests that there are no viable regimes for the D = 1 case, but
for D ⩾ 2 there are. In particular, for D = 2, there is a K3 → E3+2 transition, which exists
for α > 0 and αΛ < 1/2 (including the entire Λ < 0 region). In addition, again for α > 0
and αΛ < −1/6 there is another transition P(1,0) → E3+2 to the same exponential solution,
so for α > 0 and αΛ < −1/6 we have one viable exponential solution E3+2, which is a
future asymptote, and there could be two different past asymptotes—K3—Gauss–Bonnet
Kasner solution and P(1,0)—another power-law solution with pH = 1 and ph = 0; hereafter,
we shall denote such a “double” transition as K3 → E3+2 ← P(1,0).

For D = 3, the situation is slightly different—again, similar to the vacuum case, since
both subspaces are three-dimensional, it does not matter which of them is expanding and
which is contracting, which “doubles” the number of viable regimes and, correspondingly,
transitions. Thus, for α < 0, Λ > 0, αΛ ⩽ −3/2, there are two “double transitions” K1

3 →
E1

3+3 ← P(1,0) and K2
3 → E2

3+3 ← P(0,1); please mind that K1
3 and K2

3 are two different GB

Kasner solutions and E1
3+3 and E2

3+3 are two different viable exponential solutions. The fact
that there are two of them is coming from the fact that both subspaces are three-dimensional.
The same two double transitions (K1

3 → E1
3+3 ← P(1,0) and K2

3 → E2
3+3 ← P(0,1)) also exist

for the entire α > 0, Λ < 0, while for α > 0, Λ > 0, αΛ ⩽ 1/2, they reduce to a couple of
transitions K1,2

3 → E1,2
3+3.

Finally, the general D ⩾ 4 case has an additional regime—K3 → K3—transition
between two different GB Kasner regimes. Similar to the K3 → K1 transition in the vacuum
case, we cannot call it entirely viable, as the future regime is power-law, but the existence
of K3 as a future asymptote is interesting; the transition is demonstrated in Figure 3a.

Similarly to the D = 3 case, realistic transitions exist in three domains on the (α, Λ)
space. The first of them is α < 0, Λ > 0 with the additional constraint αΛ ⩽ ζ1; let
us note that within this domain, there were no realistic transitions for D = 2. Realistic
transitions here are K3 → E1

3+D ← P(1,0)—the same realistic exponential solution could be
reached from two different high-curvature power-law past asymptotes; these transitions
are demonstrated in Figure 3b.

Mentioned above, ζ1 was derived in [99] (though denoted as ζ3 there) and it reads

ζ1 = − D(D− 1)
4(D− 2)(D− 3)

; (21)

this limit replaces the corresponding αΛ = −3/2 limit from the D = 3 case.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Viable regimes for D ⩾ 4 EGB cosmology with Λ-term: (a) panel: α < 0, Λ < 0 featuring
K3 → K3 regime; (b) panel: α < 0, Λ > 0, αΛ ⩽ ζ1 featuring K3 → E1

3+D ← P(1,0) transitions;
(c) panel: α > 0, Λ < 0 featuring the same K3 → E1

3+D ← P(1,0) transitions; (d) panel: α > 0, Λ > 0,
αΛ < ζ2 still featuring the same K3 → E1

3+D ← P(1,0) transitions; (e) panel: α > 0, Λ > 0, αΛ = ζ2

with K3 → E1
3+D ← P(1,0) transitions; (f) panel: α > 0, Λ > 0, ζ2 < αΛ < ζ3 (see the text for

more details).

The same transitions exist in another domain as well—in α > 0, Λ < 0, where they
exist within the entire domain; this situation is demonstrated in Figure 3c.

Finally, the same transitions also exist in the α > 0, Λ > 0 domain, but there, its location
and surroundings depend on αΛ: for αΛ < ζ2, the situation is depicted in Figure 3d, while
for αΛ = ζ2, it is presented in Figure 3e. For αΛ > ζ2, the situation is presented in
Figure 3f and one can see that the double transition K3 → E1

3+D ← P(1,0) degrades to a

single K3 → E1
3+D for αΛ > ζ2. Further, for αΛ > ζ3, E1

3+D is replaced with nonstandard
singularity and so no realistic transitions exist for αΛ > ζ3.
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Mentioned above, ζ2 and ζ3 are also derived from [99], where they are denoted as ζ2
and ζ6, respectively:

ζ2 =
3
√

D2(D− 1)2

12(D− 2)(D− 1)D(D + 1)
+

+
(D6 − 6D5 + 10D4 − 20D2 + 24D + 36)(D− 1)

3D(D− 2)(D + 1) 3
√

D2(D− 1)2
+

D3 − 9D2 + 8D + 24
12D(D− 2)(D + 1)

, where

D2 = 10D10 + 6D9D1 − 100D9 − 30D8D1 + 330D8 + 30D7D1 − 240D7 + 54D6D1−
−600D6 − 84D5D1 + 240D5 − 24D4D1 + 1520D4 + 48D3D1 + 640D3 − 2880D2 + 1728
and

D1 =
(D− 4)(D− 3)(D + 2)

(D− 1)(D + 1)

√

(D− 4)(D + 2)
D(D− 2)

;

(22)

ζ3 =
1
4

3D2 − 7D + 6
D(D− 1)

; (23)

let us note that ζ3 replaces the corresponding limit αΛ = 1/2 from D = 2, 3 cases.
So, concluding with realistic transitions existing in EGB cosmologies with Λ-term

as a source, starting from D ⩾ 2, we always have realistic transitions—either double
K3 → E3+D ← P(1,0) or single K3 → E3+D; the area of parameters on the (α, Λ) space
where they exist depends on D, but it is always an open region.

6. Cubic Lovelock: Vacuum Case

For this case, we use the same set of Equations (6) and (7) but with Λ = 0. The original
study is performed in [100] for D = 3, 4 and in [101] for D = 5 and general D ⩾ 6 cases,
and here, we summarize our findings. Similar to the EGB case, depending on D, different
terms will be nonzero, so we consider all possible D concluding with a general D case
where all terms are present. This way, we start with D = 3, as it is the lowest dimension
where cubic Lovelock terms are nontrivial; analysis suggests [100] that in that case, there
are two sets of regimes, P(1,0) → E1

3+3 and P(0,1) → E2
3+3, which exist for α > 0, β < 0

and P(1,0) → K1
1, P(0,1) → K2

1, in turn which exist for α > 0, β > 0. We have two sets for
the same reason we have the “doubling” of regimes in D = 3 EGB cases because both
subspaces are three-dimensional. Let us note that the second regime is Kasner and cannot
be called viable for the same reason as for EGB gravity cases. Let us also note that both
regimes exist for α > 0.

The next case to consider is D = 4 (see [100] for a full analysis); similar to the D = 3
case, we have two transitions. The first of them is P(1,0) → E3+4, which exists for α > 0,

µ ⩽ µ1, where µ ≡ β/α2 and µ1 = −4 3
√

98/135 + 38/135 ≈ 0.1449 were found in [100]. So,
the entire β < 0 is included in the existence region for this transition. Another transition
is P(1,0) → K1, which exists for α > 0, µ > µ1. Again, since the low-curvature regime is
Kasner, we cannot truly call it realistic. However, it is interesting to note that, similar to the
D = 3 case, both regimes exist only for α > 0.

Surprisingly, for D = 5, we have exactly the same regimes with exactly the same
locations but with another µ1 (see [101] for details):

µ1 = −
3
√

2150 + 210
√

105
210

+
2

21 3
√

2150 + 210
√

105
+

11
42
≈ 0.1903.

Finally, the case D ⩾ 6 is supposed to be general—indeed, for D ⩾ 6, all possible
terms are present in the equations of motion (6) and (7), and so equations of motion for
D ⩾ 6 contain all possible terms. However, analysis of these equations reveals [101] that
the resulting regimes are different in D = 6, 7 and D ⩾ 8. Realistic regimes in D = 6, 7 are
the same as in D = 3, 4, 5 but with different values for µ1: for D = 6 we have µ1 ≈ 0.2151
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while for D = 7 we have µ1 ≈ 0.2324 (please mind that in the original research [101] they
are denoted differently due to different numbering of special points in different D cases).

The mentioned above regimes for D = 3÷ 7 are demonstrated in Figure 4a—P(1,0) →
E3+D—and in Figure 4b—P(1,0) → K1.

(a) (b)

(c) (d)

(e)

Figure 4. Viable regimes for vacuum cubic Lovelock cosmology (all viable regimes are located in the
second quadrant): (a) panel: P(1,0) → E3+D transition on the green branch for D = 3÷ 7 and α > 0,
µ ⩽ µ1; (b) panel: P(1,0) → K1 transition on the green-blue branch for D = 3÷ 7 and α > 0, β > 0,
µ > µ1; (c) panel: P(1,0) → E3+D transition on the green branch as well as K5 → E3+D transition on
the red branch for D ⩾ 8 and α > 0, β < 0, µ ⩽ µ2; (d) panel: P(1,0) → E3+D ← K5 double transition
on the green branch for D ⩾ 8 and α > 0, β > 0, µ ⩽ µ3; (e) panel: P(1,0) → K1 transition on the
right green-blue branch and K5 → E3+D transition on the left green-blue branch for D ⩾ 8 and α > 0,
β > 0, µ > µ3 (see the text for more details).
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At last, for D ⩾ 8, the abundance and structure of the viable solutions changes
drastically: for α > 0 and β < 0 there are two realistic compactifications, P(1,0) → E1

3+D,
which exist everywhere in β < 0, demonstrated in Figure 4c, and K5 → E2

3+D, which exists
for µ ⩽ µ2, where

µ2 = −D4 + 30D3 + 189D2 − 540D + 324
D4 − 6D3 − 25D2 + 102D− 72

,

again found in [101]; this regime is demonstrated in Figure 4d. So, for µ ⩽ µ2, there
exist two different compactification schemes for two different exponential solutions E1

3+D

and E1
3+D. For α > 0, β > 0, µ ⩽ µ3, we have double transition K5 → E3

3+D ← P(1,0),
demonstrated in Figure 4d, which splits into K5 → E3

3+D and P(1,0) → K1 for µ > µ3,
demonstrated in Figure 4e. The quoted value µ3 is the lesser root of a certain sixth-order
polynomial mentioned in [101].

Concluding with the realistic compactification regimes in vacuum models in cubic
Lovelock gravity, we can notice that they exist in all D ⩾ 3, but their structure and
abundance differ for D = 3÷ 7 and D ⩾ 8: for D = 3÷ 7, we need µ ⩽ µ1, while for D ⩾ 8,
realistic compactifications exist for all β; another interesting feature is that all of them exist
only for α > 0.

7. EGB: Perfect Fluid Case

To study EGB cosmology with perfect fluid as a source, we use Equations (6) and (7)
with β = 0 and replace Λ with (−p) in (6) and (8) and Λ with ρ in (7) where p is the
pressure and ρ is the density of the perfect fluid. We use ω for the equation of state which
links pressure and density as p = ωρ. Please mind that ω, being an equation of state, is
constant, while ρ is a dynamical variable. Formally, since we have matter in the form of
a perfect fluid, the system should be supplemented with a continuity equation, but the
full system (6)–(7) plus continuity equation is overdetermined, so we drop the continuity
equation; similar techniques are used for the analysis of Friedmann equations with perfect
fluid. Originally, research was performed in [102] and covers only low-dimensional cases
(D = 1, 2), which we are going to review here.

The D = 1 case demonstrates the existence of three nonsingular regimes, but neither of
them has realistic compactification. In contrast, in D = 2, there is a number of nonsingular
regimes, but only one of them is realistic—K3 → E3+2—and it happens for α > 0 and
ω < 1/3; the measure of the initial conditions leading to this regime increases with the
growth of ω, reaching the maximum at ω = 1/3− 0.

These regimes are demonstrated in Figure 5: (a) and (b) panels correspond to the
ω < 0 case (the (a) panel shows large-scale structure of the H > 0, h < 0 quadrant while
the (b) panel focuses on the vicinity of E3+2 exponential solution), the (c) and (d) panels—
to 0 < ω < 1/3 (again, the (c) and (d) panels represent large-scale and fine structures,
respectively) and the (e) panel—to ω > 1/3 and we can see that K3 → E3+2 is no more; we
have nS→ E3+2 instead.

As Figure 5 differs significantly from the previous cases, it requires additional expla-
nation. First of all, evolution curves: for vacuum and Λ-term cases, evolution curves are
determined by nonzero parameters of the system; α, β, and Λ: in this case, we have variable
parameter—density ρ—so that instead of predetermined evolution curves, we have a field,
which is represented by red arrows. However, this is a physical parameter, and it has
to be strictly positive, but not all (H, h) combinations correspond to ρ > 0. We denoted
such “forbidden” ρ < 0 regions in dark blue. To simplify the analysis of the regimes, we
also added Ḣ = 0 lines in green, and ḣ = 0 lines in black so that their intersections have
Ḣ = ḣ = 0, which corresponds to exponential solutions (which are also fixed points of
the system). The last piece is the nonstandard singularity; their locations are marked with
dashed blue lines.
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(a) (b)

(c) (d)

(e)
(f)

Figure 5. Viable regimes for EGB model with a perfect fluid as a source: (a) panel: large-scale structure
of the H > 0, h < 0 quadrant for D = 2, α > 0, ω < 0; (b) panel: vicinity of E3+2 stable point for
D = 2, α > 0, ω < 0, initial conditions leading to K3 → E3+2 transition are bounded by light-blue
lines; (c) panel: large-scale structure of the H > 0, h < 0 quadrant for D = 2, α > 0, 1/3 > ω > 0;
(d) panel: vicinity of E3+2 stable point for D = 2, α > 0, 1/3 > ω > 0, initial conditions leading to
K3 → E3+2 transition are bounded by light-blue lines; (e) panel: large-scale structure of the H > 0,
h < 0 quadrant for D = 2, α > 0, ω > 1/3, only nS → E3+2 transition remains; (f) vicinity of the
exponential constant volume solution (ECVS) (see the text for more details).

These notations are enough for analyzing the resulting regimes. Additional numerical
simulations reveal particular past or future asymptotes and the vector field demonstrates
the general flow from and to these asymptotes. For instance, on the (a) panel, in the bottom
part we can see that the past asymptote is K3 (found numerically), and the vector field
shows the direction to nS, making the transition K3 → nS; we perform a similar analysis
for all other regimes.

The light-blue lines on Figure 5b,d are bound initial conditions, which lead to E3+2
from K3, so that initial conditions form the only realistic compactification regime K3 → E3+2.
Comparing Figure 5b with Figure 5d, one can notice an increase in this area, so that the
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measure of the realistic compactification regime is increasing as ω is growing until it reaches
1/3; for ω > 1/3, we still have E3+2, but K3 is no longer reachable as the field changes
direction (compare Figure 5c and Figure 5e) and it is nS as a past asymptote, resulting in an
nS→ E3+2 transition, which is not realistic compactification.

After considering the EGB model with perfect fluid as a source, we can conclude that,
similar to previously considered EGB models, realistic compactification exists in D = 2;
we have not considered this model in higher dimensions yet. It is interesting that realistic
compactification exists only for ω ⩽ 1/3; we are going to return to this question in the
Discussion section.

8. EGB: Spatial Curvature Case

Spatial curvature plays an important role in GR: negative curvature typically leads
to expansion, while positive could lead to recollapse; particularly, positive curvature
could change the measure of the trajectories reaching inflationary asymptotic [89,90]. In
the context of extra dimensions, the effects of spatial curvature were not investigated
much until we found a particular solution where extra dimensions could be stabilized if
the curvature of extra dimensions is negative and the parameters are within some non-
vanishing range; this situation is illustrated in Figure 6a, where we presented behavior for
Hubble parameters and one can see that the 3-dimensional subspace is expanding (H > 0)
while the size of extra dimensions is stabilized (as h → 0, b(t) → const). Initially, this
regime was described in [86] by numerically solving (12)–(14) for a variety of parameters;
with the follow-up investigation performed in [87], where we described all other regimes
that could appear within the same model, and [88], where the influence of matter in the form
of perfect fluid on regime availability was studied. In [92], we additionally investigated
the influence of the spatial curvature of three-dimensional subspace on the dynamics of
the regimes.

H
, 

h

(a) (b) (c)

Figure 6. Illustrations for the dynamics of the EGB case with spatial curvature: regime with sta-
bilization of extra dimensions (H > 0, h → 0) on (a) panel, areas on the parameters space where
stabilization of extra dimensions with positive spatial curvature is possible and stable, as a function
of D (b,c) panels (see the text for more details).

Other notable contributions to the study of this regime and its availability and abun-
dance include [103], where it was demonstrated that in the presence of the cubic Lovelock
term, the stabilization of extra dimensions could coexist with isotropization—it is not so in
the EGB case. It is also worth mentioning that we observed a similar effect for the vacuum
model with a cubic Lovelock contribution—successful compactification schemes could
coexist even with two different isotropizations—a situation we do not have in vacuum EGB
(see Sections 4 and 6). In addition to this contribution, we can also mention [104], where a
certain case is investigated numerically, and [105], where the (3 + 7)-dimensional case in
the presence of the cubic Lovelock contribution is investigated numerically.

Finally, the stability of the extra dimensions stabilization regime is investigated in [91].
There, we build a system of the perturbation equations based on (12)–(14) and perturbed
around the exact solution H ≡ ȧ(t)/a(t) = const = H0, b(t) = const = b0. The results
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of the investigation suggest that for negative curvature of extra dimensions, the resulting
regime with stabilization of extra dimensions always exists and is stable. However, for
many reasons, the case of positive curvature is more attractive—it is more obvious how
to make extra dimensions compact in the case of positive spatial curvature—so we kept
looking for the same regime but with positive curvature.

The results of our investigations are as follows: for D = 2, there formally exist
solutions with the stabilization of extra dimensions, but they are unstable. On the contrary,
starting from D = 3, there are stable solutions of the desired type for both positive and
negative curvatures of extra dimensions. This way, for D = 3, for positive curvature,
stable solutions exist for α < 0 and ξ ∈ (−0.5448,−0.5) ∪ (0,+∞) (where ξ = αΛ), and
thus for entire Λ < 0 and the small positive range of Λ. For negative curvature of extra
dimensions in D = 3, stable solutions exist for α < 0, ξ < −3/2; it is interesting to note
that both of them exist only for α < 0. Next, for D = 4, stable solutions for positive
curvature of extra dimensions exist for α < 0, ξ ∈ (−27/54,−15/32) ∪ (−0.3, 3/8)—again,
for both signs of Λ, but now both ranges are finite. For negative curvature, there are two
domains with different conditions: one is the same as for D = 3: α < 0, ξ < −3/2 and the
other is α > 0, Λ < 0. Finally, for the general D ⩾ 5 case, the situation is as follows: for
positive curvature of extra dimensions, stable solutions exist for α < 0, ξ ∈ (ξ1, ξ2)∪ (ξ3, ξ4)
(see Figure 6b,c where we provide this range in θ = αH2

0 and ξ variables). For negative
curvature, one of the domains is the same as before, α < 0, ξ < −3/2, while another is
α > 0, ξ < −D(D− 1)/(4(D− 2)(D− 3)).

It is interesting to note that for positive curvature, we require α < 0, while for negative
α, both could be signs for D ⩾ 4.

Overall, the stabilization of extra dimensions could take place in all D ⩾ 3: for the
negative curvature of extra dimensions, it is a natural process, while for positive curvature,
it requires fine-tuning the parameters, and this fine-tuning becomes more and more tight
with the growth of D.

9. EGB: General Anisotropic Case

Last but not least, the case to report here is the case where all spatial dimensions
are initially totally anisotropic, making it a Bianchi-I-type configuration. In this case, the
equations of motion are (3)–(4) with n = 2 maximum. Then, we start with some initial
conditions and integrate the equations to see the past and future asymptotic regimes. For
the case with four spatial dimensions, the investigation was performed in [63] for vacuum,
Λ-term, and perfect fluid cases. However, since there are no realistic compactifications for
D = 1 neither in vacuum nor in Λ-term or perfect fluid cases, the only nonsingular regime
reported there is isotropization. By singular regimes, we mean the situation when evolution
is interrupted by nonstandard singularity, defined the same as before, but for totally
anisotropic cases, nonstandard singularities are not points on the evolutional curve but are
surphases in the phase space and are quite abundant (see, e.g., [63] for the simplest case
with four spatial dimensions). The analysis was further continued in [92] for five spatial
dimensions, where we know compactification for D = 2 exists, presented in Figure 7a, while
isotropization for the same case is presented in Figure 7b. Since there are no exponential
solutions with other spatial splittings in five spatial dimensions, these two are the only
possible future asymptotes. However, in six spatial dimensions, the situation is different,
as there could be two different principal spatial splittings: [4 + 2], with expanding four
and contracting two dimensions, and [3 + 3] with expanding three and contracting another
three dimensions. Of these two splittings, only the latter is realistic, but we can end up in
both starting from the initially anisotropic case, which is demonstrated in Figure 7c. There,
we plot a two-dimensional slice of the six-dimensional Hubble parameter space with the
distribution of the initial conditions, leading to either [3 + 3] splitting or [4 + 2]. One can
see that the area for [4 + 2] is larger; however, it is a two-dimensional slice and to judge the
real measure, one needs to take into account the distribution across all six dimensions.
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(a) (b)

Figure 7. Illustrations for the dynamics of the EGB case initial total anisotropy (Bianchi-I-type):
different initial conditions for the model with 5 spatial dimensions could lead to either [3 + 2] spatial
splitting ((a) panel) or isotropization ((b) panel); distribution of the initial conditions for the model
with 6 spatial dimensions leading to either [4 + 2] or [3 + 3] spatial splittings ((c) panel) (see the text
for more details).

In addition to the mentioned references in [106], the additional numerical analysis
of the five and six spatial dimensional cases was performed. As in [92], we performed an
analysis of both the anisotropic model and the curvature, and we proposed a scheme that
would allow us to address the question of reaching the stabilization of the extra dimensions
regime from an initially anisotropic state. It cannot be performed directly (as the initial
state is Bianchi-I and it is spatially flat while the stabilization is achieved if there is a spatial
curvature) so we developed an indirect scheme: we first address the possibility of reaching
[3 + D] spatial splitting from the initial anisotropy for some parameters, then address the
possibility of reaching compactification from the initial conditions with initially very small
but nonzero curvature. So, in [105], this scheme was tested for seven spatial dimensions:
initially, the possibility of forming [3 + 4] spatial splitting was addressed, and after that,
the possibility of building the stabilization of extra dimensions from [3 + 4] spatial splitting
with initially small negative curvature.

Summarizing, an initially anisotropic Universe in the course of evolution would end
up in one of the spatial splittings, available for a given number of spatial dimensions,
or encounter nonstandard singularity. For the former case, we always have an isotropic
solution as a possibility (though it exists not for all values of the parameters) and, start-
ing with five spatial dimensions, we have nontrivial spatial splitting into two (or more)
isotropic subspaces, again, subject to existence and stability. Among them, we are interested
in configurations with an expanding three-dimensional subspace and contracting other
subspaces (all other subspaces, if more than one; however, due to high computational
difficulty we have not investigated cases where more than one extra-dimensional subspace
exists). So, our investigation reveals that in five spatial dimensions, everything is good,
while in higher dimensions, other spatial splitting exists and it could be that the Universe
ends up with “wrong” spatial splitting. It will not be three-dimensional subspace which
would expand, resulting in the conclusion that the higher the number of spatial dimensions,
the less likely that we will end up with “correct” compactification.

10. Summary and Discussion

Now, let us summarize and discuss the results reported in this review. The vacuum
EGB model is the simplest to consider and it has realistic regimes. For α < 0 (negative
Gauss–Bonnet coupling), the K3 → K1 transition exists, from high-curvature (Gauss–
Bonnet) Kasner regime to low-curvature standard (GR) Kasner. Despite having the desired
behavior of the scale factors, (expansion of the three- and contraction of extra-dimensional
subspaces) the resulting regime is power-law and the resulting exponents do not fit the
Friedmann stage, so that, despite being potentially viable, it still does not fit the observa-
tions. For α > 0, the counterpart of this regime is P(1,0) → K1—the same future but different
past asymptotes. For this case, it is another power-law regime with pH = 1 and ph = 0.
Since it also has ∑ pi = 3, it could be mistaken for GB Kasner, but it is a different regime. In
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a way, it is closer to the Taub solution [107], but the exact relationship between these two is
not established.

Apart from these regimes, there is another: for α > 0 and for all D ⩾ 2, the K3 →
E3+D transition always exists, which is realistic—three dimensions expand exponentially
while extra dimensions exponentially contract; exponential expansion of three-dimensional
subspace agrees with the observed accelerated expansion of the Universe.

The next case to consider is the EGB model with the Λ-term. This model is more
complicated, both in dynamics and regime/transition abundance, compared to the vacuum
model. We again have a power-law transition there; this time it is the K3 → K3 transition
between two different high-curvature (GB) Kasner regimes. Again, they are power-law and
cannot be realistic.

Realistic transitions for the model with Λ-term include either double K3 → E3+D ←
P(1,0) or single K3 → E3+D—in both cases, the late-time asymptote is an exponential
solution with expanding three and contracting extra dimensions. These transitions are
always present for D ⩾ 2, but exact ranges of the parameters depend on D:

• For D = 2, they exist only for α > 0: for αΛ < 1/2 (including the entire Λ < 0)
the K3 → E3+2 transition exists, and for αΛ < −1/6, additional P(1,0) → E3+2
transitions to the same exponential solution exist, making it a double transition
K3 → E3+2 ← P(1,0);

• For D = 3, we additionally have transitions for α < 0, Λ > 0, αΛ ⩽ −3/2. There, we
have two double transitions K1

3 → E1
3+3 ← P(1,0) and K2

3 → E2
3+3 ← P(0,1); the same

double transitions exist for the entire α > 0, Λ < 0, while for α > 0, Λ > 0, αΛ ⩽ 1/2,
they reduce to a couple of single transitions K1,2

3 → E1,2
3+3;

• The general D ⩾ 4 case has the same regimes as D = 3, but the limits of their existence
are different and D-dependent. Double transitions in the negative α domain exist for
α < 0, Λ > 0, αΛ ⩽ ζ1, and for positive α single K3 → E3+D, transitions exist for
αΛ < ζ3, while for αΛ ⩽ ζ2, they are supplemented with P(1,0) → E3+D transitions
and form double transitions.

So, this analysis demonstrates how the usage of simple requirements for the existence
of realistic Universe evolution can help us impose constraints on the parameters of the
theory. However, Gauss–Bonnet gravity is used not only in cosmology. There are various
aspects of Gauss–Bonnet gravity in AdS spaces, such as shear viscosity to entropy ratio,
causality violations, or CFTs in dual gravity description, which allow us to put constraints
on the parameters as well; these constraints could be summarized as follows [108–115]:

− (D + 2)(D + 3)(D2 + 5D + 12)
8(D2 + 3D + 6)2 ≡ η2 ⩽ αΛ ⩽ η1 ≡

(D + 2)(D + 3)(3D + 11)
8D(D + 5)2 . (24)

Limits for dS (Λ > 0) are less numerous and are based on different aspects (causality
violations, perturbation propagation, and so on) of black hole physics in dS spaces. The
most stringent constraint coming from these considerations is [44,48,116]

αΛ ⩾ η3 ≡ −
D2 + 7D + 4

8(D− 1)(D + 2)
. (25)

Then, we can confront our limits with those obtained from other considerations of GB:
we put our constraints in Figure 8a (with ζ1,2,3 being defined in (21)–(23)) and mentioned
constraints from the other literature in Figure 8b (α > 0, Λ > 0, which is not shaded but
is included) and their intersection is presented in Figure 8c. From there, one can see that
α > 0 is favored by the combination of constraints and the resulting constraint on αΛ reads

3D2 − 7D + 6
4D(D− 1)

≡ ζ3 ⩾ αΛ ⩾ η2 ≡ −
(D + 2)(D + 3)(D2 + 5D + 12)

8(D2 + 3D + 6)2 . (26)
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Figure 8. Summary of the bounds on (α, Λ) from this paper alone on (a) panel; from other considera-
tions found in the literature on (b) panel; and the intersection between them on (c) panel (see the text
for more details).

It is worth mentioning that initially this result was obtained in [99], but as it is an
important milestone, we decided to reproduce it here.

The next model we considered is the vacuum cubic Lovelock gravity. Analysis suggests
that for all D ⩾ 3 cases, there are realistic compactification schemes, though the regime
abundance and structure is different in D = 3÷ 7 and in D ⩾ 8. For D = 3÷ 7, there
is one realistic transition P(1,0) → E3+D, which exists for α > 0, µ ⩽ µ1 (including entire
β < 0); the other “would-be” viable transition is P(1,0) → K1, but the corresponding late-
time asymptote K1 is Kasner regime. It is power-law and its expansion rate is insufficient
to describe the current expansion of the Universe; these regimes are demonstrated in
Figure 4a,b. For D ⩾ 8, we have the following realistic compactifications: for α > 0, β < 0,
we have P(1,0) → E3+D, which exists everywhere in β < 0 and K5 → E3+D, which exists for
µ ⩽ µ2; for α > 0, β > 0, there is double transition K5 → E3+D ← P(1,0), for µ ⩽ µ3 which
“decouples” into K5 → E3+D and P(1,0) → K1 (the latter not being quite viable) for µ > µ3;
these regimes are demonstrated in Figure 4c–e. This way, realistic compactification exists
only for α > 0, but for all β, there is at least one viable compactification regime.

Another model we consider is the EGB model, with perfect fluid as a source. Due to
complexity, so far we have considered only low-dimensional cases (D = 1, 2), and these are
the cases we are reporting here. So, in D = 1, there are three nonsingular transitions, but
none of them have realistic late-time regimes. On the contrary, for D = 2, there is realistic
compactification K3 → E3+2, and it is achieved for α > 0, ω < 1/3 with the measure of
the trajectories experiencing this transition, increasing as ω → 1/3− 0; the situation is
demonstrated in Figure 5.

The model with perfect fluid has two interesting features we want to highlight for
our readers. The first of them is what we call “constant volume solution”—exponential
solution with constant volume, defined as follows in the continuity equation:

ρ̇ + ρ(1 + ω)∑
i

Hi = 0, (27)

where we used p = ωρ equation of state; for exponential solutions Hi ≡ const, so that l.h.s.
of the equations of motion are constants, and so the density ρ ≡ const, then the continuity
Equation (27) reduces to

(ρ + p)∑
i

Hi = 0 ⇐⇒









ρ = 0 (a)

p = −ρ (b)

∑k Hk = 0 (c)

(28)

Then, we can clearly see all three possibilities when exponential solutions could exist—
it is either vacuum (case (a)), Λ-term (case (b)), or the third possibility with ∑k Hk = 0
(case (c)). One can see that in the third possibility, the sum of Hubble parameters is zero, so
the comoving volume is constant, that is why we call these exponential solutions “constant
volume solutions”. We have a separate paper dedicated to the study of their properties [77]
(see also [76] for the general scheme and [79] for non-constant-volume solutions) and
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here we notice their appearance on the actual evolution curves. Well, “appearance on the
evolution curves” is not quite correct—they appear, but not on the evolution curves—they
are “avoided” by evolution flux. In Figure 5f, we presented the vicinity of the constant-
volume solution and one can see that it is a saddle point. Since it has ∑k Hk = 0, it is not
formally stable in either t → +∞ or t → −∞ (that would require either ∑k Hk > 0 or
∑k Hk < 0; see [81]), so it is natural that it is a saddle point. The important point is that,
despite the fact that we described these solutions in [77], their actual appearance and nature
remained unknown, so the fact that we discovered their presence in a model with perfect
fluid as a saddle point is an important result.

The second feature we want to highlight for the readers is the fact that for ρ→ 0, we
obtain vacuum EGB behavior, reported in Section 4. Indeed, from Figure 5b,d, one can
notice that E3+2 is located on the ρ = 0 boundary, and it is quite clear why. From (28), we
can see that there are only three possibilities for building an exponential solution—option
(c) gives us CVS, and (b) is not an option since we do not have the Λ-term here, so the only
option remaining is (a), and E3+2 is located exactly on ρ = 0. Moreover, taking the ρ = 0
slice from the evolution vector field would reconstruct vacuum EGB behavior, so that the
vacuum EGB model is the ρ→ 0 limit of the perfect fluid model. While this is somewhat
expected, it is still an interesting fact.

The less expected and equally interesting fact is the boundary on the equation of state—
the K3 → E3+2 transition takes place only for ω < 1/3, while for ω > 1/3, it is replaced by
nS→ E3+2. The explanation lies in the difference in scalings for matter and curvature and
ω = 1/3 is a critical value for the GB term (see [62] for details). For contraction (it defines
the stability of the past asymptote, and K3 here is a past asymptote), if ω < 1/3, curvature
dominates, and GB Kasner is preserved, for ω > 1/3, matter dominates and GB Kasner is
no more. That is what is happening with K3 as a past asymptote.

The next case to consider is the case with the spatial curvature in EGB gravity. After
the discovery of the regime, where the scale factor of the extra dimensions could be
stabilized [86], in EGB gravity, if the spatial curvature of the extra-dimensional section
is negative, we started to investigate this regime and the models with nonzero spatial
curvature in more detail. Indeed, the regime is interesting, but negative curvature is hard
to handle, while positive curvature is more associated with compact manifolds. So, if there
was a similar regime but with positive curvature, this would be ideal. Indeed, we found
this regime in the case of positive curvature, but its abundance is much less than that of
the negative curvature. What is more, its abundance is decreasing with an increase in the
number of extra dimensions. Thus, it exists and is stable, but to end up in this regime, we
require some sort of fine-tuning.

And finally, the totally anisotropic case—the case where initially we had all dimensions
equally distributed (Bianchi-I-type). All previous cases assumed that all spatial dimensions
are divided into subspaces—isotropic three-dimensional which represent our Universe,
and isotropic extra-dimensional. However, in the most natural scenario, we should start
with totally anisotropic space, and it should naturally evolve into a configuration with
two isotropic subspaces—this evolution is what we hope to find. The results suggest that
for the cases where stable exponential solutions exist, such transitions are possible. For
instance, for four spatial dimensions, the only stable exponential solution is isotropic, so
only it could be reached. However, in five spatial dimensions, there are two, isotropic
and [3 + 2] splitting—with expanding three and contracting two dimensions—so that the
final configurations could be reached (see Figure 7a,b). Similarly, in higher numbers of
dimensions, more different spatial splittings are allowed, which makes it less probable to
end up with the “correct” spatial splitting.

Finally, let us put together all cases where realistic compactification to the exponential
solution is happening, and so, ΛCDM could be recovered in a three-dimensional subspace.
All such cases are summarized in Table 1. There, we indicate the type of model and the
source of matter in the first column, the number of extra dimensions in the second column,
and the conditions for the parameters under which compactification occurs.
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Table 1. All cases with realistic compactification/ΛCDM recovery.

Model Number of Extra Dimensions Parameters

EGB, vac D ⩾ 2 α > 0

EGB, Λ

D = 2 αΛ < 1/2 (incl. Λ < 0)

D = 3
α < 0, αΛ ⩽ −3/2

α > 0, αΛ < 1/2 (incl. Λ < 0)

D ⩾ 4
α < 0, αΛ ⩽ ζ1

α > 0, αΛ < ζ3 (incl. Λ < 0)

cubic Lovelock, vac
D = 3÷ 7 α > 0, µ < µ1

D ⩾ 8 α > 0

EGB, perfect fluid D = 2 α > 0, ω < 1/3

EGB, curvature

D ⩾ 3 γD < 0, α < 0, αΛ < −3/2

D = 3 γD > 0, α < 0, αΛ ∈ (−0.5448,−0.5) ∪ (0,+∞)

D = 4
γD > 0, α < 0, αΛ ∈ (−27/54,−15/32) ∪ (−0.3, 3/8)

γD > 0, α > 0, Λ > 0

D ⩾ 5
γD > 0, α < 0, αΛ ∈ (ξ1, ξ2) ∪ (ξ3, ξ4) (see Figure 6c)

γD < 0, α > 0, αΛ < −D(D− 1)/(4(D− 2)(D− 3))

11. Conclusions

To conclude, we have demonstrated that it is possible to set constraints on the parame-
ters of Lovelock gravity using generic requirements, such as the existence of a nonsingular
transition from a high-curvature to a realistic low-curvature regime. Since the theory is
multidimensional, “realistic” here stands for expanding three- and contracting or static
extra-dimensional subspaces. These results are obtained under the condition that the total
space is split into two isotropic subspaces—three- and extra-dimensional with the former
representing our Universe while the latter is the “hidden” extra dimensions. Our results
also suggest that the transition from a totally anisotropic (Bianchi-I-type) Universe to the
configuration with two isotropic subspaces is quite natural and happening for quite a wide
range of parameters. However, in a high number of spatial dimensions, compactification
could happen to a different spatial splitting, e.g., six spatial dimensions could end up
both as (3 + 3)—three contracting and three expanding—which favors observations, or
as (4 + 2)—four expanding and two contracting—which obviously contradicts; the exact
outcome depends on the parameters and initial conditions.

This review reflects the current status of the Lovelock cosmology exploration. From it,
one can see that despite some progress, we still are quite far from fully understanding the
dynamics of Lovelock cosmology. Most of the progress is conducted within EGB gravity,
which is the lowest non-GR contribution of Lovelock gravity. The results reported for cubic
Lovelock gravity demonstrate that we cannot extrapolate results for EGB on higher-order
Lovelock gravity, we need to investigate at least cubic Lovelock gravity to see if higher
orders could be extrapolated from EGB and cubic contributions. So far we investigated only
vacuum regimes in cubic Lovelock gravity, and some progress was made on exponential
solutions and solutions with spatial curvature, but a full investigation of the regimes in
cubic Lovelock gravity with Λ-term is still ongoing. It is more complicated than the cases
considered in this review and it has more parameters, so both the structure of the regimes’
abundance and their distribution over parameter space is much more complicated—that
slows the investigation, but we are still hoping to complete it in the future.

However, even within EGB gravity, we lack a full understanding and full description
of all regimes and cases—vacuum and Λ-term transitions are described while the model
with the perfect fluid as a source still lacks full description. We described low-D cases,
which demonstrate a promise in explaining successful compactification in the presence of
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ordinary matter but are still struggling with the general high-D case. Still, we are planning
to complete it in the future, which will broaden our understanding of the dynamics of
EGB cosmologies.

Overall, as just stated, the results reported here demonstrate promise in describing
our observed Universe as a three-dimensional subspace of the higher-dimensional theory
utilizing Lovelock gravity, which exists only in higher dimensions. As the results demon-
strated promise, we are going to continue our investigation of the model and the pursuit of
new exciting features and regimes that this beautiful theory could provide.
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Notes

1 Good proof comes from Newtonian gravity: if defined in more than three spatial dimensions, it has no stable orbits, while the
Earth is rotating around the Sun for billions of years.

2 Apparently, the original Kaluza–Klein theory is considered incorrect for a number of reasons and follow-up investigations
generalize it—see, e.g., [14] for review.

3 We use this term to describe the situation when an initially anisotropic space evolves into a configuration with two isotropic
subspaces; for (3 + D) spatial splitting it would be (a2

1, a2
2, . . . , a2

3+D)→ (a2, a2, a2, b2, . . . , b2).
4 We consider ansatz for spacetime in form of a warped product M4 × b(t)MD, where M4 is a Friedmann–Robertson–Walker

manifold with scale factor a(t) whereas MD is a D-dimensional Euclidean compact and constant curvature manifold with scale
factor b(t).
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