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FOREWORD

An International Summer School on Selected Topics in Nuclear Theory
was held during the period 20 August to 9 September 1962 in the Low Tatra
Mountains, Czechoslovakia, under the auspices of the Nuclear Research
Institute of the Czechoslovak Academy of Sciences, with financial support
from the International Atomic Energy Agency. '

In view of the wide interest of the seven topics considered there and of
the speed with which the field of theoretical physics is developing, the
Agency decided to make available its facilities for rapid publication and to
publish the lectures under its own imprint; however, all editorial and com-
position work has been performed under t_he supervision of the general
editor, Dr. F. Janouch of the Nuclear Research Institute of the Czecho-
slovak Academy of Sciences.

The problem of keeping in touch with the rapidly changing but funda-
mental field of theoretical physics is a difficult one, particularly for scien-
tists in the developing countries, It is hoped that such publications as the
present one and the companion volume containing the lectures presented at
the Agency's Seminar on Theoretical Physics at Trieste will help, at least
in a modest fashion, to overcome these difficulties.

SIGVARD EKLUND
December 1962 ) Director General
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INTRODUCTION

.

The lectures published in the present volume under the general title
"'Selected Topics in Nuclear Theory' were given from 20 August to 8 Sept-
ember 1962. at the International Summer. School organized in the Low Tatra
Mountains, Czechoslovakia, by the Nuclear Research Institute of the Czecho-
slovak Academy ofSciences with the co-operation of the International Atomic
Energy Agency.

The lectures are devoted exclusively to theoretical low-energy nuclear
physics. Low-energy nuclear physics is, of course, of great interest to
countries that are unable to construct the expensive equipment necessary
for experimental research in high-energy physics, Moreover, theoretical
physicists specializing in low-energy physics are everywhere lacking. One
aim of the Summer School was to give young scientists an opportunity of
taking a short course in low-energy physics and learning something about
achievements in regard to it.

The title ''Selected Topics in Nuclear Theory'' correctly reflects the
principles upon which the programme was drawn up: it is quite clearly im-
possible, in three weeks, to cover the whole of theoretical nuclear physics
in any great detail. The organizers tried to select topics that would reveal
where great progress has recently been made or where the prospects are
particularly good.

' A few words should be said about the lectures themselves, which divide
roughly into three groups. )

Firstly, the theory of direct nuclear reactions, which in recent years
has begun to play an ever greater role in the study of nuclear structures.

One of the characteristic features of direct nuclear reactions (e.g.-
stripping and pick-up) is that only a small number of degrees of freedom,
from the many which characterize the atomic nucleus, takes part in the
reaction. This fact makes the theoretical treatment of direct reactions more
hopeful, :

‘The lectures of Professor Austern show why direct nuclear reactions
are so convenient for the study of nuclear structures and present a system-
atic explanation of distorted wave methods, their application and achieve-
ments. The concluding section discusses correlations between direct nuclear
reactions and reactions occurring via the compound nucleus, together with
their distinguishing characteristics.

The successes obtained by means of the so-called dispersion relations
in work on the theory of elementary particles led to the idea of applying
this method also to the theory of nuclear reactions, i.e. in work on low-
energy physics.

Professor Shapiro describes the dispersion method and shows how to
apply it to direct nuclear reactions. The dispersion method does not make
use of wave functions, but only of certain general features of reaction ampli-
tudes, e.g. analyticity and unitarity. In addition to providing interesting
results (the expression of the amplitudes of the most diverse reactions by
means of the amplitudes of the simplest), it also permits a better under-
‘standing of some previous results as, for instance, Butler's theory of
stripping,



The second group of lectures is concerned with models of the atom.ic
nucleus. As the nucleus is a many-particle system and the forces acting
between the particles are not exactly known, its theoretical description is
necessarily based on model representations.

One of the most widely used atomic nucleus models is the shell mod=:l,
constructed on the analogy of the electron shell of the atom, The nucleons
are regarded as free and moving in a certain average nucleon field. Despite
the large numbers of other models that have appeared recently, the shell
model remains one of the most developed and the one most often used by
physicists for specific computations,

In Professor Elliott's lectures the present state of shell model theo:y
is formulated and the connection between the shell model and other models
of the atomic nucleus is discussed. Professor Elliott does not restrict hira-
self to the usual elements of shell model theory, which can be found in any
text book on nuclear theory, but discusses lesser-known facts, e.g. the
theory of multiplets and supermultiplets, a method of calculating the proper-
ties of light nuclei without using genealogical coefficients,and so on. Groip
theory methods are adopted for the classification of the wave functions of
a many-nucleon system. Professor Elliott’s lectures also show how the
fundamental principles of the shell model (taking configuration mixing into
account) make it possible'to obtain wave functions that have some of th2
characteristic properties of the wave functions of deformed nuclei.

Professor de-Shalit deals with the closely allied theory of electro--
magnetic transitions in nuclei, the study of which provided the main basis
for the shell model, yielding important data on excited states of nuclei (their
energies, moments, parities, etc.). Such data are generally very reliable,
since electromagnetic interactions in the nucleus are well known. Apart
from electromagnetic transitions, he discusses other (static) properties
of nuclei, i.e. their magnetic and electric moments, and shows which
measurements of these values make it possible to reach model-independent
conclusions about the structure of the nucleus and the forces acting between
nucleons.

The theory of pairing correlations in nuclei is dealt with by Professors
Soloviev and Belyaev, In the first models in which axial and non-axial nuclzi
were examined, deformations were considered phenomenologically as parami-
eters of the theory. In these lectures it is assumed that nucleons move
in a self-consistent field with some residual interaction. This residual
(pairing) interaction is taken into account by a method similar to that used
in the modern theory of superconductivity - a method first proposed by
Professor Bogolyubov (who was unfortiunately prevented by illness from
participating in the School), which is now known as the superconductive
model of atomic nuclei.

It is very interesting to find that certain very specific properties cf
nuclei can be explained in terms of extremely general concepts. Professcr
Belyaev shows, for instance, that the superconductivity of metals at very
low temperatures and the non-sphericity of nuclei are a consequence of one
and the same physical law,

The model examined in Professor Soloviev’s lectures is used to explain
the characteristics of fundamental and low-lying excited levels of mediuin



and heavy particles {energy, spin, parity); considerable space is devoted
to methods of calculating «, 8 and y-transition probabilities in this model,

Professor Belyaev uses the superconductivity model to calculate col-
lective effects in nuclei, discussing the dependence of equilibrium conditions
in atomic nuclei on the number of nucleons in the nucleus, inertia moments
in deformed nuclei, and the genesis of vibrational levels in spherical nuclei.

Inthethird group, Professor Tolhoek discusses in his lecturesthe theory
of weak interactions between nucleons and leptons. Systematically and in
detail, he explains the modern theory of weak interactions as newly formul-
ated after the discovery of parity non-conservation in weak interactions.
He gives a detailed review of nuclear B-decay and deals with some general
aspects of weak interactions (V-A-interaction, intermediate bosons, the
electron and muon neutrino, etc.).

Great attention is devoted to the fundamentals of muon nuclear physics.
Although muon nuclear physics stands on the boundary between the physics
of elementary particles and nuclear physics, experimental and theoretical
study of u-capture in atomic nuclei can not only facilitate the elucidation
of various weak interaction problems but also facilitates study of the struc-
ture of the atomic nucleus itself; hence its inclusion among the selected
topics in nuclear theory is justified at present.

The lectures are being printed from manuscripts received beforehand
or actually during the Summer School, with minor and mainly unimportant
alterations and amendments. No uniform system of symbols hasbeen adopted
in the book (for example for Clebsch-Gordan coefficients, spherical functions,
etc.),various systems of units are used, and 8o on, Uniformity would have de-
‘manded substantial alterations in the manuscripts and a corresponding delay
in publication; the editor hopes that any deficiences there may be in this
respect - unfortunately by no means rare in the physics literature - will
not unduly worry the reader.

It was not considered necessary to include papers read at the seminars
by individual participants, as in most cases they have been or will be
published in scientific journals. '

The editor thanks the International Atomic Energy Agency for the under-
standing spirit with which it has undertaken the complicated business of
publishing the lectures, and also for its assistance in preparing the book
for publication. He must also express hisgratitudetoMrs. H. Watney-Kaczér
for her help in preparing the manuscript for the press and to P, Winternitz
and P. Vogel for many suggestions which were of assistance in getting the
manuscript ready for printing.

F. Janouch’



~ INTRODUCTION

Le présent ouvrage réunit, sous le titre «Certains aspects de la physicque
nucléaire théorique»,les conférences données du 20 aolit au 8 septemtre
1962 au Cours international d’été, qui a été organisé dans la Basse Taira
(Tchécoslovaquie) par 1’Institut de recherches nucléaires de 1’Acadér.ie
tchécoslovaque des sciences, en collaboration avec 1’Agence internationale
de 1’énergie atomique.

Les conférences portent exclusivement sur la physique nucléaire théo:i-
que des basses énergies. En effet, cette partie de la physique nucléaire
présente un grand intéré&t pour les petits pays qui n’ont pas la possibilité
de construire les installations coliteuses indispensables pour les recherches
expérimentales sur la physique des hautes énergies. On sait qu’il y a un
peu partout pénurie de théoriciens de la physique des basses énergies. C'est
pourquoi un des objectifs du Cours d’été était de permettre 1 de jeunes
théoriciens de suivre un enseignement général sur la physique des basses
énergies et de se faire une idée des progrés accomplis dans ce domaire.

Le titre de 1'ouvrage, qui était aussi celui du Cours, fait parfaitement
ressortir le principe qui avait présidé a 1’établissement du programme du
Cours d'été; il était manifestement impossible d’aborder en trois_semaines,
d’une fagon quelque peu approfondie, tous les aspects de la physique nuclé-
aire théorique. Les organisateurs du Cours s’étaient donc efforcés de choisir
certains domaines ol de grands progrés ont pu &tre accomplis ces temps
derniers ou qui offrent de grandes possibilités pour 1’avenir.

Les conférences peuvent étre classées en trois groupes.

Le premier groupe de conférences porte sur la théorie des réactions
nucléaires directes qui, depuis quelques années, a joué un rble de plus en
plus important dans 1’étude de la structure du noyau atomique.

Rappelons d’abord que les réactions nucléaires directes, soient les
réactions dites d’épuisement («stripping»)ou de ramassage («pick-up»),
sont caractérisées par le fait qu'un petit nombre des degrés de liberti
propres aux noyaux atomiques est utilis€é dans les réactions. Ce fait
permet d'envisager une étude théorique des réactions nucléaires,

Les conférences du Professeur Austern expliquent pourquoi ce sont
précisément les réactions nucléaires: directes qui facilitent 1’étude de la
structure du noyau. Elles décrivent d'une manidre détaillée la méthod:
des ondes distordues ainsi que ses applications et ses succeés. Dans ses
conclusions, le conférencier a examiné les relations entre les réactiors
nucléaires directes et celles qui donnent lieu A la formation transitoire d*tn
noyau composé, ainsi que leurs caractéristiques respectives.,

Les progrés accomplis dans la théorie des particules €lémentaires cu
moyen des relations de dispersion ont fait penser 4 la possibilité d’appliquer
cette méthode A la théorie des réactions nucléaires, c’est-a-dire au domaine
des basses énergies, ' :

Dans ses conférences, le Professeur Shapiro a exposé la méthode des
relations de dispersion et indiqué comment elle peut &tre appliquée aux
réactions nucléaires directes. Cette méthode qui, au lieu d'utiliser des
fonctions d’ondes, ne fait appel qu’a certaines propriétés de toutes les
amplitudes de réactions, savoir: ’analyticité et 1'unitarité, donne nonseul:-
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ment un certain nombre de résultats intéressants (expression des amplitudes
de réactions tr&s diverses par celles de réactions trés simples), mais
encore la possibilité de mieux comprendre certains résultats obtenus anté-
rieurement, par exemple la théorie de 1'épuisement («stripping»)de Butler.

Le deuxi®me groupe de conférences porte sur les modeles du noyau
atomique, Etant donné que le noyau comprend de nombreuses particules
dont les forces d’interaction sont encore mal connues, sa description thé-
orique se fonde nécessairement sur des modeles, _

On sait qu’un des modeles du noyau atomique les plus utilisés est un
modele en couches construit en s’inspirant des couches électroniques de
I’atome; dans ce modele, les nucléons sont libres et se déplacent dans un
champ nucléonique moyen. Un grand nombre d’autres modéles ont été
imaginés récemment, mais le modeéle en couches reste un des plus per-
fectionnés et c’est celui que les physiciens emploient habituellement dans
les calculs.

Au cours de ses conférences, le Professeur Elliott a décrit 1’état actuel
de la théorie du modele en couches ainsi que ses relations avec d’autres
modéles. L ne s'est pas borné A exposer des faits bien connus dont on peut
trouver une description dans. n'importe quel livre de théorie nucléaire,
mais il a expliqué des élements moins connus tels que la théorie des multip-
lets et des supermultiplets ainsi qu’une méthode de calcul des propriétés
des atomes légers permettant de ne pas utiliser les coefficients de parenté
relative,etc, Pour la classification des fonctions d’ondes d’un systdme a
plusieurs nucléons, il utilise la théorie des groupes. Enplus de ces questions,
le Professeur Elliott a expliqué comment les principes fondamentaux du
modele en couches (compte tenu du mélange des configurations) permettent
d’obtenir -des fonctions d’ondes présentant certaines propriétés caractéristi-
ques qui correspondent aux fonctions d’ondes des noyaux déformés.

Un enseignement étroitement 1ié aux conférences du Professeur Elliott
est celui que le Professeur de-Shalit a dispensé et qui porte sur la théorie
des transitions électromagnétiques dans les noyaux. On sait que la définition
du modéle en couches est fondée avant tout sur 1’étude des transitions élec-
tromagnétiques dans les noyaux, qui avait permis d’obtenir des renseigne-
ments importants sur les états d’excitation des noyaux, leurs énergies,
moments nucléaires, parités, etc. Ce sont, d’une manidre générale, des
données trés slires, du fait que les interactions électromagnétique dans le
noyau sont parfaitement connues, Le Professeur de-Shalit étudie non seule-
ment les transitions électromagnétiques, mais encore certaines autres
propriétés (statiques) des noyaux (c’est-a-dire leurs moments magnétiques
et électriques) et indique les mesures qui permettent de dégager des con-
clusions - autant que possible sans tenir compte des modeéles concrets - sur
la structure du noyau et les forces qui s’exercent entre les nucléons.

La théorie des corrélations de paires dans les noyaux a été exposée
par les Professeurs Soloviev et Belyaev. Dans lespremiers modéles, ol
1’on distinguait les noyaux axiaux et non axiaux, les déformations avaient
été introduites d'une maniere phénoménologique, en tant que parameétres
de la théorie. MM. Soloviev et Belyaev admettent que les nucléons se dé-
placent dans un champ autoconsistant avec une certaineinteractionrésiduelle.
Pour tenir compte de cette interaction (par paires) résiduelle, ils ont recours
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Aune méthode aha.logue a celle qui est utilisée dans la théorie moderne de
la supraconductivité. Cette méthode, qui avait été proposée tout d*abord
par le Professeur Bogolyubov (que la maladie a malheureusement emp@&ché
de prendre part aux travaux du Cours), a regu le nom de modéle suprsz.-
conducteur du noyau atomique,

Il est intéressant de constater que plusmurs propriétés trés parti.
culidres des noyaux peuvent &tre expliquées & 1'aide de considérations tri:s
générales; ainsi, le Professeur Belyaev démontre que la supraconductivité
des métaux & des températures irés basses et l’asphéricité des noyaux
résultent d’une méme loi physique.

Dans ses conférences, le Professeur Soloviev s'’est servi du modele
étudié pour expliquer les propriétés des niveaux fondamentaux et des niveaux
excités inférieurs des noyaux moyens et lourds (énergies, spins et parités),
Il a consacré une grande partie de son temps aukx méthodes permettant ce
calculer les probabilités des transitions «, B et v pour ce modele.

De son coté, le Professeur Belyaev a utilisé le modéle supraconducteur
du noyau pour calculer les effets collectifs dans les noyaux, Il a examirné
dans quelle mesure 1’état d’équilibre des noyaux atomiques dépend dunombre
des nucléons du noyau; il a étudié en outre les moments d’inertie des noyaux
déformés et V'origine des niveaux de vibration dans des noyaux sphériquei.

Le troisidme groupe de conférences comprend notamment celles que
le Professeur Tolhoek a consacrées A la théorie des interactions faibles
entre nucléons et leptons. Le conférencier a présenté d*une fagon systé-
matique et minutieuse la théorie moderne des interactions faibles dans son
aspect nouveau, telle qu’elle a été formulée aprés la découverte du principe
de la non-conservation de la parité dans les interactions faibles. Apres
avoir fait un exposé détaillé de la désintégration nucléaire 8, il a traité
certaines questions générales relatives aux interactions faibles (interaction
V-A, bosons intermédiaires, neutrino-électron et neutrino-muon, etc. ).

Le Professeur Tolhoek a accordé une grande place & un exposé de:
principes de la physique nucléaire du muon, Bien que cet aspect de la phy-
sique nucléaire se trouve A la limite du sujet et appartienne déja a 1la
physique des particules élémentaires, 1’étude expérimentale et théorique
de 1a capture du muon dans les noyaux atomiques pourra non seulemernt
permettre d’élucider certaines questions relatives aux interactions faibles,
mais se révéler utile pour 1’analyse de la structure du noyau atomique
mé&me. C’est pourquoi on a jugé opportun de retenir cet aspect de la physi-
que nucléaire théorique.

. Pour la publication des conférences, on a utilisé les manuscrits recus
avant ou pendant le Cours d’été', en y apportant quelques modifications ou
rectifications peu importantes. On n’a pas unifié les diverses notations
(par exemple celles des coefficients de Clebsch-Gordan ou des fonctions
sphériques), on a conservé les différents systemes d’unités, etc, I n’aurait
pas été possible d’opérer une unification sans modifier sensiblement le
texte des manuscrits, ce qui efit nécessairement retardé la publication,
Le rédacteur espeére que ce défaut (hélas assez fréquent dans lespublication
consacrées A la physique) n’embarrassera pas trop le lecteur.

Le rédacteur n’a pas jugé nécessaire de faire figurer dans le volume
les mémoires que certains participants ont présentés lors des réunions



scientifiques; en effet, dans la plupart des cas, il s’agit de travaux qui
ont été publiés depuis ou qui vont paralire prochainement dans des revues
scientifiques. '

1 félicite 1’Agence internationale de 1'énergie atomique d’avoir entrepris
la tiche ardue que constitue la publication des conférences, et il la remercie
du concours qu’elle a bien voulu lui apporter pour la mise au point du volume.
I1 exprime également sa reconnaissance & Mme H. Watney-Kaczér pour
1'assistance fournie dans la préparation des manuscrits, ainsiqu’a MM. P.
Winternitz et P, Vogel pour leurs nombreuses suggestions, qui ont permis
d’améliorer les textes avant de les envoyer & 1'impression.,

F. Janouch



BBEJEHVIE

B HacTosmeid KHAre ONyCAMKOBAHH NMOA OCHMMM 3ariapsueM "MaGpanrue
raaBH TeOpMu SApa" JeKnuMu, NPOUMTAHEHE B mepvox ¢ 20 aBrycra Io
8 ceHTAGps 1962 roaa B MexayHapogmHoit JleTHell mxose, opraHusoBaHHOA
NueTuTtyTOoM amepHux uccxeaosanuit AH YCP B corpymauuecTse ¢ MATAT)
B Huaxux Tatpax ( 4CCP).

JleKuMM NOCBAmEHH WMCKJANUMTEJIBHO TeopeTuueckofl snepHol ¢umsux:
HU3KUX BHepruit. AmepHas (M3UKa HM3KUX DHEPruil, Kax M3BECTHO,npen-
cTaBafeT GOJbpmoil MHTepee Mg MAalHX CTPaH, Yy KOTOPHX HET BO3MOX:-
HOCTU CTPOUTH AOPOIOCTOsAlME YCTAHOBKK, HEOOXOOUMHE IJasf KCIepH-
MEHTAJAbHHX WCCIEXOBAEUA B OCIACTU (M3IUKM BHCOKMX SHepruil. BmecTe
C TE€M M3BECTHO, UYTO IOBCEMECTHO YYBCTBYETCH HEAOCTATOK TEODEeTHU:-~
KOB, CHELMAJMM3MPYBIUXCS B O0JaCTH (PM3MKM HM3KUX 9Hepruil. Beumyr
9TOro OZHOM M3 ledeit JleTHeid mMKOJH GHJIO NPELOCTABUTH MOJOLHM TEO--
PeTUKAaM BO3MOXHOCTH NPOCIYmNATH HECKOJBKO OO30PHHX KYPCOB NO (U--
3VKe HM3KMX BHepruMil U NOoNYy4YUTh NPEeACTABIECHME O NOCTUXEHUAX B ITok
odJjacTun.

Haspaune "MaGpaHHHe riaBH Teopuy sapa' Jyulle BCEro xapaKTepu-
3yeT NPMHIMII, NTO KOTOPOMY COCTaBJsAlach nporpaMma JleTHeid mxods,
n60 BIOJHE $CHO, YTO HEBO3MOXHO B TeUYeHWE TpexX Helelb CKONb-HM-
6yab I'IyGOKO 3ATPOHYTL BCe OOJACTM TEODETUYECKOA SAEPHOA PUIWKM .,
OpraHyM3aTOpPH WKOJH CTAPAJUCh BHOPATH HECKOJBKO objacTtell, B KO-
TOPHX 3a lOCJEeIHee BpeMsd JMO0 LOCTUTCHYTh OGOJbmMON Nporpecc, JUGC
HaMeTUIMCh XOpomMe NepCHeKTUBH Ha Oyayumee.

HeckonbKQ CIOB O CaMUX JIEKIMIX, KOTOPHE MOXHO pa3jesiiTh npu-
MEepHO Ha TPU TPYNIH.

llepBasg rpynna KacaeTcd TEOPMM NPAMHX AAEPHHX Deaxumii, KOTOPHE
‘B mociezHVe rozH HAUMHADT UrPaTh BCEe GOJBILYH POJbL NpPHM M3YUYESHUV.
CTPYKTYPH aTOMHOI'O fAnpa.

Kax M3BeCTHO, OTINUMTEJNBHOM yepTOil NpaMHX AZepPHHX pearumi
(HanpuMep, peakuyy CPHBa M NOAXBaTa) ABJIAETCHA YUACTME B HMX JMMb
HeGOJBmOIro uMelia CTeleHel CBOGOAH M3 TeX MHOIMX, KOTODHE Xapax-
TEePU3YOT ATOMHOE AAPO. OTO OGCTOATENbCTBO AejaeT TeopeTuueckoe
paccMOTpPEeHUe NPIMHX AAEPHHX DPeaxklyii BeCchMa IPUBJIECKATEJIBLHAEM .

B Jjexmmax npodp. OcTepHa OHJIO NOKA3aHO, NOYEMY VMEHHO IpAMHEe
AOepHHE . PeaKuUy YAOGHH AJS U3YUYEeHUA CTDYKTYDH szpa. B >Tux Jgex-
IMAX uUsjaraercs MeTOA MCKAaXeHHHX BOJH. B 3akipuMTeNbHOM dYacTy
ofcyxzaeTCsd COOTHOMEHNWE MeXAY NPAMEMM SECDHEMM DeakivsaMy U pe-
aKIMAMM, NPOXOASAMVMM 4YePe3 COCTaBHOE HAPO, M UX OTIUUYMTEJIbHHE
OCOGEHHOCTH. ’

Yenexy, KOTOpPHE OHJIM NOCTUIHYTH B TEOPUM DJIEMEeHTAPHHX YaCTUIl
C NOMOWBY Takx Ha3HBAEMHX AMNCIESPCUOHHHX CCOTHOWEHMA, npuBesM K
niee MCHOJIL30BATh STOT METOR M B TEOPMM SAEPHHX peaxkuuid, T.e.
B 06JIaCTM HMU3KUX DHEprui.

lIpodeccop Mannpo B CBOMX JEeKIMAX M3JaraeT MeTON AUCHEPCUOHHHX
COOTHOmEHMI ¥ NOKa3HNBaeT BO3MOXHOCTH €r'o IDPVMMEHEeHUSA K IIDSIMEM
AREPHHM peaxuyuaM. [MCHNEePCHOHHNNA MeTOHN, KOTODH) MCIOJNbL3YeT HE BOJ-
HOBHe (YHKIMM, a JMIb HEeKOTOPHe ofuye CBOicTBA aMIMTyn peawmuii,
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KaK, Hanpumep, AHAJAUTUUYHOCTbL M YHUTAPHOCTL, HaeT He TOJBKO pPAX
MHTEPECHHX pe3yJibTaToB (BHpaxeHWe aMiIMTYZd CaMHX Da3HOOCDPal3HHX
peaxnuit Yepes aMIIMTYAM peaximMi npocrelmmx), HO ¥ BO3MOXHOCTH
Jyume NOHATH Hexoropme npexHue peavnhraru (Hanpmmep, TEOPUK CPH=~
Ba Bartxepa).

Bropad rpynna Jexumit nocaﬁmena MoZeJsaM aTOMHOIO fzpa. BBupy
TOTr0, UYTO AAPO - CUCTEMa MHOIMX YaCTUI, CHJIH B3auMoZeHcTBus Mex~
LY KOTODHMM TOUYHO He M3BECTHH, TeopeTHUecKoe ero oilicanue He-
U30exHO OCHOBaHO Ha MOJEJLHHX NpeAcTaBIEHUAX.

Kax u3BeCTHO, ‘OIHOM M3 caMHX pacCHpoCTpPaHEHHHX Mozeneit aToM~
HOI'o Anpa ABJAgeTCd ofoJodeuHas MOZeJb, NOCTPOSHHAd MO aHaJoruu
C DJIEKTPOHHOM 060JI0YyKoi aToMa; HYKJIOHH DpacCcMaTpyMBabnTCH KakKk CBO-~
GoZHHEe M ABUXYyUMECS B HEeKOTOPOM CpelHEeM HYKJOHHOM moJje. HecMmoTps
Ha GoJpmOEe KOJMUECTBO APYIMX MoZeJell, MOABMBHMXCHA B HOCJIELHee
BpeMs, O60JodeuyHasd MOLEJb OCTAEeTCeH OAHOM M3 CcaMiX paldpaloTaHHHX
U HauboJjee YacTO IPMMEHSEMHX cpeau PUIMKOB ZJd KOHKPETHHX pac-
4yeToB.

B Jgexumax npogdeccopa JaauoITa ZaeTcda coBpeMeHHas (QOpMYyJipoBKa
o6oJioueuHoil Mozes M o0CyxnaeTCqd ee B3IaMMOOTHOMEHWE ¢ APYI'UMMU
MOZenIMU ATOMHOI'C Aapa.llpodeccop SJIMOTT He OTPAHKUMBAETCH OOHU=-
HHMM CBEZEHMAMM [HO 3TOMY BONPOCY, KOTOPHE MOXHO B HacTosmee Bpe=-
Mg HaliTu B JHGOM yYeOHVKE [O TEeOpUM dAPa, HO NPVMBOAUT MEeHee U3-
BeCTHHe JdaHHHNe, KaK, HanpuMmMep, TEODUBD MYJbTUNAETOB, METOAH pac—
yeTa CBOMCTB Jerkux fnep 6e3 NOpUMeHeHUS reHeajorMyecKux Kod3ddui-
LHMEeHTOB U T.h&. HLug KiaceuduKauuy BOJHOBHX (GYHKUMA CUCTEMH MHOMX
HYKJOHOB MCHOJB3YOTCH METONH Teopuu Tpymnn. Iloka3nBaeTcHd, Kak
OCHOBHHE MEeW OG6oNoueqHOlt Mozemun (¢ yueTOM KORGMIYDAUMOHHBX NpH=-
Meceft) mo3BONADT NOMYyUATH BOJHOBHE GYHKUMM, UMeNIMe HEeKOTODHe
xapaKTepHHEe CBOMCTBa, COOTBETCTBYDNME BOJHOBHM QYHKUMAM zedopMU-
POBaHHHX AAED.

C sexumsamu npodeccopa DIIMOTTA OYEHb TECHO CBA3AH Kype Npo-
deccopa Ae-MlaanTa, KOTOPHI 3aHUMaeTCs Teopuell 3JXEeKTPOMaTrHWTHHX .
nepexonoBb B gipax. Kax M3BeCTHO, OAHUM U3 IJABHHX OCHOBaHMA zusg
CcO3ZaHud OSONMOYEYUHOH Moem! HNOCIAYEUIO M3yUeHMe DJIEKTPOMArHVTHRX
NepeXonoB B fAPaAX, KOTOPHE AAaBaJu BaxHHe CBeXZEHUS O BO3OYXACHHHX
COCTOSHUAX fANep, WX DHEPrUsaX, MOMEHTAX, UYETHOCTHAX U.T.HA. ITH CBe=
AEeHMa OOHYHO BeChMa ROCTOBEPHH, TAaK KAk cBolicTBa DIEKTPO-MACHUT-
HOr'o B3auMoZeidcTBuMa B ANpe Xopomo MsBecTHH. lIpopeccop ze-NMaimTt
ofCcyxzaeT He TONBKO 3JEKTDPOMAUHUTHHE MEepPexXomi, HO U Zpyrue cpoder-
Ba agep (craTuueckue), - T.e. UX MarHUTHHE M DIEKTPUYECKME MO-
MEHTH, - X NOKA3NBaeT, Kaxue UIMEPEeHUS DTUX BEJUUUH NO3BOJADT
AeJaTh 3AKJPYEHUT, NO BO3ZMOXHOCTY HEe3aBMCHMMHE OT KOHKDETHHX MO-
aexeil, o CTPyKType AZpa U O culax, AeRCTBYDNMX MeXAy HYKJIOHAMM.

TeopuM NApPHHX KOppeasuuit B fApax MOCBALEHH JEeKIMM Npodeccopos
ConoBreBa ¥ BejdgeBa. B NepBHX MOZENAX, B KOTODHX paccCMaTpuBalvcCh
aKcHaJbHHE M HeaKcuaJibHHE fApa, AedopManuu BBOAUINCE (PEHOMEHOJO=
TUYEeCKW, KaK NapaMeTpH Teopmm.'B sexmmax npodeccopos Conospesa
¥y Beagepa mpezmoJjaraeTcs, UTO HYKJIOHH ABUXYTCS B caMocorjacoBaH—
HOM ToJie C HEKOTOPHM OCTATOYHHM B3auMmozelicTBuem. YueT 3TOTO OC-
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TaTOYHOIoO (napHoro) BasauMogelicTBMR NpPOM3BOAMTCSH METOAOM, aHaJn-
T'MYHEM MeTOAV, UCIIOJB3OBAHHOMY B COBDEMEHHOM TeODUMHM CBEDPXIPOBO-
AAMOCTM. OTOT MeToh OHJ NpenJioxeH BHepBhHe npodeccopoM Boroin6o-
BHM (KOTOPOMY GOJe3Hb, K COXaJeHUD, NOMemala NPUHATL yyYyacTHe B
racoTe lkoJH) M MOJMYUYNT Ha3IBAHME CBEDPXIPOBOAMMOM MOLENM ATOMHOI'O
anpa.

OyeHb MHTEPECHO OTMETUTBb, UYTO HEKOTODHE BechkMa cHeluuduueckye
cBoficTBa damep MOXHO OGBACHWTHL C IOMOWBK BeCbMa O6mMMX CoolpaxeHuii:
Hanpumep, B JeKuuMax npod. beaseBa noxaszaHoO, UYTO CBEPXNPOBOAU~
MOCTH METARJOB NPKM OUSHDL HUIKMX TEMNEpPaTyDPax M HecHeDPUUHOCTDb FEP
ABIARTCA CJIEACTBMEM OLHOI'O M TOro xe (M3MYeCKOro 3aKoHa.

B Jgexmmsax mpogeccopa CoJoBbeBa paccmMaTpyBaeMas MOLEJEL NPUMeE-
HAeTcda AJa8 OOBSICHEHMS CBOMCTB OCHOBHHX M HM3KO JexaluX BO3OYE-—
JeHHHX YpoBHe#l cpezHMX M TaxeJHX siep (UX BSHepruii, CHMHOB U UYeT-
HOcTeil) . 3HauMTeabHasd 4YaCTh JEKIMit NocBimeHa MeToZaM pacuyeTra Be-
posTHocTelt a-, B-, U y-NepPexonoB B 3ITOW Momeau.

lIlpopeccop BeasieB MCNOAB3YEeT B CBOMX JEKUMAX CBEPXIPOBOAVMYD
MOZedp fapa AJds8 pacyeTa KOJJIEKTUBHHX 30PeKTOB B fApax, O6Cy=xR-
AaeT 3aBUCHMOCTh PaBHOBECHOI'O COCTOAHMSA ATOMHHX fgZ4epP OT uYucJa
HYKJOHOB B sape, MOMEHTH MHepuunm aedOopMMPOBAHHHX Af€pP M BOIHUKHC-
BeHVe BHOPDAUMOHHHX YDPOBHell B chepuuecKUX SApPax.

K Tperwell YacTHM oTHocHATCA Jekluy npodpeccopa ToabXyKa, KOTOpHE
NOCBSMEHH TEOPMM CJaalHX B3auMoledcTBUili MEeXAYy HYKJIOHAMU M JENTO-
HaMM. B 3TUX JeKUMAX CUCTEMATUUECKM. M OUEHBb INOAPOGHO MIJOXEH32
COBpPeMeHHasd Teopus cJalHX B3aumozeiicTBuift B TOM HOBOM BUIe, Kalk
OHa OHJa cPopMyaIMpoBaHa NocJe OTKPHTUSA HeCOXPaHeHUS UYEeTHOCTU 3
cIalHxX B3avMoaelicTBuaAX. KpoMe noapoGHoro o63opa AZepHOro B-pac-
naza B 9TUX JEeKUMIX cozepxaTcsd INIaBH, NOCBSAMEHHHEe HEKOTOPHM O6-
IMM BoOIpocaM -CclJalHX BiauMozeiicTBuit (V-A-B3aumozeiicTBUE, IpoMme-
XYTOUHNE GO30HH, 3JEKTPOHHOE U MKOHHOE HelATpMHO M T.H.).

Boapmoe BHMMaHMe YAEJIEHO U3JOXECHUE OCHOB MHOOHHON AAepHON (u-
3uMKM. XoTsa MPOHHad grepHas M3NKa M HAXOAUTCS Ha TPaHuULE MexXA/
dMU3MKOH DJIEMEHTapHHX YacTUL UM (M3MKOM sapa, B3KCIEePUMMEeHTaJbHOEe 4
TeopeTHYeCKOe M3YUeHUEe I=-3aXBaTa B ATOMHHX fpaxX MOXeT CINoco6-
CTBOBATH BHICHEHUN HE€ TOJBKO pfZa BOIPOCOB, KacawmMxcs caaCHK
B3auMozeiicTBHil, HO M OKas3aTbCs IOJE3HHM IJS M3YUYEeHUHA CTPYKTYpH
caMmoro aToMHoro szpa. [lo 3Toif nmpyvuvHe npeicTaBageTcs B HACTOAmME:?
BpeMd leJleCOOOPA3HHM BKJIBDUYEHMNE ITUX BOIDPOCOB B MU3OPaHHHE rJjasil
IO Teopuu SAPAE. -

Jexuuyu rnevaTanTcg OO PYKONWGAM, NOJYYEHHHM JM60 ZO Hayajga pa-=
6oTtH JetHefl mxonm, Mo B npouecce ee paboTH, ¢ HeOOIbBMMMM, 3
OCHOBHOM HECYMECTBEHHHMM, U3MEHEHUAMM M MCHnpaBJIeHUaIMM. B KHUre
He IpuBeleHH K eAVHOMY BUAY pa3JMuHHe OGO3HadYeHud, - Hanpumep,
xoadduumertToB Kae6ma-I"opmaHa, cpepmyecknx GyHKLuit, NPUMEHADTC:I
pPa3HHEe CHUCTEMH eAMHUI U T.A. [IpuBeneHUEe K €AUBOMY BMAY HEJIB3:A
GHJIO OH NnpoJetaTh 6e3 CYUEeCTBEeHHOI'O BMemaTeJNbCTBa B DPYKOHUCH, i
9TO IpuBeJO 6, KOHEUYHO, K IHAUYMTEIABHOMY YBEIWUEHUK CPOKa U3 KA
HUA. VapgaTtenr HaleeTces, YTO BTOT HEZOCTATOK (B duanyeckoit jmre-
parype, K COXaJeHMD, He Denkuii) He BH3OBEeT OCOSHX 3aTpyAHenuii
Y uMTaTeas. .



11

WagaTens He CUMTAJ HEOGXOAMMHM BKIDYATh B KHWUCY AOKJAaZH, IIPO-
YMTaHHHEe Ha CeMMHapax OTACJbLHHMM ydyacTHuxamy likoxs, BBUAY TOrO,
YTO B GOJBHMUHECTBE CJOYyUYaeB 3TV PaGOTH ONYGIUKOBAHH UIM T"OTOBATCS
K ONyGJuKOBAHMD B HAyUHHX XypHajaxX.

Napatenp Gaaromaput MATAT3 sa nonmﬁauue, ¢ KOTOPHM OHO B3~
JoCh 3a CJOXHOE AeJo INevaTaHusd JeKuuil ¥ 3a noMomws B IOATOTOBKE
BHIIyCKa KHMI'M B cBeT. MagmaTesp Takxe NPUHOCUT GJlArOoZapHOCTH I=Xe
I'. YorHeli-Kanep 3a noMOmb IPM NOATIOTOBKE PYKONMCY B NedaTs MU
. Buartepuuuy u II. Boreaw 3a MHOIMe 3amevdyaHys, KOTOPHE INOMOIJMU
YIyULUTh PYKONMCHL, NOAIOTOBJEHHYK K ReyaTu.

&. Aroyx



INTRODUCCION

La presente publicacién contiene bajo el tftulo general "Temas escogidos
de teorfa nuclear' las conferencias pronunciadas del 20 de agosto al 8 de
septiembre de 1962 en el curso internacional de verano organizado en el
Bajo Tatra (Checoeslovaquia) por la Academia de Ciencias de la Repfblica
Socialista Checoeslovaca en colaboracién con el Organismo Internacional
de Energfa Atémica.

Estas conferencias se dedicaron exclusivamente a la fisica nuclear
tebrica de las bajas energfas. Como es sabido, esta rama delaffsicanuclear
presenta gran interés para los pafses pequefios que no estin en condicionaes
de construir las costosas instalaciones indispensables para efectuar in-
vestigaciones experimentales sobre fisica de las energfas elevadas. Asimisi-
mo, nadie ignora que escasean los tebricos especializados en ffsica de lus
bajas energfas. Por ello, uno de los objetivos del curso de verano fue
permitir que los j6venes tebdricos siguiesen una ensefianza general de la
fisica de las bajas energfas, haciéndose una idea de los progresos realiza-
dos en esta materia.

El titulo "Temas escogidos de teorfa nuclear' caracteriza perfect:-
mente el principio que presidi6é la elaboracién del programa del curso ce
verano, ya que es evidente que en un curso de tres semanas de duracién
no es posible tratar a fondo todo el campo de la f{sica nuclear tebrica. Por
lo tanto, los organizadores del curso procuraron elegir algunas materias
en las cuales Gltimamente se registraron grandes progresos, o que preser.-
tan perspectivas favorables para el futuro.

Conviene decir algunas palabras sobre las conferencias, que se pueden
clasificar en tres grupos.

El primer grupo se consagr6 a la teorfa de las reacciones nucleares
que en estos Gltimos afios estan desempefiando un papel cada vez méis im-
portante en el estudio de la estructura del nGcleo atémico.

‘Como es bien sabido, las reacciones nucleares directas, es decir,
las reacciones de agotamiento (‘'stripping") o de captacién (“'pick-up"), se
caracterizan por el hecho de que en ellas se utiliza un pequefio nmero d:2
los grados de libertad propios del nficleo atémico. Este hecho permite
abordar tebricamente el estudio de las reacciones nucleares.

- En sus conferencias el Profesor Austern explic6 por qué dichas reac-
ciones precisamente facilitan la investigacién de la estructura del nfclec.
Expuso detalladamente el método de las ondas deformadas, sus aplicaciones
y resultados. Por Gltimo, estudi6 la relacién entre las reacciones nuclearei:
directas y aquellas reacciones en las que se forman nficleos compuestos, asf
como sus caracteristicas respectivas.

Los progresos logrados en la teorfa de las particulas elementales me-
diante las relaciones de dispersi6n, indujeron a aplicar el mismo método
a las teorfas de las reacciones nucleares, es decir, en la esfera de las
bajas energfas.

El Profesor Shapiro expuso el método de las relaciones de dispersi6n
y la posibilidad de aplicarlo a las reacciones nucleares directas., Con este
método, que en lugar de utilizar funciones ondulatorias recurre a ciertan
propiedades generales de las amplitudes de las reacciones, tales como
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su analiticidad y unitariedad, se obtienen no sélo una serie de resultados
interesantes (como la expresién de las amplitudes de una grande variedad
de reacciones mediante las amplitudes de las reacciones muy sencillas),
sino que se puede comprender mejor algunos resultados logrados previa-
mente, por ejemplo, la teorfa de Butler, o teorfa del agotamiento (''stripping").

El segundo grupo de conferencias vers6 sobre los modelos del nacleo
atébmico. Como el ndcleo es un sistema integrado por muchas partfculas,
cuyas fuerzas de interaccibn no se conocen con exactitud, su descripcién
tebrica se baka inevitablemente en modelos.

Uno de los modelos de niGcleo atémico més difundido es el modelo de
capas, _concebido inspirandose en las capas electrénicas del Atomo; segtn
dicho modelo, los nucleones son libres y se mueven en un campo nucleénico
medio. A pesar de que Gltimamente se han propuesto muchos otros modelos,
dicho modelo sigue siendo uno de los méas perfeccionados y el que los ffsicos
utilizan con méas frecuencia para sus célculos.

En sus conferencias, el Profesor Elliott describi6 el estado actual de
la teorfa del modelo de las capas, asf como sus relaciones con otros mo-
delos. No se 1limité6 a exponer hechos ya conocidos, cuya descripci6én puede
hallarse en cualquier libro de teorfa nuclear, sino que explicé temas menos
difundidos, tales como la teorfa de los multipletes y de los supermultipletes,
asf{ como un método de célculo de las propiedades de los 4tomos ligeros que
permite evitar el uso de los coeficientes de ascendencia relativa, etc. Para
clasificar las funciones ondulatorias de un sistema de varios nucleones se
utiliza la teorfa de los grupos. Igualmente, el Profesor Elliott demostré
cémo los principios basicos del modelo de capas (habida cuenta de la mezcla
de configuraciones) permiten deducir funciones ondulatorias que poseen
algunas de las propiedades caracteristicas correspondientes a las funciones
ondulatorias de los ntGcleos deformados. ’

Las conferencias del Profesor de-Shalit, que versaron sobre la teoria
de las transiciones electromagnéticas en los nficleos, tuvieron muchos
puntos de contacto con las del Profesor Elliott. Como es sabido, la deter-
minacién del modelo de capas estd basada sobre todo en el estudio de las
transiciones electromagnéticas en los nticleos, que proporcion6 datos im-
portantes acerca de los estados excitados del ntcleo, de sus energfas, mo-
mentos, paridades, etc. Dichos datos son generalmente muy fidedignos,
ya que se conocen bien las interacciones electromagnéticas en el ntcleo.
El Profesor de-Shalit examin6 no solamente las transiciones electromagné-
ticas, sino también otras propiedades (estaticas) del ntcleo,tales como sus
momentos magnéticos y eléctricos, y demostré que mediciones de esas
magnitudes permiten deducir conclusiones - en lo posible independientesde
los modelos concretos - acerca de la estructura del ntcleo y de las fuerzas
que se ejercen entre los nucleones. ‘

Las conferéncias de los Profesores Soloviev y Beliaev trataron de la
teoria de las correlaciones de los pares en los ntcleos. En los primeros
modelos, en los que se distingufan los nGcleos axiales y los no axiales,
las deformaciones se introdujeron, por razones fenomenolégicas, como
parametros de la teorfa. Dichos profesores suponen que los nucleones se
mueven en un campo autoconsistente con cierta interacci6bn residual. El
célculo de esta interaccibn residual (por pares) se efectGa por un método
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anilogo al que se aplica en la teorfa moderna de la superconductividad.
Este método fue propuesto por primera vez por el Profesor Bogolyubos
(que, desgraciadamente,no pudo asistir al curso por razones de salud) y
se ha denominado modelo superconductor del nficleo atémico.,

Es interesante observar que algunas propiedades muy especiales del
nGcleo se pueden explicar con ayuda de consideraciones generales: ponr

" ejemplo, el Profesor Beliaev demostré que la superconductividad de los
metales a temperaturas muy bajas y la no esfericidad del ntGcleo son el
resultado de una misma ley ffsica. !

El Profesor Soloviev recurri6 en sus conferencias a dicho modelo para
explicar las propiedades de los niveles excitados bAsicos e inferiores ce
los nficleos medios y pesados (energfas, espines y paridades). Se extendi6é
en particular sobre los métodos que permiten calcular la probabilidad de
las transiciones alfa, beta y gamma en este modelo.

El Profesor Beliaev emple6 el modelo superconductor del nGcleo para
calcular los efectos colectivos en los ntcleos. Estudid las variaciones del
estado de equilibrio de los nficleos en funcién del nimero de nucleones del
nficleo, los momentos de inercia de los nficleos deformados y el origen e
los niveles vibratorios en los nficleos esféricos.

En el Gltimo grupo de conferencias figuran las del Profesor Tolhoek,
consagradas a la teorfa de las interacciones débiles entre nucleones y lepfo-
nes. El citado profesor expuso en forma sistemética y muy detallada ..a
teorfa moderna de las-interacciones débiles, en una nueva forma, como
se volvié a formular después del descubrimiento de la no conservacién de
la paridad en dichas interacciones débiles, Ademé&s de examinar detenicla-
mente la desintegracién nuclear beta, explic6é algunos problemas generales
de las interacciones débiles (interacciones V-A, bosones intermedios,
neutrino-electrén y neutrino-muén, etc, ).

Explicd detalladamente los fundamentos de la fisica nuclear del musn,
Si bien esta parte de la f{sica nuclear se encuentra en el 1imite entre la
ffsica de las particulas elementales y la ffsica nuclear, el estudio tebr:.co
y experimental de la captura del muén en los nGcleos atémicos puede servir-
no s6lo para sclarar una serie de cuestiones relacionadas con las interaccio-
nes débiles, sino también para estudiar la estructura del propio ntcleo
atémico. Por este motivo, se ha juzgado conveniente incluir estas cuestiones
en una selecci6én de temas de teoria nuclear.

Para publicar las lecciones se han utilizado los originales recibicdos
antes de empezar el curso de verano o durante el mismo, con pequefias
modificaciones o correcciones secundarias, En el libro no se han unificado
las diversas notaciones -por ejemplo, las de los coeficientes de Clebs:h-
Gordan o de las funciones esféricas- y se emplean distintos sistemas de
unidades, etc. Dicha unificacibén hubiese exigido modificar considerable-
mente los originales con el consiguiente retardo en su publicacién. El editor
espera que este defecto (que lamentablemente es frecuente en las obras de
fisica) no supondr4 una molest1a para el lector. g

E] editor no juzgb necesario incluir en el volumen los informes lefdos
en los seminarios por ciertos participantes, puesto que en su mayoria esos
trabajos han aparecido ya o apareceran en breve en revistas cientificas.
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El editor agradece al OIEA la buena disposicién con que se dedic6é a la
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DIRECT REACTIONS

N. AUSTERN
UNIVERSITY OF PITTSBURGH, PITTSBURGH, PA.,
UNITED STATES OF AMERICA

INTRODUCTION

In order to give a unified presentation of one point of view, these lec-
tures are devoted only to a detailed development of the standard theories
of direct reactions, starting from basic principles. Discussion is given of
the present status of the theories, of the techniques used for practical cal-
culation, and of possible future developments.

The direct interaction (DI) aspects of a reaction are those which involve
only a few of the many degrees of freedom of a nucleus. In fact the minimum
number of degrees of freedom which must be involved in a reaction are those
required to describe the initial and final channels, and DI studies typically
consider these degrees of freedom and no others, Because of this simplicity
DI theories may be worked out in painstaking detail.

DI processes concern only part of the wave function for a problem. The
other part involves complicated excitations of many degrees of freedom,
and gives the compound nucleus (CN) effects. While it is extremely interest-
ing to learn how to separate DI and CN effects in an orderly manner, if they
are both present in a reaction, no suitable method has yet been found. In-
stead, current work stresses the kinds of reactions and the kinds of final
states in which DI effects dominate and in which CN effects may almost be
forgotten. The DI cross-sections which are studied are often extremely
large, comparable to elastic scattering cross-sections,

Why DI effects are often strong is a question deeply bound up with our
understanding of nuclear structure, For reactions in which the incident and
outgoing projectiles are both nucleons the answer is found in the nuclear
properties which cause the independent-particle model to be a good approxi-
mation. The attractive part of the two-nucleon force is moderately weak
and long rarnge, and goes mostly to setting up an average one-body potential
well. In first approximation this well gives, at negative energies, the levels
of the independent-particle shell model and it gives, at positive energies,
the optical model elastic scattering. In second approximation, nucleons
interact with each other and we get level splittings or, in the continuum,
transitions to other states. Now most CN excited states overlap badly with
the ground state, and therefore are excited weakly. Transition to the CN
is gradual. On the other hand, low-lying excited states which are in the
same shell model configuration as the ground state can be excited strongly
in just the first step of interaction., Because they are low-lying they have
large decay widths for particle emission. Thus strong DI transitions appear.
The study of these transitions is the natural extension of the shell model
into the continuum. The DI transitions to low excited states tend to be pure,
because the flux which goes: intg' CN excitations is mostly used up in
populating the much more numercus final states at high energy. The flux
which goes into CN excitations is accounted for in DI calculations by the
use of an imaginary term in the optical potential. (Unfortunately, this ima-
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ginary term is normally used in a manner which is not very self-con-
sistent.)

Independent-particle motion in the nucleus is not an important aspect
of reactions initiated by composite projectiles, such as deuterons, iritors,
alpha particles, etc. In these cases excitation of the CN is strong. How -
ever, again, low-lying states of the product nucleus are not populated strong-
ly by the CN mode, and do overlap well with the incident channel. Such states
can be excited with appreciable probability by incident partial waves of high
angular momentum, which are shielded by their angular momentum (thrcugh
the associated centrifugal barrier) from too rapid transition into the CN.,

In this way we get surface reactions. Rearrangement collisions, involving
transfer of one or two nucleons, take place easily by such surface reactiins.

At high bombarding energy DI transitions are enhanced with respect to

- CN excitation merely because the process of particle emission is fast com-
pared with the proéocess of forming excited states, This is true whatever the
nature of the projectile.

CN theories assume a complete equilibrium of the reacting system, with
the excitation distributed statistically among all energetically-possible levels.
Obvidusly DI theories are the opposite exireme assumption. One can alsc
imagine in-between kinds of circumstances, which appear as the nucleus
gradually relaxes toward complete equilibrium. IZUMO [1] recently pre-
sented such a theory, based on the shell model, in which it is assumed that,
prior to the development of the full CN equilibrium of all the particles of the
nucleus, there always appears a partial equilibrium among only the nucleons
in the outermost major shell. It may be that matrix elements connecting
the outermost shell with inner shells really are small enough for this effect
to appear, at least on an energy-averaged basis.

On the whole I will follow the customary practice of concentratmg at-
tention on the DI mode of reaction, and ignoring the CN mode. This means
that the analysis only concerns certain kinds of reactions in certain regions
of energy. Rather than attempt to define the region of application of the tkeo-
ry, I will just say that it is normally obvious from experiment when we have
a case for which a DI theory should work well. Cases of competition be-
tween DI and CN have never yet been treated successfully, There will be
more about this subject later.

It is possible to say a little bit here about reactions which populate the
higher states of the residual nucleus., so that the continuous spectrum
of particles emerging from the reaction is studied. Often (n,n') reactions,
using 14 MeV neutrons, are of this type. It is obvious that the continuum
produced in these reactions comes from a mixture of the DI and CN modes:.
It is also obviously very difficult to imagine how to determine from experi-
ment the relative amounts of these two modes. Detecting devices measure
the flux of particles into a given final state, not the number of degrees of
freedom in the wave function. Experimenters often attempt to solve this
problem by adopting the very crude idea that because DI cross-sections tend
to peak in the forward hemisphere, a division of the cross-section into parts
which are fore-aft symmetric or antisymmetric is therefore tantamount
to a division into the CN or DI parts. Indeed, in a DI, forward peaking usual-
ly does predominate, because the incident projectile interacts with only a
small part of the entire mass of the target nucleus. Therefore the momentum
transfer in the reaction tends to be of the order of, or less than, the mo-
mentum of the incident projectile. But DI cross-sections are not zero in the
backward hemisphere, and occasionally are quite largethere. Furthermors,
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even the well-known strong forward peaks in DI angular distributions occupy
small solid .angle and do not carry all of the DI flux, much of which is found
near 90° scattering angle. For these reasons, the customary procedure
of the experimenters necessarily underestimates the DIpart of the continuum.
They estimate admixtures of 5% to 10% ; the correct result may be 10% to
20%. The problem is difficult. What I wish to point out is that an improved
analysis may be possible. It may be possible to use some of the more re-
liable modern techniques for computing DI angular distributions, to generate
a set of typical DI curves for the cases in question and to predict from these
the average fore-aft asymmetryof the DI part alone. Then, inasmuch as the
CN part in the continuous spectrum certainly is isotropic, a separation on
the basis of angular distribution could be attempted.

Probably the most reliable way to determine from experiment whether
a reaction is of DI type, and to separate DI and CN parts, is to study the
reaction as a function of bombarding energy. Those motions which involve
just a few degrees of freedom are not usually expected to give rise to nar-
row resonances. Therefore the DI parts of a reaction should change thei::
properties slowly and smoothly with energy. Even if there are fluctuations,
the DI part is related to the average of the cross-section over a range of
energy. This line of thought leads us to consider wave packet ideas, and to
a further understanding of the meaning of the DI part of a many-body wave
function.

1, WAVE PACKETS

The correspondence between scattering experiments and the solutions
of the Schrodinger equation is obtained by the use of wave packets., Ordi-
narily one gives only enough consideration to this method to observe that
under limiting conditions an incident wave packet, if expanded in stationary
solutions of the problem, leads to an outgoing wave packet whose detailed
properties may be factored out from the calculation, and ignored. The out-
going wave packet multiplies the outgoing stationary-state amplitude; this
latter factor is non-trivial, and we study it in great detail. I wish to review
these ideas, and to observe how they are changed if we do not have the usual
limiting conditions.

In the asymptotic region, far from the scattering centre, the stationary
state wave function is

+2aP @, B (Y ). o

(#) = —- {(ET)
ll/ (r: Ei’ k)*vi(gi)e
The index j labels the channel in which a scattered wave appears. The vari-
able Tj is the vector distance between separating fragments in channel j,
and §; is the internal variables of the fragments, These variables may heve
"different meanings in different channels, according as the reaction may lead

to rearrangements. The functions v;(§;) are normalized internal wave fun:-
tions for the fragments, Finally, f;(¥ is the scattering amplitude in channel
j; it is a function of the unit vector fj = z'_'j’/rj, which indicates the direction
of observation. Although I have indicated only two-body breakup, the con-
siderations which follow really are more general,

Only two of the possible types of boundary conditions are indicated in
Eq. (1.1): either outgoing scattered waves in all channels, or ingoing scat.-
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tered waves in all channels. In fact we may have outgoing waves in some
channels, and ingoing waves in others, or any linear combination of such
boundary conditions, perhaps giving standing waves in some channels. With
any one choice of such boundary conditions the set of all solutions of the

Schrodinger equation, for all values of the incident momentum Kk} is a com-
plete set for the scattering problem, We may use the most convenient choice
of boundary conditions, in any one case.

- Let us consider an incident wave packet, which at time t = 0 is located
at the point z%, on the negative z axis, and asymptotically far from the scat-
tering centre. It has the form

Y(F g t=0)=yyE) e Yo "%z (F- 7. (1.2)

The function Z (¥~ Zj) expresses the localization near zg. It is the envelope
of the wave packet at t = 0.

To understand the propagation of the wave packet for t > 0, we expand
(1.2) in terms of the energy e1genfunct1ons (1.1), and make use of the simple
time-dependence

ei [Ek)/h] t

which these functions have, where E (k) = n2k? /2Mi*, and M;* is the re-
duced mass in channel i. Provided the (+) boundary conditions are used in all
channels, corresponding to outgoing waves, none of the scattered wave parts
in (1.1) plays any role in this expansion. This is the important result of
using outgoing wave solutions *. In the asymptotic region it is obviously true
that channels j # i play no role in the expansion of the incident wave packet,
merely because the internal arrangements of the fragments in j are orthogo-
nal to those in i. In channel i the scattered wave near Zo, on the negative z
axis, is locally of the form exp [ - iK,.T] if outgoing waves are used, but
is of the form exp [ i Ky.F] if ingoing waves are used. Now if we consider
wave packets whose envelope function Z (r - zp) changes slowly over dis-
tances of the order of the wavelength ko , then the outgoing scattered wave
expression obviously has negligible overlap with the incident packet. The"
ingoing scattered wave expression has excellent overlap with the incident
packet, and we avoid much confusion by not using it.

Our first physical result has been obtained, namely, it is only meaning-
ful to work with stationary state eigenfunctions ¢ (), provided

[vz]« k,z. (L 3)

In fact this condition isdifficult to violate, under any circumstances, because
the natural durations of the wave packets produced by accelerators are very
great.

The expansion in terms of the:functions !I/(+)1s asymptotically the Fourier
expansion , ,
$(F- Ky = (213 S\dar Z(7) e &Ko) (1.4)

# Wave functions having ingoing waves in channels j # i are linearly independent of those having in-
going waves in channel { and in no other chamnel, It is therefore possible to choose such linear combinations '
that we deal with functions either all of whose ingoing waves are in channel i, or none are. Functions of the
latter type have amplitude gero in the expansion of the incident wave packet,
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The propagation of this wave function for future times is given by

o 2 — - -1 +)
¥ & Y) =§d3k e 1T g i) e W I R (1.6)

Useful results for the scattering problem are computed in terms of the exact
solution, (1.6).

We may consider the asymptotic outgoing amplitude in channel j,

> =

Aj(F},At)=§d3k ST GEE T @, Fek . (1)

It is understood that k; is a function of k, in terms of the excitation energy
of channel j. Now the customary analysis makes the assumption that f (*)
depends on K much more slowly than do the other factors in the mtegra.nd

In particular, the wave packet is assumed to have the property that ¢ k - ko)
is localized within a range of values K'so near Kj, that £f;() may be evaluated
at K= Ky, and factored out from the integral. We also expand

u‘jfj~e 1K (0§ + ke § (1..8)

e
where kj(o) is the value of kj when k = ko, and u = dkj /dk. Under these
approximations .

. - L T . -1 .
@0~ 10 R MOT (Pie TED g @R T L (1)

It is.recognized that the integral remaining in (1.9) restores the original
wave packet, at a displaced position, corresponding to the velocities in chan-
nels i and j, and with the usual quantum-mechanical spreading. The time
taken for a packet to travel from the asymptotic location where it is formed
to the asymptotic location where 1t is observed is normally so small that

the spreading, proportional to (t)}, is negligible. Under the circumstance
that (1.9) is a valid approximation to (1.7) the amplltude in channel j is prc-
portional to the stationary state amplitude f j( (%5 ; ko) and the detailed
shape of the wave packet does not matter. Therefore a stationary state
analysis of the scattering is equivalent to a wave packet analysis.

Now it 1s ‘not at all obvious that the scattered amplitude fj( ) varies so
slowly with ¥ that it may be factored out of the integral in (1.7). There may
be resonances. Suppose the length in time of the original wave packet is
At. Then the energy spread in ¢ & - ko) is of the order h(At)™!, and we may
factor (1.7) to give the form (1.,9), in which the structure of the original
wave packet does not matter, only provided the resonance widths are not
narrower than h(At) "1, In fact the natural lengths of wave packets from
accelerators are of the order 109 sec or greater and hX 109 sec 1~107¢sv,
50 that the approximations required to achieve Eq. (1.9), and thus to
justify a stationary state analysis of scattering, are very accurately ful-
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filled for practical cases, Lifetimes of resonant states are reliably much
smaller than the durations of the wave packets which excite them,

As a matter of interest one may not wish to ignore the details of the
outgoing wave packet in (1.7). It is perfectlv feasible to introduce physically-
motivated explicit forms for ¢ k ko) and £;), and study just how re-
sonances, or a mixture of resonance and potentlal scattering (DI), say, do
influence the shape of the outgoing wave packet. One should use wave packets
Z({¥ - Z¢) of smoothed rectangular shape, for good physical correspondence,
Not only are Gaussian shapes non-physical, for packets of the very great
duration which we are considering here, but they also tend to mask all the
interesting details of onset and straggling effects in the scattered wave
packet, which are the useful results of a careful 1nvest1gat10n of (1.7). In-'
‘vestigations of this kind have been performed, for example, by SASAKAWA
. [2] and by NUSSENZWEIG [3] . One wonders whether such details of the struc-
ture of wave packets can be studied experimentally,

Superficially, the discussion just given makes the usual time-dependent
interpretation of direct reactions, as given by FRIEDMAN and WEISSKOPF
[4], appear erroneous, In that interpretation we imagine an incident wave
packet whose duration in time is very small, so small that its spread in
energy extends over many resonances. Then we separate the outgoing ampli-
tude in the fashion

'f.<*)('f-j = 10@;, K Bpr + 595, & ruc. (1.10)

In this discussion, now, the DI term is defined to vary slowly with k. The
FLUC term fluctuates as a function of K, such that its average value is
zero. When Eq. (1.10) is introduced into Eq. (1.7), the resulting DI term
of that equation may be factored into the form (1.9), corresponding to a time
of interaction of the packet with the nucleus which is of the same order as
its very small duration in time The FLUC term cannot be factored. In-
finds a "very long' exponential tail, corresponding to decay of the compound
nucleus. Because these two parts of the outgoing amplitude are emitted at
very different times they do not interfere. We have thus defined directinter-
action and compound nucleus amplitudes, which contribute independently

to the cross-section. One amplitude is emitted rapidly ("directly", in fact)
while the other is emitted slowly. The fallacy in this entire picture is, of
course, that no such wave packets as we have been imagining actually do exist
in the laboratory. Actual wave packets are so long that the DI and FLUC
amplitudes are emitted almost exactly simultaneously. By deliberately spoil-
ing the energy resolution in an experiment we do not produce a wave packet
of small duration, but only an incoherent superposition of packets of long
duration. The entire idea of relying upon wave packets to separate d1rect
and compound effects appears irrelevant to actual experiments.

Nevertheless some very clear wave packet effects can be identified, and
may become the basis of actual experiments. Although an outgoing packet
has constant intensity over most of its duration, the detailed reaction mecha-
nisms do influence how it starts and stops. The DI amplitude especially
influences the shape of the wave packet at its start. Such details of shape
have a chance of being detected experimentally, because they influence the
spectrum of low-energy bremsstrahlung produced when charged partlcles
are scattered [ 5].
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Although the DI and FLUC amplitudes cannot be separated in time, using
physically available wave packets, there is a separation of their contributions
to the cross-section, a separation which is a result of the incoherent energy
average obtained in an actual low resolution experiment. An incoherent aver -
age is an average of the square

n 2 ‘
£, B + 4@, Frwe | (1.11)

In the cross term the FLUC amplitude appears linearly, and this cross
term therefore averages to zero, even though the average is achieved by

a superposition of independent wave packets, The average cross-section :.s
proportional to the sum

o9, B, 1" + 156, Bouel®. (1.12)

in which the DI and FLUC terms now appear separately. This separation

is the same one which would appear if very short time-packets could be used,
and we may therefore retain and use the interpretation of the DI and FLU(
terms, which the consideration of such wave packets suggested.

It would appear that DI and CN effects are clearly separated if we deal
with energy-averaged cross-sections. The two terms in the amplitude (1.10)
may be dealt with by different theoretical methods. This analysis is used
by many authors of fundamental papers about the low-energy optical model,
and about its extension to treat direct reactions. These authors take as a
fundamental definition of their optical potentials that these should reproduce
the average amplitude, and then compute the potentials accordingly. It is
therefore interesting to emphasize that a definition of the DI as that process
which reproduces the average amplitude, and gives rapid re-emission of
short time-packets, is not the same as the definition that it is that part of
the reaction process which involves very few degrees of freedom. Auxiliary
potentials which correctly reproduce the average amplitude are likely to te
in part simulating average effects due to the excitation of many degrees of
freedom. We are thrown back again on the physical fact that reaction pro-
cesses often contain important simplicities of DI type. But these are con-
sequences of the special dynamical properties of the system, and cannot
merely be extracted from general reaction theory. Energy averaging does
help, by separating off a simplified part of the reaction amplitude, in which
we find the DI effects if they are present.

2. DISTORTED WAVES

Consider the Schrodinger equation

{(n®/2M7) 92 + U () + 24,6 - B} ¥ = -V (5, 5) ¥ (2.1)

where we specify on the left-hand side the kinetic energy and optical inter-
action of the separating fragments, and the Hamiltonian #¢(&) which des-
cribes their internal motions. On the right-hand side we have the residual
interaction with respect to the final state channel f. The optical interactior.
Us(iy) has a negative imaginary part, to simulate the transitions to compound
nucleus states of motion, which we shall not include in our ¥. The variablas
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£¢{o1r ;i in the initial channel) are those few internal degrees of freedom
which are considered., Typically, they describe the motions of one or two
nucleons, or one or two collective variables. More details about & and §&;
are given in section 7,

To solve Eq. (2.1) we first multiply on the left by the complex conjugate
of the wave function for the internal motion of the final state, v¢ (&), and
integrate. We may define

Egv = (E - Hy) vy, (2.2)
and 7 .
"= (2mf By, (2.3)
and
Then | Up = (2M" G /o),
(-vi - %) ¥ zh—l‘f Gl vl O (2.9)
where gI/f(?f) is the coefficient of v; in ¥,
ve(Fp = Gel W) . (2.5)

We want to understand in considerable detail the eigensolutions of the left-
" hand side of Eq. (2.4). These may then be used to build the Green’s function
for this equation, to obtain its solution.

One interesting eigensolution of the left-hand side of Eq. (2.4) is the
elastic scattering wave function X{? . The notation which will be used for
functions of this sort is now presented:

[-v2+.u-k2}x(+) =0 (2.6)

I '
x® = 2L Fife® 101 YH) Y (@, 9). (2.7)

The phases and normalizations in (2.7) are arranged so that asymptotically
(K.

X — e )+ outgoing scattered waves,

The angles (©, ®) give the direction of 4 with respect to the coordmate axes.
The asymptotlc form of the rad1a1 function f, is

[Hg -n,Hyl, (2.8)
where n, is the reflection coefficient for the £ partial wave. The function
Hy (kr) is that defined by HULL and BREIT [6] to be the Coulomb analogue

of ikrh ), where h,®) is the outgoing spherical Hankel function. In terms
of the regular and irregular radial Coulomb functions

H,(kr) = G,(kr) +iF, (kr),
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where asymptotically

Fy~sin 0,,
G,—cos 6,,

and

=kr -n[In (2kr)] - (r/2) + o,
6, =arg I'(£+ 1 +in),
n =ZZ'M* e? /n’k.

The Coulomb potential, in our equations, is part of the optical potential Uy,

It is not inevitable to represent X in spherical harmonic expansion,
and at energies of 100 MeV or greater one tends to avoid doing so. How-
ever, the expansion is orderly, and easy to work with, and is well adapted
for use on an automatic computing machine.

So far as computation goes, it is interestingto notethat by numerical
integration of the radial Schrodinger equation it is easy to get the shape of
fp at small r, but difficult to get the normalization. Elastic scattering calcu-
lations only need the shape.

To build a Green’s function for Eq. (2.4) it is necessary to supplemert
the regular radial wave functions f, of Eq. (2.6), which vanish at the origin,
with other solutions of Eq. (2.6) which do not vanish at r = 0. It is convenient
to consider solution functlons h,(k, r), which go over asymptotically to pure
outgoing functions

h,—H,, at large r. . (2.9)
Then a suitable Green’s function for the radial differential equation is
k™ £k, ro)hylk, 1), (2.10)

where r, r, are as usual the lesser or greater of r, r'. The function (2.10)
satisfies the equation

{_Z? + 1(1"‘ 1) +1/-k2}k-lf¢(k,r<)hl(k,r$)= 6(r_r)' (2]1)

Finally, the Green®s function for the entire differential equation, Eq. (2.4)
is '
K (%, ‘1—:;) = g falle,r) hylky, 1) Yy P(E ) YHE ) ) (2.12)
gm kfrf I‘f

We mainly wish to use Eq. (2.12) to find the asymptotic outgoing soluti.on
of Eq. (2.4), for rf —»w. Therefore ry»ry and Eq. (2.12) may be simplified.
The asymptotic form of h, may be used, and

i(k,r,) -in[In(2 k;ry)3
el.( frf 7%

Ky — — Litefy(ke, o) YA )Y™F).  (2.13)
kfrfrf' ¢,m )
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It is customary to recognize that Eq. (2.13) very closely resembles the origi-
nal X{* , and to rewrite Eq. (2.13) in the form

e l(kf!‘ £ nfIn (2kfrf)_])

- O
K; T x %G, v (2.14)
where
- - 4 - A *
xP* (kg rp) =k—fr’;- E itelonty (g, x) Y e, )Y TR, (2.15)

and the vector E’f, now introduced, has the direction of ?"f in Eq. (2.13). The
function x(?) is known as the "time-reversed scattering wave function'. It
evidently fulfils the Wigner relation

(7T) =x K, 1. (2.16)

The time-reversed function X() is a solution of the scattering problem which
uses ingoing scattered wave boundary conditions, and the complex conjugate
of the potential Us. However, this function is best generated by using stand.-
ard calculations for x(, followed by the transformation (2.16). The intention
of the long discussion up to this point has been to make clear the properties
and the purpose of the function Xf(- . It is usually introduced much more brief-
ly. However, there is some confusion about this function, because in the pres-
ence of the complex potential U there is loss of flux from the elastic scat-
tering channel, and because fy is a complex function, rather than merely a
real function with a complex coefficient. We see that the complex conjugate
of f, is never used, that the Wigner relation (2.16) is exactly fulfilled, and
that this relation only concerns relative phases of different partial waves.

Now Eq. (2. 14) is used to get the solution ¥; of Eq. (2.4) in the asymp-
totic region. It is

+ 2 M¢* - -
ve=xe - <zt gxgrf, SOICARAILE (2.17)

where the first term carries the ingoing-wave part which is necessary in

" case channel f should be the incident channel i, this would be the case of
elastic scattering. In the present work the first term of (2.17) normally is
not needed. The coefficient of the outgoing wave in (2.17) is the scattering
amplitude '

<vfx;(‘)l Ve[ . (2.18) .

A M *
£o(ke, Kp) = £g6¢; -t
R e T

It is customary not to use the scattering amplitude but rather the T-matrix
element

-(27rh2/M)ffa

sn that

- - \ . / ~
Ty = <"femf' T ludy, "1(+> + Q’f"f( ) lVf|Y> . (2.19)



28 N. AUSTERN

Equation (2.19) is known as the '"Gell-Mann, Goldberger relation'", for a
problem in which we consider two potentials. It may be considered that we
have derived this relation by transformation of the expression

Ty = <"fei(kf'm | ur + Vfl‘l>, (2.20)

which is more commonly employed. Introduction of the distorted final wave
X{") has removed the potential U; from explicit appearance in the off -diagonal
term of (2.19). (It has been considered, in the present work, that ¥ only
involves direct reaction degrees of freedom, and that Us is an optical pot:n-
tial, in order to compensate for the omitted CN degrees of freedom. This
attitude will be maintained. However, the transformation from (2.20) to
(2.19) is completely general, and U; may be any part of the Hamiltonian,
or any auxiliary potential, which we may wish to isolate.)

The differential cross-section is expressed in terms of Ty; by com-
puting the outgoing current and dividing it by the incoming current per unit
area, giving

do/d@= [MFMF/(2 )] (ke/la) £ | Tq |? (2.21)

where . £ is a sum over final spin states and an average over initial spin
states. ,

Physically useful results are obtained by approximating ¥ in the ex-
pressions for the transition amplitude. Distorted waves Born approximation
(DWB) is obtained by introducing the approximation

Y X (K, 7)w(E) ' (2.52)

in Eq. (2.19). One then finds

TW(DWB)=Cren? (&, ) | Ve, DINOE, D wE). (2.2

The distorted wave X{* is computed in terms of the optical interaction Uy(r;)

between the colliding particles in channel i, That (2.22) should be a good

approximation is based on the idea that the average interaction U, of the
colliding particles is primarily responsible for determining the wave func-

" tion, that the interaction which causes transitions maybetreated as a per-

turbation. Egq. (2.2?/1) is at present the standard method for DI calculations,

and congiderable effort is being devoted to calculating cross-sections by

this method. Often excellent agreement with experiment is obtained.

In case the incident and emerging projectiles are nucleons, Eq. (2.23]
takes on an obvious interpretation as an extension of ordinary shell model
calculations. The wave functions vix{? and v X{? are zero-order independent
particle model eigenfunctions in the shell model potential well, and Tg '
is a matrix element of the residual interaction. Presumably Ty should give
the magnitude of DI cross-sections about as well as corresponding bound
state calculations usually give level splittings.

It is not correct to use the approximation (2.22) in Eq. (2.20). One se¢s
this by inserting in Eq. (2.20) an improved version of this approximation,
in which the term of ¥ which is first-order in V¢, is also carried. Forma.-
ly, ‘
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i(ky -5 . -1
T {vie &0 [(Ue+ V) {1+(E-Hf ¥1in) vf}lxl‘*@, (2.24)

where Hy = H - Vi, as usual. The product of Us times the second term of
the wave function is of first-order in Vy, comparable with the terms which
are obtained by using Eq. (2.22) without improvement. It is only in Eq.
(2.19) that our simple approximation of ¥ may be used correctly. We shall
see later that the "adiabatic' method uses Eq. (2.20). It must therefore use
a better approximation of ¥ than does the DWB method. .

The present discussion has largely been ignoring spins. However, these
are easy to put in when needed. Also it has been ignoring (anti-) symmetriza-
tion of the projectile with the target nucleus. The usual justification for that
is that projectile energies are rather far above the Fermi energy of the
nucleus.

3. ZERO-RANGE APPROXIMATION — QUALITATIVE RESULTS—SURFACE
REACTIONS

I want to start a new section in order to emphasize the importance of
introducing "'zero-range approximation''. Apart from this, this new section
merely continues the discussion of DWB calculations.

Four integration variables are displayed in Eq. (2.23). These are Ty,

Ti, &, £;. Each of these is a vector, or contains a vector in some faghion.
Now, although only two of these four vector variables really are independent,
the properties of the wave functions are usually not such as to’ permit making
any exact transformation to eliminate the redundant variables. It would be
particularly helpful to have only one T variable in the two distorted waves,
because of the difficulty of treating these wave functions. With plane waves
this would be easy to achieve, but then, plane waves are known to be poor
representations of the physics of a DI.

For want of an exact transformation we simply introduce the approxima-
tion Ff~ ¥{ ~F. This approximation is based upon the principle that the
wave functions do not change appreciably over distances of the order
of the ranges of the nuclear potentials which make up the interaction
V¢ By implication the zero-range approximation somewhat alters the rela-
tion between £; and §;, but I prefer to carry these variables intact, in order
to be reminded of their physical meaning. When we consider stripping, the
treatment of the §¢; will become clear. With use of the zero-range approxi-
mation, Eq. (2.23) becomes )

Ty (DWB) = 3 SrxME, T Gl | Vi TlwE>x® @& T @)

It should be noted that the zero-range approximation does not make the ap-
proximation, condemned by WILKINSON (7], of treating the ranges of the
internal wave functions v¢, v; as being small,

The sensitivity of DWB calculations to the range of V; has been tested
to some extent in inelastic scattering calculations, in which it is quite true
that ¥y = ¥}, and & = & , without use of the zero-range approximation. Er-
rors of the order of factors of two are found, especially at larger scattering
angles. The problem has also been studied carefully in deuteron stripping,
and the errors there are much smaller, and tend to vary slowly with scat-
tering angle. Improved calculations are being prepared.
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Certain general physical properties of DWB calculations may be seer.
immediately in Eq. (3.1), merely as a result of introducing zero-range ap-
proximation. The factor vfl VfTV1> is in some sense, to be discussed,
the "reduced width'" for the reaction. It influences the magnitude of the cross-
section, It depends upon the detailed model of the reaction process, and
incorporates all the knowledge about the bound state wave functions whicia
one can obtain from spectroscopic studies. The distorted waves X{?* ani
X are primarily responsible for determining the angular distribution for
the reaction. If strongly-absorbed projectiles are used, the distorted waves
only overlap with the factor <Vfl Vi l vi> at large r, at a radius where tlis
factor has a shape which is almost model-independent. Evidently the reac-
tion analysis has been separated into distinct steps. The step involving de-
tailed spectroscopic calculations mainly determines the magnitude of the
cross-section, The step involving distorted waves mainly determines the:
angular distribution,

A further property of DWB calculations is related to the fact that Eq.
(3.1) is exact for the treatment of inelastic scattering, as already menticned.
Therefore one can think of the zero-range approximation as having the great
importance of reducing all DWB calculations to the same mathematical siruc-
ture which appears in the calculation of inelastic scattering. Even more
strongly: All direct interaction calculations which use the zero-range ap--
proximation give equivalent formulas for the angular distribution. Different
physical models or different DI reactions only give different results for ithe
magnitude of the cross-section, or give different values for the parameters
in the same old angular distribution formulas.

The "reduced width" factor <v;| V] vi> is put into standard form by

expanding it in multipoles of the vector T, The expansion of Vjis

Vi(r, £) = Viu(r, s)[iLY;_"(f)l*. (3.2)

Since Vf is an overall scalar function of the space coordinates (spins are
ignored), the Vi must behave under rotations of coordinates like the spheri-
cal harmonics YM, and have parity (-)“. The factor il is included to ensure
the reality of reduced matrix elements. Applying the Wigner-Eckart theorem
to the matrix elements of the interaction (3.2), we get for the '"reduced width"
factor

Sl vlv= 2o b > (ollvy 13D tivfons, )

where J;, Jf are the initial and final nuclear spins, and Mj, M; are their
z~components, We then see that the Lth multipole in the ‘expansion (3,2) cor-

responds to transfer of angular momentum L to the nucleus, The Clebsch-
Gordan coefficient limits 1., and ensures conservation of angular momentum

| |Ji - Jf[ SLLg + 3, (3.4)
while the spherical harmonic determines the change in parity to be (-, ~The

reduced matrix element is now a function of radius only, and if is conven:.ent
to write it as the product of a "strength' times a "form factor',

'<JfHVL”J1 >=ALFL (). (3.5)
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By convention F| is presumed to be dimensionless, and therefore At has
the dimensions of energy, The separation in (3,5) is one of convenience, so
that for example universal form factors with simple normalization may be
used in computation, To understand possible shapes of DI angular distribu-
tions it is not necessary to explore many different sorts of shapes for F,
The wave functions of strongly-absorbed projectiles only overlap effectively
with ¥ in the surface region, as already mentioned, where the principal
property of F is that it drops off exponentially with radius, in a manner
determined by the binding energies of the internal, bound-state wave func-
tions v¢, vi. BEven the general case is not too complicated, and Fi is not
ever a rapidly -varying function of radius, because vf and v; are not rapidly-
varying. In the case of deuteron stripping Fy is especially easy to interpret,
It is the radial wave function of the captured particle, More details about
these questions will become apparent later, What is chiefly worth noting
is that it is not difficult to understand Fy, well enough to predict DI angular
distributions. Magnitudes of cross-sections, as expressed by the factor
4} , are considerably more sensitive to the spectroscopic model of the nu-
cleus, and require much future theoretical work (see section 7).

Upon substitution of Eqs, (3.3) and (3.5) into the amplitude, Eq, (3.1),
the result may be written i

Ty (DWB) = £ A< I M |1, MM 3™ (3.6)
g =Sdsr S AT e S ORI A ) (3.7)

The differential cross-section is obtained as indicated in Eq, (2.21), The
sum over Mf, and the average over M;, only concern the Clebsch-Gordan
coefficients, and we get the general result

do/dR2 = (M;"Mf*/('27rha)2)r'(kf/kl) (23, + 1)/(23,+ 1)) z |a, ) e+ 1?

X M_zL:LIZJL'MI2 . . (3.8)

We see in Eq. (3.8) the important fact that different values of the angular
momentum transfer L. do not interfere in determining the angular distribu-
tion, This is another consequence of the zero-range approximation, and of
the almost-factored form thereby obtained for the transition amplitude, Eq.
(3.1). For any given scattering angle for the DI differential cross-section,
it is possible to think of the nuclear transition from state v; to state vy as
being a total cross-sectionl

Reactions encountered in the laboratory normally require consideration
of only one value of L. Not only are the allowed values of LL in a reaction
limited by angular momentum conservation, Eq. (3.4), but also by the special
properties of whatever nuclear model describes the states v and vj. Small
admixture terms which may be allowed are not important in the differential
cross-section, Eq. (3.8), because there is no interference, Most suggestions
of L-mixing have been based upon angular distributions predicted with in-
adequate wave functions X and X{. :

Qur last remaining problem, in evaluating the cross-section, lies in
computing the integral JlLMof Eq. (3.7). To do this it is necessary to have
explicit expressions for the waves Xi("), Xf('). The normal, reliable method
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for treating these wave functions is to use the spherical harmonic expansions,
already given, Plane waves,; although unsuitable, have been very popular,

At high energies WKB wave functions may be used, Methods of analytic func-
tion theory also give some insight into the structure of the integral.

It is interestiﬁg to present the plane wave result, because it is easy
to derive, and in order to have it available for comparison with other work,
In this case

. - —¥, .
:]L'Ma»gdarf @D [ LyMy (3.9)

—_— - — 1
where q = ky - ky is the "momentum transfer' to the nucleus, acharacteristic
parameter of plane wave theories. We may expand in spherical waves, using
q as the z-axis, for now, and carry through the angle integration, Then

IM vy (2L+1) 6M.OSjL(qI‘) Fy(r) rdr. (3.10)

0

If ¥, were proportional to § (r - Rg) one would get a cross-section propor=
tional to [jL(qRe)1% If F, were of the form of a bound state radial wave func-
tion, but cut off inside the nucleus, thus if it were of the form

FL=0 r<R°

F, < h{" (iKr), r>R, (3.11)

where nsz /ZMf* is the nuclear binding energy, then one would obtain an
explicit analytic expression for the integral, just the familiar Butler
Wronskian, .

It is now well known that the results obtained in this way are extremely
inaccurate. This inaccuracy is irremediable if the magnitude of the cross-
section is considered. However, if only the angular distribution is con-
sidered the inaccuracy may often be largely compensated for by alteration
of the numerical parameters in the theory. From this point of view the plane
wave result becomes a sort of convenient interpolation formula, and in the
case of deuteron stripping it has been widely used in this manner for finding
relations among different experiments, and thereby for getting useful spectro-
scopic information, The success of that work is testimony to the correct-
ness of the basic stripping assumption, and to the general similarity of ths
many low-energy stripping experiments, rather than to any sort of reason-
ableness ofthe plane- wave approximation. Nevertheless, it is pleasant to have
such a simple formula as Eq. (3,10), and its consequences,

At the opposite extreme of accuracy one uses the spherical harmonic
expansions, Eqs, (2,7), (2.15), of the distorted waves, and computes the
overlap integrals numerj'ca]ly_._’ With the z-axis along the incident direction
l_('i and the y-axis along k; X kg the result may be written

WM = (MPLMafag (2L + D/ )P SO o ® ypaT
PR Ry

XYM (0 0) (o', -Mm e 0><rL, 00leod gy, . (3.12)
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The radial integrals are given by

By 5 1) (g, 1) Fy (1) 19 (k, 1) dr. (3.13)

The procedure for us1ng these equations is the following; First one finds

the optical potentials which fit the elastic scattering in channelsiandf. Then
one computes numerically the radial functions f,-(f) and fna) , and then the
overlap integrals By. These integrals are used in Eq. (3.12) to find the
DWB amplitude, and this is then squared and summed over M to obtain the
cross=-section, { Sometimes authors attempt to use Racah coefficients to ob-
tain in closed form the result of the summation on M, This is a mistake,
Not only is LM inherently of physical interest, and worth computing ex-
plicitly, but also the £',£ sum is more difficult than the M sum, and there-
fore the use of Racah methods actually increases the amount of work. )

The first-application of the above method in nuclear reaction work was
made in 1953 by Horowitz and Messiah, Extensive calculations were later
performed by Tobocman and collaborators, and by Levinson and Banerjee,
At-present Satchler and collaborators are engaged in a very large programme
in the methodical application of this method, and in the exploration of its
consequences in nuclear physics, '
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A recent successful application of the DWB method in inelastic scattering. Optical parameters obtained
from elastic scattering

Figures 2 and 3 show some results from a recent paper by Rost, for -
the inelastic scattering of alpha particles from Ni®® and Mg#. The only
adjustable parameter in these calculations, after fitting the elastic scattering,
is the deformation parameter § which multiplies the cross-section, This
parameter has the same meaning as in other studies of deformed nuclei, as
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will be discussed later, The values obtained for 8 in the {«, ') work agrze
with those normally considered. These results make the theory look very
good,

I may remark that such investigations have a fundamental interest only
if the optical potentials used to compute the radial wave functions have been
obtained from elastic scattering studies, Since these potentials sometimesy
are under-determined, it may be possible to use some of the freedom of
their parameters to adjust for a best fit to reaction cross-sections, How-
ever, the DWB theory of reactions is inherently less accurate than the oplical
model theory of elastic scattering, and therefore parameter adjustment,
which improves DWB fits at the expense of elastic scattering fits, must be
regarded as non-physical

I would also like to present, at this point, some pictures of actual optical
model wave functions, to show what kinds of complications are contained
in DWB calculations, Figs, 4 and 5 show a three-dimensional model of the
modulus | XM (K, 7) | of the elastic scattering wave function for alphaparticles
incident on Ca*® at 18 MeV. The dark zone is the 10% - 90% region of the
optical potential, Strong diffraction oscillations are seen, Fig, 6 showslines
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of constant phase for the function X ‘for 40 MeV protons on Ca%l, Again,
complicated interference effects are seen, These complications are probably
not very dependent on precise parameter values, but seem instead to be .
necessary effects of the scattering of waves by semi-transparent obstacles,
What the pictures show is that short-cut approximation of these wave func-
tions is dangerous, : - )

Another dangerous approximation is the use of square-well distorting
potentials, We will see below that some of the most characteristic DWB
results may be understood as consequences of the reflection coefficients
Ny. It is just in reflection effects that square wells are at their worst,

It is often possible to obtain simple understanding of the series (3.12).
In the case of inelastic scattering of strongly absorbed projectiles, as in

Fig. 4

+

Three -dimensional model of | x( )l , the optical model wave function, for 18 MeV alpha particles bom-

barding Ca%®. The beam is incident from the left. The dark zone is the 10% - 90% region of the optical
potential

{a, @') reactions at medium energy, it is especially easy to see the physical
content of Eq, (3.12), One achieves considerable understanding of the entire
method by studying this case,

Inelastic scattering to low -lying final states of the target nucleus has
the convenient property k; =~ k;. Let us consider this case, and also L. = 0.
Then Egs, (3.12), (3,13) simplify to

i X ’ N
~0.0 - (4m) )eze”"’ (20 +1) P, (8) ?non (3.121)
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g = (£ 0 7y () e (.13
5 .
The classical cut-off angular momentum 2= kRj plays a large role in under-

standing these equations, For 2> g9 centrifugal repulsion causes f; to be
very small in the nuclear interior, and therefore Bgog is very small if 2>, ,

Fig. 5

Same as figure 4, another view. Beam now incident from the right

For 2 < 2y, in the case of strong absorption, the reflection coefficient n,
is very stall, A "'sharp cut-off model"

N,=1, >

: n, =0, <4 (.14

n

is frequently employed, In this case it is apparent that outside the nucleus
the radial wave function for 2<¢y reduces to

£, = (i/2) H 5, r> Ry, (3.18)

a purely ingoing travelling wave, Because 1 ~ 0 we know that this wave ex-
periences negligible reflection at the nuclear surface, and therefore that it
may be continued into the nuclear interior, according to WKB ideas, as

an ingoing travelling wave of modified wavelength. Eventually the travelling
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change

wave is absorbed, so that at r « Ry its amplitude becomes negligible, Gener-
ally this absorption is not too rapid, and the important fact about the overlap
integral (3.13'")for ¢<¢; is that it is the integral of the product of a rather
smooth function Fy multiplied by the square of a rapidly-oscillating travel-
ling wave expression. Evidently Bgog integrates to a rather small value if

2 <ty . Therefore the overlap integral is appreciable only if ¢~g;, , In Fig. 7
this radial integral is shown for the case of 43 MeV (a,a’) on Ni®8 , as com-

puted by Satchler’s group at Oak Ridge. It is seen that this integral is very
well localized about gg.

Because of the above properties of 8 n?z the amplitude JO'O

is of the
form of an average of P, (@) for a few values of £ near g;,

3% $Py@ Py, (3.16)
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The cross-section is
2
s |[<P@> ,., | . S (3.17)
. 0
Successive Py functions very closely resemble each other at small ®, but
gradually drift out of phase as @ becomes large., Therefore the average in

REAL PART GF HADIAL Ni%® () IMAGINARY PART OF NiSB o o)
INTEGRALS, PLOTTED AS L=2 INTEGRALS PLOTTED L:2

A FUNCTION OF 43MeV AS A FUNCTION OF L 43Mev
IDAVIYE) Z:Vectnt)

Fig. 7

Real and imaginary parts of radial integrals for the reaction Ni¥(q, of), L= 2, at 43 MeV incident energy

(3.16) gives constructive interference at small ®, and the angular distribu-
tion is a function closely resembling Py ®). Destructive interference gradual-
ly sets in as ® becomes large, and the entire expression (3,16) may be thought
of as Py,(@) multiplied by an envelope factor which goes to zero at largeec.

The cross-section has the familiar form with peaks equally spaced in @,

G (@)

Fig. 8

Form of the angular distribution in the case of strongly~absorbing projectiles and small momentum charge
("surface reactions")
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Of course Py, (8) may be approximated in terms of a Bessel function,

Py, © ~Jol[2% + 1] sin%)-) (3.18)

at very small values of @,

If L # 0 a corresponding analysis of Eqs.(3.12) and (3.13) may be carried
through. The overlap integral B §; is non-vanishing in the rather broader
class of cases (a0, ' <20 or a1y, €<{, A good approximation if
| ¢ - ¢} is not too large is

L 0 1 1 )
~B.., £=2 % .
BQ'EMBEE’ 2 (2+2)¢
However, the decisive observation required for simple understanding of

Eq. (3.12) is that if {]| 2 «' | / 0}« 1, so that only the Clebsch-Gordan
coefficients in Eq, (3,12) are rapidly-varying functions of ¢, then

Lif ", oMM lo > <rr, 00 |20

y (3.19)
L - (L+wi]e,
(L - ML+ M0 ,if (L + M) even,
~ 0 ,if ( L+ M) odd.
Here NIl = (N) (N- 2) (N - 4)... (1 or 2), as usual, The éimplified form
of Eq. (3.12) therefore becomes
modreLr i@ oM@ty
M g %
J K T - M (L M
X Ee™ 20+ )t gy, ¥}(0,0), if (L+ M) even
~ 0 T, if (L + M) odd, (3.20)

Only the terms having | M] =I, L -2, ... contribute to the inelastic scat-
tering, and these combine in just the same way as in the case LL = 0, as is
seen in.Eq. (3,20)., Therefore

O %l (L+M)even|< Y;\d(e’ 0) > ng,po_' l2_ (3-21)

Successive YM are obtained from each other by differentiation, For M 3 0,

M 2o+ Nee -yt Ly aM .
Y, (e, 0) = [(T)Wl] (sin ©) T (eos )M P,(cos@). (3.22)

It is seen that in the region away from @~ 0, where Py has become simply
oscillatory, each differentiation reverses the phase of oscillation. However,
in any one application of Eq. (3.21) only all odd or all even values of M ap-
pear; therefore all terms of (3.21) oscillate in phase, We therefore verify
one part of the Blair phase rule: all cross-sections with even L have osci-
llations that are in phase with each other, and that are out of phase with the
oscillations of cross-sections having odd L, We also see in (3,22) that near
small © the amplitudes are proportional to (sin @M, Because of this the
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first peak of the angular distribution tends to be displaced to larger ®, as
L increases, an effect well-known in deuteron stripping,

In summary, what we learn from these qualitative studies of the partial
wave series is that near small ®, in the case of inelastic scattering of sirong-
ly-absorbed projectiles, the partial wave expansion, Eq. (3,12),is not very
sensitive to interferences among its various terms, The terms combine
constructively, and each term has the same general form as the final answer,
It is to be expected that numerical calculations using this expansion will be
very reliable at small®,

: These results are related to the question of surface reactions, It has
been seen that the overlap integrals B¢t vanish altogether if £ <2y, ande<g,.
There is a localization of the reaction in angular momentum space, The dis-

- tortion does not merely set equal to zero the integrands of the low partial
waves in the region r < Ry, In that circumstance there would still be non-
vanishing contributions from r> Ry, Instead, the entire integrals for thz2
low partial waves vanish, In this sense the usual picture of surface reac:ions
is wrong, Fig. 9 illustrates this point, It is taken from the work of Rost, pre-
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£z 43IMev J 4 )
£=2 f “
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Absolute square of radial integrals for the reaction Ni% (o, a'), L=12, at 43 MeV, Correct DWB calculati in
(top) is compared with delta function radial integration (centre) and with plane wave calculation (bottom ).
Note the extreme localization in £ of the exact calculation
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viously mentioned, The moduli of the coefficients in the Legendre expansion
of the scattering amplitude are plotted,for the L. = 2 excitafion of Ni*®® by
bombardment with 43 MeV alpha particles, Coefficients obtained in the full
DWB calculation are seen to group closely, If the same distorted waves are
used, but the form factor F; is replaced by a §-function at the surface,
then the contributions for the low partial waves are seen t6 become much
larger, Plane wave resulis are also shown, for comparison,

Although localization in angular momentum is the distinctive property,
there is also localization in radius. The few radial integrals which are large
correspond to t~¢, , Wave functions for these ¢ values vanish inside the
nucleus because of centrifugal repulsion, and have their first large peak
in the surface region, about at the sharp cut-off radius Ro. This is of the
order of 2f further out than the half-point of the Saxon potential, The region
of the peak of j, - is the region of localization in radius, (In rough approxima-
tion these important radial waves may be regarded as so well shielded by
the centrifugal potential as to be undistorted, )

The manner in which the absorption mechanism operates to give surface
reactions is also seen by considering the flux patterns associated with the
three-dimensional wave functions X £) and X{(), in the amplitude J“Mof Eq,
(3.7), For short wavelengths, kRo» 1, these flux patterns are essentially
classical (Fig.10). Because of absorptionthe flux inside thenucleus is either ex-
clusively radially ingoing or exclusively radially outgoing. Accordingly, anover-
lap integral inthe nuclear interior implies alarge momentum transfer. Because
the form factor F; is smooth, it cannot supply large momenta, and the over-

xiH.) . Xf(_) it =0

Fig. 10
™

Semi-classical flux patterns for the distorted waves X i~ and x(f-) , showing the effects of absorption

lap integral therefore receives only small contributions from the nuclear
interior, This result is general, What makes it important is that in addition
at small © the average momenta of X; and X{) in the surface region, near
the nuclear equator, are very nearly equal, The overlap integral in this
region therefore requires only small momentum transfer, and islarge. We
get a surface reaction,

This section may be concluded with some further remarks on the very
important subject of momentum transfer. With strong absorption we get
surface reactions if ky~ k; and ® ~ 0, because under these circumstances
the momentum transfer near the nuclear surface is small. If ki~ k; but ®
becomes large, then the momentum transfer in the surface region also be-
comes large; then the overlap contributions from the surface region become
small, and are no more important than the overlap contributions from the
nuclear interior, For this reason, at large @ the reaction is no longer a
surface reaction, Likewise, if [ k- kj | is large the reaction is not a sur-
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face reaction, Generally, reactions in which there is a mass change have
large l k- kl-l . An interesting exception is deuteron stripping to bound

final states, at incident energies of the order 8 - 20 MeV, In this case kfaki
is often fulfilled very closely , and therefore these reactions are surface
reactions, In contrast, at high bombarding energy deuteron stripping is
dominated by the mass change, and k;# 2k if low-lying final states are
formed, In this case entirely different methods of approximation must be
used, as developed in recent work by Kerman,

4, POLES - HIGH ENERGY

The two topics of this section are related only in that both are natural
outgrowths of the DWB discussion, Both concern the use of interesting ap-
proximations for the distorted waves X;), X, Let us only consider the
amplitude for angular momentum transfer L,

g LM =S a®rx N E®, P [i'LYSA*FL ] xim(E;, ), (3.

Several authors have stressed the possibility of gaining valuable info:ma-
tion about the reaction by studying a pole which the above amplitude has,
when considered as a function of the momentum transfer, q = | k; - k| , if
this q is treated as a complex variable, The pole corresponds to contribu-
tions to the integral from large values of r, At large r the form factor alvrays
falls exponentially, at some rate determined by the binding energies of the
initial and final nuclear states,

F, —(const) e-Kr/r. _: (4.7)

For stripping, for example, the parameter K is related to the binding energy
of the captured particle, h2K2/2M#* Now if K should be very small, then
large values of r would dominate in JLM; these could be such large radii
that the distorted waves would simplify, If small r are disregarded entirely,
then the amplitude may be written

LM 3 ( -i‘(l.—: Ty, (scattered Qaves) -L M*e-K'r
J Y constS‘d r {e f- + f}[i Y,
r r

% {el( i. 0  (scattered waves), } ' (4.2)

r

The scattered parts of XF) and Xf(') always decrease as r'l, to conserve
flux, and this property has been exhibited explicitly in Eq, (4.2), If very
large r dodominateinEq.. (4,2) then the r "1 dependence of the scattered

wave parts is sufficient to make the contributions from these parts negligible,
What is left is the elementary plane wave Born approximation, with no dis-
tortion effects at all} Therefore '
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LM . Kr
-~ 6M'0 (const) XJL(qr) e rdr, (4.3)

J

where the lower limit is not specified but must be large enough to justify

the approximations already made. It is seen that if q = 0 and K = 0 then the
result of the integration in Eq. (4.3) is infinite, much larger than the con-
tribution from any finite volume of space immediately around the nucleus,
and therefore justifying in this case the approximations that have already
been made. If these approximations are correct, it is also useful to observe
from Eq. (4.1) that the integral (4,3) is proportional to the asymptotic ampli-
tude of the form factor {"'reduced width'"), and therefore measures this quan-
tity.

One need not have started with the DWB scattering amplitude. It is clear
that the exact amplitude possesses all of the properties just described.

Of course, q = 0 and K = 0 are parameter values which are not likely
to be realized in an actual experiment, The situation q = 0 is not impossible,
and is often closely realized at ® = 0° in deuteron stripping experiments,
in which the energy change can balance the mass change. However, K=a0
is not likely, Values of K which permit radii of the order 5f to be important
are not unknown, but to justify our approximations, in deriving Eq, (4.3),
we would want large contributions from radii of the order 501, say, and would
require correspondingly small values of K,

Although Eq, (4 3) is not a good approximation under actual physical
circumstances, it is always a good approximation at certain non-physical
values of q. For example, at large r the asymptotic form of jL is that of
a sine function, so let us consider

gsin gre ®dr = q (K* + %) .
J .

The r = 0 lower limit simplifies the integral and adds only a finite contribu-
tion, It is seen that this integral has poles at q = *iK, corresponding to the
contribution of infinite impact parameters in Eq. (4 3), when q has these
imaginary values, One might hope to extrapolate the physically observed
cross-sections to q = iK, and thereby obtain reduced widths that are not
influenced by distortion, ’

The method can be improved somewhat if the leading, plane-wave terms
in Eq, (4.2) are replaced by Coulomb waves,

Present indications are that the above method has no practical utility,
Actual values of K are so large that for physical values of g the integral
(4.2) is dominated by the scattered waves, The integral (3,7) is dominated by
the behaviour at small r, As a result one has no idea how to perform the
extrapolation to the pole,

Deuteron stripping experiments at very low bombarding energy have
small q at all angles, if K is small, A series of such experiments have been
performed [8], and it has been claimed that these give good fits to plane
wave formulas, according to Eq, (4,3). But the plane wave formulas have
adjustable parameters, so it is hard to know how one would get bad fits to
the rather featureless cross-sections that are observed, ''Experiments"
have also been performed with computing machines [9], using DWB codes,
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to see whether plane wave properties would emerge if K and q weretzken
small enough, The pole was found to be too remote to be reached by these
DWB calculations,

% %k %k * g ok * %k %

A very useful and practical approximation of Eq, (3,7) is the "'high-
energy approximation', for example as presented by McCAULEY and BROWN
[10], or by GLAUBER [11]. In this method, WKB approximation is used
for the distorted waves X;) and X7, Because the WKB wave functions are
used only in the limited region of space in which the overlap integral isbeing
computed, the errors caused by the neglected quantum mechanical diffrac-
tion effects are not large, It would appear that the method is reliable for
nucleons at energies, E2100 MeV, or-for heavier projectiles at lower ener-
gies, A straightforward way to test the high-energy approximation is to
compare it with results of exact calculations which are based upon the partial
wave expansion, Calculations performed by BROWN, andby JACKSON bezr
out the accuracy of the method [12]. Other calculations {13), of a prelimin-
ary sort, find it at fault at an energy of 150 MeV, The meaning of thelatter
calculations is not clear.

In the simplest WKB treatment we make the substitution

. .

X E T =0, (4.4)
where the phase function S(F) is approximated by an integral, taken along
the classical trajectory passing through the point T,

—

S (F) ~ f (€ - em*un?p ar, ' (4.5)

The integrand is the local momentum, at each point along the classical trz-
jectory. At high energy the potential does not cause large changes of the
local momentum, but may very well cause important changes in S, because
in S the effects are cumulative,

If the energy is high then particle trajectories do notdeviate very much
from straight lines in the direction k; the deviation is particularly slight
for the short segments of the trajectories which lie within the optical poten-
tial, or in its immediate vicinity, The integration in Eq, (4,5) may be simli-
fied to

0
S(r)~ S’[kz ~2mn” U (T ko)t dp, (4.6)

-0

where k is the unit vector in the direction of XK. Itis customary to simplilly
the integral further by expanding the square root, on the basis that at high
energy not only does k? become large but the potential U becomes weakened,
We then obtain

0

—

5 ()~ (@4 - aor'io 0 + o) a0 @.7)
- 00 C
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Because this formula is intended for use at high energy, it is worthwhile
to remark that the result (4,7) is also obtained if one starts from the Klein-
Gordon equation and makes the same steps of approximation used in deriving
(4,7) from the Schrédinger-equation starting point, However, in this case
M* is replaced by (E/Z),

The distorted waves we need for DWB work may be written, using Eq,
(4.7} and the time-reversal relation, Eq. (2,16), as

( —-9 — — — M* < — ~

X )(kx' r)~expi{(k.r) -<'h2kll >SU1 (r+ kip}dp} ) (4.8a)
. -0

g, Dmexpi (-(;. O Uf(r- kep) dp}t.  (4.8b)

It is instructive to change the sign of the durhmy variable, p, in Eq, (4.8hb),
so that

(-p > *N\Np . ‘ ,
Xe (kf, T ~expi{-(k. P)-<£l\g/[k—f>5 Us(r + kp) dpl} - (4.8b")
. A v

Now (4.8a) and (4.8b') are inserted in the distorted waves matrix element,
Eq. (3.7).- It is seen that the optical potential Ui modulates the wave func-
tion of the incident particle, from - o to the point T, where the reaction
occurs. Beyond the point T the wave function of the emerging particle is
modulated by the potential Uy, Yet further simplifications appear in the
case of inelastic scattering, as Jllustrated in articles by SQUIRES and
SANDERSON [14]. In this case M = M* and U = Us, Furthermore, the
cross-section at high energy is 1arge only at small scattering angles, for
which kg~ kf. Under these circumstances, the two phase-shift integrals
of Egs. (4.8a),(4.8b') combine when the product [X( Y x {9 is formed, and
give a single integral over the range - o< p<c. This integral depends only
on the impact parameter,

BF=7-k(r.K, ' (4.9)

of the classical trajectory, and may conveniently be incorporated with the
form factor ¥y of the DWB calculation, to give an altered form factor. The
remaining calculation, beyond this step, merely uses plane wave Born ap-
proximation with the altered form factor. The inclusion of distortion ef-
fects by this method is quite easy, and does not require the use of computing
machines, Sanderson, for example, studied the inelastic scattering of 185
MeV protons by C!2, and found that distortion reduced various differential
cross-sections by factors of 2 or 3, and altered the angular distribution

in some cases,

The generalizations required to include spineorbit distorting potentials
are straightforward, and are described in the papers of McCauley and Brown,
and of Glauber, already cited, and in an article by KOHLER [15]. The lat-
ter author considers the polarization of inelastically scattered protons.

The papers of McCauley and Brown, and Glauber, do not merely use
the high energy method to generate distorted waves corresponding to given




46 N. AUSTERN

optical potentials, Instead the phase function S(T) is summed over the en-
counters of the given projectile with each of the individual nucleons in the
target nucleus, In this manner a microscopic model of the basic physics
behind the optical potential is made. Optical potentials are thereby introduced
which are appropriate for the individual inelastic process which may be
considered, Optical potentials for excited states are slightly different from
those for ground states, but this effect appears to be negligible in com-.
parison with other errors of the DWB method,

If the internal degrees of freedom of the target are correctly taken
into consideration, thenthe method of generating the phase function S by
summing the encounters of the incident projectile with individual nucleons
actually generates the entire wave function for the system, This wave func-
tion describes all inelastic processes, as well as the elastic scattering, It
is not merely a distorted wave for the entrance channel, To get that distorted
wave the entire wave function would have to be projected onto the entraice
channel,  However, projection onto other channels gives other processes,
These ideas are used in the Drozdov-Blair theory of inelastic scattering,

. Pinally, it is interesting to contrast the high-energy method with th2
semi-classical model of direct reactions, of BUTLER, AUSTERN and PEAR-
SON [16]., In that model, ray-tracing ideas are used, as with WKB wave
functions, However, that model goes on to picture the angular momentuin
transfer to the nucleus as taking place precisely at those points T which
satisfy the relation L = | T X{(Ri(7) - K5(7)) }|, where K and Ky are ‘he
local values of the momenta inside the nucleus. Such a localization of the
angular momentum transfer not only implies using the semi-classical ap-
proximation for the projectile wave functions X;® and X{”), but also for
the nuclear wave functions vi and vf which determine the form factor Fy.
Physically interesting values of L are not large enough to justify this further
approximation unless distortion effects are very weak [17],

5, ADIABATIC THEORY - COMPROMISE METHOD
This method is chiefly of interest in problems of ineldstic scattering,
for which, at the hands of Drozdov and Blair, it hs been of great use.

We go back to the exact transition amplitude in its most primitive form,
Eq, (2,20), For the problem of inelastic scattering we set § =& =&,

T =T¢=TandU; =U; = U, V, = V; = V. Therefore
T, =$v)e D Jum+« vE By &8 > . (5.1)
The method of distorted waves Born approximation replaces ¥ by
Yoy (€) XD (K;,7),

after making one step of transformation to isolate the dépendence onV. 'n
the adiabatic method we directly replace ¥ in Eq. (5.1) with the expressicn

¥ (r, £) ~v @)y, T ) (5.2)

The wave function w(:) is a solution of the equation
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{- 53pF ¥ % Ul) + VEE - B =0 (5.3)

in which the Hamiltonian fH(g) which governs the motion of the internalvari~
ables § doesnot appear. As a result the variables £ may be treated as c-
numbers in Eq, (5.3), as constants, upon which the solution function y; ®
depends only parametrically, The calculation of Ty has been separated
into two steps, In the first step the differential equation (5,3) involving only
the one vector-variable, ¥, is solved. The solutionis then multiplied by

vi (&),and Eq, (5.1) is used to project from this product the amplitude for
state f,

The method is obviouslybased onthe prmcxple that the initial state of
the system, v; (£), changes so slowly with time that the scattering wave
function ;) for the projectile is determined by the instantaneous condition
of v;(£) at the moment the projectile first appears, The Hamiltonian 6}{(5)
may be neglected in the Green’s function for the scattering process, Evident-
ly this approximation is good only under special circumstances. Of course,
the projectile velocity must be high, but it always is, What is more impor-
tant is that £ must be a variable which does change slowly, for which V(T &)
does not easily give coupling to excited states of high energy, Collective
variables are of this kind,. They vary slowly because of the large associated
mass, The adiabatic method is used almost entirely in studies of collective
excitations,

The method is analogous to that used in computing the collision between
two classical bodies, one light and one heavy, We compute the change of
state of the light body as if the heavy body remained stationary (Fig, 11).
However, the change of momentum of the light body is recognized as the

[]

Fig. 11

Classical collision of two bodies, one heavy and one light

momentum given to the heavy body, and thereby we determine its new
state,

The time-dependent interpretation of the adiabatic method is developed
at length by Glauber, in his Boulder lectures, He carries the Hamiltonian
“H(g) as giving time-dependent operators in the variable 7, and shows what
errors are madé when this time-dependence is omitted,

Two properties of the adiabatit method are helpful in finding interpre-
tations of the inelastic scattering theory. The first is seen by noting that
iff=1iin Eq. (5.1), then the elastic scattering amplitude is found from the
same approximate wave function v; w1(+) which is used to compute inelastic
scattering, Therefore elastic and inelastic scattering are easily compared,
The other helpful property is seen by noting that if k¢ = k,, so that the energy
loss is reglected, then

ety ')|U+V| wiﬁ)> ‘ (5.4)

is the elastic scattering amplitude for the projectile for fixed values of &,
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Such approximate methods as we may know for this amplitude may then e
employed,

It is necessary to realize that an exact solution for the wave function
i) is not normally at all easy to obtain, If th~ angular momentum trancfer
is non-vanishing, L # 0, then the 'potential" [U(T) + V(T, £)] in Eq !5.3)
is not a scalar function of T and most normal methods of .solving this equa-
tion therefore fail, Approximations must be used,

The early versions of the adiabatic method use the high-energy approxi-
mation to compute ("), They have found their greatest application in studies
of the scattering of medium and high-energy alpha particles, in which case
the momentum is large, and the high-energy approximation is justified, 'To
use this approximation we write the scattered amplitude of Eq. (5.4) in tke
form

— * =i »—; — +
£, K3 8) = - (%[F)S'e““' U@+ vED] g Yd’r (5.5)

Since y (") is presumed known it is convenient to use Green's theorem to
transform away the potentials [U(T] + V (T, &)]. It shall be presumed that
[G(T)+ V (T, £)] is non-vanishing only within some finite volume, boumded
by a surface I, Then Eq. (5.3) is used to substitute out the potentials, and
we obtain

K;g) =~ ot e

f(kf' i 4

[v +k; 1;/, d r. (5. 6)

vol
This is of the form

T +
= Letten 2 g% Oy

4 i
vol
1 S‘ (€MD) (g7 - (g0 p &r. (5.7)
7

vol

The first term is a correction to the adiabatic amplitude, if the energy loss
is not negligible, It shall be ignored henceforth, as is customary. The sec-
ond term becomes, by Green’s theorem,

-i - P 4 —
- __4%[ S‘[e i(kfo 1) (V‘//i(+))" (Ve i(kg ))‘//i(ﬂ]'d T, (5.8)
E .
This expression is the scattered amplitude. The incident plane wave part
of x/;i(+) contributes only to the ingoing amplitude, if kf = k;, and it may be
verified that it makes a vanishing contribution in Eq. (5,8). Therefore an
equivalent equation is

_' _l__\ -i(kf r) -’(-1:;—-';) =
f=- 4r S.[e (VwSCatt )= (v 0 W scan)*d L. (5.€)

b
It is in this equation that we introduce the high-energy approximation,
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In the high-energy approximation the incident particles are assumed
to follow straight-line paths in the direction E’ and to suffer only a change
of phase as they move along these paths, Therefore L is conveniently taken
to be a cylmder whose axis lies along the direction K (Fig, 12). Evidently

b3

. : ? %—— k;
{ ? SHADOW PLANE

|_ NUCLEUS
Fig. 12

The surface Zon which we apply Green's theorem

the wave g[)scm then vanishes everywhere on the surface I except on the
"shadow plane'’, which is the end of the cylinder on the downstream side,

In fact Ysaw # 0 only within the area of the geometrlcal shadow of the nucle-

us, The element of area on the shadow plane is k dA, Then

.f~,,zi_ S‘é -i(kg. 1) (k) +1i(K;. )] thear dA , (.10
shadow
or
1 i . R . . Jg
f=-g e T (R v v (k. K] [e¥) e 1tir O aA,
shadow (5.11)

where S (®) is the WKB phase factor, integrated from one side of the nucleus
to the other, The most interesting special case of Eq. (5,11) is that in which
the nucleus is "black' to the incident particles, in which case exp [iS(®)] =0
over the region of the shadow. The integral very much simplifies. It be-
comes

ik (K, - ko)1)
- = 1 P f - T
fblau:k 4T [1 T cos G)] S‘ € ' da, (5'12)

shadow

where @ is the scattering angle, Equation (5.12) is the basic equation of the
"Fraunhofer'' approximation of the adiabatic method, Generally it is used
with the additional approximation [1 + cos ®]= 2, for the "obliquity factor'.
This additional approximation is consistent with those already made and
shall be adopted.

In the black nucleus limit the collective coordinates & do nothing ex-
cept change the size and shape of the nuclear shadow. Therefore this is a
theory of collective deformations of the surface. Suppose the nuclear sur-
face is described by the equation

y = Mk
R(0,9) =R, +Zg VM0, 9). (5.13)
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The § [ M are operators for the collective motions, and are the deformation

distances for the I, M multipoles, The corresponding geometrical shadow
is described by

plg) =R o+ 6(9), (5.1.4)
and to first order in the deformations & L, M, if these are small, we have

p(8) ~ Rot g V¥, 0) (5.15)
LM ‘

in terms of the deformation at the nuclear equator, These expressions are
used to compute the Fraunhofer amplitude, which I take at small © as

21 Ro*8(9)
' ik =i kp Bcos ¢
forack = 37 5d¢ Spdp e . _ (5.16)
0 0

To first order in the deformation the results of integration are

2 Ji(k Ro@)

Tytaa = KRy [R5 )

black

‘ 4 L ' S
; 2L+l fiM (L -MmiL+mi}* 5 (xR e).
+1kR%)?M\ is ) (IMI) ELm (- M@+ W] IM

(L + M) even . (5.17)

The first term is the familiar result for elastic scattering from a black disc
Its square is the differential elastic scattering cross-section, To get the
inelastic cross-sections we multiply f (6, ¢; £) by v; (§), according to the
prescription given earlier, and compute the projection on to v¢(g), Then

dc(;—;f) (k Ry) (2L+ 1 i l <VfM|§hM [Vi>’2

Xy L - M+ mly
[(L-M)lH(L + myll }2
=-L, ~L+2,...

for a given multipole L, exciting a spin-zero target nucleus. The matrix
element < v?"l £ M l Vi) in fact is independent of M, because of our defini-
tion of the £y, and may be regarded as the reduced matrix element
< vf"E L "v i >. For a permanently deformed rotating nucleus this matrix
element, for example, is

Cvlle v =Ry / 2L+t (5.19)

where 8 is the usual deformation parameter, (The product (8 Rg) is more
meaningful than § itself, because the parameter Ry is somewhat vague, )
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Equation (5.18) is the basic result of the Blair-Drozdov theory of inelastic
scattering, The reduced matrix element is the only adjustable parameter

in this theory, The radius Ry is determined by fitting the black disc formula
to the elastic scattering, within the context of the same basic theory,

For medium-energy alpha particle inelastic scattering, Eq, (5.18) often
gives excellent fits to experiment, and reduced matrix elements determined
with its use agree well with those determined by electromagnetic means,
The most characteristic property of this formula is that. for even L values
the cross-section is a linear combination of

2 2 2

Jor Tgrennnn 3,

whereas for odd L values it is a linear combination of

2 2 2
Jio Ja eeve, JL.

Bessel functions very rapidly approach their a-symptotic forms, so that

2 2
I sin’ (k RpO+ T - -L—‘zlf-),

Therefore, beyond the first oscillation, or so, all evenparity transitions
have angular distributions of the same shape, and all odd parity transitions
have the same shape, However, the two oscillate precisely 180° out of phase
with each other, It is further noted that the odd-parity angular distribution
is in phase with the elastic angular distribution, giving a calibration of the
parity determinations, These statements constitute the ''Blair phase rule',
We have previously encountered the first part of this phase rule as a con-
sequence of the DWB calculation for a strongly-absorbing nucleus, The phase
rule is usually extremely well obeyed in experiment, and is in agreement
with exact DWB calculations, Figures 13 and 14 show some iypical experi=
mental results and their comparison with the Blair formula,

It is seen in Figs 13 and 14 that the Fraunhofer curves follow the period
of the oscillations of the experimental curves quite well, but that the magni-
tudes of the Fraunhofer cross-sections drop off much too slowly with angle,
This is a characteristic difficulty of the application of the high-energy method
for a'sharp-edged obstacle, Some kind of smoothing is called for, To deter-
mine reduced matrix elements the Fraunhofer curve usually is fitted to
experiment at the smaller angles. There is some vagueness in fitting magni-
tudes because the experimental and theoretical curves have different shape
but this is not too bad.

At very small angles Eq, (5.18) may in principle be used to determine
not just parities of transitions, but also precise L values, The formula
is inaccurate at very small angles, because it omits Coulomb excitation,
Also effects due to non-zero energy loss are noticeable at these angles,
Nevertheless it may yet turn out that the difficult. experiments at the very
small angles will lead to useful results,

Also, we may note that the high-energy approximation of the adiabatic
theory easily gives the cross-section for double excitation, -if the expansion ..
of the amplitude in Eq, (5.16) is carried to second order in the &, M, I will
not pursue this,
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Comparison of the Blair formula with experiment

The fact that the adiabatic theory normally is carried to only first order
in the &y is a clue to further understanding and improvement of the method,
This first-order expansion is necessary because of the difficulties of solving
for the wave function ¢ *(E;, T} £), which I mentioned earlier. Because
¥i) is computed in first order, the entire exact wave function ¥(T£) is being
used to only first order in the interaction V, The resulting approximation,
as you will recall, is then equivalent to the DWB approximation, DWB con-~
sistently carries all terms first order in V. It uses a different arrangemert
of the calculation, such that the first-order term of ¥, which gives us so '
much trouble in the adiabatic method, is removed by the use of the Gell-
Mann, Goldberger transformation, As a result the operator U(r) is removed
from Ty , and we obtain a distorted final state wave function, The normal,
first-order adiabatic result may be regarded as a simplified restatement
of the DWB result., In the Fraunhofer approximation it brings a very great
improvement in convenience,

It is difficult to base improved adiabatic results upon the surface integral
of Eq. (5.9). It is only in the high-energy limit that the integrand is non-
vanishing over only the shadow plane, I will describe briefly some recent
work of Blair and myself which exploits the relation with the DWB method
to obtain improved results, Much of the simplicity of the present adiabatic
resulis is retained, as well as the close relation with elastic scattering,

To do the DWB calculation we must be more precise about the inter-
action V(T &), If only the shape of the nucleus is to be important, then in
an adiabatic theory there is very little alternative to supposing that for the
deformed nucleus the projectile encounters just the normal optical potential,
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More comparison of the Blair formula with experiment. Note the phase rule relations

but with a deformed shape. The depth and diffuseness must remain unchanged,
Therefore the net interaction with the projectile is

U(r) + V(r,£) = Ulr, Ry + o), (5.20)
where

M*&
a = IE:MgL,MYL 6, ¢) (5.21)

as before. The nuclear radius parameter in the optical potential is increased
by the angle-dependent increment o, To first order ina we get

- oU :
2u (5.22)
Vird) sa g
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the derivative being evaluated ata = 0 For definite muitipole. order L the
DWB result is now found to be

Th(oWB) = v llg, |v, >S‘d rxt [Yf‘*—gy—] X (5. 23)
0
-yl >[—L_—" ZEED g 0 GO

(5.24)

X v Me,0) CrL, -mmle 07 <2'L ool¢0>5‘

[3 BR

I have introduced ks = ki= k, because we are seeking an adiabatic result,
-‘Much of the difficulty of Eq. (5.24) lies in computmg the radial integrals.
For these we introduce an approximation

o B <«

5f U dr~SfE ou t,dr, C (5.25)

28R ) BRO
0

where = % (e+ ). This approximation is based on the principle that for
strongly absorbing projectiles, and for the partial waves having £, 2 a 2,
the radial wave functions have not yet begun to oscillate, and are slowly
varying functions of 2, Besides Iﬂ - ﬂ'l £ L, and is not a large number,

An exact theorem relates the single-index radial integral of Eq, (5.25)
to the n,amplitudes of elastic scattering. It is

f‘zaU d - iE ony
[4

r .
3R, 2k 3R,

(5.26)

o8

For strongly-absorbing projectiles this theorem may be made more usefu’.
with the aid of two further good approximations:

n, & N (2-09), (5.217a)
% as k Ry, _ " (5.27b)
From these we obtain -
an an .
9 k=L
SR, ™ k 52 ) (5.28)

and therefore

ANy
7 -

il
gflaR dr ~ - 55 (5.23)

Q

Substitution of the approximations, Eqs (5.25) and (5,29), into Eq. (5.24)
yields the amplitude TM(DWB), I will take one more step, and multiply this
by (-M*/27h%) to get the inelastic ''scattered amplitude' for the state f,
because this is generally used in adiabatic discussions. Then, at last,
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Mo~ 3<xlle iy @Lr iz N Yo )
x { 'L, -MM| 20 {rL, 00| 20> [E’;’_TI] (5.30)

Equation (5.30) may be proved to reduce to the Fraunhofer formula as the
parameters reduce to the set of limits: (L/£;)— 0, and [8ny/8! ] O only
over a range of £ small compared with 2a If these limiting conditions are
not met, then a physically-based smoothed-cut-off approximation may in~
stead be introduced for the function ny, and we see that the series in Eq.
(5. 30) is not difficult to compute numerically, and that results much better
than those given by the Fraunhofer formula are to be expected,

For the case L = 2a formulasimilar to Eq. (5.30) was previouslyderived
by BLAIR, SHARP and WILETS [18] . They found thatthe replacement of ny by
asimple two-parameter, real function (Fig. 15) was sufficiently accurate to

nel

—

Fig. 15

The smoothed-cutoff form for ng, here taken to be real

match almost perfectly the exact DWB results of Satchler's group. Figure 16
shows a comparison between the formula of Blair, Sharp and Wilets, and an exact
DWB result for the same case, This figure, taken from the recent paper -
of Rost, also shows a comparison with the older Fraunhofer prediction, Ob-
viously there has been great improvement. The BSW results are especially
useful, because simple "universal curves' could be based on their two para-
meters, and these curves enable very easy analysis of experiment, It may
be that this method can be extended, with the application of the new result
just derived.

Considerable generalization of this "'compromise method" is possible.

6. COUPLED CHANNELS .

This will be the last bit of discussion concerning techniques of solving
the differential equations of the DI theory.

I have been emphasizing the DWB method. This method may be em-
ployed for all types of DI reactions. and therefore is valuable as being a
unified approach for many different situations, For nucleons as projectiles
it is related to the basic physics of the shell model. For projectiles such
as medium-energy alpha particles it is equivalent to the very successful ]
adiabatic method and is much better adapted for accurate evaluation with the
aid of computing machines. At present the principal problem with the DWB
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method seems to be merely that it has not yet been applied sufficiently wicely
with sufficient accuracy. However, DWB is a Born approximation. The
interaction which causes transitions between channels is carried to only
first order. Inasmuch as DI cross-sections frequently are very large, one
wonders whether a first-order theory is sufficiently accurate. It is deslra])le
to test the basic accuracy of DWB. :

Some rough estimates may be made. First, suppose a reaction cross-
section equals the nuclear area, r R?; this is a very large cross-section,
We may estimate (do/d Q) ~ R? for this case. However in DWB

-y¥  fi +), 2
() le,i()!

- (Mf/znhz)é'(k%/ki)EAvl gd3r X (6.13)

where
Vv Ve, T, - (6. 1b)

Now large cross-sections only occur if the momentum transfer is small,
so we may approximate X{7*X;() ~ 1, and have
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R? » (M*/ 270°)% [ VX volume 12 . (6.2)

Here the matrix element of Eq. (6.1) has been replaced by the product of
an average Vi, multiplied by the volume over which it is effective. If the
latter is the full nuclear volume, then

~fi -1
i w(ZﬂhQR/M*)(volume ) T,
PI 3
~ 3(h’/2 M*R?) ~ 30 MeV/A .

Except at very small A, this effective interaction is seen to be quite weak,
and for medium and high energies may properly be treated by Born approxi-
mation, This is even more true if we consider the much smaller cross-
sections which normally are in question,

Equation (6.2) predicts a large cross-section as a consequence of a
weak potential, because of a surface-to-volume effect. The entire nuclear
volume is made to cooperate coherently in removing flux from a given area
of the incident beam. However, with strong distortions not all of the nuclear
volume is able to participate on equal terms. An estimate suited for this
case may be based on the formulas of the preceding section, for strongly-
absorbed projectiles. The average interaction potential connecting two partial
waves of the incident and emerging projectiles is '

Vﬁ = I < Vf” 33 Il Vi >(a R)J fz‘(aU/aRO) ffdr |
5 :

*‘<Vf|l§L||Vi>(AR)-l (E/2)|ang/an| . -~ (6.3)

Here AR is the interval over which the integrand is large. For a highly-
deformed nucleus the average amplitude of the (coherent) deformation is
comparable with AR, By experience the maximum value‘ofl on, [0 le is known
to be C .

]anﬂ/aajmax ~ 3 or i,
Therefore the maximum value of the average potential is found to be about
(E/5), say. Evidently Born approximation is likely to be reliable, although
not always of ideal accuracy. The surface-to-volume effect does not appear
in Eq. (6.3).

Rost has considered [19] a somewhat more formal question, relatea
to the ideas in the preceding paragraph. He extracted numerical values of
the radial matrix elements, in explicit calculations for strong transitions
induced by medium-energy alpha particles, and found them to be small, He
also computed the associated S-matrix elements, which are multiples of the
radial integrals, and he tested the S-matrix for unitarity. The S-matrix
elemenis for elastic scattering are the ny, and we have lmzl < 1 because
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- the optical potential has a negative imaginary part. Rost finds that the squares
of the off- d1agonal S-matrix elements always are very much smaller thar
{1- } ngl } ; this is true for each partial wave separately. The problem
he treats is sufficiently general that it is convincing that at medium and

- high energies the DWB method has no difficulties with unitarity.

At low energy the DWB method fails, because the kinetic energy then
is not large compared with the potential V(r,£), There will be more about
this subject later, :

The most satisfactory way to test DWB is to perform a more accura:e
calculation and to compare its results with those of DWB, The more accurate
calculation, which has been considered by a number of authors, is th:
"Tamm-Dancoff' or "coupled-channels' method. +) I will describe it briefly.
This method has no difficulties with unitarity, and works as well at low ener-
gy as at medium and high energies. However, it is very complicated to carry
out in practice. To avoid iexcessive complications I will treat only the
one special case of inelastic scattering, and for a nucleus whose ground st:te
has zero spin.

The exact wave function ¥(r, £) for the coupled system (projectile +
target) may be expanded in terms of the functions i (&); the eigenstates
of the target nucleus. A member of this set is the nth eigenstate of angular
moment I and projection M. The coefficients of va(E) in the expansion of
¥ are functions of the projectile coordinate r, We take the z-axis in the direc-
tion of the incident beam, and therefore the z-projection of the angular mo-
mentum of ¥ is zero.

Now we treat ¥ by introducing it into the Schrdédinger equatlon to get
a system of coupled differential equations from which to determine the ctan-
nel wave functions, the coefficients of v Min ¥. Before displaying the equa-
tions, it is desirable to identify the good quantum numbers in ¥. These
quantum numbers indicate how to simplify the differential equations by sepa-
ration of variables. Evidently neither I nor orbital angular momentum is
a good quantum number, because the coupling potential V(r, &) normally
is not a scalar in T or &, and therefore the ordinary partial wave expans:on
fails to give separation of variables. However V(¥,£) is a scalar in T and
€ jointly, and therefore J and pariity are good quantum numbers. Alternative-
ly, because we have assumed I = 0 in the incident channel, the orbitalangular
momentum of that channel is equivalent to J and parity of the whole systen,
and it is a good quantum number. ) We therefore expand ¥ in terms of the
orbital angular momentum of the incident channel: .

¥ (r, £) ~/37 k) Cik(2e + )iy (T, ), (6.4a)
£
v @) =Zupy (1) Yy (E), (6.4b)

1) Recently SCHWARTZ [20] . criticized the use of the coupled-channels method to calculate the scattering of
elecuons by atoms, on the grounds of its having very slow convergence. However, the difficulties in his case
appear to be caused by the dense nature of the spectrum of a single electron nearthe threshold for ionizaticn.
Nuclear spectra do not have.this property.

4) In the general case questions of "eigenstates of the S=matrix™ arise, and the methods discussed by BLATT
and BIEDENHARN [21] , must be used.
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Y (8,8) = & (oL -MMe0 ¥, ") viIE). (6:4c)

The Coulomb phase factors have been absorbed into the radial wave func-
tions here, for compactness. Evidently the channel wave function in the
entrance channel is simple. It is the coefficient of VQOO, and is

. F 0
) (/47 /kr)Cit (20 + 1)" u g, (r) Y, (P).
Asymptotically 2 -

3 io, ,i *
uo e ! 65) [Hy - nH,] (6.5)

as usual, All the other radial functions are purely ou{going functions, asymp-
totically, and for I, n# 0, 0,

’

lOav

Ugup /()] g (0 J21) H, (6.6)

where N’ are the S-matrix elements between radial Coulomb wave func-
tions normalized to unit radial flux, All cross-sections are expressed in
terms of these S-matrix elements,

Upon substitution of ¥ into the Schrédinger equation we get the coupled
system of equations from which the ufy, are to be determined, For a giveén
£ this is:

2
{;‘—Mg [-d—;% s HEED g+ e n)- E} ub o (r)
—-E<ZI“ RIA I >u“.. (r) (6.7)

R’

where € (I, n) is the excitation energy of state I, n.

To reduce Eq. (6.7) to DWB we would have to make two steps of simpli-
fication. In the first step, in the equations for the excited states, I, n 7‘ 0, 0,
we would ignore on the right-hand side all terms except I'= 0, n'= 0. The:
incident channel thereby would be presumed to be the largest part of the
wave function, Then the set of coupled equations would become

2 2 )
i d t{g + 1) . oTin 1. 2
{2 *['Eﬁ +T]+U E}uaoo ;?{ﬂOO,ElVIlIn',2>u2,,1.n,\

(6.8a)

{_h_;[_g_ uCAR) ]+u+e (1) - E} -

== £'In; £ |V[200;2> upq (6.8b)
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where (6.8b) is used for I, n # 0, 0. Evidently if uf, were known, then Bq.
(6.8b) could be solved by use of the Green’s function for the left-hand side.
However, if the coupling is strong then Eq. (6.8a) shows that u g depends
on the detailed properties of the excited state wave functions, and is not all
easy to obtain. Now in DWB we make the one further approximation

¢ ic

U0 ~ et f(k r)

for use in Eq. (6.8b), where f; is the ground state radial wave function com-
puted with the phenomenoclogical optical potential which fits elastic scattering.
This potential does not have the peculiar shape or parameters which migh:

be needed to account correctly for the reaction of the excited states on ujf, .
The reaction is buried in the imaginary term of the optical potential, in ar.
averaged way. This appears to be the principal error of DWB. But normaly
such an average treatment of the ''radiation damping" should not be at all
bad.

To obtain the method of coupled channels a Green’s function solution is
not attempted. None of the channel wave functions is assumed known in ad-
vance. Instead, a few values of I, n are regarded as especially important
(the "chosen channels'), all channels other than these few are ignored, and
the coupled differential equations for the few chosen channels are solved
exactly by integrating them out to large r numerically, step-by-step, start-
ing from r = 0. If the number of coupled equations is N, then this numerical
integration must be performed N times, starting from N linearly-independent
initial conditions. That linear combination of the N solutions is then selectad
which satisfies the boundary condition of having an ingoing wave in only the
ground state channel, Evidenily the method becomes prohibitive if many
chosen channels are used. The number of coupled equations equals the numi-
ber of terms of the sum in the right-hand side of Eq. (6.7). If L is the highest
multipole which is carried in the expansion of V(T, £), asin Eq. (3.2), thea
the number of coupled equations is of the order of (2L + 1) times the number
of chosen channels, In typical practical applications [22] of the method the
chosen channels are only the three lowest collective states of the nucleus,
and the calculation is nevertheless very lengihy.

Figure 17 shows afamous graph fromthe paper of Chase et al. , showing the
failure of DWB inthe calculation of the excitation of the collective I = 2level by
1 MeV neutrons. Here § is the strength of the interaction V. It is the usual
deformation parameter. DWB corresponds io § = 0. Evidently for larger 8
the cross-section departs drastically from the DWB values.

In contrast, at higher erergies, Buck finds fairly good agreement wita
DWB, in agreement with our qualitative estimates at the beginning of this
section. .

Two important effects contribute to the failure of DWB at low energies,
both of which go away as we reach the region of medium energies, in which
most experiments are done. One of these effects is merely that Born ap-
proximation always fails at low energy. This is seen in the factor k! in the
Green’s function, if we are careful to watch that meaningful normalizations
are used. Mott and Massey stress this point in their discussion of coupled
channels. If the potential V is to be regarded as smallthere must be some
other quantity in the differential equations, compared to which it is small,
and which tends to determine the wave function u /¢ of the ground state chan-
nel. Despite the optical potential U, the only control over the shape of the
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Results of coupled -channel calculation for excitation of I = 2 rotational level by inelastic scattering of 1 MeV
neutrons, showing failure of DWB at this low énergy. The graph shows cross section divided by square of coup-
ling constant 8, If DWB were correct all curves would coincide with the curve labelled 8 = 0

wave function at large radii is the kinetic energy. At low energy the wave
function is not "stiff'' against perturbations, and Born approximations fail.
However, the actual DI perturbing potentials are not very strong, and there-
fore it is only necessary to go to energies E > 10 MeV before strong reac-
tions on the ground state channel become unimportant. (We recall that DWB
carries these reactions in an averaged fashion.) +

The other effect which makes DWB fail at low energy is more specific
for nuclei, It is related to the occurrence of shape resonances in the optical
potential, At a shape resonance the DWB radial wave function f; becomes
very large inside and near the nucleus, and large transition amplitudes ap-
pear. It is not surprising that the result of Chase et al, show large errors
of the DWB method in the regions of resonance. However, shape resonances
are inherently a low energy phenomenon. They are caused by multiple re-
flections at the nuclear surface, which trap part of the wave function inside
the nucleus. Actual nuclear surface thicknesses are such that the reflectiv-
ity (for nucleons) becomes negligible for energies E > 10 MeV. Therefore

+ The careful reader will have noticed that the radial integral in the strongly=absorbing case increases. with
bombarding energy, This effect is real, within the range of energies in which strong absorption occurs, It
occurs because as the emergy rises the wave functions become able to overlap efféctively with the nuclear
potential at greater depths, where it is stronger. However, our estimate of these integrals is accurate, and
they are small compared with the kinetic energy. In addition, these radial integrals, as defined, do not yet
carry the k "! factor of the Green®s function,
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shape resonances are not a consideration at these energies. (Some effort:
is being made by Melkanoff to track down residual effects due to shape re-
sonances at medium energies, These effects should be small, but not yet
- zero.) :

In summary, except at very low energies, DWB is not drastically in
error. Such corrections as may be needed probably can be introduced well
enough by perturbative methods, rather than by use of the very difficult
coupled-channels calculation. The coupled-channels calculations of Buck
did yield the first accurate results for the double excitation process. How-
ever, it seems likely that adiabatic calculations, with or without Fraunhcfer
approximation, will be sufficiently accurate for the analysis of that process.
We may conclude that there is not too much trouble in getting accurate sclu-
tions of the basic equations of DI theories. What is more interesting is to
learn what physical information to build into those theories.

7. SPECTROSCOPY: COHERENCE, PAR‘ENTAGE

All of the discussion until now has concerned the effects involving the
distorted waves X(?, X;{7, for the relative motion of the colliding fragments
in the incident and emerging channels., This discussion has been directed
primarily toward the angular distribution in the reaction. In DWB, using
zero-range approximation, the internal structures of the colliding frag-
ments influence the angular distribution fairly weakly, through the 'form
factor" FL. We were therefore able largely to put aside consideration of
the matrix element for the internal wave functions

vilg) | Vel BT | v, (5 (7.1)

of Eq. (3.1). Now it is necessary to discuss this matrix element, and there-
by to consider the magnitude of the cross-section. -

One interesting case was already considered in section 5, where for
the interaction of a projectile with a deformed nucleus we considered the
model that the projectile interacts with a deformed potential well. Egs. (£.20)
and (5.21) especially present this model. This model is of the same sort
as other phenomenological models of deformed nuclei, and deformation para-
meters obtained by using it for inelastic scattering experiments also agree
with those obtained by other means. This is not a trivial fact. The distorting
potentials establish the region where the product x{?* X, is large. The
magnitude of the cross-section would be altogether wrong unless the inte:-
action which excites the nucleus were to overlap with this important region
of the distorted waves in just the right way. Satchler and collaborators con-
sider this question in a recent article,

However, greater interest attaches to the analysis of the nuclear states
in terms of individual nucleons, and to the consideration of V¢ (&, T} as a
sum of two-nucleon interactions. We wish to treat inelastic scattering, and
also reactions involving the transfer of one or more nucleons. Therefore
a more complete notation is now introduced:

vi(gi)=va(1)2:---,‘n) vb(n+1,.-.;A) (7.23-)
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Vf(Ef)=Vc(1,2,..-,m) Vd (m+1»---;A) (7-2b)
V&, F) =12 V] - G} (7.3)
Jom + e

The labels 1, ..., A are taken to refer to coordinates of individual nucleons.

We are a little redundant here, because the distance T between the centres
of mass of a, b or of ¢, d has been removed already into the distorted waves
x{2), This is not usually an important difficulty. The interaction Vs has
been written as the sum of all two-nucleon interactions between ¢ and d,

minus the optical interaction from which x£7is generated. The optical po-
tential Ur cancels most of the first term of Eq. (7.3). Generally one of the
nuclei, ¢,d, is much lighter than the other, say d is lighter than c, so
(A-m)«m; some simplification is then possible. Inthe reaction, only a few of the
nucleons of ¢ change their orbits. Nucleus ¢ may be regarded as composed
of a massive '"core'’, plus a few "active' nucleons. If the core is sufficiently
massive then the interaction of d with the core does not change the states

of the active particles, but only contributes to the elastic scattering. Except
for small recoil corrections which arise in actual cases, the interaction

of d with the core is precisely cancelled by part of Us, and need not be con-
sidered at all ((see section 8). The remainder of Uf is the small part which
is contributed by elastic matrix elements of the interactions of d with the
active particles. But by treating the inelastic matrix elements in Born ap-
proximation we are by implication treating the elastic matrix elements in
Hariree approximation, and make very little error if we give them no further
thought. Therefore

Vi= £ V(i,j 7.4)
£ 5,V (&0, (
active particlesi £ m

which is what we would naturally have written anyhow.
The matrix element (7.1) becomes

v, m) g (m L, A [ VD vl . on) vy + 1, L, A) P
o (7.5)

" The coordinate ¥y, the displacement of the separating fragments, is buried
in this matrix element, and must be disentangled and displayed. Also we
wish to employ zero-range approximation, and this implies relations among
the coordinates in Eq. (7.5). These questions are best left for special cases.

What is even more interesting is to ask how many terms appear in the
sum in Eq. (7.5). This is the question having to do with coherence, or col-
lective effects, and also concerns the treatment of special cases, We there-
fore consider in turn three important special cases.

First, suppose m = n, so the reaction is inelastic scattering. For simpli-
city we may take A = m + 1, and thereby congider inelastic scattering of

"a single nucleon. Then j has the one value j = m + 1, and the channel co-
ordinate ¥ is the distance from m + 1 to the centre of mass of particles
1,...,m. The matrix element of Eq. (7.5) becomes

)i3<vc(1,...,m) Vg (m + 1) IV(i,'F}]vatl,...,.m)v,,(m+ ). (1.6)
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-

The sum now is the sum over the active particles of nucleus ¢, in the transi-
tion v, =*v.. The functions w,, V4 may be regarded as spin; isotopic spirl
functions. For definiteness it is also interesting to introduce the multipo.e
expansion of V, of Eq. (3.2), and to carry only one multipole. We then hive

sk
[iL'Ytd(f‘)] ?(vc(l,...,m) Vol Vi @) v (L mvy >0 (1)

In Eq. (7.7) the vector properties of ¥ have been extracted from the matrix
element. The resulting functions Vi are vector functions of ¥, and musi
behave under rotations and reflections of coordinates like the spherical har-
monics ‘Y{M (f;). These Vy are typical one-body operators of nuclear
spectroscopy. Each one of these operators can change the orbit of only one
nucleon, in coupling v, to v¢. The number of terms in the sum in Eq. (7.7)
is therefore equal to the number of nucleons whose orbits are changed.
Equation (7.7) clearly shows strong coherence properties. Many low-
lying states of nuclei are linear superpositions of many alternative excita-
tions of a single nucleon from the ground state, These are the particle-hole
excitations. Eq. (7.7) shows that inelastic scattering excites all the terms
in the linear combination, and is very sensitive to the appearance of coher-
ence inthislinear combination. PINKSTON and SATCHLER [23] stressed
this point. They emphasized that the matrix element (7.7) has the same besic
structure as electromagnetic matrix elements, and may be compared dir:ct-
ly with electromagnetic matrix elements B(EL), B(ML), There are dif-
ferences. The sum here extends over neutrons and protons, whereas the
electromagnetic case emphasizes protons. Also B(ML) are strongly spin-
dependent, whereas spin-dependent forces are weaker in inelastic scattering,
and in any case are different. Another difference lies in the dependence
of Viy on radius. In the electromagnetic case this is proportional to
[YM(®)ril] . In nucleon scattering, if V is taken to have zero range then
r; .depends on radius in the same way as does r, and thig is as do the im-

" portant terms of [ X{£)* X;® ] . Often this is as the spherical Bessel function
jgo. (kr), where £, is the cut-off in the strongly absorbing case. Although
these two radial dependences differ, they both emphasize the nuclear sur.-
face, and the linear combination of terms in the excited state wave func-
tions is not sensitive to details in that region, Inelastic scattering therefcre
compares closely with electromaghnetic excitation. One should look for both
similarities and differences.

Figure 18 shows a famous graph from a paper by COHEN and RUBIN
[ 24], for the excitation of the lowest 2 states of nuclei in (p, p) reactions.
The inelastic cross-section shows a strong correlation with B(E2).

Not only is there this correlation, but the {(p, p”) cross-sections also
are very large. The mechanism which makes the cross-sections large was
studied by ROST [ 19] for the case Mg (p, p), and also by Satchler for a
number of cases. Briefly, in collective excitations not only does the pro-
jectile interact with the outermost few nuclepns, but also it interacts to an
important extent with all the nucleons in the next lower-lying closed shell,
because that is slightly deformed by the valence particles. One easily gets
a factor two enhancement of the transition amplitude in this way. Of course,
shell model wave functions or lowest-order Nilsgson wave functions miss

‘this effect. In the case of C2 (p, p’) it was the omission of this effect which
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Fig. 18

Correlation between B(E 2) and cross-section for inelastic scattering of protons

caused the failure of the LEVINSON- BANERJEE calculation [ 25] to fit the
absolute cross-section, using two-body forces of normal strength. They
treated C12 as a core plus two active particles., Properly, all the nucleons
of C12 participate coherently in the inelastic scattering, and rather good
wave functions are needed to discuss this process.

Of course, this new emphasis of DI calculations on the bound state wave
functions enhances their interest. Recently, SANDERSON and WALL [ 26]
have used the wave functions computed by Gillet and Sanderson for the level

structure of Ca%?, to estimate the ratios of cross-sections for (@, a') scat-
tering to several excited states having widely differing properties and cross-
sections. Their rough computations resemble experiment. More such work
will be done. It must be considered now that one of the goals of nuclear
spectroscopy is the calculation of form factors Fy for inelastic scattering.

Collective states of nuclei are not always found at low excitation ener-
gies. The 2% and 3- states of T = 0 are at low energy and appear strongly
in (p, p’) and (a, a') reactions. Such states are not excited in (p, n) reac-
tions, and most of the (p, n) cross-section lies at higher energies. A very
interesting part of the (p, n) cross-section was recently found in experiments
at Livermore [27], in which the analogues of the ground state and 2+ ex-
cited state of the target nucleus were detected. The excitation energy for
these analogue states is the ‘Coulomb energy for adding a proton. Despite
the high energy the states are narrow and the cross-sections are large,

The next case of Eq. (7.5) which we consider is that for m =n + 1, cor-
responding to the transfer of a single nucleon in a stripping process. The
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transferred nucleon is the only active particle of nucleus ¢, and i has the
one valuei = m = n + 1, Therefore the matrix element reduces to

j33m< Ve (L, ...,n,m)vg(m'+ 1,. .., A | V(¥ )| va(l,...,n)ve(m, . A)>.

(7.8)

Nucleus bis a deuteron, or triton, or alpha particle, say, hence nucleu:
d is a proton, or deuteron, or triton, respectively. The sum over j there-
fore runs over a trivial system, and is not interesting. There is no sum
at all over particles in ¢ and only that one part of nucleus ¢ in which particle
m is bound to nucleus a as a core even enters into the reaction. Coherence
effects are completely absent. Single-nucleon stripping is of a type opposite
to that of inelastic scattering.

(This discussion has been a little extreme. It is possible that in nuclaus
d the particle m is in part bound to an excited state of the core. Particles
of the core then may be active particles, and the matrix element for strip-
ping may contain interactions between nucleus d and the active core partic:les.
However, this effect must be weak, because it requireé both particle m
and nucleus d to have simultaneous good overlap with the core. Some effects
of this kind were considered by Yoshida in a recent preprint. He notes that
states of ¢ which are excited strongly in inelastic scattering may sometimes
also be formed with large probability in stripping, by adding a single nuc..eon
to nucleus a.)

As an example, let us evaluate Eq. (7.8) for the case of deuteron strip-
ping, A=m + 1 =n+ 2, The matrix element is

< Ve (L..., n,'r')‘V ‘ F.'i?m +1l>v‘ Va a,.. "n)¢D<|?' ?m +ll>>-
(7.49)

I have ignored spins, so vg does not appear, and have replaced vp by the
deuteron internal wave function ¢p. In zero range

Vép = { 07/ MV?-0%y? /MY g oA /M N (- F ), (7.00)

+1

where M is the mass of a nucleon, N is the normalization constant of the
radial wave function of ¢, and (h2y? /M) is the binding energy of ¢p. (It

is well known from the work of Bethe and Longmire that even if a zero-range
wave function ¢gp is used, the normalization N must be carried in effective
range approximation, to avoid large errors.) The matrix element (7.9) now
reduces to :

VET 02 NSy B v, m D, (7.1.1)

a simple overlap integral. i

From the point of view of the shell model, the above overlap integral
is the product of the shell model orbital for the m™ nucleon, multiplied by
a fractional parentage coefficient. Let us write
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<Vc(1,_'..,n,;5| v, (1, ...,n)> = % [Y,_M('r")FL (r)}<c:JcTc a:J, T, >L_

(7.12)

Our old friend the "form factor' (see Eq. (3.5)) reappears here as the nor-
malized radial wave function of the transferred particle. These wave func-
tions are readily calculable as eigenfunctions of, say, a potential of Saxon
shape. Therefore stripping experiments measure the last factor in Eq. (7.12),
the c.f.p. Thereby valuable spectroscopic information is obtained. A dis-
cussion of the determination of this factor from experiment is given by
FRENCH [ 28]. A summary of all work of this kind up to 1960 is given in

a review by MacFARLANE and FRENCH [ 29], along with a discussion of
procedures for the shell model interpretation of such data.

The above discussion requires one important correction, connected
with the identity of particles. We are neglecting the Pauli principle, on the
grounds that exchange integrals between bound and continuum particles are
small. But because of the identity of particles the same (physical) reaction
can take place in many mathematically different ways. Which particle is
number m is not prescribed by the physics. This question is discussed in
the Appendix of the article by French. He shows that we should make the
replacement

(ot eem, B vyt m) D — [ (A - nsm1} (v ®F@],
, (7. 13a)
S(L)zm<e:d T |a: JaTa>i . (7.13b)

3] 1k

The quantity S (L) is known as the "relative reduced width" or "spectroscopic
factor' for the transition. It is the useful result in studies of the magnitudes
of stripping reactions. Often authors multiply S by a so-called "single -
particle reduced width'', This latter step only refers to calculations with

the crude, cut-off Butler theory. It is meaningless in a DWB calculation,
However S itself is a purely speciroscopic quantity, and is equally meaning-
ful in all theories,

S = 1 for a "single-particle state', i.e. for the case in which an in-
equivalent particle is added to a closed-shell core. Larger values of S may
appear if equivalent particles are already present. Smaller values of S ap-
pear if the single particle state L should be distributed among a group of
final states, by coupling of L. with the angular moment Ja of the core, or by
the introduction of excitations of the core. In this manner S is distributed
among the states of a ''giant resonance'. Because of the absence of coherence
effects, the single-particle strength is easily recovered if all the strength
in the giant resonance is summed, Extensive work of this kind has been done
recently by B.L. Cohen and collaborators.

DWB calculations agree very well with the magnitudes of cross- sectlons
for the stripping of medium energy deuterons by light and medium mass
nuclei. The agreement deteriorates if Coulomb effects become very strong,
apparently because DWB does not fully take into account polarization (it
does in part!). As in inelastic scattering there is some worry about con-
sistently computing bound wave functions and distorted waves in the same
potential wells, in order that overlap integrals be meaningful,
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Finally, I remark again, as in section 3, that the analysis of experi:ment
for spectroscopic .results has until recently been done entirely empirically,
using the ''plane wave theory' as a rough guide. This has been possible he-
cause within a given shell model configuration, within a small range of bom-
barding energies, the reaction dynamics tends to change slowly with ex-
perimental conditions. It therefore factors out if experiments are com-
pared, and the interesting quantity S may be determined,

The remaining special case of Eq. (7.5) which must be treated, is tlat
corresponding to two-nucleon transfer. Coherence effects now appear agiin,
as YOSHIDA recently remarked [30], although not of the same kind as in
inelastic scattering. Different special cases of Eq. (7.5) explore many dif-
ferent kinds of nuclear structure effects.

For the present case m = n + 2; therefore the matrix element becomes

£y (L,...,n+2vg(n+3,...,A) [V + 1, ) + V@ +2,§) |[v.(1,...,n)

j >n+2

X v+, .., A) > (7.14)

It is not immediately obvious yet how to display the channel coordinate F:
the displacement of ¢ from d, or of a from b. Zero range for the interaction
V does not eliminate all integrations over the internal structure of nucleus
b, Let us, therefore, introduce a systematic set of internal coordinates,
and treat the special case A = n + 3, for the stripping of two nucleons from
a triton, and use methods paralleling those of Eqs, (7.9), et seq., for deu-
teron stripping. The coordinates are shown in Fig.19. The #riton wave,

Fig. 19

Coordinate system for a (H’, p) reaction

functlon é1 (7, g) is a function of the vectors p and § The coordinate

T has been introduced somewhat arbltrarlly Zero-range approximation
{see Eq. (3.1))leaves the meaning of r slightly vague. For the momert,
the definition above is conhvenient, and no worse than any other. Eq. (7.14)
now becomes

Cvell,...n, T+3, T+ 8| V(o) + V)| v, 6. @ B . (7.15)

Now if the three potentials which govern the wave function ¢y have zero
range, then the two which appear in Eq. (7.15) can be substituted out exactly
in terms of pseudopotentials, just as wag done in Eq. (7.10) for the deuteron
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stripping problem. These pseudopotentials are of the form of §-functions
multiplied by coefficients which are obtained by operations on ¢, and are
as accurate as ¢  itself. Interactions chosgen in this way are consistent with
the forms used for the wave functions. I will not give here any expressions
for the pseudopotentials, but will assume them to be known, and will make
the replacement

V(r) - V,6 (7). (7.16)

The constant V; has the dimensions of {energy x volume)}. Upon making
the replacement (7. 168) , Eq. (7.15) becomes

V0<vc(1. ..n,T,T +E) | va¢T(0,E)> + Vo<vc(l' .0, T +p,7) ‘va ¢T(3, 0) >
' (7.17)

The consequences of the internal structure of ¢ are seen in Eq. (7.17). Be-
cause of our use of zero-range approximation these effects do not influence
the angular distribution (see section 3). Authors often worry at great length
about such influences. Unfortunately, in order to do so they use plane waves
for the X and X{? and undoubtedly commit worse errors than they cure,

I believe that the introduction of Eq. (7.17) into Eq. (3.1), for the nuclear
matrix element, gives our best siyailable theory of two-nucleon stripping.

If the factors $4(0,£) or 4 (p, 0} in Eq. (7.17) are approximately of the
form of the deuteron wave function, then we may think of Eq. (7.17) as picking
out the deuteron-like part of the relative motion of the two nucleons, n + 1
and n + 2, of nucleus ¢, The cross-section for the reaction can be large if
this type of correlation between these two nucleons is large. This correla-
tion can be studied carefully if the dependence of v in Eq. (7.17) on—for B,
respectively, should be separated by the use of the Talmi transformation,
or some such manceuvre. However, the correlation in question also may be
approximated as the corrglation t_‘gr the two nucleons just to be near each
other, and the variables p and ¢ may be set equal to zero. This approxima-
tion is based on the small range of é¢. It goes beyond the usual zero-range
approximation, We then have instead of Eq. (7,17)

2 vy b {ve (1.0, 5.7 |vall...n) D . (7.18)

-

This is the matrix element studied by Yoshida.

To treat the overlap integral in Eq. (7.18) we expand v, in eigenstates
of the nucleus a, multiplied by shell model orbitals for the two active
nucleons. For brevity denote these nucleons as 1 and 2. Then

v (I, M,) = Evp(J,. M) { Ry, (r3) R

my m, M
ny0y me o (r2) ¥y (1)Y[22(2)xs 5(1,2) }
> / P
x < 1 pmymy | LM >SLSM Mg | oM > (T IM M| T M >

XA (a3, ;JLS; n, £y, np9. (1.19)
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The sum is over all repeated indices. ‘The factor A is the expansion cef-

ficient, essentially a fractional parentage coefficient for two nucleor’s, All
other symbols have obvious meaning.,

When (7.19) is used in (7,18) only the one term having a' = a, Jy' = {4,
M, = M, is selected, as is usual in stripping, Then Eq. (7,18) becomes

M
2<Vyb> = Alady; ILS; 1,2)K3,0M, M| JM, D Ry (IR (0) s (71 = £9),

(7.20)
M = oy™ mo M ¢
s (1,2) = 2V Y2 @) (1, 2) Capgomy ma | LMD {LSML Mg TM)
' (7.21)

I will go one step further than usual in these notes, and substitute Eq. (7.20)
into the formula for the differential cross-section, Eq, (3.8), in order to

show which summation indices lead to coherent sums; and which to incoherent
sums, Then

dofan= (M My J2mh) ) (g f;) (23, + 1/23, + D [2v<{ép>

-1 3 (-) (+)
XL (27 +1) | ZA(ad, ;JLS; 1,2 gd X;
ILSM |1.2 2 $1.2) Jdr IR)‘IH (7.22)

For completeness, it should be\understood that the distorted waves are multi-
plied by their respective spin wave functions, for the incident and emerging
projectiles, Yoshida reduces this formula much further. He shows that it
may be interpreted in terms of a matrix element for the transition of a siagle
particle from orbital 1 to orbital 2, and gives explicit evaluations for several
interesting cases.

Equation (7.22) shows the usual incoherent sum over different multi-
poles of the channel coordinates as we learned to expect in general ir
section 3, However, it shows a coherent sum over the orbitals nj £3.n949
of the stripped nucleons, This illustrates in shell model language the sensi -
tivity of two-nucleon stripping to correlations between the two particles, to
a sort of “collective"™ effect in the wave function, The interpretation in terms
of individual properties of the two nucleons then is not so trivial as in single-
nucleon stripping. For example, suppose there were only one possible way
to select orbitals 1 and 2, and that the giant resonance structure for each
of these orbitals individually were known, Then would a giant resonance for
two-nucleon transfer be the product of the two individual giant resonances:?
Probably not., Properly correlated states will probably be found mainly at
the low-energy end of the product spectrum, because of the nuclear attrac-

tion, Indeed, it may be that one or two states in which the correlation is
especially excellent will be assembled from among a large collection of pairs

of orbitals, and that these states will be found very low in the nuclear spec-
trum, far away from the centres of gravity of the associated single-particle
states. Mottelson has suggested this explanation of data recently obtained
by COHEN and MEAD, and by MEAD and MICHELETTI [ 31].

It is interesting to. mention a few selection rules. These are easily si:en
as properties of the wave functions of the projectile nuclei.
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Reaction } Quantum numbers of nuclear
transition
(H3, p). $=0, T=1
(H3, n) S=0, T=1lorS=1, T=0
(He®, n) S=0, T=1
(Hed, p) 8§=0, T=lorS=1 T=0
(o, d) S=1, T=20

8. EXCHANGE AND RECOIL EFFECTS

Procedures for doing DWB with finite range forces are related to the
topics of this section. Successful calculational methods for this problem
are nearing completion, through joint work of the Oak Ridge and University
of ‘Pittsburgh groups, and interesting results are emerging. However, I will
not discuss these questions, ‘

Particle exchange effects, and effects due to recoil of the massive nucle-
ar core, cannot be treated with the same generality I have been following
until now. Details of the internal structure of the target nucleus become im-
portant. However, I will consider a special case which is of considerable
general interest. In particular, it will enable us to consider the so-called

INCIDENT

M2

Fig, 20

Coordinate system used in the discussion of exchange and recoil effects

""heavy-particle stripping''. The case we treat is illustrated in Fig. 20. Par-
ticle 1 is incident on a system composed of particle 2 bound to an inert core,

All three particles interact, and the Hamiltonian shall be

H=K+U, (r,) +Uy(r,) + V(r (8.1)

12)"

The internal structure of particles 1 and 2, which may be composite (par-
ticle 1 may be a deuteron), will be disregarded. Therefore certain kinds
of processes are not considered; often these are the largest ones.

If particle 1 emerges from the reaction we have the "direct" amplitude,
Ty (DIR). If particle 2 emerges we have the "exchange amplitude", Tu (EX).
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If particles 1 and 2 are identical then (anti-) symmetrization is accomplished
by taking an appropriate linear combination of the two amplitudes. However,
the direct and exchange amplitudes can, in any case, be computed independ-
ently, :

If the coordinates of the three nucleons with respect to an origin fixed
in the laboratory are X, Xg, Xa, then we have

R= (M, + My + Mg) (MX; + MpX, + MyXs) (£.2)
- - - - - -
Ty %y - %g, Ty = Xy -Xg,

where R is the coordinate of the centre of mass. Then the kinetic energyr
operator becomes

-2 -1 2 -1_2 -1 _2 -1 -1 2
M, Vx +M, V, + M, Vx,=(M1 + My + Mg) Vg+(M; + M; ) Ve,
1

X2

-1 2 -1
HM+ MP)L 4 2MG (V- V).

'

The internal part of the kinetic eﬁergy is denoted K, for use in Eq. (8.1),

K= K, +K, + 8K,
2
l'

Ky =-(02/20005 + M) % <0 [20) §
2 - -
Ky = -(h /2)(M21 + Mgl) VZ, - -’ [215) Vi s

AK =1’ /M3 (Vrl Vr2 ). (3.3)

Plane waves in the incident and emerging channels are

0

8 = 6. (2) et T st /My ey}
} B
3 = ¢ (2) eﬂ?z‘{;\ - (My/M, + M) T, }
f f
v = (1) ek AT, - (M /M, +Mp G} (8.4)

where ¢ (2), v¢(1) are wave functions for the bound systems of 2 and 3, or
1 and 3, respectively,

Now we may proceed by the usual formal methods of scattering theory
to ' identify all terms of the transition amplitudes which are first order ir:
either V or-M3‘1. Two. Green's functions which are useful are:
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. -1
G(*) a(E - Kl - K‘Z - X - U1 - U2 - V+i€)
M E-K -U, - U ie)™ (8.5)
G, (E-K, -K 1 - Ug + 1€ . .

The exact wave function of the system is
] 0
¥ ={1+d (U +VIL 4, (8.6)

The two transition amplitudes are

0 o
T, (DIR) =<8, |U, +vIy P> (8.72)
0 :
T, (X) =<y, U, +v]¢). (8.7b)

The only really noteworthy aspect of Eqs (8.6), (8.7) is that in these equa-
tions the only appearance of the operator AK is in the Green's function G(
It does not appear explicitly as an operator because the wave functions 411 ,
4’f, !Ilf are eigenfunctions of problems in which AK is included, It is in this
manner that the boundary conditions force the structure of the calculation,

The operator AK does appear explicitly if we iterate Eq, (8.6) once,
using the Green's function G*), Then

YW= {1+6" [AK +VIH 1 +6Y [Ul-AK]}«gi. (8.8)

If only terms of ¥) up to first order in V and AK are retained, then it re-
duces to

0 0 + 0
Y ~{1+6 Ut 4Gy Vi1 4Gy U} o+ Gy’ AKG, Up b (8.9)

Now we insert (8,9) into T; (DIR), say, and keep only up to first order
terms: .

0 + + 0
T, Ry ~ g Vi1 + Gy Ut > + <& lu,dy ak af v, 14, D

0 i 0
1 U {1+60 U +u P vit+ D U 6. (8.10)

If part of the operator of the last term is permitted to operate to the left,
as usual, then this term combines nicely with the first term, and (8,10)
reduces to -
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’ 0 NG 0 0 Q) 4
T (DIR) ~< 8] U1 +Go U I8, >+<oc| U2Go AKGo Uy | 8, >

wlread U v (1468 U}¢ O (8.11)

The second and third terms of Eq. (8, 11) may be s1mp11f1ed by dropping the
recoil corrections in the boundary conditions, in (5 and ¢f We define

X s@=1+60u1 g@e’ M

®:+ )

Y1) @) 2 (1+GY UL 4 e

) i(ky+ 7))

XP @ ={1+69 U} g e (8.12)

The third of these definitions is given for later use. Then up to terms of
first order

T, (DIR) > {{§ U, |4, X‘?> +<o Uy 8

iRy Ty ) -
+ e’ 7 Jua® akG G [t €D L o v 1) 813

The third term of Eq. (8,13) expresses the usual inelastic excitation of thz
initial nucleus, in DWB approximation, by collision of particles 1 and 2. The
other two terms are recoil corrections. They express excitation of the target
nucleus by collision of the incident projectile with the core. They obviously
vanish if the core should be infinitely massive, The first term expresses
recoil corrections in the boundary conditions, and the second expresses cor-
rections in the kinetic energy operator. We may note that each of the matrix
elements of the first term of Eq. (8.13) factors, to give the form of a matirix
element for 1 multiplying a matrix element for 2. There is no need to pursue
this here, ’ :
By manipulations similar to those above we find the first order parts
of the exchange transition amplitude to be

T, @%) ~ (P, [0,16x > + <y, X [u)8, >}

- —>‘
s, 10T * “ ik, -7
+{ype * UG akG ) U | e’ D3V 6 S (8

The third term of Eq. (8.14) expresses the 'knock-on'" ejection of particle
2 by collision with particle 1. The other two terms are recoil corrections,
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as before. Equations (8.13) and (8,14) are the first complete presentations
of all these effects, of whichI am aware.

The first term of Eq. (8.14) has achievied fame under the name of "heavy-
particle stripping". It was first discussed by MADANSKY and OWEN [32]
for the case of deuteron stripping. It was supposed to represent the physical
idea that a (d, p) reaction might proceed by interaction of the incident deuteron
(particle 1 here) with the core of the target nucleus, adhering to the core,
and shaking loose a proton (particle 2 here) which was initially bound to the
core. The name "heavy-particle stripping' refers to the idea that the incident
deuteron has stripped the core from the target nucleus, Supposedly the proton
emitted in such a process would emerge preferentially inthe backward hemis-
phere. Because back-angle peaks are often seen in the laboratory the pro-
cess has been very popular among experimentalists. Numerical evaluation
of this term has normally been conducted by substituting plane waves in the.
matrix elements, and the results obtained in this way usually fit the above
heuristic picture.

Unfortunately, all such calculations, nearly the entire literature on the
subject, are wrong. It is now well-known [33] that the exact term vanishes
if the core is infinitely massive, because of the orthogonality of wave func-
tions belonging to different energies, one wave function bound, and one in
the continuum. A projectile interacting with an infinitely massive core can
only be scattered elastically. This property is obvious in Eq. (8,14). The
use of plane waves destroys this orthogonality. The results so obtained are
far less meaningful than even the usual plane wave results, and have no re-
semblance to the original, exact expressions,

Two further remarks may be made about these questions: One is that it
is interesting to evaluate the terms which are exhibited in Eqgs. (8.13), (8.14),
to see what the recoil effects actually are. I will not pursue this here. The
other remark is that correct DWB calculations of the ordinary, strong DI
interaction processes (for example, ordinary Butler stripping) often yield
large back-angle peaks. This fact is at last rather well known., Of course,
it is possible that back-angle peaks found in an actual experiment are as-
sociated with exchange or recoil effects, but the mere appearance of such
peaks in an experiment is no evidence for this at all.

For a (d, p) process, the physical analogy between heavy-particle strip-
ping and normal Butler stripping is not false. Alteration of the mass ratios
does not make the two processes qualitatively different. However, the mass
ratios do determine which sorts of mathematical approximations may be used
in the two different situations. The approximations used in Butler stripping
treat rather accurately the kinetic energy of the (light) particle which is
transferred, In the case of heavy particle stripping the kinetic energy of
this (heavy) particle is dominated by the recoil terms which we have been
discussing, and the approximations generally used have treated these terms
very badly. The basic physical theories are alike, as Madansky and Owen
suggested. : - ' :

Between. its last interaction with one partner and its first interaction
with the other, the particle transferred in a stripping reaction propagates
off the energy shell. Unless this were so the interaction at each vertex would
be elastic, and no change of state at either vertex would be possible. Free
two-body collisions.yield only elastic scattering. Now in an interaction with
a light particle a heavy body receives both little momentum and little energy,
therefore it is not forced very far off the energy shell. These ideas again
_show that heavy-particle stripping is not very likely.
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However, the ideas of the preceding paragraph do indicate another re-
action mechanism for -heavy-particle stripping, not having to do with the
recoil kinetic energy of the core, but rather with its nuclear structure. Off-
energy-shell propagation of the core can be assisted by the excitation of |
internal degrees of freedom of the core, neglected in all the preceding dis-
cussion here, In effect, the interactions of the core with its initial and final
partners are converted into three-body collisions. I will not attempt to devel-
op this idea. ) .

Finally, we may go back to Egs (8.13) and (8.14) and pay attention to
the simple V(r i) terms, rather than to the recoil terms. In the direct ard
exchange amplitudes these terms, are, respectively,

a@x 7 v e x>,
o xP@ v ) fa,@xP @ D

The exchange amplitude is large only if there is simultaneous good overlap
between X (Y and ¢, and between X{Jand ¢;. Except at very low energies
each of these integrals involves large momentum transfer, and is expected
to be small. Inthe direct amplitude, onthe other hand, the product Xf')*(l)Xi(“) &)
involves small momentum transfer, if we are at small scattering angles,
and therefore the overlap integral is expected to be large. At large scat-
tering angles the situation is less clear. There is then large momentun
transfer in the direct amplitude, and poor overlap, but the exchange ampli-
tude still is of the form of a product of two integrals, in each of which there
is poor overlap. These remarks appear to be typical of exchange effects in
DI reactions,

9. RELATION BETWEEN DI AND CN
"Unified theories" of nuclear reactions, after various formal differences,
all seem to make contact with experiment in terms of some picture of com-
petition for the incident flux, namely, of how the incident flux is divided
between the DI and CN modes, preserving unitarity, consistency, and so
forth, Some of the difficulties in these questions were mentioned in the In-
troduction, .

Exact formal theories like the Kapur-Peierls or Wigner-Eisenbud theo-
ries are based on decomposition of the wave function in terms of a complete
set of plausible "compound nucleus" eigenstates, These theories yield for
the matrix which couples channels a form in which each matrix element
is a sum over some sort of resonance energy denominators, multiplied by
reduced widihs, Under reasonable [34] assumptions of random signs for
the reduced widths the various terms of the sum make statistically independi-
ent contributions to the cross-section, The statistical compound nucleus
theories of WOLFENSTEIN [35] and of HAUSER and FESHBACH [36], col-
lectively denoted as WHF, are thereby obtained. On the whole, the WHF
theory is what we mean when we speak loosely of the "CN mode of reac-
tion",
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Randomness of sign of the reduced widths is supposed tobe a consequence
of dynamical independence of the, many CN eigenstates into which a chan-
nel wave function is decomposed, these eigenstates involving many unrelated
degrees of freedom, However, if a few degrees of freedom play a particularly
important part in many nearby CN eigenstates, then the reduced widths for
these states are correlated, and calculations based on random signs are
not valid, It is at this point that statistical theories fail if DI modes are im-
portant.

We eliminate the correlation among the signs of the reduced widths by
guessing a physical model for the DI part of the dynamics, and separating
off that part of the wave function which exactly follows this model. Suppose
the incident and emerging plane waves are ¢; and &, in a commonly used
notation, and that Hy, is the Hamiltonian which governs the DI model, Suppose
K is the part of the Hamiltonian of which &; is an eigenstate, Then the wave
function may be written in iterated form,

¥={1+(E-H+i€) (H- Hy !} ¢i(+), (9.1a)

¢(:)= {1+(@E-Hy+ ey’ (H,-K1} o, (9.1b)

where ¢ {*)is an eigenstate of Hy. In terms of ¥ the transition amplitude is
computed, and the Gell-Mann, Goldberger transformation is introduced,

T, =<o -k [¥> ={o 1, -K]D> +{oQ |- IHM)IVD.(g ,
Of course

¢(f')={1+(E-H];A—iE)-1 (H, - K} . (9.3)

Equation (9.2) is essentially all there is to a unified theory. The first term
is the transition amplitude predicted by the DI model, wflich has been treated
at length in the remainder of these notes; the second term is everything
else. The second term may be decomposed in CN eigenstates, and now if

the separation in Eq. (9.2) has been done well, then the reduced widths found
in this new decomposition will be statistically independent, When the cross-
section is computed the frictuations of sign of the second term then cause

its interference with th: first term to vanish, if an energy average is per-
formed. The energy-averaged cross-section is

T = M/ 270930k /) ([0 |y, - K¢ O

+Kd,(f—) || - HM|Y>12} = ¢ (DI) + o (CN). (9.4)

The WHF theory is applied to the second term of Eq. (9.4), SANO et al.,
for example, give a detailed discussion[37].

The most obvious failing of the unified theory is that it does not provide
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a method for choosing the model H,, for any given situation. It is only a
structure in which the consequences of some otherwise chosen model can

be consistently developed. This structure permits applying the usual approxi-
-thations of the CN theory to a well-defined part of the problem. If such cal-
culations are successful in fitting experiment, then we know that the model
has been chosen correctly, that the correlation among reduced widths has
been eliminated, that therefore the CN theory has been applied correctly,
Such after-the-fact reasoning is not unusual in physics.

In principle, perfect consistency demands that the first term of Eq. (9, 2)
be treated by the method of coupled channels. This would mainly be necessary
(section 6) at very low energies. )

The essential physical fact of the unified theory, which determines its
application to experiment, is that Egs (9.2), (9.4): prescribe the values o
the parameters to be used in the WHF theory of the CN part of the cross-
section, The physical parameters of the WHF theory are the transmissior.
coefficients T, for the various channels, here just indicated schematicallfr
by the subscript ¢. A transmission coefficient is

T. =(probability that ingoing flux in channel ¢ forms a compound nucleus).
(9.5)

Evidently if DI reactions were negligible then T, would be found directly
from the reflection coefficients njyof the optical model as T, =1 - | N2,

“ where [/is the angular momentum implied in ¢. This is at present the normal
way of computing T¢, superseding the so-called "barrier penetration coef-
ficients' of Blatt and Weisskopf, although expressing the same physics. In
any case, however the T, are computed, the WHF theory gives a perfectly
explicit formula for o (CN) in terms of the T, . For that part of o (CN) cor-
responding to the transition from channel ¢ with angular momentum f, tc
channel ¢! with angular momentum ¢, this formula is

olc’,c) = (22 + V(7 /)T _(B) (T, (BYA;(4s] gs'le)/E T, (B}, (.6)

c", E"

where s, s' are the spins in channels ¢, ¢'. The quantity A; depends on the
angular momenta and on scattering angle, and gives the angular distributions,
It is a linear combination of Clebsch-Gordan coefficients and spherical her-
monics, and may be replaced in terms of Biede_r}harn-Blatt—Rose Z coef-
ficients. The total angular momentum J = | s+ 16| is conserved; this fact
causes the A to be non-trivial, and leads to non-isotropic cross-sectiomns,
The factor standing before the sum in Eq. (9.6) is the cross-section for com-
pound nucleus formation, ignoring angular momentum, The remaining factor
of Eq. (9.6) expresses competition between the different open channels c"
available for decay of the compound nucleus, and is the fraction of the CN’
cross-section which goes into channel ¢!,

Now the unified theory cannot alter Eq. (9.6), which merely follows the
CN part of the flux statistically, taking account of angular momentum con-
servation, However, it does prescribe a more accurate computation of the
T, , according to the definition of Eq. (9.5). We recognize that ingoing flux
in channel ¢ can either be reflected, or can go into CN excitation, or can
make DI transitions to other channels, avoiding the CN. Therefore
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={1- 2-): 9
Ty =11 in, [ ()"} (9.7)

where T'gl- (2) is the DI transition amplitude to final state f, for incident orbi-
' tal angular momentum £ . It is Eq. (9.7), ultimately , which expresses the
competition for the incident flux, and unites the CN and DI theories,.

In their paper, CHASE, WILETS and EDMONDS [22] discuss the p0851b111ty
of using Eq.(9.7) 1o computeT,. However, they reject this idea as being too
laborious, because to get the T,» for all the chaunnels, to use in Eq. (9.6),

a complete set of DI calculations would have to be done for every channel.
They therefore drop the DI term of Eq. (9.7), reverting to the older calcula-
tion of the T,. I am not aware of any other paper in which a practical ap-
plication of the unified theory of the T, was even considered. It is not clear
whether this matters, I do not know of any systematic survey of experiment
to attempt to assess the relative importance of the two reaction modes,

The CN and DI excitation functions at low energy behave quite differently.
Equation (9.6) shows the behaviour ofthe CN theory, It shows that the cross-
section for exciting a given low final state is linear in the transmission coef-
ficients, and therefore tends to increase, at first, as the T, increase, As
the energy becomes much higher, many final state channels c" open, the
denominator in Eq. (9.6) increases rapidly,andthe cross-sectionto a givenlow
final state drops. This pattern is familiar. Similar understanding of the
DI excitation function is slightly confused by the failure of DWB approxima-
tion at very low energy. However, DWB is adequate.to give qualitative under-
standing. The results are seen, say, in Edgs (3.7), (3.8). The cross-section
is seen to be quadratic in the overlap of both the initial and final wave func-
tions X{*), X{). with the nuclear form factor F. Because the transmission
factors T, are roughly proportional to the (overlap)? of the channel wave
functions with the nuclear interior, one may put the DWB result in terms
of the T, , and say that the DWB cross-section to a given final state is rough-
ly quadratic in the transmission coefficients, At low energy, therefore, just
above threshold for a given final state, and before many final state channels
have begun to open, the CN cross-section increases more rapidly than does
DI. As the energy becomes higher the DI cross-section becomes relatively
more important, especially above the energy of the 'Coulomb barrier",
These effects were studied experimentally by TAKETANI and ALFORD{38],
who used angular distribution and angular correlation in (p, p'y) to identify
the DI part of their reaction. They found that the DI part first became ap-
préciable above the Coulomb barrier. Fig.21 shows the ratio of o (DI) to
o (REAQ), as computed by Chase, Wilets and Edmonds, for (n,n') excitation
of U288 _ It is seen here that the DI part of the reaction cross-section is
negligible at threshold, but then increases rapidly, and soon becomes a
substantial part of the entire reaction cross~section.

Toward higher energy DI cross-sections tend to remain rather constant

~with energy. Competition as new channels open is not as strong an effect as
in the CN process. Eventually cross-sections dostart to fall with energy, as
momenta become large, and overlap integrals become reduced. However,
the overlap integrals tend to be dominated mainly by momentum transfer,
and under circumstances in which this quantity is small the cross-sections
continue to be large, and conversely, (An interesting example of the last
remark is in (d, @) reactions, where, because of the large mass increase
and energy release, the momentum transfer in excitations of low-lying levels
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Fraction of reaction cross-section which is contributed by the DI process, as a function of incident energy, for
the reaction U%® (n, n"). Results are shown for two different values of the absorbtivity, £

is much greater than in excitations of much higher states. Undoubtedly this
influences the a-particle spectrum.)

The excitation function in the case of strongly-absorbed projectiles is
interesting. From the discussion given earlier we expect that the inelastic
cross-section, at all bombarding energies, will be some given constant fraz-
tion of the nuclear area. However, this concerns the total cross-section.
Because the angular distribution is progressively compressed toward smalter

angles as the energy rises, the magnitude of the cross-section at ®= 0°,
say, rises as k2. The formulas show this behaviour. It must continue over
the entire range of energy in which strong absorption continues,

Finally, let me remark on interference between DI and CN. This effect
appears if the density of states in the compound nucleus is not great enough
so that the interference between the two terms of Eq. (9.2) can average to
zero, In this case Eq. (9.4) is not correct. A review of some of the inter-
ference effects which then occur was given by YOSHIDA [39] at the Kingstoa
conference. The effects are complicated, and not much progress has been
made with them. Perhaps the only case in which simple analysis may be
possible is that of the interference of the DI mode with a single, isolated
CN resonance. Figs 22, 23, 24 show an early example of such resonances,
found in the reaction C12 (d, p), at fairly low energy [40). For the analysis
of such resonances it is perfectly plausible that we need merely add to the
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Some angular distributions near the 4,0 MeV resonance

DI amplitude the Breit-Wigner amplitude for the resonance. The latter arapli
tude is the product of the Breit-Wigner S-matrix element

s siniri/e, v, - E- g/, (0.8)

cc

multiplied by the appropriate spherical harmonic and angular momentum
coupling coefficients. The only parameters which must be varied in this
analysis are the usual resonance widths and position, and aside from thesz
parameters the analysis is unique. The early work by the Rice Institute group,
and others, also used an arbitrary adjustable phase parameter. However,
they used the DI amplitude predicted by plane-wave Born approximation,

and this amplitude is purely real, The correct DWB amplitude has a phase
which varies with scattering angle, and with its use the observed effects

very likely can be fitted. Some resonance parameters can thereby be ob-
tained. It may be worthwhile to perform this analysis,
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DISPERSION THEORY OF
' DIRECT NUCLEAR REACTIONS

1.S. SHAPIRO
INSTITUTE OF THEORETICAL AND EXPERIMENTAL PHYSICS,
MOSCOW, USSR

1, INTRODUCTION
1.1, Difficulties of the old theory

The main difficulty of nuclear theory is that nuclei contain many (i.e.
more than two) but not too many particles. Therefore, the precise equations
of motion (Schrédinger equation) become practically useless, and at the same
time it is impossible to apply statistical methods with confidence. The latter
circumstance is graphically expressed in direct nuclear reactions. The
essence of these phenomena consists in that a particle hitting the target
nucleus transfers its energy and momentum either to one nuclear nucleon
or to a comparatively small group of nucleons. This fact would not by itself
be surprising if at the same time we did not observe a directly opposite
picture corresponding to the production of a compound nucleus, i.e. the

statistical distribution among all degrees of freedom of the energy transferred
to the nucleus. In macroscopic physics the co-existence of such processes

is impossible since they would contradict the second law of thermodynamics.
Such processes occur quite often in nuclear physics because of the inapplic-
ability of the asymptotic laws of the theory of probabilities, Since statistical
methods were obviously unsuited for the direct process theory, this led to
the conviction that it was necessary to return to the Schrddinger equation for
a system of many interacting particles. But the technique of solving such
equations is still confined to perturbation theory and therefore it was the
latter that was used to describe direct nuclear reactions despite the fact

that the interaction between nucleons is strong and the application of perturb-
ation theory to the interaction of free nucleons (to n-p or p-p scattering, for
example) leads to results which strongly contradict experimental data, The
results of the application of perturbation theory to direct nuclear reactions
sometimes agree with experimental data and sometimes cgntradict them,

but in either case they can hardly satisfy the investigator because it seems
impossible to give the reasons for the agreement if it is not accidental. In
short, the theory behaves like an unpredictable person.

A major success in the application of perturbation theory to direct pro-
cesses in the Butler theory of deuteron stripping {({(d, p), (d, n)) and pick-up
{(p. d), {1, d)). The Butler theory [1] satisfactorily predicts the position of
the first maximum (by the increase of the angle} in the angular distribution of
reaction products as a function of the orbital momentum of the nucleon captured
by the nucleus (stripping reaction) or picked up by an incident particle (pick-
up reaction). This result permitted the use of stripping and pick-up reactions
innuclear spectroscopy.At the sametime this ledtothe problem of understanding
the true meaning of the Butler approximation. This problem was also essential
because the Butler theory inadequately describes several other features of
_the stripping and pick-up reactions (such as the change of angular distribution

85 .
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with the energy of incident particles, the relation of intensities at the maxima
of angular distributions, absolute values of cross-sections and, sometiraes,
the relative probabilities for the excitation of different states of residual
nuclei).

A new method in direct process theory [2] was offered not so long ago
(in 1961). The method is based on fairly general properties of the reaction
amplitudes and is free from the un-justified assumptions. of the former theory,
in particular the application of perturbation theory. This method makes it
possible to obtain several new results and obtain a uniform description cf
a great variety of processes (such as direct reactipns of the conventional
type at low and medium energies, the transfer of nucleons in the bombard-
ment of nuclei by multi-charged ions and the processes of fragmentation
at high energies). At the same time the new approach explains, with sur-
prising simplicity, the causes of the formerly enigmatic success of the
Butler theory and indicates the limits of its applicability. The method referred
to is known as dispersion theory or dispersion method. In the form used
for the description of direct processes, the dispersion theory originated and
developed in the physics of the strong interactions of elementary particles.
The theory has replaced the Hamiltonian formalism of quantum field thecry
and contributed to a substantial advance in the solution of some problems.,

The possibility of applying dispersiontheory to the suantitative description
of direct processes stems from the very structure of this theory in which
any ""compound' particle (a nucleus, for example) which actually exists in
a free state is treated exactly as an "elementary' particle.

It is significant that certain sequences of dispersion theory are manifested
in the properties of direct reactions no doubt more saliently than in the
physics of the strong interactions of elementary particles. The ''dispersion
nature" of direct processes '"sticks out' of experimental data so obviously
that to grasp the essence of the dispersion approach it is worthwhile enurier-
ating briefly the basic facts of direct nuclear reactions. -

1, 2. Distinctive feature of direct nuclear reactions

Direct reactions of the type A(x,y)B or A(x, yz)B differ from processzs
occurring through a compound nucleus by the following peculiarities:

(1) The energy spectrum of outgoing particles is not of the''vaporization'
type: the number of particles with energies far exceeding the temperature
of the respective compound nucleus is scores and indeed hundreds of times
as large as the intensity predicted by the Maxwell distribution at these
energies. ) ) :

(2) The angular distribution of reaction products in the centre-of-mass
system of colliding particles possesses a sharp anisotropy 'forward-back-
ward" with respect to the direction of motion of the incident particles. Some-
times, at low energies, the angular distribution has a maximum for angles
larger than /2. However, more often we observe an increasing cross-
section in the transitions to small angles, i.e.., to small momentum trans-
fers.

(3) The "knocking-out™ of complex particles from nuclei, i.e. reactions
of the type (x, xd), (x, xt), (x, xa) etc. seem especially enigmatic. Heavier
fragments (such as lithium nuclei, carbon nuclei and so on) are knocked out
when the energies of the incident particles are high, What is surprising here
is the fact that the kinematic picture is rather close to the collision of free
particles, or at any rate it differs in no way fromnucleon ejection procesies,
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the (x, xp) or (x, xn) reactions. It is tempting .to assume that a kind of "mo-
lecular structure' is common to nuclei. It is difficult, however, to accept
this hypothesis for a number of general considerations (for example, the
energy of separation of such a ''molecule' from a nucleus often proves to
be larger than the binding energy of the "molecule" itself) and, which is the
main thing, practically any particles from a nucleon up to comparatively
complex nuclei are knocked out of the same nucleus as a result of direct
reactions.

It should be added that direct reactions are rather universal: they are
observed in a fairly wide energy range (from several MeV to at least several

GeV) practically in all nuclei and with all those particles (from nucleons to
multicharged ions) which can be used under modern experimental conditions
to bombard the nucleus.

1.3. Analyticity of amplitudes and Feynman graphs

In contrast to the conventional theory of nuclear reactions, the dispersion
method is concerned directly with the amplitudes of reactions, and not with
wave functions,

The amplitude of the reaction

A+x —~B+y (1. 1)

is defined as a complex quantity M connected with the differential cross-
section in the centre-of-mass system by the formula*

do m
a9 . _AyiEx 2
aQ - anz ’M] (1.2)
Here we have

my, = mm, [(m,+m,), myp = m,

ymB/(my+ my) (1.3)

where m; are the particle masses in the reaction, pi their momenta and
d$2 is a solid angle element. In the case of the reaction (1. 1} the amplitude
M is a function of two variables, i, e. the square of the momentum transfer
q? and the total kinetic energy E of the colhdmg partlcles in their ¢, m. s,
(centre mass-system)
2 o (o a2 _ .

Q" = (px - Py), E=E,+E, (1. 4)
The point of departure of dispersién theory is the proposition that M(q?, E)
is an analytical function of the variables ¢2 and E.**

Let us recall that the function f(z) of a complex variable z is called ana-
lytic in a certain region of z if throughout the region it is unique and differ-
entiable an infinite number of times. These conditions prove to be so rigid
that they lead to many consequences, forming a well-developed mathematical

* Throughout the following % = 1 and ¢ = 1. The transition to the usual system of units is quite simple:
inthe final formula the ratios p/m, E/marereplacedby p/mc and E/mc respectively, after which the common
factor of the type m@is complemented, depending on the dimensionality of the quantity calculated, by uniquely
determined factors i Pc¥ (o, B and yare positive or negative rational numbers) .

*% In non-relativistic physics this proposition should follow from the Schradinger equation. Analyticity
with respect to0 E is obvious since the equation itself and the boundary conditions analytically depend on E.
Analyticity with respect to ¢* has been proved so far only for potential scattering (see, for example, [3]) -
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formalism. The latter (theory of analytical functions) along with what is
known as the unitarity condition, which will be discussed below, form the
basis of the dispersion theory of nuclear processes. '

The analyticity of M(q2, E) means, in particular, that if.the function
M(q2 .E) is known in a certain finite interval of variables q® and E, it car.
be extended uniquely outside this interval to any values of 2 and E (including
complex values) lying in the analyticity region. This fact directly leads to
several important conclusions. First of all, we note that the amplitudes M
depend not only on q? and E but also on the masses of the particles involved
in the reaction, All six values (q2 , B and the masses of the particles A, x,
B and y) are relatively invariant since it can readily be seen that ¢® and 1i
can be expressed via the invariants P,.P, and P,P; where P are the 4-mo-
menta of the particles A, x and y. In the non-relativistic approximation
(E/m< 1) we have, for example, when Q = 0

"= PyPy - mamy ﬂz = (PaPy - mamy )(my-my )2
my+m, 2 (m,+ m,)?

-mymy +Py Py (1.5)

Since we have, besides,
P? = m? (1. &)

i
and also (taking into account conservation laws)

Pi

Py B +P, P -P,-P, P!=P,-B +P,-B -F .
(1.7)
P}=B -B +P-P - P, Pi=P, R +K { -K P

we can say that the amplitude M depends on the six relativistic scalar pro-
ducts. Pa - Px, Px + By, Poy- Fyrand Pg - Py, Py - Py, Fg . Py. Since
we have assumed that M is an analytical function of two of them (P,- P, and
Px - Py) we have to admit that the dependence of the other four is alsio
analytical inasmuch as all of these scalar products are physically sovereign,
This meansthat the amplitude M isalso an analytical function of the particle
masses. Hence it follows that, due to the uniqueness of the analytical con-
tinuation, we have a 'unique'' amplitude, so to say, of the reaction for parti-
cles of any masses. It is important, however, that while changing the masses
of the particles involved we should not change their other quantum numbers
(number of baryons, electric charge, spin, etc. ).

This conclusion makes it possible to study nuclear reactions with
Feynman graphs. Suppose the particles have such masses that the decay

X~ a+y (1.8)

is possible in reality, while the masses of the particles A, B and a are su:h
that the synthesis

A+ra— B (1.9}

is actually possible. The reactions (1, 8) and (1. 9) taken together and leading
to the reaction (1, 1) can be represented by the graph of Fig, 1.

The amplitude M, corresponding to graph 1* does not obviously vanish
for the values of masses satisfying the inequality

* In references to particular graphs the number should be taken to refer to the figure of that number.
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m, <mB—mA,'ma<mx—my, (1. 10)
From the uniqueness of the analytical continuation it follows that an analytical
function which vanishes in a certain interval of variables (for example, that
of their values which do not satisfy the inequality (1 10)) vanishes throughout
the analyt1c1ty region.

>
£

(]
-

Fig.1

Hence it follows that since M, is an analytical function of masses, it
must not vanish (except for certain points perhaps) in the region of the values
of mass which do not satisfy the inequality (1. 10), for example, in the region

ma>mx’myJ : ma>mB‘mA' (1. 11)

This means, for example, that, the amplitude of the stripping reaction
A(d, p)B must necessarily contain a part which is the analytic continuation
of-graph 1 into the region of masses satisfying the inequality (1. 11). This
part of the amplitude may still be conveniently represented by graph 1, the
decay (1. 8) and synthesis (1. 9) being regarded as virtual processes, i.e.
processes which could occur in reality if the condition (1. 10) were fulfilled,

Obviously, on the basis of the analyticity and conservation laws of the
number of nucleons, electric charge, spin and other quantum characteristics
of the particles involved we can draw more complicated graphs, for example,

-of the type of the triangle and rectangle graphs represented in Figs. 2 and 3.

1,4, Amplitude singularities and types of nuclear reactions

Though the number of possible graphs for the given reaction (1. 1) is
infinite, it seems plausible that direct processes are described by graphs
with a small number of virtual particles since a distinctive feature of direct
reactions is the transfer of energy andmomentum to afew degrees of freedom
of the system, i.e. to few nuclear particles, I this is the case, different
graphs must contribute to different functional dependences on g? and E of the total
amplitude because, for example, the dependence of the cross-section of
direct processes (simplest graphs) on ¢ sharply differs from that of re-
actions occurring through a compound nucleus (combination of complicated
graphs). It is clear, intuitively, that, say, the amplitudes M,, Ma and Mg
corresponding to graphs 1, 2 and 3 must, in general, be different functions
of g and E since different virtual reactions enter into different graphs. This
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Fig.2

Fig.3

means that the singularities of amplitudes corresponding to different graphs
must, in general, be different (by their position and character) since two
analytical functions with identical singularities may differ only by an addi:ive
constant and constant factor. An analytical function which has no singular:ties
anywhere (not even at infinity) is a constant. It can be said, therefore, that
any analytical function is almost determined by its singularities. We say
"almost' because given the position and character of the singularities of zn
analytical function we can restore its behaviour near a certain singularity
accurately to within a constant factor or term.

From all that has been said above it follows in particular that the ampli-
tudes of direct reactions must have definite inherent singularities with™
respect to variables g2 and E, In this sense direct reactions are no exception.
In point of fact, all known types of nuclear processes are determined by
the position and character of the amplitude singularities. Indication of the
singularities imparts an accurate meaning to the commonly used but other-
wise not very definite concepts of the 'type of a reaction" or "mechanism
of a reaction',

This point is illustrated by Table I in which the phenomena observed
in the known nuclear reactions are listed versus the amplitude singularities,
corresponding to them, over the variables g and E.
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TABLE 1

PHENOMENA OBSERVED IN NUCLEAR REACTIONS AND
CORRESPONDING AMPLITUDE SINGULARITIES

Phenomena observed £ Amplitude singularities @
Energy resonances Pole near physical region, Pole
in cross-sections_ but outside it for complex /2 /e
ir
E=Ep, - ~—
o2
Near-~threshold Branch points
a'llmmahes E=:0Q
("cusps”)
Direct reactions Branch points 1) Poles (Butler-
i Frerch)

2) Branch points
near physical
region, but
outside it

According to Table I, the poles and brarich points with respect to q2 lying
near the physical region, i.e. at the finite values of q?, correspond to direct
processes, Comparison of direct processes with reactions occurring through
the compound nucleus shows that "resonances'' (poles), not with respect to
the energy E but with respect to the variable g2, are characteristic of direct
.processes, the ''resonance'’ values of q? lying outside the physical region.
For example, the Butler stripping theory corresponds to taking into account
the amplitude poles-with respect to g2 situated on the real axis when @? < 0,
i.e. outside the physical region. This situation is indicated in Fig. 4 which
also displays the formal cause of the forward-backward angular anisotropy,
characteristic of direct reactions; the decrease of cross-sections as g2 in-
creases is similar in nature to the decrease of total neutron cross-sections
with the increase of energy in the case of a resonance level at a negative
energy. Using the Butler factor, 1/W2(qR), we eliminated in the curve shown
in Fig, 4 the g-dependence of the cross-section due to the finiteness of the
size of the nucleus (this factor corresponds in its physical meaning to the
separation of the factor VE out of the neutron width).

Concluding this preliminary survey of the main concepts of dispersion
theory and direct processes, it is necessary, to avoid possible misunder-
standing, to make the following point. The Feynman graphs first appeared
in quantum field theory as a sequence of perturbation theory. The expression
itself for the amplitude corresponding to a Feynman graph was derived from
Lagrangian field theory formalism under the assumption that the interactions
are small, Therefore a certain small interaction constant (@ = e2/hc = 1/137
in electrodynamics, for example) corresponded to each vertex of the graph.
For this reason a graph with many vertices was regarded as a small quantity.
Though the Feynman graphs we have discussed have much in common with
the perturbation theory graphs, they are by no means identical to the latter

. in their meaning: the assumption on the smallness of interaction constants
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do 1 _
| dg? W2(qR)
o
Ly
[
{ |
I
I
.
.
b _const._
Iy (q2+q3)?
Iy
/
/ |
/‘// | 2
¢ | P
2 2
F7p,tpy)
Fig.4

will never be used when the expression for the amplitude corresponding to
some graph or other is derived.

From the view point of the Lagrangian quantum field theory, the graphs
used in dispersion theory are a sum of an infinite number of perturbatioa
theory graphs. For example, the pole graph of dispersion theory is a sum
of an infinite number of pole graphs of perturbation theory (having other
singularities besides a pole) the part having only a pole singularity being iso-
‘lated from this sum. By its structure this part of the sum exactly coinciles
with the simplest pole graph of perturbation theory (since it has no singu-
larities besides a pole either) but the constants entering into the '"dispersion''
graph will be different and are not at all bound to be small. Making use cf
the terms of quantum field theory, we can say that the ''dispersion’ jole
graphs correspond to the renormalization of interaction constants, and thepole
particle mass.

The connection described above between the "'dispersion'' and pertur -
bation theory graphs accounts for the fact that sometimes (but by no means
always) the calculation of a direct process amplitude by the formulae of
perturbation theory may yield correct results (in the character of functional
dependences). We shall see later that this is the case with the Butler deuteron
stripping or pick-up theory, but the situation is altogether different in st:ripp-
ing or pick-up reactions for particles with higher binding energies (such as
the (@,t), (p,ea) reactions, etc.). '

1.5. Immediate problems on hand

According to the above, the first problem of direct process dispersicn
theoryis a calculation of the amplitudes corresponding to the simplest
Feynman graphs. The problem essentially reduces to finding the singularities
of the Feynman graphs. Starting from rather general quantum propositiors
and the analyticity of the amplitudes, we can 1ot only establish the type of
the singularities corresponding to a tertain graph, but also find the location
of these singularities if the masses of the particles involved (real and vir:ual)
are known. In this respect the dispersion theory of direct processes is richer
than the Breii-Wigner theory of resonance reactions which does not predict

< the position of the resonance level,
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As was indicated above, the forward-backward angular anisotropy in the
centre-of-mass system of direct reactions is one of the most important
features of these reactions. Therefore, it is interesting to determine first
of all the position and type of the direct-processes amplitude singularities
with respect to the variable g2, This will be dealt with in chapters 2, 3 and
4. Simultaneously, we shall obtain the formulae for the amplitudes of the
simplest Feynman graphs expressing them through the amplitudes of virtual
decays (syntheses) and those of virtual reactions (the reaction a + x—b +y
in graph 2 may serve as an example). The problem of the effects connected
with the finite size of the nucleus calls for a special study and will be dealt
with in chapter 5. )

Considerations of singularities with respect to the variable E leads us
to take into account the interaction in the initial and final states. An infinite
number of graphs possess the same singularities (branch points) in this case.
Their summation leads to the Omnes-Muskhelishvili integral equation which
permits an accurate solution expressing the effects of the interaction in the
initial and final state directly through the amplitudes of scattering of the
particles x on the nucleus A and particles’y on the nucleus B.

In conclusion we shall consider some reactions of a more complicated
type when the number of finite products is more than two (such as the knock-
ing out of particles from nuclei and the capture by nuclei of slow ¥, 7~ and
K™ mesons).

2. SINGULARITIES OF FEYNMAN GRAPHS
2. 1. Certain mathematical theorems

We shall see in the following that the amplitudes belong to a class of
analytical functions ¥ (z) which possess the following properties:

{1) On the real axis (z = x), F(x) is real when x < Xgo 3

(2) F(z) have no singularities anywhere in the complex plane of z except
the real values z 2> x,;

(3) When 1zl —w, F(z) decreases more rapidly than 1/]z].

The amplitudes do not always satisfy the latter condition, When they do not
we can consider instead of the amplitude M the function M - M/CP(z) where
®(z) is any function increasing sufficiently rapidly when |z| — o and not
interfering with the fulfilment of the first two conditions.
Let us now consider the sequences of the conditions (1) - (3). Using the

well-known Cauchy formula we can write

1 F(z') .,
27y z' -z d

. A

F(z) =

(2.1)

(T is a close contour around the point z). According to condition:(2), the
contour T" can be chosen as is shown in Fig.5. When R— o
the integral over the circle vanishes because of the condition (3). We obtain

©
F(x’' +ie) - F(x' - i€)
27Il x/ -z
Xo

F(z) = dx’ - (2.2)
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Fig.5
Since according to condition (1) we have
F(x) = 'F*(x) when x < xo
we find, using Eq. (2. 2), that the function |
#(x) = 21—1 { F(x + i0) - Fx - i0)}
is real when x> x,. This means that F(z) can be represented as
0
F(z) = %S‘ —f—fi_)— dx’

X z

X0

where
f(x) = £*(x) when x.> Xg
From Eqgs. (2.5) and (2. 6) we have
Flz*)= F*(z)
Let us show that |
f(x) = Im7F (x + i0) when X> Xg .
Indeed, after substituting the known formula

0 .
L - ?  iirex - x)
x - x3%ie x -x

(2.3)

(2. 4)

(2.5)

(2.6)

(2.7

(2.8)

(2.9)

(the symbol P means that in the integration of the first term the main value
of the integral is determined) into Eq. (2. 5) when z = x + i€ and taking the

limit e = + 0, we obtain

o«
F(x + i0) =f7rﬂS £O) b if() ©

x! - x

Xo

(2. 19)
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Equation (2. 8) is proved since the first term in (2. 10) is real. From Eq.(2.7)
(or directly with the aid of Eq. (2. 9)) we then obtain

ImF (x - 0) = -f (x) (2.11)

Equations (2. 8) and (2. 11) lead us to the following important conclusion:
ImF(z) jumps as we cross the real axis when x > Xo. This means that the
point xg is a branch point of the function F(z) since from this point onward
the function becomes ambiguous on the real axis ImF{x + i0) # ImF (x - i0).
In other words, the function F(z) is analytic in the plane z with a cut along
the real axis from the point xo tow. To make F(z) unique on the real axis
when x> xo we must stipulate which value of F(z) on the sides of the cut
should be regarded as the value of F(x) when x > x,. Such a condition is known
as the choice of the sheet of a function. From the purely mathematical point
of view all sheets are of equal importance. Physical considerations, how-
ever, make one of the sheets preferable, Note that the sheet is often given
by the interval of variation of argz. For example, if the value of F(z) is
taken on the upper side of the cut, then

0L argz < 27, (2. 12)
- The interval

2wgargz< 47 (2. 13)

corresponds to the lower side of the cut.

Concluding out short mathematical digression, let us note that if the
function F(z) has poles on the real axis our conclusions practically do not
change except for the fact that the pole terms should be added to the right-
hand side of Eq. (2. 5):

00

F(z) Z P SVX—,(%—) dx! x;< X (2. 14)

Xo

In physical applications we always deal with the integrals of F(z) over
the real axis. If the poles xj lie in this case within the integration region,
the rules of passing the poles should be added to (2. 14) to impart a certain
meaning to the integrals. We may agree, for example, to determine the
integral of the pole term as the main value, or pass the poles, shifting the
integration contour into the upper or lower half-plane. The former method
(integration in the sense of the main value) is equivalent to the assumption
that the phase of F(z) at the pole remains constant as compared with its value
in the neighbourhood of the pole on the real axis. We shall see later that this
case does not apply in dispersion theory. The displacement of the integration
contour into the upper or lower half-plane is equivalent to that of the pole
into the lower (xj— Xxj -~ i€) or the upper (xi— xj + ic) half-plane respectively.

The above propositions can be illustrated by two examples as follows.

2.2. Two examples
Example 1: n-p scattering amplitude

The n-p scattering amplitude F (E) for low energies can be represented
in this well-known form
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[3

F(E) = % Fo(E) + 5~ F1 (E) (2. 15)

where
Fo(E) : i/(\/ mE - lﬂo) Qg <0 (2. LG)
Fy(B) = i/(/ mE -ia;) @ > 0 (2. t7)

are the scattering amplitudes in the singlet and triplet states. It is clear
from Egs. (2.16) and (2. 17) that F(E) has a branch point at E = 0 and is an
analytical function in the complex E-plane with a cut from 0 to «, F(E)being
real on the real axis when E < 0. Since the wave function in the singlet and
triplet channel is of the asymptotic form

Y (r) = oifl 4 F(E)(eikT/r), k?=mE. (2. :.8)
and must contain a divergent wave, we have
k=/mE > 0 o (2.19)
for real E > 0, This fixes the choice of the sheet

F(E) = F(E + i0). (2.20)

Indeed, Eq.(2.19) means that

0< arg E < 2. (2. 2Ca)
Hence we have

m/E > 0 (2. 201)
vs}hich occurs on the upper side of the cut.

"~ After rewriting Egs. (2. 16) and (2. 17) as

F, 1(E) = iQ..l”"_i/E_E . (2.2

2
mE + o 1

we note that because of the difference in the signs of ¢y and a; the triplet
amplitude has a pole with respect to E on the sheet (2. 20a) while the singlet
amplitude has none (since the residue at the pole vanishes in this case), On
the second sheet, on the other hand (VmE < 0 when E > 0), it is the singlat
amplitude that has a pole.

The rules of passing the poles should now obviously be given so that 1the
singlet pole be passed below (o — o + i€) and the triplet above (a2 —af - ie),
Indeed, the rules of passing the poles should be given only to attach a me:n-
ing to the integrals of E over F(E)., If, for example, the sheet F(E + i0) ia
chosen, then according to the above it is only the triplet pole that is a "cau-
tion" and has to be passed while staying on the upper side of the cut. The
situation is reversed on the sheet F(E - i0): in this case the singlet pole
must be avoided by staying on the lower side of the cut,
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Example 2: F(z) = Hy (z) +1iHx(z)

Consider a static magnetic field H as a function of a point of the plane
z = X + iy, the component of the field perpendicular to the plane z being as-
sumed to vanish. A field of this kind may be created by currents normal to
the plane and situated, for example, as is shown in Fig. 6.

y .
A

Fig.6

The point x;3 in Fig.6 designates the crossing of the plane z with a thin
current-carrying conductor perpendicular to this plane, and the boldface line
from the point x, to infinity represents the crossing of the plane z with a
thin metal sheet, also perpendicular to it, with a current flowing in the same
direction as in the conductor x;. Obviously, X; is a pole of the function F(z)
and Xg is a branch point of precisely the type we have considered (a jump

of the imaginary part), F(z) being real on the real axis (Hx = 0) when x < %o
everywhere except for the point x;. Let us consider F(z) as an analytical
function and decide on the choice of the sheet and the rule of passing the
poles. On the real axis F(z) is ambiguous when x> X, and we must agree on
the choice of one of the two possible values. From physical considerations

it is clear that this condition must be connected with the rule of passing a
pole. Indeed, the sign of Hx at the point x; is indefinite; it depends on from
which half plane we approach this point. Obviously, if we assume that Hy

at the pole is directed in the same way as in the upper half plane, the same
condition has to be accepted on the cut, i.e. the sheet with current, as well.
This conditions the choice of the sheet F(z) if the rule of passing the poles

is given. Inversely, the choice of the sheet F(z) conditions, by physical con~
siderations, the rule of passing the poles. Another feature is noteworthy

in this example: the use of the analyticity of F(z) and the presence of the
boundary condition allow us to find the field H if the currents are known. In
other words, analyticity and boundary conditions on a cut can be used instead
of the equations of electrodynamics. Indeed, using Eq.{(2. 14) and the boundary
condition

H, (x +i0) - Hy(x-10) = % i(x) (2. 22)

where j(x) is the linear current density,’ we immediately obtain

0
J2_h 2 (i) ax
F(bx)~cx-x1-ie+c§x'-x-i€ (2.23)
Xo

where Jj is the current density in the conductor x;.



98 ' L S. SHAPIRO

Equation (2. 23) shows very distinctly why the rule of passing a pole :s
so0 closely connected with the choice of the sheet: the fact is that an integral
over a cut is, by ite physical meaning, an integral over poles, as it were
we regard a current-carrying metal sheet as a set of linear currents the
intensity of which is dJ(x) = j(x) dx. The situation in dispersion theory is
strikingly similar, the unitarity relation playing the role of the boundary
condition (2, 22).

2.3. Unitarity condition

The unitarity of the S-matrix is the second basic postulate of dispersion
theory. In non-relativistic quantum physics this property is a consequenc:
of the hermicity of the Hamiltonian, The S-matrix is connected with the
matrix of the amplitudes M by the relation

Sus = 04p+ i(27)* My 6 (P, - Pp) (2.24)
where RN
' 6(Pa‘Pﬂ)=6(pa‘pB)6(Ea‘ EB"Q)' (2. 2¢8)

Here the subscripts @ and 8 designate the initial (@ = A + X, for example) and
final (8 = B+ y, for example) states of the system, and Py, P, Eq and Eg
the total momenta (5 = Px + Pa, for example) and kinetic energies (Ea Eyx +
+ E4 ) before and after the reaction respectively. The S-matrix is dimensjon-
less and in its physical meaning differs from the matrix M in that it also
describes those cases when no interaction occurs (if we "'switch off' all irter-
actions the matrix M will vanish and the matrix S will be unity). In the mairix
form Egq. (2. 24) will be

S=1+iem*T (2. 2€)
whefe 1 is a unit matrix and
ws= Myd(P, - By). (2. 2%)

By definition |Sapl?is the absolute probability for the reaction with the initial
state @ and final state 8. Hence it follows that

)g |sa3|2= 1 (2. 2¢).

since the sum of the probabilities of all possible reactions for a given initial
state is always equal to unity. If we designate

* +
Sk, = St | (2. 2¢)
we shall be able to re-write Eq. (2. 28) as

Es &S Ba (ss+) (2. 30)

If we generalize Eq. (2. 30) and demand that it hold not only for the diagonal
elements of the matrix SST but for the entire matrix as well, we shall obtain
the total unitarity condition :

MR 2.31)
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Besides Eq. (2. 30), from Eq. (2. 31) follow the orthogonality relations

+
%Saﬂsﬂy = 6ay (2.32)

Substituting Eq. (2. 26) into Eq. (2. 31) we obtain
2A 5 -i(T-TH = (@r*TT? (2. 33)

Going over to the matrix elements in Eq. (2. 33) we can readily obtain

_ (em)?
Aas = 25~ £ TayTye: (2.34)

The summation in Eq.(2. 34) is performed over all possible "intermediate'
states y. Let us emphasize that the states which differ only in the direction
or magnitude of particle momenta are regarded as different states and there-
fore the sum in Eq. (2. 34) includes the integration over the phase volumes
of the "intermediate' particles (i. e. particles forming the states "vy'). Let
us designate by A{.‘Zé a part of the sum (2. 34) containing the states v in which

there are n particles a; ...an. Then we have
= (m)
Aas = TR (2. 35)
(n)_ l Vo { + n s
Agp= 2 (2ryn-4 al-):jan TOLYT)'B lE\ld pai . (2. 36)

Here V denotes the normalizing volume, and the summation is performed
over all possible types of intermediate particles and over spin variables if
there are non-zero-spin particles among the intermediate particles. Let us
emphasize that since the matrix elements Tuy and T;'Bcontain é-functions (see
Eq.(2.4)) of Py - B and Py - Pg, Eqg. (2. 13) contains only such intermediate
states as are allowed by conservation laws, In other words, the relation
(2. 13) contains the amplitudes of real processes. Eqgs (2.35) and (2. 36) are
of that form of the unitarity condition as is used practically in dispersion
theory. We shall deal only with single-particle (n = 1) and two-particle (n=2)
intermediate states.

If we designate

2B=T+ 7Tt (2.37)
then according to the definition of the matrix A(Eq. (2. 33)) we can write that

T=B+iA. (2.38)

The matrices B and A, aé is clear from Egs. (2.33) and (2.37), are
hermitian

B = BY, A= AT, (2.39)

The matrix Amay therefore be referred to as the "imaginary part "of the
matrix T and the matrix A connected with A by the relation
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A s = Agpd(Py - Pg) (2. 10)

as the imaginary part of the matrix of the amplitudes M. Although the ncn-
diagonal matrix elements of A are complex, our designation is justified
because in the matrix algebra the hermitian matrices are analogues of real
numbers, and all relations between complex numbers are transferred onto
the matrices with the substitution of the hermitian instead of complex con-
jugation. As we saw in section 2.1.an analytical function can be expressed

by the integral of its imaginary part. This means that the amplitude Mg can
be expressed by Aqg. Owing to the unitarity condition (2. 36) A 45 may in turn
be expressed by the amplitudes of other processes. This is precisely our
aim because by expressing the amplitude of the reaction of interest to us by
the amplitudes of "intermediate' (virtual) processes, we thereby represent
this amplitude in the form of Feynman graphs, the number of intermedia‘;e
particles n in the unitarity relation being obviously connected with the nunber
of internal lines of the graph. For example, n = 1 corresponds to graph :,
andn = 2tographs 2 and 3. The proposition that the simplest Feynman graphs
with singularities with respect to q° nearest to the physical region are es-
sential for direct processes will mean that only one-particle and two-particle
intermediate states ¥ are essential in the unitarity condition. ;

Thus the unitarity condition, despite its apparent triviality is very ira-
portant in the theory, establishing as it does the connection between the
amplitudes of different processes. This allows us in the final analysis to
represent the amplitude in the form of Feynman graphs without resort to the
summation of the series of perturbation theory which is inapplicable to
nuclear interactions. ]

Let us now proceed to the programme we have mapped out,

2.4, Pole graphs

Let us consider the unitarity conditions under the assumption that the
main contribution to A 45 comes from the quantity A(&)B corresponding totacing
into account the one-particle intermediate states. Having ‘designated an inter-
mediate particle by a we can write according to Eq. (2. 36)

Ras =ﬂSTay T;B &’ par (2.4

The summation over a is omitted in Eq. (2. 41) for the sake of simplicity (this
means that only one t—};pe of one-particle intermediate state is regarded as
essential for a given reaction)., We shall also regard a as a zero-spin
particle (taking the spin into account will change nothing in the essence of
the matter but will clog the formulae with Clebsch-Gordan coefficients) ard
the normalizing volume V as equal to 1. Let us now note that

d°p, = 2m,6(2m, By - p3)d*Pa (2. 42)

and replace A and T in Eq. (2. 41) by their expressions through A and M (s=e
sect, 2,3). We then obtain, having performed integration over a@#p,,

+
Agp = 27m, 6(2ma Ey - p3)May Mysr (2. 43)

Now P, and E, must be such that the energy and momentum conservation
laws in the intermediate transition be fulfilled
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P, =P, (2. 44a)
or .
P, = Py » (2. 44b)

If any of the equations (2. 44) is not fulfilled, A 45 vanishes because of the
6-functions contained in Tqy and T§g.
Let us introduce the notation

r = 2m; Ea - p2 (2. 45)

and recall that A(r) is the imaginary part of M(r) (see section 2, 3). From
Eq. (2. 43) it follows that A(r) # 0 only at the point r = 0. In particular A(r)=0
when r < 0. Our purpose is to restore the amplitudes M 4 by A g with the
aid of the theorems presentéd in section 2,1, We shall therefore define the
amplitude so that

A (r) = ImM g (r+i0). (2. 46)

Hence it follows that
Maﬂ(r) = M g(r +i0) (2. 46b)

since the limit transition must not be defined differently for the real and
imaginary part of the analytical function. Applying now Egs (2. 5) and (2. 8)
when xg = ro < 0 we obtain

Moy (0) Mys (0)

M p(r) = - 2m, r+ie

(2. 47)

Consider the reaction (1. 1), The following intermediate states are possi-
ble in this case:,

Y1 =A+y+a;, v2 =B+x+ay, y=xt+ty+ag va=ay, (2. 48)

The intermediate processes that correspond to these intermediate states
are as follows :

a—y; =A+x~A+y+a;, M~ B=A+a;+y~B+y (2. 49)

a—y; =A+x*B+t+az+x, Yr-B=B+az+x—~B+y (2. 50)
a7y =A+x>x+y+as, w-B=x+y+as~B+y  (2.51)
a—=>vs = A+ x*ay, YarB=a > B+y. (2.52)

The intermediate states and reactions are obtained by the following rules:

(a) Since the number of nucleons conserves, the appearance of an inter-
mediate particle should be accompanied by the disappearance of an initial
particle; _

(b) The intermediate particle which has appeared in one intermediate
transition must vanish in another transition; )

(c) The disappearance of an intermediate particle must be accompanied
by the appearance of a final particle.
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The transitions (2. 49) obviously correspond to the decay of the particle x
and the synthesis of the nucleus B, i.e. the processes (1.8) and (1.9). Thais
the amplitude M 4p corresponding to the intermediate states vy is represented
by graph 1. The transitions (2. 50) designate the decay of the nucleus A ani
the synthesis of the particle y. The graph corresponding to this case is re-
presented in Fig, la.

Fig.la

The intermediate reactions (2, 51) correspond to the decay of the nucleus A
and synthesis of the nucleus B. In this case the amplitude is represented by
the graph of Fig. 1b.

Fig.1b Fig.1lc

Finally, the synthesis and decay of an intermediate particle occur in the
transitions (2. 52). Graph lc corresponds to this case. Thus, the amplitude
with a pole over the variable r corresponds to graphs with one internal line.
These graphs are known therefore as pole graphs. Equation (2. 47) is obtained
on the basis of the unitarity relation (2. 41) according to which A 4 does not
vanish only when conditions (2. 44) are fulfilled, i.e. when all intermediate
processes may take place for the free particles A, x, B, y and a. This fact
is reflected in Eq. (2. 47) in that it contains the amplitudes of intermediate
processes for the value of r = 0. This, according to Eq. (2. 45), precisely
means that the intermediate particle a is also free and consequently the
amplitudes Myy and M} describe the real decays and syntheses enumerated
above. We are interested in the reactions (1. 1) between the stable particles
A and x for which no decays are really possible. Using the analyticity prin:i-
ple, however, we can obtain from Eq. (2. 47) the formula for the amplitudes:
of the reactions of interest to us by the analytical continuation over the
masses, as was indicated in chapter 1. We can see that Eq. (2. 47) permits
such an analytical continuation since it is analytical over the variable r (con-
taining the particle masses) and since My and M} are also, by the initia’.
assumption (see section 1. 3), analytical functions of the particle masses.
Thus, Eq.(2.47) applies without change to the reactions with stable particles
if we understand by May and M?B the amplitudes of decays and syntheses
(2.49) - (2.52) analytically continued into the stability region. To obtain the
explicit form of Mys as functions of q° and E we have only to express r
through these variables. However, instead of ¢® and E it is convenient to use
other variables containing the energies and momenta of the particles A, x,

B and y. We introduce these new variables in section 2. 5.
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2.5. The variables s, t andu

For the following it is convenient to introduce these invariant (with re-
spect to the Galilean transformations) variables

s=-(p, +p,)? +2(m, +m)(E,+E,) (2.53)
t = -0, - p,)® +2(m, - m)(E, - Ey) (2. 54)
u=-(p,-py) +2(m, - m)(E, - Ey). (2. 55)

Of these three variables only two are independent since s, t and u are
connected by the relation: ’

s+t+u=-2mp Q (2. 56)
where

Q=m,+m, -mzg-m (2.57)

v
The variable s is, obviously, simply expressed through the total kinetic
energy E in the centre-of-mass system

=2 (m,+m)E. (2. 58)

The variable t is linearly connected with ¢ and E

= _2 2(my - my) _ -
t q + m, +m, [(my my )E - mpQ]. (2. 59)
The variable u is expressed through the sum of momenta 5; + }—)’y = p in the
centre-of-mass system

= 2 4 2(mp-my) . B
u=-p° + g ¥ my [.(my ma)E-mpQ]. (2.60)
Throughout the physical region the variables i and u are negative and the
variable s is positive. The physical region boundaries ty and uy, (on the side
of the maximum values of t and u) are given by the formulae

0 if Q(my - my) <0

tm* (2.61)
2Q(my - my) if Qm, - my) >0
0 if  Qm, -my)<0

Ump= (2.62)
2Q(my - m,) if Q(ma - my)> 0

The minimum value of s is given by the relation

0 fQ > 0
Spin = (2.63)
2(m, + m,)Q ifQ < 0
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Fig. 7 represents schemlatically the physical region of variation of t with
a given value of the variable s,

The picture is similar for the variable u with the only difference that the
minimum values of | t| are reached when the particle y is discharged in the
direction of the particle x (in the centre - of-mass-system) while the values
of lul are lowest when the particles y are discharged against the direction
of the particles x.

We shall see below that the variables s, t and u (which are the non-rela-
tivistic analogues of the Mandelstam variables) are also convenient in the
sense that the amplitude singularities of the reactions (1. 1) with respect to
these variables are expressed exclusively through the masses of the real
and virtual particles involved.

2.6. Amplitude poles with respect to the variables s, t, u

Let us express the variable r for different intermediate states (2. 48)
through the variables s, t and u. Using the conservation laws (2. 44) we obizin

Graph 1: r=t-2m, €y (2.64)

6;3 = m, +mgy -my (2. 65)
Graph 1la: r=t- 2m,elx (2. 66)
Graph 1b: : r=u- 2m, €}y (2.67)
Graph lc: . r=8+2m,eiy. (2. 68)

Substituting Eqs (2.64), (2, 66), (2.67) and (2. 68) into Eq. (2. 47) we obtain
the amplitudes of the pole graphs 1 to lc, Thus we see that the amplitudes
of graphs 1 and la (corresponding to stripping or pick-up reactions) have
a pole with respect to the variable t for the "unphysical" value

t.=2m. e X to=2m.eJ. (2. 69)
(o)

Hence it follows that the stripping and pick-up amplitudes will take on the
physical region boundary when t = tn (see Eq. (2. 61)). Since the smallest



DISPERSION THEORY OF DIRECT NUCLEAR REACTIONS 105

value of g2 {cos 6 xy= + 1, see Fig. 7) corresponds to'ty, according to the
above, this means that the angular distribution must be peaked forward. Note
that, according to Eq. (2.69), to is farther removed from the physical region
boundary the larger the mass of the virtual particle a and binding energy ¢

at the right vertex., Obviously, for light particles x, to is a minimum for

the deuteron stripping and pick-up since in this case we have a minimum
mass mgy equal to the nucleon mass and the binding energy is low. For the
deuteron stripping and pick-up we have

to = 4.47 MeV - AMU. ' (2. 70)

The proximity of to to tm for deuteron reactions precisely accounts for the
success of the Butler theory corresponding to the pole approximation (taking
into account the effect of the nuclear finite size, which will be discussed in
chapter 5). In the case of multicharged ions, the pole approximation may
describe the reactions of nucleon transfer, to being sometimes smaller than
for the deuteron stripping and plck -up reactions. For example when x = Be®
and y = Be8

to = 3.4 MeV - AMU. ’ (2.71)

In general, t, for the reactions on multicharged ions with neutron transfer
is as a rule of the same order as or less than that for stripping with light
particles (except for a deuteron).

Graph 1b, corresponding to the exchange stripping or heavy pick-up,
has a pole with respect to the variable u. Its amplitude reaches a maximum
at U = upy, since the pole

ug = Zmae;‘y (2.72)
lies in the unphysical region at the value u > 0. Hence it follows that the
angular distribution will be peaked backward.

From Eq. (2. 60) it is clear, however, that the anisotropy of the angular
distribution will in this case be manifest only at sufficiently low energies E
(the energy E enters into Eq. (2. 60) with a large coefficient (my - my)).

Finally, a pole over the variable s corresponds to graph le, For direct
reactions this pole graph is not of much interest since the angular distri-
bution of the reaction product it gives is isotropic. Besides, the pole with
respect to s lies at negative values of this variable

*

So = -2m, €2, (2. 73)

and hence the amplitude will reach a maximum at s = 0 or s = -2 (ma + my)Q,
i.e. at low energies. For these reasons it is difficult to distinguish between
the contribution from graph lc and that from the compound nucleus.

The n-p scattering in the triplet state is an example of the physical
process at low energies for which graph lc is essential. In this case the
particle a is a deuteron and

= 8,54 MeV - AMU. C (2. 74)

It should be emphasmed that graph lc does not correspond to the production
of a compound nucleus,
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We have come to the pole graphs by considering one-particle intermediz te
states. These are not the only possible ones and two-particle states should
be considered to show the legitimacy of discarding other intermediate stetes
in the unitarity condition. The amplitudes M(? corresponding to these stztes
may be small for two reasons: :

(a) The amplitudes of virtual processes are small;

(b) The singularities, corresponding to the two-particle intermediate states,
lie considerably farther from the physical region boundary than the poles.
There appear no physical causes, generally speaking, which could

ensure the fulfilment of condition (a) (this is discussed in more detail in

chapter 5). The problems involved in point (b) will be dealt with in chapters

3 and 4,

3. SINGULARITIES OF FEYNMAN GRAPHS (cont’d)
3. 1. Two-particle intermediate states ‘

Consider the unitarity condition for two-particle intermediate states.
According to Eq. (2. 36) and putting V = 1, we obtain

2 _1 + 3 3 .
AaB —W TctyT)'B d Pb d Pe (3. .l)

where b and ¢ are intermediate particles and the sign of the sum is dis-
carded for the same reasons as in section 2. 4. Replacing d3p. by Eq. (2. «2)
and performing the integration over P, we obtain

2) m + . ‘
AG =25 SMW M), 8(2mcE - p2)d’pp (3.

The integration over d3pp can be performed in the simplest way in the centre-
of-mass system of the intermediate particles b and c in which p; = pp. Having
performed the integration, we obtain

2) _m + %
\R(UB =——-87:ch pS‘MayM‘deQb' (3. -ZV)
In Eq. (3. 3) we have
2

P° £ 2mpew, w=Ep+ E. (3. 4)
and df2y, is a solid-angle element of the particle b in the centre-of-mass

system of intermediate particles. Just as in the tase of one-particle inter-
mediate states, Eq. (3. 4) holds only when the conservation laws (2. 44) in

the intermediate reactions are fulfilled.
3.2. Graphs for two-particle intermediate states

Among possible two-particle intermediate states for the reaction (1. 1}
there are states of the type

M =b+c , Y2 =b+tc+y. ) (3.5)
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—_—

Fig.8

Fig,9

The graphs 8 and 9 correspond respectively to these states.
The intermediate reactions are divided in these graphs by dashed lines. The
amplitude of each of these intermediate reactions depends on its kinematic
variables. In general, this dependence will be the more complicated, the
more complicated are the graphs describing the intermediate reactions. The
simplest case will obviously be the one when both amplitudes Myy and M'y"ﬁ
are constants, As will be clear from the following, this case, however, is
of no interest for direct process theory. Among the simplest graphs graph 2
is. the most interesting (see chapter 1), This graph is obtained from graph 9
under the assumption that the first intermediate reaction is described by
pole graph 10, and the amplitude M:,"g of the second intermediate reaction
is a constant. Note that graph 10 differs somewhat froin the pole graphs
considered in chapters 1 and 2. The difference is that there is neither
synthesis nor decay of particles at the right vertex, but the intermediate
reaction

a+x—~b+y. . (3.8)

The general formula (2, 47) for the pole graph amplitude holds, of course,
for graph 10 as well since the derivation of this formula does not depgnd
on the specific type of the intermediate processes at work at the vertices.
The amplitude of the reaction (3. 6) is a function of its kinematic variable.
We shall assume, however, that it is a constant.
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Fig. 10

To obtain the formula corresponding to the triangle in graph 2 we could
employ the same procedure as in the derivation of Eq. (2. 47), starting from
the unitarity condition, Eq. (2.5), and then extending analytically the ampli-
tude with respect to the masses into the stability region. This programme
can be fulfilled comparatively simply for graphs of type 8 when, for examyile,
scattering is the first or second intermediate reaction (i.e. ¢ = A, b = x,
or ¢ = B, b =y). We shall make use of this in chapter 7 to take into account
the interaction in the initial and final states. For graphs 2 the analytical
continuation of the unitarity relation (3. 3) and integral (2. 5) over the masses
proves to be more complicated and calls for relativistic treatment even wten
all kinetic energies of the particles involved are small., The fact is, as shown
in chapter 1, that continuation over the masses actually means continuation
over relativistic invariants, and such a procedure requires a knowledge of
the analytical properties of the amplitudes of the intermediate reactions and
the imaginary part of the amplitude precisely with respect to these relati-
vistic variables, The simple case of pole graphs has been considered above
and the example of graph 4, when scattering is one of the intermediate re-
actions, is an exception. In the latter case, it is actually only necessary to
perform the analytical continuation over the non-relativistic variable s (i. 2.
over the energy of the colliding particles), which can be done in the frame-
work of the non-relativistic approximation. The analytical properties of grapl. 2
onthe basis of the unitarity relation were first studied by MANDELSTAM [4]
We shall illustrate his method using a simple example in the appendix to
chapter 4. Here we shall make use of a simpler, though less rigorous,
method first offered by KARPLUS,- SOMMERFIELD and WICHMANN {5] and
later developed by LANDAU [6]. As related to the non-relativistic graphs
of direct nuclear processes this method was treated in detailby BLOKHINTSEV,
DOLINSKY and POPOV |7, 8]

3.3. Feynman integral

Equation (2. 47), which we have obtained for the pole graph amplitude
from the unitarity relation and analyticity principle, formally coincides ac-
curately with the Feynman amplitude corresponding to taking into account
the lowest approx1mat10n of perturbation theory. In perturbation theory the
‘amplitudes Mg, and MYB are real interaction constants and are assumed to
be small. In our case the latter is not hecessary at all and the meaning of
the amplitudes Mg, , Mg on which we dwelt sufficiently in the previous
lectures is quite different. Nevertheless, the formal coincidence of the ampli-
tudes of Feynman perturbation theory with those of dispersion theory, cor -
responding to taking into account the intermediate states with a definite
number of particles n, is not observed for the pole graphs alone but can be
used for finding and investigating the analytical properties of more compli-
cated graphs than pole graphs. We have mentioned the fact that the Féeynman
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amplitudes coincide with the dispersion theory amplitude because, first, the
positions of the singularities of the Feynman integrals, which we propose
to consider in this section, do not depend on the magnitude of the constants,
Secondly,--the increase of the order of approximation in perturbation theory
involves the increase of the number of virtual particles, since a limited
number of particles is produced or vanishes in any ''elementary'’ interaction
event. The latter circumstance makes it possible to establish eas1ly the cor-
respondence between the Feynman integral and the amplitude M( corre-
sponding to taking into account n-particle intermediate states in the unitarity
relation,

The Feynman amplitude can be written in the well-known form of the
following integral

M e = GS‘ d®p; dEy ....d%pydE, )
b (p? - 2m E; -i€)...{p> - 2m E -i€)

(3.7)

In Eq. (3. 7) G is a constant expressed through the products of the amplitudes
of the virtual reactions at the vertices of the graphs, and P;, E;, and my
(i=1, 2, ... n) are the momenta, kinetic energy and masses of the virtual
particles. The number n equals that of internal lines of a graph, and £ is,
the number of independent 4-momenta of virtual particles, i.e. such
4-momenta as are not fixed by conservation laws for the given 4-momenta
of the outer particles A, x, B and y. The conservation laws hold, just as

in a pole graph, at each vertex, If we designate the number of vertices in a
graph by v, then v, n and / will be connected by the relation

f=n-v+1

(v- % bonds are imposed on n independent quantities: altogether we have v
conservation laws, but one of them ensures the conservation of momentum
and energy throughout the reaction and imposes no restrictions on the vari-
ables of the virtual particles). For a pole graph we haven =1, v = 2 and

£ = 0. For a trianglé graph 2n = 3, v = 3 and £= 1. For a rectangle graph 3
n=4, v=4and £=1. In general, according to Eq. (3.8), £ = 1 for graphs
with a number of lines equal to that of vertices. Such graphs will be referred
to as one-contour graphs., The one-contour graph amplitude is thus given

by the integral (n > 2)

dd P31 dEl
Mg * GE o 3.9
(of - 2m3 By - ie). . (p2 - 2m E - i€) ( )

It is precisely the one-contour graphs (apart from the pcle graphs considered
above) that are of practical interest for direct nuclear reactions. In this
chapter. therefore, we shall only deal with one-contour graphs. Note that
the integral (3.9) converges at any value n> 2, When n = 2 the integral
diverges, This divergence is only due to the assumption that the amplitudes
of the virtual processes (entering into the constant G) are constant quantities,
and thus does not involve any cardinal difficulties of the theory. The momenta
and energies of the virtual particles 2,3 ... are expressed through p;, E;
and the momenta and energies of the outer particles.

- Since.the integral (3. 9) contains only scalars (p? - 2mE and d3pdE) in-
variant with respect to the transformations of the reference system, this
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integral is an invariant quantity and consequently can depend only on the
invariant kinematic variables s, t and u introduced in the preceding chapter.
Thus the integral (3. 9) is an analytical function of the variables s, t and .
Let us now turn to the singularities of the amplitude (3.9). For this purp Jse
let us use the identity

ryra . ayry +o.i.otap rg )t

—_ 1_% = (n-1)t Sdal yd an b(ay+... . te:-1) (3. 10)

and re-write Eq. (3. 9) as

- dEpidE
(of +Ap; + BE; + C-ie)"
(3.11)
where A, B and C are the linear forms of @; and functions (quadratic and

linear) of the momenta and energies of the outer particles as well as the
masses of the virtual particles. In particular,

Mg = G(n - 1)!5 6(1Eai- 1)de; ... de,

B=2ZL Xiaj mj (3.12)
where

IRSENES (3. 1%)

depending on whether the i-th line is directed along or against the direction
(given by the direction of the line i = 1) of passing the contour of a graph.
For example, for graph 22X, =1, Ap = 1 andA¢ = -1 if we'put a = 1, The
vector A is a linear combination of the momenta of outer particles with the
coefficients 0, £ 2@;. Thus, for graph 2 we have

K= 2(1’2(1—(1/3;; (3. 14)
where

— —

= Py -

Finally, the constant C is a linear combination of the squares of outer mo.-
menta and energies. Thus, for graph 2 we have

C=ayq® +asp’ - 202 my{Q + Ey - Byl + 2mee (3. 15)
Q =m, +my - Inp - My

Now we can perform the integration over d®p; and E;, thus obtaining an
integral explicitly depending on outer invariants as on parameters. The inie-
gration over E; can easily be performed with the aid of the formula

+00
g _ o om

(BE + R-ie)' (v - )RV
~00

1 6 (B). (3. 16)

Having then performed the integration over p; we obtain the following final
formula
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M i7r3(2n—'7)“5 8(Zo; - )6 (Zieiamy) doy ... dag
aB”" 9n-3 el {-2201 a; (r + Zm” Q”)_ie}n-s/T

(3. 17)
ij

The invariant quantities ri; are constructed in the following way. Let us-
contract to one-point all internal lines connecting the lines i, j (see Fig. 11}).

Fig.11

Let us designate the algebraic sums of the outer momenta kinetic energies
and masses adjacent to our generalized vertex by ﬁZj; Eij; and m;jj respec-
tively, p, E and m being taken with + for the lines entering the vertex and
with - otherwise. Then we shall have

rg = - pfj +2mij Ejj . (3.18)
The quantity Qij entering Eq. (3. 17) is the energy yield at such a vertex (i. e.
Qij equals the sum of the masses colliding at the vertex minus the sum of the
masses going out of the vertex,the outer mass mij being always assumed
entering the vertex).
Clearly, in the case of the reaction (1. 1) (n < 4 for a one-contour graph)
the variables ri; can be expressed linearly through the variables s, t and u.
It. is much simpler to obtain the connectlon between ru and s, t and u in each
specific case than write it out in the '"'general form'' using cumbersome no-
tations, .

" Taking into account all that has been said above, we can represent
schematically the amplitude Myg as follows

8 (Ca-1) § (Exam)de...day

= i
Mg = G (F;s+Ft+Fu+R-ie)t™5/2

(3.19)

where F and R are the quadratic functions of @; and linear functions of the
masses of the (real and virtual) particles involved. Our problem is now to
find the singularities of Mg over the variables s, t or u, the singularities
with respect to the variables t or u nearest to the physical region being of
primary interest to us. These singularities are responsible for the angular
anisotropy characteristic of direct reactions. They could be found without
calculating the integral (3. 17) {71.

In the case of the reaction (1.1) n < 4 of interest to us, the integral
(3. 17) is simply calculated and the singularities of Mg can be found directly
from the explicit form of the analytical function. This is precisely the pro-
cedure already adopted (chapter 4). However, it is worthwhile to indicate
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first some general properties of the Feynman amplitude singularities and
methods of investigating them. . -

3. 4. . Certain properties of Féy’hman integral singularities

The basic idea of the method of finding the singularities without directly
calculating the integral (3. 17) is as follows. If we deal with an analytical
function ¥ (z) given through the parametric dependence of a certain integral

b

F(z) = Sf(a, z)d a (3. 20)

a

it is clear that a singularity z, of the function F(z) means the divergence of
the integral (3. 20) when z = zg. This divergence may take place because
when z = zo, f{a, zo) goes to infinity either at one of the integration limits
or inside the interval (a,b). The latter case requires a special study since
the divergence of f{a, z) inside the integration interval is a necessary but
insufficient condition for the existence of a singularity.

If

1

e o (3. 21)

(e, 2)
then for a singularity to exist it is necessary that @{@, z) when a < z < b have
at least a second-order zero such that when passing it by changing the
integration contour, this multiple zero becomes two zeroes lying on both
sides of the integration contour (see Fig. 12).

/,c: (20
'.L‘C (2

a KLoZo) b

Fig.12

The integral

b
o da
F(z) = S‘ ©? - -i)la- Vo) - @ < i€l (3.21a)

may serve as an example in such a case.

These requirements, and taking into account the specific form of the
integral (3. 17), leadtothe rules of finding the Feynman integral singularities.
It can be shown [7] that the singularities of the amplitude (3. 17) are given
by the following equation

ﬁ('l)m Dy =0 _ (3. 22)

where Dj; is the minor of the element (i, j) oi_‘ the determinant composed -
of the quantities
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Ap X

mpm,; CH *2m5 Q). (3.23)

W < -

Equation (3. 22) can, according to LANDAU [6], also be obtained from the
condition of the compatibility of the requirements

n
L, oidips = 0 (3.24a)
ry=0 (3. 24b)

and the conservation laws at each vertex of a graph, Nor are these equations
valid for one-contour graphs alone (in the general case the requirement
(3. 24a) must hold for each contour of .a multicontour graph). The require-
ment (3.24) means that singularities occur at such values of s, t and u at
which virtual particles are free. We have seen that in the particular case

of a graph with one internal line the condition (3. 24b) means the existence

of a pole.

Besides the singularities given by Eq. (3. 22) there are singularities
corresponding to the case when the denominator in Eq. (3. 17) for certain
values of kinematic variables vanishes for all values of the variables a.These
singularities are called trivial, In particular, the energy thresholds of a
reaction are such singularities.

Finally, the following is also important. Let us write the integral (3. 17)
as :

1

Mg = y day F' &, s, t, u) (3. 25)
0

where

o= G-j‘ 8(Ea - 1) 6 (Yodm) doy ... dayy doger... day

(Fss+Fit+Fqau+ R - i}e)n'5/2 . (3. 26)

Let us consider F' {ak = 0) = Fyls, t, u). Then it is obvious that the singulari-
ties of Fo(s, t, u) coincide with those of a graph having one internal line less,
i.e. a graph derived from the initial one by the "contraction" of the k-th

line. It then follows from Eq. (3. 25) that this singularity of the "contracted"
graph is also a singularity of the amplitude Myg since the integrand diverges
atthe lower integrationlimit {@y = 0). Hence we reachthe following important
conclusion: the graph in question has also the singularities of all "contracted"
graphs. .

Let us now proceed to the singularities of the triangle graph amplitude.

4, TRIANGLE GRAPH
4.1. Triangle graph amplitude

In this chapter we shall consider graph 2, putting a =1, b = 2andc = 3.
It can readily be seen that in this case the denominator of the integrand

depends on the variable t only and consequently the entire amplitude M qp
is a function of one variable t. Indeed, we have for graph 2
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ae =ra=0, rye =rg =0 ) (4. 1)

since the particles A and B are free. The only non-zero invariant of ry; is
ras, and according to Eq. (3. 18)

T~ t. (4.2)

It will also be noted that for graph 2 we have

~Ao =R, == {4.3)
Qab = Q' , Qobc= - €pe Qap = - €4 (4.9)
Q =m, +m,-my- my. (4. 4a)

The integration in Eq. (3. 17) over two of the three variables a (& and a¢, for
example) eliminates the 6-functions after which there remains a sing.e
integral of the type

Mgs = G 5 da, (Aaa+ Baa+C -ie)'* {4, 5)

which can be calculated without difficulties. As a result, we obtainthe follow-
ing formula for the amplitude Mj of triangle graph 2

M a(t) = CEy(2) (4. tia)
C = (ig/87) (mpm¢/V mamg) (M' /Vta-t1) (4. 6)
g=-2M, Mt m, - (4. tia)

where M, Mg and M' are the amplitudes of the virtual decay of the nucleus
A, synthesis of the nucleus B and the reaction a + x —b + y respectively,

Z=1+(t—tA/tA-t1) (4-7)

ta = 2mumy [ (€ & /mpe) it (€A /m e F1%- 2 (m - m )@ (4.8)
t1 = -2(m, - m)Q (4.9)

Efz) = 2 Hin(1rzif1- 2h), . {4.10)

Note that all amplitudes of virtual reactions are regarded here as constaat
quantities. It is clear from Eq, (4. 10) that the function E\(z) has a singularity
‘at z = 1. According to Eq. (4. 7) this means that ta is a singularity with res-
pect to the variable t of the amplitude M4 (t) of triangle graph 2: t = ta the
amplitude M goes to infinity. From Eq. (4. 8) it follows that

ta> 0 (4.11)

_i.e. lies always in the unphysical region of the variable t. Equation (4. 8)
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also shows that t, is the larger the greater the mass of virtual particles and
binding energies at the vertices of a graph.

Note that Eq. (4. 8) for a triangle singularity can also be obtained from
the general equation (3. 22) for triangle graph singularities, this graph being
in this case a quadratic equation for the quantity n,, connected with t by the
relation )

t=-2[m mpnap + (my - my)Ql I (4. 12)
The quantities n,. and Ny are
A B
Mac = ‘Eac/mac s - Tbe ® - €he [mipe, (4. 13)

The equation for 1n,, and iis solution are of the form

2 z 2 '
Mg ¥ Mye + Mgy - 2nac Mhe = 2nac Map = anc Map = 0 (4.14)
Nab = Nac + Nt 2V Mac M- (4. 15)

The negative sign of the root in Eq. (4. 15) corresponds to Eq. (4. 8). The point
z = 1, and consequently t = {5, is a branch point, The rule of passing the
poles, leading to the imaginary additional term i€ (€ > 0) uniquely indicates
the way the sheet of the function F(z) should be chosen. Since a, and o}, are
positive, the denominator of Eq. (3. 17) can be re-written in such a form that
the imaginary additional term would relate directly to the quantities rj

ri - rig +ie. (4. 16)
According to Eq. (4. 2), this means that
t—t+ie (4.17)

Hence it follows that we must take the values My (t) on the upper side
of the cut, i.e. Ma(t + i0). The latter should be directed from the point ta to
+o since all other possible branch points lie in the unphysical region when
t > 0. The planes of the complex variables t and z are represented in Figs .13
- 14, Cross-hatching shows the physical region. Note that the point z = 0

-
»

L e— -——-* Fad
- -“_“-“-T

r LLLLIL /I
= i
by [
atm-myisa Qtmy~my >0
Fig.13 Fig.14

and consequently t = t; is not a singularity of the amplitude. Indeed, from
Eq. (4. 10) we directly obtain

F(0) = 2 7 (4. 18)
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and it can easily be seen that the value of F(z) does not depend on the ciioice
of the branch v’z (F(z)-does not change from the substitution vz — - /i),

Summing up all that has been said above, F(z) as an analytical function
in the cut plane is given by the following formulae

(-z)! 2arctan (-z)} -0 <z<0(-® <t<ty)(4.19a)
F(z) = 2zt In(1+24/1-2%) 0<z <1 (t <t <tp) (4.19b)
z"!{ln(z% +1/z% - 1)+ir} 1<z <49 (ty <t <o )(4.19c)

Thus in the physical region of the variation of t, F(z) is of the forra
(4. 19a) or (4. 19b). From these formulae follows the important conclusion
that far from a singularity Ma (t) decreases with the increase of t - ta rauch
more slowly than the pole amplitudes Mo:

IMatt) ] ~ J1/6-ta) H], (& - tfea - 1) >> 1 (4. 20)
whereas under the same conditions
[Mo]~ 1 - ta) (4. 21)

This means that far removed triangle graphs can essentially affect the abso-
lute values of the cross-sections of a reaction and consequently the calculation
by these data of the reduced widths from the Butler formula.

Let us now compare the amplitude M (t) with the pole amplitude M (t)
which we shall write as

Moft) = (g’ /to)Fo (2*) (4. 22)
where

Fo(z' )= 12" +1) , z'=-tfty (4. 23)

Then for the ratio of the amplitudes M, and Mo we have

ﬁ_ = i(g/g' Ym2 /mamp )} my M/t /87 (ta-t)YFp (2)/Fo (2') ] (4.24)

the amplitude M/ being expressed, according to Eq. (1. 2), through the criss-
section for the virtual reaction (3. 6) by the formula

[M!| = 27 { (do/A(1/m axm by ) (B} /p} )} E (4. 45)

where py and p’y are the momenta of the particles x and y in the centre-of-
mass system of the particles a and x.

It can readily be seen that all dimensionless factors in Eq. (4. 24) with
the exception of the last one may, in general, equal 1 in order of magnitude.
Indeed, with respect to the quantities g and g’ this proposition is self-evident,
the masses mcg, my and mg are of the same order (or otherwise the particles
m, and mj must be heavy and the smgularlty would, according to Eq. (4. 8),
lie far) so that
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The factor {1/87)(m M to/(ta-t1)%) is known least of all since it contains
the amplitude M' of a virtual reaction. If, however, we proceed from the
known cross-sections for real processes we shall see that this factor can
also lie in the.interval 102 to 1, Thus the ratio of the amplitudes of a triangle
and pole graph is given in the final analysis by the ratio Fp (z)/Fo(z’) and
the latter in turn depends on how large lz| and z’ are as compared with 1,
i.e. on the remoteness of tpo "and ty from the physical region boundary. This
is why the comparison of the positions of singularities of different graphs is
the primary criterion to see how essential a certain mechanism of the re-
action is. In the section below we cite data on the values of tp for different
reactions.

4,2, Position of triangle singularities for specific reactions

If we know the masses of the particles A, x, B and y and the virtual
particles a, b and ¢, we can calculate tp by Eq. (4: 8). It has been pointed
out above that to find tp nearest to the physical region we should choose
graphs of type 2 where the lowest binding energies at the vertices would
-correspond to the lightest particles a and b. Table II lists the results of such
calculations for reactions on certain light nuclei, In the first column of the
table the positions of the poles (to) calculated by Egs. (2. 64) - (2.68) are
given for each reaction. The physical region boundary ty with respect to
the variable t (see Eq. (2.61)) is given in the third column for each reaction.
The quantities listed in Table II are calculated for the ground state of the
nuclei B and C. If the nucleus C is in the excited state C*, then eby, > €l
and according to Eq. (4. 8) the singularity t& is larger than ta. The data given
in Table II arée quite illuminating, They reveal the cause of the success of
the Butler theory for the case of deuteron stripping or pick-up corresponding

TABLE O

POLES AND NEAREST TRIANGLE SINGULARITIES WITH RESPECT
TO t FOR CERTAIN DIRECT PROCESSES

Reaction (d,n) (o, 1) (He®, o)
Target & LN ITm - 1% A tm ty tA tm
Bl 4,47 138 -12.9 39.6 173 0 41.1 53.3 0
ct 4,47 225 0 39.6 260 -24.9 41.1 232 0
N4 4,417 141 -10.2 39.6 176 0 41.1 97.8 0
ol 4,417 162 0 39.6 197 0 41.1 193 0

Notation: t, isa pole, tp-a triangle singularity,
tyn - the physical region boundary;
[t] = MeV. AMU

to the pole graph (taking into account the effects of the finite size of the
nucleus, see chapter 5). Indeed, it is clear from Table II that in the case
of deuteron reactions the nearest value of tp is roughly 50 times as large

as ty. This occurs because to is situated rather close to the physical region
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due to a low deuteron binding energy. An altogether different situation
prevails in the stripping reaction for particles different from a deuteron.
For example, the reaction B' (He® a)B® is a pick-up reaction, but the
triangle singularity is rather close to the pole. It might seem that the re-
action C¥ (a,t)N'® is exactly the same as the stripping reaction C*? (g, r)N!3
However, the nearest singularity is removed only 4. 4 times as far from the
physical region boundary as a pole. The fact that we have not just one, tut
several triangle graphs with closely situated singularities, is also of basic
importance, . . :

Table III lists the data, taken from [7], on the position of triangle singu-
larities for the reactions C12 (@, t)N23, C12(He3 a)C1!, with all values ro-
ferring to the ground state of real and virtual particles. This example i
typical: as a rule there are always at least 3 or 4 triangle graphs with closely
situated singularities, If we take into account all possible graphs in which
the virtual nucleus is excited with a not very high energy of excitation, the
number of triangle graphs with closely situated singularities will increase

even more (this circumstance is especially essential for medium and heavy
nuclei).

TABLE 11

TRIANGLE SINGULARITIES OF CERTAIN REACTIONS
([tal = MeV . AMU)

Virtual 'particles

Reaction tA

a b c
d o B 232
c (me®, wyctt o He® Be® 332
He? He? Be® 528
t d B 532
p He? Bt 260
C¥ (o, 1) NI n d ct 280
' d He® B9 608

In addition to the triangle graphs 2, the graphs represented in Fig, !5
have singularities with respect to momentum transfer.
Graph 15b refers to the pick-up of at least two nucleons. The amplitudes
of these graphs and their singularities are obtained in exactly the same way
as shown for graph 2. The formula for the singularities of graph 15b can be
derived from Eq. (4. 15) if we take the + sign before the root. The difference
in the choice of signs is due to the fact that in the case of graph 15b A, \p =

=-1, and not +1, as in graph 2. Accordingly, the function Fa (z) is taken on
the lower side of the cut.

Graph 15a is a perfect analogue of graph 2. The formulae for graph 15a
can be derived from the formulae of the preceding section after the subs:i-
tution ' '

t »t+2(m, - my)Q- (4. 26)
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@) ) (b)

Fig.15

The values ta for graph 15 are the same in order of magnitude as for graph
2. F‘or example ta of graph 15a for the reaction C12 (He3 @)Cllwhen a = p and
b = ¢ = d amounts to 277 MeV.AMU,

The main conclusion to be drawn from the analysis of the location of
singularities is that the pole (i.e., Butler) mechanism of a reaction is not,
in general, a predominating one except for the cases of deuteron str1ppmg
and pick-up.

4,3. Concluding remarks

The position of the singularities over t determines the degree of
"periphericity'’ of a direct reaction. The nearer a singularity is to the physi-
cal region boundary, the more peripheral the graph. This follows from the
fact that the mean momentum of virtual particles is ejual in order of magni-
- tude to vty orvia. Thus, if Vip < k where k is the momentum of a

virtual particle inside the potential well, the reaction occurs in the main
outside the potential well, that is, on the periphery of the nucleus.

It has been pointed out above that the pole graphs with singularities with
respect to t correspond to the Butler theory. Triangle graphs taking into .
account the finite size of the nucleus (see chapter 5) correspond to what is
known as the ''surface scattering'' mechanism considered by AUSTERN,
BUTLER and McMANUS [9].

The dispersion method: :

(1) Imparts a physical meaning to calculations by perturbation theory;

(2) Permits the prediction of which cases can be expected to have the
predominating contribution from which mechanism; and

(3) Is universal in the sense that in terms of this method all virtual
particles (and not only those which can be described by a wave function, i.e.
exist for durable times in the nucleus) are of equal status,

Using the graph technique and formulae for singularities we can indicate
the most essential mechanism for each specific reaction. ’

It has been pointed out earlier that for direct process theory rectangle
graphs of type 3 can be of practical interest besides the pole and triangle
graphs. The amplitude and singularities of a rectangle graph require similar
calculations to those for a triangle graph. Rectangle graphs may play a
certain role in reactions of the type (n, He3), (p, t) or in reactions on multi-
charged ions with a transfer of two nucleons. ’

The singularities of more complicated graphs, just as of triangle ones,
become more distant as the binding energies at the vertices and the masses

~of virtual particles increase. The classes of allowable graphs essentially
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decrease because of the non-relativistic approximation. The amplitude of
the graphs satisfying the relation (n is the number of internal lines and / is
that of independent 4-momenta of virtual particles)

n<5f/2 (4. 27)
are in general constants equal in order of magnitude to Ve/m or even ﬁ?mR
where R is the nuclear radius. This circumstance is due to the fact in the
case of (4.27) the Feynman integral converges only at the expense of the

vertex form factors (i.e, the integral (3. 7) diverges). Graph 16 is a cas:
in point,

Fig.16
The graphs for which
n =5p/2 | (4. 28)
may in principle play a certain role in non-relativistic processes, since by

order of magnitude they are proportional to ( €/m)#|1n (€/M)| (see [8] .
Graph 17 is-of this type. .

Fig.17

Fig.18

Finally, let us note that the one-contour graphs in which all A; = +1 (Fig. 18)
are also relativistic, though for a different reason. The fact is that in this
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case the non-relativistic Feynman integral (3. 17) vanishes because it is
impossible to satisfy the condition

?aimi =0, ;>0 (4. 29)

which arises owing to the 6-function 8();ai'7timi) when A = + 1,

APPENDIX TO CHAPTER 4
Derivation of triangle graph amplitude from unitarity condition

To illustrate the method we shall consider graph 19 in which the masses
of two virtual particles (b and c) are equal to m. The masses of the initial
particles (A and x) are equal io mo and the masses of the final particles (B
and y) are equal to ms,

The dashed line in Fig. 19 divides two intermediate reactions. We shall
consider the amplitude of graph 19 as a function of the square, designated

Fig.19

by the letter S, of the sum of the 4-momenta of the particles A and x
S=(P,+ P2 (4. 30)
In the noﬂ-relativistic approximation we have
S=s+(my,+m,)2=s+4m3. (4. 30a)

In the centre-of-mass system the variable S equals the square of the sum
- of the total energies of the particles A and x:

S=W?% W=¢,+¢,, €,=m,+E,, Ep=m,+E,.  (4.31)
The two-particle unitarity condition (3. 1) is calculated in the relativistic
case just as in the non-relativistic one with the only difference that instead
of the substitution d3p. by Eq. (2. 42) we should write down

d3pc = 2¢. & (P%- m?)d¢P,. (4. 32a)

Then from Eq. (3. 1) we can easily obtain a formula perfectly analogous to
Eq. (3. 3) and passing into it in the non-relativistic approximation
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2 €p € .
A§g=§§r_>ﬁ_, fe ‘gMay M, dQp. (4. 32)

Since €, = €, = € because of the equality of the masses, we have

2 ‘
2 _ € b +
A=~ pr g M,, MygdQb. (4. 33)

For the amplitude M;B we can evidently write, according to graph 19,

+t o8
= . 4
My =5 g+ (4.34)
and from the conservation laws we obtain
‘P2 =l 4nd - WZZ_ + 2pops (4.15)
where pgy is the momentum of the final particles inthe centre-of-mass sy:stem
S ’ .
po =/ - mf . (4.26)

p is the momentum of the intermediate particles in the centre-of-mass
system
=/58 2
. ps/z-m (4.37)
and z is the cosine of the angle between the momenta of the particles b aad
y in the centre-of-mass system. Choosing the direction By as the polar axis,
we can write

&y = -dzdo. (4. 38)

Substitutihg Eqs (4. 38) and (4. 34) into Eq. (4. 35) and performing the
integration over d9 we obtain on the assumption that M, is independent of z:

+1
2 _ Myy €2 g dz <
Aas™ g Wpo ) z - $(S, m%) (4.%9)
where
‘ . S—4m2+2(m%(—m2f)
S, mf) = (4.40)
9 mE) = S - amd)(S - 4m?)
while
mi =m? + mi- (4. 41)

The unitarity condition (4. 39) has a physical meaning, as was pointed out:

in chapters 2 and 3, when all intermediate reactions are really possible and
the entire reaction is possible as a whole. In this case A(‘;zl)g is the imaginary
part of the amplitude for the values S > 4m? and S > 4 m? (4 m? is the
threshold of the first intermediate reaction @ — vy, and 4 mf2 is that of tte
entire reaction a— B).
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In other words, . A} has the meaning of the imaginary part of the ampli-
tude when

m;< m. (4. 42)

The amplitude MZ can then be restored by the general formula (2. 5) ‘Which
in the present case will be written as

[
(2) ra
M) = %X—"—‘Y——AS, &) gs (4.43)
4m?
It
ms > m (4. 44)

the first intermediate reaction becomes possible earlier than the entire re-
action as a whole and therefore the unitarity relation has no physical mean-
ing when :

4 m? < S< 4m? (4. 45)

and consequently A(gﬁ in this region is no imaginary part of the amplitude.
Hence (4. 43) ceases to be valid. We can, however, obtain M§{3 in case (4. 44)
by considering Eq. (4. 43) as an analytical function of my and performing the
analytical continuation of (4. 43) from the region (4. 42) into the region (4. 44).
With this aim we should substitute Eq. (4. 39) into (4. 43) and consider the-
analytical continuation of the integral (4. 43). It is clear that if in the move-
ment from m; < m to m; >m, A(o%h as a function of m;2remains regular and
does not go to infinity under any 4m2 < S < © the integral in (4. 43) will have
meaning and Eq. (4. 43) remains valid. The ?roblem thus reduces to the in-
vestigation of the analytical properties of Afdg. From Eqg. (4. 39) it is clear
that if 14 (S, mr)] > 1, then A% is regular. If, on the other hand,

| (S, me) | =1 (4. 46)

for certain m and S entering the integration region in the integral (4. 43),
then A(g)ﬁ will be singular since the integrand in Eq. (4. 39) goes to infinity
at one of the integration limits. Let us find for given masses the point Sa at
which condition (4. 46) holds
2 2,2
sA=4m2-(—“—lm%mL). (4.47)
a

From Eq. (4. 47) it is clear that when
mf = md (4. 48)
we have Sp = 4m?, i.e. equal to the lower integration limit in the integral
(4. 43). Consequently, in the case of (4. 48) the integral (4. 43) will have no
meaning since the integrand is singular at the lower integration limit. From
Eq. (4. 47) it is clear furthermore that if

m? > m} (4. 48a)

then, according to Eq. (4.41} Sp again becomes smaller than 4 m?, i.e. goes
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beyond the integration region in Eq. (4. 43). This does not mean, however,
that under the condition (4. 4a) Eq. (4. 43) again becomes valid. Indeed, if
m¢? is regarded as a complex variable, then with a sma]l positive imaginary
part of m;?, the point Sy will move with the change of ms® as is shown in Fig,
20. It is clear from Fig. 20 that the trajectory of S obviates the point 4 m?2
on the right. It is easy to see from Eq. (4. 39) that the function A{(S) is
analytical in the plane S, with a cut along the curve shown in Fig, 20, for
any values of m¢. But since the function at the cut is not unique, the integral

Re m3cm%

im? [
7

Sy Re m} )mf(

Fig.20

(4. 43) becomes meaningless since the integration tontour in Eq. (4.43!|
crosses the cut, A definite meaning can be imparted to this integral by de-
fining it as an integral over the contour I' shown in Fig. 21.

Fig. 21

If we now make the imaginary part of mf tend to zero, the lme v will
pass onto the real axis and we shall have

: Sa
5 AR 4oy S AGH(S + i€) - AQ(S - i€) o
§ -8 \ 5-8
(4. 49)

(?) (qs
g 2R 4
Thus

. (2) .
(2) AP, (s +i€) - AT (8- i€) 1 aB (S) o
) (S) = 5 el as +1 | A8 gy (4 50)
4m?

Let us now turn to the non-relativistic approximation, making m? - o and
substituting S for the variable s by Eq.(4. 30a)* Then the second integral ir
Eq. (4. 50) goes to zero and we obtain

(2)( y=1 SA g (s’ Slle)- SA (s + i€y ds’ (4.51)

* Strictly speaking it is 1mp0351b1e to turn to non-relativistic approximation in this example, because
. the masses of the particles Band yare equal. But the scheme of the consideration and formulae (4. 52) -(4. 54)
are corréct.
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where
= Sp - 4m? ' (4.52)
From Egq. (4. 39) it follows that
* =
AZg(S) = A _g(S¥ {4. 53)
and therefore we obtain finally
(2) Im Aqs(s
Mog(s) = - — —s—,—%—g‘l (4. 54)
Sa

Thus in the case under discussion M{3(s) is expressed with the aid of the
dispersion integral of ImA(ZE, {s) and not of AZ (2% (s) itself, As we have seen,
this result follows from the fact that -

m¥< m® + mza
i.e. the fact that the particles B and y possess small binding energy (as
compared with the rest mass).

In conclusion it should be noted that Eq. (4. 54) remains valid for unequal
masses of intermediate particles, and if we replace a by t, it can be trans-
ferred unchanged onto the graphs with triangle singularities for t which we
have considered.

It can readily be seen that Eq. (4. 54), if we substitute Im Ay from Eq.
(4. 39) (calculated in the non-relativistic approximation), coincides with the
result obtained from the direct calculation of the Feynman integral.

5. AMPLITUDE VERTEX PARTS OF DIRECT NUCLEAR PROCESSES

5.1, Definition of vertex part

Virtual decays and captures occur in the graphs we have considered.
The amplitudes of these processes will be called vertex parts, We shall
. confine our treatment to such vertex parts where only one of the particles
entering a vertex is virtual. Vertex parts of this kind are considered in detail
in [10].

We shall begin with specifying the concept ofathree tail vertex part as
shown in Fig. 22. If we deal with a "purely pole'" graph, i.e. a graph without
any singularity except the pole, the vertex part is expressed through the
matrix element M%3 of the decay of particle 1 into particles 2 and 3 and is
a number known as the reduced vertex part

‘)’%3 = (1113/7)')é Més. (5 1)

The sum of the graphs shown in Fig, 22 has several singularities besides

a pole (the black dots correspond to the reduced vertex part for the decay
1—+2 + 3, crosses designate the reduced vertex part, the same for all terms
of the sum, for the second vertex at which the line of partlcle 3 ends).

These singularities are determined by the singularities of the graphs follow-
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-

Fig.22

ing the first terms making up a purely pole graph., Since the number of
summed graphs is infinite in the sum as a whole there may inprinciple appear
singularities which do not occur in any term of the series. An essentially
singular point may for example be such a singularity (we shall see later ¢n
that this is perhaps the situation in the case of nuclear vertex parts). The
amplitude corresponding to the sum of graphs in Fig, 22 can he represented
as Eq. (2. 47). This formula will give the vertex part 1"23 (subscripts and
superscripts will be omitted) for the decay vertex 12 + 3. The vertex part
T is a function of the masses of the particles and the invariant variable 1,

tt2 = - (1 - p2)° + 2(my -my )(Ey - Ep). (5.9)

If the particles 1 and 2 are free (i.e. r; = 0 and rz = 0) then in the rest
system of particle 1 the variable t;2 can be simply expressed through the
square of momentum transfer ¢ = (p; - pz )2

t1z = - (m3 /ma3)q® (5.%)

where mg; is the reduced mass of particles 2 and 3.
From energy conservation law we have

E=m; - mg - mg (5. 4)

where E is the total kinetic energy of particles 2 and 3 in their centre-of-
mass system. If m; < m; + m3 (particle 1 is stable) then E is negative anid
equals the absolute value of the binding energy of particles 2 and 3. Thus,

if the masses of particles 2 and 3 are regarded as fixed, the vertex part will
be a function of the momentum transfer q and energy E. In the next section
we shall consider the analytical propertles of T'(q, E) with respect to the
variable q.

5.2, Vertex part in single-particle model

It will be shown that the calculation of vertex parts essentially reduces
to the quantum description of the relative motion of particles 2 and 3. This
is why a one-particle (optical) model can be used for calculating the vertex
parts. In the one-particle model the wave function of the relative motion ¢f |
particles 2 and 3 ¢ (r) where r =13 - 73 (T3 and Fj are the vector radii cf
the centres of gravity of particles 2 and 3) corresponds to the "decaying"
nucleus. The function ¢ (r') is finite at zero and decreases exponentially for
‘sufficiently large r. I particles 2 and 3 are zero spin particles and the
nucleus of 1 has spin £, the radial part ®,{(q) of the wave function Fourier
component is given by the equation
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o4 = 2/mt 1§ vy)iganitar, . (5.5)
(o]

where jo(qr) is a spherical Bessel function and ¥y (r) is the radial part of
the wave function. Since

Yelr) = Cyle ™ /r) (5.6)
r— %
where
K =y 2me e=-E>0 (5.7)
from Eq. (5. 6) it follows that¥, (q) must be of the form .
P,(q) = F, (q)/(q2 +K2)s . (5.8)
and Fy (ix) = (2/m¥cCy. (5.82)

The function Fy(q) is analytic in the upper half-plane of the complex variable
q. When |gql = o, Fy{q) may behave as q? ¢Pd where a and b are any complex
numbers {(a stronger-than-exponential growth is forbidden because of the
convergence of the integral (5. 5)). Thus F¢{q) has no singularities in the
final part of the upper half-plane of the variable q, but may have, in general,
a pole or an essentially singular point at infinity., The function F{q) coin-
cides with the vertex part I'(q) accurately to within a constant factor., The
- simplest way to verify this is to consider in terms of perturbation theory
the weak local interaction of some radiation with particle 3 (for example,
the interaction with electromagnetic field leading to a nuclear photo-effect,
the capture of orbital electrons or M -mesons, etc.). Obviously, the cal-
culation taking intg account Eq. (5. 8) will lead to a formula with a pole de-
nominator while the remaining dependence on g will be given by the function
F(q) since the vertex part corresponding to the weak local interaction will
be a'constant. It is precisely such a formula that corresponds to the graph
in the left-hand side of the equation in Fig. 22 (ir this case the cross cor-
responds to the vertex part for the weak interaction calculated by perturb-
ation theory and proportional to the first power of the interaction constant).
On the strength of the above we arrive at the following formula for the vertex
part I'(q):

0

I (@) = (2/m)F i2(a® +x DA, gwe(r)mqr)rzdr, C (5.9)
(s}

The constant A, is expressed through the reduced vertex part?y, thus

Y
lim {(a? +£2) Jyp(r)iplar)r®dr}

Ag= (2/m)F it (5. 93)

The reduced vertex part can in turn be expressed by wave functions (see
section 5.4). Equation (5.9) in combination with the formulae of section 5.4,
thus completely determines the vertex part.
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If gk, where k is the wave number of a particle inside the nucleus
with radius R, integration over the inner region (from 0 to R} will yield &
small contribution to integral (5.9). This can easily be seen if we take a
rectangular well as an example, when ¥ j(kr) inside the nucleus equals j (kr)
accurately to within the normalizing factor. Since we have

00

fj,(kr)jn(qr)rzdr = (7/2 kq)8(k-q)
o

the integral over the inner region will be small* when (k + q)R>>1, In this
case the lower limit of integration in Eq. (5. 9) can be replaced by R, which
leads to the Butler formula if the vertex part (5. 9) is introduced into the
amplitude of the deuteron stripping pole graph. It should be borne in mind
that the quantity q in Eq. (5.9) is given as the momentum transfer in the
system of the disintegratinig (or forming) particle 1 by Eq. (5. 3) and does
not, in general, coincide with the momentum transfer in the ¢. m.s. of tke
total reaction. In particular, the quantity q depends on energy in the c.m.s.
of the reaction (see Eqs (5.10) and (5. 13) below). This circumstance is
especially essential when the momenta transferred are small. When we have
large q comparable with k we cannot neglect the contribution from the inner
region* * in Eq. (5. 9). )

The transparency of nuclear substance for the emitted (or absorbed)
virtual particles is essential when calculating the vertex parts. For nucleons,
for example, the nuclear potential is real for negative energies in the fir:t
approximation {the imaginary part of the potential corresponding to the mix-
ing of one-particle configurations is small), The problem of taking inio
account the absorption of virtual particles in nuclear substance will be con-=
sidered in section 5. 4. Note that the smooth decrease of the potential on
the nuclear surface (instead of a jump in the case of a rectangular well) may
prove essential for the angular distribution curve. In terms of analytical
properties the explanation is that in the case of a potential with a diffuse
edge there arise branch points on the real axis (see below). As a result ad-
ditional terms corresponding to these peculiarities appéar in T (q).

Equation (5.9) is universal in the sense that the vertex part it gives
may enter into the amplitudes of widely different processes: usual low- and
medium-energy nuclear reactions with a nucleon-deficient nucleus as incident
particle, reactions on multi-charged ions (such as nucleon transfer re-
actions), high-energy reactions with the capture of slow 7~ and K~ mesons
by nuclei. In the case of a pole mechanism, the amplitude of the process
will, as follows from Eq. (2. 47), be proportional to the product of the vertex
parts of the vertices which contain the lines corresponding to the target
nucleus and incident particle. For the pole mechanism of deuteron stripping
or pick-up we thus obtain the Butler formula since the deuteron vertex part,
accurately to the zero neutron-proton range, is a constant. When, on the
other hand, the radius of the incident particle is much larger than 1/« (which
is just the case in the nucleon transfer on multi-charged ions) the vertex .
part corresponding to the incident particle will also be a function of the mo-

* For example, when the potential wellis40 MeV deep, R= 3.6 X 10 > cm, the nucleon binding enery
is 6 MeV, £ =0 and qR = 1, the contribution of the integral over the inner region is about 1%,
*% This is one of the main reasons why Butler's "surface stripping” theory describes fairly well the ek~
perimental angular distribution in the region of small angles, but notso well with experiment when the momerta
uansferred are large. : '
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mentum transfer and this will strongly affect the:angular distribution of the
products of the reaction. It should be borne in mind, however, that the vari-
- ables tyz - differ from vertex to vertex. If, for example, the pole mechanism
of the reaction A(x, y)B is such that A and B enter one vertex, while xandy
another,; we have ' ’ : '

t,p= -q £ 2mg {[H,, -'r’-'MBy ]E-MBy Q} (5. 10)

.tAB=txy; 2 m;Q (5. 11)
where #;; is the ratio of the reduced mass of the particles i and j to the mass"
of the particle i. The sign of Eq. (5. 10) is chosen depending on what occurs

at the vertex AB: emission (upper sign) or absorption of a virtual particle.

In these notations Eq. (2. 47) will be of the form

Maﬁ = o7 QB(q AB )F)?(\-I (qXY)’

5. 12)
tAB-st € 4B ( )

where

2 2 - '
qaB = - Hap tag Gxy = -Haylxy (5.13)

1t is clear from Egs. (5. 10) and (5. 12) that when sax # KBy the vertex parts
will depend not only on the momentum transfer q in the c.m.s. of the collid-
ing particles, but also on the energy E. Since qap increases with E, the
contribution of the integral over the inner region in Eq. (5.9) will change
with the energy E. As a result the effective radius of the vertex determined
from the comparison of the usual Butler formula with experimental data will
also change with energy. An inaccuracy in the determination of the vertex
radius will also affect the reduced vertex part (or reduced reaction w1dth)
since it is expressed through TI'(ik,, R)

5.3. Vertex part singularities
To study the singulafities of the vertex part (5.9) it is convenient to use
the integral equation for I'(q) which can readily be obtained from the Schré-

dinger equation for ¥ (r). This integral equation is of the form

@ = -@/n" § adea 0 FEEE atara 6.0

/2+K2
. Here i _ «© , . ) . :
Ada, a1 = | joler)ie@ielar) ar 5.19)
and -0
V(k) =(2/m)} S‘U(r)jo(kr)rz dr (5. 16)

0

where U(r) is the potential of the interaction of the particles 2 and 3. In in-
vestigating the singularities of the vertex part the specific value of § is in-
essential and therefore we put g = 0 for the sake of simplicity. Then we have

1

4 T (5.17)

A0 (q: q k)
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if q, q' and k can be sides of a triangle, and
Bofg, o', kK)=0 (5. 17a)

if this condition is not fulfilled.
Equation (5. 14) can be re-written as

Q0
r'(/s) = const+S T'(Vs") ¢(s, s')ds’ ' (5. 18)
0
where the kernel ¢ (s’, s) is given by the formula
A )]
$(s',s) = EPare (5. 1!):.1)
Vs + Vs')?
- 1 1" "
p(s’,s) = ey _S V(vs')ds". (5. 19b) A
W's -/9?

Here s is determined so that v'§ >0 if s is real and positive.

Since the singularities of the solution of the integral equation are given
by its kernel, Eq. (5. 18) need not be solved to find the singularities of tha
vertex part; it is sufficient to study the singularities of the kernel (5. 19)
as a function of s and s’. It is clear from Eq. (5.19) that the analyti:al
properties of $(s’, s) depend on the properties of the Fourier components
V(k) of the potential V(r). Let us consider the potentials satisfying the
following condition ‘

U(r) = r-? La; exp(-a;r)
r—o i
i.e. behaving asymptotically as the superposition of the Yukawa potentials.
From Eq. (16) it follows then that V(k)} is of the form

V(k) =E vi(k)/(k? +a}) (5.21)

where vi(k) has no singularity in the finite part of the upper half-plane of’
the complex variable k. At the same time when |kl ~w., vi(k) may behave
like k2 ePk where a and b are any complex numbers. In other words, vj(k)
and consequently V(k) may have an essertial singularity at infinity. If there
is no such singularity (i. e. if b = 0) the potential U(r) is of the form (5. 2))
for all r. The potentials employed in the theory of the nucleus are usually of
a type similar to (5. 21). Here are two examples of such potentials,

(a) A potential of the type of a rectangular well with diffuse edge

_ U r<R
Ulr) = {UgRr 1 exp{-a(r - R)} r>R (5. 222)
V(k)= Uy (n/2) %_v(k)/(k2 + k2) : (5. 22b)

2 2 . _
v(k) = T{l{(‘! + k?)(sin kR - kR cos kR)

r) +a Rsin kR - choskR}
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(b) A potential similar to the Woods-Saxon potential

U :
U(r) = m . {5.23a)

V(K) = (vo/k)(7/2)% { -(7/a)(cos kR/sh(7k/[2) - :
(5. 23b)

+1/k + ku)‘le(-l)v(exp[-oz-vR]/(azz.y2 + K}

(The last term in brackets has the same poles as the first one. Therefore
when g-%R<< 1, which holds for all nuclei except the lightest, the sum over v
can be omitted. ) The factor 1/r absent in the Woods-Saxon potential has been
introduced because of the requirement (5.20). Due to this factor V(k) has
only simple poles, while the Fourier components of the Woods - Saxon
potential would have multiple poles 1/[k?2 + (e v)2] ., Note that the pole multi-
plicity is not essential for further conclusions and the requirement (5. 20)
is imposed only for certainty. This requirement is natural if one proceeds
from the physical considerations based on the field nature of nuclear inter-
actions. o

Equation (5.19) is a singular integral equation. From the theory of
equations of this kind (see [11] ), for example) it is known that the solution
has a singularity for that value of S for which both the factors in Eq. (5. 19a)
have a common singularity with respect to s’ or if the kernel is singular at
the ends of the integration interval. In other words, the singularities of
I'{/s) coincide with the singularity of the function (- k%, s). Substituting
Eq. (5. 21) into Eq. (5. 19b) and assuming in accordance with the above that

Vel = +1«k
we obtain ] :
P(-k2, ) = 4*1s'ﬁ7i:<9i (s) (5. 24)
where ] T ik)? ‘
v W .
Pi(s) = f —‘S’”‘n—({—i)-d s". (5. 24b)
5 - ig? '

. Since vi{/s™) has no singularities in the finite part of the plane of the complex
variable Vs", ®;(s) has only a singularity at the point

Vs; - ik)? = -a?, _ (5. 25)
Taking into account the above definition of V'S we obtain
Visp = ileg +K). (5. 26)

Thus the vertex part of I'(q) as a function of the variable q? has singularities
at the points '

@ =-f;+ k). (5.27)

This means that the singularities of the vertex part in the finite part of the
plane of the variable q are determined by the asymptotics of the potential
or, in other words, by the diffuseness of the potential well edge. If we have
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a rectangular well, a; = © there are no singularities at all for the finite

. values of the variable q2. The results obtained are quite natural from the
physical point of view. Indeed, the diffuseness of the potential well edge :'s
characterized for real nuclei by the value ;= 1,54 X 1013 cm-1[12]. If we
put k = 5X 1012 cm"! (this corresponds to € = 5 MeV for a nucleon) then
we have q? = -158 MeV. AMU. Now, the singularities of triangle graphs zre
usually precisely of this order of magnitude, as we have seen in the pre-
ceding chapter. Thus the diffusion of the potential well edge phenomenologi-
cally takes into account the set of peripheral graphs represented in Fig. 2.
These.results also allow us to see where the diffuseness of the potential well
edge may have a substantial effect on the angular distribution of direct re-
action products. This obviously happens when the singularity of the grapts
responsible for the main contribution to the direct process amplitude is close
to Eq. (5. 27) or corresponds to larger negative values of g2, i.e. if this .
singularity lies at the values -q2 2 100 to 200 MeV. AMU).

We have seen above that since we have R £ 0 the Fourier components of
the potentials used in nuclear physics have an essential singularity with
respect to q at infinity. As a result, the vertex parts I'(q) also have an es-
sential singularity with respect to q at infinity, This conclusion directly
follows from the fact that with a complex q tending in absolute value to
infinity the kernel (5. 19) increases exponentially for any real s’ > 0 and in
particular for s'— _, This means that when lqll — o the kernel of theintegral
equation (5. 18) diverges at the upper limit. According to the theorem we
have mentioned, it follows hence that the solution of the equation will also
have an essential singularity at infinity. If we have a rectangular well there
are no singulai'ities with respect to q2 in the finite part of the plane, and
the vertex part is not a constant only because of an essential singularity.
The diffuseness of the potential well edge does not eliminate the singularity
connected with the nuclear radius since the integral

o]

I
S q42 _SqK)z d q
0

converges because of yq(r) béing finite at zero, and the kernel ¢(s,s’') =
(q,q') for any finite q tends to zero when ¢ — ®. Therefore when
q -k >>aj -in the integral :

la+ &
T(q') vi (k)
S.q +K2qdq y_@ﬁkdk
lqa ~q9

a? can be neglected compared with k? and we obtain an integral equation
which in the region of large q does not differ in any way from the case of
a rectangular well provided v;(k) has an essential smgularlty of the type

A cos kR + Bsin kR. ' '

In the nuclear model under study the diffuseness of the potential well.
edge thus leads in the vertex part to the singularities corresponding to the
peripheral graphs of the type represented in Fig. 22. As to the radius of the
nucleus, an essential singularity with respect to q at infinity corresponds:
to if. In a sense {in the framework of the model used) the latter conclusicn
answers the question put in [1] about the analytical properties.of the direct
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process amplitude due to the nuclear radius being finite. It is not clear
whether the presence of an essential singularity results from the rough ap-
proximation of the properties of the nucleus by the potential well with a
‘diffuse edge or such is the true situation despite the predictions of the dis-
persion theory of the elementary particles. All we can say now is that the
search for the graphs whose momentum transfer singularities would cor-
respond to the nuclear radius has not yet been successful. Investigations
(undertaken by the author in collaboration with V.S. Popov) showed that as
the Feynman graphs became more complicated their momentum transfer
singularities receded into the region of larger negative values (to the best
of our knowledge not a single example can be cited when a Feynman graph
singularity would approach the physical region with the increase of inner
lines). Barring the possibility of essential singularities in precise theory,
the nuclear radius must be explained either by a singularity on the unphysical
sheet or some sequence of the graphs which have eluded the theoreticians’
attention. Going back to the model concepts, it should be noted that so far
the complex nucleus has not been described satisfactorily with the aid of a
potential in the form of the superposition of Yukawa potentials. This is why
the fact that the vertex parts have an infinitely remote essential singularity
withrespect tothe momentum transfer has tobe reckoned with in the practical
theory of direct nuclear reactions. This means that dispersion relations
with respect to the momentum transfer can be written only after the pre-
liminary division of the amplitudes into the suitably selected exponential
factors. This device does not involve any intrinsic difficulties since the a-
symptotic behaviour of the vertex parts is known. Since the amplitudes cor-
responding to various graphs can, as we have seen in chapters 3 and 4, be
obtained by direct calculation of the Feynman integral (3. 17) the simplest
approach to the estimation of the finite size of a nucleus is to substitute, in
the integral of (3. 17), the quantities given by Eq. (5. 9) (see [13]) instead of
the constant vertex parts.

5.4. Reduced vertex parts

The reduced vertex part v is connected with the decay probability per
time unit A of particle 1 into particles 2 and 3. This decay may occur if
mi> mg + m3. From Egs (2.24) and (5. 1) it follows that

" N A
YY*= (Amg/ma3) vV mg; [2E. : (5. 28)
Our problem is to express A, and consequently ¥, through the wave functions
of the single-particle model and continue analytically the formula thus obtain-
ed up to negative values of E = - €, The complex energy W =E - iX/2 is

known to correspond to the unstdble particle in quantum mechanics. When
A are small, the following expression holds for A [14]

R
- [ (2m23E)i,’m23} [X%E(R)/‘S‘ Xog (r)dr ] , (5. 29)
' o]

where

X AE(r) =t 'I/QE(r) ) (5.29a)

and ¥e(r) is the solution, finite at zero and corresponding to the real energy
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E, of a radial equation. Since X ge(r) is real, A is real too when E > 0. Sub-
stituting Eq. (5. 29) into Eq. (5. 28) we obtain

R
YY* = (my)/mZ;) [ X 5g (R)/g x‘jE(r)dr] (5.30)
i o

We can now determine ¥ in the following manner:

R

v =X QE(R)‘ {/E,/m%l [ S x";E (r)dr}-% ; (5.31)
0

Equation (5. 31) is an anajytical function of E and can be extended to the nega-
tive values of E = - €. Equation (5. 31) holds for the real potential. If the
state of the ""decaying'' nucleus is not a purely single state, the system will
not in general be described by the wave function ¢ yg(r). The variation of */
due to the dissipation of single-particle states can be described phenomeno-
logically taking into account the "absorption' of particle 3 {or 2) in nuclear

- matter. For positive energies this operation reduces to the introduction of
the complex potential (optical model). Let us see how the expression for tae
constant A of the decay of the state with complex energy W = E - iA /2
will change. We consider E>0 so small that the imaginary part of the poteniial
is small and the effect can be estimated by perturbation theory. Then the
change of energy 6W is given by the formula [15]

0 =]
SW = —i( S X 2 (r)Uyg (r)dr/S x%E(r)dr> (5.32)
(o] (o]

Here Ugg (r) is the optical potential imaginary part
Up(r) = - Uplr) - iUy (r)

with the sign reversed*,

Equation (5. 32) should in general include the eigenfunctions Xpy(r) cor-
responding to the complex level W, These functions are complex. It is clear,
however, that since A is small the imaginary part X§w (r) is also small (this
quantity is an analytical function of W; the fact that when W is complex we
have Xpw({r) > atr -»w , is of no importance because of the determination
of the integrals in Eq. (32)). Therefore X,w{r) can be replaced with real
functions Xgg (r). Under these conditions 6W will be purely imaginary and
we shall have

o0 0
BA = - 2i6W =2 Q‘ X o (r)Use (r)dr/ § X 2t (r) dri> (5. 33)
o] 0o

Hence it is clear that even when Ug (r)} <K Upe (r), i.e. when the absorption

* According to [15], the integral in Eq.(5.32) should be understood in the sense of mliing the limic

[

L 2
I emdr =lm f & ylpdr
o a—00 :
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in nuclear matter is low, A may decrease appreciably if Ugz > A, To find
how A and hence ¥ change in case the state is bound we must continue Eq.
(5. 33) analytically up to the negative E. To do this we must construct an
analytical function of E which would coincide with Ugg (r) when E > 0, We
assume for simplicity that the complex potential well is rectangular. It is
known that the depth of the complex potential well of the interaction of ;
particle 3 with nucleus 2 can be expressed through the forward scattering
amplitude of particle 3 on the nucleons of nucleus 2:

Ug = -(27n/ms) £ (0). (5.34)

Here n is the number of nucleons per unit volume, mj is the reduced mass

of the nucleon and particle 3, and ff(0) the amplitude of the scattering
forward of particle 3 on a nucleon. Equation (5. 34) does not take into account
the decrease of the phase volume due to the restrictive operation of the Pauli
principle. This effect will be taken into account later on, The amplitude. f£(0)
is an analytical function of the energy and can be represented as

£ (0) = £ (24 + 1)1, (E). (5. 35)

If the energy E > 0 but less than the first threshold of a possible inelastic
process in the collision between particle 3 and a nucleon, it follows from the
unitarity of the S-matrix that :

Im £,(E) = (1/2i)(f, - £f) =/ 2ms E f,f}. . (5.36)
Solving Eq. (5. 36) with respect to f§ we obtain

£} = £,/[1+ 2i(2%3 E)if) ] (5. 36a)

The first part of Eq.(5.36a) is an analytical function ¥)(E) of the energy
coinciding with H(E) when E > 0 (but less than the first threshold). This
circumstance enables us to continue analytically Eq. (5. 36) up to the negative
values of E:

(1/2i) (6, - T3) =V 2m3s E £,f,. (5.37)

Equation (5. 37) makes it possible to solve the problem of finding the analytic-
al function U (E) coinciding for sufficiently small E > 0 with the imaginary
part of the optical potential Ugg:

U, (E) = (mni /M) (2T E)E £ (24 + 1) [£3/(1 + 21 (235 E)i1,)] (5.38)

Incidentally v 2m3E when E > 0, .

The case is especially simple when in the region of small values of |El
any one term, for example the term £ = 0, is essential in Eq. (5. 38) (such
a situation will practically always take place if in the negative energy region
under study the "particle 3 + nucleon system' has no level with a higher value
of angular momentum) In this case U, (E) can be expressed directly through
the optical potential, Indeed, since in this case we have

1.(0) = £, (E) (5. 39)
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then ‘
fo (E) = -(ms/27n) Ug. (5.40)

Hence we have

~ __V/e2myE UE - my '
Uz (E) = y . Mg/2M3E [ 47n (5.41)
ST a E

T

Proceeding tonegativeenergies {(E = -¢) and assuming that

n=3/(47rd)

we obtain )
Uz (-€) = ﬁ[x/(1 ra) (5. 41e)

where
x=FE3Ur<3,/3,V Xx=vV2m; €. (5. 42)

I have mentioned that Eqs. (5. 34) and (5. 38) - (5. 40) do not take into account
the restrictive effect of the Pauli principle. Taking the Pauli principle int>
account, we can write for the complex potential

Uz = (27n/m3) {9y (E)Ref; (0) + i @3 (E)Imf; (0)) (5. 34a)

where ?; (E) and @, (E) are the functions taking into account the Pauliprinciosle.
The function @4 (E) changes rather slowly and can be put equal to unity in the
first approximation for small |E|. The function 9; (E) for |E! close to zero
is less than unity. If the nucleus were an ideal nucleon Fermi gas (it is in
this approximation that Ugg are calculated when E > 0 [16]), 2 (E) would
vanish when E < 0, If, however, the diffuseness of the Fermi distribution
surface is taken into account ®3 (E} does not vanish either when E = 0 or when
E < 0. Thus Eq. (5. 38),taking into account the Pauli principle, must be re-
written as

E) 2@+ 1) 17 21/2m;3 E1,

~ iTny 2ms E
Uz (E) = _l“__rﬁsﬂii_ 9, ¢

Equations (5.41) and (5. 41a) do not in general hold since Eq. (5. 40) is not
valid. If, however, the imaginary part fo(E) is small when E < 0 Eq. (5. 40)
applies approximately. In this case we obtain

Uz (<€) = U[ x/(1 + 4x)]93(-¢€) (5. 41b)

where U is real under the ‘assumption thade. I is precisely this situation
" that takes place for neutrons, for example, when we have (see Eq. (2. 16))

fo(E) = i/{/ mo B - ix).

The function P; (E) when E < 0 can be regarded as a constant and probably
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equal in order of magnitude to (A Ef/E¢)?2 where AEt is the diffuseness of
the Fermi distribution surface and Ef is a Fermi energy limit. If the diffuse-
ness of the Eermi surface is due only to pair interactions, we have
AE; /E;™ 1/20-
Substituting Eq.(5.38a) or (5. 41b) into Eq. (5. 33) we obtain a formula

taking into account the effect of the complexness of the potential on the re-
duced vertex part. Bearmg 1n mind that for the bound state for a sufficiently

large R we can put
R’ o )
2 2
X Xgg dr =~ ‘g Xgg dr
o "o

and normalizing the last integral to unity, we obtain

A= }——%IE X%e (R) - 2?]2\(-@) ) (5. 42a)
2 = (mg/mis) {x’ﬁe (R) + i(2mg3 /e)%ﬁz(-e)} (5.43)

where U, (-€) is given by . Eq. (5. 38a) or approximately by Eq. (5.41). The
functions X g, (r) are normalized so that

R

S‘X%E (r) dr = 1.

o]

It was shown above that Eq. (5. 41b) must be a fairly good approximation
to Eq. (5. 38a) for nucleons. It is not 1mposs1b1e that the same applies to
other light part1c1es whose nuclear scattering is described satisfactorily
for low energies by the optical potential with a small imaginary part. Equation
(5. 41b) includes only one quantity which is not measured directly in experi-
ment, that is the function Pz (E) at E close to 0. However, this quantity can
be calculated for estimations in a similar way to that of SITENKO [8] for
nucleons. In the case of nucleons, when € = 5 MeV, ry= 1.4 fermi, U; =
40 MeV and Uz = 0, Py (-€) = 2 X 10-2? * we obtain by Eq. (5. 41b) Uz (-¢) =
0.05 MeV. It is significant that since Uz (-€¢) is real in this example, accord-
ing to Eq. (5. 43), our taking into account the diffuseness of nucleon levels
increases the absolute value of the reduced vertex part v and makes the
quantity ¥ complex.

On the basis of what we have said we can draw the following conclysions:

" (1) The one-particle effect is essentially different for positive and
negative energies: in the former. case it decreases substantially A and con-
'gsequently |v|2 and in the second case |v|2 may even increase as compared
with the purely single-particle model. Therefore the values of particle widths
cannot in general be used for the decay of the compound nucleus in direct
process theory.

(2) The non-single-particle effect tells more strongly on the quantity
| 712 the lower the binding energy is at the vertex. If the particle-nucleon

* ‘This estimate is based on the smallness of the reduced neutron widths when E = 0,
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‘scattering amplitude is real for negative energies (as is the case for nucleon-
nucleon scattering) the non-single-particle effect on the quantity will be
small,

Concluding our consideration of vertex parts, we should emphasize that
the procedure described of an analytical continuation of the optical potential
imaginary part is still rather imperfect. It can probably be substantially
improved if the optical potential is expressed through the amplitudes of
scattering of incident particles not on free nucleons byt on nuclear quasi-
particles. The modern Fermi liquid theory should be brought into play to
solve the problem in question.

In the case of triangle graphs a knowledge of the virtual reaction ampli-
tude is also essential as well as that of vertex parts. The amplitude cor-
responding to a triangle graph contains, as seen in chapter 4, the integrel
of the virtual reaction amplitude over the unphysical region of the variab.es.
Unfortunately, the behaviour of the amplitudes of the reactions between
nucleon-deficient nuclei in the unphysical region is insufficiently known,
except for the case of nucleon-nucleon scattering at low energies.

6. KNOCK-OUT REACTION
6. 1. Kinematic problems

We shall refer to all processes in which the number of final particles
is more than two for knock-out reactions. The simplest of such processes
are reactions of the type

A+x— B+y+z. (6.1)

The theory of knock-out processes is far more complicated that the theory
of reactions (1. 1) considered in the previous lectures. The fact is that the
knock-out reaction amplitude depends on a larger number of variables, Let
N be the total number of particles involved in the reaction (i.e. the sum of
the numbers of initial and final particles). The momenta and energies of
these particles are connected by the conservation laws

P +P =P  +P +P, +...+P (6. 2)

f

and the conditions
P? = nf, (i=A, x, B, y...0). (6. 3)

The number of the components of 4-momenta is 4 N. Equations (6. 2) and
(6.3) establish N + 4 relations between.them. Thus the number of independent
components is 3N - 4. How many independent quantities, invariant for thz
transformation of the reference system, can be made up of these 3N - 4
independent components? Since the number of parameters of the referencs
system transformation is 6 (3 Euler angles and 3 components of the velocity
of the new reference system) the number of the wanted independent invariants
is clearly 3N - 10 since any invariant can be calculated in any reference
system and in particular in one where any 6 of 3N - 4 mdependent componeats
of 4-momenta have preset values.
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For reaction (6. 1) for example, N = 5 and consequently the number of
independent invariants on which the amplitude of the reaction depends is also
5. We can choose, for example,

s t t (6.'4)

Sax> Spzo zy’ “zx ’ Xy
or i
’ Saxe sBz’ szy’ sBy’ txy (6'5)
as such 5 invariants,

Here s,, and txy are the invariants s and t we have used before, tag can
be obtained from txyby replacing x and y with A and B, and sp,, spy and
Syz by replacing in sax the particles x and A with the particles (B, z), (B,y)
and (y, z) respectively. The sets of varijables (6. 4) and (6. 5) are expressed
through each other linearly. The invariants Sij are expressed through the
total kinetic energy of the particles i and j in their centre-of-mass system
{see chapter 2). Note that the use of invariant variables for knock-outi

reactions is especially convenient.
6. 2. Movement of singularities

Thus the theory of knock-out reactions must deal with the analytical
functions of at least five variables. The properties of such functions may
be quite complicated because the position of singularities over some variables
may depend on the values of other variables, and not only on the masses of
particles, as was the case for the reactions (1. 1). Evidently, this will be
the general situation for the amplitude of direct nuclear reactions correspond-
ing to different Feynman graphs, This can readily be seen from the graph
represented in Fig. 23.

Fig.23

This graph differs from graph 2 only in that the nucleus has been replaced
by two nuclei B and z. The position of the triangle singularity ta.of graph 2
is given by Eq. (4. 8) which contains the quantity

B -
ECb —mb+mc-mB-
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Since mp = /P§, .in the.césé of graph 23 the mass mpg is replaced by the
quantity )

my— /(Pg + PZ)2 =my+m, +sg,/2(my +m,) (6. 6)

and instead of the constant egc Eq. (4. 8) contains the variable

eg‘;z = Qpe - Spg/ 2(mg + m,) (6.7)

The second term in Eq. (6. 7) is simply the kinetic energy in the centre-cof-
mass system of the particles B and z. This energy changes with the ene:gy
of the colliding particles A and x, the emission angles z with respect to x,
etc. and consequently the singularity of graph 23 t, will shift in the complex
plane of the variable t, ta also assuming complex values. Equation (4. 8)
for taholds in the case of graph 23; we have only to continue it analyticelly:
over the mass of the particle B, i.e. over €f . For the analytical con-
tinuation of Eq. (4. 8) over ¢, we must choose the branch of ep, . This
branch is so chosen for example, that for real ¢B, >0 we should have

JeB > o. 'b _ (6. 8)

From Eq. (4. 8) we can see that tp may prove quite near to the physicalregion,
For example, when €}? = 0, ta will be the same in order of magnitude as

tg for pole graphs. The movement of tA in the complex plane txy is shown

for graph 23 in Fig. 24.

ta
EB#: <0
€220
INTEGRATION
CONTOUR

Fig.24

The amplitude of graph 23 given by the formulae of chapter 4 is analyticel
in the plane txy cut along the line of the movement of ta from a given value
tato + ®, "M being taken (inaccordance with the imaginary correction ie for
real EEgZ ) on the upper side of the cut.

The following conclusions can be drawn from what has been said above,
First, the relation between the contributions from different graphs to the
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amplitude of the process (6. 1) depends essentially not only on the masses

of the particles involved, but also on the energies of the outgoing particles
so that different graphs may prove decisive in different regions of the energy
spectrum of the products of the reaction. Secondly, in the case of the re-
actions (6. 1) and other knock-out reactions there is no general rule concern-
ing the removal of singularities from the physical region as the graph
becomes more complicated, for the positions of the singularities depend on
the values of the kinematic invariants. A case in point is the triangle graph
23 whose complex singularities may lie nearer to the physical region than
the pole with respect to tyy of the graph shown in Fig. 25,

Fig.25

Despite the above-mentioned difficulties, the treatment of reactions of
the type (6. 1) on the basis of dispersion theory proves useful for one reason
because in terms of this theory we can understand an otherwise mysterious
effect like the ''quasi-elastic knock-out'' from nuclei complex particles like
d, t, He3, a and the capture of 7- - and K™ -mesons by nuclear clusters in
complex nuclei.

In our next section we consider such a reaction as an example.

6. 3. Knock-out of complex particles

It must be clear from what has been said before that in the theory under
study the calculation of the knock-out of complex-particles (d, t, a etc.) does
not necessitate the assumption that they exist in the nucleus for a long enough
time compared with the collision time (in other words, there is no need to
describe the state of these particles by wave functions). According to the
formalism developed here, nuclei "consist of'' deuterons and a-particles,
in the same sense in which a neutron is said to consist of a proton and
7-meson. In other words, even a stable nucleus is a dynamic system virtu-
ally emitting and absorbing back all kinds of particles. These virtual particles
make up the nuclear periphery just as the virtual 7#-mesons form the peri-
phery of a nucleon.

This means that the "knock-out" of complex particles should be under-
stood as the "knock-out" of a 7-meson from a nucleon is understood. This

Fig.26

circumstance is illustrated by Fig. 26 representing the pole graph of the re-
action (p, pd) and the Chew and Low graph for the process 7 + N - N + 27,
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The same applies to reactions like the capture of 7~ - or K -mesons by
nuclear clusters. The direct production of deuterons and tritons inthe capture
of stopped 7~ -mesons by the light nuclei of photoemulsion (C'2 , O!¢ ) majy
furnish an example of the process in question. This reaction was observed
in [18] and treated theoretically in [19].

The simplest pole graphs for this reaction on the C12 nucleus are shown
in Fig. 27, the position of the pole ty over the variable tap being indicated
for each graph.

-
3n

F:{d,2n
tn

Fig.27

The boundary of the physical regiont over the variable tap is zero for all
reactions except C12 (77 t) Be?. In the latter case t; = - 684 MeV.AMU.
Since according to Egq. (2. 47) the square of the absolute value of the pole
amplitude at the physical region boundary ~ 1/(tm+ to)2, the yield of trititm
by graph (27b) must be small compared with graph 27a. The yield of p anc. 4
by graph 27b must also be smaller than by graph 27a, though the remotencss
of the pole in the case of 27b is somewhat compensated by the increase of
the phase volume (a smaller number of particles in the final state). Note
that an appreciable contribution to the reaction in question may also come
from the triangle graphs since the nearest triangle singularity lies at

ta= 108 MeV - AMU (Fig. 28). It is clear, however, that graph 27a is the

Fig.28

main one and must account at least for a considerable part of the entireeffect
observed. According to graph 27a 7~ is captured by an a-particle virtually
emitted by the C' nucleus. By Eq.(2.47) the amplitude of this process
could be expressed by the amplitude of the capture of #--mesons by
a free a-particle. The latter amplitude can be regarded as a constant
in the first approximation. For the sake of simplicity we shall regard
the amplitude of the virtual a-decay of C*? also as a constant. Note that
that the reduced vertex part of the a-decay of C!2 will not enter the relative
probability for the yield of p, d and t. Now, the dependence of the vertex
part on tag will not strongly affect the energy spectrum of final particles
(because there are many of them) and hence still less the relative yields
(since these quantities are given by integrals over energy spectrum).
Starting from Egq. (2. 47) we obtain the following expression for the difier-
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ential probability of the capture of a 7--meson by the C32 nucleus for a
certain unit of time

2ma Y2 IMye12
s I(t,u; t )2 “Zp"”z Ei - Q)

1:

dA =

. d3p; (6.9)

—
1
-

In Eq. (6. 9) v is the reduced vertex part of thee-decay of C12 , Piand Ej are
the momenta and kinetic energies of the final particles

i .

Q= m,_,+m -?i:—mi © (6.10)
and Mgp is the amplitude of the capture of a #=meson by an a-particle at
rest. The amplitude Myg is connected with the differential probability dX
for the capture of a pion at rest by an a-particle at rest with a formula
similar to Eq. (6. 9):

——g—'é‘,’f‘; | 8 (Zpi) s FE -Q - Ew)ﬁlds p; (6. 11)
Q =mg+ m"-.glmi. (6. 12)
1:

Note that the taking into account of the pole dependence on t,g in Eq.(6.9)
is a certain over-estimation of the accuracy since we have already neglected
the dependence of the vertex part on tag which is at least as strong. It would
be more consistent, therefore, to replace tpg in Eq. (6. 9) by its value t, at
the physical region boundary (it has been pointed out that t; = 0 for graph
27a). However, we have conserved the pole dependence on tap in Eq. (6. 9)
in order to trace how strongly it distorts the energy spectrum of final
particles as compared with the spectrum conditioned by the phase volume.

Using Eqgs.(6.9) and (6.11) we can easily obtain the relation between the
ratios of the yields of different particles in the capture of 7-mesons by a
carbon nucleus and a-particle

AF/AP = (?(F/Xp)(cF /CP) (6.13)
where -
* X - a
Cp = S 5 dx (6. 14)
and 2
a=0.05 (6. 15)
bP-‘ 0.179, bg= 0.81, b, = 0.85. (6. 16)

From these data it follows that according to graph 27a the relations
AF/AP= XF/)L'P (6.17)

must hold with a rather high degree of accuracy. Unfortunately, the available
experimental data on the capture of T-mesons by He? nuclei are quite in-
accurate and contradictory. Those given in [20] seem to be the best and
according to this investigation we have
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Xy/N,=1/3 X /X, 0.5 to 0.7, (6. 18)

However, these quantities are obtained with low statistical accuracy. The
relation

7\’t/(7t’t + A+ A;)) =1/3 (6.19)

is measured in this investigation much better. Note that this figure sharply
differs from the data of AMIRAJU and LEDERMAN [21] who suggest that the
probability for the discharge of tritium in the capfure of 7--mesons by aa
a-particle is 1/60.

Inthe investigation by VAISENBERG et al. [18), quoted before, dealing
with the capture of 7- by C12 nuclei, the ratio (Ag +A}/A; is measured
most confidently. This quantity is in good agreement with the data of (6. 18),
However, the value of A /A, differsfrom (6.18) atleast by afactor of two. Tzble
IVcompares the experimental data of (18] with the calculationfor graph 27a in
whichthe results of [20] onthe capture of 7~ -mesons by Hg4 nucleiare used.

TABLE IV

RELATIVE YIELD OF p, d ANDtIN THE CAPTURE OF 7~ -MESONS
IN C'? AND O'¢

pf; zzlm Experiment [18] Theory {19]
p 1 » 1
d ] 0.75+ 0.07 0.3t00.4
t 0.14 £ 0.10 0.5 t0 0.7
d+t 0.9140.11 0.8 w 11

The experimental [18] and theoretical [19] spectra of deuterons emitted
in the capture of 7~-mesons by C12 and O!6 nuclei are compared in Fig, £9.
The solid line in Fig. 29 plots the curve corresponding to graph 27a, takirg
into account the pole dependence and constant vertex part for the decay of
C12, The dashed line represents the curve corresponding to the neglect of
the pole dependence. The solid and dashed curves differ little, as is to be
expected.

- N W o~

0 10 20 30 40 §0 60 70 Eg{Mev)
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Figure 29 also shows that the agreement between the theoretical and
experimental results is satisfactory. This circumstance shows that-graph
27a gives the main contribution to the probability for the reaction since the
shape of the deuteron energy spectra differs for graphs 27b and 28. In par-
ticular, the pole dependence and the dependence of the vertex part on tag are
more strongly pronounced in these spectra. Moreover, the curves corres-
ponding to the phase volume differ since the number of final particles in
graphs 27b and 28 is smaller than in graph 27a., The deuteron energy spectra
corresponding to graph 27b and 28 are similar to those of tritium for graph
27a. A spectrum of the latter kind is shown in Fig. 30, a solid curve corres-
ponding to the estimation of the pole dependence and a dashed one to the
phase volume, as in Fig.29. At present there are no experimental data on
the energy specfrum of tritium produced in the capture of 7~ -mesons by C12
nuclei.

- N W &~

h 1

G 10 20 30 40 50 60 70 80 90 E¢CMeV)

Fig.30

In conclusion it should be emphasized that the experimental data on the
capture of 7-- and K™ -mesons by light and lightest nuclei are still meagre
and the study of these reactions should be continued since they are of interest
at least in two aspects. First, the study of such reactions will enable the
validity of the general concepts on the nature of direct processes to be check-
ed, and secondly, the measurement of the absolute probabilities for these
processes when they are described by pole graphs of the type 27a and 27b
enables the reduced vertex parts of virtual decays with emission of complex
particles to be estimated experimentally. If the underlying concepts of the
theory are correct, the values of reduced vertex parts thus obtained must
agree with the experimental results of the investigation of other reactions
and, in particular, that of the knock-out of complex particles (such as (p, pe),
(p, pd) etc.) in a wide energy range of the initial beam.

7. INTERACTION IN INITIAL AND FINAIL STATES
7.1, Distorted waves method

The distorted waves method is often used to take into account the inter-
actions in the initial and final states of the reactions (1. 1).

The method can be reduced essentially to the following. The amplitude
of the reaction (1. 1) is calculated by the perturbation theory formula

Mae=5w H ¢ qdv - (1.1)
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where H' is the Hamiltonian of the energy of the interaction causing the re-
action and regarded as perturbation, and ¥ 4 and ¥ g are the wave functions
of the initial and final states unperturbed by the interaction H' but taking
into account the distorting effect of the interactions of the particles x and A
and the particles y and B on the motion of the centres of gravity of these
particles. In other words we have

v, =V, Y, (7.2)
Vg =Wy U Yy (7.3)

where ¥, ¥y, ll/y and ¢ are the inner wave functions of the particles A, x,y
and B, and ¥4 and {py are the wave funetions of the relative motion of the
centres of mass of the particles A and x, and B and y. In the method of
distorted waves ¥ax and ypy are represented by wave functions describing
scattering on a complex potential, i.e. the wave functions of the optical
model satisfying the Schrodinger equation (see [12], for example)

-(1/2mp)V2 Y, (Fa) + Ulrax) Yoy (Fay) = Evax (fy) (7. 4)
Ulry,) = -Us(rpy) - iUz (ry, ) (7. 5)

where U(rax) is the complex potential. The function Yy satisfies a similar
equation.

This technique is unsatisfactory for the following reasons:

(1) The operator H’ is a Hamiltonian of a strong (nuclear) interacticn
to which perturbation theory is inapplicable;

(2) If this circumstance is ignored, Eq. (7. 1) of perturbation theory can
be derived under the assumption that the unperturbed wave functions Yo itind
g are orthogonal, which is not the case. Note that because of the complexity

of the potential not even the functions ¥ax (or ¥sy) corresponding to different
values of the total kinetic energy E of the particles A and x (or B and y) are
ortliogonal.

(3) It'is known that the optical model satisfactorily predicts the scatter-
ing amplitude. However it is not yet clear how adequately it describes the
wave function of relative motion near the nucleus.

Therefore, the method of distorted waves cannot be justified theoret:.cal-
ly (or at least no one has succeeded in doing so) and it is used mainly because
the conventional theory of nuclear reactions has been unable to suggest any
other more rigorous and at the same time no less practical method. A ccm-
parison of experimental data with the predictions by the distorted waves
method sometimes yields satisfactory results, while substantial dis-
crepancies are observed at other times. The causes of these discrepancies
are not clear mainly because the causes of the agreement, whenever it is
observed, are not clear. The dispersion theory enables us to obviate these
difficulties. The theory furnishes a theoretically substantiated and practizal
method of taking into account the interactions in the initial and final states,
and this method proves even somewhat simpler than the distorted waves
method as far as calculations are concerned. Another merit of the new
method is that the effects of the interaction in the initial and final states are
expressed directly through the experimentally observed phases of scattering
of the particles x on the nucleus A and the particles y on the nucleus B. For
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this reason the optical model is used in the new method as prescribed, so
to speak, that is for finding the scattering phases, and not the wave functions

near the nucleus.

7.2. Graphs taking into account the interactions in the initial and final states

Assuming that the singularities of the amplitude of the direct process
(1. 1.) with respect to the variable t (or u) are given by graphs of the type 1
and la (or 1b), Then the graphs shown in Fig. 31 will correspond to taking
into account the interaction in the initial state.

In these graphs one of the virtual reactions which may recur an un-
limited number of times is the scattering of the particle x on the nucleus A.
Let us consider the first of the graphs of Fig.31. This graph has no non-

Fig. 31

relativistic singularities with respect tothé variable t but has a singularity

with respect to s when s = 0 since it is contained in a "contracted graph"
shown in Fig. 31a,

Fig.31a

This can easily be seen if we turn to the general formula (3. 17) for one-
contour graphs. Indeed, in the case under study the denominator has only
one quantity rj; + 2mi; Qi = s. Therefore the denominator vanishes when
s = 0 and consequently graph 31a has a trivial singularity with respect to s
when s = 0. All other graphs of Fig. 31 have the same singularity since we
can readily see from Eq. (3. 7) that each of them is the product of Feynman
integrals for one-contour graphs of the type shown in Fig. 31, The case is
very similar for the interaction in the final state.
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Fig.32

In this case we shall have graphs 32, the singularities of which for s
lie at s = 0 if Q < 0 (i.e. if we have a threshold reaction) and at s= -Q
if Q> 0, in other words, at € = E + Q = 0 where € is the total kinetic energy
of the particles B and y in the centre-of-mass system. Besides graphs 31
and 32 there may be graphs of the type shown in Fig. 33 which possess the
singularities of graph 31 as well as those of graph 32. Since all graphs

of Figs.31,. 32 and 33 possess the same singularities none of them can be

Fig.33

neglected when finding the total amplitude unless the scattering amplitudes
are small for some reason or other, which is not generally so in the case

of nuclear scattering under consideration. Thus we face the need for finding
the sum of an infinite series of graphs. The simplest way of solving this
problem is not the direct summation of the Feynman integrals corresponding
to graphs 31-33 but by using the conditions of unitarity and dispersionrelatior

(2. 5) for the variable s or, which is the same, for the energy E of the collid-
ing particles in their centre-of-mass system. This leads us to a graph of .
the type shown in Fig. 8 in which scattering is one of the intermediate re-
actions. It was mentioned in chapter 3 that the consistent employment of the
analyticity and unitarity principles is possible in this case without recourse
to relativistic formulae. '

7.3. Omnes-Muskhelishvili equation

Let us assume that the intermediate particlesbandc ingraph 8 arethe par-
ticles A and x. The first intermediate process will then be the scattering of
the particles x on the nucleus A and the second intermediate process re-
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action (1. 1) itself. Note that the matrices T and T+ are interchangeable with
respect to the unitarity (2. 33). Accordingly, the unitarity relation (3. 3) can
be re-written as

+
A(o%zi: (mAx p/87rz ) S‘Mameﬂde' (7.6)

where o' designates the intermediate states ¥ to emphasize the identity of
the initial and intermediate particles. Let us now pass from the amplitude
Mgy to the function f, usually referred to as the scattering amplitude.

M= (27/m ), (7.7)

its square of the absolute value being equal, according to Eq. (1.2), to the
scattering differential cross-section. Equation (7. 6) will then take the form

(2) : X
Aaa = (p/41r) S f(m Ma‘edQX‘ (7.8)
and

p?= 2m, E (7.9)

where E is the total kinetic energy of the particles x and A in the centre-of-
mass system. Quite similarly, we can take into account the intermediate

states ¥ in which the particles b and ¢ are y and B. Taking these states into
account the two-particle relation of unity can be written as

(2 . * *
A®) = (p /am) y £5 M dQ, + (k/47) ‘YMaB,fBB, ae, (7. 10)
where '

K2 =g e, €=E+Q (7.11)

and fgg is the amplitude of scattering of the particles y on the nucleus B.

Let us now consider the analytical properties of the amplitude of the
reaction M(Z; with respect to the variable s or, which is the same, over the
variable E; it is assumed at first that Q < 0. In this case, the second term
in Eq. (7. 10) vanishes when E = -Q because of the factor k and remains zero
when E < -Q since the first intermediate reaction @ -8’ is forbidden under
this condition by the conservation laws. The first term in Eq. (7. 10) vanishes
when E = 0 because of the factor p and remains zero when E < 0 since the
first (for this term) intermediate reaction @ — &' (scattering of the particles

. X on the nucleus A) becomes impossible. Thus the imaginary part of the
amplitude M{Z vanishes at E < Q. Condition (1) of section 2.1 is thereby
satisfied. If we now assume that the other two conditions of section 2.1 are
fulfilled we can, using the general formula (2.5), express the amplitude
ngzg (t, E) through its imaginary part (7. 10), M&QB (t, E) being analytical in
the complex plane of E with a cut from 0 to ®. Note first of all that in the
present case we are interested in the value of Mg (t, E) at the cut since the
physical region of the variable E extends from 0 to w. Since the integrand
f(x) in Eq. (2. 5) is the imaginary part of the function F(x + i0) and we identify
Ayplt, E) precisely with the imaginary part of the wanted amplitude Mg (t, E),
it is clear that the latier will be given as the value of the function yielded
by Eq. (2. 5) on the upper side of the cut. Apart from the two-particle terms
of (7.10), the imaginary part Ass(t, E) contains other terms A% (t, E) which
have no amplitude of the reaction (1, 1) itself. Thus we have
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_ Al 2
A g = A% + AT (7.-12)

On the strength of what has been said we can, using Eq. (2. 5), write

o
- 1 p(ENEX(E)M(t, ENdQx . -,
M(t, E) = Molt, E) + 53 S ST S dE
(¢}

(7.1%)

o0
1 k(E’)h*(E')M t, E)dQ
+ oz S o 1(11 Y dE’,
o

In Eq. (7. 13) the subscripts a@,a’, B and B’ are dropped and the notation

fp(€) = h(E) (7. 14)

is introduced and Mo(t, E) de51gnates those terms of the amphtude which
correspond to the imaginary part A 3 and which vanish if A9g= 0. Equation
(7. 13) is the integral equation with respect to the wanted amplitude M(t, E)
with the kernel

p(EN* (E) + k(E) h* (E')
E-E - in '

(7.18)

We shall call Eq. (7. 13) the Omnes-Muskhelishvili equation, Equations of
the type (7. 13) were first investigated mathematically by MUSKHELISHVI I
[11], and. OMNES [22] pointed to the importance of this equation in the dis.-
persion theory of the strong interactions of elementary particles. Equation
(7. 13) was applied to the theory of direct nuclear reactions in [2].
We have said that Eq. (7. 13) holds if the conditions formulated in section
21 are fulfilled. According to the condition (2), all branch points of the
" amplitude M(t, E) as a function of E must lie on the real axis when E > 0.
The properties of the solution of the integral equation are determined by the
properties of the kernel (7. 15) and the properties of the free term Mgy(t, E).
If the kernel (7, 15) can be integrated throughout-the interval -0 < E‘< oo for
all E # 0, condition (2) reduces to the requirement that there should be no
branches which do not lie on the real axis when E > 0 in the free term Mg(},E)
The physical meaning of this term is obvious since when f—0 and h — 0,
M— Mg. The free term is thus the amplitude of the process without taking
into account the interaction in the initial and final states. Hence it follows
that Mo(t, E) is given by one of the graphs or a sum of the graphs, considered
in chapters 2 - 4, which have no branch points with respect to s of the typ2
of the triangle singularities (4.52). We have seen that this condition is ful-
filled for all graphs of interest for the theory of direct reactions and in
particular for pole graphs 1 and 1b and triangle graphs 2.

' Condition (3) of section 2. 1 means, as applied to the case under study,.
that £ * (E) and h* (E) must decrease sufficiently rapidly when |El-—o. If
this is not the case, then-instead of M(t, E) we should, as indicated in section
2.1, consider the function NI{t, E) = M(t, E)/ 9(E) satisfying the requirement
in question and write the dispersion relation (7.13) for this function., In the
following we shall assume that Condition (3) is fulfilled for the partial scat-
tering amplitudes fg (E) and h i (E).
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Note,that by definition the quantities p and k in eq. (7.13) are positive when
E > 0, which corresponds to the branch

Imp = Imv 2m,, E> 0. (7.186)

When writing (7. 13) we proceeded from the assumption that Q < 0. If
Q > 0 the lower limit of integration in the second integral of Eq. (7. 13)-should
be replaced by -Q. Obviously, such an analytical continuation over the lower
integration limit is possible since in the process we do not go beyond the
phyéical region with respect to the variable € (see Eq. (7. 11))which is the
total kinetic energy of the particles B and y. For this reason the scattering
amplitude h(E) remains with Q > 0 regular in the interval -Q < E < 0.

Let us now proceed to the solution of Eq. (7. 13). To demonstrate the
essence of the method, we shall consider the solution of Eq. (7. 13) with one
integral term (i.e. taking into account the interaction-only in the initial or
only in the final state), Taking into account two integral terms does not
change the essence of the matter whereas the formulae become somewhat
more cumbersome,

As will be clear later on, Eq.(7.13) can be solved accurately without
resort to the iteration procedure. If, on the other hand, we perform iterations
over the free term Mg(t, E) and represent the solution as the sum of several
consecutive iterations, each term of this series will represent one of the
graphs shown in Figs,31-33.

Please note also that Eq. (7. 13) can be represented graphically as in
Fig. 34 in which a cross_designates the free term, a rectangle the wanted
amplitude and circles the scattering amplitudes £* and h*,

Fig.34

7.4, Solution of the Omnes-Muskhelishvili equation

- The amplitude M(t, E) can be regarded as a function of the variables
M(z, E) where z is the cosine of the angle between the direction p, and By.
The scattering amplitude f is in turn a function of the cosine of the scattering
angle, i,e. the angle between the directions B, and B, where P} is the mo-
"metitum of the particle in the intermediate state, The required amplitude
of the process in the integrand depends on the variables M(z', E') where z'
is the cosine of the angle between Px and ﬁ)y. Using the expansions -

M(z, E) = Z(2¢ + 1)M 4 (E)Py(2) (7.17)

£z, E) = £(2¢ + 1)f, (E) P, (2) (7.18)
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where Py (z) are the Legendre polynominals, using also the formula .
z' = z,z -mfl_-—z_z\cos(%—q)) (7.13)

and applying then the well-known theorem for the addition of spherical

functions, we can perform the integration over dfy after which Eq. (7..13)
reduces to the equation for the partial amplitudes M, (E):

1 ung MZ(E
M 4(E) = M ,(E) +o § ) - dE’, (7. 20)
Here we have
uy(E) = pfy(E) = e 2® gin 5, (E) (7.21)

and &¢(E) is the scattering phase for the ?-th partial wave. We shall drop
the subscript ¢ since in Eq, (7.20) it is the same for all partial amplitudes.
" Equation (7.20) can be solved in the following way. Consider the function

[+ ]
$E(E) = (Zﬂi)'IS MdE’ (7. 22)

E Iin

According to Eq. (2. 9) we have

0
¢t +¢- = (wi)'lf)gy—(%—?—‘f—%@@' (7.22)
o] . ’
6t - ¢7= M(E) u* (). ' (7.2 4)

Our problem now reduces to finding the functions ¢+,
Let us represent Eq. (7.20) as

0
M(E) = Mo(E) + ()19 SM——L—(EE'),“:*EE') dE'+ iu* (B)M(E)  (1.25)
o .
and substitute Eqgs. (7. 23) and (7. 24) for the integral and the last term, We
then obtain
dF(1 - 2iu*) - ¢~ = Mgu*. (7. 26)
Let us put further.
| 4:(®) = FX(E) p*(E) (1. 27)
and assume that the function p* satisfies the relation
(pt/p-){(1 - 2iu¥) = L. ‘ (7.28)

Substituting Eq. (7. 27) into Eq. {7. 26) and using Eq. (7. 28), we obtain
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Ft-F- = Mgu* /p-. . (7.29)

Equation (7.29) holds for all 0 < E< . Obv1ous1y, we can regard F ¥ as
values of the function

F(E) = (27i)-1 S\ w + R(BE) (7. 29a)
o

(B -E) p (B')

on the upper and lower sides of the cut from 0 to o in the complex plane E.
In Eq. (7. 29a) R(E) is an arbitrary function having no singularities in the
finite part of the plane. The polynomial in E or an exponential function is
such a function, But since we required at the outset that the solution M(E)’
should decrease sufficiently rapidly when |E|— + « (without this requirement
Eq. (7. 13) could not be written) we must put

R(E) = 0. (7. 29b)

From Egs. (7. 29a)-and (7. 29b) we thus have

Mo(E!) wi(E") dE/

Ft = (2ri)-1 (E-E ¥ ine-(E)

(7.30)
Now we have only to find the functions ¢ in order to obtain the functions p¥*,
For that purpose let us make use of Eq. (7.28). Taking the logarithm of this
relation and taking Eq, (7.21) into account, we obtain

Inp™(E) - Inp~(E) = 2i6*(E). (7.31)

Using then the same device as for finding the functions FX(E) we obtain

o0
- 5E!) dE!
ot =0 [ HEIAES - (1.32)
0 :
or
¢ &
_ 8(E) dE'
ot - exp{qr 1S 'E-)E—J:m} (7.33)
(o) .

Equanon (7.33) in fact culminates in the solution of Eq. (7.20). Bringing
together all the results for pi, F* and ¢+ we obtain finally

2] .
 MoE) = Moz (E) + 7 2o} (E) S’MOQ (ENe i8¢ E) sin 6§ (BY) dE'
o]

pp(EN)E' - E - in)

(7.34)

The solution of My(E) can be expressed only through the p, v. -integrals:

00
= 16 pE) - 5,46 @ ( Mg(E' smég(E') ,
- My(E) = Moy(E)e®f Moo 6§(E) + 770pe(E) e ®0 ™ p,(EN(E- B) 9T
o
(7. 35)

where

po(E) = exp{ 'Wf 24E) g } (7. 36)
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Thus the solution of Eq. (7.20) is given by the quadratures (7. 36} anc!
(7.35). Note that Eq. (7. 36) can be re-written for practical calculations zs

+o]

po(E) = exp {W'l(E + Eo)n (Eé,ﬂ.(g;) (;EE,:' E)} (7. 36a)

where Eg is an arbitrary positive number. Equation (7. 36a), which can be
obtained by dividing Eq. (7.31) by (E + E,) , is more convenient in numerical
calculations in the sense -that the integrand decreases more rapidly and con-
sequently the calculated integral converges more rapidly. The scattering
phases 6*(E) for nuclear reactions are the sum of Coulomb phases and purely
nuclear scattering phases’f‘ As a result the function p(E) is the product

p(E) = on (E) p¢ (E) (7.37)

of the two functions pn (E) and pc(E), each of which is given by Eq. (7. 36)
or Eq.(7.36a), pnN containing only the nuclear phase and p. only the Coulomnb
phase,

It is shown in the investigation by KAMINSKY and ORLOW [23] that

n=¢
= {(W‘Y/shﬂ'}’) [ +72n'2)}%, £21; Peo= { 7y/sh W‘Y}% (7.33)
n=1 )

where ** i ‘
=z,zem,[p . (7.33)

As regards pn, E? tan 6N (E) can be approximated for practicalcalculations
by a rational function (see [23, 24])

tansy (E)-Ef Q,(E)/P,(E) (7. 40)

where Q y(E) and Pj(E) are polynominals. Then it is not difficult to show that
pn(E) is given by the formula

on(E) = ¢ [[E-z5R/[E-yt e =[[(B+ys#/[[Ey+20)t (7.41)
'k k k k

where yg and zy are the roots of the polynomials Py(x?) + ix Qy(x2). Eq.
(7.41) is obtained from Eq.(7.36a), Thus with the aid of Eqgs.(7.37),
(7.38) and (7.41) the solution of Eq.(7.20) reduces to one numerical
quadrature.

The problems of the solution of the Omnes Muskhelishvili equation as
applied to nuclear reactions are considered in more detail in [23],
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THE NUCLEAR SHELL MODEL AND ITS RELATION
WITH OTHER NUCLEAR MODELS

J.P. ELLIOTT
UNIVERSITY OF SUSSEX, BRIGHTON,
UNITED KINGDOM

1. AN INTRODUCTION TO SHELIL MODEL CALCULATIONS

The starting point of all versions of the shell model is the physical idea
that the interaction between a given nucleon and all the others resembles
that between a nucleon and a fixed field.

From this starting point one might attempt to construct a field which
is self-consistent but this approach is not followed in most shell-model cal-
culations because of the complications that arise. The more usual approach
has been to use the idea of an average field to provide a complete set of sin-
gle-particle wave functions., Then, if the parameters of the field (e.g. its
size) are correctly chosen, we would expect to reach a good approximation
to the nuclear-wave function by taking that configuration of single-particle
wave functions which has lowest energy in this field. The wave functions
could clearly be improved by allowing the mixing of excited configurations
but this is rarely done because of the resulting complexity of the problem.
Even in the lowest configuration there are in general many independent wave
functions for a many-particle system which would all be degenerate in the
average field. To find the nuclear energy levels and wave functions we must
therefore build up the energy matrix in this degenerate set, using the inter-
nucleon two- body forces, -and then diagonalize this matrix.

If the detailed form of the nuclear forces was known we might regard
such calculations as the first step towards an exact calculation in which
higher configurations were included but every indication is that the conver-
gence would be extremely slow. It is more usual to treat an energy calcula-
tion in the lowest configuration unashamedly as a model calculation and to
attempt to deduce, by comparisons with experimental data in the many-
particle nuclei, the nature of the effective nuclear forces required in that
configuration. If the model is realistic then we should not expect these ef-
fective forces to change very much in going from one nucleus to its neigh-
bour and since there are many more pieces of data than available parameters
we may make significant predictions and thus test the model.

Even within this class of model calculations there are different philoso-
phies. At one extreme is the Israel group, TALMI, DE-SHALIT and co-
workers [5] who keep rigidly to the lowest jX configuration. This has the
great advantage that very few matrix elements of the Hamiltonian are in-
volved and these may be deduced from a fit to the known spectra. It is, how-
ever, well known that such simple wave functions give poor agreement with
transition rates and moments if the real operators for these processes are
used. They must therefore try to exiract the matrix elements of model mo-
ment operators also from the data.

If one takes a more general model, allowing mixing of the lowest con-
figurations, it is no longer possible to deduce all the required matrix ele-
ments of the Hamiltonian as there are so many. One must then resort to a

157



158 J. P. ELLIOTT

definite assumption of a Hamiltonian with possibly a few parameters, such
as range and exchange properties, to be chosen.. Although such an approach,
which is the one I usually take, is not designed to give close fits to the spec-
tra, one finds reasonable agreement and, in addition, the moments and tran-
sition data are generally predicted correctly using the real operators, sug-
gesting that the wave functions are a little nearer the truth than in a pure
configuration,

In these lectures I shall describe some of the group theoretical tech..
niques used in classifying states of a pure configuration and of mixed
configurations and in calculating energy matrices. In some cases this will
lead to a description of collective behaviour and to a connection with other
nuclear models.

Before launching into a description of techniques it is important to glance
at the physical basis of the shell model [1] and see precisely what mathe -
matical problems this poses. ‘

In all shell-model claculations the average field is taken to be spher:.cal.
To do otherwise would raise quite serious problems concerning the orien-
tation angles of the field which would bring us into a discussion of the foun-
dations of the collective model. I shall return to this point at the end of the
course but at this stage the average field is always assumed spherical.

The shell structure reveals itself most clearly near the closed shells
which occur whenever the number of nucleons is just sufficient to fill coni-
pletely an energy level in the field, taking account of the Pauli Principle
and filling systematically from the lowest level upwards. Closed shell nu:lei
would be expected to be rather more tightly bound than neighbouring nuclei
and this should show up in a variety of ways, e.g. as adiscontinuity in a lot
of the binding energy differences between successive nuclei, as a peak in a
plot of the excitation energies of the first excited states of even-even nuclei,
etc, These features were observed to occur at the (magic) numbers
2, 8, 20, 28, 50, 82, 126 for either neutrons or protons.

It was found impossible to reproduce these numbers with a simple spin-
independent field V(r) with any reasonable shape. We know, however, that
the two-body nuclear force depends on the spin and it would not therefore
be too surprising to find the need for a spin-dependence in the field. Frora
invariance arguments this could.only be of the spin-orbit kind (s. f)and the
inclusion of such a term was found to produce the observed magic numbers
in a very natural way. The exact radial shape of the field is unimportant
for most calculations and for simplicity of the wave functions is generally
taken as a harmonic oscillator (Fig.1). Although this field is clearly wrong

/¥t EMur?

Fig. 1

Harmonic oscillator potential

at large distances this is not important for the well-bound levels used in °
shell-model calculations, In fact, a numerical calculation [2] of wave fun:-
tions and radial integrals for the nuclei of mass 38 using a Saxon-Woods
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field (Fig. 2) shows quite negligible difference from those calculated in an
oscillator field.

V=V /{1 +exp dtr-ad}

Fig. 2

Saxon-Woods potential

The single-particle functions ¢ (n{jm) are labelled by the orbital angular
momentum £, the total angular momentum j= §, + 1 and the radial quantum
number n and are formed simply by vector coupling the spin and orbital
angular momenta. For a single particle outside a closed shell (or a single
hole) we may then predict the angular momentum of the nucleus to be J =},
simply that of the last particle. Likewise the magnetic and quadrupole mo-
ments will be just those of the single particle and can be simply calculated.
The angular momenta and magnetic moments are in good agreement with the
known data but there are substantial errors in the quadrupole moments. This
is clearly a danger signal but it is not serious enough to make us abandon
the model, I shall return to this question later.

When we have a number k of nucleons outside a closed shell we may
couple them together in many ways and the particular coupling scheme in
the ground state will depend on the nature of the nuclear force which splits
this degeneracy. In the early days of the shell model a particularly simple
coupling scheme was proposed, namely that each pair of neutrons (or pro-
tons) in a shell j coupled together to give zero angular momentum.. Thus
every even-even nucleus would have J = 0 while an odd nucleus would have
J = j, the angular momentum of the single uncoupled nucleon. Furthermore,
the magnetic and quadrupole moments would be just those of the last single
particle, ignoring antisymmetry. Comparison with experiment shows that
the angular momenta J are generally given correctly although in the region
of A ~ 180 there is very little agreement. The magnetic moment predictions,
the Schmidt lines, are in fair agreement. The quadrupole moments do not
resemble the single-particle value at all.

To predict the angular momenta of excited states, the spectrum, and to
improve the agreement in the moments mentioned above we must, in the
first place, make a more careful study of the way in which nucleons in an
orbit j couple together under the influence of a two-body force. Thus, one
of the problems of technique which I shall briefly discuss is that of classi-
fying functions and constructing an energy matrix in a configuration jk.

In the second place we must consider the possibility of mixing between
configurations. The physical importance of this will clearly depend on the
nearness of the energies of orbits in the average field and the strength of
interaction between them, Thus, in some nuclei we find very pure j-con-
figurations while in others there is strong mixing. In light nuclei, A < 40,
the spin-orbit force does not cause different oscillator levels to overlap in
energy so that, here, the most important configuration inixing is between
orbits of the same oscillator energy and in part/icular, between the two
.j(= £+ 3) values with the same radial wave function, If the mixing between
these two j-values is strong, then it might be simpler to work in the L-S
coupling scheme with a pure configuration £¥ with respect to the orbital wave
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functions. We cannot simultaneously diagonalize both the total spin S and

the individual particle j-values. Since we know that for two-body central
forces alone, S is a good quantum number, we see that L-S coupling would be
a good approximation if the two-body central force dominated over the spin-
orbit splitting and that, in this limit, the j-configurations would be strongly
mixed. Another of our problems will therefore be to study L-S coupling in

a conﬁgurationﬁk. The presence of both central forces and a spin-orbit split-
ting of comparable importance will result in an intermediate coupling scheme
which can only be described numerically, in terms of a basis of functions in
either L-S or j-j coupling. The choice of basis is then governed simply byr
personal convenience,

The first oscillator shell, filling when 4 < A < 16, contains a single §-
value (£= 1). We should therefore expect to understand these nuclei on the
basis of a pure p* configuration although there may well be considerable
mixing of the two j-values, the pg and py orbits, Detailed intermediate coup-
ling calculations have -been made [3] in this shell with very satisfactory
results.

In the next oscillator shell, 16 < A < 40, there are two [-values (£= 2
and 0) and we should be prepared for mixing of configurations here. The
single-particle nucleus 0" confirms, by its even-parity spectrum (Fig.3)
and by the results of stripping, that these two £-values are present and cluse

e
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Fig. 3
Energy levels of OV

in energy, the d state being splitinto ds and ds levels by a spin-orbit force.The
mean position of the d state inthe absence of any splitting is therefore just L1MeV
above the s'state. Inthis shell one finds indeed that the d and s orbits are mixed
the s state, In this shell one finds indeed that the d and s orbits are mixed
but calculations [4] which take this into account, again give good agreemert
for spectra, transition probabilities and moments, Detailed intermediate
coupling calculations have only been carried out for two or three nucleons
in this ds-shell as the matrices become very large for a greater number.
Thus the general question of the mixing of orbital configurations is raised
and in particular the mixing of those orbital configurations which lie in a
single oscillator configuration. We shall discuss this problem in some detail
and see how it produces rotational features which are in fact present even :n
these light nuclei.
We now leave the physical problems for a while to study some aspects
of the Theory of Groups, which we shall find useful,

2. THE USE OF GROUP THEORY

I must assume that you are familiar with the elementary ideas of
groups theory but I shall begin by reminding you, very briefly, of those con-
cepts which I shall use most frequently.
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A group is defined as a collection of operations (elements) which satisfy
the simple conditions that (i) the product of any two operations gives another
operation of the set, (ii) the unit operator is included in the set, (iii) to every
element there is an inverse and (iv) the Associative Law holds, (ab)c= a(bc).
One can most easily visualize a group of physical operations such as rota-
tions about an axis through integral multiples of 5, a group with four ele-
ments. Rotations about an axis through an arbitrary angle also form a group
which has an infinite number of elements and is an example of a Continuous
Group, as distinct from a Finite Group.

One may equally well construct a group from mathematical operations
on a set of functions. The operations are then matrices which cause trans-
formations among the functions. The link between the idea of a physical
operation and a matrix transformation is easily made if we consider functions
f (x,y) of position in a plane. Then, if we rotate the x and y axes about the
z-axis through an angle @ the position coordinates in this rotated frame are
given simply by

x'=xcos 6 +ysin b
y'=-~xsin 6 +ycos 6.

This physical operation will have induced the transformation R f(xy) ={ (x'y') =
= ' (xy), where we have made substitutions for x' and y'.- Thus the rotation
has induced a transformation f — ' in the functions. If we express our func-
tions in terms of some complete set then this transformation will assume
matrix form, although in general the matrix will be of infinite order.

This brings us to the concept of representations and irreducible re-
presentations of a group. Suppose we find a function such that Rgf = f for
all operations Rg of the group, then we shall call f a scalar. This isobviously
a very special function, but in general we can try to form sets of functions
ff,, where o labels the setandi=1,2,.. .0 labels the functions within a
set, having the property Rg f4 = L M{ (6) f} for all operations of the group.
The important feature is that the functions on the right-hand side belong to the
same set as that on the left-hand side. Thus, each set ¢ is invariant under
the group, the scalar being a special case of a set with only one member.
The matrices Mﬁ (6) are said to provide a representation of the group which
is labelled by « and spanned or spread out by the set of n, functions f&. The
representation has dimension ny, the size of the matrices. These matrices
then combine in the same way as the group operators themselves., We have

R By fh= PV 0 R, ol = E(E MG 0) M (9) 4

so that the matrix corresponding to a product of group operations is the pro-
duct of the matrices corresponding to each operation. For a given represen-
tation o we have a correspondence between each group element and a matrix
of dimension ng.

It may be possible to divide one of these sets into parts, each of which
is itself invariant under the group. This would reduce the representation to
a number of representations of smaller dimension. If such a division is not
possible we refer to the set and the representation as irreducible. These
irreducible representations are of great importance and throughout this
course wherever 1 use the word representation I shall invariably mean an
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irreducible representation. We sometimes refer to the functions which span-
an irreducible representation as belonging to that representation. For ex-
ample, the spherical harmonics Y4 (8,9) with m = 4, 4-1..., -f span a (24 + 1) -
dimensional irreducible representation, labelled by £, of the group Ry of
rotations in three dimensions. )

In quantum mecharics we are concerned with the eigenvalue problem
Hy= E¢. The theory of groups is of immediate value here because if the
Hamiltonian H is invariant under a group then there will be a degeneracy of
all eigenfunctions ¢ which belong to the same irreducible representation
of the group. This follows directly from the property that an irreducible
representation is spanned by taking all group operations on a single function
of that representation. Further, if an operator is invariant with respect io a
group it will have zero matrix elements between functions belonging to dif-
ferent irreducible representations. For these properties it is essential that
we mean irreducible representations.

' We make use of these properties in two slightly different ways. In the
first place, if our Hamiltonian is precisely invariant with respect to a certain
group, the representation labels of that group will be good quantum numbzrs
for the system. In the second place, we may be able to find a group which,
although it does not leave the Hamiltonian completely invariant, nevertheless
does so in an approximate sense. For example, it may leave the most im-
portant part,of the Hamiltonian invariant. T

In nuclear structure we make use of the symmetric group (of all per
mutations of the particles), the rotation group in three dimensions and
various Unitary Groups and their subgroups. The Hamiltonian is precisely
invariant under permutation of all co-ordinates of the particles but the Peuli
Principle restricts us to totally antisymmetric wave functions anyway, so
we learn nothing more from this invariance. However, if the Hamiltonian
is invariant under permutations of, say, the orbital co-ordinates alone,
then the representation labels of the symmetric group applied to the orbi:al
wave functions only will become good quantum numbers., With spin-dependent
forces this invariance is not satisfied so that use of the symmetric groug
will fall into the second category above. In the same way, the Hamiltonian
is necessarily invariant with respect to rotations of spin and orbital co-
ordinates together, leading to the good quantum number J; the total angu.ar
momentum. Only for rather special Hamiltonians, however, do we have
invariance with respect to rotations in, say, the orbital space alone, This
happens for pure central forces and leads to the quantum number L,° the
orbital angular momentum, which is also the representation label for' the
group Rgs in orbital space only.

The main purpose of this course will be the study of other groups in this
second category which provide, through their representation labels, a useful
classification of the many-particle wave functions in shell-model configu-
rations. As a preliminary to this I shall briefly descrlbe the proper’ues cf
the symmetrlc and unitary groups which I shall need. -

2.1, The symmetric group Sy

The group of all permutations of k particles is éalléd the symmetric
group. It has k! elements and is denoted by Sx: You are no doubt familiar
with the symmetrizing and antisymmetrizing operators

= L
S all pp
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and

=z
A atp? P
where p denotes a permutation and ¢, its parity. These operators have the
properties

SF=F, AF=F,

where F is any function and F;, F, are, respectively, totally symmetric
and antisymmetric functions.
By definition, a totally symmetric function satisfies

PF; = F;
for all p and a totally antisymmetric function satisfies

PF, = ¢ F,.
Thus, each of these functions would span a one-dimensional irreducible
representation of Sy. It is natural, therefore, to ask how, the functions of
more general symmetry may be organized into irreducible invariant sets.
The answer is that there corresponds one such set to each "partition"
[f; f3 £3 ... ) of k into integral parts f; which satisfy f; 2 fp > fgetc. and of
coursef; + f5 +...etc.=k. This partition will be denoted briefly by a symbol [f]
and illustrated by a Young pattern, which is a shape formed from k squares
of which f; have been put in the first row, fjin the second row and so on.
Thus {521] is illustrated by

[ 1]

-~

L

The number ngf of independent functions in such a set may be shown to
be equal to the number of standard tableaux, defined as any arrangement of
the numbers 1, 2, ... k, one into each block in such a way that the numbers
increase to the right along every row. and increase downwards in each col-
umn. '

The irreducible representations of Sk are thus labelled by partitions
[f] and have dimension ngfj . The choice of the functions which span an irre-
ducible representation is clearly arbitrary within a linear combination. To
each particular choice of functions there will correspond definite represen-
tation matrices. Apart from an overall normalization, therefore, the choice
of representation matrices and basis functions is the same thing.

Consider three particles. The possible partitions are [3] [21] [111],
with standard tableaux

GEE B o Bl

The three representations labelled by these partitions thus have dimensions
1, 2 and 1 respectively. The first and last are totally symmetric and anti-
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symmetric respectively, while the middle one is of mixed symmetry.
Yamanouchi uses a more concise notation (ay ay.; ... 2 1) for the standari
tableaux in which a; denotes the row in which particle i occurs, In this ro-
tation, the four possible three-particle functions are denoted by (111), (211),
(121), (321).

In shell-model calculations it is rarely necessary to construct these
functions or matrices explicitly but to illustrate the behaviour of these finc-
tions of mixed symmetry I shall briefly describe the standard Young-
Yamonouchi-Rutherford representation of Sy,

A very simple general rule may be given for the representation matri-
ces, Since any permutation may be expressed as a product of adjacent trans-
positions Pj-15it is only necessary to give a rule for the representation :na-
trices of this particular permutation. We use a symbol r to distinguish cif-
ferent standard tableaux of a given shape [f]. The standard matrix Uy fcr
the permutation F,_;, has matrix elements as follows:

(i) Ur = +1if n-1 and n are in the same row of the tableau r;
(ii) Urx = - 1if n-1 and n are in the same column of the tableau r;
(iii) If n-1 and n are in neither the same row nor column then there will
be a tableau s which differs from r only by the interchange of n- and
n. In this case
G = '_L: U =—1_: Uy = Uy =7\ [1- ;

Pr Prs 28

where p; is the "axial distance' from the number n-1to n in the
~ tableau r. This distance is defined by the number of steps in hori-
zontal and vertical directions, counting steps to the left and down-
wards as positive;
(iv) All other elements are zero.

Thus the representation matrices for adjacent transpositions in [21] are
>

Py Po3

(211)

1
ém (121) S

-
|

o

e

B
(S

so that

P, 9 (211) = 9 (211)

P, ¢ (121) = - (121)

.and .
Py, @ (211) = - 3o (211) + \§ 9 (121)

Py @ (121) = 8o (211) + 1 9 (121).
The simplest possible example of functions of mixed symmetry would be

9 (211) = f;: (x, + % - 2x3)
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o (121) = L(x

\2

The operators S and A may be generalized so that we may construct,
not simply functions which are totally symmetric or antisymmetric, but
which have mixed symmetry and correspond to a definite row r of a shape
[f]. These are called Young operators but we shall not need them here.

17 %g)-

Product representations

If we have a set of functions F which span a fepresentation [f] of S; and
a set G which span a representation [g] of the same group then the set of all
products will span a representation of Sy with dimension n X n(; which
will in general be reducible, It is of considerable interest to know into which
irreducible constituents this reduction will lead. This is the same problem
as that of taking appropriate linear combinations of the products to form
irreducible invariant sets under S,.

This process is called the reduction of an Inner Product

[f1 X [g] = E ary [h] -

[h]
The integers ap,) denote the number of t1mes that a particular represen-
tation [h] appears in the reduction and they may be determined by using
the group characters. For example, we get one relation between these coef-

ficients by using the characters of the unit operator which are just the di-
mensions of the representations. Thus

ng X ngg) = B ap M-

For example, we find [21] X [3] = [21]
[21] X [21] = [3] + [21] + [111]
[21] X [111] = [21].

Let us look at the second of these relations in some detail. For brevity, we
denote the functions F(211) and F(121) by F, and F, respectively. Then this
relation tells us that by taking suitable combinations of the four products
FyGa, FaGp, FbGa, Fbh Gpwe may form functions of the symmetry types glven
By using the representation matrices we find that

B (F.G, + FyGp) is totally symmetric [3]

\k (F,G, - F,G,) is totally antisymmetric [111]
Vi (F, G, - FyGp) is of mixed symmetry [21] (211)
\g(FaGb + F,G,) is of mixed symmetry [21] (121),

. We meet this inner product when considering the product of functions
of different coordinates of the same particles, for example isotopic spin
and intrinsic spin in supermultiplet theory.

The Quter Product of two representations arises when we consider pro-
ducts of functions F of particles 1, 2,...k, which span a representation
[f} of Sk, withfunctions G of particles k; + 1, k; + 2, ... k; + ky which span a
representation [g] of Sk,. If we now ask how these products transform under
the group Sk, + kp We soon see that they do not in general span a representa-
tion of that larger group. They will do so, however, if we include with them
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all products obtained by permuting the particle numbers between the F aad
G. The reduction of this outer product is denoted by

f1 P lel = L Am [B]

and the integers Ap follow from the rule of Littlewood which is as follows:

Add to the shape [f] a number g, of blocks containing the symbol «. 'Then
add a number gy of blocks containing the symbol 8 etc. in such a way thai,
(i) at every stage the resultant shape is a standard one, (ii) no two identizal
symbols appear in the same column, (iii) reading all added symbols from
the top right corner along the rows taken in order, the number of symbols 8
must not exceed the number of symbols ¢ at any stage and the number of
symbols ¥ must not exceed the number of symbols 8, etc. If a shape [h] can
be thus formed in a number Ay, of ways then the representation [h] will
occur Apy) times in the reduction.

The dimension check for the outer product is

(ky* ky)t T
B X B X e T Am P

For example
[21]®[21] = [42] + [411] + [33] + 2t321] +[3111] + [222] + [2211].

‘This process has an obvious application in fthe addition of vkg particles to kj.

2.2, The unitai‘y group

Consider the problem of putting a number k of particles into any of a
set of n single-particle states ¢;. If we consider the single-particle states
as components of a vector in n dimensions then the k-particle states ¢ will
be tensors of rank k in this n-dimensional space, (For example the (2{ + 1)
states @(fm) of a single particle in an orbit / would define a (24 + 1) - dimen-
sional vector space.) If we impose a linear transformation ©'n = Umn®p on
all the single-particle functions then this will induce a corresponding trans-
formation among the set of all k-particle product functions Y. The most
general of such transformations which preserves normalization and ortho..
gonality is a unitary transformation, Uf = U-1,

The functions ¥ will clearly span a representation of the group U, of
all unitary transformations in the n-dimensional function space of each sirgle
particle, but, in general it is not irreducible. Let us now classify the func-
tions ¢ according to their permutation symmetry, i.e. by a label [f] of S,.
Since the unitary transformation is totally symmetric in the particle num-
bers, it cannot transform from one [f] to a different shape. Hence the fun:-
tions of a particular symmetry type [f] by themselves span a representation
of Up which again is in general reducible. For, consider the functions of
type (f] corresponding to a particular standard tableau (or row of the re-
presentation) r. These by themselves ([f] and r fixed) must span a repre-
sentation of U, again because of the symmetry of the unitary transformation.
This representation may be proved irreducible. Because a function labelied
by [f)r' may be found from one labelled by [f]r simply by a permutation,
the symmetry of the unitary transformations leads to the conclusion that we
obtain identical representations from r and r'. The irreducible represen-
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tations of U, are thus labelled by the partition [f] alone, the same symbol
as was used for S,.

One may visualize this situation in which the tensors of symmetry [f]
previde irreducible representations of both Sy and U, by placing all such
functions in a rectangular array in which the rows are labelled by the Yama-
nouchi symbol r and all functions of symmetry [f]r are placed in the r'®

row,
“[05

1

From the arguments given above, the functions in any particular row will
span the irreducible representation [f] of U,. The length of the rows isthere-
fore just the dimension Nig of this representation of U, while the length of
the columns is just the d1mens1on nyp of the representation [f] of 5,. The
functions in each row may now be ordered in such a way that functions in a
given column differ only in the particle numbering, i.e. they are identical
-with respect to the unitary transformation among the single-particle states.
Thus each column will span the representation [f] of Sy while each row spans
the representation [f] of U,.

Let us now look at some examples to clarify this rather subtle link bet-
ween the two groups.

(i) Considern =2, a two d1mens1ona1 vector space such as we meet
with the intrinsic spin m; = ¢ 3 or with the charge wave functions of a nu-
cleon, representing neutron or proton. We denote the two single-particle
states by ®,, . . The product wave functions for 2 and 3 particles are organ-
ized in Table I by their symmetries [f].

The simple normalization constants have not been included here and the
particle numbering is implied by the ordering of products Thus ©+9.9-
means ¢,(1)9,(2)¢-(3).

DS T,
Nty

TABIE 1

[« ] : | Ny

1 [1 9. @ 2
2 2 9 (20 +00). 02 , 3
nyg - (o0 -09) -t 1 _
3 31 20,0000 4000 +9909).( 4_¢_¢++ POLEP90). 000, 4 ’
{21 @11 (249070297999 (2eeq-eqe-gee) 2
[21] (121) _ (909-090) (¢9e-¢09). . - Lo 2 .

Ty ' _ _ o 0
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One can see here that, whereas the representation [2] of Sy is one-
dimensional, the representation [2] of Uy is three-dimensional. By chance,
the label [21] gives two-dimensional representations in both groups.

(ii) Some entries are given below in Table II for n = 3 where, for con-
ciseness, we have denoted the three single-particle states by x, y and z.

TABLE I
- —
k M NI
1 1 X, ¥, 2. . 3
2 21 XX, YY, 2%, (Xy +y¥), (X2 +zx), (yz +2y). 6
{11} (xy ~yx), (xz -2x), (yz ~2y) . } 3
3 31 10
[21] (211) : ' 8
{21 ey | ,. 8
11y det (xyz) s 1

The total number of products for k particles is nk so that we have a
relation

k=
n*= E g Ng.
which may be verified in the examples.
A simple formula can be obtained for the dimension N of the repre-
sentation [f] of Uy
N = H (£ -£ + j-1)/@G-1)

1=i<j=n

We have seen that the irreducible representations of U, are labelled
by any partition [f]} of any number k but there is one limitation on the [f} if
the representation is tobenon-trivial. The number of rows of the shape [[]
must not exceed n. This is obvious, because if we were to have more than
n rows, the basis functions of the representation would necessarily be totally
antisymmetric in a group of more than n particles, from the properties of
the representation matrices of the symmetric group. But since our vectcr
space has only n dimensions, i.e. there are only n single-particle states
to choose from, it is impossible to form functions antisymmetric in mors:
than n particles. This property shows up in the examples where no {111}
representation could be formed for U,. With U, this representation can just
occur, being one-dimensional with a simple determinant as basis functioa.
Likewise for Uy the representation [11] is one-dimensional,

Product representations

We met an inner product with respect to the symmetric group when we
had a product of two functions of the same particles,

Now we meet an inner product with respect to the unitary group wher.
we consider products of two functions which transform according to definite
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representations [f] and [g] under the same unitary group U,. The reduction
of this product representation

1R (gl = [{7‘] Apy [h]

of U, has coefficients Ap,; identical with those of the outer product reduction
of Sy with the exception that any representations [h] with more than n rows
must be ignored as trivial. For example, in the outer product reduction

(211§ [21] = [42] + [411] + [33] + 2[321] + [3111] + [222] + [2211]

of Sg the right-hand side simplifies to [42] + [33] when considered as an
inner product reduction of U and to {42] + {33] + [411] + 2[321] + [222] with
U,.

The dimension check

N @ Ny = & Am N

may be applied to these reductions in Uj,. »
This inner product reduction is in fact present when we go from k = 2
to k = 3 by adding a particle, as in the tables. For example in Ug

21 [1]
(111 [1]

with dimension checks 6 X 3 = 10 + 8 and 3 X 3 = 8 + 1, which may in fact
be used to calculate the dimensions.

3] + [21]
[21] + [111]

The special (or unimodular) unitary group
Since UUT, = I for a unitary matrix, it follows that
]det U]2 = 1 so that det U = ei®,

If we restrict the transformations of U, to those for which det U = 1 we shall
clearly have a sub-group of U,, denoted by SU, and called the unimodular
(or special) unitary group.

-In general an irreducible representation of a group G, although obviously
being a representation of any sub-group H of G, will not be irreducible with
respect to H, However, in this reduction of U; to SU; the irreducible repre-
sentations [f] of U; remain irreducible under SU,. A simplification does
occur nevertheless in that certain representations which were inequivalent
under U, become equivalent under SU,,. Precisely, [f; f5f;... ] becomes
equivalent to [f;-f,, f5-f,, ...f,-;-f;] the shape obtained by removing all com-
plete columns of n blocks, i.e.

P ] _ fy -t
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The proof of this result follows from the fact that the totally antisymmetric
representation [111,.. 1], with a single column of n blocks, being one-d.-
mensional must, for unimodular transformations, necessarily be just the
identity representation [0] associating the number 1 with each transforma-
tion. If then we form the product representation

n -
(f-1, f,-1, ... £-11Q[111... 1] = [f}, £, f5... £]

in which only a single term occurs on the right-hand side we have shown

the equivalence between {f;, f, ... f;] and the representation obtained by
removing one full column, The process may be repeated until all full columns
have been removed.

Thus, the irreducible representations of SU, may be labelled by a shape
of n-1 rows so that, in particular, SU;needs only one row, a single integer.
It is in fact a well-known property that there is a correspondence between
the groups SUz and R3 (a homomorphism, 2-1, see |WEYL p. 144). Hen:e
there should be a unique relation between the representation labels of these
two groups. I shall assume that you are familiar with Rg and in particular
with the fact that rotations leave invariant the (2J + 1)—dimensional space
spanned by the angular momentum eigenfunctions Y(JM) for fixed J and
M=J,J-1,... -J. In group-theoretical language these functions spana (2J + 1)
-dimensional irreducible representation of R3 labelled by J. It is now easily
seen, from dimension alone, that the representation [f,] of SU, with a single
row will be the same as that of Ry labelled by J = f;/2.

The group SU;, which we shall use in the later part of the course, needs
two rows to label its representations. We use the notation (Au) wher:
A=f1-f2,[4=f2. )

3. CLASSIFICATION OF MANY-BODY WAVE FUNCTIONS

3.1. Multiplets and supermultiplets

‘We must form a wave function which is totally antisymmetric with re-
spect to permutation of all co-ordinates. Such functions may be classified
according to the irreducible representation [f] of Sy by which they transform
with respect to permutation of one type of co-ordinate alone.

For example, in a j* configuration we may divide the co-ordinates into
those referring to the charge (or isotopic spin) space and to the spin-orb:tal
(i) space. Then, to form an antisymmetric function from one ¢ which has
symmetry [f] in the j-space demands a charge function X of adjoint sym-
metry [f] , this shape being obtained from [f] by interchanging rows and col-
umns, Then by a suitable phase convention [6] in the adjoint representation,
the normalized antisymmetric wave function is simply

N =
@ - /5[11 X [ (1. (3.1)

The convention for the adjoint representation is to define Ts (p) = €p Us (p)
which differs from the-standard representation for the adjoint shape by a
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different choice of phases and enables us to write ¥ without phase factors
on the right-hand side of (3, 1).
The antisymmetry of ¥ is simply shown, for

pe-fl ZEZLT @)% U P
o

"1
= E[n €p g ? )[: U[s (p) Urt (P) X§cp(

1
=\/.: €. L X0 =€, ¥
p [Ia4 p
B "t A

using the orthogonality of the matrices U. :

This antisymmetrization leads therefore to a link between the S labels
[£] and [f] of the j-space and the charge space of the wave function. But now
the link between the groups Sy and U, means that the behaviour of the charge
part of - he wave function under U, is labelled by [f]. This immediately re-
stricts [f] to not more than two rows, leading to the corresponding restriction
of not more than two columns in [f] for the spin-orbital space. Because of
the SU, - R; correspondence and because the properties of R, are more fa-
miliar than those of SU; through the frequent use of angular momentum, the
isotopic spin-label T = (fj; - f;)/2 is generally used.

These simple arguments have shown that in jX, there is a unique cor-
respondence [7] between the isotopic spin T and the spin-orbital space sym-
metry [f] and further that [f] has no more than two columns. Also [f] has
no more than (2j + 1) rows from its significance as a representation label
of Ugjs;. This conclusion is illustrated in Table III. We return later to the
problem of further sub-classification of the spin-orbital states of glven sym-
metry [f] in the jk configuration. .

TABLE iIt
k tfl h |
1 m o m 4
2 21 f113.. 0
[y 21 1
3 21 (21 '
[ - (3 3
4 22 221 0
[211) [31] 1
[1111] ' 41 2

From the physical point of view, this classification is of great use be-
cause T is a good quantum number for charge independent forces. To the
best of our knowledge, nuclear forces satisfy this condition, being thus in-
variant under transformations in the U, space. Apart from effects of the
Coulomb force, which are generally small, this leads to [f] being a good
quantum number,



172 J. P. ELLIOTT

If, instead of lumping the spin and orbital co-ordinates together, as
above, we treat them separately, as we must if we intend to set up an L-S
coupling scheme, the procedure may be simply generalized. The usual wey
[6] is to classify the antisymmetric functions by the symmetry [f] of their
orbital parts alone, Hence, 'the combined charge and spin parts must have
the adjoint symmetry [f] and we may use the same antisymmetrizing pro-
cedure as before if we interpret ¢ as the orbital wave function and X as the
charge-spin function.

As there are only four possible charge-spin states of a single particle,
it follows that the number of rows of [f] and hence the number of columns:
of [f] must not exceed f ur, .

To classify further by the symmetry in charge and spin spaces sepa-
rately we must find which shapes [g] and [h] will sarvisfy the inner product
reduction '

(g1 ] = Ea, (e (3.2)

with [f] occurring in the sum and with [g] and [h] having not more than two
rows. This gives rise to a set of [g], [h] combinations and if a;f; > 1 for
some of these, then that combination will occur in the classification inde-
pendently a number app times.

Since both charge and spin spaces are two-dimensional we again have
a unique correspondence T = 3(g; - gy) and S = 3(h; - hy). The set of TS comn-
binations occurring for a given [f] is called a '"Wigner Supermultiplet", Ex-
amples are given in Table IV. For these small values of k, the situation

TABIE IV

k m| @ | @|m{t]s
1 Ww| | m| s}
2 @ o] @)1 o
mf @&fo |1

pul @) @l @)1}
3 1 [} 4]

3 (31111 | f2n [pen | 4 | 4
(eu) e @) §] o4

| ¢ 4| #

P b )by

| @\ @) @ 8] %
e |20 | 4 4

affj > 1 does not arise so that the T and S labels are sufficient to specify the
charge-spin state. This difficulty arises for the first time when k = 6 and
[f] = [321] with [g] = {h] = [42]. In this case there will be two independent
states with T = S = 1 and [f] = [321] which must be distinguished in some
arbitrary way.
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Although, by the previous arguments, T is still a good quantum number,
this does not now imply that [f] will be good. Only if the nuclear Hamiltonian
is also independent of spin wiii this be so, with the result that this more de-
tailed classification is less fundamental. It is natural of course that, as we
make the classification more detailed, the quantum numbers (representation
labels) introduced will become less good.

3.2. The £ configurétion

We now face the problem of classifying the orbital states of symmetry
{f] in£k. There are of course a great many ways of doing this but the one of
most obvious use is that which uses the total angular momentum L. This
provides the L-S coupling scheme which is good for central forces. The
problem of which L values occur for given symmetry [f! is the same as the
problem of reducing the representation [f] of Ug when the group is re-
stricted to Ry. The group Rs is obviously a subgroup of Ugy.; since the
rotation matrices are a special case of the unitary matrices of Ugp+; .

This reduction is most easily accomplished [8] by using the known re-
duction of product representations in both groups. We illustrate for £ =1
and 2 for k= 1, 2 and 3 in Tables V and VI,

TABLE V TABLE VI
0=1 : : 1=2

k {f] L k. n L

1 [t P 1 [ D

2 @ SD 2 [ SDG
(1 P (11 PF

3 (3] PF 3 (31 SDFGI
[21] - PD [211 PDFGH

[111] s [111] PF

The result for two particles, namely that the even L are symmetric while
the odd L are antisymmetric, follows immediately from the symmetry of

the vector-coupling coefficients or by simply looking at the product functions
for fixed M, starting with the maximum value., We then extend to three parti-
cles by studying the products

21 11) = +{21] and [11] ®[1] (21] +[111],

together with the products in Rz which are the usual angular momentum coup-
ling rules. Thus for £ = 1, we have

(S+D)XP=P+(P+D+F)and PX P=S+P +D,
Now the totally antisymmetric function [111] is a scalar in Uz and also must

be scalar in Rs. Hence the reduction [111] —8 is trivial and by subtractlon
in the products above this leads to (21] —-P + D, [3] —P + F.
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For higher shells, one must find the reduction of the totally antisym-
metric tensors by looking at the possible M values for the possible determi-
nants. Thus for the [111] states of d® we must choose any three of the m.-
values of a single d-particle. This gives M = 3, 2, 12, 02, -12, -2, -3, show-
ing the reduction [111] =P + F., From this, we may deduce the {21] and 3]
reductions as above.

We see here that, even with three d-particles, there are two D states
of symmetry [21] which we cannot as yet distinguish. For more particles
this difficulty increases rapidly, indicating the need for some further sub-
classification of the states.

Classification by sub-groups

If we could find a sub-group G of Ugp+1 which contains R3then we could
use the representation labels of G to further distinguish the wave functions.

A systematic way of searching for such groups was introduced by
RACAH [9, 10] in the corresponding problem of atomic spectroscopy. Ituses
the infinitesimal operators of the group.

In the theory of continuous groups, which have an infinite number of
elements, it is shown that any element may be generated from a basic se:
of infinitesimally small transformations. The operators of this basic set
are denoted by Xg so that an arbitrary infinitesimal transformation may be
written S, = 1 + E N Xg-

It is further shovm that the group conditions on the operations S, impose
a condition that the infinitesimal-operators Xg; must commute among themni-
selves, i.e.

[Xq, Xl = Ll X, (3.%)

and that this condition is sufficient that the set of operators X should be
the infinitesimal operators (or generators) of a group.

For the unitary group, these infinitesimal operators are skew Hermitian
for if we write U =1+ € A with € small then the unitary condition gives
1=U%U-= (1+e€ AR Y1+ €A)=1+€(A} +A) +... sothat Af = - A. We may
write A = iH with  a Hermitian operator.

For the group U, there will be n? such operators while the group SU,
has n%-1 operators, the latter being traceless. These are just the numbers
of independent n Xn matrices satisfying the Hermitian and the Hermitian trace-
less conditions. ‘

Let us now be specific and study the operators of the group U,,,, in the
space of the single- partlcle functions @{fm). There are many ways of or-
ganizing these (22+1) operators or matrices, The simplest is to define
matrices

'mm’

with 1in the mm' position and zero elsewhere. Then

(Um | Egge 14m) = 6 00 6,0 (3.9
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‘and the commutation relations
[Emm': Em"m"] = 6m'm" Emm"' - 6mm"‘ Em"m' (3.95)

are satisfied,

Alternatively, we might classify the operators by their behaviour under
rotations, i.e. as irreducible tensor operators in Racah’s language. Let us
denote them by ur and the Wigner-Eckart theorem gives their matrix ele-
ments as

(o | u] | o) = (zrmq[zm)Jjg';_‘fﬂﬂ (3.6)

The factor (4lu'l|4) will enter only as a single number multiplying all ma-
trices and may therefore be defined to be unity without loss of generality.
The only possible r values arer = 0,1, ... 2/ withq = r, r-1, ... -r; other-
wise the operator is zero. One easily sees that there are just (21?, + 1)2 of
these operators, as there are of the E ,r.
The two choices of basis for the operators are related by

’uc‘l mﬂ_— (ﬂ,rmqlllm)E (3.7)

from which the commutation relations
fog, il = 2 o o e (3.8)
: nq
X W (rr'fs ; r''p) (rr'qq’ I}r"q”)u‘;:

may be deduced.

To find a sub-group of U,,,; we must find a sub-set of these operators
which is closed under commutation. For this purpose the basis u’ is most
convenient, We :ee at once that r'' = 0 can never appear in the commutation
for this would imply r = r' whereupon the curly bracket factor vanishes.
Thus all u] with the exceptlon of ug generate a group, which is simply SU,,,;.
Further if we put r = = 1 then only r''= 1 occurs. Hence the three oper-
ators uﬁgenerate a group, which is just R3. This must be so because we
know the infinitesimal operatcrs of R3zto be the three angular momentum
operators, i,e. the three components of a vector, and u}1 is the only vector
at our disposal.

So far we have learnt nothing new from this operator approach. How-
ever, our search for a sub-group G containing R; is now reduced to a search
for a sub-set of the y containing the u}l. If we put r' = 1 ihen only r'" = r ap-
pears in the commutation relation but with q'"' # q in general. From this it
* follows that, if we include with the u}l any component of another tensor oper-
-ator then all components of that operator must be included. The problem

thus reduces to one of finding which values of r may be included with the
uj to give a closed set under commutation.

The set of ug with odd r satisfy this condition since if r and r' are odd,
the curly bracket vanishes unless r'' is also odd. The group generated by
this set is Rgpy1 of orthogonal transformations in (2/+1) dimensions, or, in
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other wbrds, real unitary transformations. It leaves the two-body scalar
product (in the usual Ry sense) invariant

£

® (L= 0) = == B ("o ()0,

The irreducible representations [f] of Uy, reduce on restriction to the sub-
group Rg,,;. Rules for this reduction are given by Littlewood following con-
traction of the tensors with respect to the scalar product 2. The irreducible
representations of Rgp4 are then labelled by a set of £ integers (0y0;, ... d))
denoting the symmetry of the remaining tensor after maximum contracticn,

In the p-shell, this leads to no additional classification since Rypy, = Rg
for £ = 1, but the labels [f] were almost sufficient for a complete separat.on
of functions in that shell.

In the d-shell we may now use [8] the chain of groups 1:15—'R5—>R3 with
representation labels [f] (5,6 )L as shown in Table VII. The problem of the
two unseparated D-states of [21] symmetry in d® is now resolved, one trins-
forming like a single particle (10) under Rj the other transforming in the:
less simple fashion (21).

TABLE VII
k f 0,0, L
1 m 10) D
2 2 (00) s
20 DG
[11 (¢8)) PF
.8 [31 (10) D
(30) SFGI
21 (10) D
(21) PDFGH
[1113 an PF

3.3. The j* configuration

Analmost identical procedure may be used [7] with the configuration ik,
starting from the operators ug withr =0, 1, 2, ... 2j, which generate the
group Uy;,;. Again, the removal of uf restricts the group to SUy;,; and the
operators utll describe R,. Again, the odd values of r provide a set of u;
closed under commutation which therefore generate a sub-group of Uy
containing R; and leaving the two-body scalar product (in the R, sense)

(=0 =g L ()7 o (0m (2)

m

invariant,
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This invariant is however an antisymmetric second-rank tensor in the
(2j+1) dimensional space whereas in discussing the f¥ configuration, the
scalar product (L = () was a symmetric tensor. This follows directly from
the fact that whereas £ was integral, j is half-integral. The group which
preserves this antisymmetric form is called the Symplectic Group, denoted
by Spg; ,,1, its irreducible representations being labelled by j + % integers
{0y 0 . }. The reduction is again obtained by contraction, w1th respect
to the ant1symmetric scalar product and Table VIII shows the resulting clas-
sification in the j = 5/2 shell using this chain of groups Upj,;—Spyjy—Ra.

TABLE VIII
)] T (prp2ps) I
(u i (100) 3
2 0 (200) 1.3.5
1 1 (000) 0
(110) 2,4
21 ] (100) H
(210) T2
39
[1113 3 (100)
(111 3.3

Both here and in the £k configuration we use the word seniority to describe
the rank v of the tensor remaining after the maximum contraction, Thus
i+ )

v—E p or Lo.
i=l i

Notice that even with three partlcles this chain of groups fails to sepa-
rate the two J = 7/2 states and again this situation gets worse as the particle
number increases. In such cases some arbitrary method must be used to
classify them,

For higher values of £ and j it is possible to tind further mtermedmte
groups to help in the classification but this process never leads to a complete
separation of all functions by the representation labels,

We must now ask whether this classification has any useful physical
meaning. Assuming that we may ignore configuration mixing we want to see
if the new labels approximately diagonalize a nuclear two-body force, Al-
ternatively, we may ask for what forces are the labels good quantum num-
bers within the configuration. An answer to this second question may be
ziven quite generally.

To each of the groups we are considering there is a quadratic form
[10, 11} in the infinitesimal operators, called a Casimir Operator, which
has the property of commuting with all the group operators. In other words
it is scalar under the group and therefore has the properties that it is dia-
gonal in the irreducible representations and has the same eigenvalue for all
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functions in a given representation, that value being simply a function of the
representation labels. For example, in the group R, the Casimir Operatcr
is J? with eigenvalues J(J+1) for all M of given J and no coupling between
different J.

For k particles, the Casimir Operator of Spgj: is

G=ELr+1) U U) (3.9)

k
where U} = '21 uy (i) is the infinitesimal operator in the k-particle system,
Then =

expressed as a single-particle term which has the same value for all states
of the configuration and a two-body term. Now, if the nuclear force is such
as to have the same two-body matrix elements as this two-body operator

’f;g d)(21'+1) (ur(i).ur(@)), then in the k particle system the matrix elements cf
the nuclear force will, apart from a constant, be those of the Casimir Oper-
ator G. For such a force, then, the representation labels will'be good quan-
tum numbers,

The two-body operator is essentially the Casimir Operator for two-
particles and its spectrum has all angular momenta degenerate except the
J{or L) =0 state. This is just the spectrum given by the "pairing Hamiltorian"
{12], in a pure : :

(other J)
J=0
configuration defined through its matrix elements
(mm' |H| &&') = B 6(®, -&') 6 (m, -m') ()"
In other words, a pairing force leads to the Ry, (or SP2j+1) classification
within a pure £¥ (or j¥) configuration.
"This is still rather a formal type of force but a short-range force has a

spectrum not very different from this. For example, a §-force has the fol-
lowing energies in a two-particle system, normalizing the zero spin eneryy

Loy | a2 £? 1/2)

0 1 1 1
2 o 1027 0.25
4 0 {018 | 012
6

- 0.24 0.06

to unity. One sees that the d2 case gives, accidentaﬁy, the p’rec'ise:degene-r-
acy required and even the other examples do not deviate very far. Another
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way of putting this result is that the two single-particle wave functions over-
lap most strongly in the J {or L) = 0 state, Then, provided our forces do not
have too long a range, we might expect these classifications to be useful,
the low seniority levels lying lowest. In an even-even nucleus this predicts
‘a lowest state of seniority zero and therefore J = 0 while in an odd nucleus .
it predicts seniority 1 and thus J = j (or L = £). In j-j coupling the predictions
are just those of the early single-particle model in which nucleons were
paired off to zero spin and provide a justification for that ‘model. In some
cases, however, the magnetic moments etc. in states of seniority 1 differ
significantly from the single-particle values due to the antisymmetrization.

Fractional parentage coefficients

Having defined all the states of the configuration by their group theo-
retical properties it is in principle possible to consiruct them explicitly.
We naturally avoid this for k > 2 and use the method of fractional parentage
to calculate matrix elements of one- or two-body operators.

If <£ is an ant1symmetr1c functlon of particles 1,2, 3, ... k,
ll/ n 1" " 1 2 3 k- 1
¢ is a single-particle " " k,

then we may write

Y= %(Zl)w){ﬁ ) (3. 10)

where the symbol {£,9) denotes vector coupling of ¥ and ¢ to the appropriate
quantum numbers in . (Either TJ or TS and L depending on the coupling
scheme.)

This expansion is clearly possible since the sum is carried over all
antisymmetric states ¢ of the first k-1 particles and ¢ being antisymmetric
in all particles mus* necessarily be so in the first k-1, The numbers (¢} y)
are called the 'fractional parentage coefficients'.

Kk
To evaluate the matrix of a one-body operator Q = 1‘_t"i‘.Q(i)_ in a k-particle
system B

Wy =x @'l Q|

- K@D V)@ ¢)<[¢"¢]’iQ(k)l[W<P}>, - (3.11)

.using the facts that ¢ and ¢' are antisymmetric and that ¥ does not contain
particle k. For a particular coupling scheme and a definite tensor operator
form for Q we may then reduce the remaining matrix element to one in the
la_st particle only, together with Wigner and Racah functions.

k
For a two-body scalar operator H = E, H;; we find
<j

W' Hv) - KD 4 1) )

= bk(k-DT L )] YYD W@ | Hy D).

— k-1 — _ .
But if we define H= L Hj we have @'|H[¥) = §(k-1)(k-2) (@' | Hyo| ¥)
igj

w'\HlW = )Ez(w'llw')@l}w)(zﬁ'lﬁm ‘ (3.12)
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which exprée€sses the matrix for the k-particle system in terms of that for
the (k-1)-particle system. Alternatively, it is possible to define fractional
parentage coefficients for the removal of two (or even more) particles.

If Y is an antisymmetric function of particles 1, 2,3, ... k-2, and 6 is an ardti-
symmetric function of particles k-1, k, then we may expand

v=2z @, 6))w) (¥, 6} _ . (3.13)
giving' |

) _ k(k-1)
W |1 y) - KD

LT @, 0@, 0}¢)(6'| Hypd 6)
¥,6,8'

reducing the k-particle matrix to the two-body matrix. Generally, this pro-
cedure is preferahle for a two-body force although the two-particle coef-
ficients ( 1// 9]} Y) are more difficult to calculate.

I shall not enter into a description [6, 10, 13, 14] of the calculation of
these coefficients, which makes use of the various group operators by which
the states are defined. I might simply remark that they may be factorizec.
For example, in L-S coupling

n

(wl}w)-/— @ E LS 1y Ly ETSEITS),

while in j-j coupling the J and T parts separate., Thus the TS factor may be
used in any orbital configuration., We include y here to denote other quantum
numbers such as the Rg labels. To calculate the separate factors one use:
the group operators of U,,,;, R,,,, and R, taking advantage of the fact that
states in the same irreducible representation of a group may be linked by
the operators of that group whereas states of different representations muy
not, Usually the coefficients for the state with greatest L-value are trivial
and a chain calculation with the group operators may be started from there,
Any states not separated by the group may be defined at this stage by an
arbitrary choice of an otherwise indeterminate fractional parentage coef-
ficient, For most systems amenable to hand calculation, these coefficienis
have been determined.

We now go on to study the mixing of configurations and in particular a
coupling scheme which generates rotational features [17, 18]. We shall de-
velop a method [19] for calculating matrlx elements which avoids the frac-
tional parentage method. -

3.4, Mixing of configurations

For a long time (1952) there has been strong evidence for the existence
of rotational features in heavy nuclei, particularly in the region (A ~ 180}
in which quadrupole moments many times larger than the single-particle
value were observed. In this region the shell model has many levels clos¢
together and would not be expected to work well at all without extensive mix-
ing of configurations. In light nuclei, however, the shell model has worked
very well, not only at closed shells but throughout the lp-shell and as far
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into the ds-shell as calculations have been carried, namely the nuclei of
mass 19,

More recently (1958) rotatmnal spectra were observed in much lighter
nuclei, for example in Mg?* which is quite close to the regionin which success-
ful shell-model calculations were made. The question was therefore posed
whether such rotational features could come out from a shell-model calcula-
tion. Of course, the shell model provides a complete set of states in which
any kind of motion could be constructed, The crucial point is to see if such
features emerge with just that mixing of configurations normally considered
in shell-model calculations for light nuclei, namely the configurations with
the same energy in the oscillator field. If rotations were to appear only after
- a substantial mixing of very high configurations, this would indicate a break-
down of the shell model. Thus, either.the shell model breaks down between
7% and Mg? or the rotations will emerge in a natural way within the shell-
model framework. In view of the shell model successes in the p-shell the
first of these possibilities seemed unlikely and the co-existence of the shell
model and the rotational model descriptions were clearly demonstrated when
the Nilsson model was applied to F19 even though it was necessary to intro-
duce a substantial mixing of rotational bands., Thus, for example, in Mg
it would seem likely that a detailed shell-model calculation allowing mixing
of configurations d8, d’s; dfs? ... etc. would lead to a simple rotational
spectrum when the matrices, of order 100 or so, were diagonalized, There
should obviously be a simple way of reaching such a simple result.

We know that it is necessary to use intermediate coupling in light nuclei,
resulting from the inclusion of both central and spin-orbit forces. However,
it seems clear that the latter, being a single-body force, is not the essential
ingredient for producing rotations. We shall therefore work in an L-S coup-
ling scheme, including spin-orbit forces later. Even in the pure L-S coup-
ling limit we shall be able to make comparison with experiment for the
even-even nuclei. One expects to find such nuclei fairly close to L-S coup-
ling ‘because they have S = 0 in the lowest levels, giving no zero-order
contribution from the spin-orbit force. In the a-particle nuclei, which have
N = Z (even) this approximation should be especially good because the two
lowest supermultiplets are well separated. Such. remarks are confirmed in
the p-shell nuclei Bé® and C!2, : :

If rotational features do emerge in the ds-shell it would be natural to
expect them also in the p-shell where the L.-S coupling energies were calcu-
lated in 1937 by FEENBERG and PHILLIPS [15]. In fact, these energies are
proportional to L(L + 1) for states of given [f] and the L-values are¢ pre-
cisely those of rotational bands although cut-off at rather small values of L.
For example, in the [4] states of Be® the values of L are 0, 2.and 4; a K=0
band, cut off at L = 4.

This L(L + 1) behaviour may be seen in an elementary way as a con-
sequence of the smallness of the [-value, although we shall show.later that
it has much wider significance. In this simple shell there are only three .
orbital states of two partlcles L =10,1and 2 and we can find three two-body
operators .

I=Z I , the two-body'imit operator

i<j
M= 5‘ P; , the Majorana (permutation) operator
1<] )

L= L@ t)=3 @ -2

i<j
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which may be immediately evaluated in a system of k particles, The firs: two
are independent of L and the third has eigenvalues 3 {L(L+1) - nf{¢+1)}). Hence,
any two-body force may be written as a sum of these operators and must
therefore have energies proportional to L{L+1) within a given [f]. The two
operators, other than the unit operator, are essentially the Casimir oper-
ators of the groups U; and Ry by which the p-shell states are labelled.

Thus we see that rotational features are present in the p-shell in L-i3
coupling although they are not particularly noticeable in the spectra because
of the low cut-off, the effect of spin-orbit forces and the wide spacing of the
levels, for examplein C'2 and Be’. A similar study of the pure d-shell re-
veals no such features but we know that the 1d and 2s levels are close in
energy and mix strongly. It is therefore possible that rotations will agair..
appear when these configurations are mixed. Let us therefore return to tae
group theoretical method to see if we can find ways of classifying states of
mixed-configurations which are physically significant in the hope that one
of these will have rotational properties,

Consider the mixing of orbits £, and £, . The single-particle functions
will now span a space of (2¢, + 1)¥(2¢, + 1) dimensions and the full group o’
unitary transformations in these functions is now Uzz + 20+ 2 To study
sub-groups of this as we did for the pure conf1gurat10ns we construct the
set of infinitesimal operators, which now need more labels to d1st1ngu1sh
the Z-value as well as the m-value. Thus we introduce the operators u (12"
defined by

wm” ur” ‘zu) =§ (ﬂ,@"') (5(2'2”) ) (3‘14)

as a simple generalization from the pure configuration, their commutation
relations being

(), vy )] = g J2TH) (tsqp|rv)
' (3.1%)

X {(-)”“" S('M)W (tsfh' ; r')uf (4h')-6(4h") W (tsf'h; h) ol (hﬂ')}.
Again, we define the many-particle operator

k
i .

U, (28" = ii ua (28" ; 1) .
where u‘; (22' ; i) is the single-particle operator defined above for particle i.
The UC'l have the same commutation relations as the uj and describe the group
of simultaneous transformations of all particles.

We now want to find a sub-set of these operators which describe a su>-
group containing R;. There are now two vector operators but it is easily
seen that the operators of Ry the angular momentumn operators, are given by
Lg= EBJ 2{ 4+ 1)(2 £+ 1) Ug (84) with £ taking the values ¢, and 4,

In general, the set of operators ug (£,4,) + (-)F uf{fuf,) for all r, with the
U, q{8afa) and Ug (4,0) for odd r satisfy the group conditions (3.3) of being closed
under commutatlon They describe the group Rgy, +y,+2 and provide a gener-
alization of seniority to a mixed configuration. This classification would
diagonalize a simple pairing force but does not seem much use for nucle:r
forces as we shall see in an example,

Consider now the mixing of the 1d and 2s orbits which is of great inte:rest
from a physical point of view for the nuclei with 16 < A < 40. Then the ful.
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group is Us and the sub-group jusf_mentioned is Rg. The classification then
follows by the methods of 3.2, reducing representations as the group is re-
stricted by stages from Us—Rg—+R3 as illustrated in Table IX.

TABLE IX

k n (0,0;0) L
1 e\ (100) sD

r] o2 2 (000) s
(200) SD2G

[ (110) PDF

3 | 3] (100) ) »)
(300) SIDFGU

21 oy | sp
(210) | -P?’D%r?G’H

(1113 (111) PZF?

The two symmetric S states of two particles are separated into one of
seniority zero which is explicitly V2 y{ (s2) S} + J%./, {{d? S} in terms of the
pure configurations., This is in fact a good approximation to the lowest S-sta-
te when a short-range force is diagonalized but the Rg group has failed
to separate the two D-states which mix strongly with a two-body force and
are well separated in energy. We therefore abandon this coupling scheme,

There is, however, an alternative sub-group for this particular case
of the ds-shell, described by the eight operators ul(dd) and -7u(dd) +
+ 2 {uzq (ds) + ug(sd)}, From the number of operators and their commutation
relations this group may be identified with SU;, the special unitary group
in three dimensions. This same sub-group also appears when mixing between
any set of degenerate oscillator levels is considered, i.e. (f p) (gds) etc.

In fact this group is intimately connected with the degeneracies of the oscil-
lator and, as we shall see in the next chapter, gives rise to rotational mo-
tions,

4. THE GROUP Uz AND THE APPEARANCE OF ROTATIONS

. It was shown by JAUCH and HILL [16] that a spherical oscillator
Hamiltonian in n-dimensions commutes with the operators of a group U,
so that the eigenvalues are labelled by the irreducible representations of
U, and there is a degeneracy of functions belonging to the same representa-
tion. Thus Uj is the symmetry group of the three-dimensional oscillator,
the familiar oscillator number N being simply the representation label [NOO]
of Uz, Only the totally symmetric tensors can be formed with a single par-
ticle so that the oscillator wave functions of energy (N + 3)hw are the sym-
metric tensors of rank N in the U; space, which reduce on restriction to
the group Ry to the familiar £-values.
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‘ The operators of this symmetry group Us may be expressed either ir.
Cartesian form or in spherical tensor form. If we define creation and de-
struction operators :

al = (x - ib’py /b2 ete., _ {(4.1)

a, = (x +itp,)/bV2

for oscillator quanta, then the nine components
Ay =% (aja; +ajd) (4.2)
of a second-rank Cartesian tensor commute with the oscillator Hamiltonisn
Hy= 3 Bp® +3 02f6) = A + Ay + App. (4.)

Here i and j run over the indices %, y and 'z, From the familiar commuta :ion
relations

{a;, aj)=fal, afls O,[a1, ajl=éy
we deduce
(A, Aggl=d5hi *bighy -
The eight combinations of A'Li with zero trace are closed under commutation

and describe the group SUsz, In spherical tensor form we have a scalar H,,
a vector :

Axy_Ayx=iLz= Ayz'Azy=iLXJ Azx-szgiLy

and a second-degree tensor which we call Qq with components

Qo= 2 Az - Agy - Ayys
Q;+ Q.= -i/6 (A, + A,

(4.4)
Q - Qy =~ V6 (A, +Ay),
Q+Q, = JE(a, -A,
Q2 - Q-Az e

W6 (A + Ay).

: - cd -, =,
Explicitly, the vector L is just the angular momentum operator L = (r Xp)
. while :

Q- /1151{1«2 Y2 (6, 9,) + %" Y2 (6, ®p)H/1? (4.5)

where 6;, ®; are the polar angles of position and 6,9, the polar angles of
momentum, Thus, for example, ’

Qo= (222 - x* - y9) +b (2 p2 - pE - p?;)}/2b2; (2.6)
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The existence of this symmetry group explains why the degenerate orbits
of any oscillator level N may be classified by the group Us. Here we shall
concentrate on the ds-shell (N = 2), first deriving the classification, then
confirming thét it is physically useful and finally developing a simple pro-
jection form for the wave functions which enables the energy matrix to be
calculated in a simple way and exhibiting rotational properties,

4.1, The U, classification

The six single-particle functions s,dod;... d.g Span a six-dimensional
vector space, the functions of k-particles being tensors of rank k, In the
usual way, a classification of these functions by their permutation symmetry
[f] leads at the same time to a classification by the irreducible representa-
tions [f] of Us. If we now restrict the group operations U;—~SUs—~Rgz we shall
introduce the representation labels L of R; and (W) of SUz, see section 2.2,
In Table X we show the Us—SU; reduction for k<3, obtained by studying the

TABLE X
K (fl Y
1 [1] (20)
.2 12 {40)(02)
[ (21)
3 [3) (60)(22)(00)
[21] (41)(22)(11)
[1113 (30)(03)

reduction of product representations in both groups as in section 3.2, We
can look on a single particle as a vector in six dimensions or as a symmetric
second-rank tensor in 3 dimensions., With two particles we have a tensor of
rank 2 in 6 dimensions and of rank 4 in 3 dimensions. The reduction above
tells us which symmetries (A4) may occur with respect to the 3-dimensional
space when the symmetry [f] of the function with respect to the 6-dimensional
space is specified.

The reduction from SU3—~R3; may be obtained in a similar manner and
one finds a general rule, For this stage of the problem we may forget about
the Uz group entirely and concentrate on the L-values contained in the tensors
of symmetry (M) in a three-dimensional space. This is just like filling a
p-shell with particles. By finding the number of ways of constructing totally
symmetric (A 0) states of a number X of p-particles with fixed M we find sim-
ply that (A 0) contains values

L=X X2, 4,... loro0,
dependfng on whether Ais odd or even. By using the product reduction

(A+1,0) X(1,0) = (A +2,0) + (), 1)
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and knowing the L.-values in the symmetric representation { = 0), we may
deduce that (A1) contains values

L=2x+1, 4 »1,,... 2,1,

This procedure obviously continues to higher values of # and we find that (A 2)
contains values

: 27,0
L = (A+2), (1), (N2, (1), (x-2)2,.....{32,2,1-

according as Ais even or odd,
A general rule emerges, that the L-values are just those of a series of
rotational K-bands with

K=p,p-2,,..10r 0 and with L =K, K+1,.,.K+2A (4.7)

for each of these values of K except K= 0 when L = A, 22, ...1 or 0, Weshall
find a simple reason for this result in section 4.5.°

This classification is reasonably complete in the sense that multiplici-
ties in (AK) do not occur until we have five particles and we shall always
find these multiplicities occur quite high in energy and are not physically
interesting. We shall find a precise way of defining a label K to distinguiish
states with the same (\u) and L.

4.2. Comparison with shell-model eigenfunctions

We must now ask if the classification has any physmal meaning. The
two-particle states are

{(40)s} =J§ pi(s?)s} +\/§w{(d2)s}

¥{(40)D} \/g y{(ds)D} \E— ¥ {(d®)D}

with the orthogonal combinations belonging to (02). The G state must com.e
entirely from 4% These coefficients may be found by forming D and S states
from this known G-state with the help of the U; group operators Q. The
states formed in this way must belong to the same representation (40) as the
G-state. _

The (40)S-state is quite close to the lowest S-state found by diagonal-
izing a two-body force and in fact has an overlap of 83% with the (00) S state
in the Rg scheme. However, the U; scheme has also mixed the two D-states
and we find that the (40) D-state also is close to that found by diagonalization.

A more stringent test was applied by making a comparison for the [4]
states of four particles, which we would expect to describe the low levels
of Ne?0, With this symmetry the possible () values are (80), (42), (04),
(20) so that there are four S-states, five D-states etc. In the shell-model
calculation the energy matrix was set up in a pure configuration scheme with
again four S-states etc. coming from configurations &, d®, &?s?, ds® and
s*. On diagonalization it was found that the lowest S-state contained 92% of
the S-state of (80), the corresponding figures for the D, G and I states be:ng
99%, 92% and 99%, respectively. The configuration mixing was very large,
for example the S-state contained percentages 22, 10, 41 and 27 respectively
in the configurations d%, d3, d%s? and s*.
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4,.3. The quadrupole force

We must now ask the two related questions: Why are the Uz wave func-
tions with the greatest value of A good approximations to the shell-model
eigenfunctions; and for which two-body force will the Uy wave functions be
exact eigenfunctions?

The second question is simply answered by mtroducmg the Casimir
operator of this group as we did for the seniority scheme. This operator
must be scalar in Ry and there are only two quadratics of this kind which
we can form, (L.L) and {Q.Q). The Casimir operator is that combination
of these two which also commutes with the group operators Q. One finds

S 1BILL) HQQ (4.8).

with a convenient normalization. A general formula for the eigenvalues of
Casimir operators has been given by RACAH [20] which in SU is

G>= ghy) = 02+ Aptp®) + 3(Atu). (4.9)

(In fact, this formula may be derived very simply using a Cartesian form
for G and operating on the leading state of the Cartesian basis described
in 4.4).

Thus the operator G will be diagonal in the U; scheme with the same
eigenvalue for all states of a representation (Au). But if these:states are
classified by their angular momentum L then (L.L) will be diagonal so that
(Q.Q) is also diagonal with the eigenvalues

(Q.Q)>= 4glu) - 3L(L+1). (4.10)

Not only is (Q.Q) diagonal but the energies for given (Au) follow the rotation
sequence L(L+1). Because of the equivalence between the operators r and p
in the harmonic oscillator we have from (4.5) that for each particle i

Q@) Jig'l ) 143 (i)cp,@

within an oscillator shell. Thus also within a shell

‘167

(QR.Q) —5— T r2(i)r(j) Y2(i).Y2(jD + gingle-particle terms

(4.11)

8 E 1‘2(1)1r'2(3)P2 (cos 611 )+ single-particle terms.

‘Hence, apart from the single-particle terms, an attractive quadrupole force
with the particular radial dependence r2(i)r?(j) will give rise to the Uy wave
functions, with the greatest values of g (Au) lylng lowest, and a rotational
spectrum.

To answer the first of our two questions we must now try to.relate this
quadrupole interaction to the nuclear force. It is of course trivial that any
force may be expanded into multipoles, that within an oscillator configu-
ration these can only be of even order and that the monopole term is rela-
tively unimportant for the splitting of levels. The precise radial form in
(4.11) comes out from a fourth power force
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rh (r2+r - 2r;r; cos 8y ¥

= berpe 2 22t 20202, (cos 0,) -4 (2 Py ry cos 0. (4.12)

Of these terms, the last vanishes in a configuration because it has odd parity
in each particle while the first three reduce to constants or single-particle
terms, leaving the quadrupole force of (4.11).

The significance of the r‘}l term may be argued if we remember that we are
only evaluating the energy matrix in the low configuration where the wave
functions fall off sharply for large distances. Thus, if we were to try anc
approximate the nuclear force numerically by a sum of small powers in 1y
the first two terms (a+ bru) would not cause any Sphttmg, being just equiva-
lent to a central oscillator field. The next term is r which would need a
negative (attractive) coefficient to slow down the 1ncrease caused by the
r?i term as r; increases.

Only two radial integrals enter in the p-shell so that a force of any shape
may be exactly replaced by a sum of powers up to ri? . This is the reason
why any force gives an 1(L+1) specirum in the p shell,

We shall not pursue this question or make any further use of the quacru-
pole force. Rather we shall make use of the U; functions as a useful basis:
in which to carry out calculations. To this end we now study the structure
of the wave functions.

4.4. A Cartesian basis

We chose to classify the states within a representation (Au) by their
L value for the obvious reason that L is a good quantum number for central
forces. We now define an equivalent basis, in which L is not diagonal, from
which we shall find a simple way of constructing the functions with definitz L
by an angular momentum projection.

The three operators Ay, Ay, and A, of (4.2) commute and are just th2
one-dimensional oscillators in x, y and z. We then construct a ''Cartesian
basis" for the k-particle functions in which all these operators are diagonal,
with values denoted by N,, Ny and N,. Since all states have the same value
kN for the sum Hj = Ay + Ayy + A,, we corsider the remaining two operators
Axx - Ayy and 2A,;, - Ay - Ayy = Qg with values denoted by v = N - N and

= 2NZ-NX-NY = 3NZ-kN. (4.13)

Thus, v and € describe the distribution of quanta between the three direc-

tions and since the Ny etc. are integral, v changes in units of 2 and € inurnits

of 3. : :
We now observe that the operators

= ;,(A,x A Wy = A A, ,and W_ —\fAyx (414)

are closed under commutation, thus describing a group. In fact, with the
normalizations given above their commutation relations are just those of
the angular momenta, i.e. the operators of an SU; {or Rg) group. This is,
of course, simply the symmetry group of the two-dimensional oscillator in
x and y alone. We may therefore introduce in this Cartesian basis a label A
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“which will behave like an angular momentum and refer to an irreducible
representation of this group SU,. Since Q; commutes with w,, w,; and w_,
we may use the label € at the same time. .

In analogy with angular momenta, the operator

(Wo- W, W_) - W_,W,,) i Ayy)2 FAGALFA A ) = QQQ o+ Q,Q,+3LY)
has eigem}a.lues A(A+ 1) which will be (2A+1)-fold degenerate, the degeneracy
being labelled by the values A, A-1, ... -Aof wy,, which we may -diagonalize
like the z—co’inponent of an angular momentum. For each Atherefore, vtakes
on values 27, 2A-2,...-2A,

We use a notation ®(e A v) for the Cartesian states of a representation
() and we shall see that these three labels A v € are complete in the sense
that there never occur two states in a given (A4) with the same values for
A,v and €, This follows when we use the reduction SUg*SUyX U; to deduce
which AV € occur in given (Ay), the operators of this sub-group being wy,
wy; and @,. The procedure is to remove from the Young pattern A #) a sym-
metric tensor representing that part of the original tensor in the z-component
of the space. The remaining pattern describes the symmetry in x and y com-
ponents leading to A as half the difference of the rows. Thus

v [ A ]

m

= IX A +p] +m+ 1,00 X A+ pu-1] + [, 1] X [+ u-1] + ...

AL el X (1] 4D+ mu-1]X (1) + D+ ws] X [0],  (4.15)

giving the combinations in Table XI. Any of these terms which gives a non-
standard tableau, i.e. has the first row shorter thdn the last, or has a nega-
tive number, must of course be ignored. This means that in the table under
the heading 2A we get only the first entries if 4 = 0, the first two entries if

# =1 and so on, ) :

T ABLE XI
€ 2A
’ \

2x4+p u
2x+u-3 u+l, p-1
22+ p-6 u+2, o, p-2
-A\-2p -3 A+1, x-1
“A~2u X

45, VA'p‘rojection integral

The "leading function” (or function of maximum weight) of a represen-
tation M) is defined as having the maximum value (2A+m) for € and, for this
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value of € the maximum value # forv, Thus, the representation labels appear
as quantum numbers of the leading state, From (4,13) this gives X = N,-I{,,
K = Ny- N, in terms of the Cartesian quantum numbers of the leading state,
We see now that the high values of X and #, which were found to be lowes:
in energy, have the greatest deformation in their leading state, with# meas-
uring the departure from axial symmetry,

The leading function plays an important role and for brevity we deno-e
it by ¢, omitting the labels € AV, From its very definition, ® has the proper-
ties

AZXQ)-.- Azy(p= AXYQD= 0 (4.16)

since for example it is impossible to put more quanta in the z-direction, as
this would increase € and we have defined @ to have the largest possible €
in the representation, Hence, from the relations (4.4), we have also

A= -1l 9, Ap® = iL0, Ap®= -iL,? (4.17)
and of course (A, - Ayy)qJ SUP, (2A5,- Ay - AP = €?,

Thus, of the eight group operators of SU;, three give zero, two are
diagonal and three are equivalent to angular momentum operators, when
acting on®, This means that any group operation on® is equivalent to a fanc-
tion of the angular momentum operators on¢ and hence that any function :n
the representation may be constructed from the leading state by a function
of angular momentum operators, :

This is a crucial property because it means that if we expand

? = EbX, = ZhyE c(K,L)W (LK) = K)?La(KfL) W(LK) (4.18)

where a(K,L) = bge (K,L), then the representation is spanned by all functions
F(Lg) ¥ (LK). But an angular momentum operation can only change the prc-
jection K of ¢ (LK) within the limits L to -L. This set of basic functions may
therefore be denoted by ¥ (KLM) where M is the value of L, and K is included
to show from which term in the series (4,18) that particular M-value was
formed. It is necessary to include K in the labelling of ¢ (KLM) because ii.

is not generally true that, in the notation of (4.18),

, (L, " SWLK) e YLK,

We have thus introduced, in a precise manner, the.additional label K which
is sufficient, together with L and M, to classify completely the "angular
momentum basis" Y(KLLM) of the representation (Au),

The coefficients a(K,L) are calculated in the appendix and found to be
non-zero for K = 4,4-2, ... 1 or 0 and L' = K, K+1,,,.4+ A except when K = ),
in which case L =# +A, 4 +2-2, ... 10r O, _

The range of K-values here is just that used in (4.7) to enumerate the
states but the range of Li-values is slightly greater, rising to#+X rather
than K+ X, Whent >1 this means that the set ¢ (KLM) is slightly over-com-
plete in the high values of L, Furthermore, the functions ¢ (KLM) are not
orthogonal with respect to K, We calculate the overlaps

(K'LM | KLM)
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in the appendix and they are found to be small unless L approaches the "cut-
off" in the rotational band at L, =X +¢, Thus, in the representation (84) we
find (02]22) = 0,034, (04]|24) = 0,139, (24]44) = 0,043 and (04]44) = 0,002,
Hence, although we may clearly overcome these difficulties of non -orthogo-
"nality and over-completeness, they are significant only for the high L -values
of little physical interest,
The process of extracting ¢ (KLM) from ¢ is simply one of angular mo-

mentum projection, for if we denote by ¥, (LK') the function Y(I'K’) referred
to a set of axes at an orientation which we denote simply as £ then

-*
Y (LK) = ED el Q¢ (L M) (4.19)

so that

(2L.+1)

aK'L)
a(KL) AL

Dig ()P d02 = D)

(2L+1)S D@ (LK) 42

a(KL) e S ¥ L
= e {2 Q=
& aKL) (2L+1) E ¢(K'L'M) \ Dyg (2) Dm () dS2= ¢ (KLM).
Here, © is short for the three Euler angles of rotation and we have made
use of the orthogonality of the D-functions. Thus, all functions ¥ (KLM) in
the angular momentum basis may be expressed as a projection integral

Y(KLM) = Z(LK*Q) Sqﬁx(mcpg a0 (4.20)

from just the single leading function ¢ in the Cartesian basis,

A formula for a(KL) is derived in the appendix from which also the over-
laps may be calculated. In the limit A>»L, the overlaps vanish and for fixed
K, a(KL)oc~2L+1, h

This is the limit of very strong deformations and if we were to suppose
that the function @, could be separated @ =~ &(2-a)¥;,, (r) into a function of
internal coordinates and a delta function of orientation angles « for the
strongly deformed distribution ¢, then (4.20) reduces to the simple rotational
model form .

D@ Vi (). (4.21)

Thus, a link with the rotational model is established but in (4,20) there are
none of the difficulties of separation of collective coordinates inherent in
the rotational model.

Furthermore, there is no problem of redundant states in.the projection
(4,20) because, having projected from the leading state ¢ of (Au) we dis-
regard all other Cartesian functions in (M), knowing that they can produce
no new states by projection, To get other states we must move on to a dif-
ferent representation (X #') and project from its leading state.

4.6, Quadrupole moments

The integral form (4.20) simplifies the calculation of matrix elements.
Consider the group operator Qq. We have
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(21.+1)

Q, Y (KLM) = a(KL)

S%K(Q)Qq%d" _ o (4.29)
but . :
Qq = Z Dy (2) Qg ()
transforming into the rotated frame. Now, using the reduction
L 2 _ ' e ey
Dy () Dy (2) = % (L2Mq| L M+q)(L2Kq' | LK +q)DM+q,(I§2+)q’

we have

Q, ¥ (KLM) = E (L2Mq | M + q)(L2Kq' |LK + q)SDM+q(Q Qy }

K+
where both Qg and ¢ are now referred to the rotated frame, If we now use
QP = (A+)P, (Q+Q)P= BrP, (Q- Q)P =JBLyP, Q,P= FJ3Ly®

from (4.4) and (4.17) and evaluate the products L@ by expanding ¢ according
to (4.18), we arrive at the formula

2L+1 p a(KL) .
Q¥ (KLM) = <2L+1 (L2Mgq | L M+q)[a(KL) (L2KO | LK)

X{2A+ u + (L(L+1) - L(L+1)+6)} ¢ (KLM)

a(K+2,L)
a(KL)

a(K-2,L0)
a(K,L)

(L2K2 L'K+2)(u+K +2)¢ (K +2LM)

+ (L2K-2 |LK-2)(1- K+2)¢ (K- 2LM):‘ . -‘ (4.23)

Notice here that when K = 1, the K-2 term gives a diagonal contribution, The
non-orthogonality of K precludes referring to the coefficients on the right
hand side of (4.23) as matrix elements, '

For large A, (4.22) gives approximately

(KL ||Q||KL) = J2L+1 . 2 X (L2KO | LK)

which is precisely the same dependence on K and L as in the rotational model
with a product wave function (4.21), The intrinsic quadrupole moment of that
model is replaced by A, As particles are added in the first half of a shell,
the greatest value of A, which in examples we have seen to describe the low-
est levels, increases with the number of particles,

The operator Qq is the quadrupole moment of the mass so that this in-
creases with the number of particles instead of remaining near the single
particle value, For T = 0 nuclei this mass moment is also the quadrupole
moment of the charge.

4,7, Central-force matrix elements

In this section, we develop a method for calculating the matrix elements
of a two-body central force in L-S coupled, antisymmetric states, classified



THE NUCLEAR SHELL MODEL 193

according to the SU; group, for k particles in an oscillator shell N, Such a
state is denoted by

v (TS[£] (Ap) KL MMV, M)

where the antisymmetrization has been carried out in the usual way by sum-
ming over products of orbital functions of symmetry [f] and charge-spinfunc-
tions of adjoint symmetry [f], We make use of the projection formula

(TS [£)(X #)K LM_.M; M) =%SD§K(9)% (TSIf1OwW) MpM,) A2,  (4.24)

which is simply (4.20) with all the charge-spin labels included on both sides.
They play no part in the projection which refers only to the orbital co-ordi-
nates. With central forces, TSMy and Mg are good quantum numbers and

for brevity we henceforth omit these symbols from our equations, We further
simplify the notation by writing ¥ for [f] (M), Let H be the Hamiltonian,
containing only central forces. Then

H\p(yKLM)=-a%L%SqﬁK(Q)HQ% (y)de (4.25)

since H is invariant under rotations.
Now expand HQ in the complete set of Cartesian functions

Ho(y) = L hiy,y'eAv) d(v'eAv) (4.26)
: YeA R

with
hiv, v eAv) = (2(y'eAv)| H|@()). "

Since ®{y'c¢ A v) is of the same representation as its leading state ®(y’), we
must be able to express it as some function of the group operators acting
on &(y'). But in section 4.5 we showed that any group operation on a leading
state ® was equivalent to some function of the angular momentum operators.
Hence we may write

e(YeAv) =Fu'eAv; L)oly), (4.27)

where L, is an abbreviation for the three components of the angular momen-
tum operators, so that (4.26) becomes

Ho(y) = 7E,G(w’; L)a(y) - (4.28)
where we have defined
Glyy'sL) = Z hiyy' ehv) F(Xu’eAu;LJ). (4.29)
The operator on the right-hand side of (4.28) may be readily evaluated
by expanding &(y’) into its angular momentum components as in (4.18). Thus,

defining the matrix elements

glyy, LKK) = (LK G(yy; L) | LK) (4.30)
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(4.28) becomes

Ho(y) =;‘3KE Glyy': L) ¥(yKLK)a(Xy'KL)
v

= £ T T glyy, LKK)a@wKL) ¥ (fKLK'). (4.37)
y' KL K

This result is equally true for functions referred to the rotated frame
so that we may add the suffix Q to ® and ¥ in (4.31). Inserting (4.31) into
(4.25) gives .

) X 'K,I_l,) ’ a _f 1t .
Hu(yKLM) = (2L+1) ¢ 20uXD) ' ILKK S L (€))% (v Q.
(v )= ) sk a(wKL) g(v.v )\ DL Oy KLK)d
Transforming ¥, back to the original axes
% (YKLK) = DL () 2(yKLM)
Q oM |
and using the orthogonality of the rotation matrices, we obtain

HY(KLM) = L, % glyvi LKK)¥(yKLM).  (4.32)

By defining a(-KL) = (-}*#*L a(KL) we ensured that ¥(y-KLM) = ¥ (yKLM)

so that only positive K need be discussed. However, the sum over K' in (4.32)
includes both positive and negative values which may be collected together,
giving

w5 £ {20 KL )glyy, KK (- K Dgly 7, L-Kx)}W(v'K'Lm
H¥yKLM) ?x')_:z{ _ a(AuKL)

-3 p 2Ly i) + (1 gy, LRIV L)
(4.33)
) %f(’i—‘ﬁ% Fy v, LK) (YK'LM)
where we have defined, for K> 0,
Flyv', LKK) = gly ', LK'k) + (P glyy, L-KK). (4.34)

Because functions with the same vy but different K are not orthogonal,
the matrix ¥ is not symmetric.

One may, however, use the known symmetry of the matrix
(T(yKL M) \H‘\L(‘Y KLM)), together with (4. 33) and a knowledge of the over-
laps, to relate the elements of g above the diagonal to those below.

We are, of course, interested in the eigenvalue problem H‘ﬁ E, ‘I’n
and if we write

Y=L L ap{yKL)aPuKL)¥(yKLM) (4.35)
Y K=0
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and substitute into (4.33) we get the system of equations
L I By, LKK)a(KL) = B (YKL) (4.36)
7 =

for the energies E  and the coefficients o (yYKL). Although (4.36) is exact,

for central forces, we approximate in practice by taking a finite set of v.

The E, and a, then emerge as the latent roots and vectors of the non-sym-
metric matrix By vy, LK’K). In deriving (4.36) from (4.33) we have assumed
that the functions ¥(yKLM) are linearly independent and, although this is
generaly valid, it is violated when L> XA + 1, States with such high values

of L generally lie high in the spectrum and are therefore of little physical
interest. They may of course be dealt with if, necessary by using the known
overlaps to reduce the sum in (4.33) and (4.36) to one over a linearly indepen-
dent set.

4.8, Discussion of the central-force formula

Having given this brief and rather formal derivation of (4.36) we now
return to give a little more detail of the steps involved in determining the
matrix g. The main steps are

(i) Calculation of the matrix elements h(yy', € Av) of (4.26);

(i1) Derivation of the operators F(Xu',e Av; L) of {4.27);
(iii} Construction of the operators G{yy’ L) of (4.29);
(iv) Calculation of the matrix elements g(‘y v, LK'K) of (4.30);

(v) Construction of g from g using (4.34).

At first sight, step (i) might appear just as difficult as the original prob-
lem of evaluating matrix elements (| H|®), calling for the use of compli-
cated fractional parentage coefficients. There is, however, an important
difference. The functions ¢, being in a Cartesian representation, involve
no orbital vector coupling, and especially for those ¥ lying lowest in the
spectrum, have a very simple structure in terms of single-particle Carte-
sian states. We therefore carry out this step by expressing the & in terms
of Slater determinants and then evaluating h(y+v', € Av) directly. The sym:-
metry of H under rotations and parity inversion which implies invariance
under the separate parity inversions of the Cartesian axes, leads to se-
lection rules in € and v, Since these '"Cartesian parities' of the wave func-
tions @ are given by the parities of the total Cartesian oscillator numbers
Ny, Ny and N, and since these numbers are related to € and v by the equations

N, = § (e + kN)
N, = ¢ (2kN + 3v-¢)
Ny = 1 (2kN - 3v-¢)

it follows that the matrix elements h(y, vie A v) will be non-zero only if €
changes by units of 6 and (3v+€) by units of 12.” A further selection rule puts
an upper limit on such changes. In a shell with single partlcle oscillator
number N, the maximum change that any two-body operator can produce

in any of the numbers N, Ny or N, is 2N. Hence the maximum changes in €
and v are 6N and 4N respectively. This greatly reduces the number of pos-
sible matrix elements when N is small.
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Step (ii) depends entirely on the properties of the group SUs. Defining
p, q and r by the relations 3(p +q) = 2L +u-€,p - ¢ = 2A-4 and 2r= 2A-y,
and using the methods of RACAH [10], it may be shown that, in terms of
Cartesian operators

F()\/JEAVL) = N(pqr)A' (Ayxsz -A, LA, -A +1)“) AP (4.37)
where
Nipar) = Xt +u+1)!p g e (u+p+1)! k
(2=p)(¥-q) (A+u+1-g)! (u+p-q-T) {H+p-q+1)!

The equivalences of (4.17) together with the commutation relations then en-
able us to derive FAueA v;L)) in terms of angular momentum operators alone.
For the most important cases, (p + q)< 2, we may write

FueAv;L) = §ND I {(A+B L +C (L + 124D Ly - 12} (4.33)

and the coefficients A;, B;, C and D, have been given inTable XII as func-
tions of X and u.

Steps (iii) and (v) need no discussion and step (iv) is also elementary.
involving just the matrix elements of angular momentum operators

(LK'| Ly | LK) = K&(K', K) (4.39)
(LK'| L, | LK) = F{(LFR)(LtK+1)/2} & (K, K+1).

We are, of course, most interested in the matrix elements g which are
diagonal in ¥ and we now discuss the significance of the contribution to su:zh
matrix elements from the different values of € AVin the sum (4.29). Consider-
ing them in order of decreasing v and €, the first contribution contains tie
diagonal element of H in the leading state and the operator F = 1, In practice,
we find this to be the largest contribution and, because F is just the unit
operator, it leads to a degeneracy between levels of different K and L, thugh
of course separating levels with different 4. The contributions from maxi-
mum € but less than maximum v lead to F -operators containing powers o

Ly only These give rise to a separation of bands, labelled by K, but still
retain a degeneracy between states with the same K but different L.. When
€e=¢ -6 the next highest value of € to g1ve non-zero contributions, the
F- operators contain terms in L7, L+1 and L which lead to a rotational spac-
trum in L together with a mixing of states W1th different K. In practice we
have found that the bands are sufficiently separated, by the LZ term, that
the K-mixing is generally small. Lower values of € lead to terms like L*
and hence to departures from the pure rotational spectrum, but we have
found their contribution to be small for the low L-values of physical interest.

5. APPLICATION TO NUCLEI IN THE ds-SHELL

The coupling scheme described here has nothing new to add to the p-
shell nuclei 4< A< 16 which have been satisfactorily described [3] in the
shell model. From a mathematical point of view it is applicable to any oscil-
lator configuration, even to those which are not lowest in energy for a par-
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ticular number of particles. From a physical point. of view, however, the
spin-orbit force, and the trend towards an average field more square thaa
the oscillator, combine to cause a mixing of oscillator configurations. For
this reason, applications of the method have been confined so far to the ds-
shell where this mixing does not seem to occur to an appreciable extent.

5.1. The spectrum of Mg?*

Only a few detailed applications of the method [19, 22] have been made
so far, the most interesting being to Mg?%, The experimental spectrum skown
in Fig. 4 contains a K = 0 band, followed at about 4 MeV by a k = 2 band and
at 6.43 MeV by a second J = 0 level. Working in L-S coupling for this "a-
particle' nucleus the lowest partition {44] contains the U, representation
(84) as its lowest. We would therefore expect to find bands with K = 0.2 aad
4 but as the energy dependence on K is roughly K2, the K = 4 band is pro-:
bably very high in energy, about 15 MeV. The spectrum resulting from the
use of the same two-body force as was used in the intermediate coupling
calculations for A = 19, is shown in Fig. 1, when only this single represerta-
tion was used. Although the rotational pattern is undoubtedly given, the ali-
solute energies are too small by a factor of 2. The admixing of higher re-
presentations and the inclusion of spin-orbit forces increases these energies
without much change in relative positions. Initial calculations indicate that
the mixing is as high as 15% but that the mixing of K is only 1% in the lowest
L = 2 state, increasing somewhat for greater values of L. The second J = 0
level at 6.4 MeV must belong to a higher representation, probably (46), al-
though at this energy it is possible that higher configurations are entering,

The y-decay scheme of Mg2¢ is shown in Fig.5, all transitions being
essentailly E2 in character. The branching ratio of the second J = 2 level
demands a K-mixing of about 1% which is of the same order of magnitude
as that calculated here but as the decay is very sensitive to this small cora-
ponent of the wave function; it is difficult to calculate the ratio reliably.

5.2. Even parity levels of even-even nuclei

Experience has shown that the even-even nuclei in the p-shell and early
ds-shell are reasonably well described in L-S coupling, although this ap-
proximation deteriorates towards the end of a shell. For an even-even nu-
cleus in L-S coupling the lowest states have S = 0.and therefore J = L, wh:le
in the particular cases of Mg24 4nd Ne20 one finds that the lowest levels in
the L-S limit are well described by the lowest representation (Au). One iz
therefore tempted to survey the entire ds-shell and suggest, on the basis of
the values [17] of (Au), which bands are expected to lie low in each nucleus.

In the first row of Table XIII we give the representations \u) expected
to lie lowest in each nucleus, the possible K-values then forming a sequence
decreasing from K = min (\u) by units of two.

If we now assume that the ordering of bands within a representation is
the same as that found in detailed calculations for Ne20 and Mg?%; namely
"that the low values of K occur lowest in energy, then our first conclusion
is that all nuclei considered have a K = 0 band lowest. Although this is in
agreement with the known data it is a conclusion in common with almost
any model. However, we may go further than this. The nuclei O'¥, Ne&20,
Si?8, A3, A% have min (A,u) = 0 in their lowest representation which there-
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fore consists of a single K = 0 band, while the remaining nuclei N&?2, Mg?4,
Mg26, S£9, $%, $% contain K = 2 and in some cases K = 4 bands in addition
to a K = 0 band in their lowest representation. We should therefore expect
to find the second 2* level above the second 0* level in the first group of
nuclei, both levels coming from a higher representation. In contrast, the
second group of nuclei may very well have their second 2' level below the
second 0" level, the former being the first member of . a K = 2 band from the
lowest representation and the latter the lowest level of a higher represen-
tation. Only a detailed calculation of the competition between an excited band
(K = 2) of the lowest representation and the lowest band of the first excited
representation can determiné this ordering in the second group of nuclei.
The experimental data on these nuclei is unfortunately rather sparse
but confirms the picture drawn above. Almost nothing is known of the spectra
of 86 and A% but in the remaining three nuclei of the first group, the second
2* level is in fact found above the second 0* level.. In four of the six nuclei
of the second group the second 2* is found below the second 0*.

5.3. Odd parity levels of even-even nuc_lei

According to the shell model, the low odd-parity levels arise from con-
figurations in which either a p-particle has been excited into the ds-shell
or a ds-particle has been excited into the fp-shell. The Uj classification for
these excited configurations may be derived by the same methods and, as-
suming that the representations with high A and 1 are lowest also in the ex-
cited configurations, we have listed in rows 2 and 3 of Table XIII the repre-
sentations expected to lie lowest in each configuration. It is seen that at the
beginning of the shell, the largest (Au) values are obtained by exciting a
p-particle, while in the rest of the shell the excitation of a ds-particle gives
the largest values and is therefore expected to give the lowest energy levels.
In considering excited configurations one must always remove spurious states
involving excitation of the motion of the centre of mass, but the representa-
tions listed, having the highest values for A and u are entirely free of such
spuriousness.

The methods of section 4.7 may equally well be applied to the calculation
of spectra in these excited configurations‘ but such a programme has only
just been started. However, the indication from the table is that K= 1"bands
will appear low in the spectra of odd parity levels of these even-even nuclei
in the first half of the shell. The single exception to this rule is Ne?®, which
has the two representations (90) and (82) competing for the lowest odd parity
levels. The (82) representation contains a K = 2 band a K = 0 band with even
J and a preliminary calculation indicates that this K = 0 band is above the
K = 2 band. Although this may seem strange against the background of the
even parity systematics, in which the K = 0 band is invariably found below
the K = 2 band of the same representation, we must remember that the K=0
band of the (82) representation has even J but odd parity. Such a band can-
not arise in the extreme model of rigid body rotations and it is therefore
not surprising to find it raised in energy. In Ne20 the lowest bands to be ex-
pected for the odd parity levels are the K = 2 from (82) and the K = 0, with
odd J, from (90). Recent experimental work [23] suggests that just such
K = 2 and K = 0 bands are in fact present.

We mentioned above that K = 17 bands are expected low in the other
even-even nuclei considered in the first half of the shell. The spectrum of
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TABLE XIII
THE OPERATORS

F(weAv;L) = $NILE {A; +BL* +C; (L% +L%) +D;Lo (L& - L4)}

where 3(p+q) = 2A+u -¢, (p-q)= 20A-p, 2r=2A-y,

qp | i A B; Ci Dy
200 { o0 2
1 -2
400 | o Sulu-2)
1 -4(3y~-4)
2 2
002 | 0 2) -1 1
1 1
202 | o 2\ (u+2) (p+2) - (u+2)
1 ' +2-2% 1 -1
2 -1
402 | o 6l p+2) -3{p+2) 3u(u+2)
1 | 8+ 6u-12xp-82 2(3u+42) | -2(3u+2)
2 2(A-3y-2) -1 1
3 1
11 | o u+2
1 (2 +y+2) 1 -1
2 -1
311 | o (u+2)(3u-2)
1 | (@a+p+2)(2-3p (3u-2) 2-3) -(u+2)
2 2(A-p+2) -1 1
3 1
020 | o 2P (A+y+1) -+ 1 (u+2) 2(u+1)
1| -@ne2u-2+2) 1 -1
2 -1
220 | o 2 (p-2) (A +p+1) 1 (u-2) =2 (p+2) | 2(u+1)(u-2)
“CrA+D (=D (u+2) | (u-1) (1+2) (2 +p+2) -2(p+1)
-5t +4
2 | 2n4ped -y ' -1 1
s | . 1
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levels in that band may, however, deviate markedly from the J(J +1) rule.
The quadratic terms in the operator L, which play an important part in de-
termining the spectrum, give rise not only to the L{L+1) term, but also to
coupling between the parts of the wave function with K=+ 1 and K= -1, It
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2
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0 0
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2r — Fig. 5
2 The y-decay scheme of Mg*
'r 2
ob—o 0
Fig. 4

Experimental and calculated spectrum of Mg?

then follows that their contribution to the energies depends on J(=L) through'
the expression J(J+1){1+B(-1))}. This situation is similar to the familiar
decoupling of K = $ bands in odd nuclei and we have plotted the resulting
spectrum as a function of B in Fig.6. Without making detailed calculations
for B, one might see whether this formula may be fitted to the known data

J=8

E,
7 T4

J=2

741 0 *l&,

Fig. 6
Spectrum for a decoupled K=1 band
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in a purely empirical way. Unfortunately, one needs to know the position:
of four levels to do this and in none of the nuclei in question is this infor-
mation yet available. It is also possible that mixing of rotational bands will
obscure any test of the formula. In 01 the lowest representation (21) for

the odd parity levels has only three levels J = 1, 2 and 3 and it is trivial
that these may be fitted to the formula above, demanding B = 1.5. The fact
that earlier calculations [24] reproduced the experimental pattern of levels
in this nucleus implies that calculation would also reproduce essentially this
value for B.

5.4. Odd nuclei

In odd nuclei, since S # 0, the spin-orbit force must be taken into ac-
count. If it is very large we shall have pure j-j coupling and no rotational
features. If it is very small, we get a small splitting of the levels of given
orbital angular momentum L accordingto J = L +8§, I L -Sl, again with
no rotational spectrum. We now investigate the coupling of S to the orbital
angular momentum of states classified by the group U;. Use K, to denote
the quantity previously denoted by K and consider

¥ TSMKLIM) = T ¥() TSMKLLMSMQC'M
SYL ’

SMgLM

= oo B o @ (16 TSewMan (5. 1)

MsM, sMglM, a(K L)

where we have used the usual vector coupling and &, denotes the antisym-
metric function in T, S and Cartesian co-ordinates but in which only the or-
bital co-ordinates are referred to the rotated frame. If we denote by @, the .
corresponding function in which the spin co-ordinates are also referred to
this frame then

= S P ' .
@q (M) K)g DMsKs(Q) q (Ks) _ (5.2)

where we have, for brevity, dropped the symbols [f_] TS ). Thus

(2L+1) .
¥(K, LIM) = >: MfML (SLMSML | am) SB.L) K (9) (Q)%-(Ks) ds!

Combining the two D-functions and making use of an orthogonality relatlon
in the Wigner coefficients we find that

(Z(II; 11,3 (SLKSKL]JK)j‘DMK ) o (Ks) a  (5.9)

¥(K LIM) = E
where we have defined K = KL + K.
Thus, a function of definite L is expressed as a sum over functions
projected with a definite (total) K. If we now invert using another orthogoral-
ity relation for the Wigner coefficients we have -

(23+1) f Dl (KJa2 = £ a(KLL)(SLKSKLIJK)\If(KLLJM).
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or
¥ (K,KIM) = (K;., SKT) T a(K,L) (SLKSKLIJK) ‘I’(KLLJM)
where we have defined
¥ (K, KJIM) = —(%{”——’;%ﬁfn’ W) g (Ks) a2, (5.4)

" Here, a(K;,SKJ} is defined as the normalization coefficient, related to the
previous coefficients by

a(Ky,SKJ) a(Ky. SK'J) (K, KIM |Ky K'IM)

= I (SLKgK; | JK) (SLKG K, |7K) @” (K1),

Alternatively, these coefficients may be calculated directly by the method
used in the appendix for the a(K; L). These new functions ¥ (K; KJM) are now
neither orthogonal in K, or K, but nearly so for large A > L.

What physical significance does this new quantum number K possess,
implying a mixing of L but not of S or [f] ? The lowest partition [f] for an
odd nucleus contains a single value of S = % but many values of L. If, there-
fore, we neglect mixing of {f] but allow mixing of these different L-values
with a spin-orbit force it is possible that such a coupling scheme could e-
merge. We shall see that in fact it does, provided that the spin-orbit force
is large compared with the energy difference of different L.-values, but small’
compared with the energy difference between different (A ) or K| so that
these labels are preserved.

This result may be seen by considering an intermediate coupling Ham-

iltonian.
H-= EE(s L)+ E Viry).

We again evaluate H‘I’ by the methods of 4.7 with the leading function 2(Kg)
now also involving spin co-ordinates. Let us now investigate the form of the
most important equivalent operators which arise with this Hamiltonian. They
will depend on L and S, but as the integral (5.4) does not involve L it ig
most simple to write L = J-S to obtain an operator in J and S. As in section
4.8, the central force gives the form a0+a1L0 +012L +... . The constant term
will separate different {f] and (w), while the term in e separates different
K, in a representation, without removing the degeneracy of different
K=K+ Kg for fixed K. If we now write I1? = (J - 8)2 = J2+82 ~2(J S) we shall
get a constant S(S+1) from s? and a J(J +1) splitting from J2. The term (J.9),
however, will cause mixing of different K and the same K;, tending to des-
troy the coupling scheme defined by K in (5. 4). This is of course to be ex-
pected, since we know that the central force alone preserves L and must
necessarily mix values of K, But if we now consider the spin-orbit part of
H we see that it will cause a splitting of different K with the same K| through
the term soﬂo. If this is sufficiently large, it will reduce the effect of (J.S)
in mixing K and thus tend towards the wave functions (5. 4) labelled by K and
containing rotational spectra in J. The remaining terms s,,4,; etc. will cause
the band-mixing and K = 3 decoupling familiar in the rotational model.
Calculations for odd—nucle1 are still in an early stage, but there is some
-encouragement from Mg where rotational bands K = ¥, 3+ and }* have
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been observed. In the Us-model, the greatest symmetry [441] of the nine
particles contains representations (66) and (93) low in energy and close to-
gether. The spin-orbit force causes the K = 2 of (66) and the K = 1 of (9%)

N

K=

Kp=1
Ky =0 K= L

wi=
-

(66) ) 93)

to be depressed. It seems likely, therefore, that the three baﬁds ob-
,served belong to these two representations. The configurational comp>-
sitions of the leading functions of these two representations are simply

P o p, and cp: 9*p_ respectively.

6. CONCLUDING REMARKS

We have discussed some of the physical and mathematical problems
encountered in setting up energy matrices in shell model configurations. In
particular, we have seen how rotational features exist within a degenerata
oscillator level, but the closed oscillator shells have not been excited. The
very presence of the collective motion in the particles outside closed shells
must induce some polarization of the closed shell core which we have not
yet taken into account. So far as the energies are concerned, this effect raay
possibly be taken into account by some renormalization of the strength of
the two-body force among the outside particles.’

The most noticeable effect of such a quadrupole polarization will of
course be in the quadrupole moments. The picture of weak coupling [25] "o
quadrupole oscillations of the core leads to an additional contribution to the
quadrupole moment which is proportional|to the mass quadrupole moment
of the outside particles, A correction of this kind is very simple to evaluzte
in-the U, wave functions and it is quite possible that less specific assump-
tions about the type of core excitation lead to a correction of the same kind.
The quadrupole moment and electric quadrupole operator is therefore

e £ 1(1-m(1) WP (i) +ae iﬁl Y2 (1)r% (1) (6.1)
=1 ji=
where ae is the additional "effective charge'’ on all outside particles due to
the polarization. It must be remembered that this effective charge is spe-
cific to quadrupole effects.

In O'7 and F17, the E2 lifetimes for the 3* — 3% decay of the first ex-
cited states are measured, 2.55+ 0.13 X (10)™™° and 4.45 + 0.22 (10)1° :re-
spectively. These are both of the order of the single-particle value, even
though O'" has a single neutron outside the closed shell. Calculations fromt
(6.1) involve the wave function size parameter b which should be given a
value of about 1.8 f to fit the nuclear radius. From the two lifetimes quoted
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we may deduce bothe and b, findinga = 0.50 and b = 1.82 f, in good agree-
- ment with the radius estimate for b. If we now calculate the quadrupole mo-
_ment of O we find -3.26 e(10)"26 cm?, close to the experimental figure of
-2.65 e(10)26 cm2. i
In the nuclei of mass 18 and 19, the intermediate lcoupling wave func-
tions [4] were used to calculate a number of E2 lifetimes using the same
values for a and b as in the nuclei of mass 17.The results, shownin Table XIV,
again show consistent agreement with experiment.

T ABLE XIV
Ej Ef T{sec) T (sec)
Nucl ; L
veleus | 20 | (Mevy | (Mev) cal. exp.
Fi# 31 0.94 0 5(10)™" <2 (10)™1°
553 1.13 0.94 1.7(10y77 2 (10)°7
F® 5% | o0.198 0 0.97¢10y" 1.25(10y° 7
Ne! §-4% | o201 0 1.85(10y8 1.8 (10y®

Such detailed intermediate coupling wave functions are not available for
heavier nuclei, but if we use the L-S coupled U, wave functions for Ne20 and
Mg?* we calculate lifetimes 9.6 (10)13 and 0.71(10)"23 for the 2 — O decay
of the first excited states in these nuclei. The measured values 5.6 (10)13
and 0.76 (10)*® are in promising agreement indicating that the same ef-
fective charge of 0.5 e is operative even when there are eight particles out-
side the shell. The core excitation and the outside particles contribute about
equally to the matrix element.

For magnetic moments, Ml transitions and 3-decay, agreement is
generally reached in the lowest oscillator configuration. This is to be ex-
pected since, in perturbation theory, there would be no first-order cor-
rections to these processes in contrast with the quadrupole operators.

The previous remarks about core polarization lead one to consider the
possibility of using a non-spherical average field for the particles (see the
notes of S.T. BELYAEV [12] ). This would provide a natural way of departing
from the lowest configuration in a spherical field and would immediately
produce quadrupole effects of the required size. It does, however, bring
with it difficulties concerning the stability of the deformations in the field,
the calculation of inertial parameters of the field and other questions of
internal consistency which do not arise in the spherical field.

All applications of the U, coupling scheme in this course have been made
to the ds-shell. In higher oscillator shells the classification of “states and
evaluation of matrix elements would proceed in just the same way. For ex-
ample, in the fp-shell, a single particle would transform like a tensor of
rank three in the Uy space, labelled by (30). Experimentally, the single-
particle spectrum in Ca%! has an f 1 level lowest and well separated from
the other levels of the fp-shell. ’ )

Because of this, the nuclei at the beginning of the fp-shell appear to be
well understood on the basis of the pure 1 shell. In other words, we might

“here expect the spin-orbit force to disturb the U; coupling. However, most
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calculations in the f; -shell have been made for the nuclei with neutrons
alone outside the shell, i.e. the states with high isotopic spin. These are

the very states which have the least orbital symmetry and in which therefore
the central force is weakest, so that they are the least favourable for the

Uz scheme. There is not very much experimental information on the nuclei
with smaller values of T but it will be very surprising if they do not show

the same collective efforts as in the ds-shell, though perhaps in a less pure
form. For heavier nuclei, the intrusion of levels from higher oscillator
configurations, for example the glg level, may make this model based on the
oscillator degeneracies too unrealistic.

APPENDIX

To calculate the coefficients a(KL) of (4.18) and (4.20) we introduce the projection operator
PKLM) = (2L+1) [ dQDyyy (0) R(D),
where R(Q) 18 a rotatiqn operator defined by
RQ)® = O .
Using (4.18) and (4,20), the matrix element of this operator in a leading state O is
| "A(KLK) = (0 | P(KIK)| 0)
= a(K.L) a¥ (KL) (K'LK) | y (KLK)), (A0)

remembering that y(K'LM) and w(KLM) are not in general orthogonal, A knowledge of these matrix elements
would lead to values for |a(KL)|? and for the overlaps (K'LM | KLM).

Although in our applications, the @ are made up of a number of particles in any oscillator shell N, the
a(KL) and A(KLK') are purely group concepts and depend only on the representation labels (\yt) , (This is like
the angular momentum functions @ (JM)of a system of particles behaving just like angular momentum funct.ons
of a single particle with that same J and M). To calculate A(KLK") therefore we may choose the simplest p)s-
sible form for a function @ so long as it is the leading state of a representation (\y). Such a simple form is
obtained by considering a system of particles each with one oscillator quantum, or in other words, a system of
vectors in the SU; space, Then, a function of (2u+)) particles of permutation symmetry [f] = [\+y,u] will
by definition, belong to a representation (Ay) of SU,.

The leading state of such a representation would have ( A+p) quanta in the z direction and y in the x
direction, being given explicitly by

D =8(12)® (34)..... & (2u-1, 2u)0,(2u+1) ... DZ(2u+ 1) (A.2)
where
83(12) =J3 @, (D) § (9-0,(2) 0,(1))
and @, (1) denotes a state of particle 1 with one quantum in the x-~direction and none in the y or z directions,
We now evaluate the operation R(Q® by considering the rotation on each factor in (A.2). Furthermore, sinc: @

in(A.1) is a product of factors referring to different particles, the integrals over particle co-ordinates implied
in the matrix element (@ |R(@)| @) may be evaluated separately, Hence

A(KLK) =(2L+1)fD,L(K(m(@| R(D | 8)(@,[R(@)] DN de.

Since @, is the z component of a vector and & the y component of a vector product, the matrix elements for the
general Euler angle rotation ¢,8, y ate ’

@21 R(Q) | @) = cosB
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(2| R@®)| @) = cosax cosy ~cosBsina siny,

ot L
Inserting the explicit form for-dn and writing DI{(‘K @ = K@ Ky gbo (8) with the function d e (8)
given by ROSE(21] we obtain o on

1
A(KLK") =$38_1;:._1) fdcx ei]('a f dy eiKYJd cosB
0. 4] —

L
x{cosa cosy - cosB sin « siny}“ cos)‘ﬂ dpeg (8).

Finally the binomial expansion is introduced:

2

1L N
AKIK = CLtD 5 pICD° { fda K gy su}

8n? U nl(ye-n)!

om - 1 ’
X {f dy ¢IKy sinny cos "'"7} fd cosq cos?* Mg dl]'(']((ﬁ) . (A. 3)
.0 -1 .

For particular values of L, K and K’ it is simple 1o insert the explicit form for the function dll'(«K(B) , taken
from ROSE [21] , and carry out the resulting elementary integrals,

If we set K' = K in (A.1) we have simply A(KLK) = |a(K.L) |* from which (A.3) enables us to deduce
)a(K,L)| . The phase is arbitrary insofar as we are defining the phases of the $(KIM) and we choose a(K, L)
to be real and positive for K> 0, In order to ensure the convenient identity § (-KLM) = y(KLM), the relation
A(KL-K) = (-))AM *#*L 4 (KLK) from (A. 3) implies the phase relation a(~KL) = (-1)* *K+L a(KL) for K > 0.
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ELECTROMAGNETIC PROPERTIES
OF ATOMIC NUCLEI

A. de-SHALIT
WEIZMANN INSTITUTE OF SCIENCE,
REHOVOTH, ISRAEL

INTRODUCTION

The study of specific physical systems, especially on the quantum level,
is mostly done through their interactions with other, simpler, physical
systems. Among the latter,the electromagnetic field still occupies the most -
prominent place. Its relatively simple properties and the certainty withwhich .
they are known make the electromagnetic field one of the best probes of
physical systems.,

~ The formal interpretation of such measurements is carried out through
that part of the combined system Hamiltonian which describes the interaction
between the physical system and the electromagnetic field. This interaction

can be written in the form \

Hy = - | 40 09 4 Goa, 1)

where A (x) is the vector potential of the electromagnetic field and j, (x)
is the four vector representing the current operator of the specific physical
system.

It is obvious from (1) that, depending on the specific experiment in ques-
tion, all we can hope to get from electromagnetic experiments is a couple
of matrix elements of j, (x) averaged over the distribution of A* (x). For
instance, if we have a system of non-interacting point particles, each having
a current operator j, ¥ (xy), then

N k . (k
i &) = By 6 (x-x*) Ju @ () (2)
and an electromagnetic experiment will measure a matrix element

e (g eeerxy) | B 8x-x™) 30 ® () 1 ¥ (x e, %) (3)

averaged over the space-time distribution of A¥ (x),

Choosing A¥ (x) in different forms we could, in principle, make a com -
plete study of the x dependence of the matrix element (3). However,to study
the detailed behaviour of (3) over a distance of order R we have to choose an
electromagnetic field with Fourier components of order 1R and therefore
with an energy of order iz . Measuring R in electron radii (~ 2.8 X 10*3 c¢m):

R = r(e? /mc?) (r-a pure number)

we find for the energy associated with the photons of the required electro-
magnetic field that .

= (137/r)mc? = (70/r)MeV.

209
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Hence, to find details over distances of the order of 1/5 nuclear radius

(r = 1/10) electromagnetic fields with photons of about 700 MeV are reqiired
In most nuclear experiments, where the energies involved are of the order
of 10 MeV or less, one cannot, therefore, expect to find detailed features of
the nuclear structure, and only properties of the nuclear wave functic_)r;, wver
aged over the whole nucleus, have a chance of being studied,

This is not the only-limitation on the variety of data which is available
in practice, If, for simplicity, we confine ourselves for the moment to sys-
tems of non-interacting particles, then we can make use of a well-known
decomposition of the three-dimensional delta functionto derive other limitz:-
tions.

We have:

2841 K
——;—Y;;,,(Q)Ym(sz( ) (4)

1 (o
6(1‘—1‘ Wé(r-r )Eﬂm

where € and 2™ are the angular coordinates of the vectors T and T®,

The integration over d®x in (1) will now pick from (4) only those values of £
which correspond to the angular momenta present in the electromagnetic
field, This process will therefore also leave only a few contributions in the
matrix element (3) coming from a limited number of multipoles of the physi-
cal systems. Stated another way, because of conservation of total angular
momentum we can derive information pertaining to only few ‘multipole |
moments of the physical system, namely those which correspond to the arngu-
lar momenta present in the probing electromagnetic field,

In addition to having relatively limited information from experiment
because of the experimental limitations on the energy and the angular mo-
mentum of the available electromagnetic fields, we are faced with anothe:
difficulty of a theoretical origin, In order to say something about the system
under consideration we ought to be able to compare the experimental values
for (3) (or averages thereof) with the ''calculated" values, Both ¥ and the
operator ju (x) are necessary to know the latter and both are generally not
precisely known,

1, THE NUCLEAR WAVE FUNCTION

Let us briefly review the problems connected with the evaluation of ¥
and j, (x) in the nuclear case,

Strictly speaking, ¥ should be an eigenfunction of a Hamlltoman whlck
describes both the nucleons and the mesons, since the average number of
mesons around a nucleon is not small and the packing of several nucleons
together may affect the meson cloud around each one of th_eni in an appreci-
able way, Thus the Hamiltonian which determines ¥ should be taken as

H=H +H +H_ . (5)
nuc mes int

Here Hpye is the free nucleons® Hamiltonian, Hpyes that of the mesons written
in second quantization to allow for the nonconstancy of the number of mescons
and Hjy is the interaction Hamiltonian in which the nucleons serve as sources
for the meson field in Hmes. -
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If we are interested in the correlations induced among the nucleons as
a result of their interaction with the meson field then we can replace H mes
+ Hjye , in the non-relativistic limit, by a nucleon-nucleon potential, In the
one-pion exchange approximation one then gets for the pseudo-scalar meson
with pseudo-vector-coupling (i, e, Hyp, =GW¥ (x)Lysyu ¥(x) o* 3 (x) > the well-
known result for the two nucleon potential:

V(Irl -1"2'): - (47T)'1(G/2M)2 (Ll 1)2)((71 VX)(Z)?Z 4V*)(exp [_p,x}/ux)

x = ’1”1 - 1”2,
i =c =1,
4.... meson’s mass
M... nucleon’s mass

It has been demonstrated éxperimentally that for the high angular momentum
phase shift (£ >4) this potential reproduces the date very well, For the
lower £ values, however, the situation is still unclear.

If we go to systems with more than two particles and try to eliminate
the mesons there, we see that again it can be done in some approximation,.
but new additional potentials - 3-and more-body potentials - - show up. Thus,
inasmuch as we are interested in the energies and phase shifts in the
A-nucleon problem, we could, in principle, proceed to find eigenfunctions
of (5) which refer to the coordinates of both nucleons and mé\:\sons. Equiva-
lently, at least to some approximations, we could instead solve a Schrodinger
equation of an A-nucleon problem with no meson coordinates, but then we
have to introduce 2-3-,... and up to A- body forces,

The problem of deriving a useful wave-function for a system of nucleons,
either with or without explicit reference to the mesons, would have been
hopelessly complicated had it not been for the Paull principle. As was shown
by BRUECKNER et al.[1] the effect of the Pauli principle in a system of many
nucleons is to reduce drastically the effects ofthe 2-body correlations at sepa-
rations of about 1 fermi. Thus the Pauli principle reduces the importance of 3
and more-body clusters and increases thereby the relative importance
of the 2-body forces.. I am not aware of any guantitative estimate of
the reduction of the effects of many-body forces in nuclear matter but the
relatively short healing distance, the 2-body interaction in the nuclear wave
function and the low nuclear density make it very plausible to assume that
we can neglect the 3-and more-body forces completely, This is one of the
most commonly accepted approximations for the construction of ¥,

2., THE CURRENT OPERATOR

¥ in itself still does not give us all the information required for the
evaluation of the electromagnetic properties of nuclei, We still have to know
the current operator j, (x), Strictly speaking,we could have got the structure
of the current operator from expression (5) for the total Hamiltonian, or
better still from the corresponding Lagrangian, One then obtains the usual
current of the nucleons -e ¥ vy, ¥, that of the mesons, i, e.(¢* d* o-0o* ¢x)
etc, If the meson coordinates are eliminated in favour of 2-, 3-,,,, A-body
interaction between the nucleons, then an appropriate modificationis required



212 A. de-SHALIT

in the form of the current operator. The interaction of the electromagnelie’
field with the charged mesons exchanged among the nucleons should be ir-
corporated in a function involving the nucleons' coordinates if the meson co-
ordinates are eliminated from the problem, .

We shall not go into the survey or the details of such calculations here,
It is sufficient for our present purposes to note that for a given meson thzory
there exists, in principle, the possibility of deriving an approximate current
operator involving the nucleon coordinates (including spins and isospins),
and that normally such a current operator can be broken.up into the following
sums:

. _ 1, - (2 . . . N
Ju G, X =B O E Xxy - %) Yoo (6)

Here ju (V(x) is a single-particle current operator, j,®* (xi - xj) - a current
operator which depends in an irreducible way. on the separation, or correlat-
ion, .between pairs of nucleons, etc, ‘ '

In the absence of any interaction between the nucleons and the mesonic
field, the lowest states will correspond to states with no mesons and the’
current operator for these states will redice to the familiar, single-particle
form j, = -e Jvu Y. In the presence of a meson-nucleon interaction two
things happen: first, the single-particle form will be changed and second.y,
new terms will appear which depend on the coordinates of more than one
particle, The first effect will convert the "bare’’ nucleon into a "'dressed’’
one, and will also introduce ''quenching' effects depending on the density
of the system. It will thus lead to an 'effective single-particle current''whose
structure may be similar to that of the systéem with rio meson, but whose
"constants'" may be different and density dependent, The second. effect in:ro-
duces the so-called ""exchange currents', orbetter still "'interaction current:',
which then give rise to the well-known interaction moments,

To summarize, we see that an ultimate theory would start from a
Hamiltonian containing the nucleons and the mesons, figure out the curreit
operator, and then use eigenstates of the above Hamiltonian to figure out
expectation values of the electromagnetic interaction, So long as this is not
practical, we may have to satisfy ourselves with a theory in which the meson
coordinates are eliminated and the current operator properly modified, Inas-
much as the underlying meson theory is not fully understood we may have
to be satisfied with some sort of guesses for the forces among the nucleons
. and the structure of the current operator. One is, of course, guided by tte
very extensive analysis of the two-nucleon potential obtained from scattering
studies, but at present there is still no clear evidence as to the role played
by 3-or more-body forces.

Even assuming a full knowledge of the equivalent internucleon forces,
it is still very doubtful whether a straightforward solution of the many-
nucleon problem could be achieved at the present stage. Most probably ar
approximation method in the form of one model or another will have to be
used, Anticipating such a possibility,it may therefore be of some interest
to see what specific features of the various models play an important role
in the interpretation of electromagnetic interactions, and to check to what
extent empirical evidence sheds some light on these features, One may, of
course, ask very specific questions like: Is the single particle picture with
harmonic oscillator wave-functions a good picture for the magnetic moment
of the nucleus or not? However, with no good theoretical backing for such
questions it is doubtful whether this is a fruitful line to follow. A better '
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approach seems, at present, to be that of asking less specific questions
which may give an answer to questions like: What is the limit on the obseyved
interaction currents in nuclei? or: Can one ascribe an effective charge to

a neutron in the shell model? etc.

It is assumed in what follows that ¥ (x;,...., x,) is prescribed by one
model or another and that the general structure of j, (x) is given. We shall
try to see what features of ¥ and j, (x) can be tested using the electromagnetic
interactions and to what extent such fewtures are borne out by experiment,
We shall confine ourselves only to static moments and transitions between
bound states and shall not discuss the very important questions of nucleon
capture and photo-reattions, i

3. THE CENTRAL FIELD APPROXIMATION

As mentioned above, we shall take asour starting point a Hamiltonian
with two-body forces only:
’_ /
H'= 2i:Ti_+i<j Vij - (7)
This Hamiltonian describes a nucleus moving freely in space, Most
models prefer to describe a nucleus tied to a certain point in space. Inorder
to do so without disturbing the structure of the nucleus we tie it at its centre
of mass; we shall find it convenient to do so with harmonic force, and we
are thus led to study the following Hamiltonian, whose intrinsic spectrum
is identical with that of (7):
. -

= G 2 -1
H= L T+ LV +e" (AL £) (8)

1

where w is an arbitrary constant. We have fhe identity

(AT ER)= AL ef - ATPE (1] - ) (9)

1 1<]

which shows that a harmonic force on the centre of mass is equivalent to
a harmonic force on each of the particles plus a mutual two-body harmonic
repulsion. Using (9) we obtain from (8)

. H=L Ty +a L 1! + TV, ' (10)
. <

where o = w? [A and
W os V- (R (T R (1)

The internal spectrum of (10) is identical with that of (7), the only difference
between them being that of the centre-of-mass motion.

To derive approximate solutions of (10) one can use a Hartree-Fock
self-consistent field approach. One then uses an auxiliary Hamiltonian Hy
given by : :

H =F T, +a L r’+ L Ur), (12)
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whose eigenfunctions arethe antisymmetric wavefunctions @ {xy1,..., %4), L €.

Hy o, o= By @x.

The energy in the g. s, is then given by

EHF-<®OIXT1+Q/Z‘1"‘ E ; o
<c1>°lz T +azr%+,%§U(ri)i®q> (13) ,‘

1 1
3 Eq+ ‘2‘<®o li Tita Z I'2‘1“<I)o>
i i

"

and is stationary with respect to variation in the single particle orbits,

As a matter of fact the above procedure of deriving a self-consistent
field can be carried out for any value of v, the spring constant of the force
holding the centre of mass. One can use this freedom in the choice of w "0
improve the approximation even further, No study of this possibility has
so far been carried out in detail,

4, GENERALIZED MOMENTS

As mentioned in the introduction, the measurement of the properties:
of a system of several particles generally yields information only on aliranited
number of its moments, Thus if a test particle p interacts with the system o
through an interaction Hint (o, p) and if, as a result of this interaction, the
test particle goes from %(p)—'ﬁpf(p) and the system from ¥ (o) —~¥f (oz)
then what we measure experimentally is the matrix element

|< @) o (p)] Hine (e )] % (a) 9 () D2 (19)

Him (o, p), being a scalar, can be decomposed into a sum of products of
irreducible tensors:
- . *
Hin (a,0) = ) &lre) IO (@) T (o, (15)
T

Here ry Dtands for the intrinsic coordmates of the system relative to a direct-
ion o fixed in it in any manner; rp is the distance of p from the origin, Be-
cause of the triangular conditions we see that if ¥; (a) and % (¢) have definite
angular momenta J; and & (as is generally the case) ‘then the measuremnient
with the test particle can only teach us about the few moments in ¥; and
¥¢ with !Ji— Jflé kg Ji+Jr . Thus, assuming Hine, @;(p) and ¢ (p} are known,
then the measurement will at most yield a number for’ '

% @) £ (ra, 1) T® (@) Bl2) >, (16)

where |J —Jfl k< Ji+ Jf, and r obtains any arbitrary value, In many cises
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we shall obtain only the average of (16) over some distribution of r, and only
“ k= \ Ji - Jf‘ will actually be determined with any appreciable certainty,
Expression (16) is a generalized moment of the system and applies to
electromagnetic moments as well as to momentsderived from other measure-
ments, Indeed, with a big enough choice of test particles the variety of
"radial" functions fy (r«, r) can be such as to give a fairly detailed picture
of ¥ (@) and ¥f (@), In practice, however, the choice is not that big and con-
sequently the information obtained is not too detailed. The best-known moments
are those derived from the electromagnetic interaction; their derivation is
well known and we shall not list them here; then come those derived from
B-decay, where, again, the functional form is quite well known; finally there
are the moments derived from the nuclearinteractions, where the functional
form is less certain, '
Although our main purpose is to discuss the information which can be
obtained from the electromagnetic moments, it is interesting first to look
a little into those derived from other sources, since a comparison of the
various moments is likely to be of some importance, Let us first consider
a simple, rather classic example {2], namely that of the nucleus 19K§({ .
This nucleus can be looked upon as 19 Kgg plus a test particle in the form
of the 21'st neutron, From 2¢Ca 21 we know that the 21st neutron moves in
an f7/2 orbit, and since 1g K%g has J = 3/2 there are altogether 4 possible
states of the test particle with respect to K3, An easy algebra shows that
if TX are the different moments of K39 resulting from the interaction with
the test particle and if the interaction can be treated in first-order perturb-
ation, then the energies of the different states in K40 are given by

E(K? , J) = Const Z’(-j)j"°*’{-3!c£i} (o (17)

where j = 7/2 (the test particle’s orbit), Jc = 3/2 the angular momentum of
K% and k runs over all allowed values, i.e. k=0,1,2 and 3. This relation
can be inverted to give T® in terms of E(K40 , J),

Using the observed energies

E(2) =797 keV, E(3)=29keV, E(4) =0, E(5) =885 keV, .
one obtains '
T  =+1660 keV TP = 4860 keV T = - 945 keV.

The same test particle, the 2lst neutron, also probes another nucleus, namely
17C13%. In C1%8one again knows the four states withJ =2, 3, 4and 5:

E(2)=0, E (3) =762 keV, E (4) =1310 keV, E (5) = 670 keV;
the resulting moments turn out to be:
T =+ 1500 keV TP = - 4920keV T = _400 keV (18)

It is interesting to note the similarity between the two sets of moments
(17) and (18). (The apparent big difference between the two values of T(®
_ should not be taken too seriously since these numbers come out as the differ-
ences between two big experimentally determined,numbers; relatively small
errors in these energies may result in big effects on T(®,) According to
the shell model, 17C13{ is related to 19K# via the particle-hole conjugation
(for protons in the dgsp orbit). Under such conjugations odd tensors remain

unchanged and even tensors (with k 7 0) chax’}ée their sign but nottheir magni-
tude, That this actually happens in the analysis of the energy levels lends,
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of course, great support to the shell raodel in this region of the periodic‘
table,

It should, however, be remembered that all this result says is that if
17C13% is described by the state a *3/23/2 | 16538 > then it is consistent to de-
scribe 1gK3% by the state of a3/2-3/2 a #3/2-1/2 a +3/21/915535 >. Here 153§ is
the ground state of S* and a;%, is an operator which, when operating on 3%
creates a proton in a state of angular momentum jand z - projectionm, arnd
it is assumed that the interaction of the f7/2 neutron with these protons :n-
volves the operators ajm through the combination a;¥ ajp’ '

5, EXAMPLE - THE PROTON f 7,3 SHELL

A somewhat more complicated example of the same nature is obtained
if we consider all nuclei with 28 neutrons and with 20€ Z < 28, We shall again
use the shell model for their analysis but it is obvious that a similar anzlysis
could be carried out using any other model which attempts to describe tlese
nuclei,

According to the shell model the 28 neutrons form an "inert" closed shell
and the protons all fill the f7/2 shell. We can consider one of these protons
as, the test particle which probes the structure of the wave function of all
the rest of them, Antisymmetry complicates the picture somewhat and form-
ally it is best to proceed as follows: )

Consider the antisymmetric wave functions of n particles in the j-orbit,
and call them l jn @ JM > where o is any other quantum number required to
describe these states in addition to J and M, The space spanned by the funct-
ions | j82q' J'M' >, |j2J"M" ) is bigger than that spanned by | jr @JM s
since the former are antisymmetric only in the first n-2 particles and the
last 2 particles separately and not necegsarily in all of them, Hence it is
always possible to find coefficients CZ'IM. j*m» Such that

[in @ IMY= £ G e [T 0t M D2 SV

It is easy to see that the M,M'and M' dependence of C is just that of the
appropriate Clebsch-Gordan coefficient so that we have ‘
| .
| o am> = L (353" Ve D23 23 m) (19)
where (ar'J';J"l} a J) is a "fractional parentage coefficient'.

In rnany cases of practical interest the quantum numbers ¢ and o' are
superfluous, and we see that the fractional parentage coefficients in suctl.
cases are uniquely determined by J* J" and J. If we introduce a two-body
interaction between nucleons in such cases we find for the energies

i<j 1

B =<moal 5oy [0a > 28 G gl vaa, o e )

7*

20 et I SRUNEEDS (20)

There are (2j +1)/2 allowed values of J'', and for n> 2 there are generally
many more allowed values of J,. Equation (20) tells us that it should be possi-
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ble to express all the energies E(j" J) in terms of the few quantities
< #.3'"| v| #3" > with the help of the interaction-independent coefficients
(33" 3.

The quantities < J"| V| 23" >, which represent the average two-body
interactions in the n-particle system, can in their turn be expressed interms
of the interaction moments T(K by the relation

CEalvipay = 5 oM (21)

It is thus possible to determine moments of an interaction between equivalent
nucleons, ’

In the fqs2 shell it is not quite true that the ¢ -quantum numbers are
superfluous, In fact, in the f47/2 -configuration there are two states with
J = 2 and two with J = 4 and further quantum numbers are required for their
characterization, To introduce thic new quantum number, the seniority [3]},
we proceed as follows:

An n-particle antisymmetric state-can be obtained from an (n-2)-particle
antisymmetric state in a simple way [4] . We construct first the state
l j%2 (Jy) 3(J5)J > which is antisymmetric in the first n-2 particles and
the last two but not with respect to their exchange, We now antisymmetrize
this function with respect to the interchange of particles n-1 and n with any
of the particles 1,,,,.,n-1, We than obtain either zero or an antisymmetric
function of n particles in the shell j coupled to J, If we start from J, =0
(and therefore J; =J), the state | ja J > obtained in this way is said to have
the same seniority as the state I jo-2 J > ‘we started with,

We see immediately that in the configuration jd states can have the sen-
iorities v = n,n-2,n-4,.... A state |j8J > is said to have the seniority v=n
if a pair coupled to zero cannot be extracted from it, i. e. if we have
("% (3)(0) 3]33m 9) = 0.

It is easy to see that a tensor operator of an odd degrée is diagonal with
respect to the seniority. In fact one has for the reduced matrix elements:

(vl T® Hfj“v‘J')=(vaJ||T<‘° I3V v3 )6y if k is odd,  (22)

One also finds that for even tensors

2j+1-2n

(uvall @ |l jov 5y = 57752

Gerw IIT® )39 vd) if k is even. (23)

From (23) it follows that matrix elements of even tensors, diagonal in the
seniority, vanish in the middle of a shell. Consider now the fy/g shell, For
2 or 3 particle configurations the total angular momentum defines the states
uniquely. For 4 particles we are in the middle of a shell and hence:

~

((7/2)4 v=a [T 1) T (3|72 v=2>

L

=) const ((7/2)4 v=a| T ()| (7/2)* v"> ((7/2)4 ™ @) (772 v=2> = 0.

In fact v'' could be 4, in which case for even k the first factor vanishes (be-
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cause of (23)), whereas for odd k the second factor will vanish because of
(22). Similar results follow for the only other possible choice v"' = 2. Hence
any 2-body interaction is diagonal with respect to the seniority in the fq,5
shell [4]. n

TABIE 1 [6]

CALCULATED AND MEASURED ENERGY LEVELS
FOR ELEMENTS WITH N = 28

Energy
- Remarks
Exp. Calc(a) Calc (b) :

"Tigg 2+ 1,56 1.56 1.51
4+ 2.76 2.76 2.67
6+ 3.00 3,00 2.98

Vs 5/2° 0.32 0.32 0.32 '

: ‘ ’ E(2) = 1.41 ,
3/2" 0.93 1.01 1.30 By =2.44
172" | 1.61 1.58 1.69 E(6) = 2.81
9/2” 1.81 1.69 1.97
1527 | 2.70 2.75 2.92
CI_SZ :

U8 2+ 1.43 1.45 1.50 v=2 B2 = 1.46
44+ 2.87 | 2.36 2.41 v=4 E(ay = 2.78
4+ 2.1 2.7 2.67 ve2 E(6) = 3.12
6+ 3.11 3,12 2.98 ve 2
2+ 3.61 - 3.61 3.51 v=4
54+ 3,83 3.82 3.69 v=4
8+ ? .5.22 4,95 v=4

=M% | s | o.ar : 0.32

' 3/2" 1,27 1.30
11/2° ? 1.69
9/2° ' 1.97
15/2° 2.92

wFen 24 1.41 1,41 1.50
4+ 2,55 2.55 2,67
6+ 2.97 2.97 2.98

least sq. fir:
E(2) = 1.50 E(4) =2.67
E(6) = 2.98

For corresponding diagrams see Figs. 1-§
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This last result is not true for 3-body interactions. Hence, the existence
of seniority admixtures in a pure f7/2 configuration can be taken as an in-
dication for a residual 3-body force [6]. We shall therefore dwell a little
longer on the analysis of this shell.

Table I and the accompanying decay schemes (Figs,1-5) show the sort
of fit that is obtained by choosing: (a) a least square fitted set of moments
for each value of n; and (b) one set of least square fitted moments for all
the f7/3 proton shell [6]. ‘

‘50 2
22 Ti2s wf 772

Exp.. Calc.

(6% 3.00 6+ 3.00 6." 2.98
@ 2.76 at 2.76 ot 2.67
1.56 1.56 .51

(2) 2+ 2+__—__
O+ . [0} 0+ [¢] 0+ [0}

Least square fit Total least square fit
Fig. 1

51
2Vrzg wi7dd

Exp. Caic.
_ 15/2 292
15/2 2o B2 215 — ———
’ o 1.97.
9/ —————— 181 972" 169 w2~ .69
W2 —————16l =
W2 158 3727 130
- 32 10
38— —093 :
/7 032 52 032  5/2 032
279" o 2 o) 72 o)

. Least square fit Total least square fit
Fig. 2

The consistency of the results lends great support to the description
of all these nuclei in terms of the proton configuration (f7/2 )* but it should
be stressed again that all we have shown is the existence of a relation of
the type (20) bétween the energies in the configurations jt and (2j + 1)/2 pa-
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Calc.

8% v=4 522
52 4 .
24Crag wfw2 495
Exp.
(5*60— 3.83 5° v-4 382 .
! ' . 369
(2*) : : 361 2 V=4 36l o
R L) 348 —32
o ;
i:%}:_i—] 3.16
___N_____‘______.__. + =
&=y - A 6%_v=2 352
I ol Y1 298
; I ﬂ)_q o *
. ot 4 _v=2 277
N I o e o' 287
-~ -
[
+ _ 2.41
1 237 4 V=4 236 ————
Ll
!nm‘v\o
oy
)]
(D
. 2t vz 145 29— 15
2* .43 E— '
2
(o]
o
X <]
o* ° o* v=0 o o]

Least square fit  Total least square fit
Fig. 3
rameters < j2 J" [V|2 3" > . Imagine, indeed, that we cons1der a second order
correction to (20); it can include a term like
5 E(jnJ) (1/AEY< T |2V | o2 2 J><J"'2]° I vy | mas

in which a pair from the j-orbit is excited into the j,orbit. Taking into
account the antisymmetry we see easily that

S BP9 < - D/2BIE TIPS | <P 7 Ve B> 2



ELECTROMAGNETIC PROPERTIES OF ATOMIC NUCLEL 221

32 8.8m 0

49
20Ca 29 4.7 53 )
' ‘ 25Mn2s  wfw23
0,3% 4.
0,3% 47 o
10% 47 Exp. Calc.
90% 4.9 3.1 15/2° 292
2 197
we 1,69
- 27 3/2 130
5/ ————037 B2 032
7 2z 0
- Total least square fit
772 0
a9
21S¢ 28
a) b)
‘ Fig. 4
54 —2
26 Fe 28 xfr2
Exp. Calc.
+ +
6" 2.07 6 2.97 46* 2.2&;
2.58 + 2.
T e 255 4 28 ————
+ 1.50
+ 1.41 27 = 1.so
p —— Y ALY
o+ 0 + )
o*_____ 4 0

Least square fit Totol least square fit

Fig. 5

and thus

B ) + 0B 0 = - /2] BT ) 3P )[< P3| V| P>

[<f 3"V, |8 J">|2]
+ .

AE
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We therefore obtain again an expression similar to (20) correct to second
order, We can easily extend this analysis to higher order corrections as
well, convincing ourselves that there is a whole set of diagrams in the pertur-
bation expansion, the so-called ladder diagrams, whose inclusion would not
alter the relation between energies in the jr configuration and those of j2.

It is for this reason that a shell model analysis of experimental data can
only give us information about an 'effective' two-body interaction which can
be used to account for the observed data usmg a simple first-order pertur-
bation theory; it cannot tell us much about the "real" interaction. All the
moments of the interaction that we derive are, of course, moments of tr.e
effective interaction only.

Although it is difficult at the present stage to relate these effective inter-
actions in finite nuclei to the original nuclear interaction, the generalized
moments, as derived from experiment, can give us some interesting in-
formation about the effective interaction. Thus, consider the matrix element

<{fI|v|F£I> =Z(jm1jmz | M) (omy jmy | M)
e
mymy, . (24)

Xfcp?ml (r16101) Pim, (r28292 )Vry, T2, cdS 0y 1Py (r10190)9y 0 (12820 )d%r;d;

Since V depends only on the angle between Ty a.nd-r; we can carry out the
integration over one direction and obtain for (24) the expression [7]
1

<PI| V| £I> = %j‘Ajrj (cosw) Q (cos w)d (cos w), £5)
-1
where Q (cos w) = IR? () R? () V (ry, T, cosw)dry dry (¢5a)

and R LS ikiN [ii1 .
Ay (cosw) = (-1 (2j+1) )1_:,(2k+1 (ioi) iik (B (cosw). (25D)
Noting the physical meaning of Q2 (x) we see that we can approximate it by

2n
X £x<
Q(x)={0 sxs !

otherwise,
where n is large for short-range forces and small for long-range forces.
Using that fact that

1
fxz“ B (x)dx = 0,if n< k,

0
we see that for long-range forces multipoles with high k will vanish and that
for short-range forces we should expect non-vanishing high multipoles. In
the above example of (f7/2 )n the range of the interaction could actually be esti-
mated in this way to be around 1.5 fermis.

6. CORRECTIONS TO MULTIPOLE MOMENTS

Coming back to the electromagnetic moments, we still have to determine
the form of their operators. We have already mentioned the difficulties
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connected with the interaction, or exchange, currents, and the necessity

of properly defining the wave functions with which we propose to calculate
expectation values. In this connection there is a well-known theorem - the
Siegert theorem - whose general proof was given by SACHS and AUSTERN [8].
This theorem states that electric multipole moment operators are independ-
ent, in their form, of the interaction currents. The reason for this is that
such moments are actually determined by the density alone, i.e. they are
the moments of ¥* ¥.- Whereas ¥ may be, and generally is, quite sensitive
to the nature of the inter-nucleon force, once ¥ is giveh, the operation which
leads from it to the value of the moments is ihdependent of the dynamics of
the system. The magnetic moments, on the other hand, depend on'the de-
composition into irreducible tensors of the current operator. The latter is
defined so as to satisfy the continuity equation (9p/8t) + divy = 0. The oper-
ator of 3p/8t, however, depends on the Hamiltonian (it is the commutator

of p with H) and velocity dependent terms in H, for instance, will affect

dp /ot strongly. Such effects have to be ''compensated” by div j, and hence
the intimate connection between j, or its magnetic moments, and the nature
of the Hamiltonian. ' .

Since the electric multipole operators are so well known we can, in
principle, use them to check the extent to which our basic approximation,
that of neglecting the meson coordinates, is actually valid. To this end one
has to know the wave-function of a given nucleon fairly well and then check
whether any given electric moment can be obtained from it using the con-
ventional operators. To the extent that the meson cloud around each nucleon
is greatly modified by the presence of other nucleons, this will not be the
case and we shall then conclude that a proper description of nuclei should
include mesonic degrees of freedom explicitly.

Because of their simple and well-understood forms, the electric multi-
pole moments also serve as very sensitive tests for the adequacy of a given
wave-function to describe appropriate nuclear states. Whereas with the mag-
netic moments some discrepancies between "theory' and experiment may be
disposed of by uncertainties in the operators, such discrepancies in the case
of electric multipoles indicate a failure of the wave-function.

On the other hand we ought to be careful not to throw away wave-functions
which fail to describe some’ electric moments properly. These operators
may have the property of '"magnifying'’ the effects of small corrections in
the wave-functions and may present a much too sensitive test for the adequacy
of a given wave-function for other purposes.

Similarly one should exercise great care in interpreting agreement of
calculated moments with experimental ones as an indication of the validity
of the wave-function for other purposes. Thus the simple-minded operator
for the magnetic moment operator for protons only or for neutrons only is
diagonal in LS-coupling. Real wave<functions may therefore deviate appreci-
ably from LS-coupling before any effects inthe expectationvalues of u are
noticed. . :

To give an example of the "magnification" effects of some operators,
consider the operator Q = L Y, (6; @;) in the state

| 3P (0) iP2 (3p) J > (ng= 2j + 1 is"even; ny -odd).

If the actual wave function centains a first-order admixture then we consider
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fo > =1i10)i2 (3,)3>

+Z (AE)'1<J-1111‘ 1(jl)jsJijé‘z (I )J ]ZVl.jh?x(O)jgz (Jo )J>,j{’1'l(j1)j3Jijgz (J2)ID. (26)

The expectation value to first order in the admixture is given by (we are
interested only in reduced matrix elements)

&lQle> = G g, Q)i 1>

Z(z/AE)[(2J3+1)/5]z\J“l(O)IIQIIﬁ"(31)33J1> Ji‘f‘(Jl)Js(Jl')Jzz(Jz)leVkI (0)ig< )J>

Smce Q is a tensor of the second order we have non-vanishing contributicns
only from J1 2; the interaction will then also contribute only through its
quadrupole-quadrupole part. Assuming this part is simply (ZQ(i)-(XQ(k))
we shall find for the reduced matrix

wlQlw> =< 5 |leliz 7,0

+Z(2/AE)[(2b+1 Y512 < 30) || QI 3B Gy is A (-1 B Gu)ia & | QYT (01D
J1Js J
X (% 5, Qi J2>{J;0222}

- Ciaa | QU [ 1+ 2/51) (1/8B) <O QU ks 2> Pl e

.

“Thus we see that in this particular case all sorts of admixtures of the type
|31“1 1(31) jsJ; > to the closed shell j;"1(0) add up with the same phase ia
their contribution to the enhancement of the ''zero-order' matrix element

< jotr Jg H Qn 2" J; > . As shown by the example above this happens only
because we are calculating an expectation value of an operator which co-
incides with a part of the interaction. Thus through the special nature of

the residual interaction Viy , the expectation values of one .multipole or
another may become very sensitive to small modifications in the wave-fur.c-
tion.

Equation (27) also indicates why the concept of an "effective charge' raay
be of some use in analysing electromagnetic properties of nuclei. If the
quadrupole operator is eE Yoo (6; ;) then Eq. (27) shows that the effect cf
the polarization of the closed shells is to modify it into e’ L Yon (6; 9;)
where

=e [1 + (2/5)2(1/AE)< i (O |Q 31 5y )is2)> F}. * (20

The important thing to note is that e' is independent of the open shells (j3)

or the number of particles in them (ny ) or the total angular momentum of

the state considered. As long as it is consistent to include the polarization

of the closed shells only to termslinear in the admixture of the excited stutes,
and provided the interaction Vik has the simple feature we described above,
the quadrupole operators remain unchanged in their form. In other words,
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we can continue to take matrix elements with the zero-order wave-function
and include the above first-order corrections through a modification of e.
Furthermore we notice that it is possible for the first-order corrections

in ¢ to be relatively unimportant for the evaluation of some nuclear properties
and still make e' significantly different from e through the addition of numer-
ous small effects, Finally we notice that the concept of an ""effective charge'
may be valid for one multipole and not for another, and that even if it is
valid for a number of multipoles there is no reason for it being the same

for different multipoles. )

The situation is not so simple for more realistic interactions and one
obtains effective charges which depend, at least formally, ‘also on some
details of the zero-order wave-function. Numerical estimates, however,
show that their dependence is not too strong and that the above rather quali-
tative considerations do have also some quantitative value. Characteristic-
ally, one obtains in actual cases, for quadrupole transitions, e'fe=~15-2,
with a similar value obtained also for the effective charge associated with
transitions between states of different configurations. -

The fact that first-order polarizations of the closed shells affect some
electric' moments only to the extent of renormalizing their charge explains
also why one can expect that even selection rules should hold with zero-
order wave-functions when normally we can anticipate not so pure wave-
functions. In the case of 5, Cris, (Fig. 6), for instance, we may have a clear mani-
festation of such a situation. We saw that in the middle of a shell all matrix
elements of even operators between states of the same seniority vanish
(e.g. (23)).

3% 0.3%
v =45+ 3.82
v =4 24 : ~ 3.61
v =26+ : 3.12
v =24+ 2.77
v =444 —'—L—- 2.37
v=22+ ——— 1,43

0+
. uCris
Fig. 6

Theréfore E2 transitions should be slow between states of the same senior-
ity and fast (i.e. normal) between states of different seniorities in g, Cr33
(half-filled proton shell-and a filled neutron shell). The seniority and spin
assignments in the figure above are supported by energy considerations,

and it is indeed observed that the more energetic transition is ten times
slower than the (5+ v = 4)—(4+ v = 4] transition. The E2 components in
each still await an accurate determination, but there is good reason tobelieve
that the M1 component is strongly hindered (see below), so that the observed
""anomalous'' behaviour may be the seniority selection rule on E2transitions
in the middle of a shell. T

7. MAGNETIC DIPOLE

Siegert's theorem, as mentioned previously, does not say anything about
the magnetic multipoles. We are less certain of their structure and they are
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generally not as useful as the electric multipoles in analysing nuclear
structure. An exceptional case is that of the magnetic dipole moment and
we shall now proceed to the study of some of its general properties.

The magnetic moment operator is a vector operator and can be de-
composed into a sum of single-particle operators, two-particle operato:s,
etc.

— — + -— +
u = EHI lE:] “ij teee

To the extent that we can neglect the two and more-body operators, it is
possible to make some statements about the matrix elements of I withoat
further specification of its form. Indeed, Lande’s formula states that

(imlel jm' > = o5 Cim| Tl im >

where «; is independent of m, m' or the specific.component of ;Tconsidered.
It therefore follows that

GRIMIEE [P M=oy GRIM|T R 3 M D=0 1837 3% (29)

Thus magnetic dipole transitions vanish between any two states of the same
configurations in jj-coupling [4a] . A similar theorem holds for the M1 t:rans-
itions between two multiplets in LS coupling if i can be decomposed into “wo
parts, one diagonal in S and the other diagonal in L,

The above theorem is a very powerful tool for the study of purity of
nuclear configurations since it asserts so little about the structure of /,T
Indeed, if one believes one has a pure configuration j® then the existence of
M1 transitions between its states requires the existence ofTIij ing . This,
however, can be checked independently since we have

@3] g & o
= in(n+ 1) £ (-1 TNEIFDET T DER)RR) D (50)

X (Prt ) PO D 3 {3 Sl oa .

We note that sincef is a vector operator and the 7 configuration has got
only states with even values of J;, the only terms which appear in (30) are
(35 w2} 32 ) in which J, = Jp'; thus all M1 transitions within the configura-
tion j?, as well as all the static magnetic moments'in this configuration,
should be given in terms of the (2j + 1)/2 "parameters"

(o 1 Fia | o) with Jp = 2,4,6, ..., 2§- 1.

If observed M1 transitions between states of the same configuration fail to
satisfy relation (30) where (J, ” /._1’12 ” J,) are derived from the static moments,
then one is forced to conclude that the configuration is not pure (or, more
precisely, that it cannot be described in terms of zero-order wave-func-
tions with effective magnetic moment operators of the type Tu; + i% I"ij Ve
There are no nuclei on which enough data is available so far totest these ideas
in full, However, by combining energy considerations and indications from
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E2 transitions it is possible to put some limits on the size of < T ;'Tu >
relative to < T Wi > . At present these limits are not interesting since con-
siderably smaller limits can be obtained by studying neutron capture on
protons [9].

8. CORE EXCITATIONS IN ODD-A NUCLEI

In order to analyse the data on magnetic moments and M1 transitions
further we should specify the operator i in more detail. Before we do this,
however, it may be interesting to see how we can use the empirical fact
that to a good approximationﬂ’ = Lu} in order to clarify some possible coup-
ling schemes.

Given an odd-even nucleus, in which the odd nucleon is, for simplicity,
in .an Sy/2 orbit, one can ask whether it is a good approximation to consider
some excited states as consisting of the odd-particle in the same S1/2 orbit
coupled to an excited state of the even-even 'core' [10]. Formally, if J.
stands for the total angular momentum and other quantum numbers of the
even-even core, and j describes the odd nucleon, we believe the ground
state to be described by | Jc = 0,§;J = j> and we ask for the validity of
the description by | Je= 2,5 J'> of some specific excited states. In the
absence of any residual interaction among the nucleons in the nucleus, the
above description of states is perfectly legitimate if.the "core' does not
include nucleons in the j-orbit., When the interaction is switched on, the
validity of such a coupling scheme depends on the degeneracy of states with
total angular momentum J in the lowest group of degenerate states, and on
the strength of the residual interaction relative to the spacings between
groups of degenerate states.

If we assume that in the absence of residual interaction the lowest group
of degenerate states of the core consists of the observed low-lying excited
states, then we know that for this group Jc¢=0,2,4 etc. If j = 1/2, the
degeneracy of a state with a given J in the lowest group of degenerate states
ig therefore determined by the degeneracy of the state J = J + 1/2 (whichever
is even); these degeneracies are rather low and, moreover, as the inter-
action is switched on, most of it is ""absorbed' in splitting the degenerate
states with the same J. and one does not expect much admixture between
the two states laf Jej> and la'Jc j>» Thus we can use nuclei with j = 1/2
to study the extent to which the residual interaction is small or big compared
to the separation between two different groups of degenerate states (in the
zero-order approximation),

To be more specific, we may be confronted with a nucleus with an ob-
served energy spectrum given in Fig. 7;we are asked to decide between two

different interpretations: . :
(a) the "single particle" interpretation which asserts, essentially, that

[1/2+>=|0 s1/21/2>, |3/2% >=|oa3/23/2)>

and [5/2% >=0 d5/25/2);
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(b) the "core excitation" interpretation where
[1/2+>=|0s1/2.1/2),]3/2+>=|2s1/2 3/2

and |5/2+>=[2s1/25/2)

Apart from energy considerations into which we shall not enter here, one
can use electromagnetic properties to decide between the two alternatives.
Taking the more reliable electric multipole moments first, we can write
the quadrupole operator, for instance, in the form Q = Q) + Q(P) where:
Q(P) operates on the odd particle and Q(¢) on all the rest of the particles

in the core. A simple inspection reveals that if we consider the E2 trans -
itions 3/2+ —1/2+% and 5/2+ —~1/2+, then, after correction for the energy
dependence, the reduced transition rates are equal to each other undzr both
‘alternatives. We may try to infer something from the absolute rate, but we
know already that first-order polarization effects are absorbed in the single-
particle description, and we have no a priori reliable information on the
structure of Qfc) . .

If we look at the magnetic dipole data the situation is different, The
single-particle interpretation does not give us any specific 'predictions'
unless we specify the operator gi more fully; the core excitation interpre-
tation, on the other hand, gives very specific relations between the magretic
moments of the states involved and the M1 transition 5/2 + —3/2+, If we
write ;T = ﬁTC) +;_4'(P) then it is easy to see that the three static moments.
and the M1l rate are all given in terms of specific combinations of

<2llu© | 2> and <§"/.4(P) I > . Thus there are two independent rela-
tions between these four quantities which can be checked experimentally.
It is, of course, not impossible that the same relations will be satisfied
"accidentally' also by the single-particle interpretation; however, the study
of several available cases shows that this is very improbable. At present
there seems to be an appreciable number of cases in which "core excitation"
gives a fairly good explanation of the available data, and the analysis of the
electromagnetic properties of these nuclei plays a crucial role in enabling
us to make specific statements without involving too detailed a theory abcut
the structure of the electromagnetic multipole operators.

9. GENERAL THEOREMS ON MAGNETIC MOMENTS

Coming back to the magnetic dipole operator, we know that for a’single
nucleon its structure is particularly simple, namely '

- — -
Hyp =g L+ g s. - (31)

Apart from the complications due to exchange currents, which we shall dis-
regard, this operator may change its form if we want to incorporate in it,
rather than the wave function, first-order polarization effects. We saw alove
that if we are considering first-order polarization contributions to an ope:-
ator of degree k, then it has the form of the zero-order matrix element of'

a k-th multipole in the residual interaction, It is for this reason that correc-
tions to the quadrupole moment, induced by an interaction which contained
Q1) . Q&) , looked like an effective charge. In the case of a magnetic mo-
ment we have to look for the dipole-dipole part in the interaction where bcth
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dipoles have positive parity, For Velomty independent mteractlons such
terms could be of the form I f(r; )o: or T f(r;)[Ya(6;¢) x 67 ¢V, Thus
such corrections to the magnetic dipole operator will affect gz and not g; ;
in other words we expect the magnetic dipole operator to be of the form

Wo=g Lig ) x sl (32)

where gs (r) may be a .scalaror a second rank tensor. The former will be
the case if the interaction is of the type 01. 02 Vis, and the latter in the case
of tehsor forces.

Although it is difficult to make definite statements about g¢(r} without
a detailed knowledge of the residual interaction, we can predict in which
direction it will affect the free-nucleon’s g-factor, If we consider an odd
proton with spin up, say, polarizing the closed shells, then the following
holds: this proton with spin up likes to see other protons with their spin down
(Pauli principle); it likes, however, to see other neutrons with the spin up
(the 38 state of the deuteron is more bound than the ! S); since the intrinsic
moment of the neutron is opposite to that of a proton we see that in both cases -
the net effect of the polarization is to decrease the intrinsic angular momentum of
the polarizing proton. Thus g¢(r) will be a function whose expectation values,
taken with zero-order wave functions, will be less than the free particle’s
g-factor. This is probably one of the important contributionsto the ''quenching"
of intrinsic magnetic moments.

The fact that gy is not affected by first-order polarization is borne out
by the general "slope' in plots of u versus j for odd-proton and odd- neutron
nuclei (Schmidt diagrams); the quenching of gs has also been known for some
time, Furthermore we see that apart from the contributions of tensorforces,
the modified structure of ¥ is still such as to make even the A{ selection
rule apply to magnetic dipole transitions; violations of this rule can come
through terms of the type [Y, X T 1() and are therefore expected to be slower
than normal allowed M1 transitions (i.e. between spin-orbit doublets).

To the extent that interaction moments can be neglected there are some
interesting theorems about the moments of conjugate nuclel. To formulate "~
them it is convenient to stay with the simple operators @ = g, T+ g s
and use the full "complicated" wave function ¥. An M1 amplitude in a system
contammg protons and neutrons is then given by

A= (T TMIZI(L+ m3)/2] B +eg E{(1+ /2] 5
+g, THL+7,)/20 5 |JTMT,> = IT'My L +5) (33)
+ (gsp +8n - 1)%25# ERY Tis (zi+ (gsp - B ) St [JTMT>-
In (33) we have explicitly indicated the isospin dependence of the states
since we want to consider this paz't specifically. Take first static moments
where J=J" T =T" and M¢= Mr. Usmg the W1gner -Eckart theorem in

isospin space we have

T = 3 KIlT+ (g g - DRI (-1 M, 0 ) (T

+3 (alz n I DT+ @y - g -0 | T <-‘1>T'MT(§Ifoqi«)~-
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We can now use the orthogonality of the Clebsch-Gordan coefficients in order
to obtain

L (-1)"Mr (M 0 M) B (TMyp)=(1/2T+ 1)} Eu (TM,) =

=33 |T+ (g tea-DESlI> @]l

or EH (MM =g @T+1) (IlTH(g, +, -DESIID.

Since the anomalous pari gsp and gs, are equal in magnitude and opposite

in their signs we see that MEF(TMT)iS independent of the anomalous part

of the intrinsic moments and, to the extent that the quenching is charge sym-
metric, this sum should be independent of quénching too. For self-conjugaie

nuclei, where My = 0 we find, since (y50) = 0, that

;’(T,MT* 0)=3 <.JIE’+ (gsp * 8 -l)E'—s:lJ>

and again & is independent of the anomalous moment or charge-symmetriz
modifications of it.

For M1 transitions between two states of equal T in a self-conjugate
nucleus we find [11]

A=[1/202T + 1)} (g +gw -1 T2 13>~ 0.9/ + 103} £3| 1)

This should be compared with a '"'normal" amplitude which is of order 1/2
(g,;p - gsn )= 4.7. Thus Ml transitions in self-conjugate nuclei, taken be-
tween states of the same T, should be slowed down by a factor of about
(4.7/0.9)2= 30.

We see that M1 transitions are very often hmdered through one mecha-
nism or another. This can actually be expected since the magnetic dipole
operator is so closely connected with a constant of the motion, namely the
total angular momentum., Really fast M1 transition can occur in odd-odd.
nuclei, where they are affected by the factor gsp - gsn; such transitions have
actually been measured and analysed, ) )

10. COMPARISON OF DIFFERENT MOMENTS

Before finishing this rather sketchy survey of some of the properties
of nuclear multipole moments it may be interesting to mention also the possi-
bility of comparing moments determined by electromagnetic methods with
moments determined by other methods. i

We have discussed earlier the moments of K3% and C137 as determined
by their nuclear interaction with the 21st f7/5 -neutron. The moments derived
_there are actually products of the moments of these nuclei with the corre-
sponding moment of the 2lstneutron, To get rid of the latter we can take
ratios of the moments and obtain
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[T(l)(K39) / TOV(CI3)] = 1.1; [ T(D(K®) [ T(D(C1%T)]=-1.0;
[T(NK3) / TA(C137)] = 2,23.

If we believe the observed value of ¢ to be due to a modification of g5, then
we can use the measured moments of K39 and C137to obtain

g, 0 DK¥<g 0> C1¥) = 1.26
and similarly
(QK*) / q(C1%)) = -1.1x 0.3,

No data is available on the electromagnetic octopole moments. Although there
is certainly no equality between the ratios as derived from electromagnetic
measurements- and those from nuclear interactions, and although a prioti
there is no reason to expect such equality, it is interesting to note the simi-
larity of the ratios. If this is found to be the case in further studies as well,
it may indicate the rather weak dependence of the interaction moments on
the radial coordinates. ¥

A more interesting comparison of moments is between those derived
from B - decay and those from electromagnetic interactions. Here one knows
(Meyer-Jensen) that in jj-coupling the Gamow -Teller matrix element for
B -decay between mirror nuclei is given by

MZGT= (J+1/3)2< £ oz(i) tz(i) >M:J P,

For the magnetic dipole moment we derived the expression (33), In diagonal
elements in jj-coupling we can replace .

o L SE D> girnr #e vy 343
L J(J+ 2 2j(G.+ 1) h
<(51 IR (1) +3/4-0(4 + 1) -

G N7 3G+ 1)

Hence we can write

J + 1) +3/4. 2 +1 '
wrg 1o )zll(l‘fﬂl)( b (6o ta o0

M e(e v1-3/a -
[](J+1)+3/4_2(1 +1) +(gsp 'gsn)}<2 S(Z)t(z)> M=]

(S

We see that both the magnetic moments and the Gamow-Teller 8 -decay
are determined by the same matrix element { Z8{ (D> , andthe consist-
ency can be checked once we assume that gsp and gsrl are known prov1ded
jj-coupling is valid. The agreement is quite good.

Another example can be taken from lst forbidden B decay [12]. The
operator giving rise to a unique forbidden g-decayis (1/£)(G. grad) Yg.(m;
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however, the same operator gives rise also to the M2 electromagnetic radi-
ation, An analysis of some experimental data involving dg/e —f7/2 transitions
gives: S :

Y -decay - B - decay
Nuec. MP Nue. |paf?
18A3(1.52 MeV) 5.2X1076 17C188 5 14A% 3.3X1076

10K81(1.29 MeV) 3.7X107¢ 1588} K8 2, 2X1078

[il M<|2 in units (X /mec)?].

The observed values of l M ‘2 are about a factor 7-8 smaller than calcula’ed
with single-particle wave-functions, It is interesting to note the consistericy
between the observed values of I M IZ as derived from B -decay and from

v --decay. This may indicate that whatever renormalization there is of the
M2 operator is due to nuclear effects rather than field-theoretic effects
which should be so different in these two cases,

We have tried to give a brief survey of the sort of information that can
be obtained on nuclear wave-functions and the nuclear moment operators
from the study of observed moments. Obviously any assertion aboutthe wiwve~
function reflects itself on the moment-operator andtheinterrelationbetvieen
them, though formally very simple, has not been studied yet as carefully
as it should, It is still an open question to what extent the residual interaction
can be renormalized to allow the use of simple-functions and what is the
structure induced on the multipole moment operators as aresultof such
transformations. It is possible that when this relation is better understood
we shall also be able to explain the many regularities observed in the empiri-
cal data on nucleon moments which are still a mystery to us,
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EFFECT OF SUPERCONDUCTING PAIRING
CORRELATIONS ON NUCLEAR PROPERTIES

V.G. SOLOVIEV _
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-DUBNA, USSR

INTRODUCTION

The development of nuclear physics has shown that the independent par-
ticle model, along with residual interactions between nucleons, describes
the nuclear structure most correctly, at least at small excitation energies,
The mathematical methods developed in constructing the superfluidity {1]
and superconductivity {2] theories have proved to be essential when analysing
residual nucleon interactions, In view of the fact that these methods are
general and noting the similarity between the nuclear matter properties and
the electronic structure of metals, BOGOLYUBOV [3] pointed outthat nuclear
matter can be superfluid, BOHR, MOTTELSON and PINES [4] noticed that
the nuclear excitation spectra and the spectra superconducting states of
metals are alike, They considered it reasonable to apply the methods used
in the theory of superconductivity to study the properties of the finite nuclei,
) These mathematical methods were employed in detail by BELYAEV [6}
in the theory of an atomic nucleus, when he made use of the "principle of
compensation of dangerous graphs'', as well as by the author ofthese lectures,
[6,7] who used the variational principle suggested by Bogolyubov.

Investigation of the pairing correlations between nucleons of the super-
conducting type described in a number of papers allowed an interpretation
of some nuclear properties which could not be accounted for in the framework
of the model of independent particles, i, e, the energies of internal excitation
states of even~even nuclei, the density of single particle levels of odd A
nuclei, the momenta of inertia, equilibrium shape of the nuclei and some
other properties,

This paper is devoted to the study of the effect which the pairing cor-
relations of the superconducting type produce on the atomic nuclei properties,

i, NEW VARIATIONAL PRINCIPLE AS A GENERALIZATION OF THE
HARTREE-FOCK METHOD

In considering the nuclear properties as a many-body system we shall
make use of the variational method, The Hartree-Fock variational principle
is one of the main methods of studying the many body problem, It hasproved
to be especially important in investigating atomic and molecular spectra
and is widely used for studying nuclear matter properties, However, ac-
cording to Hartree-Fock’s method, the energy minimum is sought on a class
of quasi-independent wave functions of individual particles and the pairing
and more complicated correlations between the particles are disregarded,

BOGOLYUBOV has suggested anew variational principle [8] which is
a natural generalization of the Hartree-Fock one, In his method the energy
minimum is looked for over a wider class of functions than with that of
Hartree-Fock, i, e, the wave functions of pairs are taken into consideration
as well as the quasi-independent wave functions of individual particles,

233
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The taking into account of pairing correlations in the many-body problem
has led to the construction of the superconductivity theory and allowed the
investigation of some important properties of the atomic nuclei, Let us deal
with the formulation of this variational principle,

Consider a system of interacting nucleons in a nucleus described by a
Hamiltonian of the form

= v ' +
= EPT(f,f )atap + zf f o f'zK(fl, f5 £y, f1)ay af, ap, g (L1

where f is a system of indices characterizing the nucleon state, The oper-
ators ag, a} satisfy the commutation relations

+ +
ap, a;, tag af = 6 ¢ w
1 2 2z 1 12 (1'2)
afl afz * afzﬂafl =0
T(f, ") = B(f, ') - Xégp {1.4)
The real functions E(f, £') and K(f,, f,, f3, 1) satisfy the following relations
E(f,f') = E(f',f)

K(fl:fé: f:ahfl..) = 'K(fl-va;fl..afé) = K(fl'.: fé;fZafl)- (1-‘-=)

Let us perform a linear canonical transformation of the Fermi amplitﬁdes
ag = ),:,: {ufuau + vy "‘Tl} s (1.£)

so that it does not violate their commutation properties; C- numbers Ufv
and V§, have to satisfy the following relatmns

S(f:f)a}l:’:{ufuuf'u * viy Vf'u} -6p =0

()= S {ug vy *+ vy um} =0 (1.6)
) =Tl d v+ vhul) <o,
where
E(fy, f) =E¥(fe.f1),  nlfi.fa) = nlf. 5)
ay = T {uf"; ag+ vy, a‘;}. (L.7)

We shall define the state v which is to be considered as a new vacuum

a,¥ =0, (1.8
We find further as the average value of H over this state
H>=H = L, T, f’))l;vf“,‘, Vo

* L K(f, 636, £
£1.0,.01, £ (. fo3 2. )
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1 & *
*EBug, Ve, Dig, veul .- (1.9)

We determine 'us, and v¢, from the minimum condition of H which is written
as

s {H+ E’[K(fz.fﬂ's“(fnfz) +u*(ty, f1)nlh L £5) +M(f2.f1)n M, 500} = 0
| (1.10)

where Af1, f), u(fy, f3) are the Lagrange factors,and the variations §uy, ,
au'?‘,, , 6viy and 6v{, are treated as independent, The chemical potential,

which also plays the role of the Lagrange factors, is determined from the
condition of the conservation of the number of particles n on the average

n=% afag) = g.:yvf",‘, Viv. (1.11)

Thus the new variational principle has been formulated: the functions
ug, and vy, satisfy the stationary equations, ¥ is the wave function of the
ground state, and H is regarded as the energy of the atomic nucleus ground
state. :

Further, following [9] we get the equations for determining up and
Vg, in an explicit form, From (1, 9) we find

(6F/5u},) + %.(A(f, ) uge, +ulf, 1) vh, + 0", v} =0,
(F/5vi) + E{ME L) vy + (8, "0y + (8", DUy} =0,
and two equations of their complex-conjugates, v
We form the following ‘expressions
Aff,f') = ’5{ Ve, (8H[suf,) + uf.w(aﬁ/zsv’fw )} +u(f,£') +u(f',f) =0
B(t, ') = L f ug, (aﬁ/au}“wi +vh T eV} A1) = 0
eliminate the Lagrange factgrs and get the main equ.ations in the form.
A(f,£') = A(f, ') - A(f', 1) ;= 0
B(f,1') = B(f,f') - BYt", 1) =0, ©(1.12)

It is worthwhlle noting that the functions A(f, f') and ?(f f') are not inde-
pendent, but related through

: fEf,{u,f,,vf.,,. a M, 0 +uf, vi AL ,
’ N " - (1.13)
+{ugup,e - vpy v ) B(LE )} = .

Therefore, if A(f,f') =0, then from (1, 13) it follows that ®(f,f') = 0 and
only the first one of these equations can be considered.
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We introduce the functions
b (fy,fy) = <af1 afz> = DUs, Vi
F(fy, fp) = <af a,) = 'V, viw o (’1.14)
where '
$(fy,f2) = -¢{f2,f1); F*(f2,f1) = Fi(fy,f). ' (L 147)
We rewrite the expression for H as
H =,fEf"T- (£, ') F (f,£)
+ B K(fy, fa, 3, 81) {F(f1, ff) F (f2, f3) + 3¢%(f1, ) ¢ (£, £2)} (1. ¢")
ff 0.0 ,
and find an explicit form A(f, ')
- A(f.1) = fE O, £*) 5 (£, £) - ¢(f, £M) € (£, £)}

L f,,(b(fb £2) {K(£, £ £p, f1) F (£, ') - K (£', £ f,, %) F (£, )} -

1.
‘R{szd’(fp f) K(f, £ f5,81) = 0 - (L. 1%)
where -
g(f, f1) = T(f, ) + 2&{’1{(1 f1; £, ) F (£, £2) (1. 1¢)
= IF(L, 9. (1. 11)

Equations (1, 15) and (1. 11°) can be treated as those for defining ¢(fy, fp)
and F(fj, f;) without passing to us, and vy, . The functions ¢(fy, fy) and
F(fy,f;) are not independent but related by

F(n, f2) = DF(fy, £") F (", £) + ¢*(£", £1) ¢ (£, )},
EAF(E, )¢ (£, £) + F(2, £1) ¢ (£, D)} = 0. (1. 17)

Note that rigorous mathematical reasons for using the functions of th:
type ¢(f1, f5) were givenby BOGOLYUBOV [10] . He introduced the notion of tihhe
quasi-averages and pointed out that inorder to make use of any form of the per-
turbation theory for studying the statistical equilibrium states it is necessary,
first of all, to switch the degeneration off or, which is the same, one should
deal not with the functions constructed from the usual averages which satisfy
all the selection rules, but with the functions constructed from the quasi-
averages which do not satisfy some of these rules,

In the particular case vy, = Vié; and ug, = Usdy-, one can easily find
the basic equations in the theory of super conductivity obtained earlier by
the method of compensating "dangerous' graphs, Note that the new vari~ °
ational pl"lnClple and the method compensating dangerous graphs are equi-
valent,

It is necessary for solving the stationary equations (1. 10) of the vari-
ational principle to give the minimum of the energy in the system of inter-

1
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acting nucleons that the second variation be positive for solution (1. 10), This
condition can be conveniently written as

f)'.“.(‘){Elas vi, &v,, + Ep suf sug } >0, (1, 18)

This is fulfilled for positive eigenvalues of E; and E, provided that E;, E,,
§ug,, 6vp are determined from the equation for the eigenvalues,

Bogolubov’s variational principle is a generalization of the well-known
Hartree-Fock., In this connection among the solutions in Bogolubov’s method
there are always the solutions inherent to the Hartree-Fock method, Let
us formulate the Hartree-Fock method, For this purpose we divide the system
of quantum numbers v into two parts F and G, v eF designates inside the
Fermi sphere, and v €G outside the Fermi sphere, We choose ug, and vy
as follows:

ugp =0, vy =gy if veF
(1.19)
Uy =Wy, Vp =0 if veG .

It can be easily seen that (1, 6) reduces to the normalization condition of
the functions wg,. Then ¢({f,1') = 0 and

* B
Pf, 1) = L wfy Wpy -
The corresponding condition of stationarity is written as
k) + N [ . = s
6 {VHF f?f')t (¢, £ V)E(.f .M} =0 (1.20) v
where
H = LTI OF(EL ) + zK;f it SR IR, ) (1.21)

is the mean energy of the nuclear ground state in the 1ndependent-partlcle
model, )

As long as there are Hartree-Fock solutions among those of Bogolubov’s
method,  then it is of interest to formulate the conditions under which the
Hartree-Fock method does not yield the energy minimum of the interaction
particle system, In this case the energy minimum should be sought in a
wider class of solutions taking the pairing particle correlations into account .
as well, Thus, the absence of the energy minimum of the class of the functions
in the Hartree-Fock method can be regarded as a condition for the existence
of pairing correlations [11] .

2, PAIRING NUCLEON CORRELATIONS IN ATOMIC NUCLEI
2. 1. Basic approximation

The interactions between nucleons in a nucleus can be roughly divided
into long-range and short-range parts, The long-range part is responsible
for the creation of the average nuclear field upon which the independent
particle model is based, The short-range part leads mainly to the formation
of pairing correlations between nucleons of the superconducting type.
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Making use of the formulae obtained earlier we distinguish explicitl;yr
the self-consistent field and the interaction leading to the pairing nucleon
correlations, Out of a set of quantum numbers f we separate ¢ = 1 so that
the states having different signs o would be conjugate under time revers:l,

We consider the approximation [12]

F(£, £!) = F(f)s(f - £, (2.1)
It follows from the relation
F(e, £') = FF(E', 1) ©(1.147)
that F(f) ='F*(f). Further, from (1, 17) it is clear that
8le,12") = olo)s(t + £), (2.2)
F(f) = F(£)! + ¢™(0é(0). (2.2°)
The average energy in this approximation assumes the form |
B=x (T()+ LK 1587, OF () } F(D) +
tELKEL - g -l e e, (2.3)
and the basic equation is written as
28 (D)o (f) + (1 - 2F(f))§ K(f, - f; - f',f'r)¢(f') =0 (2.4)
where
E(f) = T(O) + % K(f,£73, OF (L),

Thus, in approximation (2, 1) from the interaction of the most genera!
type we take explicitly the self-consistent field and the interaction between
nucleon pairs in the states conjugated under time reversal,

In approximation (2, 1) there are no collective effects, We shall not con-
sider in the following the interactions leading to collective effects nor take
into account the connection betwéen internal motion and rotation, Althougt,
these effects are essential in some cases, they will not noticeably affect
the properties of the atomic nucleus to be studied. Moreover, the investi-
gations based on approximation (2, 1) may yield additional information as
to when these effects must by taken into account,

Only one of all the types of residual interactions in approx1mat10n (2. 1)
K(f, - f; - £,f"), is chosen, This implies that strong correlations between
nucleons occur only when they are in the states with the same energy and
quantum numbers except ¢. This is so because the nature of the residual
short-range interaction is such that it leads to a much stronger interaction
in the state with zero angular momentum than in other states, The binding
energies of the last neutron in light nuclei indicate that the correlations in
the states (f, - f) are strong, while in other states the role of the residual
interactions is negligible. Indeed [13] , when the odd neutron and the odd
proton are in the states with identical quantum numbers, as in Na2?, A1%6
P30, C1%4 and K38, then the binding energy of the last neutron is of the order
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of 11-12 MeV, i, e, the same as for nuclei with an even number of neutrons
of Ne?2, Mg?26, A12", P31, 5% (1% and others where two outer neutrons
are paired, On the other hand, when the odd neutron and proton are in dif-
ferent quantum states, as in Na2¢, A128 | P32 (13, K40 and K%2, the bind-
ing energy of the last neutron is of the order of 7-8 MeV, i e, the same as
for the nuclei of Ne?', Mg?, Si%"', $3 and others in which the last neutron
does not take part either in pair or in quadruple correlations, Hence, strong
correlations between nucleons in the states w1th different quantum numbers
are absent,
The problem is formulated as follows [5,7], Consider the residual

nucleon interactions in the independent particle model withthe Hamiltonian

H = sEc {E(S) - 7\} a+so aso - ‘s’;:s«c;(s'*-’ s-; 8-, &""*')ag":a:‘s:3-‘55--3-5'+ . (2.5)

The nucleon state is described by a set of quantum numbers (so), determined
by the form of the average field; at;, a,; are the creation and absorption
operators of a nuclepn, E(s) single-particle energies in the state s of the
average field, The function G(sj 01, s902; sk0%, s101) is real and satisfies
(1.4). X is the parameter, which plays the role of the chemical potential and
which is determined from the condition

= sEo (& o) . (2.6)

It requires that the number of nucleons n should be conserved in the mean,
Putting F(s) = v2 and ¢(s) = usv,, then (2. 2) becomes

w+tvE=1. (2.7
Equation (2. 4) will thus take the form
28 ug vy + (u? - vs)DG(s+ s-;&-,fhugy vy =0 (2.8)
where
g, = E(s) - A - G(st, s-; 8-, st)v2.

Equation (2. 8) allows a trivial solution

Us 1 - 91: (S)

(2.9)

vs = 6 (s)
which corresponds to the normal state of the system. The function 8f (s) =
if E(s)<Er and 6f (s) = 0 if E(s)> Ef, where Ef is the energy of the Fermi
surface or the energy of the last filled orbital (further denoted by K) in the
independent particle model, .

Let us introduce the correlation function

Cs = LG(st, s-; 8-, s"us vsr (2.10)

connected with ug and v; by
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u?
€s €s

usvs = Cq /2, € = Vcs2 + (E(s)‘)‘)z-

1 (1+ E(S)-)L), V2 = %(1_ E(s)-l)

As a result we get the following system of basic equations [5, 7} :

Co = 3LG(st, 53 8%, 8¢)Co [ VCE + (E(s') - ) (2.11)

n=I{1-(8@s) -2 [[VF+(EE) -2} (2.12)

These equations have been obtained independently by BELYAEV [6] , who
used the method of ''"dangerous' graph compensation, Note that the superf.uid

state with C # 0 is energetically more favourable if compared with the normal
state (2, 9). :

2, 2. Condition for existence of neutron-proton pairing correlations

Let us investigate under what condition the neutron-proton pairing cornr-
relations of the superconducting type are absent and whether it is possible
to consider such residual interactions in the proton and neutron systems
independently [12], .

The Hamiltonian of the residual proton and neutron interactions is writiten
in the general form '

H= s%g- {E(S) - )"r}a;or 3501

- LG (s, 17,8, -,7;8 , -, 7,8+, T)abr alrr ag-rager
b S (2.130

where asop = asos is the proton operator and ason = bso is the neutron one,

In order to find the condition we make use ‘of that part of (2, 13) which cor-
responds to n-p interactions, In order to obtain a closed system of equations
we introduce an auxiliary Hamiltonian, In this case the auxiliary Hamiltonian
has the form

Ho = &, {(E(S) - )Lp)a:c aso + (E(s) - Ap)bgs bgg
- ES-G'PH (S+: S-3 S. =3 S' +) ‘ . (2014:
x (A¥(s)bg- aps + Afs')ale bl - A¥(s)A(s)].
where A(s) = (bs- ,as+>.
The investigation is being made with the aid of the advanced and retaried
Green’s functions [14] . Let us give the main formulae, Let A(t) and B(t")

be the operators in Heisenberg’s representation, Then the retarded and
advanced Green’s functions are written down as

G ({t-1t)= <<A(t)]$(t') B = ~i0(t = %‘ yIAW, B ,
Galt -t )= CARBGE"Y Da= B(t - t)<IAQR), B>, (215)
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where
t

[A,B}] =AB+ BA, 9(t) = Sa(t' yat',

(o]

and the equations for the Green’s functions are obtained in the form
i(af o) CA)B(t' ) D = 8(t - t'X [A{t), B(t')]>
+ JAMH - HA(t BB (2.16)

We write the correlation function in the spectral representation

o

CAWG)B() = 5I(w)e'i“’(t'v) dw ' (2.17)

0
{ B(tA(t) > = yl(w)e'i“"")dw. (2.17)

Let us go over to the Fourier transform in time of the Green’s function

< A(t),B(t')D = S<<A1B>>E NG Y > (2.18)
and to its spectral representation
<alBY,, ., = (1/2#)-3‘ -E-I&’L—dﬁ—e ' (2.19)
where
i(E) = <A|BD; ;. - €AIBY:, i (2.20)

We make use of the auxiliary Hamiltonian (2.14) and get the following system
of equations for the Green’s functions .

{E - (E(s) - M)} <bs- [ @) = - Cle)aw | ate (2.21)
{E - (B(s) - 2p)} Cag | a4 > = (1/2m)-Cls)C by | a4y
and others. Where
C(s) = § Gist, sw; s' -, s+)A(s).
The solutions of these equations are found in the form
aglanwPe =[E+E(s) - 3, )20[(E+? - €(s)?] " (2.22)
bl | B Dg  ==Cls)/2a((E+A)? - e(s)?]

where

G(S) = W/C(S)2 + {E(S) - %(hn - KP)P, = %(Ap - An)'
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We rewrite (2.22) as

+ _ 1-[E(s)- iAp )] [e(s) | 1HE(s)-1(AptAn)] Jels) ] -
<<as+ l as+>,E -(1/4 ) E+A:5(s)- + E+pA— €(S)€ ]

&b | awye = - (1/2m[C(s)/2e(s)] {[1/(E+A- e(s)] -[1/(E+a+e(s)} -

and find
i = (i/2){(1 - [E(s) - 30y +20)] [Ie(s)DE(E + A+ e(s)
+(1+[E(s) - $0p +An)] Jle(s)] )6(E + A~ e(s))],
ily = - iC(S)/Ze(§){6((E +A- e(s)) - 8(E +A+els))} .

By using (2.17) we get

31 +[E(s) - 300 +20)] [els)}  if e (spa

lag dny = {0 if € (s)kA.A>0
o 1 : if € (s)<| 4, a<o
, (2.23)
v - C(s)/2e(s) ife(s)> A
(bg. a5, > = :
0 ife(s)<a (2.249)

provided that C(s) satisfies the equation
» C(s')

C(S) = %E‘Gpn (S+; S-3 s' -,s' +) .
s Ve(s 2 +(E(s!) - 300 + A}

Thus, the condition for the éxistence of neutron-proton correlations
is as follows

Ap -] < 2C, e (2.25)

i.e. the difference in the chemical potentials of the neutron and proton systems
must be less than the magnitude of the gap 2C. The conditionofdisappearznce
of n-p correlations of the superconducting type may be formulated as

Xp - M| > 2e(h), (2.26)

i,e. the difference in the chemical potentials must be greater than the exci-
tation energy of the even system.

As long as the neutron potential well in the medium and heavy nuclei
is about 5-10 MeV deeper than that of the proton and the magnitude of 2¢(f)
does not, as a rule, exceed 2-3 MeV, condition (2.26) may be considered
as fulfilled. Thus, in medium and heavy nuclei the neutron proton pairing
correlations of the superconducting type are absent and it is possible to
study the superfluid properties for the neutron and proton systems separately.
In light nuclei, condition (2, 25) is fulfilled and, as shown in [5] , they hav=
neutron~-proton pairing correlations of the superconducting type along with
the proton-proton and neutron-neutron pairing correlations. In light nuclel
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the pairing correlations are less important if compared with those in medium
and heavy nuclei.

in light nuclei the quadruple correlations between nucleons are essential,
It was shown [13] , based upon the effective Hamilionian which describes
the interaction between nucleon pairs, that if the interaction between pairs
is attractive, the formation of quadruple correlations is energetically favour-
able. The account of the pairing and quadruple correlations explains some
regularities in the binding energies. of the last neutron in light nuclei.

2. 3. Superfluid properties of medium and heavy nuclei

Let us come back to the study of the interacting nucleon system with
Hamiltonian (2.5), i.e. to the non-trivial solution of Eq. {2.11)describing
the superfluid state of this system. The 'state of the Fermi particle system
with energy less than in the system with successfully filled energy levels
up to Eg{the Fermi surface energy) is called the superfluid state.

Consider the system consisting of an even number of neutrons (protons).
We solve the equations

ag? =0 (1.8)
and find the wavé function in the form
v =THu, +v, 2 a5 )y, (2.27)
where ass¥ o = 0. The ground state energy of the system is obtained as
& = £ {2E(s)v? - CZ/2¢)} , (2.28)

while the equations for C and X are of the form (2.11-12). The lowest excited
' states of the even system will be those with one broken pair, i,e. with two
quasi-particles on the average field orbitals. The wave functions of such
two quasi-particle states are written as-

+ + - ot + + gy
a5, %s,0, ¥ T a5 -0 2as,-c ﬂ (us +vs ag+ ag- )i’o, (2.29)
1% 292 17% 2% s,

if s; f s;. The energy difference between the excited and ground states is

<‘1’s,o1 s, 0, H"‘s:a2 a;,ol >-<KH>= €, *t&, . (2.30)
Thus, the excited states of the even system are separated from the ‘ground
state by an energy gap greater than 2C. ‘

Consider the system consisting of an odd number of neutrons (protons).
The equations for finding the correlation function C; and the chemicalpo-
tential A in this case take the form:

Cs = %aG(sts-; s'-,s'4) [Co [VCE +{E(s') - A}2) (2.31) .
§78y . ’
n=1+% {1 - Els) - 2 } (2.32)
o ct +{E(s) - A}?

if the quasi-particle is on the level s; of the average field. The wave function
and the energy of the system are written as



244 V. G. SOLOVIEV

0:1. a¥= agl-algs (ug +vg as++ a;— )‘l’o (2.33)
1
£(s1) = Esy) + 2 {2E(s)v2 - (1/2)(C2/e2)). (2.34)
1

The ground state of the odd system is that with one quasi-particle on the
last filled level K of the medium field in the independent-particle model.

In the particle excited states the quasi-particles are on the levels K+1, K+2
etc., while in the hole excited states the quasi-particles are on the average
field levels K-1, K-2 etc. The energy difference between the excited and
ground states of the odd system is

£(s) - €K = €5 - eg = VC2 +{E(s) - \}2 - T +{E, - Aj2. (2.35)

It is seen from this that the pairing correlations lead to a qualitative dif-
ference in the excitation spectra or the even-even and odd A-nuclei.

Note that the results obtained depend in no way upon a concrete set of
quantum numbers, and therefore any form of the independent particle model
can be employed. Therefore, this method can be used both in studying the
properties of spherical nuclei and of deformed ones, involving axially non-
symmetrical nuclei. We discuss some specific feature of the forces leading
to the pairing correlations between nucleons of the superconducting type,
i.e. the behaviour of the function G(s+, s-; s' -, s* ¥). It is well known that
the nature of the short-range forces is such that it leads to considerably
stronger interaction in the states with total zero angular momentum than
in other two-particle states. On the other hand, in medium and heavy nuclei
strong correlations are observed only between those nucleons which are in
the S-states with respect to each other. In this connection it is customary
to believe that the residual interactions in question, which lead to the pairing
correlations between the nucleons of the superconducting type, are short-
range ones and may be represented as

G ~s(7} -T3).
This means fhat in the momentum space G is constant. Therefore in the
shell and Nilsson models one may approximately consider G(s+, s-;s' -,s' +)
to be independent either of s' or s,i.e..

G = const. (2.353)

We investigate the case when G = const. The correlation function here is
constant

c - L Gusvs
and the basic equations (2.11) and (2. 12) take the form .
1=G/2ely VS + {Bs) - 2371, (2.37)
n= 22{1 -1E(s) - 1 / C? +{E(s) - x}z]} : (2.37')

The energy of the system consisting of an even number of particles can be
written as
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&= §2E(s)vs2 -C?/G. (2.38)

The pairing interaction constants for the neutron system Gy and for the
proton system Gz may be found according to the formulae

P,(Z,N) =3{2¢£(2-1,N) - £(Z,N) - £(2-2,N)}
' (2.39)
B (2, N) = ${2¢(2, N-1) - ¢(Z,N) - £(Z,N-2)},

by using the experimental values of the pairing energies found from the mass
.difference of the atomic nuclei. )

Thus, for the given values of Gy, Gz and single-particle levels of the
average field E(s) the correlation function C and the chemical potentials
A are found unambiguously - from Eqs (2.37) and (2.37°). This method-
of determining the basic characteristics of the superfluid state is essentially
different from the approach employed by some authors [17] , when the values
of C.are determined from the pairing energy, while A is assumed to be equal
to the energy of the Fermi surface Eg. The advantage of the above-mentioned
method for finding C and X over that applied in [17] consists in the following.
First, in our case it becomes possible to determine C and A for excited
states taking into account the variation of C and X with change in deformation
of the nucleus etc. This cannot be done in the case of [17] . .

Secondly, our calculations are more accurate, unambiguous and reliable
since we have at our disposal a single pairing interaction constant G which
changes slowly and monotonously from nucleus to nucleus while the correlation
function C changes abruptly depending on the specific behaviour of the energy
levels of the self-consistent field. Moreover, C equals the pairing energy
only roughly, whereas the deviation of A from E; is in some cases rather
essential.

Thus, the account of the nucleon pairing correlations allowed the inter-
pretation of the experimental data on the mass difference of even.and odd
nuclei as well as the energy gap in even-even nuclei, Some investigations
permit the values to be obtained for the momenta of inertia of the deformed
nuclei which are in agreement with experiment. Based upon these investi-
gations, the conclusion can be drawn that the residual interactions both be-
tweenneutrons and protons are atiractive, and the ground states of medium
and heavy nuclei are the superfluid ones. These superfluid properties of
the ground and excited states should be taken into account in studying the
nuclear structure.

3. SUPERFLUID NUCLEAR MODEL
3.1. Formulation of the model

The nuclear model in which the residual nucleon interactions leading
to the superconducting pairing correlations are taken into consideration
is called the superfluid model, The basic assumptions of the model are for-
mulated so that it would be possible to make quantitative investigations of
the properties of the ground and excited states of atomic nuclei, The very
name ''superfluid" model designates that this method of studying nuclear
properties has a restricted character. The superfluid nuclear model [16}
develops further the independent particle models and provides such a formu-
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lation' of the original method for studying pairing correlations [5-7] which
is valid not only for a qualitative explanation of the atomic properties but
also for quantitative studies of the properties of concrete nuclei.

Using the average field of the ihdependent particle model, the super-
fluid nuclear model takes into account the short-range part of nucleon-nucleon

interactions in a nucleus leading to pairing correlations under the following
assumptions:

(1) The residual interactions both between neutrons and betv&eenprotons
are described by a Hamiltonian of the form:

H =L {Eo(s) - \}aloag - GLamw as-ag agy (3.1)

(2) The basic equations of the problem are found by means of the Bogolyibov
variational principle [8] , both for the ground and excited states of a nucl:us,
provided that the systems of equations which characterize the properties
of the ground and excited states are obtained for them. The effect of the
excitation on the superfluid properties is referred to as the "blocking effect'’,

(3) The mathematical method of solving the problem leads to the con-
servation of the number of particleson the average

n=Llagass d (3.2)

However, the calculations are made for quite definite nuclei,

The basic assumptions of the superfluid nuclear model are different
from those of the original method of considering the pairing correlations
[5-7] . These differences consist in the following: (a) The superfluid nuclear
model takes into account the change in the superfluid nuclear properties
in the transition from the ground to the excited state; (b) The conservatio:i
of the number of particles on the average, as long as in [5-7] the number
of particles is not conserved even on the average. These differences are
most essential for strongly deformed nuclei.

We find the equations for the characteristics of the superfluid state,
the wave functions and the energies of the ground and excited states of the
even and odd system, Let us perform a linear canonical transformation

"
8sg = Usls-g T OVsago , (3.9)

provided that u2 +v? = 1. Now it is possible to get the mean value of the

operator of the energy H by the state ¥ defined as a5 ¥ = 0, i.e.
H=o2r {Eols) - 2} v2 - GE;}S Ve Uge Vg - G§V54.
As long as the term G {va makes a contribution to the self-consistent field,
we carry out the renormalization
E(s) = Bo(s) - (G/2)v¢ (3.4)
and get

H- 2253 {E(s) - h} Vs2 - Gs):gls Vs Uy Vo {3.5)
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We deternﬁne us, v from the condition that H should be a minimum. As a
result we have

2{E(s) - A} u,vs - G2 - vsz));;us. ve =0,
We introduce the correlation.fuhctioh *
C =GZuy, v, , (3.6)
Z
and determine
=(1/2){1 +[E(s) - / e(s)]} v =(1/2){1 - [E(s) - x. / e(s)]}
e(s) =VC? + {E(s) - A} 2.

The wave function, the equations for determining C and the energy of
the ground state of the even system are obtained as follows:

¥ = r;] (ue +vidy ab )¥, , (3.7)

(2/Q) = /:(1/1/c2 +{E(s) - 1}?), (3.8)

= E{1 - [E(s) - Al /c? +{E(s) - 2}21) (3.9)
€= EE(s){l - [E(s) - AV /1Y C? +{E(s) - ]} -(C?/G) (3.10)

where a;, ¥ = 0. The wave functions, the energy and the basic equations
for the two-quasi-particle excited states of the even system are found to
be

Uy, f) = ajg af, ﬂ (us(fl;fz) +vg (f1, £2)as ak- )y (3.11)
s#fy,
f,¢f22

¥if1, £5) = [ug (t,f1)a" . af . - vy (fl,fl]s#p(us (f1,11) + v, (£, £ )at atl )y,
; :

(3.11")

lé‘(fl:fz) = E(f,) + E(f;) + >:E§s)vs (f1.15)% - Clf,1,)2/G {3.12)

(2/G)= £ (LNCT . §)7 + ((s) - Alf1, 5))2) (3.13)

n=2+g {1- Ele) - 2 (11, 5) } (3.14)
#hhl VO, £)?2 + {Els) - M, £)}2

The state with one quasi-particle on the K-level is the ground state of the
system consisting of an odd number of particles. As excited states of the
odd system, we consider both the single~quasi~particle and three-quasi-
particle states. For the single-quasi-particle ground and excited states we
get the wave function

* The cortelation function denoted here by C is often designated in thel literature by A.
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\Il(fl) = a;i’oisg' (us(fi) + v (fi)a;" 2-:- )\{’0 5 (3.1 5)
the energy
&(f3) = B(fy) + ?,E(S)VS (£:)2 - [c(t:)?/al (3.15)

and the basic equations

(2/G)= E[l/‘\/C(f )2 +{E(s) - A (f0)] 2], (3.1%)
= - E(s) - A(fi)
n=1 :;f’f Y ¢ (LI 55} (RN () & } (3.1¢)

In order to determine the main superfluid characteristics of the above-
mentioned states, i.e. the correlation functions C and the chemical potentials
A, we solve, as in [18], the corresponding systems of equations by means of
an electronic computer. As the average field levels, we can take slightly
corrected energy levels of NILSSON®s scheme [19] .

3.2, Pairing energy 'and single-particle levels of odd A-nuclei

The pairing interaction constants of the neutron Gy and proton Gz systems
have been calculated from the experimental data on the mass difference of
nuclei. In doing this, the following formula was used

B, =3{2¢(Z,N-1) - £(2,N) - ¢(2,N-2)} (3.19)
or the stricter one
P, =1{3 £(Z,N-1) + €(Z,N41) - 3 ¢£(2,N) - ¢(2, N-2)}  (3.197)

where the corresponding experimental data were available. In finding the
pairing interaction constants Gy and Gz the calculated values of the pairirg
energies were compared thoroughly with the experimental data [20, 21] . The
results of the analysis are plotted for example in Fig.1 for the range 225 = A
=255, where the experimental values of the pairing energies P; are showr,
by the dashed lines, and the calculated values for P; at Gz = 29/A MeV by
the solid ones.

From a comparison of the calculated pairing energies, with the experi-
mental data in both regions of strongly deformed nuclei 154 = A = 188 and
225 € A =255, the following values for the pairing interaction constants have
been obtained

Gy = E;Aﬂ— MeV
(3.20
28 - 29

GZ =—*A—— MeV

in summing over 36 average field levels.

The summation in the equations for finding C a.nd)\ is made over 36
average field levels. We investigate as to how strongly the results of the
calculations depend on the cut-off in these equations. To this end, we calcu-
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The comparison of calculated values of the pairing energies Pz (solid lines) and
experimental values (dashed lines), for 225 = A = 255,

late the correlation functions C and C(K) {(C(K) is the correlation function
of the ground state of the system with the odd number of nucleons) for Z = 94
and Z = 93 as well as the pairing energy P; for Z = 94 when the summation
is performed over 17 average field levels below the K-state * and above
K different cut-offs are made, namely at K+3, K+6, K+9, K+12, K+15 and
K+18.
The results of theo calculation are presented in Table I. For the same value
of Gz = 0.0185 hwy (which corresponds to the real nuclear forces in summing
over 36 levels) the correlation function C depends on the cut-off strongly.
It increases when the summation region becomes wider. However, at the
same time the value of the pairing energy Pz changes just as strongly. The
ratio C(K)/C depends on the cut-off weakly if it is made high enough. In the
calculations according to the superfluid nuclear model the value of Gz is
found by comparing the computed values of P, with the experimentally ob-
tained values for the pairing energies. At the same time the values of Gy
depend on the cut-off. Therefore, to clarify the role of the cut-off, it is
necessary to make the calculations at such different values of Gz that for
each cut-off one should get the same magnitude of the pairing energy. The
results of such calculations are given in the lower part of Table I. We did
not succeed in choosing such Gz that for all the cut-offs it would be possible
to obtain exactily the same magnitude of the pairing energies. However, the
changes in P, for K+6 and higher are insignificant. It is seen from Table I,
that if more than six levels are summed above K, thenthe correlation function
C, the ratio C(K)/C and, therefore, all the superfluid properties are practi-
cally independent of the cut-off for the same magnitude of the pairing energy.
Thus, the main characteristics of the superfluid states do not practically
depend on the cut-off if it is made at energies higher than 3-5 MeV both
above and below K. When the summation in these equations is restricted,
there is no necessity for introducing the cut-off constant since when account
is taken of this cut-off the pairing interaction constant G is as if renormal-
ized.

* We denote by K the last filled single-particle level of the average field, by K-1, K-2 etc. - the hole
states, and by K+1, K+2 etc. - the particle states.
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TABIE I

INVESTIGATION INTO THE ROLE OF THE CUT-OFF

K+3 K+6 K+9 K+12 K+15 K+18
Gz (mﬂ,,) 0,0185 0.0185 0,0185 0.0185 . 0,0185 0,0185
Pz (hﬁ,) 0,037 0,055 0,070 0,081 0,091 0,102
C (m.?;,) 0,059 0,077 0,091 0.103 0.114 0.125
C(K)/C 0.64 0.75 0.79 0.81 0.83 0,83
Gz (mf,’,) 0.026 0,023 0,021 0,020 0,019 0,0185
Pz (‘hwoo) 0,088 0,1025 6.101 0,103 0,094 0,102
C (mso) 0.123 0.130 0,128 0.127 0.123 0.125
C(K)/Cc 0.88 0.85 0,84 0.84 0.83 0,83

We have obtained that in the regions 154 = A < 188 and 225 £ A < 255
the pairing interaction constants Gy and Gz change in going from a nucleus
to a nucleus.and from one region of deformed nuclei to another with good
accuracy as A™!, We have obtained the only value of Gy A for all the neutron
systems and the only value of Gz A for all the proton systems in both groups
of strongly deformed ' nuclei. This means that the region of the effective
Jinteraction restricted by the accepted cut-off is chosen correctly. This
implies also that the assumption on the independence of G (s+,s-;s8'-,s' +
both of s and s' is reasonable. Thus, the comparison of theory with experi-
meént has shown that one of the main assumptions, G = const, is fulfilled
with a high accuracy.

Now we consider the influence of superfluidity on the-behaviour of the
single-particle levels of the odd A nuclei. As is well known, the spin and
parity of the state of the odd nucleus is determined by the spin and the parity
of that average field level on which the quasi-particle is located. This resalts
from the great role the pairing correlations play in a nucleus, and follows
directly from the superfluid nuclear model. When pairing interaction is
involved the behaviour of the average f1e1d levels changes in the following
way:

(1) The pairing correlations, as a rule, do not alter the spinofthe ground
state of the system;

(2) The excitation energy of the system.decreases rather quickly with
G, although the compression of the single-particle levels does not occur
uniformly;

(3) Hole and particle excited ‘states behave differently with increasing
G. However, the sequence of hole (part1c1e) levels with respect to eachother
remains unchanged.

Figure 2 shows, by the example of N = 105, the influence of the pairing cor-
relations on the single-particle levels of the average field. The ground state
energy is put to zero, below ¢(K) = 0 are plotted the energies of the hole

excited states, and above ¢(K) = 0 the energies of the particle excited states.
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Fig. 2

The influence of the pairing correlations (for N = 105) in the single -particle levels of the average field.

On the left are demonstrated the characteristics of the states * identical
states are connected by lines.

In [18] the single-particle levels of many odd nuclei"were computed, .
and the calculated values of the excitation energies are in better agreement
with the experimental data than those given in the Nilsson schemes. However,
as long as the found levels of the odd nuclei depend strongly on the behaviour
of the average field levels, the main emphasis is laid upon the investigations
of the single-particle level density. It was shown that both in the rare-earth
and in the transuranic regions the density of the calculated low-energy single-

* The notation, as in [22], is based on the asymptotic quantum numbers. N is the total number of oscillating
quanta, ny is the number of oscillating quanta along the axis perpendicular to the symmetry axis, Ais the
component of the particle orbital angular momentum along the symmetry -axis, Z is the projection of the
particle spin on this axis, K = A + T is the parity. The state is written as KT [NnzA] or, in short Nng At,
ifK=A+Zand NozAb ; if K=A - & hdp= 41 A4 MeV.
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particle levels agrees with the experimental data and is twice as large as
that of the levels in Nilsson’s scheme. It should be noted that the increase

in the density of the levels is accounted for by the superfluid properties o
the ground and excited states and cannot be obtained by changing the behaviour
of the single-particle levels in the independent particle model.

The single-particle levels of the odd nuclei yield information on the
energy levels of the average field, which is necessary for calculating the
energies of the even-even nuclei, for analysing the B-transition rates etc.
Therefore, experiments aimed at finding them are of great interest.

3.3. Investigation of the accuracy of the calculations and the choice of pa~
rameters

Here we shall consider the question as to what restricts the accuracy
of the calculations by the superfluid nuclear model and whether it is possible
to study, on its basis, not only the general regularities in the behaviour o
nuclei, but also specific features of each nucleus. The errors in the calcu-
lations are due to the following. First, we donot know the positionof the averaze
field levels accurately enough, as well astheir fluctuation in passing from
a nucleus to a nucleus. Secondly, the mathematical methods employed for
solving the problem are approximate.

Let us now deal with the first of these two circumstances. It is well
known that the superfluid properties of the system depend strongly on the
behaviour of some levels of the average field in the vicinity of the K level
and on the magnitude of the pairing interaction constant G. Preliminary
calculations were based on slightly corrected levels of Nilsson’s scheme
which fails to yield the right sequence of energy levels in all cases. Nor
does it give the necessary distance between them. Therefore, the accuracy
of the calculations is restricted mainly to a rough description of the behav.our
of the average field levels. Thus, the calculations made earlier have som:
shortcomings which are inherent, first of all, in Nilsson’s scheme itself,
and, secondly, which are due to insufficiently known parameters of the equi-
librium deformations. The third shortcoming is that the change in the average
field of the proton (neutron) system is not taken into account by changing tive
number of neutrons (protons) etc. '

Therefore in [20] a modified scheme of calculations was suggested which
was based on the experimental data concerning the single-particle levels
of the odd A nuclei and on pairing energies. In the main, use was made of
Nilsson’s scheme, but the behaviour of some levels near each K level was
corrected and the pairing interaction constant G was chosen so that one m:ght
obtain the single-particle spectra of the odd A-nuclei and the pairing ener;ies
which would be consistent with the experimental data. In the course of ful-
filling this programme with an electronic computer, the equations were
solved for finding C and X, and the energies ¢ and ¢ (K) were calculated
for different parameters E(s) and G. The best values of these parameters
were chosen. As long as the position of some levels near K is fixed inac-
cordance with the experimental data and the behaviour of the other levels
does not practically affect the properties of the system, the calculations
which do not involve the wave functions,are independent of a concrete form
of the average field potential.

The application of such a calculation scheme has led to much better
agreement between the calculated and experimental values for the energies
of the excited states of even-even strongly-deformed nuclei if we compare
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The energy levels of .Lhé,ngcléi with N = 99, N = 143 and Z = 69,

them with earlier calculations based on Nilsson’s scheme, However (inorder
to clear up the validity of the basic assumptions of the superfluid nuclear
model without introducing a large number of parameters), we deliberately
neglected the fluctuations of the average field levels in going from dnucleus
to a nucleus. These fluctuations are displayed in the behaviour of the single-
quasi-particle levels of the odd A-nuclei. In some cases such fluctuations
are considerable, which is seen, for instance, from Fig. 3, where the changes
in the behaviour of the levels of the nuclei with N = 99, N = 143 and Z = 69
are given. Further on, the accuracy of the calculations of the excited state
energies for even~even nuclei may be increased. For this purpose for each
even-even nucleus one should take its own set of the average field levels.
The levels of the neighbouring odd nuclei, calculated according to this latter
assembly, will be in good agreement with the corresponding experimental
data. However, no experimental data necessary for such calculations are
thus far available.

Let us proceed now to the second cause of inaccuracy inour calculations;
that is, for solving the problem we investigate theaccuracy ofthe approximate
method employed. We estimate roughly the accuracy of the mathematical
method. With this aim, we find the ratio An/2Q of the average quadratic
fluctuation of the number of particles An to that of the considered states
282 of the average field, where

(An)? ='>s:[c2 fc? + {E(s) - x P . (3.21)

As long as the functions characteristic of the superfluid properties are
most effective in the energy range which is (3-4) C above and below the K
level, we calculate An/2Q for this range. The ratio An/2% is found to be
0.08 for the energy half-interval 3C, 0,06 for 4C and 0.05 for the half-
interval 5C. In an extremely small half-interval 2C the ratio An/2Qis 0.12,
For all the states of the odd system and for the excited states of the even
one, the average quadratic fluctuation of the number of particles is always
less than An for the ground state of the even system. In other words, ac-
cording to thesé estimates the errors in the method amount to 5% and at
any rate they do not exceed .10%. ’

Still more interesting and fruitful is the investigation of the accuracy
of the method with the model treated by PAWLIKOWSKI and RYBARSKA [23] .,
They considered the interactions described by Hamiltonian (3, 1) of nparticles
located on the Q2 twice degenerate equidistant levels, This problem was solved
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exactly with an electronic computer for the case n = 6, £ = 5 for G equal o
0.5 AE, 0.8 AE, AE and 1.25AE, where Ej;1 -E; = AE. An exact solution
of this problem is compared with approximate solutions: (a) Without takirg
the blocking effect into account, as in the original method for treating the
pairing correlations; and (b) Taking into account the blocking effect, as in
the superfluid nuclear model.

g
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Fig. 4

Energies of the ground and excited states calculated by the exact method (m) and
by approximate ones (a, b) for G = 1. 25 AE.

A comparison is given in Fig. 4 of the energies of the ground and excited
states calculated by the exact method (denoted by m) and by approximate
ones (denoted by a and b) for G = 1.25 AE. The ground state energy of the
system in the case of an exact solution for all the values of G is less than
that obtained in the approximate method, which does not hold for excited
states. Because of this, the excitation energies obtained in approximation:s
(a) and {b) are on the average somewhat smaller than those in the case
of an exact solution. Note that in the exact method the first excited state
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(K, K+1) is somewhat lower than the magnitude of the gap 2C shown by the
dashed line. .

It can be seen from Fig.4 that the method (b), corresponding to the
approximation of the superfluid nuclear model, described the sequence of
the excited states correctly, as well as their behaviour, although the magni-
tudes of the excitation energies are noticeably different from the values
obtained in the exact solution. In the case of method (a) the errors have
opposite signs, the sequence of levels changes if compared with the exact
solution. .

It should be noted that in the model considered, a much poorer accuracy
is obtained in the solutions of the approximate methods compared with the
calculations in case of strongly deformed nuclei. This is so because of too
small values of n and Q as well as due to relatively large magnitude of G.

It is well-known that in the calculations by the superfluid nuclear model
the number of particles is conserced on the average, and the wave
functions of the system of particles involve the admixtures of the states
with N-2, N+2 etc. As mentioned in [24, 25] , the accuracy in calculating
the excitation energies becomes higher if, instead of the wave functions
(3.7), their normalized projections are used for the subspace of the states
of n particles. In Fig. 4 the exact calculations of the excitation energies
are dompared with the approximate ones by the methods (a) and (b) with
‘the projected wave functions denoted by ap) and bp). In this case very good
agreement is obtained with the exact solution, especially for large values
of G. :

Let us compare the densities of the particle distributions in the ground
and excited states calculated by the exact and approximate methods. For
this purpose, we present in Table II the density distribution of the number
of particles in the ground state if the system for the values G equal to 0.5AE
AE and 1.25 AE in the case of the exact solution ﬁs , the solution with pro-
jected wave functions( qSol N, l $o> and for the approximate solution v¢. One
can see from the Table that v describes the density distribution of the number
of particles rather well. The ratio v /N; varies within 0.91-1.25. The cal-
culations with projected wave functions fail to lead to a noticeable improve-
ment in the approximations (a) and (b).

Table III lists the density distributions of particle pairs in the two-quasi-
particle states with G = 1.25 AE. It can be seen that the calculations by
method (b) describe the distribution of particle pairs in the excited states
correctly. It is worthwhile noting that in the state (K, K+1) (method (b)) the
pairing correlations are suppressed more strongly than in the exact method
while the contrary occurs for the remaining states. The calculations with
the projected wave functions lead to a noticeable weakening of the super-
fluidity if compared with the exact solution. In the calculations {method (a))
the number of particles is not conserved on the average and the density of
pair distribution is different from that in the exact solution,

The investigation of the density distribution of the number of particles
in the ground and excited states has shown that the calculations by method
(b) are in good agreement with exact solutions. With increasingthe accuracy
of the calculations by method (b) may only become higher. It follows that
the accuracy of the real calculations of v¢ and u? will be better. The super-
fluid corrections to the - and 8-transition rates are composed of the products
and of the sums of us and v and therefore, they can be computed with a
high accuracy. The conclusion to be drawn from the previous analysis is
that no further improvement in the accuracy of the mathematical approxi-
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TABLE III

DISTRIBUTION OF PAIR DENSITY IN THE TWO-QUASI-PARTICLE
EXCITED STATESFOR G =1.25 A E

K K, Exact Method (b) '

87, 8, 5 method with the projection | Method (b)

K, K+1. 1 0, 970 " 0,999 0. 986

3.4 2 0.953 0.998 0. 966

5 . 077 0, 003 0, 048

K, K*2 1 0. 948 0,978 0,928

3,5 2 0. 906 0. 943 0. 834

4 0, 146 0,079 0.238

CK-LKHL |1 0, 968 0,992 0,967

2,4 I3 0.910 0, 957 0,840

5 0. 122 0,051 0.193

K+,K+2 | 1 0,902 0,921 0,868

4,5 2 0.793 0,789 0,711

2 0. 305 0. 290 0, 421

K-1,K 1 0. 966 " 0,985 0. 965

2,3 4 0,794 0.804 0, 685

5 0. 240 0.211 0, 350

mation is required for the study of the a~and B-transition rates if the fluctu-
-ations in the average field levels are not taken into account in detail,

As long as the calculations by the superfluid nuclear model are based
on the experimental data on the pairing energies, we compare the energies
of the ground and excited states in the exact method and in (b) for the same
values of the pairing energies P. :

The energies of the ground and excited states calculated exactly for
P=P,, G= AE{m), and using the method (b) for G = AE and for P = P, are
shown in Fig.5. If in the exact solution G = AE, P = P; then in method (b)
the pairing energy assumes the value P = Py at G = 1.09 AE, If we carry
out the calculations for the same value of the pairing energy P = P; bymethod
(b) and compare them with those made by the exact method, then the errors
in this case will decrease by a factor of two compared with the errors in
the calculations done for the same value of G = AE, This can be seen from
Fig.5. Since the calculations made according to the superfluid nuclear model
yield the correct sequence of levels of the even-even nuclei energies and
are based on the experimental data on pairing energies, then the accuracy
of the calculations becomes effectively higher.

Let us investigate the influence of the fluctuation of the average field
levels on the spectrum of the excited states of the even system, With this
aim in view, we give the exact solutions of the problem for the case (m1l)
in Fig.5 when the s = 3 level (which is the K-level) is lowered by 0.5 AE,
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Energies of the ground and excited states calculated exactly for P =é’ , G = AFE(m) and
using the method (b) for G= AE and P = Py,

and for the case (m?2) when the s = 3 level is made 0.5 AE higher. It can
be seen from Fig.5, that the change in the configuration of the only level
of the average field leads to a noticeable change in the energies of both the
ground and excited states, and in some.cases to a change in the sequence
of the excited states of the system.,

" The investigation we have done confirms our main conclusion that the
accuracy of the calculations according to the superfluid nuclear model is
mainly restricted by a poor knowledge of the behaviour of the average field
levels and their fluctuations, but not by the mathematical method employed.

" Within the framework of the superfluid nuclear model, the basic charsc-
teristics of the superfluid states of strongly deformed nuclei have been cal-
culated, according to which the energies of the two-quasi-particle levels
of the even-even nuclei, the relative values of log ft; for f-transitions in
even and odd nuclei, the hindrance factors F in o-decays etc. have been com-
puted. Let us deal with the choice of the parameters used in these calcu-

lations in the regions 154 £ A £ 188 and 225 £ A < 255, The calculations are
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based on the experimental data on the single-quasi-particle levels of the

0dd nuclei and pairing energies. As average field levels, we took the cor-
rected levels of Nilsson’s scheme in order to obtain the spectra of the single-
quasi-particle levels of the odd nuclei which would be consistent with experi-
ment. All the nuclei in the region 154 £ A < 188 were divided into two groups.
f20], 154 <A < 174 and 174<A < 188. In each group only one assembly of

the single-particle levels of the average field is chosen both in the proton

and in the neutron system. Note that the difference in the behaviour of some
levels of the first group from the corresponding levels of the second one is
not something unnatural because the equilibrium deformations have different
values. In the mass region 225 ¢ A < 255 we could deal with only one assembly
of the energies for the proton system and one assembly for the neutron system
[21] . '

The behaviour of the calculated single-quasi-particle levels of the odd
- nuclei in the region 154 £ A £ 188 is described in [20] and in the region 225 <
A = 255 in [21] . The calculated energies of the excited states are, for the
most part, in agreement with the experimental data. However, we did not
take into account the change in the average field in passing from one nucleus
to another. Therefore, we cannot explain their behaviour like that shown
in Fig, 3.

In order to determine the behaviour of the average field levels in the
regions 154 ¢ A < 188 and 225 < A < 255 for the proton and neutron systems
we used 20 parameters characteristic of Nilsson’s scheme itself, as well
as of its modifications. It has been found from a comparison of the calcu-
lations with the experimental values of the pairing energies that in passing
from one nucleus to another the neutron Gy and the proton G, pairing inter-
action constants change according to 1/A and their values in both regions
of the strongly deformed nuclei are-

26 - 27

Gy =——A— MeV
Gz =_2_8_A.29_ MeV,

Altogether 22 parameters have been used in the calculations., These pa-
rameters were found by 58 values of the pairing energies and by 205 charac~
teristics of the ground and excited states of the odd nuclei. Thus, twenty-two
free parameters are fixed so as to explain roughly 263 experimental facts
on the single-particle levels of the odd A nuclei and on the pairing energies.
' Note that for the given system of the average field levels and for the
fixed magnitude of the interaction pairing constants Gy and Gz the calcu-
lations based on the superfluid nuclear model are completely unambiguous.
Such a formulation of the problem in which one and the same assembly of
the single particle levels is used to calculate the properties of some nuclei
_has nothing to do with any fitting of the results obtained in the calculations
with the corresponding experimental data. Furthermore, not a single new
parameter is introduced in calculating the characteristics of the even nuclei.
Therefore, the comparison’of the calculated energy levels of the even-even
nuclei with the corresponding experimental data is very important from the
point of view of checking the validity of the basic assumptions of the super-
fluid nuclear model.
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3.4. The blocking effect

The influence of the unpaired particles on the superfluid properties
of the system in each state of the atomic nucleus is often referred to as ihe
blocking effect. The superfluid state of the atomic nucleus resulis from the
nucleon-nucleon interactions described by Hamiltonian (3.1). Therefore,
if a nucleon is populated on any twice-degenerate level of the averag:
field, then in view of the Pauli principle this level cannot be occupied
by a pair. Due to the peculiarity of interaction (3.1) the average field levels,
which the quasi-particles (unpaired nucleons) populate, are blocked with
respect to the pairs, that is, these levels are not taken into consideration
automatically in the calculations. Thus, the blocking effect implies that in
calculating the superfluid properties of some states by means of the varia-
tional principle, the average field levels populated with quasi-particles
are disregarded. This leads, for instance, to a change in the magnitude
of the correlation functions C(sy, s5) and the chemical potentials A (s;, s3)
compared with the states on which either there are no quasi-particles or
they are situated on other levels of the average field. The blocking effect
is very essential in the region of strongly-deformed nuclei, where the density
of the average field levels is not great.

Note that besides the forces leading to the blocking effect, there are
forces which play quite a definite role in a nucleus. However, we have neg-
lected them. The case is that the forces leading to the blocking effect are
different for the ground and excited states while the other forces produce
more or less the same effect both on the grournd and excited states. For this
reason, they can be included in the average field.

The superfluid nuclear model is, in the main, that of independent quisi-
particles. It takes into account only that part of the interaction of quasi-
particles between each other leading to the blocking effect.

Note that the interaction of quasi-particles may lead to the appearance
of collective effects, particularly for the levels 2+, which look like the ¥
vibrations and which are responsible for an additional decreasing of the
energies of these excited states.

The influence of the blocking effect is displayed in going from the ground
state of the system, consisting of an even number of quasi-particles, to the
single-quasi-particle states of the odd system. The correlation functions
of ground states C(K) of the odd system are less than the magnitude C of the
corresponding even system. This is clearly seen from Tables IV and V.

The increase in the moments of inertia of the odd A nuclei compared witk
the even ones is an experimental proof of the existence of the blockingeffzact,
The calculations of the moments of inertia of the odd nuclei are in good
agreement with the experimental data, provided the blocking effect is takzn

" into account. If one adheres strictly to Eqs. (3.17) and (3.18) C(Kti) must
be somewhat larger for the excited states than the correlation function C(X)
of the ground state of the odd system. However, this effect is rather small
and is likely to be within the accuracy of the calculations we are making.

In the case of an even system the superfluidity of the system strongly
decreases in passing from the ground to the two-quasi-particle excited states
because of the blocking effect. To show the importance of the blocking effect
we give ratios C(K;,K3)/C in Tables IV and V for the neutron systems at a4
value of G which corresponds to the actual nuclear forces. The role of the
blocking effect is clearly demonstrated in the exact solution of the model
obtained by PAWLIKOWSKI and RYBARSKA [23] . The blocking effect leads
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Energies of the ground and excited states
a) calculated by the formula €(s,) + e(s,) '
b) calculated according to the superfluid nuclear model with electronic computor.

to a noticeable decrease in the spread of the particle density in the two-
cuasi-particle excited states compared with the ground state of the system.
1t is worthwhile noting that the calculations by the superfluid nuclear model
{method (b)) for the equidistant average field levels in all the excited states,
except (K, K+1), yield somewhat less suppression of the superfluidity than
by the exact method.

Let us consider the behaviour of the ground and two quasi-particle ex-
cited states of the system consisting of an even number of particlies (for
instance, N = 106) as G increases. With this in mind, Fig,.6 case (b) shows
the energies of the ground and excited states calculated according to the
superfluid nuclear model with the aid of an electronic computer. Case (a)
gives the energies of the excited states calculated by the formula

e(sy) + €(sy) (3.22)
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according to the original formulation of the pairing correlations. Thebe-
haviour of the two-quasi-particle excited state energies as a function of 3
in case (b) is very different for small G from their behaviour in case (a)
where a non-physical increase in the energy of some lower states is ob-
served with G up to G = 0,020 h(f:o corresponding to the real nuclear forces.
In case (b) the energies of both the ground and excited states decirease mo-
notonously with G. This difference in the behaviour of the spectrum in czse
(b) compared with case (a) is due to the blocking effect. ,

This is displayed most distinctly in the falling of the energy of the (K,
K+1) state lower than the magnitude of the gap 2C, while according o (3.22)
the energy of this state must be more than 2C. Therefore, the compariscn
of theor'y with experiment, as far as the energy of the K, K+1) state 1s con-

TABLE VI

ENERGY OF STATE (K, K+1)

(MeV)
e . Energy
Nuclei System Km Gap 2C €(K) + € (K*1) caleul. observed
Cm24 neutron 6t 1. 30 1.36 0.92 1. 042
w4 proton 2- 1.61 1.87 1.3 4 . 1.150
wis? proton 2- 1.61 1.88 1.3 1, 290
proton (£=1) T~ 1. 961
neutron 4- 1.89 1,97 1.5 1,554
neutron (Z=1) 5= 1.810
Hf#° proton 8- 1. 66 1. 68 1.0 1. 142
Hf 178 proton 8- 1. 66 1,67 . .0 1,148
neutron 8- 1.85 1. 94 1.5 1, 480
Yo'’ proton 3+ 1.80 197 . 1.4 1. 664
proton (X=1) 4+ 2.075
neutron 3+ . Les 1.70 13 1174
neutron (£=1) 2+ . 1. 468
Er'® proton (£=1) ‘3~ 1,82 1. 90 1.3 1. 543
neutron (Z=1) 3~ ‘1, 64 1,66 L1 1. 095
Er!%® neutron 6~ 163 1.94 16 1. 785
neutron (£=1) 1= ) 1. 826
Dy'® neutron 5= 1.83 1.88 L3 1.485
Dy™® | proton . 2- 1.90 2,01 ] n4 1. 260
Gd1s8 proton 4+ 2,0 2,02 .45 ° 1,511
proton (£=1) 1+ ' 1.966
neutron i- 2.0 2.02 1.5 1, 240
neutron (Z=1) 4- 2. 042
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cerned, may give evidence for the importance of the blocking effect in strong-
1y deformed nuclei. It was shown in [18] that in the excited (K,K+1) state

of the even system (i.e. in the state where one quasi-particle is on the K
level, and the other on the next higher K+1 level) the superfluidity decreased
considerably. This is connected with the fact that the correlated pairs cannot
occupy the K and K+1 levels because of the Pauli principle. Therefore, in
the states which the pairs can populate there appears a large gap for the
strongly deformed nuclei, If the number of states below the gap is equal

to the number of particles, it is energetically unfavourable for the pairs

to populate the K+2 and higher levels, and the superfluidity in the (K, K+1)
state then becomes considerably less. The calculated values of the energy

of the (K, K+1) state for a number of nuclei are noticeably smaller than the
magnitude 2C and agree well with the corresponding experimental data, as

is seen from Table VI, which gives the value of the gap 2C, e(K) + e(K+1),
calculated by the superfluid model and the experimental energy levels (K,
K+1) for some nuclei.

The investigations of the exact method have shown that the (K, K+1) lével
energy is below the magnitude of the gap 2C for G large enough. The calcu-
lations made according to the superfluid model yield somewhatunderestimated
values for the (K, K+1) state energies if we compare them with the exact
solution of the problem, and therefore with the experimental data, which is
. confirmed in Table VI. These investigations showed also that in the approxi-
mate method in the (K, K+1) state the pairing correlations are more strongly
suppressed than in the exact solution. This leads to the fact that the approxi-
mate calculations give somewhat underestimated values of the correlations
to B-transitions to these states.

It can be seen from Table VI that we have failed to take into account
certain forces. They act between the quasi-particles and lead to the spin
splitting of the K; +K, state energies. The agreement of the calculations
made on the superfluid nuclear model with the experimental data, as far
as the depression of the (K, K+1) state energy below the gap is concerned,
gives evidence for the importance of the blocking effect prov1ded the magni-
tude of the spin splitting is not more than 700 keV,

The change in the superfluid properties of the system in the transition
from the ground to excited states of the even system will undoubtedly affect
the magnitude of the moments of inertia of the ground and excited states
calculated according to the superfluid model of a nucleus. The moment - of
inertia for the ground state depends upon the superfluid properties both of
the ground and excited statés, i.e. upon the characteristics of the whole
system. Themoment .. of inertia of the system in an excited state is dependent
on the superfluid properties both of the given and other states. Therefore,
a sharp decrease in the magnitude of the correlation function C(s;, s;) for
the given excited state, e.g. for the (K, K+1) state, will not necessarily
lead to the same considerable change in the magnitude of the moment .. of
.inertia. '

The superfluid properties of the strongly deformed nuclei depend very
much upon the magnitude of the pairing interaction constant G. If G were
half the value corresponding to the nuclear forces in heavy nuclei, then the
pairing correlations would practically be absent, If, on the other hand, G
were twice as much, many features of the nuclei would alter considerably,
and the shéll structure would, at the least, be strongly masked. The dif-
ferences in the superfluidity of the two-quasi-particle excited states relative
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to each other and to the ground state of the system are essential in the re gion
of strongly deformed nuclei and are outside the errors of the method.

Thus, the specific features of the superfluid model of a nucleus are
important for the values of G, which correspond to the residual nuclear
forces, and when the behaviour of the single particle levels of the average
field is like that of the strongly deformed nuclei,

4. EFFECT OF PAIRING CORRELATIONS ON THE PROBABILITIES OF
a, B AND y-TRANSITIONS

The pairing correlations of nucleons of the superconductive type stroagly
affect the properties of the ground and excited states of atomic nuclei. They
play, therefore, a great role in the o, 8 and y-transitions in nuclei and in
stripping reactions.

We shall investigate the influence of the pairing corrélations on the
probabilities of &, B and y-transitions in strongly deformed nuclei within
the framework of the superfluid model of the nucleus. In performing nu-
merical calculations we shall use the data obtained in [20, 21] which charac-
terize the properties of the ground and excited states of strongly deformed
nuclei.

4.1. Effect of pairing correlations on the a-decay rates

We shall formulate the a-decay theory in the framework of the super«
fluid nuclear model and investigate the influence of pairing correlations
of the superconductive type on the absolute probabilities of a~-decays and
especially on the hindrance factors F[27] .

The matrix element of the a-decay of the parent nucleus with the wave
function ¥ = ¥(Z)¥(N) represented as the product of the wave functions of
the neutron and proton systems to the daughter one ‘with ¥' = ¥(N-2)¥(Z-2)
is given by .

M = ¥* (N-2)¥* (Z-2)A¥(Z)¥(N), (4.2)
the operator A being represented as follows

A=3 LW ,o(pv,v | w0, w*)aya,b g g v (4.2)
“r/ ‘lr}' o, o'

where 7 =%1, ¢ =+1 and the summation v, v' (w,w’) is carried out over tte
single- parﬁcle proton (or neutron) levels of the average field, The function
W describes both the penetrdtion of the a-particle through the potential bar-
rier and the probability of its formation.

Let us find the matrix element of the a-decay of an even-even nucleus
between the ground states. Making use of the wave functions (3.7) and taking
into account the pairing correlations of nucleons, we get

M = l)‘%‘)\1\I+.:+_(1)1;,1;\ ma,w)uy(Z-2)v,,(Z)Dy(us (Z-2)u (Z) + v, (Z-2)v, (2)) ¥
X uw(N—Z)vw(l\]s)g)(us. (N-2)u (N) + vy. (N=2)vs, (N)). (4.%)
When the pairing correlations are absent (4.3), takes the form

M = W+_;+_(pv =K(Z), v = K(Z)| nw = K(N), w = K(N)), (4.4)
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where we denote by K(Z) the last filled orbital of the system consisting of
Z protons when the pairing correlations are absent. From (4.4) it is seen
that if there are no pairing correlations then the a-particle can be formed
only from two neutrons and two protons that occupy the last filled orbitals.
Since the probability of formation of the a-particle in the nucleus is pro-
portional to the overlap integral of the corresponding wave functions, then
it must change essentially in the transition from one nucleus to another due
to the change in the quantum numbers of the K-level, which is not observed
experimentally. The effect of the pairing correlations leads to the a-particles
‘being formed with a noticeable probability from pairs occupying many states
both higher and lower than the K-state, This means that the a-decay involves
an averaging of participation of many nucleon levels near the Fermi surface.
This leads one, first, to the increase of the a-decay probability and second,
to smoothing out the fluctuations in the probability of the a-particle for-
motion in the transition from nucleus to nucleus.,

" In order to distinguish between the effécts of the pairing correlations
of nucleons and those of other factors in a-decays the following approximation
is considered. The diagonal part of W is independent both of the quantum
numbers of protons and neutrons, i.e.

W,_,.(pv,v| nw,w) = W(p| n), (4.5)
W+-;0,,cz (PV: Vl nwl 3 ("')2) = Woloz(p‘ nwl :wz)- (4-5’ )
Apparently, in evaluating the effect of the pairing correlations on the a-decay

such an average treatment is correct.
The matrix element (4. 3) in the approximation (4.5) is

‘M - W(p| n)R%NR%, (4.6)
Ré: = ),.;.uy(Z-2)vv(Z)[;|(us(Z-2)us(Z) + v (2-2)v,(Z)). (4.6°)

The product RyRz describes partially the change of the a-decay probabilities
in the transition from one nucleus to another. If we make use of the character-
istics of the superfluid states obtained in [21] then, e.g. for the a-decay

of Cm?¥*to the ground state of Pu®®’, we gét Ry = 38, Rz = 45, RxRz = 1700.
Calculations show that for nuclei in the region 230 € A =254 the quantities
RNRz are within the limits 1500 < RyRz<3000, i.e. the pairing correlations

" increase the probability of a-decay from the ground to the ground state of

an even-even nucleus by more than three orders of magnitude.
From experimental data on o-decay, overestimated values of the radii
of the nuclei were systematically obtained earlier, R = 1, A} and ro = 1.5 1.
At the same time from other experiments ry= (1.1 -1, 2)f; thus, for
instance, Igo obtained ry; = 1.17 f from the data on a-particle scattering
on heavy nuclei. If the nucleon pairing correlations in nuclei are taken into
account, then from the data on a-decay, r, is found to be 1,17 £, i.e. the
same radius as that obtained by Igo. Note that the deviation of the radii of
nuclei in the region 230 £ A £ 254 from ry = 1.17 f does not exceed 4%.
Note that the corrections Ry and R; depend on the number of the levels
summed up. The expressions under the sum in R%;, when | E(s)—)t‘»Cbehaves
as C./lE(s) - )\l , i.e. the logarithmic divergence taken place under the
assumption (4.5). In our calculations the summation is carried out over
36 levels of the average field, the quantities C and X are independent of the
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cut-off, The corrections R%\, and R% depend on this cut-off. In our calcu-
lations the outermost terms give the contribution to R%\I and R%Z of the order
of 1%; the account of the subsequent teérms therefore introduces no signifi-
cant changes. Inthe calculations of MANG and RASMUSSEN [28] the summation
was performed only over 10 levels of the average field, which is evidently
insufficient, and the blocking effect was not taken into account. Theyobtzined
for the o-transition CM?%* —Pu?** RyR; = 320, while in our calculations
RyR, = 1700.

We find the matrix element of the a-transition to the two-quasi-partizle
excited states of an even-even nucleus. Thus, for the g-decay to a neutron
state with quasi-particle occupying the orbitals f; and f, (f1# 1) we obtain

1 1 '
Mty , f2) = Wo, o,(p| nfy . 2)RZR(f; , £)2, . (e

RN(fl.;fz) = Vf (N)zvfz (N)zn}us(N'zx f]_ :f2 )uS(N) +VS (N'z: fl:fz )VS (N))2
] . s;(fl 2™ . (4.7,)

Ry(f;, £2) being less than unity. According to the superfluid nuclear model
the o particle is in this case formed only from neutrons being in the states
f; and fy. The a-decay rate is proportional to the neutron density of vf R \i
in these states of the parent. The hindrance factor is then of the form

F = (W(p| n)/ Wy o(p| nfy, 1)) Ryy/ Bylty, 55). (4.8)

From the superfluid nuclear model it follows thal the probabilities of a-tran-
sitions to the two-quasi-particle states of even-even nuclei decrease by a
factor Ry/Ry(fy, f2) compared with the a-decay to the ground state. So, for
the o-decay of .Cm?24¢ to the two-quasi-particle states of Pu240 with energy
:up'to 2 MeV the ratio Ry/ Ru(fy , fs) takes values in the interval 150 - 500,
Note that the product in (4.7°) changes in the limits 0.3 - 0.9,

VOLKOV and VOROS {29] have calculated the hindrance factors for tae
a-transitions to B-vibration levels of even-even nuclei. They have obtained
the values of F in the interval 10 - 80 which agree satisfactorily with the
corresponding experimental data.

We consider a favoured a-decay of odd nuclei in which the quasi-particle
occupies one and the same orbital in the parent and daughier. When the ocd
neutron is on the orbital £ the matrix element is given by

M(£) = W(p| n)RS « Rysy()%, (4.9)

1
2

Ry, (D) = £PJN-1,f)vu,(N+1,-£m(us(N- 1, )T (N+1, 1) + ve(N-1, f)w (N+1, £)).

{4.9°)
The hindrance factor
F = [M(N)2 +M(N+2)2] / 2M(N+1,£)? * = [Ry + Rysol / 2Rye(f)

for the favoured a-decays in the region 230 £ A <254 changes in the limits

1.2<[ Ry + Rysg) /| 2Rpsq{f) <3, (4.10)

The comparison of the experimental values of F with the calculated ones,
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o
taking into account the fact that besides the e-particles emiited with £ = 0‘
a fraction of them is emitted with £ = 2 and { = 4, is given in Table VII, From
Table VII it is seen that the theory is in satisfactory agreement with the
experimental data. :

TABLE VII

FAVOURED ALPHA-DECAYS

F
State ordecays experiment calculated
9/2 - [134] cf - cm*s 1.8 1.8
7/2 +[624] cm® - put 2.2 2.0
5/2 +[622] Cm#® -~ pu?® 1.5 1.8
1/2 +[631] cm? - pu®¥ 2.7 2.1
1/2 +1631] pu2® - U 2.5 2.1
3/2 - [521] Bk¥#S - Am! 1.7 1.7
5/2 - [523] Am?248 -  Np2® 1.1 _1.4
5/2 - [523] Am24t -  Np2¥ 1.3 1.4
5/2 - [523] Amz® - Np2% 2.3 - 1.7
5/2 '+ [642] Np?¥ -  pa!® 3.8 1.4

We consider unfavoured a-decays in which the quasi-particle passes
from one state to another. When the neutron passes from the state f; to the
state fy (f; # f;) the matrix element is

. 1
\ 1
M(fy, f3) = Wy, 20,(p| nfy, f2)RE Ryq(fy L £2)%, . (4.11)
Rynfy, f2) = ug,(N-1, ;)2 vy (N+L £, gjﬂ (us(N-1, f; Ju, (N+1, £5)
1°2
S+ v (N-1, £ )vs (N +1, £5))2. (4.11°)

the product in (4.11%) takes the values in the limits 0,65-0.95. When the -

a decay of an odd N-nucleus is unfavoured,  the a-particles is readily formed
out of proton pairs that occupy the orbitals near the Fermi surface and of
neutrons occupying the states f;, and f;. Therefore the unfavoured ao-decays
are strongly hindered compared with the favoured ones. The hindrance factor
F is )

F = [W(p| n)/Wo, o, (p| nfy, ) ]2 (Ry + Ryuo)/ 2Ry - (4.12)

The ratio (Ry + Ry+s)/ 2Ry+; for a-transitions to the ground and hole states
of strongly deformed nuclei lies between 50 and 130. This same ratio is
200 - 800 for o-decays to the particle K+2 state and it will exceed 108 when
a-decays take place to the K+3 and higher states. The unfavoured a-decays
to the particle excited states are more hindered compared to the transition
taking place to the hole states. Since the pairing correlations contribute
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considerably to F, then instead of the systematization of F depending on
the quantum numbers of the states f; and f, it is necessary to make the
systematization of (W(p | n)/Wul -of{P | nf;,f5)2.

The unfavoured a-decays yield information on the non-diagonal parts
of W, which can be used to calculate the hindrance factor for a-decays both
of odd-odd nuclei, and takes place to the two-quasi-particle states of even-
even nuclei.

We calculate the hindrance factors F for the o-decay of a 152-year isc mer
Am?2M with K7 = 5 - and configuration p 523{ +n622t. This is the a-decey
of an odd-odd nucleus for which the assignment of spin and particles of the
various levels are available [31] . The results of calculation of F and cora-
parison with experiment are given in Table VIII. Inthe threeleft-hand columns
we give the characteristics of the states of the daughter nucleus of Np2%
and in the fourth and fifth column we give the experimental and calculatec
values of the hindrance factor F.

TABLE VHI

HINDRANCE FACTORS FOR THE ALPHA-DECAY
Am??™ with Kr = 5- and
configuration p523 { + n6221t

State of daughter nuclei ) Hindrance factor F
K configuration . energy observed calculated
keV
5- | p523 4 +n622 ¢ 337 1.8 2.7
3- | p523 4 +n631 4 135 3x10? 5.6 x 10°
6+ | p523 { +n743 ¢t 462 2 x 102 2.5 x 102
2+ | p642t -n631 4 0 > 6.2 x 104 3x 108

In [31] a favoured a-decay of an odd-odd nuclei was first found. The
data on this transition are listed in the first line of Table VIII. The calcu-
lated value of F is 1.5 times larger than the experimental one. This dif-
ference may be caused by the quasi-particle interaction not being taken irto
account. In the second and third lines we write favoured-unfavoured o-decays,
i.e. decays favoured for the proton system and unfavoured for the neutron
one. The results of calculation depend on the experimental values of F for
the a-decay of Cm#? to Pu?? . The agreement between theory and experi-
ment is satisfactory. In the last line we give the unfavoured o-decay of Ara42m
to the ground state of.Np238 .| To estimate F we introduce the assumption
that

W(p|n) - V(p) V(n)

Wy 1,000, (PV1V2 | D01, 02) — Vp o (PY1vg) Vg 0, (nw1,05)°

(4.13)

i.e. F for unfavoured a-decay of odd-odd nuclei is equal to the product of
the hindrance coefficients in the proton and neutron systems. To determine
F; an average value is taken from the corresponding branches of the a-decays
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of Am2%¥® to Np?*® and Am?! to Np?¥" ., Since the lowest limit of F is also
given in [31] there is no contradiction between the calculated and the experi-
mental values of F.-

Thus, the pairing correlations strongly affect the absolute probabilities
of a-decays to the ground states of even-even nuclei and those of the favoured
decays in odd nuclei as well, especially the values of the hindrance factors
in the unfavoured a-decays and a-transitions to the two-quasi-particle levels
of even-even nuclei. The account of pairing correlations leads to animproved
agreement between theory and corresponding experimental data.

4,2, Superfluid corrections and additional classification of B-iransition proba-
bilities

_ We formulate [20] general rules for constructing the corrections to

B-transitions due to the superfluidity of the ground and excited states. Besides
keeping Alaga’s selection rule classification of the prubabilities for S-decay
of strongly-deformed nuclei we introduce an additional selection rule, The
role of the superfluid corrections is investigated by analysing log ft for the
B-transitions between identical pairs of the single-particle states in different
nuclei.

The matrix element describing the 8-decay of a complex nucleus is written

symbolically as

: L
M ~ \YQnN \Y2nz1,1 (52 )EUQJ] F] V> ai;’bv' \YénzwénNﬂ(sl) = <Sz ] F‘ Sl> R:4 14)

Here <Szl FI s1y is the single-particle matrix element of the transition and
= (\ygnN\y’QnN)(\y;nz\yz‘nz), where ¥y is the wave function of the N-particle
system. The values ft characterizing the 8-decay are obtained in the form

£ = const
!<Sz I S]_> (4. 15)
R being represented as R = RzRy.

The quantities Ry and R, describe the change inthe proton and neutron con-
figurations of the nucleus associated with the B-transition. The proton and
neutron systems will be considered independently of one another. We find
R; (i.e. Ry or Rz)for B-decays with the participation of any number of quasi-
particles in the initial and final states for the exclusion of those cases when
there are two quasi-particles on one and the same level, We write R; in
the form

ﬂ( u' +vevy')? (4.186)

with the functions u,, v referrlng to the initial and u!, v{ to the final states,
In the product ﬂ (u{_sus +v,v,')? there are no factors corresponding to thelevels
k

in which there are quasi-particles. The more alike the superfluid properties
of the initialand final states, the closer this product approaches to unity.
Further, if the number of palred particles in the initial and final states is

the same, as e.g. in B-decay 108*§ HE181 — 10073183 then y = uf. If the
number of paired nucleonb varies in the course of the decay, as in JI0Tal8® —
108+1 W183 then y = v, f being referred to the level on which a quas1 partlcle
) e1ther disappeared or appeared. The functions u or v in (4.16) characterize
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the superfluid properties of the system with a smaller number of quasi-
particles. Thus, for instance, in the B-decay of the odd system into the gr ound
state of the even one v# and uf are referred to the even system while in the
B-decay of the single-particle odd state into the two-quasi-particle excited
state, vf and u? are referred to the odd system, etc.

Consider the case when the pairing interaction constant G tends to zero,
i.e. when the superfluid model passes into the independent-particle model.
The correction then takes one of the two values R;j = 1 or R; = 0. When R; = 1
this corresponds to the case when the B~decay occurs without any change
in the configuration of allthe nucleons except one, whereas in the case R; = 0
the B-decay is accompanied by a change in the configuration of more than
one nucleon in the independent particle model. The particle transitions ar 2
those transitions in which a quasi-particle either disappears or appears o1
the single-particle levels f whose energy is higher than A referred to the
system with the smaller number of quasi-particles. For the hole transitions
the energies of the single-particle levels f are lower than A,

Let us make an additional (in comparison with Alaga's selection rules)
classification of the f-decay probabilities of the strongly deformed complex
nuclei, i.e. we divide all the S~-transitions into three groups:

groupl Ri(G=0)=1 O0<Ri{GF0)<1

groupll Ri(G=0)=0 O0<Ri(GF0)<1

group III Ri(G=0)=0 Ri(G#0)=0

The first group includes:

(a) Those B-decays whose initial and final states are the ground states

of the system;

(b) The particle transitions when the number of pairs remains unaltered;

(c) The hole transitions when the number of pairs changes by unity.

The second group includes:

(a) The hole transitions when the number of particle pairs does nof

change;

(b) Particle transitions when the number of particle pairs changes by

unity.

For the B-decay referred to in the second group the superfluid model
allows non-zero transition probabilities, while these transitions are stricily
forbidden in the independent particle model. It is worth noting that the cor-
rections R; calculated by the superfluid nuclear model, which are referred
to in the first and second groups and which are associated with the B-tran-
sitions to the low-excited nuclear states (£ 0.3 MeV), are equal to each
other within an order of magnitude; in the transitions to the strongly excited
states (1 MeV and higher) they differ greatly.

The analysis of experimental data shows that there are more than 20
already established B-transitions referred to in the second group. The obser-
vation of the B-transitions referred to in the second group shows the advantage
of the superfluid nuclear model compared to any independent particle and
provides further evidence for the presence of short-range pairing interactions.

While the first and second groups incorporate those 8-decays in which
only one quasi-particle in the proton (neutron) system disappears or appezrs
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and the configuration of the remaining particles is left unaltered, the third
group includes:

(a) The transitions in which the number of quasi-particles of the proton

(neutron) system changes by more than unity;

(b) The transitions in which, besides the change in the number of quasi-

particles by unity, the configuration of other quasi-particles changes.

The superfluid nuclear model is a model of independent quasi-particles.
Therefore, the transitions associated with the changes of configuration of
the quasi-particles are strictly forbidden. It would be of interest to have
experimental data on the degree of forbiddenness of the transitions referred
to the third group (which is called the F-forbiddenness) in the strongly de-
formed nuclei. To this end the probability should be found experimentally
for B-decay of the single-quasi-particle state of the odd system into such
a two-quasi-particle excited state of the even systems so that all three quasi-
particles would be on different single-particle levels of the average field.

In [20, 21] the superfluid corrections are calculated for -transitions
between single-quasi-particle states in odd nuclei. The results of calcu-
lations can be found useful in analysing experimental data.

We must clear up the rule played by superfluid corrections and to do
this we shall consider the B-transitions in odd nuclei. To eliminate the influ-
ence of the average field as much as possible we shall analyse the values
of log ft for P-transitions between the pairs of identical single-particle states
in different nuclei. In such an approach, of course, the influence of the single-
particle matrix element {s , I‘l sey on the relative values of log ft; is not
entirely excluded since the average field changes slightly in the transition
from one nucleus to another.

TABLE IX

BETA-TRANSITIONS OF ODD A-NUCLEI

State Transition State Class. R log fte | log ft,
Tal® - pfl®» 1ull 0,41 6.2 6.2
Tal” ~ HfIT 1ull 0. 40 6.4 6.2

7/2 + [404 .| 1/2 - 1503
(3041 | paies o wies | 7/270508) i L oan |. 6es 6.8
Tal%s - wiss 1ul II | 0.19 6.5 6.5

Tbls9 « G4

5/2 - (532} a/2-qsery | MU 00T 6T ET
Ho!8! « Erls! ahll 0.53 ~5.6 5.8
Bk2s -» Cm2% lulll .| 0.04 ~T.0 7.0
3/2 - [521] Am#' < cm? | 1/2+ [631] 1lulll | 0.14 | ~7.3 6.5
Np2¥ ~ y2¥ lull 043 6.0 6.0

The results of the investigations into the probabilities of B-transitions
in odd nuclei are given in tables similar to Table IX where the experimental
data and the results of calculations are systematized. Initial and final nuclei
are written in the three left-hand columns of these tables, the additional
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classification is given in the fourth column:1. are transitions belonging to
the first group, 2. are transitions belonging to the second group; they are
written first for the proton system and then for the neutron one. The fifth
column contains R. The experimental values of log ft. are given in the sis>th
column., We calculate log ft; normalizing them for the first from the given
set of transitions between identical single-particle states in various nuclei.
The values of log ft; are given in the last column of the table. It can be
seen from the table that the corrections for the superfluidity are essential
for B-transitions belonging to the second group where they enable us to explain
changes in the value of log ft. for B-transitions between identical states in
various nuclei.

Let us consider B-transitions in even nuclei. The relative probabilities
of B-transitions in even nuclei can be calculated, making use of data on 8-
decay in odd nuclei between the same single-particle states, only in those
cases when the selection rules are the same and there is no K or A-for-
biddenness in even nuclei. The experimental data (in tables similar to Takle
X, [12,21,32] ) on B-~decays of even nuclei are summed up and compared
with the corresponding calculations. Table X gives: all transitions between
the states p 523t and n 523}, the B-transitions in an odd nucleus, which were
used for determining single-particle matrix elements, are also given., It
can be seen from Table X that the calculated values of log fi; are in satis-
factory agreement with experimental data. This agreement is one more
indication of the correctness of the two-quasi-particle aspect of the states
of odd-odd nuclei and also of the excited states of even-even nuclei.

TABLE X

au BETA-TRANSITIONS
Sz =17/2 -[523] 2 Sa=5/2-[523]

State beta -transition State R log ft,, log fte
7/2- | HO'™  _ Ec'¢ | s/2- | o0.52 4.8 4.8
7- Ho'® _ Er'® 6- 0.38 5 4.9
0- Ho'® , Er'® 1- 0.38 5.2 4,8
1+ Ho® _  Dy' | ground | 0.44 4,9 4,1
1+ Ho'® , Dy"™ | ground | 0.25 4.7 5.3
6- Ho'® , Dy® 5- 0.20 4.8 5.0
54 Ho®® _, Dy 4+ 0.38 4.8 4.9
1+ Ho'® - Dy164 ground 0.35 5.1 5.3
1+ Ho'* ., Er'™ | ground | 0.20 5.4 5.5
1+ Tm™ , E'™ | ground | 0.30 4.9 5.3
1+ Tm'"™ . Yb'" | ground | 0.29 4.6 4.9

Similar corrections must be included in the cross-sections of several
nuclear reactions, e.g. the cross-section of the stripping reaction (dp) is
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proportional to Ry. If the final state of the nucleus consists of an cddnumber
of neutrons, then the correction has the form

uf I;lf(usus(f) + Vv ()%, (4.17)

and the particle excitation states of the final nucleus are more probable than
the hole ones. If the final states of nuclei consist of an even number of
neutrons then the correction, in the transition to the ground state, is

v2 M{usug (K) + vevs (K)?, (4.18)
K#k

and takes the following form for the transition to the two-quasi-particle state
of the final nucleus

ur (K0 1 (usfKug (K, £) + v, (K)v, (K.0)2 (4.18")
s=K, f
4, 3. Superfluid corrections to the probabilities of y-transitions

We can calculate the change in the properties of a nucleus in electromag-
netic transitions on the basis of the superfluid nuclear model. The importance
of the role of the superfluid corrections R, to the probabilities of y-transi-
tions in strongly deformed odd A-nuclei has been demonstrated [16] . We
shall formulate general rules for constructing the superfluid corrections
to y-transitions similar to those for B-transitions. The superfluidcorrection
to the electromagnetic transition is represented in the form

= : 12 1
R, s;?Trf'.(?‘f,}" + v v) (4.19)

with the functions uy, v; referring to the initial and u;, v
In the product

to the final states.

M (uus +vew )P
s#f, ... fy
there are no factors corresponding to those levels of the average field in
which there are quasi-particles. If in the y-transition a quasi-particlepasses
from the level f; to the level f3 and the total number of quasi-particles re-
mains constant, then )
T= @ (2, fa. . fy)ug (fhfs. oo fy) - nviffe, fa. o £ )vy (B, fa . £))).

*Tn

(4.20)

If in the electromagnetic transition quasi-particles disappear (or appear)
on the levels f; and f» and the total number of quasi-particles changes by 2,
then

= @ (@50 fy)vg (Bse. £) + nvp (fa. . £ )u (5. £))F (4.21)

where n = 1 for electrical transitions and n = -1 for magnetic ones. The
functions u; and vy in (4. 20) and (4. 21) refer to those single-particle levels
on which a quasi-particle appears or disappears in the ¥ transition and which.
belong to those systems which have no quasi-particles on those levels. For
example, in (4.21) u; and v; refer to a system with a smaller number of
quasi-particles. :
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There are two possibilities when G = 0: R = 1 and R, = 0. The transifions
for which R, = 1 and G = 0 include the hole-hole and particle-particle tran-
sitions, when the number of quasi-particles is constant and transitions in
which quasi-particles disappear, one in the hole state with E(f; XA and arn-
other in the particle one with E(f; > A in the case when the number of quaii-
particles changes by 2. In trangitions for which Ry = 0 when G = 0 we refer
to the hole-particle transitions when the number of quasi-particlesis constant
and those in which the two quasi-particles disappeared either from levels
higher than the K-level or from those lower than the K-level.

The values of the superfluid corrections vary in larger limits than the
corrections to the f-decay probabilities. R, takes the values from 1073 10 1,
In the cases when in (4. 20) and (4. 21) we have the differences of two valuss,
the accuracy of the calculations can be found to be insufficient.

When investigating electromagnetic transitions in strongly deformed
nuclei we use, in general, the same approach as in investigatingprobabil ties
of B-transitions. In other words, the y-transitions are systematized betwejen
identical states in different odd A-nuclei; the probabilities of y-transitions
in even A-nuclei are calculated using the experimental data on odd A-nuclei.
The investigation of the electromagnetic transitions in strongly deformed
nuclei enables us to find admixtures to the given state which consist both of
states with other values of projections of angular momenta of the symmetry
axis and of states with a different number of quasi-particles,

5. PROPERTIES OF THE GROUND AND EXCITED STATES OF STRONGLY
DEFORMED NUCLEI

5.1, The nature of the ground and excited states of odd A-nuclei

The superfluid nuclear model yields a single-quasi-particle aspect of .
the ground and some excited states and a three-quasi-particle aspect for
a number of higher excited states. The analysis of experimental data on
the levels of the odd strongly deformed nuclei carried out by MOTTELSOII
and NILSSON [22] has shown that the spins and the partities of these stafes
are unambiguously comparable with the corresponding characteristics of
Nilsson's scheme and the values of log ft. for B-transitions are classified
according to the selection rules based on the asymptotic quantum numbers.
as follows:

4.5 < log fte < 5,0 au
6.0 <log fte < 7.5 ah
5.5 < log ft, < 7.5 1u
7.5 < log fte < 8.5 1h.

(5.1)

From this analysis follows the single-quasi-particle aspect of the ground
and low excited states of odd nuclei.

The pairing correlations of a superconductive type essentially affect
the probabilities of B-decays and lead one to the necessary systematization
of the values of log [fte Rn] instead of log ft.. The systematization is of
the form

4.0 <log [ft;Rn] < 4.7 au
5.5 < log [ftoRn] < 6.5 ah (5.2)
5.5.< log [fteRn} < 6.5 1u.
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The distribution of the values of log fte Rn for the whole:experimental
data on S-decays of oddnuclei, given in Figs. 7a and 8b, show that the system-
atization (5. 2) is rather good. It can be seen from Fig, 7a that there are two
groups of allowed transitions au and ah. The clear separation between them

~

~
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I O w0

T e umm'W!mnumﬂlmmi 1 ) ) .

40 4.8 80 log[fteRy)
r b)
Nl ol
L L i - 1 1
3.2 40 4.8 56 6.4 7.2 log [fteRy]
Fig. 7
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Ya) odd nuclei, (b) even nuclei.
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| 1 1 [
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1u beta-transitions
(a), (b) odd nuclei, (c) even auclei.
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testifies to the fact that the selection rules based on the asymptotic quantam
numbers are executable, Figures 8a and 8b give histograms for the first
forbidden unhindered lu B-transitions. From these histograms it can be
geen that, in passing from the log fte to the log ft. Rn classification, the
regions of the values of the latter become narrower compared with the first
ones and move on the side of smaller values. Comparing these histograms
we see what an important role is played by the superfluid corrections to

the B-transition probabilities. Note that all the three values of log fte Rn #2 7, 2
{(Fig. 8b) are referred to transitions between states 4021 and 512} and a
number of B-transitions in the transuranic region with log ft. Rn < 5.6 is
badly determined experimentally. The dispersion of the values of log ft. Itn
is due both to the fluctuation in the average field levels and the inaccuracy
of experimental data. The probabilities of the hindered B-transitions (ah and
1 h) are more sensitive to the fluctuations in the average field, comparec:
with unhindered ones., -

As long as the basic assumptions on the superfluid nuclear model are
true the three-quasi-particle levels in odd A-nuclei should appear, The
three-~quasi-particle states must be of the two types: the first type (3n) and
(3p) when all the three quasi-particles are either neutron or proton ones,
the second type (2n,p) and (2p, n) when one quasi-particle is proton and two.
quasi-particles are neutron-ones or, on the contrary, two quasi~particles
are proton and one quasi-particle is neutron,

The three-quasi-particle states such as (3n) and (3p) must be at enerjies

1.5 MeV and higher, Only in Dy¥¥! may the states such as (3n) be at energies
" of the order of 1 MeV, The B-transitions from the ground states of the even
system of a parent nucleus to the states 3n and 3p are F~forbidden and it is
rather difficult to observe them in f-transitions. Experimentally such states
can be found either by the Coulomb excitation method or by studying y-spe:tra
in the transitions from high excited states. An observation of the states of
such a type and a determination of the degree of the F-forbiddenness for
B-transitions imposed upon them is of very great interest from the point

of view of the model in question,

Recently it was reported [33] that a 155-day isomeric state of Lul7’m
‘was discovered which has an energy of 1.2 MeV and spin 17/2 - 21/2. Th:s
state must be three-quasi-particle, There must be also observed in Lul77n
the three-quasi-particle states of type (3p) and of type (2np) with large sp:ns;
as long as there are orbits with great angular momenta near the Fermi str-
face, The analysis we made has shown that the state (3p) (K-1, K, K+1) with
Ky = 17/2 - and the configuration 411} + 404} + 514} is likely to be the
isomeric state Lul’™ which was found, According to our calculations, negz-
lecting the spin splitting, its energy is 1,4 MeV. At the same time the state
17/2 - will be the lowest state of the multiplet. In this case Lul7"™ will
undergo a B-decay on the levels of Hf!77 17/2 +, 15/2+ with the configuration
p404} + p514tt n510t; 17/2+ with the configuration p404{+ p514t+ n521{ and
others, Further the ¥ transitions occur through the states 11/2 - (p404}-
p514}- n624%) and 11/2+ (pa04l+ p5144- n512¢) to the single quasi-particle
levels of Hf!" , Possible configurations of the Lul’’m jsomer given in [33]
are unlikely, for they will lead either only fo the isomeric state Hf177 or
to a very short lifetime of Lul?™™ ,

The three-quasi-particle states of the type (2n, p) and (2p, n) with com-
paratively small spins must be well filled in B-decays. Once we disregard
the interaction of three quasi-particles between them the probabilities of
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B-transitions to these states must be the same as for transitions to the ex-
cited states of even-even nuclei, Let us look in which nuclei it is the easiest
to observe experimentally the levels of such a type. Since the lowest states
(2n, p) and (2p, n) are in the region 1-1. 5 MeV then it is necessary that the
energy Q released in B-transitions to the ground state would be sufficiently
high and the B-transition rates to these states would be not strongly hindered,
i.e. au, ah and lu, so that they could be found at a low decay energy. Table
XI gives some B-transitions to the states (2n, p) and (2p, n) which satisfy
these requirements. The second column of ‘the table gives the configuration
of the.state of a parent nucleus and the fourth gives the configuration of the
three-quasi-particle states of a daughter nucleus., Here n, pdenote the neutron
and proton quasi-particles. The values of the energies of the states (2n, p)
and (2p, n) given in the fifth column are roughly calculated without taking
into account the interaction between quasi-particles. The seventh column
gives the classification of the corresponding B-transitions and the eighth
column the energy Q.for B-transitions to the ground states,

The B-decay Er16l ; Ho1 | where the au transition with log ft, = 4.8
is possible according to our calculations, is very favourable for finding
levels of the type (2n,p). It is quite possible that the states in Hol6l with
the energies 1.700 MeV and 1. 830 MeV observed in {30] should be three-
quasi-particle states with K= 5/2- and 1/2-,

The analysis of 8-decay given in Table XI shows that the three-quasi-
particle states lead in a number of cases to another interpretation of the
.levels 7/2- and 9/2- in the region 1. -1,5 MeV which have been observed
in several nuclei. In W18, HflT? and Hf'"™ the assignment of the levels
7/2- and 9/2 as the single-quasi-particle states 7/2 - [503] and 9/2 - [505]
does not give rise to doubt while in Yb¥® such a treatment seems to be
unlikely. In Yb!69 the three-quasi-particle states 9/2- and 7/2- withenergy
of the order of 1.5 - 1.6 MeV and with the lu B~transitions from Lul®® must
be observed. Therefore it is more correct to treat the states 7/2- with the
energy 1.465 MeV and 9/2- with the energy 1.452 in Yb9 as three-quasi-
particle ones, since for treating them as 7/2-[503] and 9/2 -[505] the energy’
values found experimentally are very low.

It can be seen from Table XI that there is a number of favourable possi-
bilities for the experimental observation of thrée-quasi-particle states of
‘the type (2n,p) and (2p, n). One of the most suitable criteria for finding these
levels may be allowed unhindered au 3-transitions to these levels in those
cases when there are no such transitions to single-quasi-particles levels.

In Table XI we give, as an axample, a number of B-decays to the levels (2n, p)
and (2p, n) in order to draw the experimentalist's attention to these decays,
The existence of the levels (2n,p) and (2p, n) follows immediately from the
superfluid nuclear model and their absence would at least be strange.

An investigation of very high excited states of odd nuclei is of great
interest from the point of view of the clarification: up to what excitation
energies the single, three, five and so on quasi-particle aspect of the odd
nuclei excited states is conserved.

5.2.Two-quasi-particle aspect of the excited states of even-even nuclei

In {21, 32] the tWo-quasi-partiele levels of even-even nuclei were calcu-
-lated on the basis of the superfluid nuclear model and compared with the
experimental data, This comparison is one of the most important checks
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of the correctness of the model under consideration, since all parameters
which are necessary for these calculations are fixed on the basis of the
experimental data on the single-particle levels of odd nuclear masses and
the pairing energies. It is quite clear that the physical nature of the atomic
nucleus is considerably more complicated than the model considered, there-
fore we are satisfied that we have obtained the correct general picture of
the levels of even-even nuclei in which the rmost outstanding features of the
ground and excited states are reflected,

The superfluid nuclear model is a model of independent quasi-particles,
In this model the levels of even-even nuclei are described as the two-quasi-
particle excited states. Thus, the two-quasi-particle aspect of the excited
states of deformed even-even nuclei, used earlier by Gallagher for analysing
B-decay of odd-odd nuclei and treating the levels of even-even nuclei, follows
naturally from the superfluid nuclear model.’

Before comparing the calculations with the experiment it is necessary
to analyse and systematize the experimental data available. Such an analysis
of all experimental data on the internal levels of strongly deformed nuclei
in the region 150 < A < 190 is made in [32}.

In [32] the spectra of all even-even nuclei are calculated in the region
156 = A= 182 and in [21] in the region 225= A= 255 and also log ft; for
a number of B-transitions, The results of calculation are given in tables.
Table XII, which contains the two-quasi-particle levels of W182 | may serve
as an example of these. ' ’ _ '

In Table XII we first give the neutron levels and then the proton ones,
The configurations of the excited states are written in the first column, The
second one contains Km, the state with anti-parallel spins, i.e. withZ =0
which according to Gallagher’s rule must have a lower energy, being writien
first, and below the state with ¥ = 1, The energies of these levels calculated
according to the considered model are given in the third column. The fourth
column contains experimentally measured energies of those levels whose
spins are well established and which have quite definite configurations, In
the right-hand side of the table are given B-transitions from odd-odd nucizi
whose configurations are written at the head of the corresponding-columns.
Note that according to the Gallagher-Moszkowski coupling rule the state
with parallel neutron and proton spins possesses the lowest energy of the
odd-odd nuclei doublet. For the B-decay of an odd-odd nucleus to each level
of an even-even nucleus there corresponds the B-transition classification,
provided AI= 2, and in the right one the observable values of log fte and
in brackets the calculated values of log ft;.

. Thus, tables of this type not only predict the energies of the two-quasi-
‘particle levels in even-even nuclei but show at what rate these levels will
be populated in the 8-decay of the given odd-odd nucleus, If should be notei
that the calculated values of the energies and of log ft depend only on the
accepted scheme of single-particle levels and the pairing- energies, while
the B-transitions depend on the assumptions about the configurations of odd-
odd nuclei., The decay schemes can change if the experiment will show that
‘an odd-odd nucleus has some other spin or parity, or it should assign some
other configuration for a given K7,

The comparison of experimental data on the even-even nuclei energies
with theory shows that there is a satisfactory agreement between calculated
and observed energies of the levels and that the general conception of the
two-quasi-particle excitations given by the model is found to be correct.
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However, it is known that the situation is more complicated in a number
of cases,

Note that the calculations in which the.test set of single-particle levels
of the average field is determined by using the experimental data on odd
Aznuclei agrees better with the experimental data than with calculations
in which the single-particle levels of the Nilsson scheme were used, which
is easily seen from the‘example of the levels of Ybl72 calculated in [32]
and [18] .

The comparison of the calculated energy levels of even-even nuclei with
experimental data shows that the overwhelming majority of the calculated
lowest two-quasi-particle levels, which are to be populated rapidly for ap-
propriate B-transitions, is discovered experimentally. The fask is to find
experimentally all levels obtained from the calculations (or, to prove that
some levels are absent). Thus, we should go over from the check of the
validity of the main foundations of the model to an investigation of the total
set of the levels of even-even nuclei and find deviations from the simple
picture given by the superfluid nuclear model. If the assumed scheme of
the single-particle levels of the average field is true then the'following levels,
rapidly populated in B-decays for example, must be observed: the proton
level 1+ with € > 1,4 MeV in W18 , which must be populated in the S-decay
of the 13 h Re'® with log ft; = 6.5 proton level 1- with € ~ 1,3 MeV in Hf178
from 1lu B-transition of the 9, 3 min Tal’8 , etc,

From the calculations made on the baS1s of the superfluid nuclear madel
it follows that the energies of the levels (K, K+1) must, as a rule, be lower
than the formal gaps 2C, This phenomenon follows immediately from the
blocking effect, We summed up all the available data on these levels in table
VI in order to clarify by comparing theory with experimeént what role the
blocking effect plays in a nucleus, The first column of Table VI gives the
nucleus considered, the second one shows the system, proton or neutron, to
which the given level refers by marking the states with L = 1 (the others
have L = 0), The values of K7, the gap 2C, €(K)+ €(K+1), the energy calcu=
lated assuming blocking and the experimental energy are also given, Note
that if the distance between the single-particle levels of the average field
K and K+1 is large, then the energy of the system of the state (K, K+1) must
be higher or of the order of the gap 2C, which occurs, for example, in the
case of the neutron levels in Er 166 |

It can be seen from Table VI that the measured and calculated values
of the energies of the states (K, K+1) agree satisfactorily. Almost all the
experimentally observed energies of the states (K, K+1) lie lawer than the
gap 2C, N '

It follows from a comparison of the results of calculating the behaviour
of the (K, K+1) state energy with the experimental data that the blocking effect
in strongly deformed nuclei plays an important role provided that the mean
energy of the spin splitting does not exceed 700 keV,

The two-quasi~particle aspect of a number of excited states of even=-
even nuclei is proved by the analysis of experimental data on the B-transition
probabilities (see histograms in Figs'7 and 8), From these histograms it
follows that the regions of the values of log fte Rn for B-transitions in even
nuclei are approximately the same as in odd nuclei. A larger dispersion
of the values of log fte Rn is related both to the interactions of quasi-particles
and the fluctuations in the average field levels, which we have not taken
into account, and to the insufficient accuracy and reliability of the experi-
mental data available.
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In [32] a spin splitting has been found for some-states whose energizs
(according to Gallagher’s rule) in the states with antiparallel spins (L = ())
are somewhat lower than those in the states with parallel spins (Z = 1). The
spin splitting follows from the quasi-particle interaction. It points out that
it is necessary to introduce additional terms into the Hamiltonian. Howeer,
the experimental data available on spin splitting are very poor and it would
be desirable to increase the amount of such material. For example, two
levels 4~ should be observed in Erl68 ; the neutron level with the energy
lower than 1.1 MeV and the proton one with the energy lower than 1, 5 M2V,
The B-decay to these levels from the state 3+ of Tm168 is A~ forbidden and
classified as 1 A(lu),

It is very interesting to find those states of even-even nuclei into which
B-decay is F-forbidden. These levels can be observed in the Y-transition:
from the higher excited states,

Only a part of the residual forces acting between nucleons in a nucleus
is taken into account (and, moreover, only approximately) in the superfluid
nuclear model. Therefore it is interesting to investigate how strongly the
residual interactions not taken into account affect the properties of the ground
and excited states of strongly deformed nuclei, The investigation of the effect
of pairing correlations on S-transition probabilities has shown [20] that
B-transitions belonging to the third group (and called F-forbidden) are str.ctly
forbidden in the superfluid nuclear model, An experimental determination
of the degree of F-forbiddenness of the B-transitions is quite important fi'om
the point of view of clearing up the role of the residual forces not taken iato -
account as well as clarifying whether the formulation of the properties of
the ground and excited states of strongly deformed nuclei following from
the superfluid nuclear model is true and exact,

As is known, the third group includes:

(a) B-decays with the change of the number of quasi-particles in the
proton {neutron) systems by more than unity, ‘
(b) B-decays where, besides the change of the number of quasi-particles
in the proton {neutron) systems by unlty, the configuration of other

quasi-particles changes.

It is quite possible that the degree of forbiddenness of B-transitions will

be different in this case. In case (a) the f-decay will be possible only where
there are admixtures of the states with another number of quasi-particles.
Such admixtures can appear, e.g. in the ground state of the system due to
interactions leading to collective excitations. Such a forbiddenness is called
the ¥ -forbiddenness. The degree of the Fy-forbiddenness can be determined,
for example, from the B-decay of the three-quasi-particle state to the ground
state of the system, The experimental determination of the degree of the

Fy -forbiddenness is necessary for investigating the microscopic structure

of the collective states, Note that the Fyforbiddenness must appearina-decays
and y-transition too.

In case (b) the B-decay will proceed when the adm1xture of the states with
other configurations is present, therefore it must have the same order of
magnitude as K and A-forbiddennesses. The forbiddennesses of such a type
are calles Fy -forbiddennesses. However, we notice that in some cases i:
must significantly differ from the A-forbiddenness.

The analysis of experimental data has shown that there does not exist
any strictly fixed Fy -forbidden B-transition. Table XIII gives a number
of transitions which are most convenient in determining the degree of the
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T ABLE XHI

BETA-TRANSITIONS OF THE TYPE Fy

lass.
0Odd-odd nuclei Even-even nuclei .Energy Class z
in MeV | of fdecay
99 92 e ' .
Gasu‘“ 1- p4134 -n521 ¢ 6454 p 1-5321-4111¢ ~1,7 aF 0
T 1 s 98 166 23 4 1.82 0
Gng 2+ p411y -né421 69Er n 1-5 - 6331 .828 1F
' n 2523 4 -5214 | ~1.7 aF 0
3 4523 + 45214 aF 1
lgim‘" 4- p404} +n521 ¢ lngbm p 34411} 44021 | ~1.7 1F 0
2 +411 4 -402 1 1F 1
p 5-4111+514¢ | ~1.8 aF 0
4 -4114 -5141 aF 1
lggTa“’ 3- p404 | -n5101t lgzw‘“ p 2-5141-40214 1.290 aF 0
1;;Np“' 1+ p642t -n624 | 1;2Pu"° n 2+631%-6221 ~1 aF 1
n 1-743t -6221 ~1,3 1F 0

Fyx -forbiddenness. For example, the 3-decay of Tal8 3 - with the con-
figuration p 404}- n510% to the proton state 2- of W18 with the configuration
514% - 402t is Fx -forbidden. The energy of this state, which is well popu-
lated in the B-decay of 13 h Rel8 isequaltol,289MeV, isinagoodagree-
ment with the calculated one, E = 1.3 MeV, According to the data available
log fte = 8.2 for this aFy B-transition. However, the values of the spin of
112 d Tal8 | the configuration of this state and the values of log ft, = 8.2
are not quite reliable, If we assume that the treatment is correct, then the
Fg -forbiddenness will lead to the B-decay rate being hindered by about a
factor of 100. Apart from the transitions given in Table XIII a large number
of the Fg —forbidden B-transitions are given in [12, 21, 32] .

Among comparatively high excited states of even-even nuclei the four-quasi-
particle states must be observed in addition to the two-quasi-particle ones.
Therefore two types of such states: the first type (4n) and (4p) when all the four
quasi-particles are proton orneutronones, the secondtype (2n, 2p) whentwo
quasi-particles are proton and two others are neutron. The -transitions to four-
quasi-particle states such as (4n) and (4p) are Fg-forbidden and such states
should be filled in y<transitions from high excited states. The pairing cor-
relations of a superconductive type will be absent in the majority of these
states. The states (K-1, K, K+1, K+2) have the lowest energy. We evaluate
this energy without taking into account the interaction between quasi-particles.
For example, in W18 guch a state (4n) has an energy of about 3 MeV, spins
10, 9, 7, 6, 3, 2, 1, 0 and a negative parity, and the state (4p) has anenergy
higher than 3 MeV, spins 11, 10, 6, 5, 4, 3, 2, 1 and a negative parity. The
energies of a number of these states can be somewhat depressed because
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of the interaction between quasi-particles. The four-quasi-particle states
with other distributions of quasi-particles over the average field orbitals
are somewhat higher. At excitation energies higher than 3 MeV the density
of the even-even nuclear levels must increase strongly owing to the four--
quasi-particle states.

The superfluid properties of the four-quasi-particle states (2n, 2p) are
close tothose of the corresponding two-quasi-particle states. These states
should be well filled in the S~decays. In a number of cases such states cen
be found experimentally in the appropriate S-transition. The four quasi-
particle levels of both types must be observed in all even-even strongly-
deformed nuclei. :

There must be six and more quasi-particle states among higher exc:ted
states of even-even nuclei, although it is not clear up to what energies such
a treatment of the excited states will remain true in its general features, =
It is possible that' neutron-spectroscopy experimentsican answer this quesition.

Thus, the agreement of the calculations carried out on the basis of the
superfluid nuclear model with the experimental data on the energies of tke
excited states of even-even nuclei and the probabilities of g~transitions pro-
vide evidence for the correctness of the initial foundations and the sufficient
accuracy of the approximation of the model under consideration and, con-
sequently, the two-quasi-particle aspect of this model can serve as a good
basis for analysing the levels of even-even nuclei.
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SOME ASPECTS OF COLLECTIVE PROPERTIES
OF NUCLEI

S.T. BELYAEV
INSTITUTE OF NUCLEAR PHYSICS,
NOVOSIBIRSK, USSR

1. INTRODUCTION AND BASIC EQUATIONS
1,1. Introduction

Certain questions connected with the collective properties of nuclei will
be considered in this paper. There are two different complementary ap-
proaches in the consideration of collective motions, One method - we shall
call it the phenomenological one - consists of directly introducing collective
degrees of freedom and the corresponding collective Hamiltonian, Heont, with
some phenomenological parameters. The aim of such a theory is, first, to
solve the Schrddinger equation with the Hamiltonian Heon, and secondly to
calculate the parameters in Heoll under certain assumptions or using certain
models., The Davydov-Filippov model can serve as an example of such an
approach to the investigation of collective properties of nuclei. There it is
supposed that Heon describes a non-axial rotator and the parameters of the
Hamiltonian are then chosen so as to obtain the best fit to experimental data.

The second possible method of investigating collective excitations of
nuclei - let us call it the microscopic one - works right from the beginning
with a many-body Hamiltonian H = Hy + Hjn. Then such excitations in a sys-
tem of nucleons, the nature of which is collective, are studied. In this method
no additional collective degrees of freedom, and hence no additional phenome-
enological parameters, are introduced a priori. In principle, everything is
determined by the nucleon-nucleon interaction Hint . As a matter of fact, the
interaction Hi;; must practically be introduced phenomenologically, since
it has not been possible to derive it from first principles so far. The actual
difference is in the "degree of phenomenologicality', i.e. in the number of
parameters introduced into the theory.One needs only one ortwo parameters,
which in principle determine the various properties of all nuclei, to determine

Hjn, whereas in the above-mentioned example of a non-axial rotator, two
parameters are introduced for each nucleus (the value of the first 2 + level
and the degree of non-axiality v). i

We shall deal mainly with the microscopic approach and hence the first
question is that of a reasonable choice of the nucleon-nucleon interaction
Hint . A certain form of the interaction induces certain correlations in the
motion of nucleons. Thus we can draw conclusions as to Hint, having analysed
the character of the correlations between nucleons in nuclei,

The success of the shell model indicates that a considerable part of the
nucleon-nucleon interaction can be taken into account by a self-consistent
field. A self-consistent field is the result of the correlation between a large
number of nucleons, i.e. a long-range correlation in this sense (although
it is not induced by long-range forces). Obviously some sort of residual inter-
action between the nucleons remains after the self-consistent field has been
separated. The question naturally arises: which part of the residual inter-

291
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action is most important? Since the self-consistent field only takes long-
range correlations into account, it is only natural to suppose that the re-
sidual interaction, onthe contrary, causes short-range correlations (between
a few nucleons) in the limit-pairing correlations.

COOPER [1] has noticed that bound states between particles become
possible near to the Fermi surface ("Cooper pairs'") in macroscopic Fermi
systems even in the case of weak attraction. This leads to the non-stability
of the ground state of an ideal Fermi gas and to the origin of completely new
properties in the system (the superconductivity of metals). Does anything’
analogous to Cooper pairs exist in nuclei? A positive experimental indication
of this is the effect of the pairing of nucleons on one and the same level which
shows itself in.the mass d’fference between neighbouring even and odd nuclei.
Thus it is natural to suppose that, after the self-consistent field has beer.
separated, the basic residual interaction is such that it causes pairing ccr-
relations of the Cooper type *.

1.2. Methods for the consideration of pairing correlation

Various methods for computing pairing correlation in Fermi-systems
have been developed recently. They are to a great extent equivalent, though
they may be convenient to a greater or smaller degree depending on the rrob-
lem under consideration. The physical idea of these methods is as follows.

Since the forming of bound pairs is '"of advantage', constructing the new
ground state of a system from Cooper pairs is quite natural. Let the creation
operator of a pair in the bound state be

At =L 0, 2 al. , (1.1)
where a,,* is the creation operator of one particle in state v and ¢, is the
wave function of the bound state of the pair, It will be quite natural, there-
fore, to seek the ground-state function of the system with 2N particles as

N = (Ao (1.2)
However, in practice it is impossible to make use of such a function, If IM

is large, the superposition of the (1. 2) functions with different N may be
used instead of (1.2), for example in the form

\I/=e°A+|O>, (1.3)

[+]

where the parameter o mav be chosen from the condition
Yo, ﬁ‘I’e> =N < Y, Yo >, (1.4)

Further simplification of function (1.3) is due to the assumption about pair
operator (1.1), If we assume that

Pyt = 5 8,5 0y 5 (O = -0,) (1.5)

% We are considering medium and heavy nuclei. In light nuclei correlations of the a-particle type b:-
tween four nucleons may be important.
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(let us call states v and U conjugated) then (1, 3) may be written as

N exp(ol)_"ljltpya:a,:;)|0> = H(l +op,ajal) o>, (1. 6)
|

vl

where |1/| is the pair of states v, U. A function of the (1.6) type was intro-
duced in the paper by BARDEEN, COOPER and SCHRIEFFER on the theory
of superconductivity [2]. In this case v and 7 correspond to states of elec-
trons with opposite momenta and spins, and condition (1, 5) means that the
total momentum and spin of the bound pair is zero. A parameter o ¢, was
defined in [2] minimizing the expectation value of the Hamiltonian of the sys-
tem in state (1.6). '

BOGOLYUBOV proposed quite a general and simple method for consider-
ation of the pairing correlation [3]. The idea of this method is based on the
quasi-particle concept and involves the explicit introduction of quasi-particle
operators by means of canonical transformation.

A few words about the physical meaning of quasi-particles. The low-
lying excited states of many-particle systems can be approximately described
as a set of independent elementary excitations or quasi-particles. The ground
state is then considered to be a vacuum and the excitations of the system are
induced by the creation of one or-several quasi-particles. Such quasi-par-
ticles in anideal Fermi gas are holes inside the Fermi sea and particles out-
side it, .

The form of quasi-particlesinthe system with pairing may be established
from that of function (1.6). Let us act on (1. 6) with annihilation operator a, :

a, Y= o g, a5 H (1'+ 0 g ra,t ast) | 0>
jor|#v
=09 at¥

v v 0o?

from which one may see that
(ay - o 9,a5") Y= 0

and, consequently, % is vacuum for a combination of operators of the type
a ~a -~ oq)ya,ﬁ; . Thus, quasi-particle operators should be sought as

ay = ,a,- v, a17+’ (1'7)
where one must assume uﬁ +V,,2= 1 in order that transformation (1.7) be can-
onical. The equation for u, v, will be obtained from the minimum energy
condition for the ground state ¥, (defined as vacuum in respect to o, , i.e.

- satisfying equations o, % = 0); this is equivalent to the requirement banning
quasi-particle pair creation from vacuum. The method of canonical trans-
formation allows us to abandon condition (1. 5) and consider pairs of a more
general type. With this instead of (1.7) it follows that

@y = if3 (Upf a1 - W ar’). (1.8)

The calculation of average values with a function of the (1. 6) type is
-equivalent to the independent avarage of pairs of operaiors, such as

(ajafagay> =< ajapy{agag )y ~{ajag > azapd>+{ajas > agay > (1.9)
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and "diagonal' expressions only
Caja) = vii (ajaid = (agary =uvy (1.10)

being different from zero. The decomposition of averages (1.9), but wittout
the last term, is characteristic of the Hartree-Fock method for the self-
consistent field. The last term in (1. 8) accounts for the Cooper pairing effect.
It is easy to make sure that if a more general transformation (1.8) is used
instead of (1.7), relation (1. 9) still holds for averages in the a vacuum state,
but apart from the diagonal values (1. 10) the more general averages of axy
pairs of operators are different from zero,

Under the general assumption that the ground state of the system is
vacuum for quasi-particles between the averages of pairs of operators there -
exist the relations

§(<aiaa><a§az> +(ajaid(agay)) = (aay
£ ajasd<apag) + {apagd<ajagd) = 0

(1.11)

The variation of the Hamiltonian average value results in the equations
&g #<[2,395H] >=0

B, E([alaé;H]> =0

(1.:2)

which, together with (1.11), determineaj*a; dand(aja; » Equations (1. 11),
and (1. 12) (formulated by BOGOLYUBOV [4]) are a generalization of the
Hartree-Fock method for systems with Cooper pairing. We shall use this
method for considering some collective properties of nuclei,

1.3. Basic equations of generalized Hartree-Fock method

Let us write down the Hamiltonian of the nucleon system in secondar;-
quantized representation as

H=E(£12 - A dgz)aja, .(1.13)

+3 L <121G12'1'>31 g8g@qr
122°1°

where £,5 is the matrix of the single-particle Hamiltonian, and A the chem-
ical potential of the system. Let single-particle states transient into each
other by time-reversal, be designated by (1, 1) or ") Then, in addition
to the general propertles of symmetry, we have in part1cular

£1g <3y s<12|Gl2y = (TE|GIEY (1.14)

Substituting (1. 13) into the first of equationsg (1.12) (the second one preseats
nothing new) we obtain '
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A s %[6(13)<a3a2 >+ e(23)a1a3 >] + A(12) (1. 15)

_g{A(13)<a§a2>+A(32) <aga1>} 0

where

€ (12) = ¢35 - A8y + £ 1T G[22) (at 2, >=e®21)  (1.16)
1'2

A(12) = -52I<12‘G| 2' 1% ap ap >= - A(21) (1.17)

<irlal 22y=¢1r|a| 22>-¢1r] G| 22,

It should be noted that the interaction enters this equation only through the
Cooper pairing value A and single-particle Hamiltonian €, where itdefines
the additional self-consistent field.

If we formally assume € and A to be diagonal, i.e.

€ (12) = €3 612 ; A(12) = Ay 657 . (1.18)

then equations (1. 11), (1. 15) will be satisfied for diagonal averages

p1z = < a’;al >= 3 (1- ‘%11—)512; (1.19)

A ~
(azay »= 2_E11 613

E; =,/ + A}, ' (1.197

The quantity € (12) (1. 16) is the Hermitian matrix of the single-particle
Hamiltonian with the additional self-consistent field, and may be diagonalized
by suitable choice of the single-particle states. Physically, this means find-
ing single-particle eigenfunctions in the total self-consistent field. Equation
(1.17), however, does not lead to the diagonal expression for A(12), as ma-
trix elements of the type<( 12 l GI T1 > generally speaking, are different
from zero*. Nevertheless, under certain physically reasonable assumptions
the condition (1. 18) for A (12) appears to be fulfilled. This is valid, in particu-
lar , in the model of the self-consistent potential with a flat bottom, when A
may be considered constant in space coordinate representation {6]. In any
case the basic Cooper pairing effect is determined just by this value A_(IT),
and the non-diagonal parts A(12), if necessary, may be considered as pertur-
bation. For the diagonal part of A from (1. 17) and (1. 19) we obtain

where

~

Aq = - )2:<11[G|§2 > (B9 [2E3). (1.19")

% In contrast to the case of an infinite system where they are zero because of the conservation of mo-
mentum. '
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For simplicity we shall in the following mostly consider A to be a constart,
or to be more exact *

Ay = -v1 A where Y3 = - vy Iyi|= 1. (1.19™)

1,4, Perturbation theory

Let the weak perturbation yielding the additional term V;2 in the singi.'é-
particle Hamiltonian €;3 be enforced on the system,
Let designations for corrections of first order be introduced

(%) (&)*
P12-z<<aza1/:t<alaz > Por =% )

(1.20)
(t) <<a 1)i <a a > h(fl— h(:l)*
and respectively .
&y U vy - i1i22‘<1'f‘| G52 poy + L(Viz £ VEY)= ca” =+ S (1. 21)
A% = _r¢13|a| B roniy = - a5k = £ a9

Equations (1. 11) for the first-order terms in these notations take the form

£ (€3]
[(e2 /E2) + (€1 /E1)] 9(12) -[(ag [Eg) + (& /El)]h1: =0 ( )
1,22

[(22 /Ea) % (81 /E0)] o1z +[(e2 /Ea) - (e /Ex)Ikya =0,

the compatibility of which is ensured by equality (1.19). Equations (1. 22)
yield the simple relation between g&* and h(#), It is convenient, therefore,
to introduce the new variables, satisfying (1.22) identically.

Let us introduce the values

() _ (€3] ‘

€2 =uup ¥ ViVe 3 Mz =wWve 2 viup (1.23)
where u, v are defined by the relations

w - vi= g JE1 ; 2wivy = 0y /By (1.23)

u su Vi = - V1.

* Strictly speaking, A, is a matrix in spin space of the form-

A, (oo)= (_CA) é) . 1(1-190)
Taking into account that the spin changes its direction under time reversal, ie.
9 @ o)= ¥ (@ -0) (1.199)
it is possible to eliminate the spin coordinate o = # 1, replacing (1.19b) by
i (D=7 9% (1) @.19%)

where, for example, y, =1 but y7 = 1. As the non-zero components of Ay (0 ") also pass into each other
under time reversal we may use (1.19 *°°) instead of matrix representation (1.19a).
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Then it is clear * that because of (1,22) the quantities p( and K* can be ex-
pressed in the form

Ed
AP - 4

(1.24)

() (£) (%)
hig = 12 Zjs .

The values Z(fz) are reasonably chosen as new unknown quantities, It should
be noted that the symmetry properties resulting from (1. 20) hold for z{#

. *- I
Z(;g - _z® . Z(ﬁ) _ (1.24)

Separating terms of first order in equation (1. 15) and making simple trans- v
formations we obtain

e B W@ (9 (v
(Asz* 912) [2812 =Eya Ziz -E12 Ly2 + Mz €12 =0 (1.25)

E12 = E1 + E2 .
Equation (1.25) defines corrections of the first order for averages from
pairs of operators (1.20).

Non-diagonal corrections of first order enter the expression for the
ground-state energy in quadratic combinations. Therefore, diagonal cor-
rections to averages {a‘a) and {aa) of the second order should be considered
simultaneously. Equations (1.11) have a kinematic nature, as they do not con-
tain the intrinsic characteristic of the system (interaction). Using (1.11) one

' may establish some general relation between first-and second-order approxi-
mations in (1.11). Let us separate second-order terms in (1.11)

(1-2<a2, f) a2 0@ Calag Pl Caga, )P +Caja D)
= );.((a;aZ)(l)(a;al)(l)+<a;ag >(1)<ai a1>(1)) (1.26)
ra1>(<aa PP Cata D) = p(<ata; Y <ala; XD - ala XV Calaldh).

Substituting in (1.26) the values for averages of zero and first order and
expressing the latter through Z®*) according to (1.20) and (1.24), we finally
obtain the desired relations

W, = %61(<a1a1 P <a} as @y 1 A (<ag a1>(2)+ <a}a} X2y (1.27)

=B 3(2) |"+] 20
(1.28)
b (<ala )P - Cabag 3®) = 520 200 + 2% 20,

* Relations useful in the calculations should be noted:
2 2
+ t)
nE = 168 p e e, /B B, ) (A 2 /85 ) RS LCey /) e, /BN

e 0= tucem) e /e 1 65 = FE, (Bt & 003 e n= 4o, /6 a0, /6)



298 S. T. BELYAEV

Let us now find the correction to the ground-state energy. Using decomposi-
tion condition (1.9), we have from (1.13)

' CH}FZ(€ - 28 )<ara >+ 1 2 f'lc 2'2)<ala,0<a8,.)
+zz<12|G(2'1'><a a;><asa

‘2' 1

The first-order correction to {H)is lacking, as zero approximation is defined
from the extremum of (H ). (It can easily be verified using (1.22)). Seconi-
order terms in (1.29) containing products of { DX > can easily be reduced
to the form

' ’ ) (")_()()
D TTGIE2 6 ol -5 660

. ipct IPNPRCINC e e
X 2IG!21>(h1hr2- 21 Dyegd -

(1.30)

"Second-order terms with diagonal averages in (1.29) may be reduced to E W,
where W, is defined in (1.27). Expressing (1. 30) by means of (1.29) through
Z®*) and making use of (1.27) we get
@ , Z(+) )2
CH>2 45 Enl 23] + 1201y
+ 1 £ TG 22> (b 22 nidnE iz 2
+ ypaf elay e 28 2(%- 85 28 230

.(1.30')

Making use of the definition for ¢® and A(*)(l.z\l) we rewrite (1.30') as
follows

(2) ) ™, 0 &), ™
(H> = Esz {Elzzfz + mz (€32 -szs £12 832}

) ) ey 0O ) O
3 )3 Zoy {E12Zy + mz (612 -Viz ) - §12 A2 1,
from. which in view of the equations for z® (1. 25) we finally get

M __ ™ ), 0 .
<H>——ZET112 V12 Z21+ znlz Vm Zy . (1.3”) R

Expression (1.31) defines the correction to the average value of the

basic Hamiltonian H. For the perturbating Hamiltonian we obtain in a similar
approximation :

2 _ + ) o
V> = E.ZVm(alaz), ‘ (1.32)
which, after simple calculation, takes the form of '
@ 4 _M_® G _ ) O :
(V>'= 73 Mz Viz Zi2 - Zmz Via Zaz . . (1.32")

From (1.32') and (1. 31)— it is seen that

¢aa - 1¢vy®
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1.5, Time-dependent self-consistent field

Hitherto we have been considering equations defining the time-independ-

ent ground state of the system. In describing collective excitations it will
“be useful to introduce the concept of a time-dependent self-consistent field.

By collective excitations existing in the system is meant the possibility of
separating a special degree of freedom connected with the self-consistent
field whose excitation does not interfere with individual particle degrees of
freedom. In other words, such quantities as single-particle states, as well
as quasi-particles and their occupation numbers (''vacuum' for the ground
state), retain their meaning for the excited states of the self-consistent field.
In fact, the classification of excitations into collective and single-particle
appears to be possible quite approximately, and their interference deter-
mines the process of relaxation and damping of collective excitations. In the
time-dependent self-consistent field method, however, these effects are
neglected.

Instead of (1. 12) in the case of a time-dependent self-consistent field
the main equations take the form of ( i = 1)

i Car az >=la1 az; H]D=2y,

(1.33)

°’|°’ e

< 1 2> < 2;H] >EB12'

If a time-dependent part of the self -consistent field may be considered as
perturbation, then equations (1.33) are linearized. In view of (1.20) and
(1. 24) we obtain in this case

9 ) (%) (¥) (%) (x) (2)
igr Z12 = B2 Zyz -812 82 + 12 €12 (1.34)

:t
from which for Fourier components z§2 (w ) we find

® ) () @ @
w Zyg (W)= E12212 {w)- §12 sz (w) + n12 612 (). (1.35)

Here, according to (1.20) and (1. 21),

28 @) = - 25 W) = £ 28 (w)
A W)= - E/lzlGIz-r>sf§ Zom ) = - A5 () =t Agy (-w)  (L.36)

¢ ) =2 ET[GI22 5 ni Ziz @) +VE @) =eft (-0) = 2esro).
It should be noted that equations (1.35) under transformation 1< 2 - and
W - - w become complex conjugated equations. Thus it follows that the dis-
persion equation for (1.35) defines the frequency w except for the sign.
After writing the basic equations let us consider certain problems con-
nected with the collective properties of nuclei.

2. _THE‘ EQUILIBRIUM SHAPE OF NUCLEI
2.1. Formulation of the problem

Numerous models have been suggested recently to describe the excita-
tions of those nuclei where the spectrum essentially differs from that of ro-
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tation (spherical oscillating nucleus [12], non-axial rotator [13], model with
y-unstable potential [14] and others [15]). Although all these models mak:
use of the essentially different concepts concerning the equilibrium shap:

of the nuclei, their predictions are quite close and experiment does not ¢t
present offer any possibility of choice in favour of any definite model. In
such a situation the estimation of the equilibrium shape of the nucleus from
its intrinsic structure is of special interest.

Deformation in nuclei results from the effect of polarization bynucleons
in the upper unfilled shells, hence the problem of the equilibrium shape of
the nucleus is reduced mainly to the definition of the equilibrium configuration
of these nucleons, If we temporarily neglect the polarization of the closel-
shell core and consider external nucleons to be in a spherical potential well,
then their configuration is determinéd. by the nature of their interaction. As
was stated above, the main role in this case is played by the two parts of
interaction: Cooper-pairing and the self-consistent field. When the closel
shell is polarized,the external nucleons are affected not only by their owr.
self-consistent field, but also by the additional field of the closed-shell
core. But as these fields possess an identical symmetry and are propor-
tional to each other, the closed-shell polarization effect is equivalent to
the increase of the eigen-self-consisient field of the external nucleons, aad
its calculation is reduced to the renormalization of their interaction cons:ant.

In the deformedsnucleus the grouping into external nucleons and closed-
shell core is rather conditional. Let us assume that the region ''close to
the Fermi surface' lies in the energy interval < hv/R (v - velocity at Fermi
surface) and contains ~ 2/3 one-particle states. In the slightly deformed
nucleus hv/R coincides with the intershell distance. In this case, let the
external nucleons be particles in the upper unfilled shell. It should be noted
that the double inequality A << hv/R << ‘€5 is valid. Thus, leaving the quest-
ion of interaction renormalization aside, we shall consider only ~A2/3 nu-
cleons close to the Fermi surface taking their Cooper pairing and the seli-
consistent field into consideration.

2.2, Choice of nucleon-nucleon interaction

Let us assume that the spherically symmetrical part of the self-consist-
ent field is already taken into consideration in the original single-particle
Hamiltonian €, and the residual interaction results only in the deviation firom
spherical symmetry. Since the most essential role in nuclei is played by
quadrupole anisotropy we may assume the additional self-consistent field
to be of quadrupole symmetry, i.e.

T%(ll‘lGlZ'Z}(aIaz) =—K%Qﬂ*<1|qul2>, (2.1)

where Q, and single-particle operator q, possess the property of spherical
tensor operators of the second rank. The right-hand side of Eq. (2. 1) can
be easily interpreted as an interaction between a single-particle moment
qu and the total moment Q, of the other particles. We can imply such aa
interaction to be a reflection of nucleon-nucleon ''quadrupole interaction"
of the form

Go (F1,T2) = « L q, (F2) q, (r1)- (2.1)
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The real interaction entering the left-hand side of (2, 1) is not reduced only
to (2.1'). In the general case G(?l., T») can be expressed as a series of scalar
products of spherical tensor operators of different ranks, Equation (2. 1)
implies in fact that density matrix <a".az.>, which possesses=bquadrupole
symmetry, picks out the only quadrupole term from this sum™

In view of interaction (2. 1) the one-particle Hamiltonian (1. 16) takes
the form

€(12) = f1p Ay -k 2@ C1q,l2), L (2.2)
where the total quadrupole moment of the nucleons Q, is defined by
Q“~E/V|qulv > <ara,y = “Q (2.3)

Let us choose as basic function of secondary quantization eigenfunctions
v> of Hamiltonian (2. 2) at the fixed value of parameter Qu

lode (€A wZQuan)|vye & @[> (2.4)

The first of conditions (1. 18) is now fulfilled. Let us assume that the sécond
condition is also valid and put (see (1.19™).

A(12) = A 85, | (2.9)

where A is constant, The interaction yielding the main contribution to Cooper
pairing and resulting in (2. 5) may be represented as

(12| G| 21> = - Gy v 612 612 . (2.6)

50 Ve

A set of matrix elements (2. 6) is usually called pairing interaction.”
2.3. Egquations defining the equilibrium deformation

In fulfilling conditions (2. 4) and (2. 5), equations (1. 19) define average
values of pairs of operators by the three parameters: A, chemical potentialx
and quadrupole moment Q.. The equation for A is found from the expression
for the number of particles N:

N=3Sp(p) =3 5(1_ €,/B,). (2.7

For the definition of A and Q, we get from (1.19), (2.3) and (2. 5)
G L (1/2E,) = 1 (2.8)
Q, = Sp (34,) =%>:<v|qplv (1-€v [Ev). (2. 9)

* Strictly speaking, the quadrupole term from the expansion of G(_’ T,) in sphencal tensor operators
has the form of (2.1%) but with « depending of [Ty |, [T;]. We shall neglect the inessential dependenceand
take k as constant, We may also include the radial factor t into qy and identify it with the single-particle
quadrupole moment (redefining k).

%% Parameter G must be reasonably considered as phenomenological and taken from experiments, In
this case its values for the deformed and spherical nuclei (in the same A-region) appear to be very close,
Therefore, one may consider G independent of Q.
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- Knowing the averages of pairs of operators, the ground-state energy can
easily be found. As a result of using the above formulae we obtain

#
W=dHY+ AN =F oy (€,+2) 3K 5Q,Q,- 4% /2G. (2.10)

We shall make an important remark. If Eq. (2.9) is temporarily not taker.
into consideration, parameters Qu remain free, In this case equations (2. %),
(2.7) and (2. 8).coincide with analogous equations in the problem treating
nucleons in the external potential well with deformation parameters Q,. In
such a'problem one may consider the ground-state energy W(Q, ) and in-
vestigate its dependence on Q, - If expression (2. 10) is used for W(Qu ) it
can easily be seen that the positions of the extrema will be defined by equi-
tion (2. 9). Indeed, differentiating (2.10) over Q and assuming A and A to
be functions of Q, defined by equations (2. 8)and (2.9), we get

(8W/2Q) = « (@, - SpBE)); (2. 11)

therefore, equation aW/an = 0 coincides with (2. 9). The latter, in this

" case, may be treated as condition of consistency: only such deform-
ations are physically allowable which coincide with the density deform-
ation of the nucleons. It should be stiressed that the function W(Q),strictly
speaking, has physical meaning only in the extremum points. In particular,
the second derivatives from W(Q,) ’

(8 W/2 Q) 9Qu) = kbuyt - 35, 5P BEN=K (LR (2.12)

need not be identified with the physical tensor of the quadrupole restoring
force; the latter may be calculated from the variation of energy of the system
in the external field* As a result, we find

Kypt = &« {RY1-R)} pup (2.14)

which differs from (2. 12}. In order to investigate the stability of extremura
states it is quite sufficient to determine the sign of K only, so the differen:e
between (2. 12) and (2. 13) is not essential for us.

2.4. Some general conclusions

Let us proceed to the investigation of the equation for Q,. First of all,
it should be noted that Eq. (2.9) defines components Q, only with an accuracy
up to the random orientation of axis. The nuclear shape is characterized by
the two invariants

*
LQu Qu = p° (2.14)
~ 1/2. % %
= @/MTE 2w 240|20) Qu Qp Qur =p7cos 37,
where (24 24 [ 2¢ ) are Clebsch-Gordan coefficients, In analogy with (2, 14)

let us introduce scalar products of the operator of the single-particle quad-
rupole moment §, and the combination Q}; /B

*In[5] the restoring force was estimated by the Lagrange multiplier method, which yields a similar
result,
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~ ~ %*
q-= EQM Qu /ﬁ : (2'14’)
- 1/2 o o *
£=-(2/7) (E)‘Qu (2u'2u"| 21) Qi Qv /B2,
Then from (2. 8} we obtain for parameters g and vy the following equations ;
B=8p(pd (2.15)
B cos 3y =Sp (p 1), (2. 157)

" If one chooses for coordinate axis the main axis of the ellipsoid Q“(QO=B cosy;
Q1 =Q-y - 0; Q2 =Q-2 ={1/2)8 sinv), then

@Ialvd=cvlaslvdeos v+ cvlq vy siny (2.16)
<v]f‘\v‘> =<vlqolv >cos 27 - @(vlqﬂw) sin 2.

One may draw several conclusions from the form of equations (2. 9) and (2. 15).
First, there always exists the solution corresponding to sphere (8 =0). In

fact, in spherical nucleus density matrix p is independent of the projection

of single-particle angular momentum, and r%( v | q |‘v > = 0, therefore

the right sides of equations (2. 15) or (2.9) when g = 0 (Q, = 0) become zero.
It should also be noted that if the first equation of (2. 16) has a solution for

B when v = 0 or v = 7/3 then the second equation is also satisfied since when
¥ = 0,7/3 both equations (2. 15) coincide (this is seen from (2. 16)). This means
that there may exist solutions withy = 0 or 7/3 corresponding to axially sym-
metric deformation of the nucleus.

2.5. The region of small deformations

The right sides of equation (2. 15) are the quadrupole moments of nuclear
density in the external well with deformation (3, v). In order to determine
the nature of the dependence of Sp(pq) on § and v it is useful to consider the
limiting regions of large and small deformations. The ratio’of shell level
splitting «Q <v|ql V>~ «kfBq and pairing energy A may serve as a useful cri-
terion for the deformation value. The deformation parameter usually de-
fined, sR/R, is related to B by the equation xf8q ~¢z6R/R, where ¢ - is
the Fermi energy and q is an average absolute value of (v |q| v?. By large
and small deformations we mean the cases 8R/R<< Afe; and OR/R >> Afe
respectively. (Let us recall that, for the real strongly deformed nuclei
§R/R™ A1/3, i ¢. the absolute deformation value §R/R is always small).
Also, noting that B ~A?/3when 6R/R'® A -1/3we get the estimate x < ¢; |g® A.

In the region of small deformations the expansion of the right side of
(2.9) commences with the linear terms Qu and in view of the invariance has
the following form ’

Sp(B4) = & Q, -3b(7/2) £ 2w 20| 24) QuQue. . (2.1

where a and b are coefficients independent of Q, . Hence, for the right side
of equation (2. 15) we obtain

Sp(pd) = 2 B +§b52 cos 3y +.... @. 17)
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and for a and b we have

a= |:8!3 Sp(pq)] 0; b=[1/cos 37][ B Sp(pq):l 50, . (2.171,)

The calculation of (2. 17) is simplified if we take into cons1derat10n that ac-
cording to (2. 4) and (2. 14")

o€, /8B =¢v[og/aB|v>= -x(v|a|vS-or/op (2. 18)

and derivatives 8 A/83 and 01 /33 are zero when 8 = 0. As aresult of simple
calculations we get

a=artay =«L(A%/2E}) @2y + L pu(8qu /26) (2.19)

b cos 3y = % K E(A Eu/EE/)CIW +§K E(AZ/E )qm/(aq:m/a#) (2.19')
+§ pw(azqw/aﬁ )

where the expressions in the right sides are taken when §§ = 0. Forderiva-
tives from qu= ¢ v|3|v > entering (2.19) the exact formulae is easily ob-
tained (differentiating equation (2. 4)):

dau/ 8B = 2 & Dlla,, [°/ (6, €, ). (2. 20)

Let us estimate both terms in (2, 19), The value A? /2E3 notably diffe:rs
from zero in the region A ~ & A"%/3 wide inside which lie ~ A -1/3gingle-
partlcle states. This yields the estimate for the first ferm in (2.19),

a~(kq /CF)A~1 On the other hand from (2. 20) follows dquuy/§ ~ xq?/¢p .
so the second term in (2. 19) in the case of Summation over A2/3 states at
the Fermi surface can be estimated as a; ~a; A~ 13 « a; . Analogous esti-
mates show that the two latter terms in (2. 19") are a factor A"Y/3 gmaller

than the former one. Thus, for particles at the Fermi surface one may
conclude™ :

am k L (A%/2E3)g?,; beos3y~ —g 2 %(Az /B % - (2.21)
v .

Equations (2. 15), (2.17), beside the spherical solution § = Bo = 0, also pos-
sess the formal solution ’

B =pf =2(1-a)/b cos 3y (2.22)
which, with.a closely approaching unity, lies in the region of small 8 con-
sidered. To determine the stability of these solutions we shall find ~oef-
ficients of the restoring force with respect to the change of variables 8 and

v. From (2. 13) and (2. 17) for small Q (] 1- a]« 1) it would be easy to obtein

Kupe = k(L-a) & pr+rb(7/2)} L (z‘,z“llzp.)Q,il, (2.23)
. :

# If summing is made in a, over all states, then a, and a, will be of the same order, Term a, in thi:
case results in the renormalization of quadrupole interaction constant &,
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The transition to variables Siand v is carried out by means of formulae
(following from (2. 14))

9Qu/oB=Qu/B; an/av=Q1ctgsy+(7/2f(1/ﬁ sin 3v) >':"(2p'2,1--lz,,)Q(pr..)
MW 2.24

Substituting (2. 23) and (2. 24) in equality
Ky = I, K (0Qu 33)0Q4/0Y) 5 (6,7 =B, ), (2. 24)

we obtain )
Kgg = k(1-a) - kb 8 cos 3y

(1/8%)K,, = k(1-a) + kb B cos 3 7. : (2. 25)

For the spherical state (g = 0) the restoring force regarding variables
8 and By is equal, as one may expect from the isotropy, and the stability
condition takes the form of a< 1. As is clear from (2.21), the a value is
widely dependent on the upper shell filling. It reaches maximum near the
middle of the.shell ("maximum filling') and is zero for the closed shell
(where A=0). Thus, with a small number of particles {or.holes) in the upper
unfilled shell the spherical state is stable up to a ¢ritical filling for which
a=ac =1, Witha further increase of the filling the spherical nucleus be-
comes unstable,

The coefficients of elasticity in the stationary point (2.22) are equal to

K gg (81) = k(a- 1) . 26)

K (1) = - 3x(a-1)p}

from which it is clear that with sign (a--1) either Kps or Kyy is negative.
Thus, the state with 8 = B1 (2. 22) is always unstable.

2.6. The region of large deformations (6R/R » A/&r )

It should be noted that calculation of Sp (6§,) in this limiting case is
equivalent 1o the problem of the quadrupole moment of non-interacting parti-
cles (A = 0) in a weakly deformed well (6R/R «1). In the quasi-classical
picture, when the distribution of particles in coordinate space is described
by the average density, defined by the shape of the potential well only, the
Sp(54,) valueisproportionalto Qu and does not depend on the characteristic
of the filled single-particle levels, Density fluctuations, connected with
particles at the Fermi surface and, consequently, dependent on their quantum
numbers, result in the additional contribution to the quadrupole moment.
This part Sp(pqu) is very sensitive to the sequence of levels at the Fermi
surface, which is mainly defined by the shape of the deformation, parameter
v, and much less by the value of deformation 3. Thus, a change of y from
0 to 7/ 3 inverts the order of levels, while small variations of ‘8, in fact, do
not change it, As a result of the above, the right side of (2. 15) in the region
of large deformations may be shown as follows .

Sp(ﬁﬁu)*‘B(‘y) + CB. (2.27)
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Here the term B(y) is related to the particle density fluctuations at the Fermi
surface. It is sensitive to the shell occupation and, therefore,unmonotoncusly
dependant on the number of nucleons A. The last term in (2,27) is of a quasi-
classic nature, so one may assert that the coefficient C is smoothly and mo-
notonously dependant on A. '

Expression (2. 27) may be approached in another way. One may easily
be convinced that the tensor Sp(f 4,) is the derivative over - KQﬁ‘from the:
scalar function

U=§pw(%,+m-azmb. . (2.28)

(X and A are functions of Q,, defined from Egs (2.7) and (2. 8)). The valuz
of (2. 29 is the nucleon energy in the external well in view of their pairing
interaction. This energy depends only on invariant quantities B and vy, con-
taining under large deformations the linear and quadratic in 8 terms

U ~B(y)8 + +cp? . (2.29)

where the first term is the nucleon energy in the upper unfilled shells and
the last term is related mainly to the closed-shell particles. The derivative
from (2. 29) in B yields (2. 27).

From (2,27) one may see that the value C is equal to (8 /aB)Sp(pq), i.e.
is analogous to (2.17") in the region of large deformations. Simple analysis
shows that in differentiating Sp(Fq) over 3, the quantities ) and A may be
considered to be constant” so that the expression for C formally concides
with (2. 19). In view of (2. 20) we obtain

C = (3/98) Sp(5g) = « L (&¥/2E}) qh+ ¢ B lipy -pller-a )}l awl®. (2.30)

It should be noted that (g -pu)/ (e, - €)—2&/2E3 when ¢, — ¢,,s0 the first
term in (2.30) is the sum of diagonal terms, omitted in the second sum,
Joining both terms we obtain™*

C = (2/9B) Sp(6d) =« El(ps -pMew - &)l lawf’. (2.31)

The quantity (p, - p)/{e,'-€ as a function of €, with (e, -€,) fixed has a sharp
maximum at the Fermi surface (¢=0), the width of which is determined by
the larger of the values (A,]e,,v-eu]). The area under the curve is equal to
unity. We can consider the matrix element q,, to be a smoothly varying
function of €, for fixed values of (e,-¢,). This makes it possible to perforin
the substitution

{ov -pvv')/(ﬂ;'-flI)" 8(€,)

'

* This is because the variations of A and A under deformation are small compared with the shift of
single-particle levels 8¢ /08 ~ Kq. Evaluations show that 0A/38 < kq A~ 1/3and dA /88 ~ KaA= 1, An
exception is an oscillator model where 3\ /98 ~ 0¢ /33, Taking the terms a>\/aa into account results in
the compensation of the first term in (2, 30) for this model,

#% Let us be more exact, The unification of both terms is possible if we take all nucleons into consider-
ation, The second term in (2.30) may be neglected for nucleons at the Fermi surface, Doing this,the
formulae in (2. 34) will yield not the total deformation, but only that part of it which is associated with
the external nucleons,
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in (2.31) (see analogous calculations in{6]). After this the sum over v'in
(2.31) can be performed and, introducing the density of particles in the ener-
getic and coordinate space (on the Fermi surface)

we find
Coxfa¥ § ol F) =xolea. (2.32)

Here the average from §® with an accuracy up to ~ 6R/R values does not
differ from the average over spherical distribution, so one may assume that
q? is independent of the deformation. The value C, as was expected, does

not depend on the deformation and is a smooth function of the number of nu-
cleons A, The quantity C may be connected with the quasi-classical coefficient
of elasticity. And, indeed, from (2.27) we have (see (2.12)) Ry, a~ Céyy from
which, in view of (2. 13) and (2. 24" ) we find

Kgs =~ k[(1/C)-1]. (2.33)
From (2.33) it follows that for the siable system the inequality C< 1 should
be fulfilled. ‘ ‘

The solution of equation (2. 15) in the region of large deformations in
view of (2.27) takes the form

B = B2 = B(v)/(1-C). (2.34)
The quantitative calculation of the equilibrium deformation (2. 34) cannot
be carried out in the general form, as the function B(y) is sensitive to the

model of single-particle levels. We shall discuss formula (2. 33) later in
connection with the vibrations of deformed nuclei.

2.7. Phase transition from spherical to deformed nuclei
Let us consider the nature of transition from spherical nuclei to the

deformed ones qualitatively. It would be convenient for the analysis to write
down equation (2. 15) as follows

1/a = A(B) ‘ ~ (2.39)

where the functioﬁ A (B) in the region of low deformations according to (2.17')
is of the form

MB)=1+(b/2a) Bcos 3y +.... T B«Aaky) (2.36)
and under 1ar;ge deformations (see (2.27)) is equal to
AMB)~Ca '+ By atp! (B «Akaq). (2.37)

As one sees from (2. 36) the behaviour of A(B) in the region of small 8 depends
on the sign of the expression (b/a) cos 3v. According to (2. 21) the value a
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is always positive and b may change its sign with shell filling.* The extr:me
expressions (2. 36) and (2. 37) permit qualitative presentation of the function
A (B) behaviour, also in the intermediate region.

Figure 1 plots function A (B) for cases of positive (I) and negative (I[)
values b cos 3vy. Solutions of equations (2. 35), representing extremum vilues
B by fixed values of y (extremum points of function W(B) (2. 10))are given by
the intersection points of the curve A= A (8) with horizontal straight line
A= 1/a. Moreover, one must take into account the solution f = 0, excluded
from (2.35). As was stated the B = 0 value corresponds to the minimum of
W(B) when a <1 (A>11in Fig,1) and to maximum when a > 1 (A < 1),

From Fig. 1 one can easily see the full picture of the distribution of
the extremum points for W(8). :

AR .
B

Fig.1

I.bcos 3y>0 (curve I. Fig. 1). In this case one should distinguish three
different regions of shell filling (values a):

(1) 1/a > Ay = max A (). One minimum when j =

(2) NAg > 1/a> 1,Three extremums: mmlmumwhenB 0 (2)—max1mur1 (3)
-minimum (4).

(3) 1> 1/a.Maximum when 8 = 0 (5) and minimum for B # 0 (7).

II.bcos 3y < 0 (curvell, Fig. 1). Two regions of filling
(1) 1/a> 1. Minimum when 8 = 0.
{2 1> 1/a, Maxiroum when B = 0 {5) and minimum when  # 0 (6).

Thus, in a region of sufficiently small a in both cases W(8) possesses
the actual minimum when 3 = 0, which' corresponds to the stable spherical
state. On the other hand, in a region of sufficiently large a there exists only
the minimum when § # 0. .

Let us consider now the case of transition from spherical nuclei to
deformed ones with the increase of filling (decrease 1/a). When b cos 3y<0
transition occurs when 1/a = 1 and deformation beyond the transition point
smoothly rises from zero (''phase transition of second kind"). In the case
of b cos 3y > 0 (curve I) with increase of filling (lowering of horizontalline in
Fig. 1) the function W (8) acquires a second minimum for B 7 0 (4), at first,
besides the minimum in the point 8 = 0, which then gradually decreases. The
transition to the deformed state will occur at the moment when both mini:ma

*For a single j-level b is negative in filling the first hailf of the shell and is positive for the secand
half, In the oscillator model we have reversed behaviour. This is associated with the different directions of
the level density gradient in these models, Real nuclei in this respect are nearer to the oscillator model,
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become equal. In this case deformation proceeds from zero to some finite
value (''phase transition of first kind"').

Hitherto we have considered the extrema of W(B) at fixed v. Now
we ghall make use of the stability criterion with respect to the variation of
parameter y. As one sees from (2. 26) in the region 8f small B the sign of
the restoring force coefficient Ky, is defined by the (1-a) value. Thus so-
lutions for small 8 corresponding to curve II in Fig. 1, for which 1/a <1,
appear to be y-unstable. Therefore the transition to the deformed nucleus
may occur only according to curve I. Thus the transition from spherical
nuclei to deformed ones occurs with the jump in deformation and is, there-
fore, a phase transition of the first kind.

3. DO y-DEFORMED NUCLEI EXIST?
3.1. Calculations in harmonic oscillator model

As stated above, the estimation of the equilibrium shape of the nucleus
in the region of large deformations in the general form appears-to be im-
possible,

Let us make use of the oscillator model for the single-particle potential.
In this model the matrix elements of the single-particle quadrupole moment
q, are diagonal inside one shell, and Eq. (2.4) is satisfied for the states
|v> = |nxnynz > (n;- oscillator quantum numbers). State'Y differs only
by the spin direction.

For single-particle energies ¢, (8, v) from (2.4) it follows that

€y = € - kB (q,cosy + s, siny) (3.1)

where € = hwn - A, and matrix elements q, and s, are equal* to

q, = ng/n-1/3;s, =(n,- ny)/J—Sn;n=ZiJn1. (3.2)

Further calculations will be carried out with quasi-classical accuracy
neglecting values of order 1/n, Then summing over (nynyn, ) within the shell
= const may be replaced by integrating over q, and s,

RNED ﬁdqu (3.3)

where 2Q= n? is the number of states in the shell under consideration. The
region of integration in plane (q, s) is an equilateral triangle with thever-
tic in the points (2/330) and (-1/3;+3 Y (Fig. 2)

Let us first consider equation (2. 7) for the chemical potential A, i.e.for
parameter ¢ in (3. 1). In the region of large deformations (8» A/k) we may
replace the density matrix p,, by the stepping function:

P = 1 Ey‘< 0
w 0 e>0 (3. 4)

and integrate over the region ¢, (g, s) < 0. The equation défining the boundary
€y (g, 8) =0 determines the straight line which, when 0 < y< 7/3, possesses

* We define Gy 8 and consequently Q as dimensioniess quantities., Dimension factors are included in
parameter K.
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Fig. 2

negative slope to the axis q. When the line passes through vertex 1 the irte-
gration region vanishes. This is in accord with the unoccupied shell and
corresponds to € = €max =(2/3)xB cosy. When the shell is fully occupied .
(ey (g, 8) = 0 passes through vertex 2) then € = emin = (2/3)«B cos[y+(27/2)].
Thus, parameter ¢ varies when the shell is filled in the limits

=(2/3)kBcos[v + (27/3)]< e<(2/3) kB cos ¥ (3.5)

Let us introduce the new parameter é instead of €, putting
€= (2/3)kB cos (v + 26), : (3.15)

then the full variation of ¢ is attained when 0< 6 € 7/3.

Note that the region of integration over (q, s) depends on the position of
the straight line €, {q, s) = 0 about vertex 3 (the shaded regions in Fig. 2).
It can easily be seen that the condition of the straight line €, (q, s) = 0 passing
through vertex 3.may be written in the form v + 6 = 7 /3. Thus, the compu-
tation of integrals over (q, s} should be carried out separately for v+ 6< 7 /3
and v + & >7 /3. Simple calculations give in the case v +§ < 7/3

) : .2 22
o - gpSiny  sin®ssin®(y +6), 3.
L pyy = 243 Qﬂdqu % sin 3y ~ sint (n/3) @1
ey<0

It is convenient to introduce for the shell occupation characteristic the quanti-
ty : .
X = 1-N/@, - (3.8)

which at 0 <N < 2 @ varies within the limits -1< X < 1, The equation (2, 7),
in view of (3.7), leads to the following relation between 6 and X

sin v sin?s sin®(y + &) R

1-X=
=6 sin3y sint (7/3) ’

(v+8< %) (3.9)

Analogous calculations for v + § > 7/3 result'in a similar formula, but with
- substitution in (3. 9)

X=-X

y—= Y= (7/3) -v; 6—F = (n/3)-6. (3.10)
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The right-hand part of Eq. (2. 15) is calculated in a similar way
5 pulaycosy + s, s"in'y)-’2.~/-395\§dqu (g cosy + s sinvy).

R . ey< 0
As a result, we get for vy + 6<7/3

g = 3 Q giny sin%s sin®(y + 6) [cosacos(y + 6) siné sin(y + §) (3.11)
2 " sin 3y sint(7/3) cos? (7 /3) © sin2(7/3) B

i
(’Y+5<§).

Equétion (3.9) defines parameter é as a function of the occupation factor X.
Eliminating 6 from (3. 11) we get™ '

B = Q(l-x)[cosy 7\%’5—;’;?(1%]; (y +6 17/3_) (3. 12)

yielding the extremum value j at fixed v* The definition of the region in
which (3, 12) is valid after the exclusion of & is as follows

tan ¥ < V3[(1+X)/B-X]; (v +6<7/3). (3. 13)

In the region v + § > 7 /3 the equation for § analogous to (3. 12) is of the form
(after substituting (3. 10))

B=q(l+X) v[cos?— sin 3y (1_.+x)] i (v + 6 >7/3). (3. 14)

6 sin¥y

It can easily be seen that expressions (3. 12) and (3. 14) coincide at the bound-
ary {y + § =7/3). Note that equation (3. 13) for the boundary of the two regions
is invariant with respect to the replacement y—7%; X —-X,

Substituting the extremum values B(y) (3.12) or (3. 14) in (2. 10) we get
the ground-state energy W as a function of parameter v

W(y) = hunN - 1«2 (y) - § a%/G. (3.15)

In the region of large deformations considered the pairing energy AZ/G may

" - be neglected compared with the deformation energy k32, so that the absolute

minimum of W(v) is defined by the maximum B(vy). The investigation of funct-
ion B(v) defined by Egs.(3.12) and (3. 4) is not very difficult. Let us state
here the results. :

The values v = 0 and vy = 7/3 are always extreme and one has to dis-
tinguish three regions of shell occupation:

(1) -1<.X<-1/8 ; ¥=0 - minimum;
v = 7/3 - maximum.
(2) -1/8<X<1/8 ; y=0pand v=7/3 - maximum,

the absolute maximum is in v =7/3 when X < 0'and in y = 0 when X > 0. For

% When comparing the right side of (3.12) and general expression (2.27) we see that the term Cg, in
this case, is lacking. This is due to the fact that we consider nucleons on one shell only, Taking into ac=
count matrix elements of qy connecting shells n, n + 2 will lead to the appearance of this term and to the re~-
normalization of equilibrium deformation 8 (see 2.34),
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X'= 0 (half-filled shell) both maxima become equal. There exists an inteir-
mediate minimum for y = y(- X).

(3) 1/8<X< 1 ; ¥=0- maximum; v=7/3 - minimum.
The form of function W(v)} in the above three regions of X is illustrated in
Fig,3.

wg
1

%

Fig. 3

Thus, the equilibrium form is always axially symmetrical. In filling
the first half of the shell (X > 0) a prolate shape is advantageous (y = 0), end
in filling the second half (X < 0)-it.is oblate (y = 7/3).

3.2. Improved oscillator model |,
- The total symmetry with respect to transformation from prolate to ob-
late shape (y— %) with simultaneous substitution of particles by holes (X— -X)

is a specific feature of the spherical harmonic oscillator model due to the
additional degeneracy of single-particle levels in the orbital angular monien-
tum. As is well known, good approximation to the real level scheme is afl-
tained by the inclusion of the term D42 yielding splitting over 4 to the oscil-
lator potential as well as spin-orbit interaction C(E s )[7]. We shall con-
sider these correction terms as perturbation. Such a consideration is valid,
in any case, for the region of large deformations when level splitting caused
by deformation is higher than that caused by terms D42 and C(7’5).

The correction of the first order to the ground state energy caused by
the perturbation potential is given by the expression

1 - ~ - Led .
WO = 8p (51)= 2 o (v| V|v). (3. 6)
Let us consider term D/2 for which the diagonal matrix element is given by

D {ny nynzlgzlnxny n, »=2D(ngny +nyn, +n,ny +n)

= (3/2) Dn® [4/9 - (¢ + s2)] (3.17)

where q and s have been défined in (3. 2). Substituting (3. 17) into (3. 16) we
find

W = (3/2) Dnzgpw [(4/9) - (g5 +s2)]- (1/4) Dn*. (3.18)

For the larger symmetry of the formulas we have subtracted from W D the
value()Dn* = L{ W (N= 2. Q) - W) (N =0)}. Using (3. 4) and proceeding in



ASPECTS OF COLLECTIVE PROPERTIES OF NUCLEI 313

(3.18) to the integration, excluding 6 by means of (3.9) we obtain in the region

v+ 6 < W/S
W= -DQ? + }32 DR (1- x)3/2}:§3
v (3. 19)
. 3 sin y sin 3y
x{cos'y 8 < © “ sin 3’y> 6 sin v (1-X)}

and when y + & * 7/3; \

Wt pa? _ (I pat( + v [EEL
3 sin 3%

- 3 sin ¥ sin 3% :
X {cos T3 (L+2 sin 3% )\[6 sin ¥ ( X)} (3.20)

from (3.19) and (3. 20) follows the relation

W, y) = -wPxy) (3.21)

which confirms the fact that the term D{? eliminates the symmetry with
respect to the replacement y—=J; X—* ~X .
Function W (y) defined by (3. 19) and (3. 20) has the following specific
" features (parameter D < 0{7]):
(1) -1<x<-3%. Minima when vy = 0 and 7/3
intermediate maximum for v # 0, 7/3.
(2) -1<x<3. Minimum when v = 0, "
maximum when y= 7/3.
(3) $< x<1. Maxima when y=0and vy = 7/3
intermediate minimum for v ¥ 0, 7/3 (see Fig. 4).

W(g- WD)
~Dn4

Fig. 4

It should be pointed out here that except for the narrow regions ~0,75 <|X| <1
it holds everywhere that W) (7/3)> W®(0).
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As follows from the above analysis, the term Dzz eliminates the symn-
metry between prolate and oblate deformations and expands the stability
region of prolate nuclei. The minimum W (y) at the intermediate values
of v, as may be seen from the plots in Fig. 4, is hardly marked. It becomes
notable only in the very beginning of shell filling (X~ 0.8 - 0.9) where th2
value Wis itself small. Therefore, the term D£* may lead to the equi-
librium non-axial deformation only when the ratio |D I/K is large enough. (At
X = 0.8 it is necessary that |D I/K > 0.3). According to the Nilsson model
we put IDI & 0. 025 hiw, The parameter of quadrupole interaction estimated
in [8] is k = 250 A“L MeV™. Then for the parameter ratio we find |D|/k & 0.1
(for A = 125), which is too small for the appearance of equilibrium y-deform-
ation. :
Thus, the main effect caused by the term D4? is the elimination of sym-
metry with respect to the oblate and prolate shapes, Figure 5 illustrates
the energetical difference between the oblate and prolate states for various
parameter values|D|/k- As one may see from the plots, when |D| /k=0.4
the region of oblate deformations practically disappears, :

wd-wa
Xnif2

/

Fig. 5

Spin-orbit interaction c(-l_&t;) essentially changes the order of single-
particle levels, but its contribution to the ground-state energy in the first
order of perturbation theory is zero. '

3.3. System with two types of nucleons

Till now we have been concerned with the system consisting of nucleons
of a single type. Let us extend our results to the system of neutrons and
protons. Cooper pairing occurs independently in neutron and proton sub-
systems. Quadrupole interaction should be considered identical for any pair
of nucleons™ Then it can easily be seen that the basic formulae require only
significant modifications. Equation (2, 4) is valid if by Q, we mean thetctal
quadrupole moment of neutrons and protons. Equations (2.7) and (2. 8) are

% Our value k differs from the parameter X in paper {8] by the factor 9/4, namely « =(9/4) X.

%% For the discussion of the possible difference in quadrupole interaction constants see [9] .
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now valid separately for neutrons and protons and define Aypyand A

. n(p)
respectively

)b Y 1'<:sz =)

v

‘ 1 ’ (3.22)
G, 3} .= 1
n(P)Zz (6,2, - A?x(p))i
Yn(p)
The equation for Q, instead of (2. 9) takes the form
Q =@} +QF = Z ol vlau|vd +Ealvlaulvd (3.24)
p
and presently for the ground-state energy (2. 10) we have
WQ =Z onles +X) oy (e, ) + 3 EQL Q, (3.25)

- A% /2G, - & 5/2Gp.

The treatment of the problem of nuclei transiti/on' from the spherical
to the deformed shape has not essentially changed if we assume that the para-
- meters (a, b, B(v), C) entering {2.36) and (2.37) are determined as some
values averaged over neutrons and protons. Let us proceed, therefore, to
the problem of equilibrium shape for the two-component nucleus in the region
of large deformations (oscillator model).

As is directly seen from the structure of Eq. (3. 24), equilibrium
deformation § is determined by the expression

Bly) = BynX) + By (v.Xp) _ (3. 26)

where the functionfi(y, X) is given by the right sides of (3.12) and- (3. 14). The
ground-state energy as a function of v now takes the form.of (cf. (3. 15))

W(y) = (HwnN)n_ + (ho.)nN)p -3k 152 (‘Y)-Azn /ZGn _Azp/sz (3.29

and (when neglecting pairing) is defined by the behaviour of 3(y) (3. 26). (We
have not yet considered corrections to the oscillator model). The functions
B,(p) (v.X "(p) ) (3.12), (3.14) in the {first half of the shell (X > 0) are monoto-
nously decreasmg functions of vy, and in the second half monotonously in- -
creasing ones (except the narrow region of non-monotony near the middle

of the shell). If neutrons and protons occupy the same halves of the shells
then the sum of functions (3.26) will possess the same properties and, con-
sequently, the equilibrium shape will be axially symmetrical. But if neutrons
and protons occupy different halves of the shells (X, X< 0) then function
(3.26) may have a maximum for intermediate values of v, thus leading to

the non-axial equilibrium shape. We shall not carry out the cumbersome
analysis of the two-parameter function (3.26) and find its maximum, restrict-
ing ourselves to estimating the parameter region only, .at which there exists
an intermediate maximum of B(v) (i. e. minimum W(+}).

The function W(y) undoubtedly possesses a minimum for 0 < y < 7/3

if the points v = 0 and v = 7/3 (always extreme) corréspond to maxima of
W(y). Let us find, therefore, the region of X, and Xp, for which W(y)
possesses a maximum when ¥=0, 7/3. These regions, whose boundaries are-
defined by means of (3.27), (3.12) and (3. 14) from the equations
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Xp

-1

Fig. 6

(W /i), =05 |a/mEw/en)] =0

are illustrated in Fig. 6. As can be seen from the plots, there in fact exist
such values of X, , Xp for which the function W(y) possesses a maximum

both for v = 0 and v = ¥/3 (region I limited by curves a, b). Such a case takes
place when one sort of nucleon occupies the first third of the shell {(1>X:> 0.4
or 0 < N/2Q< 0,3), and the second occupies the last third (-0.4> X > - | or
1>N/2Q> 0.7). It should be noted that such an occupation of neutron and
proton shells is not likely to occur in the known region of the deformed miclei.
The taking into account of term D2 leads to an inessential variation of the
region of Xp, Xp with an intermediate minimum of W(y). Thus, in the two-
component system, too, the appearance of an axially non-symmetrical equi-
librium shape is in practice hardly probable.

It is clear that we cannot expect a death sentence for the . deformation
from the qualitative analysis given above. It would be desirable to perform
quantitative calculations using the real scheme of one-particle levels for
those regions where the appearance of stable y-deformation is most probable.

4, THE ROTATION OF DEFORMED NUCLEI. MOMENT OF INERTIA
4,1. Formulation of the problem

Let us proceed now to the consideration of collective excitations of nuclei,
i.e.to the problem of the time-dependent self-consistent field. First, we
shall consider the case of rotation of the deformed nuclei. This question
refers in fact to the problem of finding the time-dependent self-consistent
field, but the process of its solutions involves great difficulties. The so-
called cranking-model has been generally used (or other equivalent meth>ds)
and results in the apparently correct value of the moment of inertia in case
of rotation. Rotation of the quantum system leads to the additional energy

grot o h2I{ + 1)

3 23 “.1
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where J is the quantum number of the angular momentum and 7 the
moment of inertia of the system, The separation of terms of the type of (4. 1)
from the Hamiltonian of the nucleon system, using a reasonable approxi-
mation, is a very complicated problem. The main complication is that pertur-
bation theory must be constructed so that the rule for angular momenta addi-
tion (algebraically non-additive preservation law) is fulfilled. This difficulty
may be overcome in the following way. Let us consider a rotational state
with very large J, then the rotation is quasi-classical, and we may speak of
the definite direction of the rotation axis (x) and instead of (4. 1) we can write,
assuming J~&J,,

B x w3229 =39 of - (4.2)
‘where 2y = hJ, /9 is the angular velocity of rotation, Thus at large J the
problem is reduced to the finding of the energy of state with a definite angular
velocity. But since the moment of inertia is a coefficient independent of J,
and having found it from (4, 2), we simultaneously also define (4.1). The
substitution of (4. 1) by (4. 2) is the main idea of the cranking model. We make
use of an equivalent method.

We shall look for the lowest state of the system at a fixed average value
of the angular momentum about the axis of rotation (perpendicular to the
nucleus symmetry axis). For this purpose we shall add the term

H, =-93x=-9§2<1|jx|2>a{ ag - (4.3)

to the Hamiltonian, where 3 is the operator of angular momentum and
is the Lagrangian multlpher which will be determined later from the condition

CIe> = X

4.2, General expression for moment of inertia
-

Let us consider (4. 3) as perturbation, Then the problem is reduced to
the calculation of the correction to the ground state of the system under ex-
ternal perturbation. Since the angular momentum operator changes its sign
under time reversal, i.e.

Aig 12y = -<3l5 [T >, (4.4)

then, according to the classification of perturbation (1.21), we have in this
case

ViR = -aliley; v = o; (4.5)

therefore, we may put Z( D= 0. To define 2{? we have from (1.25), (1.2) and
(4.5) :

E12Z12 - 512 A12 +n12) U(12 =Q n(1—2)<1|.]'x |2>. (4.6)

The correction to the ground-state energy according to (1.31) is, in this
case, equal to

Q) - . RO
CHS =392 g (1l |25 @3 /). (4.7
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The parameter  is found from the equation <jx > =Jx,i.e. in view of (4. 3)
and (1.32) .

CHy >=- 9" Emid (1fi ] 2) (Z2%/9) = - aJ,. (4.3)
Froin (4.7) and (4. 8) it follows (see (4. 2) ) that
<H§L§ﬁ/y, ‘ (&b
where the moment of inertia 7 is determined by the following expressior‘,
7= £ il 1> @53 /9). | (4.10)

For analysis, it would be convenient to represent 7 in separate terms.
Using (4. 6) we write

®, @, 59

3 =9 (4. 11)
where |
g P2zl g2y P (il /Bn) (4.12)
9% calie |15 (80 /)E 1 /E2) (4.13)
7 = - £ ol |10y Tm). (4. 14)

The consideration of the rotation by means of the adiabatic perturbation
theory (the usual form of the cranking model) gives only the first term in
the moment of inertia [5]. This method is equivalent to taking into accout
the diagonal corrections to the average values only; i. e, {aia, >(2)and {aja, >(2)
which may be done within the framework of the usual Bogolyubov u, v- trar.s-
formation, The consideration of non-diagonal averages results in two ad-
ditionalterms. The term 7(? takes account of the effect of rotation on Coope:r
pairing™(this is expressed by the appearance of A({é ). The last term, as
follows from its structure, describes the variation of the self-consistent
field under rotation. Note that so far we have obtained the explicit expres-
sion only for the main term J(1.(4,12). Expressions (4. 13) and (4. 14) con-
tain the function Z(l';), which must be found in order to solve integral equaion
(4.6),

4.3, Estimation of the basic term 3@

For quantitative calculations of the moment of inertia for real even-
even nuclei we may restrict ourselves to the term (1. Using the explicit
expression for r(-)2(see second footnote of 1.4) we have from (4.12) (con-
sidering A%to be constant)

(1) X
7= 2| < 1]ix [ 25 PI B Ea- 1 cp - A7)/ 2B Eq (By +Es) (4.15)

To estimate (4. 15) let us use the method proposed in [6]. At the fixed index 1

———??—v_- B 2 . . "
% The term 7% yas first obtained by MIGDAL, who used the method of Green's functions [6] .
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in the sum of (4. 15) the second index 2 takes just the few values permitted
by the selection rules for the matrix element of j, . As can easily be checked
the last factor in the sum at fixed difference €; -€; has an abrupt maximum
over variable ¢; whose width is A {or l€1 - €g| if Iq -€2 I>A) at the Fermi
surface and

fdfl (EyE3- €1 €2- A%}/ 2E; By (By +Ep) =1-gl(e;-€2)/24]  (4.16)

where

‘arshx
(1+x2)°

If there is a sufficient number of levels in the region A (or |€1 €2 [) (this
condition is practically vahd for nuclei) one may make the following replace-
ment in (4.15)

A (B By e cp - 871/ 2By (B 48y) o X (%‘g—z—ﬂa(e;). (4.18)

g(x) = (4.17)

As a result we get

5 Ll 1251 [ 1-6(E52) Joten. @19

12
In the model of the oscillator potential the matrix element { lljx l 2> for
the two types of transitions is different from zero:
(1) Transitions inside a single oscillator shell (”near trans1t10ns”) for
which

= |er-ez | =Huw, - wy|¥H w 6R/R (4. 20)

(here w, , w, are oscillator frequencies in different directions, and sR/R
is the deformation of the potential);
(2) Transitions across the shell (''distant transiti__ons") for which

= |61—€2|N 2fw, (4,20’)

‘The following inequalities are then valid for near and distant transitions
' a
d'/2ag 1; d"/24a » 1, (4.20)

The matrix elements of transitions are inversely proportional to the corre-
sponding values of d. Taking account of all the above, we get the following
estimation for (4. 19)

V% goll-gld/2a)], ' (4.21)

where the rigid body moment of inertia is denoted by %, which may be"
formally obtained from (4.15) or (4. 19) in the limit A-0. As follows from
(4.21), Cooper pairing considerably decreases the moment of inertia,
Although the above evaluations refer to the oscillator potential, qualitatively,
they are also valid for other models,

A number of authors [10, 11] have carried out detailed calculations of
the moment of inertia using formula (4. 15) on the basis of the semi-empirical
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Nilsson level scheme [7]. The results for all nuclei are in good agreemerit
with the experimental values of g (deviations, as a rule, are less than 10%).

4.4, Hydrodynamical limit and gauge invariance

From a purely theoretical viewpoint one should not be restricted only
to the term 7Y in the moment of inertia in spite of the good agreement with
experiment. In fact, in the limits of a very strong pairing strength (A»d',d"),
when the size of the Cooper pair ro ~i#iv/A (v - velocity at Fermi surface)
becomes much less than the nuclear radius, the hydrodynamicalequations
of an ideal liquid should be valid, resulting in a moment of inertia

Firror = o (8 R/R)z- (4 2:)

Expression (4.15) or (4. 19) in this limit becomes zero. The main role in
‘this case belongs to the term #? which yields (4.22)%.

Note that if interaction between nucleons is approximated by the pairing
interaction (2. 6), then A(ﬁ = 0 and the term 7? becomes zero. Thus, when
using model interaction (2. 6), the transition to hydrodynamics at A-0 is
lacking. This is associated with the fact that interaction (2.86) is gauge not-
invariant, For gauge-invariant interaction the "diagonal" matrix elements
11| G| 11y are connected with the "non-diagonal' (1 3| G| 2'1'>, so that
the latter cannot be randomly considered tobe equal to zero, as in (2, 6).
Let us consider, for instance, central short-range forces )

G(TiT) = -Gé(F -F). (4.23)

In this case equation (1.19") for A can be transformed to

P (R) 9 (P) _ ' 4 o
Gz—l——z—E—l—l-——l. _ | (4., 24)

1
For an arbitrary function of the space coordinates ¢ (¥), in view of (4.23)
and (4. 24), one may easily get the following equation

¢12 Y2 = -1'22'<1§‘ Gl A 1'>(E1'.2*./4_E1' 'Ez‘)(bl'z"yz’ b (4. 2!))

yielding the relation between the different matrix elements of the interaction.
(The value vz = -v5 has been defined in (1. 19")). N

The connection between the gauge-invariance of the interaction and the
possibility of passing over to hydrodynamics has a simple physical meaning.
In the hydrodynamic description macroscopically small parts- of the liquid
move relatively to each other in such a way that their intrinsic structure
stays the same, In particular, the interaction between particles does not
change. In other words a local (in the macroscopic sense) Galileian invari-
ance exists in the liquid. ‘

In a Galileian transformation the single-particle wave function trans-
forms according to i

¥ (F) o v (B) e S (4.25)

(2)

% This was shown by MIGDAL [6] who also obtained the explicit ‘expression for :J"  in an oscillator

model,
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where P /m is the relative velocity of the two frames of reference. If we
have local Galileian invariance in the system, then P is a function of the
space coordinates and hence the transformation (4. 25') actually coincides
with the gauge transformation

—

¥ (F)~ ¥ (F) &9 (4.25")

where X (?) is an arbltrary function of the space coordinates. Thus the inter-
action matrix element <12 IG]2'1'> in a hydrodynamical system must be
invariant under transformations (4.25%).

The model Hamiltonian (2, 6) is rathir poor in the sense that it only
describes the interaction of pairs at rest., When the pair moves as a whole
the interaction is switched off, Naturally it is not possible to pass over to the
hydrodynamic limit for an arbitrarily large interaction of such a type.

4.5, Estimation of the term (2

Let us transform the integral equation (4. 6) making use of (4.25), For
simplicity let us neglect the variation of the self-consistent field under ro-
tation and assume U{? = 0. Then, using the definition of A (1.36), we get
from (4. 6)

Alz + E<12|Gl§'1'> (érz' [Era) 5 (4. 26)

- -9 £ 13]Gy () il 2.

In the case of central interaction the value A7is a function of the space co-
ordinates, so that for A(m (+ v2 912) the equality (4. 25) is valid, As a result,
equation (4 26) may be reduced to the form

)2
):<12|G]2'1'>{<fE11§E2 ﬁ;‘) ash-0 1;:'31'2 <y |z->}

() ()

from which, after subst1tut1ng 3 and using (4.23), we obtain

z Y (r)cpl(r)[l/ElEz(Eszm(el 2?7283 204 (e1-e2)< 1]3,]2 > =0.
(4.27)

Note that i (ej-€2) <1hx]2 > = ' . is the matrix element of a function of the

space coordmates] y(au/az)uz(au/ay) Therefore, multiplying (4. 27) by

] 12(x-) and mtegratmg over r, we obtain
K «x L, 0 . -
12;{1/E1Ez (B E) ] {(e1-€2) T}, 1832 v2-2 243, ]2} =0.  (a.28)
From (4. 28) it is clear that equatioh (4. 28) is satisfied if we assume that
&)y, =-ijx D/2a (4.29)
2%z T ¥ s .

* In a macroscopicsystem the above statement follows directly from the form of the interaction, anal
ogous to (2.6), namely <p - plGcl-pp>.
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D= Z 1312 |2 Z 1312] <E1 €2> (4.3 0)
BE1Ep (E; +E; E; Ep E1+E2) e
From (4.13) we then find

*x
3(2) ‘ (E 312 > Yk <€1 ez>2
122E; E; (E1 + E3) 2E1 E; (E; + Eg) (4.31)

Let us now assume the self-consistent potential of the deformed nucleus t>
be of the form '

where

U=U (¢) v (4.32)

where
ri=(<*+y%)/(1-36R/R) + 2% /[1 +(4/3) (6R/R)]. (4 33)

Then for the function j* we obtain (accurate up to terms linear in 6R/R)

P = y(9U/82)-2(8U/8y) =- 4yzU'(r?)(6R/R). o (4.39)

Let us note also that in the case when A » d',d" one may substitute in (4. 31)
1/E1Bp (By +E2) - (1/4%)8(eq). (4. 35)

With the aid of (4.34) and (4. 35) it is easy to see that the right side of (4, 1)
tends to the finite hrmt when A- % and ‘7(2) ~ «.SR/R)2 as it should be in tke
hydrodynamic limit,

[

5. VIBRATIONS OF DEFORMED NUCLEI

5.1. Model with quédrupole interaction

Let us apply the équations of the time-dependent self-consistent field
to the consideration of the eigenvibrations of the deformed nuclei, We shall
restrict ourselves to the counsideration of quadrupole-type vibrations of
nuclei with axially symmetrical deformations. Two types of vibrations aré
known to ex1st in this case. One type conserves the axial symmetry B -vibra-
tions, and in the second type the axial symmetry is disturbed, ‘y-vibrations.
To solve the system of homogeneous, integral equations (1.35) we make a
simplifying assumption as to the interaction matrix elements. To start with,
we consider only the quadrupole interaction (2.1'), ‘which natdr‘ally plays a
decisive role in vibrations of the type considered. Then in (1 35) one must
put

®z O )
Am € = 0, (5..)

("‘) = . E3 \
12 Kfqu(m) Qy
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where
), ™ :
Q, = Zq, (12) n5 23\ (5.2)
12
After substituting (5.1) into (1.35) we get
) M) xn® £ g% ' 53
“)Zm = 122 le Kr’(12) pqu(IZ)Qu. (5.3)
® )
WZy, =By, 2
or after eliminating z0
2 _ 2 7™ akn® R D%
(Em w) 2 12 Mg EIZ“ q, (12) Q- (5.4)

From (5.4) and (5.2) we obtain the system of algebraic equations for Q,

. ) 12 '
Q, =<z (B0, /2, - Na, (12054 (12) Q. (5.5)

The factor Ejgmd %/ (E1# -w?) in the sum in (5.5) is a positive function with
maximum at the Fermi surface while qu(12) is the alternating function. Hence,
at not very large -deformations (sR|R « 1) one may consider that the main
term on the right-hand side of (5.5) is a term withi4' =4, In this approxima-
tion.we have '

Q, = xZ[E,n”* /®Y, -0 a, 12]° q, (5.6)

from which we get the following dispersion equation for eigenfrequency w

2 - 2 2 2 _
«Ela, 02 (B0 /B, -0)] = 1. (5.7)

It is convenient‘to transform Eq. (5.7) somewhat. We introduce the
notation

= KE2| q, 12 ) /B, (5.8)
1
B - (k/) | q,(2)|* W /B, 1424 ® 2 0h) )L (5.9)

Then Eq. (5.7) can be rewritten in the form

(0/28)% = [ 1/ -1]/B(). . (5.10)
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The right side of (5.10) has a simple physical meaning. The quantity (1/o - 1)
is the restoring force coefficient (cf.(2.13))and B(w) the inertial parameter
for the vibrations in question.

We shall use the same procedure in considering ¢ and B(s) as when
calculating the momentum of inertia. If we keep the difference d = €; - €2
fixed, the quantity _n(l'gzlE 12 as a function of €; has a sharp maximum of
the width A (or d if d > A) at the Fermi surface. Assuming that | qQy (12)|2
changes little in this interval *, and taking into account that the integral of

n(;;2 /E12 over g is equal to unity, we may make a replacement in (5. 8):

)2 - :
N, B, é(e) . (5.11)

The same arguments allow an analogous substitution in (5.9) -

2 (hy2
48 mg ~ l-gld) 5 (5.12)
2. - T .
1?11_2 (E2, w?) 3 by

where g(x) has been defined in (4.17) and

p=Vd - hjaal, (5.13)

The quantity £ becomes purely imaginary for w?> d2%= (€, - €)%, For im-
aginary arguments the function g(x) has the form

alI‘CISHl X- ; (X2 <1 )
XL-X (5.14)
arch x ; (xz > 1).

x 1 -x2

It can be seen from (5.14) that g(ix) has a singularity when x tends to unity
from below, '
Substituting (5.13) and (5.14) in (5.8) and (5.9) we obtain

glix) =

o= kEs(e)| q (121 o (5.15)
12 s
Bw) = (k/0). £8(e)]q (12) F (1 - g(0))/ 22 (5.16)
The quantity (5.16) can be expressed as
B ) ={(1- g(eN/2?% (5.17)

* Otherwise it is necessary to consider values of | qu (12)| averaged over the interval A(or d).




ASPECTS OF COLLECTIVE PROPERTIES OF NUCLEI 325

where the symbol [ ] means averaging with the weight «é(€;)[q,(12)]%, i. e.
. 2
[X] = (/o) Eb(e))]a,(12)]" X (€3~ €5) - (5.18)

The operator of the single-particle quadrupole moment q has two types of
matrix elements; the first, with d < 24, connects states with near-lying
energies for q, diagonal; the second connects distant states with the transi-
tion energy d"» 2 A, The weight function in (5.18) has consequently two peaks.
Therefore when estimating the average (5.18) of a smooth function X (€, - €y)
it can be assumed that

[X] = (0'fo) = X (d") + (0"[o) X (d") (5.19)

where d' and d" are mean values of €, - €, for near and distant transitions
and o', ¢" are the corresponding contributions of these transitions to (5.15).
Using (5.17) and (5,19) we can transform Eq. (5.10) to the form

Fw) = (w/2A)2{(0'/0)—1—;é-§,§—£,—)+ {(c" /o) I_Lf"f_f"_) 2o l-1  (5.20)

The lett side of (5.20), F, as a function of wis shown schematically in Fig.7,
The solutions of the dispersion equation (5,.20) are obtained as the intersec-

Flw) | |
l |
| ! ‘
. | |
+ —
i | |
0 —i 5 } — W
w, |z d | wp ly“zjd-z
P
| ; |
I | |
|
|
! |
Fig. 7

tion points of the curve F = F () with the horizontal line F= o7 - 1, It
tollows from the graph that there are two solutions ¢

0< v < VaaTya?
~/ 4 XN A%« we <~/4 Ay d..'E'

Now we obtain these solutions directly from equation (5.10). Let us first
consider the low -energy solution w1, Since w1 « d" we have " =~ d"/24» 1

(5.21)
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and hence we can neglect the contribution-of distant transitions in the sum
in (5.16), containing the factor (1 - g (£))/22% If we now mtroduce the renor-
malized constant of the quadrupole interaction

Ko =K/(1= ") = k(1 - €T"6(e) |q, 12)|*) (5.22)

the dispersion equation (5.10) can be written as

= Koeff 122'6 (€1)Iqﬂ (12)|2

(w/2A)2 = -
Kegr 56 (e1)] q,(12) [P (1-g(0))/ 2

(5.23)

l.e. it contains sums only over near transitions. Therefore mainly nucleons
at the Fermi surface are involved in such excitations., The polarization of
the other nucleons (described by distant transitions) only leads to a renorma-
lization of the quadrupole interaction between the nucleons near the Fermi

surface. ,

e, ifw « 2 A(or, more exactly, if
£'? can be used and (5.23) then be-

If the vibrations are adiabatic,
| g] « 1), the expansion g(4') = 1 -
comes

] 2
© /20)% (3/2)1 - Keg 'ﬁ 8(€;) lqu(lzz)' ) (5.2
ff i—"z 8 (e 1) |qﬂ(12)‘ :

Note that the energies ot the 8 and y-vibrations (related to g, and qg
respectively) do not differ in the adiabatic approximation, since the sums
in (5.24) can easily be shown to be independent of u. The more precise formu
la (5.23) gives a difference between wgand wy and the inequality wg<wy
always holds. This follows from the fact that for B-vibrations qp(12) ~ &9,
i.e. d' = 0, whereas for vy vibrations d' # 0.*

Let us now consider the second solution (5.21). In this case wy ~d" » 24,

. 14 ~1and |£'| ® wy/2A » 1. Therefore the contribution of the near
trans1t1ons to the function oB(W) (5.16) is negligible. The solution wp of Eq.
(5.10) lies in the reglon

. d"<uw, < /aa%+a"? (5.25)

since it is just in this region that the function (w/2A)2 B(w) rapidly increases
from the value (20" /3¢) (d"/2 A)? to infinity (see Fig.7).

Thus the second solution, lying in the region (5.25) describes vibrations
of a large number of the nucleons in the nucleus, since it is substantially

Similar results have been obtained in [16,17]. y=transitions have also been studied in [9]. Comparisons
with experimental data are given in [9] and [17]. '
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determined by distant transitions. The energies of these vibrations exceed
the single-particle excitation energy 2A and therefore the existence of real
excitations of this type is rather doubtful.

5.2. Effect of the gauge-invariant pairing interaction

We have investigated eigenoscillations of deformed nuclei, considering,
in fact, only two parts of the interaction: quadrupole interaction (2.1’ ) and
pairing interaction (2.6). As we have seen in the case of rotation, the use
of gauge non-invariantinteraction (2.6) results in the loss of the term 2
in the moment of inertia. So it is quite natural in the case of vibrations,
too, to consider the more realistic interaction (4.23) instead of (2.6),

It is convenient to proceed from equations (1.35) to the system of equa-
tions for A® and €®, Making use of (1.36)'it is easy to get

A® . g 12]0|2 1D (5 692 A0 pg®,© (O
12 B 2 _ (d
o

+wEG) g(:{:)A(

D _ye® @ e } g =0
(5.26)
, 11| G272
3@ yr L_J_____|2> {En®e® A _ 020
v B -w ‘

wn®EMA®D P O @ Yy =0

For simplification of equations (5.17) note that 512+ at fixed difference €; - €5
is an odd function of €; + €9, i,e, EL changes sign atthe Fermi surface,
while E(z s nfz), E,, are even functions of €; - €2. Thus, one may neglect
in (5.17) terms containing & linearly. In this case the equation for A (")

is separated. Further, note that in the case of quadrupole vibrations the
perturbations ¢® of the self-consistent field exhibit the same symmetry
and it is natural to assume that ¢®) ~qu. On the other hand qé, and €7 have
different parity with respect to time-reversal and therefore 51; = 0 for
vibrations with quadrupole symmetry.* Taking the above statements into
account we obtain from (5.26) a system of equations for A() and (")

v
AQ S 12|Gl21>

2 AC) _ g B (O .
12 1-2- E2 (EE A ws }12' =0,
12 (5.27)
11| G| 272> 2 '
cm, pS1GI22) M2, OO, _
€10 * & EZ o2 (En " e’ - g ]12' =0.
12

*

This condition is fulfilled automatically for the quadrupole interaction (2.1'), Note that the quadrupole

pait of the spin-spin interaction V(1,2)~(3 Y(Z))(Zl)(G’YIZ))(g) (see e. g. lectures by Prof, de-Shalit) leads to

elz = 0. However, such an interaction is probably of no importance. .
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Let us now make use of the gauge invariance of the interaction. As-
suming A(?) to be a function of the space coordinates and using relation '4.25)
we transform the first of equations (5.27) to

- — 9
¢ (Fey(r) L (92 _Eip - W'\ \() 5 (9 _®) ‘
Z EL - Yz{Em(Em e >A 127 w&'(lznmeu } =0. (5.28)
1z 2 4 E\Ey

It is only natural to suppose that AC? and € have the same coordinate
dependence., Let us put

&) = xq, (12)
1 # (5.29)

) = '
Al va,(12)

pry
Multiplying (5. 28) by qu(?) and integrating over r we obtain after some cilcu-
lations

: e PPl e)20) -(0/28)]y + (/28)x)= 0.
Z\qu(lz)\ E; Es (Bt -w2) Hlte 62)/. / / (5.30)
12 '

Let us now consider the second of equations (5.27), Substituting the
quadrupole interaction (2.1') and dropping the small terms (cf. the trans-
formation ot (5.5) to (5.86)) we obtain

F1z {n(lg)zx-(wA/zElEz)y] =0, (5.31)

2
x - Belo,02F gy
12

Performing identical transformations we can bring {5.30) aad (5.31) to the
form

(@/2A) A(w) x + Cw) y = 0
(5.32)
[(1/0) - 1 - /287 B(w)]x + (0/28)Aw)y = 0
where

AW = (cp) §la 1) (A2 En/E B2 (ER-o®)  (5.33)

C(0) = (/o) T | q,(12)(2° Eya /By o (Biz2-0®) {((e1- e2) /281 (0/20)%)
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- and the quantities ¢ and B (W) have been defined in (5.8) and (5.9). Demanding
that the system (5.32) of algebraical equations have a non-trivial solution,
we obtain the dispersion equation

.

/20802 = [(1/0)-1}/[B @ + A @) /C)]. (5.35)

In contrast to .(5.10) the right-hand side of (5.35) contains an additional
term in the denominator. This means that the consideration of the gauge-
invariant pairing interaction leads to an additional term in the inertial pa-
rameter (in full analogy to the case of rotations). )

Expressions similar to (5.17) can easily be obtained for A(w) and C(w)

AW = [g(N]; CW = [22g(nl , (5.36)

For the first type of vibrations (w1 in (5.21)) when Iﬂ'l < 1« | g”l the con-
tribution of distant transitions can be neglected when calculating A{w). Con-
trary to this, the distant transitions give the main contribution to C(w) so
that in the adiabatic case (| 4’| « 1) near transitions can be completely neg-
lected,

There is a marked quantitative difference between the solutions of (5.35)
and (5.10) although qualitatively they are the same. Indeed, in the adiabatical
approximation the energies of 8 and y-vibrations obtained from (5.35) are
equal and if non-adiabatic corrections are taker) into account wg < Wy, simi-
larly as for equation (5.10), The actual difference between these equations
appears when passing over to the hydrodynamical limit. For A »d/, d"
the inertial parameter B(w)/4 A? tends to zero, whereas the limit of the
quantity A%(w)/C(w)4 A2 is finite

A% () L126(€1) ] q,(12) |2
48CW) A2 L5 (e)|q,(12)[* (e - €2)”

(5.3

Thus, by taking into account the gauge-invariant pairing interaction,
similarly as in the case of rotations, itis possible to pass over to the hydro-
dynamical limit.*

5.3. Critical analysis of the results

It can be seen from (5.35) that the x\/ibrational energy depends essential-
1y on the value of the restoring force coefficient (¢~} - 1). Using the ap-
proximation (5.15) for the value o, the restoring force coefficient is defined

by
- 2 2 :
K=(c-1)=(- Kﬁﬁ(el)l qu(IZ)I /x IZéé(el)lq“(H)l (5.38)

* A similar result has just been obtained by Zaretaky and Urln {private communication).
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and is easily seen not to depend on . In other word, the restoring force
coefficients for § and y-vibrations are equal to each other., This result is
rather surprising from the physical point of View, .
Relation (5.38) seems even more doubtful if the restoring forces for
spherical and deformed nuclei are compared, The quantity ¢', determined -
by distant transitions is essentially the same for spherical and deformed
nuclei (for S-vibrations cf, (2.19) and {2.30)). The quantity o', describing
the contribution of near transitions is of the same order of magnitude as
o' for deformed nuclei, For spherical nuclei o' is sensitive to the filling
of the upper shell, In particular, for magic nuclei we have o/ = 0, Thus we
have for the comparison of magic and deformed nuclei-

M s oA - ' = :
c’mag O def Odef * 0mag 0. (5.39)

It follows from (5.392) that the restoring force coefficients K (5.38) are
of the same order of magnitude for magic and deformed nuclei and differ
only by a numerical factor. However this result is known to be wrong. ‘The
elasticity of magic nuclei is a volume effect, whereas the elasticity of de-
formed nuclei is determined by the properties of the surface (we mean the
hydrodynamical part defined by (5.38)). Hence the correct ratio is.

~ 5% .
Kdef /Kmag A : (5. 1~0)

‘!

Relation (5.40) cannot be fulfilled for any arbitrary value of « in (5.33)
and therefore it is necessary to presume that (5.40) must be ccnsidered ¢s
some sort of restriction on the choice of the parameter «. What is the physi-
cal meaning of this restriction?

The parameter « determines the strength of the quadrupole interaction,
i.e. the value of the additional self-consistent field with quadrupole anisc-
tropy. The spherically symmetrical part of the self-consistent field has
been included directly in the single-particle Hamiltonian €. Thus the two
parts of the self-consistent field have been taken into account in two different
ways. However, the self-consistent field in the nucleus is unique and unijorm.
In particular, the dividing of the field in a deformed nucleus into the spherical
and anisotropic parts is very subjective and it is most certainly not corract
to choose the magnitude of the anisotropic part arbitrarily. Thus it is evident
from the physical point of view that the value « must obey a certain con-
dition for the self-consistent field to be uniform. This condition can be very
simply formulated in the hydrodynamic limit, where the restoring force coef-
ficient must be determined by surface tension. In other words, the main,
volume- dependent part of the restoring force coefficient K in the hydrody-
namic limit must be equal to zero. The hydrodynamic expression for K i
given just by (5.38). The condition of the homogeneity of the nuclear self-
consistent field can then be formulated as (see 2.32)

kz;a(él))qu(lz)f A kol &) qb = 1. (5.:41)
1
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Thus in (5.35) the main term (in the quasi-classical approximation) in
the restoring force coefficient is equal to zero and the quantity o must be
calculated up to the next-order corrections to the quasi-classical approxima-
tion, These corrections naturally differ for f-and y-vibrations and the main
difference between the energies of f-and y-vibrations is due to just this factor
(since the small difference in the inertial parametersisnow of no importance).
The correlations to the quasi-classical approximation depend on the single-
particle level-scheme and therefore a difference between the -and y-vibra-
tional energies can be expected to change non-monotonously as a function
of the atomic number A, Existing experimental data seem to confirm this
qualitative statement.

6. STRUCTURE OF THE NUCLEON-NUCLEON INTERACTION.
. VIBRATIONS OF SPHERICAL NUCLE]

6.1, Expansion of the interaction potential in pairing states with a definite
angular momentum

Considering various problems connected with the collective properties
of nuclei we extracted certain parts of the nucleon-nucleon interaction, those
most important in each special case. We divided the interaction matrix
elements into two classes, one contributing to the self-consistent field and
the other determining the Cooper pairing. Here we shall consider the struc-
ture of the nucleon-nucleon interaction in more detail and shall establish
the connection between the two types of matrix elements,

We shall first consider the interaction to be described by some potential
V. For simplicity we restrict ourselves to central forces. Then we separate
the angular dependence of the interaction potential and express it Wlth the
help of spherical tensor operators .

VE -5) = Dvr, ) (T @ TN0) ) . 6.
K

The matrix elements of tensor operators TX between single-particle states
[ 1= l n, 4, j; mp are equal to

TR 1 y= [1/ex+ 1] @l 8| 1) ¢t (6.2)
where for brevity we have introduced

S

, .
17° 1710 m1lK“) - (6.3)

and (1 ” TK” 1') is the reduced matrix element, not depending on the magnetlc
quantum numbers Taking (6.2) into account the matrix element of the poten-
tial (6.1) can be written ag

K K|
C1z]v|2'1'y= EFK(IZ; 2'1') Cor Cpbr : (6.4)
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where

F (12;2'7) = ¥® (12;2'1) || T 2) '] || ») (6.5)
and F(K is a radial Slater integral

) (12;2'1" =[1/(2 K+ 1)]fR1(a)R2 (BYv ({r,n )RQ.(b)Rl'(a)rg rédr.dry.

(6.53)

Using the expansion (6.4) the interaction Hamiltonian bécomes

H =T 12[V]2'1) ajay aya,,
122'1°

XL £ F(12; 2'1) (Cs ay X 6.7
ST k(123 ) 25 22 2y ) (C7 2] a:). (6.7)

Formula (6.7) represents H;,, as a product of pair operators

Ky

L Cgalay, (6.3)

(m)

where the pairs consist of a particle and a hole and are characterized by

the angular momentum K. The coefficients Fy in this case determine the
strength of the interaction between pairs. Putting outgoing or ingoing lines
respectively into correspondence with the operators a or a* we can represent
each term in (6.7) by a Feynman graph -

1‘I

(6.9)
2'

The lines on the same side of the dotted line correspond to operators bouid
into pairs.

Besides (6.4) three more expansions of the matrix elements are possible,
with different grouping into pairs

— . K
Clz|vjeit'y= £ F, (22 4 ocr (6.19)

ol

. ' Ky Ky
213< £ 12521 Cc bt

(6.11)

i T (1252110 i ekl _ (6.12)
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(here le; is the Clebsch-Gordan coefficient (j; my jo m, | Ku). The expansion
(6.10), in which the angular momentum of a particle-hole pair is fixed simi-
larly as in (6.4), corresponds to the Feynman graph

1'\/2

/\ (6.13)
1 91

In (6.11) and (6.12) twé ingoing or two outgoing lines are connected into pairs
(particle-particle or hole-hole pair). These expansions correspond to the
graph

(6.14)

and can be reduced to each other by a simple permutation of the indices in
the Clebsch-Gordan coefficient, so that:

= j-ip+K-1
f (2211 = (DA g (1220, (6.15)

Using Racah algebra we-can connect the coefficients of the various expan-
sions. Thus, in addition to {6.15) we obtain

fK(12;2'1')_= % (-1)lr Thtt (L + 1)WWKy, L; jjip) F(12;2'1) (6.16)

F(12;2'1") = (2L +1) W (KiisLsigi,)F(12;2'1) (6.17)
- 5

where the W are Racah coefficients, The formulae (6.15 - 6.17) express all
the coefficients of the expansions (6,10 - 6,12) with the help of Fx, Let us
consider the structure of coefficients Fg (6.5).

6.2, Connection between the -expansion coefficients in the asymptotic ap-
proximation

The radial part of the single-particle wave-functions depends weakly
on the nuclear quantum numbers. The same is true for the radial matrix
element F(X) (6.6), In addition, the dependence of F(K) onK is also weak,
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because of the short-range character of the forces, (For a §-function forces
-F&) do not depend on K at all), Thus the main dependence in (6.5) on the
quantum numbers is due to the reduced matrix elements, the explicit ex-
pression for which is

it (23 ~ ' o
alr¥le) = 1 [(_231+ 1)(2322‘;11(21l1+1)(212+1)] Wk i i FK)(E1 0 20| K 0)

(6.1¢)

Note that the Clebsch-Gordan coefficient (210[,20| KO0) in (6.18) contains a
factor (- 1)(’Zl+k+ 2)/2 and is thus an alternating quantity for arbitrary
values of £y and fg9. The collective effects that we are studying are descriked
by coherent quaritities, containing sums over wide regions of the levels 41
and fp. Hence the main contributionto collective effects comes from the
diagonal quantities (Jﬂ” TKH j # . In addition, the main contributions to the
sums over states | j¢ 2 come from levels with high angular momenta. Thus,
it is possible to use an asymptotic expression, valid for 2 j +1>» 1

K Kl )
3l T 2~ o) (1P (2 + 1)2-x2> (6.19)
o2 (Ig !>

where 6 (K) is equal to unity for even K and to zero for odd K. Putfing (6..9)
into (6.5) we obtain (for K « 2j + 1)

R (12:20) = F90 00/ (g5, 1) a1+ 1) 1 /2 (55 DT 20

where F(K) = F(K)(12;21), The quantity (6. 20) describes coherent particle -
hole interaction. From (6.16) and (6.17) we obtain for the coherent parts
of the other coefficient"

£ (11;22) = £ (- 1" 771 QL + DW(Kiada L sjadn)E (11522)
L
F(12;12) = E(2L+ DW(KjyiqLsigd,) Fr (125 12) (6.21)
From the symmetry properties of (ll[ T[[ 2) it is easy to obtain the relation

F (11;22) - (-11702 g (12;12) (6.22)

making it possihle to connect the right-hand sides of (6.21). As a result ve
obtain )

A consideration of the general case leads to a complication of the formulas without changmg the essen( €
of the matrer and so we restrict ourselves to a consideration of diagonal terms only,
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F, (12;12) = (-1)% % £(11;22) (6.23)

and further it is only necessary to consider one of the relations (6.21). The
main contribution to the sum (6.21) comes from terms with large L. This
enables us to use the asymptotic expression for F (12;12). For large values
of g, j, L itis easy to obtain

, i;[tan(a’}z/m}%, (6.24)

B 1“‘*“42)/% 4+ L+ 828 i
@l | 21%(-1) (4 21X ¢ Leotlalz /2) 1t

where the first expression is to be taken for 4] - Az (1 ~d2) - (21 - £2) =0

and the second for Aj - Ag = +1.The quantity a (0 < oty <), having the
meaning of the "'angle" between J, and j, is defined as

L LL+1)-jiG,+1)-daGe-1)
cos 0!12 = - . 3 . (6‘25)
2<i1(31+ 1) 3Gy +'1)>

Putting (6.24) into (6.5) we find

Q/L
12

2
a

=

- J tan
F (12;12)~TF 6(Ly+ f3+L)271
' cot _12
2
(6.26)

FO =r® (11;22)"

correspondingly for even and odd values of Aj - A j. To calculate the sum
in (6.21) we can also use the asymptotic form for the Racah coefficients

A, (-nk L
W (K L; : 6.27
( Jle ]2.]1)% ‘\/(211*—1) (2J2+1) PK(COS alz) ( 2)

and then replace the summation over L by an integration according to

L (0 +L+45)(2L41)... = 3 (25, +1) (2iy+ 1) fd cos ay, . ...

(6.28)
Using (6.26), (6.27) and (6.28) we obtain from (6.21)
. " tan a
- . 1 P 2
¥ (12;12)= (-0"E, + D) (@, * Do fF(L) P, (cos o) I Jdeosa"
s cot _é—

(6.29)



336 v S. T. BELYAEV

.If we neglect the weak dependence of F ™ on L the integral in (6.29) can be
taken in the general form. For evenK we have

1 P L - Kt
L = ;J PK(cos a) cot 3 dcosa = [2K K| 2 ] (6.30)
0 2
From (6.29) and (6.30) we obtain.
Fe(12;12) = 3 W23+ D) Gl *DIgF. (6.31)

Corhparing (6.31) and (6.20) and taking into account (6.23) we find for even
K the following relations between the expansion coefficients:

Fo12;12) =6 "0 (11;22) = F (125 21). " (6.32)

The particle-particle interaction in a state with angular momentum K
(taking exchange effects into account) is determined by the quantity (see
+ (6.11), (6.12) and (6. 15))

)

0 —
r®;2;x) =2 [£,(11;22) - T (11;22)] = 6(KI(11:22).  (6:33]
pp : .

For a particle-hole pair the corresponding quantity is defined by a sum of
the graphs (6.9) and (6.13)

"™ 1.0 K) = . _F . (6. 34
L (132;K) = F(12;21) - F (12;12). (6.34:
Combining (6.32), (6.33) and (6.34) we finally obtain

T2k = 1O (125K = F (12:20). (6.35:

6.3. Short summary and generalization of the results .

- The above calculations were based on two assumptions about the nucleon-
nucleon interaction ' '
A. The interaction is described by some potential.
B. The forces are short-range.
In such a case
(1) The first-order' vertex parts for two particles with the angular mo-
ment K
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1 2
1 . = 6.36)
T, (1 ,v22,K) K (
1 2
and those for a particle and a hole
1
T (11;22;K) = K (6.37)
ph -~

are connected by relation (6.35).
(2) The quantities (6.36) and (6.37) for large smgle particle angular
momenta become separable (see (6.20))

F(11;22;K)=F(K)V2j1+1‘\/2j2+1. (6.38)

Note that when more general non-diagonal quantities I" (11'; 22'; K) are con-
sidered (see footnote to 6.2), we would obtain analogous results. In particular,
instead of (6.38) we can obtain-

4
T (11/;22;K) = T' (K) V(Zjl +1) (237 + 1) ‘\/(2 it (2iy+ 1)
(6.39)

(3) The quantities (6.36) and (6.37) are determined by only one parameter
(F&) = const. in (6.20)) in the asymptotic approximation. Note that if we
include spin-spin interaction in the potential analogous results can be
obtained, but naturally there will be one more parameter.

The following question obviously arises: which of the results obtained
are only consequences of the assumptions A and B ‘and which hold in more
general cases.

In the generalized Hartree-Fock method which we are considering, the
explicit expression for the Hamiltonian H = H, + Hy  is used and the matrix
elements of the interaction H,, enter directly into the final results. Thus
formally this method uses some kind of perturbation theory. However, it
can be shown that the final results do not change if we consider the nucleon-
nucleon interaction more consistently. In such a cage the interaction matrix
elements ¢ 12] GI 2'1'>are replaced by some effective interaction, which
is an infinite sum of different Feynman graphs *[18].

In general the quantities (6.36) and (6.37), i.e. the effective interactions
of two particles or of a particle and a hole are determined by different sets

The most convenient method investigating pairing correlations in a system for such purpose is that of
GREEN's functions {18, 19].



338 S. T. BELYAEV

of Feynman graphs, Hence relation (6.35) is not satisfied for these quantities.
On the other hand the dependence of the effective interaction I on the quan-
tum numbers (formula (6.39)) is determined by kinematic factors. Thus
(6.39) can be expected to hold also in the general case, but the parameter:
T(K) will differ for particle-particle and particle-hole pairs.

The classification of vertex parts as particle-particle and partlcle-hclle
ones corresponds to our original division of matrix elements into two clas-
ses. It is easy to understand that particle-particle vertex parts cause the -
Cooper pairing * and that the particle-hole interaction contributes to the
self-consistent field. In particular, the quadrupole interaction is determined
. by the quantity I}y (K = 2).

6.4. Vibrations of Spherical nuclei

We shall use the results on the structure of the effective interaction
in investigating the vibrations of spherical nuclei.

According to the above, we now replace the interaction matrix elements
by the effective interaction according to

Ku

3 3 ©.0011. Ky
1z] Gl 215 —L T (12;2'15K) C 2 C

(6.40)

e = Ky ~Kp
<11|Gl22>———->§(rp (12;2'1;K)CcF CHls.

Putting (6.40) into (1,35) we obtain the following equation for the component
Z ) (w, K) with the angular momentum K .

()

wZ {3 (0, K) = Y (0, K) + ) DT, (12:21'; ;0 28 0K
YAY (%) (%) .
£ T, (12:271) 09 2D, (6.41)

We now assume that I}, and I}, are separable according to (6.39)
(12;2/1;K) = 'Fpp (K) 812 8 1o
Fn(12:2'15K) = -T ) (K) grogea - (6.42)

g2 = (23, + 1 @4, + )}

%
x®

Cooper pairs in spherical miclei can be shown to be characterized by the total angular momentum J = (.
Thus the ground state of a system with Cooper pairing is an analogy (and a generalization) of a state with
seniority v = 0 in j? configuration.
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Putting (6.42) into (6.41) we obtain, after transformation, the following sys-
tem of algebraical equations.

= 22 22 o2 2 2 () @ ym2 _ 2
® I‘pplEz[gE E/E w)]mcp+1“ph§[(gr€ n " E[(E- )] X

o T, i OO e 0,0

x=T 2[g’ O nOE/E- )] wr E[(gz OPEJE? - WP, X

PP12
(*) ) 2 .2 (6.43)
+wl 22 (g n | JEZ =), v :
v= Fpp'):[g2 E(-)é E/(E2 - )]mw +w Iy ﬁ[(gz g0 g® /(Ez ) _wz)]lz

12

N - 4+
+ wl"pp%[(g_z‘s‘ Oy (_)/(Ez- W) X

It is necessary when solving system (6.43) to make certain assumptions
about the single-particle level scheme, To make a qualitative analysis of
the solutions we-shall consider the case of a- shell consisting of a system
of degenerate states. Then 5(;) , n(f2 and E,9 are constant and the & stem
(6.43) can be greatly simplified. Taking into account that 812 n(i

and £§(*)2 + n(*2 ="1 we obtain after simple calculations the followmg dlS—
persion equation

(B2 %) (B2 - Ty (K))* - 0% - @ -T ()., 10 - T, (&) 0™ y=0

(6.44)
where
T'(K) = ['(K) 5 g2 . (6.45)
From (6.44) we obtain the vibration energies -
= (E-gp(x))\/ 1 w n 2 (6.46)

It follows from (6.46) that if the constants Iy, and I, are close to each
other, (i.e. if (6.35) is approximately valid), then
W =~E- Tpp (K).

Such a spectrum has a simple physical interpretation. The quantity E is
the binding energy of a Cooper pair. In an "ideal break-up" of such a pair,
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when the particles are infinitely separated after the break-up, the excitation
energy of the system is just equal to E. Actually the excitation energy is
smaller by the value of the interaction between the particles in the final
state (in our case fpp (K) )*, Thus for Ipn= I‘pp the spectrum is in fact of
a single-particle nature,

Collective properties arise if the condition

[T (K)- op KI/IE - F , (K12 (6.47)

is fulfilled, Then the excitation energy can become considerably smaller
than the single-particle one. Moreover, in such a case there is a dependence
on the shell filling (n®? )**  and this clearly indicates the collective
nature of the excitations.,

The quantities I'(K) can be expected to decrease rapidly as K increases,
So for a &-functional interaction (see (6.35) and (6.20)) I’ (2) = £ I'(0)) There-
fore condition (6.47) can actually be fulfilled for K = 2 provided that

I;h (2) » fpp(z) ) (6.48)

It can now be said with assurance that quadrupole vibrations of the type
considered do exist in real nuclei, i,e. that the condition (6.47) is fulfilled
for K = 2, 1f (6,48) is consideredto be valid the quantity Ipp (2) can beneglected,
Then the equations for quadrupole vibrations will only contain two parameters:
T {0) (=E) and T} (2), i.e. the interaction of two particles with the angular
momentum K = 0 and that of a particle and a hole with K = 2, Note that the
model Hamiltonian containing these two types of interaction is just that cen-
sidered in these lectures. These qualitative arguments give an insight into
the reason for the success of quantitative calculations of the spectra of
spherical nuclei, based on the simple Hamiltonian with Cooper pairing and,
quadrupole interaction [8],
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WEAK INTERACTIONS AMONGST NUCLEONS
AND LEPTONS

H.A. TOLHOEK
INSTITUTE OF THEORETICAL PHYSICS, STATE UNIVERSITY,
GRONINGEN, NETHERLANDS

1. INTRODUCTION

In this series of lectures we are concerned with weak interactions
amongst nucleons and leptons. To be more specific, we shall study the effects
due to the three following 4-fermion interactions: beta-interaction, muon
decay interaction and muon capture interaction. These concern the following
processes with elementary particles:

beta-~interaction
n—-p+e- +7
or p~n+et +v (1.1)
or e-+pon+v

muon decay

pf—et +v+ 7. . - (1.2)

muon capture

M- +p—n+ v, (1. 3)

These processes may be studied either for free elementary particles or

for nucleons contained in atomic nuclei. We limit ourselves mainly to those
4-fermion interactions for which the strangeness is conserved and we shall

not consider weak interactions which do not conserve strangeness and which
describe the leptonic or non-leptonic decay of K-mesons and hyperons (ex-

cept for a few remarks in section 8).

Even with this limitation the subject is so extensive that a subjective,
somewhat arbitrary choice of topics is inevitable, Emphasis will be laid on
those phenomena which seem of the most fundamental importance either for
elementary particle interactions or for nuclear structure. We shall confine
ourselves mostly to allowed transitions. It will be emphasized and explained
in some detail that the study of muon capture in complex nuclei deals with
an extensive field of ""muonic nuclear physics', which has only just started
to be studied. The present situation is reviewed generally, while detailed
calculations are carried out for some selected examples.

The appendices give some notations and details of calculations. I am

much indebted to my co-worker Mr, H.P.C. Rood for his help in preparing
these notes.

343
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2, GENERALITIES ON FOUR-FERMION INTERACTIONS; THE TWO-
COMPONENT NEUTRINO THEORY

In these lectures we shall use the following Hamiltonian forB-inter-
action -

£P =f§21'@pwn)[gi@en%)+g{@erns%)l + h.c.

(2. 1)
(i=58,V,T,A,P)
3 =1
L =% .
FT = é ('Y)\'Yu - % 'Y)\) (2.2)
T, =iy % |
L= %
The adjoint ¥ is related to the hermitian conjugate !l/* by
v =y*y, (2.3)
(h. c. means hermitian conjugate).,
Of course #g may be written alternatively with the v¥%s as
My = DU @vn) (@i w) + gl @estnin)] + hoee (2.4
Qi = v 1} . (2.5

The interaction Hamiltonian (2. 1) contains 10 complex constants g; and g &«nd
thus 20 arbitrary parameters*. With this Hamiltonian one does not ingencr-
al have invariance for space reflection, charge conjugation or time reversal.
The "classical'' Hamiltonian, for which these invariances exist, is obtained
by putting gi = 0 and assuming that the gi are real in (2, 1); this means thas
5 parameters remain. We shall now summarize a number of points con-
cerning these transformations. We indicate by P the transformation for
space reflection, C-the transformation for charge conjugation, T the trans-
formation for time reversal. -

We may consider these transformations either as transformations of
the state vectors, e.g.

|a> = P [AD, , (2.5;
or as corresponding transformations of the operators, e.g.

H{= PH; P. (2.6

* In (2.1) and (2.4) we have written Hamiltonian densities (indicated by script ##), where the y's
should be taken in the same point; the total Hamiltonian H = fd® x # (X) is indicated by printed H.
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P and C are unitary operators, T is an anti-unitary operator; this means
that T can be written as

T = UrK (2.7)

where Ur is a unitary opérator and K is the operator for complex conju-
gation, In this case (2.6) becomes

H{ = TH*T™. (2. 7a)

We designate as propef Lorentz transformations the Lorentz transformations
without reflections; P and.T are improper Lorentz transformations., The
theory of elementary particles with strong and electromagnetic interactions
is invariant for C, P and T transformations (as well as for products of these
transformations). At least this is in agreement with all available experi-
mental evidence,

Experiments have shown that no invariance exists for all three oper-
ations C, P and T for weak interactions. We now mention the following im-
portant theorem of great generality:

2.1. CPT Theorem

If a local Lagrangian theory (which may contain derivative couplings
of finite order) is invariant under proper Lorentz transformations, it is
also invariant under the product CPT (and its permutations PCT etec.) al-
though the theory may not be separately invariant under each of the oper-
ators C, Por T.

This theorem goes back to SCHWINGER [1], PAULI[2] and LUDERS
[3, 4]. An elegant proof was given by JOST [5]. It implies that, if we have
a Hamiltonian which is not invariant for P, it cannot be invariant both for
C and for T.

2.2, Transformation for space reflection P

We may denote the Hamiltonian (2. 1) concisely as
Sl —
Hg = m# Li(gi Hi+gi Hi) + h.c. (2.8)

For the P-transformation the separate terms H; and H{ behave according
to '

» PH; P! =H; (2.9)
P H{P- =-H{.
Hence the entire Hamiltonian transforms as
P HgP! = }—Q):i(gim’ -giH{) + h.c. ' (2. 10)
It follows that invariance for space reflection requires that
all gf = 0. (2.11)

The observed quantities can be expressed as the sum of the absolute squares
of certain matrix elements
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EIM]2 = Lij [ (Qijgffgj + c.c.) + (Qijgfe + c.c.) + (Rijgf'g] + c.c.)l.

(2.1%)

QlJ , Qij and Rij are certain functions of the measured momenta and spins,
Under space reflection P the polar vectors change sign: ro-T, P ->-f)’, wiile
axial vectors, e.g. angular momenta such as a spin s, do not change sign:
§ — §, When invariance exists for P, expressions for a transition probabili-
ty may only contain scalars such as pi- p2; Si- §%, etc.

When no invariance for P exists, pseudoscalars may occur, e.g. it can
be shown that Rl,] should be a_’pseudoscalar hence it could contain terms
such as (p;X Pg) - Pz or §- p .

" 2.3. Transformation for time reversal T

It can be shown that the separate terms of (2. 8) transform under
simply as

TH; T-'= H. (2. 13)

As a consequence, the entire Hamiltonian transforms under this anti-unitary
transformation as

T Hp T! = 5 Ii (g Hi + gi*H{) + h.c. (2. 14)

It follows that invariance under time reversal requires that:

all g; and gf are real, (2. 18)

Under time reversal both momentum vectors and angular momentum. vect >rs
change their sign p*—-p, s —-5 .
In view of the observables which may occur, we have to distinguish
between two cases (cf. e.g. [16]).
A. No strong interactions exist between the decay products in the final
states.
B. Strong interactions exist between the decay products in the final
state.
In case A, a transition probability may be calculated in the "Born-approxi-
mation' . By "'stronginteractions' (in case B.) we meanhere electromagnetic
interactions; the most usual cases are 3-decays taking the Coulomb field
of the nucleus into account. We may now formulate some conclusions for
cases A and B in the following way. We distinguish even and odd operators
with respect to time reversal; for example,

even 04+ p1: P2, 5D, §1- 8 (2. 16)

odd 0. 'S (p1X pa), D1+ (P2X P3), 51+ (s2X 83) . (2.17)

It can then be shown that the coupling constants in the expectation values of
0+ and 0. occur in the following combinations in case A (¥ denotes a final
state)
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CUo+[wS = Zij (04); (gig; + g1 &) (2. 18)

and
< lo_[> = B 0y (gf'g - e gf). (2. 19)

Hence we see that if any observables of the form 0- exist in this case, it
means that Hg is not invariant under time reversal. In case B the conclusions
are changed and become more complicated because of the final state inter-
actions. Let |BD be a final state (stationary state) and |Bo") be the outgoing
wave part of it; let the final state interactions cause a phase shift ng, hence
a phase factor e in |B ours, We then conclude that the coupling constants
must occur in the following combinations in the expectation values of the
even and odd operators 04+ and O_:

CWlo+|w> = T1j (04)im, 5 {(gi*g; + i gff)cos (me-nw) +i (gg; - @ gF)sin (ng - 1) }
‘ (2. 20)

W0l >= Ei0-)m, s {(efe; - &) cos (n5- ns)
. (2.21)
+i (gf'g + @ d}) sin (ng-np} .

It is seen that these expressions reduce to (2. 18) and.(2. 19) for ng = ng = 0.
One concludes from (2. 20) and (2. 21) that time-reversal invariance can also
be checked by means of the second term in (2. 20) if final state interactions
exist *. -

2.4, Transformation for charge conjugation C

Considering the Hamiltonian (2. 8) and taking into account that C is
equivalent to PT according to the CPT theorem, we conclude, using (2.9)
and (2. 14), :

te

. 1 sk + 3% '
CHgC-1 = /_E-El (gi° Hj -gi™ Hi{)+h.c. (2.22)

Comparing (2. 8) and (2. 22) it follows that the requirements for invariance
under charge conjugation are

gi real, (2. 23)

gi imaginary.

Charge conjugation or particle-anti-particle conjugation has the property
that it changes the sign of all charges; hence also the sign of an electric
current is changed. However, momentum or angular momentum vectors
such as § and § do not change under C.

% In (2.20) and (2.21) only the expressions with g; were given, while the analogous expressions with
the g{ were omitted for the sake of simplicity; g; and gf behave differently for P, but not for T.
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2.5, The Pauli-Pursey transformations and the conditions for invariance
under C, Pand T

The conditions for invariance under C, P and T formulated above were
obtained from the requirement that the form of the Hamilionian should be
invariant under these transformations.

However, PAULI and PURSEY [6, 7 ] have drawn attention to the fact that cer-
taintransformations exist which leave all physical results unaltered (cf.
also [8,9, 10,11]) although the form of the Hamiltonian is changed. Simple
examples of such transformations are

(2) a simple phase factor for a fermion field

Y = el?yY, . (2. 24)
(b) a factor el®%; for a neutrino field (if m, = 0),
W o= el Yy, (2. 25)

Such transformations correspond to certain transformations of the coupling
"constants and hence to transformations of the Hamiltonjan, Physical results
for a transition probability should contain the coupling constants only in
combinations which are invariant for such transformations. Suppose a
Hamiltonian Hj gives identical physical results with another Hamiltonian
Hp satisfying one of the preceding conditions of invarianceunder C, P or T, be-
cause it isrelatedto the original Hamiltonian Hg by a Pauli-Pursey transfor-
mation. One can then say that Hg also satisfies an invariance requirement
for invariance under C, P or T; however, these conditions are less re-
strictive than (2, 11), (2. 15) or (2. 23). The latter conditions are sufficient
conditions but they are not necessary for the invariance of the physical
results,

Pursey has given the following characterization of the transformations
which leave the physical results unaltered:

The average over given sets of initial and final states of the squared-
modulus of the S-matrix element for any process should be invariant for
any unitary transformation, which leaves the observable actions of the initial
and final states invariant. The consequences of these principles were worked
out for an interaction, which is even more general than the one formulated
in (2. 1).

Hg = 3?2)31 (V/pﬂ U %R [ (g + gfvs)w+(fi + fivs )w¥s]}+ hoc.
' (2.26)

This Hamiltonian provides the possibility of a simultaneous emission of
neutrinos as well as of antineutrinos; fj and f{ are coupling constants intro-
duced here in addition to gi and gi .

Y$ = C¥ gives the charge conjugate field (C here is a Dirac matrix, not
to be confused with the charge conjugation operator C).

The intéraction (2. 26) may alternatively be written as

Mg = 5 i@T v LT gl v + g{f Uo + 8 ysust+ th v Ut} + hee.
(2.27)
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if we put
Uh = 31+, gh=g +gl fio=fi o+l
) ) N (2. 28)
W =3 -v), elee -g fieh-fl.

R and L correspond to positive and negative helicity. If we now introduce
two-component quantities § and n; according to

Ly , R
& () me (8) . (2. 29)
1 1

it can be shown that the most general transformations admitted by the above-
mentioned principle are

. .
E; = eip+a) AE; , i = ele-0) Ang (2. 30)

where A is a 2 X 2 unitary, unimodular matrix

a .-b*
A=< > lal = 1. (2.31)

These transformations form a 5-parameter group. For further details we
refer to the references given before.

It may be useful to mention that the greater generality of (2. 26) in com-
parison with (2. 1) shows up only in double processes such as in double beta
decay. However, no observed phenomena seem to require this greater gener-
ality; (2. 1) is sufficient for the explanation of all observations and we shall
no longer make use of (2. 26).

2.6. The two-component neutrino theory

We write the Dirac equation in the form

" (E+&P+Bm)Y =0 (h=c=1). (2.32)
Putting

Y =_<Z/§> (X and ¢ are 2-component spinors) ,

the equation may be written in the following form with the representation
of the Dirac matrices which we use

E? +5. pX - m® 0} (2. 33)
EX +8 . p®+mX = 0J,

If we apply this to neutrinos, for which we assume the mass to be zZero
(m,, = 0), this becomes
0 } (2. 34)
0J.

E? + ©p)X
EX + @p)9
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We now introduce
‘/j+ =2 <(p+ X>
(2. 35)
U =1 “ - XN
T T2 A\e-x)
In our representation we have
1000 0010
B 0-1 00 - 0001
Y=\ 0010 b <1000 (2.36)
0001 010090
Hence we see that we can write (2. 35) as
Uy =3 (14 )w} (2.37)
Y = % (1 -7 )17
from which we see that
YW+ = U+ (or (1-7v5)¢4=0) (2. 38)
Ys¥-=-¥.  (or (1l+7v)¥_=0).

Hence we see that ¢4+ and ¢ . are eigenfunctions of v with eigenvalues +1 and
-1,

We see from (2. 34) and (2. 35) that we may write

=1 (1 —6?177@ _ 1 -(1+6:177(D\
vy - 2 {1 _am(p> Yo =3 <(1 + DN ) (2. 39)
with
17=%".u—| = %” (2. 40)
v
(2. 34) may thus be written as
E¢y = - (0.p)¥+ (2. 41

EY- =+ (@.p)v_ .

We may now say that ¥+ and ¢_ are each fields with only two (independent)
components. ¢+ corresponds to a particle with spin anti-parallel to the mo-
mentum; ¥_ corresponds to a particle with spin parallel to the momentum.

According to (2. 41) Y+ and ¢ _ satisfy 2-component equations; these
equations are invariant for proper Lorentz transformations.
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If we consider the transformation for space reflection, which for Dirac
fields is specified by

YP = vy,
this provides for ¥4+ and ¢_
W+)P = v+ = 2 vy (L+¥5) ¥ =3 (1 - yshp
WP =vW_=3va (1-v5)¥ =3 (1+vsWP.

Hence we see that the chirality is changed by the space reflection; the
equations (2. 41) are not separately invariant for space reflection. However,
if we have a theory which is non-invariant for space reflection, there is

no objection to the introduction of such fields. _

In accordance with the convention for neutrino and antineutrino (and
the helicities found in nature), we call the particle associated to ¥+ aneutrino
(negative helicity) and the particle associated to ¥ an antineutrino (positive
helicity). Space reflection changes a neutrino into an antinuetrino. Only for
particles with zero rest mass is a helicity possible which is invariant for
proper Lorentz transformations. For particles with mass different from
zero one can always find a proper Lorentz transformation which transforms
the particle to a rest system. After that one can transform in such a way
that the helicity of the particle obtains opposite sign.

The use of a two-component neutrino theory in connection with weak
interaction phenomena was proposed by LEE and YANG [12], LANDAU [13]
and SALAM [14]. ) . ’

If we consider the Hamiltonian (2. 1) it is clear that it contains coupling
to two-component neutrinos as a special case, namely for gi =+gi . Which
sign is correct (if the two-component neutrino theory works at all) has to be
determined from experiment,

We have reviewed the two-component neutrino theory here only very
briefly; for further details we refer to the original papers. Concerning the
possibilities of 2-component theories for particles with mass we refer to a
paper by CASE [15].

3. BETA-RADIOACTIVITY
3.1, Introduction

In this section we want to discuss the most important phenomena which
can be observed in beta-radioactivity. We first discuss the "classical' phe-
nomena, which do not show non-conservation of parity. We confine our-
selves to allowed transitions and neglect the influence of the Coulomb field
of the nucleus. The calculations for beta-radioactivity and muon capture
are analogous in many respects. In both cases the nucleons in the nuclei
have non-relativistic energies (kinetic energies of the order of 20 MeV,
corresponding to v/c = 0, 20, their rest mass being 930 MeV). The simpli-
fications resulting from this fact can be introduced in a variety of ways:

(a) neglect of the "relativistically small" nuclear matrix elements or use
of non-relativistic approximations for these matrix elements either using



352 H. A. TOLHOEK

alimiting formof the Dirac equation for low energies or the Foldy-Wouthuysen
transformation; (b) reduction of the general Hamiltonian to an effective
Hamiltonian which must be applied to 2-component spinors !(instead of
4-component Dirac spinors).

We shall use (a) for B-radioactivity and (b) for muon-capture, thus
demonstrating the somewhat different, although essentially equivalent, pro-
cedures. '

3.2. '"Classical” phenomena of beta radioactivity

As a first example of calculating some transition probabilities we derire
the transition probability for allowed beta transitions providing the shape
of the beta spectrum and the electron-neutrino directional correlation. We
can start from the expression for a transition probability derived in first
order in the time-dependent perturbation theory

Bde)de = 2 2| [ ity ar [p(B.0) da (3.1)

where

p(E, @)de = (dn/dE) = number of states per energy interval of

the final states for an energy which is about equal to the energy of the

initial state and for values of the parameter(s) o between @ and ¢ + dea,
wl., gl/finitial and final state wave functions of the entire system,

@ (continuously varying) parameter(s), on which the final state of the
system depends,

Ls summation (or integration) for those parameters of the final state which
are not observed.

Applying this to Bi-emission of atomic nuclei we can write this out
(as will be shown below) in the following form

P(E, B, ) B due doy = Lo Ly | <t |Hs|Dff PEQ?dE dwedy . (3.2)
We shall use units such that
=1, c=1, mg=1.

Further, the symbols have the following meanings:

E = energy of the electron;
E, = energy of the neutrino;
P~ = momentum of the electron;
q = momentum of the neutrino;
E, = maximum energy of the electrons.
We have:
q=E, = E, - E.
dw, = differential solid angle for the direction of P’
dw, = differential solid angle for the direction of @,
L. = sum over both states of polarization of the electron,

L,

sum over both states of polarization of the neutrino,
(we take a 4-component neutrino here).
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In order to derive (3. 2) from (3. 1) we have to evaluate p(E,a). The
parameters ¢ from (3. 1) are specified here by a = (E, B, qJ. The total energy
E from (3. 1) should not be confused with the electron energy E from (3. 2).
The latter energy determines how the total energy E, is distributed over
the electron and the neutrino. In order to determine p (E,a) we take for ¢
and ¢, plane wave solutions normalized to one particle per unit volume. If
we consider one particle in the unit volume there is one eigenstate for a
volume h3 = (27 )33 in momentum space. Hence we see that the number
of states with electron momentum between p and p+dp and neutrino momentum
between q and g+dq, the directions of P~ and § being contained in the solid
angles dw. and dw,, is given by

p2dpdwe _q2dqdy

dn = he : ] ;

or using units such that tr = 1:

- P2dpdwe q2dqduy

dn 27y

(3.3)
We introduce the energy E instead of the momentum p of the electron,
using '
p? =E?2-1; pdp = EdE;
we obtain

_ dn__ pEQdedodE
pB,a)de = o= (276 (3.4)

We note that three of the four differentials dE, dq, dwe, dwy correspond
to da, while one differential (either dE or dq) corresponds to dEy . We
substitute (3. 4) into (3. 1) to obtain (3. 2). We have still to explain how one
obtains specific expressions for the matrix element contaihed in (3. 2).

In this sub-section we shall take an interaction density as an arbitrary
linear combination -of the scalar (S), vector (V), tensor (T), axial vector (A)
and pseudoscalar (P) interaction, which we write as

5 .
Mg =L gf 4 + hermitian conjugate (3. 5)
k=1

(k=1,2... 50ork=35, V, T, A, P).

g8, g8, g8, g8, g8 are the coupling constants in f-radioactivity of the differ-
ent interactions of which #g according to (3.5) is a mixture (we shall omit
the superscript B when no confusion can arise). When separating the 'large"
and "small" terms (for.non-relativistic nucleon velocities) we can write the
expressions for: ’ .

k= (YT O%) ) o as:
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*
w
n

(¥ BTG (Ye* B y) (a)
Hy = (Y TOB) W) - (RN, )  (b)

Hr = (TEBETON) W BT ) + (VBTN BEB,) (¢)  (3.6)

Hy = (BETOR)W5 Ty) - (IOl s Y ) (d)
Hp = ‘ (\1/{1(3757&)‘?“‘1&*[;75‘%) . (e)
”1aI‘ge” Ilsmal 1t
Y. = electron wave function,
¥, = neutrino wave function,
y; = wave function of nucleus in initial state,
ys = wave function of nucleus in final state,
7(t) = the transition operator for the transformation of a neutron into

a proton (cf. App. IV for this notation),

The expression (3.5) specifies a Hamiltonian density ¥ (X): energy
density - energy pro unit volume; the four wave functions must be taken
at the same place. The total Hamiltonian (or strictly speaking its matrix
element) is obtained by integration over all space

Hg = f A3% W (X). : (3.7)

The matrix element for B-emission occurring in (3. 2) may now be written
more explicitly as

[l Hp|D? = Loy 28| Bhanis fdvgk (B U B NEUby [ . (3.8)
!

Lmf  indicates summation over the different orientations of the finalnucleus
specified by the magnetic quantum number mf.
1
L& = 53—&_1 Zmi indicates that we must average over the different orien-
tations of the initial nucleus if we take an initial state consisting of
an ensemble of nuclei without preferential orientation in space
{(ii = spin of initial nucleus; m; its-magnetic quantum number).

¥; and ¥ in (3. 8) represent the wave functions of the initial and final nucleus
(A nucleons),

It nf? indicates that B-emission is possible in principle for eachnucleon
(" : transition operator for the h™ nucleon). The subscript h with @FQY, ),
indicates that these wave functions must be taken at the place where the
nucleon is transformed. /d7 indicates integration (or summation) over the
variables occurring in the nuclear wave function. '

For the calculation of allowed B-transitions we shall neglect the "small"
terms of the wy (cf (3. 6)) (we shall only carry along the "'small' term of #p
since gp might be large in comparison with the other gy's).
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We want to calculate allowed transitions, neglecting the influence of
the Coulomb field of the nucleus on the lepton wave functions, We can then
simply take the lepton wave functions as constant over the nuclear volume
and can thus place them in front of the integral sign in (3. 8). (This is the
second approximation made for the calculation of allowed transitions. ) In
this way the matrix element (3. 8) for 8- -emission takes the following form
(we no longer write Cms and CH; explicitly for the sake of simplicity. )

e 112 = |25, e i) [oif? (3.9)

where [ Qkis introduced as a concise notation for the nuclear matrix element,
for B--emission

fﬂk: Ehf d'T‘l’.;k Qk'T%:)Wi . (3.10)

For f*-emission we could write
fszk= zhf ary ertly . (3. 11)

We note that for T- and A-interaction the operator { contains & and the
product of the lepton factor and the nuclear matrix element is then a 3-di-
mensional inner product, v

The expression (3. 9) can be worked out in the following way

el S = 580 mcst et )0 Sy, (5.12)

Here we made use of the fact that the Qyare all hermitian. p; = -i87;s is her-
mitian; -we have used Q5=py; note that we used the non-hermitian matrix 375
in (3. 6) (e). For a further reduction of (3. 12) we make use of the reduction
{(the Greek subscripts indicate the components of the Dirac spinors):

Ze Z:u (We:k Qk (//u ) (%* Ql we)

EeEu[Ep,c (We*)p (Qk)pc (‘//y)c][zk.u (V/u* )A (Ql))\u (‘//é )u ]

EeLuErm o (oo Wnlo Wik (2p)n (Ve Ju (Wdlp

Tr ($24D,2,D,). (3. 13)
The 4 X 4 matrices Dy and D, are defined by

(Dylox = Zy(¥y e (V75N

(D )up = Le(We )u (‘//e*)p .



356 ” H. A. TOLHOEK

By Tr () = £pSpp we indicate the trace of a Dirac matrix (the sum of the
‘diagonal elements). Using (3. 12) and (3. 13) we see that we can write -

1

L5, [KilHg|iD]? = I el (ka) (jﬂa)* Tr (%D,YDe) . (3. 151

The calculation can in this way be reduced to the calculation of traces of
products of Dirac-matrices. It is easy to show that D, and D, are the pro-
jection operators for 'positive' or 'negative' energies and thus to give their
explicit form. For B--emission we must write (cf. App. III)

} _:_,"‘ —i-*+ 1
De=%[71-“—‘1;—3~}=%[1-ﬂ9§’—p3] (3. 16,
Du=%[1-%]=%[1-%ﬂ} (q=E,). (3.17)

For the calculation of the traces we use the following important property:
The only matrix of the 16 Dirac matrices for which the trace is different
from zero is the unit matrix

[

[y

/10
1
1= 0
00

Because of the property (3. 18) we must look in the terms of ©,D,yD. only
for those products which give the unit matrix, as other products give zero
when calculating the trace. It is more convenient to use the representation
of the Dirac matrices with the aid of the p- and o-matrices than to use the
general vy -matrices because the introduction of a non-relativistic approxi-
mation for the nucleons can be represented conveniently with the p-matrices.
(cf. App. D).

, for which Tr (1)-= 4. (3. 18

<

[e)
Q= OO
—_o OO0

We note that the traces for the p- and o -matrices may be calculated
separately: the p- and o-matrices commute mutually and can be considered
as (2X 2) matrices acting on two mutually independent variables (cf. Appendix
I). We can write:

Tr[...] = Trp, g[..-]1 = Try Trg [...]. We have then Trg (1) = 2,
Trg {0k} =0etc. One might say that taking the traces with respect to thep’s
only, means a reduction from the 4-component Dirac spinors to 2-component
spinors.,

In order to obtain the result for (3. 15) we have to calculate the trace
of the products resulting from all possible combinations in the following
expression (each time provided with the corresponding factors gy and J Q)
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£s ( P3 ) P33
v 1 1
P30 P301
gr P30g P302
1 Tr {1 ps(:s L(l _'%‘Ti’) $ p:s b (1 _'ﬁli'—#”) } . (3.19)
g oy o9
Oy o3
gp L ipz { ipg J

We shall give as examples the detailed calculation of some of the terms of
the entire expression. We first take the term which has the factor Igs IQ | IB |2
in front; for this term we have to evaluate the trace

a—» 6:—->+
FTr lpg(1 - o1 50 ) o (1 - BT —E2 )
5T T-p+
= 3Tr [p3(1 + ;1 250) (1 - PSR —Po) (3. 20)
v

PR ol

Nie

B

where we have used 03 = 1 and have taken the trace for the p’s. From the
properties of the Pauli-matrices one sees immediately

3 Tro[(TPE P = P-T - (3.21)
Hence we see that (3. 20) reduces to

1- (p-q)/EE,. (3.22)

The calculation of the terms caused by the T- and A- interactions is slightly
more complicated. If we abbreviate the matrix element Jo as T =[G the
contribution from the A- interaction (with coefficient IgA |2) can be written
as '

FTr (G A1 - p, @ 0)/E,) G- IF)(1 - (010 B+pa)/E))
’ ) (3. 23)

=3 Trl(o.0)o-4%) + (¢- D PE- %) 7) [EE,]
In order to calculate the trace of the fourfold product in (3. 23) we decompose
7 in components parallel to'q and perpendicular to a’:

— — — =

F=T+70.; Bod=0-9: 0..94=0; T,-7: =7,. I,%=0. (3.24)

It results that 6. q commutes with . f, (and &. Z,*) and anticommutes with
g~ 7. {(and o. I;* ). It should be noted that q is a real vector but that 7 is in
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general a complex vector. We can now reduce the fourfold product in (3. 23)
in the following way

G-T)G- )G TG F) = @ NE-T-5-INE T)EF).  (3.25)

We make use of the following identity with Pauli matrices

(0.3)@.6) = B + id-.(aXb") (3. 281
so that .
@IV 5B = 8% B+ o X B axE ) . (3.27)

In the problem under consideration we have to average over the orientations
of the initial and final nucleus; we thus obtain

Endi G? = 3| gc?’lz (3. 28"
Emety T - 31 (3P (5. 20"

putting

S | o 41 oy [2 +1 o1 =1 (&P (3. 30)

It can be proved that (3.30) is independent of mi: once the summation Zmf
for the final nucleus is carried out, the result is independent of the quantum
number m, charactemzmg the orlentatlon of the 1n1t1a1 nucleus. One must
further take Ememl for the vectors ﬂxz and gxz It is simply proved that
both vectors average out to zero: if we take e. g. the direction of @ as the
z-axis, it is seen that the components of both vectors correspond to com-
ponents of £ X,z* It is clear that averaging must make this vector zero, for
after averaging no preferential direction in space subsists which coulddeter-
mine a direction for zxz*

We thus find for (3. 23), using (3.21) and (3. 25)... (3. 30),

'|§6’|2[1 - .9 /3EE,] . (3.31)
\

The calculation of the other terms is performed in entirely analogous ways.
The only simplification which we can still make is by putting

fo=-{1 ana (oo--f (3. 32)

This can be done in the non-relativistic approximation for the nucleons,
because in our representation
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4

-1000
'B_(O-IOO
'\00-10

\ 0 0 0-1

while the 3 and 4-components are the '"large' ones in the non-relativistic
approximation. The final formula, which is thus found for B--emission, is

P_(5, 5, = pEa?/ r P e+ laBI {1+ (lerl® )2 {51 + leol | { B
- 7T a® el lev?) [ - 4 dlerl- leal) (5 + el | {8l

+ (2/E) Relgsgy) | {117+ Re(gres)| |5 1*) )
' (3.33)

For the calculation of Bt-emission we need the second part (herm. conj.)
of the Hamiltonian (3. 5). We thus obtain, analogous to (3. 15),

£L, KilHglid® = £f poglee (gﬂék(gﬂfz) Tr (4D, UDe) . (3. 34)

We must now take negative energy solutions for the neutrinos. The final
result for the transition probability is

Py (.5 = pEa/ (2ol + lev) | {11 (leal+ leal®] [+ lao P B vs
- 0. 7/9E) [(lgsl - levP) ‘SIP;%(]ngZ' leaP I,S‘E’P* |gpIZISB ¥s1?]
- (2/E)[Re(g$g\’/‘:')|S1|2+ Re (grga) |§5’|.2]] . (3. 34a)

3.3. Directional distribution of B-rays from oriented nuclei

We now want to generalize the treatment of 3.2 to a more general
Hamiltonian, which is not necessarily invariant for C, P or T. We shall
use instead of (3. 5) an interaction Hamiltonian specified by

Mg = Tie (gu M + gk #E) + huc. (3. 35)

with
= (B D) (et Quaby) (3.36)
Wi = (¥ T (Yt Quvsi). (3.37)

We admit complex values for gy and gk; this means that in general the
Hamiltonian will not be invariant neither for C, P nor T transformations.
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We have not specialized for the 2-component neutrino theory, but have
tformulated an interaction for general 4-component neutrinos.

Specialization for the two-component neutrino theory is obtained for
gk = tgr. For gf = gk the interaction may be written e.g. as

®o= 1 Dhet g (e rH) (Y (1 + %) ¥) + b c. (3. 38)

The factor 4 which we have added is purely conventional; it has the
advantage that the numerical values of gy obtained from (3. 38) and experi-
ments are the same as the ''old' value obtained using the '"parity-conservirg"
theory of 3.2. We shall not give detailed calculations for all possible
"effects'', which are a consequence of the interaction (3. 35), but we shall
confine ourselves to the effects which can be measured most easily: di-
rectional distribution of B-rays from oriented nuclei, 8-+ circular polari-
zation correlation and polarization of B-rays. The calculations can be made
according to the lines of 3.2; we give the explicit calculations for a number
of typical terms.

We first consider the directional distribution of B-rays from oriented
nuclei for a mixture of V- and A-interactions. We should then not carry
out the averaging I}, indicated in {3.8), but should take the summation over
the final states Zm;. We want to average over the directions of emission of
the neutrino, It is seen from (3. 15) and (3. 17) that this averaging is simply
carried out by omitting the term linear in @ in (3. 17), hence by taking D, = i
We now list the traces which have to be calculated for a mixture of V- and
A-interactions (they are analogous to (3, 20) and (3. 23)). We add the factor
containing the coupling constant, by which the trace has to be multiplied.

We do not yet give the results for the traces, although we indicate that som=
are equal to zero. '

3 lgvf? -
’ \gnz.ﬂrn.m.u-%ui)l- (3. 39)

For the term with lg\',|2 we have to add v5 = p1 to 2k in the lepton operator;
this provides

%lg\l/lz -
WllQ-%Trlpz-l-m-(l—%w—)]- (3. 40)

Further we have to consider the cross terms with gy and g\’;

1 gyey® oo
Lg\llg-%Tr[l.l.pl.(l_El—'_Eu@)]=0 (3.41)
$ gvevt
2 —
‘gllz-%Tr [pp1-1.(1 - ﬂl”—igi"i)] = 0. (3. 42)

If we again abbreviate 7= f&', we find as terms with the A-interaction

1 lgalP
2 gA —_— —r _‘-—’
%Tr[(c.ﬂ)-1.(o.z*)(1_&‘fE—p“ﬁ3-)] (3. 43)
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1 /12 .
3 Igd — — & p% :
Y Trio (3 ) o (FF(1 - BZER) (3. 44)
3 el
2 —-— ——— s
L [0 1) - 1-m(epF) - BEEERE) (3. 45)
1 7 3%k
2 BABA - - ——
}Tr [(oy(@ £)- (o (1 - BZRERE (3. 46)
Finally we have to consider the (V, A) cross terms
%ngA* . yb =
(51) L Tr(1.1.(F. ) @ - @-ﬁ-‘li‘ﬁ)ho. (3. 47)

Analogously the terms with the factors gagé#, gvgk, gigf® are equal to zero.
However, in general we have a result which is different from zero for the
terms

% evelt -
(oiren.1.m@ . 022020 (3. 48)
[
2z BABV (" * . — —
(D& Trp (3. 7)-1.1. (1- H222Py) (3. 49)
Savgd ' :
2 > - —>.—>
(j D3 Tripy 1.4 A, (1- 22ER2REy) (3. 50)
1 i . ‘
2 8ABY * —
(Slf%'l“r[(?f-ﬁ’)-l-pa(l -ﬁg—'}g—“LEl)]. (3.51)

The calculation of the traces is performed along the same lines as in 3. 2.
We find as the sum of the contributions from the V-interaction (3. 39).. (3. 42)

b e + ledr 1§10 (3. 52)

Analogously we have for the sum of the contributions (3. 43) and (3. 44)

3 (leal + |g£|2)|§3'|?. (3.53)

where we again introduced ]fE’P instead of ITP . For the calculation of
the traces in (3.45) and (3. 46) we first take the trace with respect to the
P's; this provides

-} Trg (-G BH. G-P/E). (3. 54)

Applying the identity (3.26) to (o. 2 ) (3 - % we have
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@ INS- M= TP +i0t (X T%) . (3. 55}
Substituting this into (3. 54) and taking the trace provides

—p

~ 1 (IX29 . (p/E). (3.56)

Analogously we obtain from (3. 48) and (3. 50) .

- (gl)ﬁ- (o /E) _ (3. 574
while (3. 49) and (3.51) give
- aEm. (3. 58;

Collecting all the terms we thus obtain
(el + g 1+ 3 (leal+ ledl®) (1 - Releagips (55 @)

- Re (aveit + gvei®) [{ 1% ) (3. 59)

(we can take (3.57) and (3. 58) together because {f1)Z* is real; cf. paragraph
after formula (3. 77)). We shall see that for nuclei, showing Gamow-Teller
transitions, the asymmetric directional distribution of the electrons is
caused by the terms (3.56)..(3.58). For this purpose the expressions
1(),)( ﬂ,"‘) and (f1) 7% containing nuclear matrix elements must be expressed
in terms of the degree of polarization of the nuclei, We need here the ex-
pressions which specify the dependence on mj and ms of the matrix elemen's
of the different components of . This dependence is provided by general
considerations of angular momentum theory and given by Clebsch-Gordan
coefficients. We call the quantum numbers for the total angular momenturmn!
and the magnetic quantum number of the initial state ji, mi and for the finul
state jf, ms. The dependence on m; and ms is specified most conveniently
by using

g, = 3 (o + icy)

N

(3. 60)
o =3 (0 - ioy) :

[N

The dependence on m; and m; can then be given by {a,b and c are constants;
we do not start with a definite normalization, as this is carried out in the
course of the calculation):

ta G- m)G-mi-1)
-+ a'J (§i+ m;)(i+m; - 1Y } (3.61)
a +/ (§i+ mi)(ji-mi) '

ji=d o~ 1; <mf=mi+1|u+|mi>

¢ mg=m; - 1o |m>

{mi=my loglmd
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n
N

b ‘»\/Tji+‘mi_+ 1)(ji -mi}

b G+ mi)(Gi-mi +1) } (3.62)

=i < mf =mi'+1|o:_,. |m1>

n
Nl

¢ m¢ =mi-1lo-m;D>

<me=mi |ozfm> = bmy

=g+l (mesmi+lle fmgd =3 ¢ JGit mi +2)G +mi+ 1)

{my=mi-1lo.|mi} = 3¢ JE-m G - mir 1) }'(3. 63)

{mi=m; o, |;ni> = et my ¥ (G - m; + 1)’

All matrix elements which are not written are equal to zero. From the defi-

nitions of o, and o. it follows immediately that: ‘ ~
4 |Sc+ = youl® + 1 S\O'y|2+i( o) e )*- 1 (fox)( oy )* (3.64)
41§12 ol +1 Syl 1 forfoor™s (o (foyre (3. 65)

By adding and subtracting one f1nds

|j~>|2-zujo+|2 |§o-|21+|joz|2 (3. 66)
:1(5o>>< (fu)*}l =1 (509()(50)')* - (Scy)(SUX)* = 2] IS o IS o |?)

(3.67)

We have already noted that Zmfmust be carried out for our case; if we specify

for the case that jr= ji, we obtain by squaring and adding from (3. 62), (3.66)
and (3. 67) _

EmfISE’I2 = [b%| i (ji+ 1) (3.68)
Emlelfc-ﬁ - ISmPJ = [y (3. 69)

We now think of polarized nuclei with the z-axis as the direction of polari-
zation (axis of rotational symmeiry). We indicate the unit vector in this
direction by J . From (3.68) and (3. 69) it follows immediately that:

g itd@x o, -z [Ifc_—l?- lgmlﬁ =t /i + 1) B IR
(3. 70)

As T is an axis of rotational symmetry it is clear that Zoglfa) X (Jo)* can
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only have the direction j. This is also easily concluded formally from (3. 32),
for if one writes

LT = 1 fonfor - 1 (foacfor (3. 71,

it is seen from (3. 62) that foy and [o, cannot simultaneously differ from zero
if the same m; and ms are taken for both. Hence (3. 71) is equal to zero fo:
every mf and Zmei[ (f0) X (J&)*]x = 0; similarly Emgi[(fd) X (fo)¥y = 0.

If we now consider ‘an ensemble of nuclei, for which the population of
the different substates with magnetic quantum number m;j is given by am;.
{normalization according to Im;am; = 1) we still have to take this additional
average. This provides

Emamkzmsi[(fa’)x (_S%*Hw 1y1 (Emi$ amy) &ndfc?IQ 7= G+ 07T | Med?.
(3. 72)

We have introduced here the degree of polarization f; of the nuclei, defined
as

1= Zmi(mi /ji) am. (3. 73)
We have further put
IMgr f2= EmflS? P (3. 74)

In (3. 72) we have found the final form for the term (3. 56). We have to make
a similar reduction for the terms (3.57), (3.58) with (f1) (Jo)*, We have
here that /1 =<{m¢ l 1 |nn> differs from zero only for m¢ = mi. Thus it is seen
that the combination (f 1)X (f&')* differs from zero only for ms = m; and is
then given by ‘

(5‘1)6‘0‘2)* = b* m; (\1). (3.75)

We can now put (if m; = mg) -

(0o = tmiftastiie 1) et © (3.76)

where My = (f1).

This agrees with the absolute value of IMGT|2 according to (3. 68) and (3. 74),
As regards the phase (especially the sign) of MyM&r, (3.76) has to be con-
sidered a definition.

If we again take an average for an ensemble of nuclei, we obtain

Emi%isz( 1)(&7—7* = [i/Gi+ 1)) fi’?MF M. (3.77)

The combination {J1)* ([&), which occurs in (3.58) is the complex conjugate
. of this. If the Hamiltonian determining the nuclear structure (strong and
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electromagnetic interactions) is invariant for time reversal (which is gener-
ally assumed), it can be shown that My Mgris real. It follows that (3. 48)
and (3. 49) can be written together as one term with MrMZr and with Re(gng)
as a factor,

Substituting (3. 72) and (3. 77) into (3. 59) we obtain the final result for
the directional distribution of 8-rays from oriented nuclei; in the case of |
V- and A-interactions; we write it in the form

W.(6) = 1 + £ (v/c)A-cosf. (3. 78)

—_—

We have put JE.:p =(v/c)cosf (6 = angle between ;Tand 1_).); we have used as

abbreviations

= (lgvl®+ lgv|A|Mrl?+ (lgal®+ lehl?) [Monf? (3.79)

~

A% = (-2Re(gagh)/(i+ 1)) IMad®- (i/it+ DE 2 Re(evef + gvek) MeMér g0

This concerns the special case jf = j; which we have treated in some detail
as an example. At the end of this section we shall give the general formula
for arbitrary interaction and arbitrary spin change of the nucleus,

3.4. The B, v -circular polarization correlation

The calculation of this effect is to a great extent analogous to the calcu-
lation of the directional distribution of B-rays from oriented nuclei (cf. Fig. 1).

Ji

jeo
b

Fig.1

Nuclear spins in the case considered for '8, y~ circular polarization correlation

The difference between the calculations of the two effects is that for
B,v .-circular polarization correlation the effect is determined by the degree
of polarization of the nuclei after the B-emission in the state with nuclear
spin j¢. In order to find this polarization one has to take the average Liy; for
the orientations of the initial nucleus with spin ji, but one should not take
the sum Emf. Foi the directional distribution of the S-rays one must take
the sum Zm¢for the different orientations of the final state, but the states
with different m; should be considered separately. We shall again give the
calculation in some detail for mixed V- and A-interactions and for the case
that jf = ji.

We again make use of the expressions (3.39)... (3. 59) for the transition
probability, but we now have to carry out the averagmg LY in order to find
the populations ams of the final states of the nucleus after B -emission (with
nuclear spin jf). The natural choice of the coordinate system is to take the
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direction of emission of the 8 -particle as the quantization-axis (z-axis),

to which the magnetic quantum numbers are related. This is an axis of ro-
tational symmetry for all further phenomena., If we denote the partial tran-
sition probability for a transition from a state with magnetic quantum numter
m; before the B-emission (nuclear spin ji) to a magnetic quantum number

my after the f-emission (nuclear spin ji) as Brny.ms, the populations ams

can be written as

ams = (Eoi Priemd / (EmeC8 Prnis mg)- (3.81)

It is evident that a common factor (independent of m; and ms) may be omitted
from Bn,m¢ if we merely wish to calculate the populations ams, If we first
disregard normalization (determining the normalization at the end of the
calculation), we may start to calculate non-normalized ams according to

dm¢= T Pmj>ms. (3. 82)

We thus find the following-contributions from (3. 52) and (3. 53)

[

1 (levl®+ lgy?) Emd\ 1P . (3.83)

and

[

(leals leal) 2o (5 (3.84)

For the calculation of the contributions according to (3.45), (3. 46) and (3. 54)
we have to carry out summations analogous to those for the calculation of

(3. 68) and (3. 69), using (3. 62) (it is convenient to express (3. 62) in terms

of j¢ and m¢ for this purpose).

One finds:

Emii[&’)x (XE’)*JZ = -Ib [Py (3. 85)

and
zmiga’ﬁ =|b 5 (ji + 1), (3. 86)

From (3.85) and (3. 86) it is seen that the term with Re(gagf*) can be written
as

—
my Zmy |/ 0|2

Re @) 5

(p/E). (3.87)

Finally we have the contributions from (3. 48) ... (3. 51) which can be calcu-
lated as was done previously for (3.57) and (3. 58) using (3.62). One thus
finds as contributions from (3. 48) and (3. 49)

-Re (gvgk*)(yl)b*mf% . (3. 88)
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We may put, when jf = ji,

Ing? = Bmflfll“’ - EmilflP ; (3. 89)

‘and
|MG’I{2= Emf‘S\a.lz= EmJS‘E"Z . (3.90)
Using (3. 86) and (3. 90) we can now give (3. 88) the form
- Re (gygh) mfv (MpM&r/ L3 G+ DY R/E). ' (3.91)
In an analogous way one obtaing as the contribution from (3. 50) and (3. 51)
- Re (gh&) m; (MeM&/L5iGi+ D) p/E). (3.92)
Co]Jegting all‘the terms one obtains finally for #n according to (3. 82)
dm= C (1 + Aimy) (3.93)

(C is a normalization constant) with,

_ 2Re (@agd)( IMorl?/[3: G+ 1)))- 2Re (gad+ gved)(MeMdy [ (it 1)1H)
(lgvl®+ lgvl®) e P+ (lgal + lgaP) Mor®

A (e/E).

(3.94)

Calculating the degree of polarization f; from the populations ari,f according
to (3.93) and (3. 94) one obtains

+jfv mf Q
. T— am
g, = DI =1 (,+1)A 3.95
17 % =3 g 1. (3. )
: E ) a’mf
mf=- j§

Hence substituting (3. 94) into (3.95) we find

(1/5;) 2 Re (gagh) | Mot [(ji+ 1)/j1]* 2 Re (gvgd't glgdIMrMT

o /E).
(gvi?+ lgbl2) IMel2+ (lgal? + lgAP) IMof?
(3. 96)

=1
f1=13

Comparing (3. 96) and (3. 80) it is seen that IM(;-[{2 and MMy are multiplied
by factors for which the absolute value of their ratios is the same in both
cases, although these ratios have a different sign. Once the value of f; is
calculated the subsequent angular distribution of the y-rays, taking the circu-
lar polarization into account, depends on the multipolarity L of the y¥-radi-
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ation and the nuclear spin values js and ji. We can give the B, v-circular
polarization correlation by the formula

WED (6,7)= 1+ 3 AY (v/c)TQycos0. (3.97)

0 is the angle between the directions of emission of the 8 and v-ray;
7 = +1 if photons of helicity + 1 are observed; T = -1 for observation of the
opposite polarization. Qy is a factor calculated in the theory of the angular
distribution of radiations from oriented nuclei (we refer to [52]).

We give Qy for two simple but important cases

L

§ i gi-jt

11 if J:fv—jé

Q=

L=2,

Al is for the special case jf = ji, given by

gAY =-[(ir+ 1) /i {- 2 Re{(gaghWis+ 1] [Mea>+ [ /(G + 1)1*2 Re (gvef*+ gved)MrMAT}.
(3. 98)

We have discussed the phenomena of 'B,v -circular polarization here, ccm-
sidering y-radiation emitted as a ''detector' of the polarization of the nuclei
after f-emission. Comparing (3. 98) with (3. 80) we see that, apart from «
constant factor, the only difference is a reversal of the sign of the second
term relative to the first term. In both cases we can get information abou:
the same combinations of coupling constants.

3.5. The polarization of electrons emitted in B-emission

Before we deal with the polarization of §-radiation as it occurs for
an interaction Hamiltonian which does not conserve parity, we want to cor.-
sider how the polarizatfbn of relativistic fermions described by the Dirac
equation can be characterized. For this purpose we write down the general
plane wave solution of the Dirac equation (normahzed to one partlcle per
unit volume) in the following form:

mm (Bt
v = E?LE E;m - el X-E9 (3.99)

) ’(g) (aP+ |Bl2 = 1) (3. 100

where

is a two-component spinor. For ¢ = (é) one has the spin-direction along the
positive z-axis, for ¢ = (?) along the negative z-axis. A general state of
polarization (3. 99) is specified by (4}, where A and B are complex numbers,
related by the normalization condition IA‘2+ |B|2 = 1. Since a commonphaise--
factor in A and B is not essential, it is seen that the state of polarization
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is specified essentially by two physical parameters. An alternative charac-
terization of the state of the fermlon polarization is possible by means of
a 3- d1mens1ona1 unit vector € related to A and B according to

- >

=¢%9, ' (3. 101)

or written in components

tx = (A¥B¥) G | é) <A>5 = AB*+ A¥B.
g = (A* B /0 > <A> = i (AB* - BA¥) (3. 102)

= (a*B* < > @) - lalz- B2 .

In the non-relativistic Pauli-spin theory tis simply the direction of the

spin angular momentum or the spin magnetic moment. In the Dirac theory
the meaning of ¥ is less direct since €. g. the operators for the spin angular
momentum and the magnetic dipole moment are different. One also calculates
that the expectation values of these operators for (3.99) are different and
also differ from § Still, § is a correct characterization of the state of
polarization. It can be shown that § can be considered as the spin direction
in that coordinate system in which the fermion is brought to rest by a special
Lorentz transformation in the direction of p. Transition probabilities, taking
electron polarization into account, can be calculated using formula (3. 15)

so0 that the calculation is reduced again to the calculation of a trace of the
products of Dirac-matrices. However, instead of D. one should take a pro-
jection operator P. defined by

(B )pp = Yuifp* (3.103)

without summation over the electron spin states. The resulting . is much
more complicated than De given according to (3. 16), B according to (3. 103)
can be considered as a projection operator for a one-dimensional subspace
specified by a definite §° and a certain polarization. We shall show how the
complete expression for B, is calculated, althoughthis expression gives
more than is needed for the limited purpose of calculating the polarization
of the B-rays from non-oriented nuclei. We first note that a general 2X2
matrix a can be developed as a sum of Pauli matrices, writing

a1y 239
a = = co+ €101 + €202 + €303. (3. 104)
ag1 ag
where
co=% Ty (@) =13 (ann + ag)
c1 =% Trg (a01) =3 (212 +ag)
3.105
cy =3 Try (20y) =3 (212 - a21) ( )
ey =3 Tr, (aos) = 3 (@ - ag).
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Of course one may do the same thing for an expansion as the sum of p-mairi-
ces. The way in which the Dirac-plane wave y, is written in (3. 99) is useful
when splitting the spinor index X (=1, 2,3, 4) into 2 indices r (=1, 2) and
s (=1, 2), which concern p- and o-matrices respectively; hence X (=(r, s})
summarizes both indices; p~matrices are acting on r; o-matrices areacting
on s.

Analogous to B, defined by (3. 103), we may also introduce a spin-pro-
jection operator for the s-variables only, according to

- " AA¥ AB* .
(Po)sy = &8y = =3 [1+ €. (0)] (3. 10€)
\'BA* BB*

where we used (3. 102), (3. 104) and (3. 105). If we do not write the indices
s,s’ explicitly, we can simply put

—

(1+¢.0). ' (3. 10%)

ol

B = ¢¢* =

The Dirac spin projection operator (3. 103) can now be obtained e. g by
using (3. 99) and by writing

[Pe ()= dd = dos . (3. 10¢)

We then write r,r' in a 2X 2 matrix, but we do not write explicitly the indi-
ces s,s for ¢ and ¢* Except for (3.99), we also use its complex conjugate:

$* 5% o/(E+m)

v* = [E+m 2B s exp {-iFT- EO)L (3. 109) .

We thus obtain from (3. 103) by means of (3.99) and (3. 109)

@ TUE+m) ™ 5™ [(E+m)) - 6 THE+m) ¥t

(B @V 7 (U)en=((E+m)2 E) o

- $¢*p 5/ (E+m) oo* )/
' (3.11))

Substitution of (3. 107) into (3. 110) gives

@ N(1+EN @) (E+m) - E.9)1+F3)
[B @)k = (1/4E) -
S(EDFES . (Em) (1)

(3.111)

Again applying the identity (3. 26) we have
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@ T)E8) = §.T) +iT:(pXT) (3. 112)

-1+ (. F.7) = pP(1-F.)+2[F -8V -0) .
' ' (3.113)

Making use of these identities and remembering that p2=E2-m2, we can
reduce (3. 111) to

(E-m)(1-§-5) + 2(H )P -0 )(E+m)) -{p-)-{p-8)-10.(pxD)
[B(€))w =(1/4E
' - (679) - B-P+io.EXE) (E+m)(1+¢. 0.
(3.114)

Developing this according to (3. 104) into a sum of p-matrices, we have

B (€)= co+ c1p1+ copa + Cc3p3 (3. 115)

where according to (3, 105)

4Eco= E + m (¥.0)+ ( (p-E)p -0 )(E+m))
4Ec; = ;("._;:);(f;.c) (5. 116)
4Ecy= T. PXTF)

4Ecz= -m - E §.9)+ (®.F)p.9)/(E+m)).

According to (3. 115) and (3. 116) we may also write P, (f)) in the fo'llowing
form .

B, (€) =% (1- G T/E)p; - (m/E)ps-p (-0 /E) + {p X E/E) 0

+{€ + @-T)P/E (E+tm)}. pg0 +{{m/E)E +[(p. L)p/E (E+m)]}-] .
(3. 117)

It is seen that the spin projection operator has a rather complicated
form in this notation, This is related to the characterization of the spin
‘polarization by the 3-dimensional vector £, A characterization of the spin
polarization in a more clearly relativistically covariant way by a 4-vector
sy gives a more compact notation for B, (¢) in terms of ¥y -matrices. How-
ever, we do not want to go further into this matter here.

We now want to calculate the polarization of B-rays for allowed tran-
sitions for non-oriented nuclei when the interaction does not'.conserve parity.
According to (3. 15) we have to calculate the following trace:

L iKelmg [P = 4 L gkgz*g m(&z»*Tr [2%Dy R @) 1.
‘ (3.118)
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We want to average over the directions of emission of the neutrino so that
we simply substitute 3 for D, (cf. (3.17)). Further we substitute (3.117) for
15 (? ). We shall make the calculation for pure V-interaction; we obtain
the following terms

2] 1P
eyl {12
+gvg§[§1|2
+g“,g(§‘|S1|2 Tr[p1-1.1.B (€)]

Tr[1.1-1.B )]

W

Tr [p-1-p; - Pe ()]

Bl

Tr[l.-1.p;.B (€)]

e

O

= e+ gt 1P 1 Tr (1 +oym: @)
with ‘ ' (3. 119)
# = 2Re (aver)/(lgv*+ ley [F). (3. 120)

From (8. 117) one sees immediately that the result for (3. 119) is given by

—

e+ lewP11° 3 (1 -n 5" E7m0. (5. 121)

Hence the transition probability has a factor

1-up-¢/E,

which means that the degree of polarization for pure V-interaction is given.
by

P=-ul=+2(/c)(2Re @ (levf+ B  (3.122)

The calculation according to (3. 118) was very simple because we had already

obtained the expression (3, 117) for B, (?). One may also derive the B-polari-
zation directly, without using the expression (3. 117). We show this again
for the case of V-interactiorni. We have to calculate the square of a matrix
element according to

[N

§lgv|§1| (W) + gvl\ 1] wdvs g 12
=3 1{1P2 [levl Wevawive) + letk WomI0wte) (3. 123)
+ gvey (i) Wwte ) + ghev Ul Wave) 1.

I we average 2‘; WYF = Dy over the direction of emission § of the neutrino
we obtain simply a constant, We have further (v5)2 = 1 and ¥5 = p1. In this
way (3. 123) reduces to . .
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2 (el + letPH I\ P 1w (L mepee 1. (3. 124)

M is again the constant given by (3. 120), The expressidn is further reduced
by substituting (3. 99) and (3. 109), which provides

(1 + kpy) Ve

_ E+m

[6*{@" VD" 5V/(B+m)2}é + 676 - 20 ¢* @ T /(E+m))]

—

=55 (9% OY(E+m)+ (B+m) 6% - 20 ¢*(- 54 ]

== [2E-24(p-€)] =1-u (@ TE).
' (3. 125)

We have used here: $*¢ = |A|2+ |B|? = 1 and 6*0'¢ =€ (cf. (3.100) and (3. 101)).
We have thus derived the same factor in the transition probability in (3. 125)
as we had in (3. 121), so that we have again derived the result (3. 122), Taken
separately, this second derivation of the degree of polarization of B-rays
is shorter than the derivation of the expression (3. 117) for the spin pro-
jection operator, However, it is useful to have the complete expression
of the spin projection operator available in case one wants to calculate more
complicated effects with electron polarization.

We shall now show that the f-polarization for S-interaction has an oppo-
site sign to the V-interaction. We then have instead of (3. 123)

4 las (Sl) (Woatn) + gb (Y1) Weoavs ) |2

= 3 11P2 Lesl? e Giionte) + g8 Gdoomrtn) Gl aste)

+ gsg¥ Whpavy) WL mave) + gsgst (e psm wux Yoave) |

(NI

(lgsl? + lggl? )Ijllzwe 1 - voupe]

[MES

(el + eI 1P 1+ v €7
(3. 126)

where we have put

= 2 Re (gsgd)/ leslP+ lgsf?. (3.127)

In the reduction of (3, 126) we have made use of pgp,p3 = =P3P3P; = -p;. -The
anticommutation of p; and p; provides a different sign for S than for
V-interaction. For the same reason one finds opposite signs for the 8-polari-
zation for T- and A-interactions. However, we do not go further into the
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calculations for T, A or P-interactions as they do not contain any new ele-
ments.

3.6, Summary of some formulae for 8-radioactivity

For the purpose of further discussion we list below a number-of formulae
with some more details than we have derived hitherto. We give the tran-
sition probability, for when the emitted electron has momentum p~ and the
neutrino has momentum . We assume that the nuclei may be polarized and
that J is a unit vector, which is an axis of rotational symmetry for the ori-
entation. The nuclear orientation may then be specified by the parameters
fl and fz:

£, = (1/j) %mam (3.128)
f2 = (1/12) [ £ mam- 35 (G + DI. (3. 129)

The transition probability may now be as follows (units with4 = ¢ = 1 are
used; Coulomb-corrections are taken into account up to the first order;
cf. JACKSON, TREIMAN and WYLD [17] }:

W; (0, q,j) = 27127 )5F (£ Z, Ee) p Ee (Ep - Ee)? §2
{1+ a3 (ﬁ’- G/EEy) + bs _(m/:Ee)
- (3.]1/231‘ 1) Cz o { (P Q/3EeEv) - ((’_,)(_.—.)/EeEu)]

 +£,[A; (5~ p/Ee) + Bi(- q/Ey) + Di (j-(PXQ)/EeEu) 1.
. _ : (3. 130)

E, = E; - E. is the neutrino energy. F (+ Z, E.) is the Fermi function,
which specifies the influence of the Coulomb field of the nucleus on the
B-spectrum. Averages are taken for the electron and neutrino polarization.
The following effects are described by this formula: .

(2) shape of the allowed spectrum (average over p andq and nuclear
orientation j )

(b) e-v angular correlation;thisis determined by the term a:r.(p q)/

. (average over nuclear orientation);

(c) the angular distribution of B-rays from oriented nuclei is obtained
by averaging over T (6 = angle between j and P ):

Wi () = 1+ b; (m/Ee) + f1.{v/c) Ax coée; - (3.131)

(d) for recoil experlments with polarized nucle1 the important terms
are (7= 4)/E, and 7. ©Xq).
We give below the expressions for §, ..., D expressed in the coupling
constants gj - and gf of the Hamiltonian.
The upper and lower signs refer tof~ and Bt emission réspectively:
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g = (lgsl+ lgél® + levl® + et ) IMel® + (lgrl® + lgt |® + lgal™ lga P) IMoo?
(3.132)

' - az
238 = {[ - lasl® - lgbl® + lavl® + lgv)1 * a—pr—n- 2 Im (gsg¥ + gégh)  [Me|?

+ 1 UgrlP+1ghl? - lgaP - laal?y 2 afm- 2 Im (grgk+ gD HiMor®
(3. 133)
b;& = + 2v Rel (gsgd+ giel) IMe P+ (gre i+ gtelh) IMgql®] (3. 134)

B aZm P
AsE =i [ 2 Re (grer -gagh) + 5 2Im (g1ga+ grea)l Mo’

+ |y (2Te (asef ebef - avel™ ghel)

iafm 21m (gsgh + g5 ed - gver - eved) ] MeMdT

(3. 135)
I % I I
Bif = 2 Re {|Mor|? Ay [ };ﬂ (grea+ gtga ) * (gTET+ gABA) ]
* T 1% * 1% %
- &jijf MrMot J»jih-r r [lgser +eser+evea + gver)
m 1% ;% 1% 1k
+ L2 lgsga + gses + gver + ever)};
© ' ‘ (3. 136)
di * [ ’* ¥
Dsf = %y 577 [20m (gseT+gser- gven - gvan)
- aZm * * - *
* 5 2Re (gsgat gsen’- gvET - £veT)] MeMor.
(3.137)
In these expressions we have used the following notations:
jf is the nuclear spin after B-emission (3.138)
y=J1-a222 (3. 139)

F (* Z, E,) is the well-known Fermi function which gives the influence of
the nuclear charge Z on the 8-spectrum (F(+Z, E.}= 1-for Z = 0), '
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il

1 for ji—jf =ji-1

Mg = 41/Gi+1)  for  j—if = ji (3. 140)
i /G +1) for s = i + 1
With respect to the interference term MgMg it should be noted that it can

be proved to be real (assuming that the nuclear Hamiltonian is invariant
for time reversal).

3.6.1. Polarization of B-rays

In formula (3. 130) an average is taken for the electron and the neutriro
polarization. If parity is not conserved, we have the important effect of
the longitudinal polarization of 8-rays for non-oriented nuclei. This effect
is not yet described by (3. 130) but we can describe it by the following formu-
la .

W; (0,€)=(1/2(27)%) F (£ Z, Ee)p Ee (Eo-Ee )28

X {1+ bs(m/E) + G, (€ -p/Ee)t.

(3. 141)
'§_> is the polarization vector for elecirons.
G; is given by
* # ) * *
G:€ = [MeP[£ 2Re (gsgs - gvev)+(@Zm/p)2Im (gsgv + gsgy ) )
* 1% 1% *
+ Mgz |2+ 2Re (grer - gagat(ezm/p) 2Im (grgs + grea) ]
(3. 142.

It follows from (3. 141) that the degree of (longitudinal) polarization of
electrons emitted in an allowed -decay is given by

- __Gi(v/e) .
B = o (/5 (3. 143
3.6.2. B, v-circular polarization correlation )
This is another effect showing the non-conservation of parity as was dis-
cussed before (cf. Fig. 2).
i
Jw
it
Fig. 2

Nuclear spins for B-emission followed by gL-pole y-radiation for which the circular polarization is measur:d



WEAK INTERACTIONS AMONGST NUCLEONS AND LEPTONS 377

» The following result can be derived for the B, v-circular polarization
correlation:

’

Wi (6,7) = 1+ bz (m/Ee) + 3 Al 7Q, cost . (3. 144)

6 is the angle between the directions of emission of § and v ;7 = + 1 for
photons of helicity + 1 and 7 = -1 for the opposite polarization. The value
of by is given by (3. 134). Qy is a function of jf, jf and the multipolarity L
of the y-radiation; we specify Qy for two important cases

3 . ieo_ N

(% if if - if
Q = . o
1 if if - it

L=1

n

L=2.
(3. 145)
The value of A £ is given by

ATE =-(G +1/j) {0t [+ 2 Re (g187 - gagh)+(aZmyp) 2Im (grgik+ grek)}{Mor?
- o Giis + O [2 Re (gsef+ gset - gveX - evel)

53 { % S e * *
+(aZm/p)2 Im (gsga+ gsga - gver - gvat )IMrMor,

(3. 1486)
where
- MG+ i jr=gi- 1
O = Wi+ i =k
1 if g =g+ 1
(3. 147)

It is useful to compare (3, 135) and (3., 146), These formulae are analogous
although the factors Ajfji and oj;  differ. If jf = ji, we may have the inter-
ference term MpMgér in addition to the main term IMc;'rl2 . In this respect
it is remarkable that the main term and the interference term in (3, 135)
and (3. 146) have opposite relative signs.

3.6.3. Some general remarks about the structure of the formulae

(1) It should be noted that ng"{f has opposite sign to gAgﬁ*in the formulae
for Az (3. 135) determining the directional distribution of B-rays from ori-
ented nuclei, as well as for Al (3. 146) for the B-v circular polarization.
correlation, and the expression Gz (3. 142) for the B-ray longitudinal polari-~
zation, Similarly gs gé* has opposite sign to gvgV* in the expression Gy for
B-ray polarization.

From this structure of the formulae it is seen that the experiments
providing Az, Al or Gj can teach us about the helicity of the emitted neufrino
related to the sign in gf = * gi (when assuming two-component neutrino theo-
ry) only when it is known whether the $-interaction has V or A character
(as to its Gamow-Teller part) and S or V character (as to its Fermi part).
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(2) The terms with p-q, J-P and j- q in (3. 130). are all'even with re-
spect to time reversal, In 2 (see in particular (2. 18) - (2. 21)) we discusse
in general terms in what way time-reversal invariance can be tested, In
formulae (3, 133) - (3. 137) we have examples of these general considerations.
It is seen that the term with Dy (j_: (ox a/EeEu) is the only term of which
time-reversal invariance can be tested, when we neglect final-state inter-
actions (i.e. if we omit the terms with o Z); in the expression for D one
still retains in this case the term with Im (gs g%+ gb g~ gvgX - gvgs*) which
should be equal to zero if invariance for time-reversal holds.

On the other hand, if final state interactions are considered (i.e. if
the terms with o Z are taken into consideration), the expressions for ag,

Az and Bz contain terms which could demonstrate non-invariance for time
reversal (cf. the corresponding general formula (2. 20)). However, such

terms with @ Z have the character of correction terms and are not easily
measured,

3.7. The experimental situation in f-radioactivity

In this section we review concisely the experimental situation concern-
ing B-radioactivity (cf. [10] for a more complete review).

(1) From the half-lives and end-point energies of (super-allowed)
B-transitions one can learn the coupling constants for the Fermi and Gamow-
Teller parts of the B-interactions (using the so-called ft-values). Nuclei
are needed for which the matrix elements can be supposed to be known on
theoretical grounds; in this respect the most important are:

(2) the neutron, spin ¥; |Mg[2= 1, |[Mgq? = 3.

(b) 0+ ~~0+ - transitions such as occur for O, Al26, C134; because

of the selection rules ]MGTP = 0; further 'MF l2 = 2.

(c) mirror nuclei, especially those with closed shells + one nucleon,

such as O15, F17, Ca?39,

The results of the ft-values measured for the nuclei (b), especially
014, can be given as . )

gr = (1.470 £ 0,022) X 10°¥ erg X cm3, (3. 148)

where gr.is-the "Fermi coupling constant', which may be expressed interms
of the coupling constants used hitherto as

g =4 [les P+ It 17+ levl” + leil? . (3. 149)
Further one often introduces R = A? according to
ler*+ let® + lgal® + Jeal®

R=2A%= - .
lgs |2+ Jgs 2 + lev P + lgv]?

(3. 15()

The value obtained for A on the basis of the ft-values for the n and 04 is
x| =1.18% 0.05. (3. 15%)

The value obtained on the:.?;basis of Q14 and the mirror nuclei is some-
what lower ( Ill’z 1, 08); it is probable that this is due to a number of cor-

’
‘
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rections which have to be applied in the case of mirror nuclei; of course,
it is a most important problem that even the explanation of the ft-values of
the simplest 3-transitions require quite an amount of detail on the nuclear
wave functions; for a survey of this problem we refer to[18].

(2) Recoil experiments for allowed S-transitions providing the constanta,
in the electron neutrino directional correlation are a most important source
of information, For pure interactions one would have a = -1, +1, +3, -3
for S, V, T and A interactions respectively. Hence these experiments can
distinguish between S or V interaction for the Fermi part and between T
or A interaction for the Gamow-Teller part of the interaction, which is
not possible on the basis of ft-values alone.

Recoil experiments have been performed for n, Heb, Nel9, Ne23, AS35,
These nuclei have different ratios for IMFI and‘MGT| . The experiments
show clearly that one must assume V and A interaction, while the upper
limits for S and T interaction are found to be

(lgzl* + lgz*/leal® + ey < o.07.

(les 12 + lgd B/ lev|® + levP)

IN

(3. 152)
0.07.

IN

The situation as to recoil experiments and the T or A, and S or V character
of the B-interaction was confused up to 1958, especially as a consequence
.of a Heb recoil experiment which indicated T instead of A interaction due

to experimental errors.

(3) The so-called Fierzterms, which can occur in the shape of 8-spectra
(terms with coefficients bt according to (3. 134)) were shown to be absent
experimentally within the accuracy of the experiments:

]bcrl < 0. 02 for Gamow-Teller transition;
(3. 153)
lbp ] < 0.1 for Fermi transitions.

For a Hamiltonian conserving parity (g{ = 0) one could then conclude
that S and V interaction cannot occur simultaneously (also T and A inter-
action cannot occur simultaneously). However, the conclusion for a more
general Hamiltonian with g; 7‘ 0 is less simple, (cf. formula (3. 134)),

(4) Since 1957 a large number of experiments demonstrating the non-
conservation of parity in B-decayhavebeenperformed. Most of the experl-
ments belong to the three types:

(a) asymmetry of B-rays from oriented nuclei;

(b) (B, v) circular polarization correlation;

(c) longitudinal polarization of B-rays.

The experiments showed very soon that the effects have about the maxi-
mum possible size, and this has since been confirméd (e. g. the degree of
longitudinal polarization was found to be P = - v/c for B-rays and P = + v/c
for Bt~rays within a few per cent), This indicates g1 = gi, hence two-com-
ponent neutrino theory.

Once the V A character of the B-interaction was established (1958), one
could then conclude immediately that gv = gv and ga = gi, hence 'left-handed
neutrino'', from the signs of these effects. The relative signs of the V and
A coupling could-be determined from the directional distribution of 8-rays
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from polarized neutrons, as one has here a V, A interference term (cf.
(3. 135)). Also the term with Bz could be determined (measurement of the
recoil protons). It was found that the relative sign of the V and A contri-
butions was negative.

(5) A further experiment for detecting the term with Dz (cf. (3. 137))
[or polarized neutrons gave no indication that time-reversal invariance
would be violated.

From the TCP theorem it follows that T-invariance is equivalent to
invariance for the "combined inversion' CP. From the values of the coupling
constants obtained it is clear that both P-invariance and C-invariance are
violated. '

We may further summarize the situation concerning B-interaction by
stating that all experiments are compatible with

(a) V - XA coupling withA = 1,2,

(b) 2-component neutrino theory, with left-handed neutrinos,

{¢) lepton conservation.

The following basic experiments, which agree with this too, may also
be mentioned: ‘

(6) The experiment of Reines and Cowan on the inverse beta-process
with neutrinos from a reactor

V+p-ntet

gave a cross-section ¢ = (111 2.6) X 10%cm? to be compared with a theo-
retical value of 14 X 10-#cm?,

(7) Experiments showed that double B-decay without the emission of
neutrinos is absent (within experimental errors), as'is required by lepton
conservation,

4. MUON DECAY

We shall review the situation concerning muon decay only very briefly.
Muon decay is a three-body decay, which may be written (for u-) as

U ety +y, (4.1
In a three-body decay one has a continuous energy spectrum. The electron
energy spectrum in (4.1) extends up to a maximum energy of about 52 MeV'.
Besides the electron spectrum non-conservation of parity permits the
observation of another effect: the muons resulting from pion decay

T-->u-*v

are completely polarized, as a consequence of angular momentum conser-

vation, if we have two-component neutrinos with an intrinsic polarization.
The decaying polarized muons may give rise to an asymmetric angular

distribution of the resulting electrons analogous to the angular distributior:

of electrons resulting in B-decay from polarized nuclei. Both electron

spectrum and angular distribution are given by the formula (for the deri-
vation see KINOSHITA and SIRLIN [19] and BOUCHIAT and MICHEL {20]
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Wi (x,6) = const {3(1-x) +2p ($x -1)T§ cos6[(1-X)+26 ($x - 1)]}x%
) (4.2)

Radiative corrections and the electron mass are neglected x = %0 H

p = electron momentum; p; = maximum electron momentum. The three
constants p, £ and é are functions of the coupling constants: p is known as
the Michel parameter (cf. MICHEL [21]); it determines the shape of the
electron spectrum.

The value of p may vary between 0 and 1 for the decay scheme (4.1).
In addition to the scheme (4.1) the following possibilities also exist

H- > e+t yty (4.3)
u'—>e'+7+7/'. (4.4)
For the schemes (4. 3) and (4.4) o may vary between 0 and £. When a

two-component theory for the neutrinos is assumed (ys5¢, = ), p attains a
unique value, namely p = 0 for {4.3) or (4.4) and p = £ for (4.1) [22], [23].

dN 2x? (3-2x)dx = for p=

wfw

(a) 1

dN

12x2 (1-x) dx for p=0 (b) (4.5)

It is now well-established that the first case (p = 3) is realized in nature.
The interaction Hamiltonian for muon decay for the scheme (4. 1) may be
written as

Hp=ppo 11 (T YW@ ) + hoc. (4.6)

as well as

av =gl (Tl w)(@D ) + hc. (4.7)

In both expressions we assume that we have the two-component neutrino
theory with v ¥v = ¢w.

The two notations are equivalent provided the coupling constants are
related as follows

gs = -gp = fv+ia

gv= 'gA=';' (fa - fy).

(4.8)

For the two-component theory the normalized electron distribution can be
written as

AN, = 2%2[ (3-2%) £ E cos 6 (1-2%)], - (4.9)

where £ is given by

E = (2 fyfa/(Ev)2 + (£4)%). < (4.10)
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Hence for fy = -f4 we have £ =

We may summarize this in the following way. For the two- component
neutrino theory and V-A interaction the constants p, & and 6 from (4.2) hae
the values

=2, g=.1, &§=2, (4.11)

The expression for V-A interaction may be written in both the following
ways {cf. (4.8) for fy= -f4 = J2gH)

A= B e (14 ) TTra (145 )y ] 1)
= j‘g— We v (1+95)0, 1 {Tva (1475 )0, ]
Finally, the decay rate for the interaction (4.12) is given by
= (mﬁ gp2/3.2v67r3) . _ (4.13)

We now give a summary of experimental results (we make no attempt at
completeness but give only the most precise and recent ones, cf. also [24] for
a general review of the experiments),

p= 0.741 % 0.027 [27]
0.785 £ 0,020 [28] ' (4.14)
0.764 £ 0,032 [29] ‘
£=-0.94 £ 0.07 [ 28] . (4.15)
5= 0.78 % 0,05 [28] -~ (4.16)

Tt should be noted that radiative corrections of about 5% have to be applied
to the Michel parameter p (cf. [25] and [26] for their calculation).
The following precise values were obtained for the mean life-time

7 = (2.210 % 0.003) jusec [30] (4.17)
leading to'
gh = (1.428 £ 0.001) X 10}49 erg cm3 (4.18¢:)
or ‘
g ='_1-0_1nfi%><_10_'5 . . (4.18h)

The situation concerning muon decay may be summarized as follows: the
measured values of p, § and & are in good agreement with the two-component
neutrino theory and V-A coupling; muon decay proceeds via scheme (4.1)
while (4. 3) or (4.4) have to be rejected.
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5. UNIVERSAL FOUR-FERMION INTERACTION: THE PROPOSAL FOR
A UNIVERSAL V-A INTERACTION

In section 3 we have seen that all experiments on fS-decay are in agree-
ment with the V - XA A form for the interaction Hamiltonian with a two-com-
ponent neutrino.

Hus = (gs /"/_2) (’l_/p‘Yp(l +l75)‘/’n)@e"’u(1 +ysiy,) thoe.. (5.1)

From the ft-value of the B* decay of Ol4, a pure Fermi transition, we get
a very accurate value for gg [31]

gs = (1.4170 £ 0.0022) X 10-4° erg cm?, (5.2)

The ratio of the axial-vector and vector coupli.rig constants, A, is then de-
termined from the life-time of the neutron [31]:

-y

>
1

U’QTUQ

<iw

| = 1_.’isi 0.05. (5.3)

For several mirror-nuclei, in which case one can calculate the matrix ele-
ments, one finds values for A which are significantly different from (5. 3).
BLIN STOYLE [31] has discussed possible causes of this discrepancy.
Several authors [32] [33] [34] independently remarked that by a simple
prescription, one can get the form (5.1) withA = 1 from the general form
given by '
2-# &y,T’A'éwa Yn)We B Mei + g1 vs)dw) + h.c.. (5.4)

We substitute in (5.4) for every ¢, ap with a = 3 (1 + v5). Then { becomes
Fa (== % (1 - y5)) because of the commutation relations (A.36); we have:

az = (.1""7'5)(1 tys)= 3 (L+ys)=a

B

da = 2(1-yMl+tys)=3(1-vd=0

o= {5 (1+ )by =0 3 (1 + ys)ya = 3y*ya(l-ys5) = Ja.
Thus
Vhiy»yaljay,
with
alla=Nga=0 if j=8,T,P

Zlja=La?z=Ija if j=V,A

It is required that the interaction be invariant for the substitution .

U - ay .
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Only the A and V terms in (5. 4) remain, The result can be written in the
exact V-A form as

gAN2) @y (1 +ys)Un) oy, (1 +v5)0y) . (5.5)

The addition of the superscript (0) to s and gs in (5.5) will be explained
later on.

Several authors have given theoretical speculations, which might be
important for a deeper understanding of the prescriptiony »ay. FEYNMAN
and GELL-MANN [39] explain that one might use for quantum electrodyna-
mics, instead of the first-order Dirac equation for the 4-component field

I ('a%u- -leA)+ m]y=0, (5.6)

also a second-order equation for a 2-component field (Au in (5.6) specifies
the 4-potential of the electromagnetic field, with which the particle is inter-
acting). This equation can be obtained by putting

1 9 . ,
Il & 7" (5;" -ieAp) -mjw, (5.6a;

from which one obtains the iterated Dirac equation for w,

[(5%, -iet)? -m2-fieymFylo=0, (5.7

where. ¥y, is the electromagnetic field

F"l’ = auAU - aIIA“ *

The equation is a second-order equation, however, for the 4-component
field w. One may pass to a second-order equation for a 2-component field
by noticing that y5 commutes with 4y vy so that (5.7) can be split into two
equations for 2-component fields satisfying

either y5w =w, (5. 7a)
or  yw = w. (5.7b)

Choosing (5. 7a), one obtains by multiplying (5.6a) from the left by (1 + 75)
{(ys anticommutes with v,)

=3 (1+xwly . _(5.7c)

(5.6a) and (5.7c) establish a (1, 1)-correspondence between the solutions
of the Dirac equation (5.6) and the second-order equation (5.7) with the
additional condition (5.7a). The quantity w satisfying (5. 7a) has really only
two independent components as is seen by writing ¢ = (55) so that w can be
written as
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P (l+yy = ( (CPH()) < )
Y:
3@+ X)
It is then easily deduced that cD satlsfles the equa.tlon

[(2-ieA,)? -m2+ed- (B+iE)]o = 0. (5.7d)
u

It can be shown that (5.6) and (5. 7d) are equivalent as far as quantum electro- .
dynamics'is concerned. However, the two equations may lead to different
theoretical proposals for 4-fermion interactions in the following way:

One may postulate theoretically that 4-fermion-interactions should be
:linear in the fields themselves but should not contain derivatives of the fields
(think of the rejection on experimental grounds of the Konopinski-Uhlenbeck

interaction, containing derivatives for B-radioactivity).
It then makes a difference whether this requirement is formulated for
the field ¢ or the 2-component field ¢:
I, When formulated with ¢, the interaction may also be formulated
with the aid of w (or ¢) by substituting (5.6a), but it then follows
from this formula that the interaction formulated by means of ¢
contains derivatives.

II. On the other hand, if one requires the intéraction to be linear in ¢
(or w) it follows from (5. 7¢) that the interaction, when formulated
with the aid of ¢ should contain ¢ only in the combination ay, which is
equivalent to the rule we have just formulated.

It is this second proposal which was made by Feynman and Gell-Mann.
SAKURALI [33] requires that the interaction should be invariant for the
so-called mass-reversal transformation:

W=y, ¥=-0y, m—-m. (5;8)

This has to be applied for each of the four fermions separately. Note that
the Dirac equation is invariant for (5.8). We now consider the combination
¥ T} (a+tbys) ¢y

If we apply (5.8) to Y1 we obtain a = b.

Now we apply (5.8) to ¢g;

Yoli (1 + 5)tn — - PovsTy (1 + velyn.
From this we get % I; = -I}ys which means that only the V and A coupling

remain.

Also the argument of MARSHAK and SUDARSHAN [34] implies the in-
variance of the interaction Hamiltonian for the transformation

Y= vV . ' (5.9)

The éigenvalue of the operator yj is called the chirality; ¥ is an eigen-
function of v with eigenvalue or chirality.*1 (cf. (2. 38)). The form (5.5)
is such that it involves the conservation of chirality. Besides the B process
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n—p tety,
p =n +et+ y, (5.10)

two other four-fermion processes between nucleons and leptons have so far
been studied experimentally as well as theoretically: the decay of the mucn
(cf. section 4)

pret vty - (5.11)
and the capture of muons by nuclei
u +p~v+tn. (5.12})

The capture process will be considered in section 7; the errors involved
both in theory and experiment are such that until now a precise determi-
nation of the coupling constants for this process has not been possible.

It was noticed already in 1949 that the magnitude of the coupling con-
stants was about the same for the three processes (5.10), (5.11) and (5. 1%).
Nowadays experiments and theory have improved to such an extent that we
can investigate if there is really an exact Universal Fermi Interaction
(U.F.1.). In 4 (cf. (4.12)) we have seen that the experiments on muon decay
are in agreement with the V-A form for the interaction

Hu = (g H2) (Ten (L +) ) Emy (L + vs) ¥) - (5.13]

With respect to the "experimental" Hamiltonian for the g interaction (5.1),
the only difference is thatA = 1 in (5,13)., This should also follow from the
prescription ¢ — ay (cf. (5.5)).

From the life-time of the muon we obtamed a precise value for g, (cf.
(4.18a):

gp = (1.428 + 0.001) X 10-49 erg cms3, - (5.14)

The discrepancy between (5.14) and (5.2) (=~0.8%) is so small that one is
inclined to assume that

g = gp - (5.15)
holds exactly.

This means that the vector coupling constants in B-decay and u-decay
are the same,.

We should mention that the values (5.2) and (5.14) have to be corrected
because of electromagnetic effects. DURAND et al. [35] find that the dis-
crepancy then becomes less (= 0.5%). However calculations by KINOSHITA
and SIRLIN [36] make the agreement worse (= 1.3%) but there are several
uncertainties in these corrections. We shall assume (especially in the nex:
section) that (5.15) would be exact, if one knew how to make all the necessary
corrections. Now there is one important difference between the B-process
and muon decay. In the first case one has to do with nucleons; these are
particles which also have a strong interaction. One must imagine that around
the nucleon there is a cloud of virtual pions, which are emitted and absorked
by the nucleon. A priori we expect that this will have an effect on the process
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(5.10) (and also on muon capture}. In muon decay we have only particles .
with a weak interaction (except for the well-known electromagnetic inter-
action). One now assumes that the hypothesis of the U.F.I. is valid for the
interaction of the bare particles

=gu (=D (5. 16)

The deviation of A from unity in the "experimental' Hamiltonian is then
not surprising. It should follow from a difference in renormalization of
the axial vector and vector part of the f-interaction. However the equality
(5.16) or rather of gz and g® (following from (5.16) and (5.15)) is then at
first difficult to understand. We expect some renormalization effect. We
explain this qualitatively by some Feynman diagrams (see Fig. 3).

() : (o)

u u v n 13 P
Fig. 3(a) Fig. 3(b)
u= decay Decay of the bare neutron

’ \ (o)

/ \ n hIS [ n

Fig. 3(¢)

Decay of the physical neutron

The hypothesis of the U.F.I, states that the contribution of Fig.3 (a)
is the same as of Fig. 3 (b); géo) = g{?) . However, it is not a priori clear
that the sum of the processes Fig. 3 (c) gives the same result as Fig. 3 (b).
It has not yet been possible to calculate the contributions of Fig. 3 (c¢) because
one cannot apply perturbation calculations to strong interactions. )

Nevertheless, in section 6 we shall discuss how one can, at least for
the vector interaction, explain the equality g%o) = gg.

GOLDBERGER and TREIMAN [37] have given a general treatment of
the weak interaction of nucleons with leptons.

Without doing explicit calculations of diagrams such as Fig. 3 (¢) one
can say something about the general structure of the effective matrix ele-
ments assuming some very general principles of invariance and space-time
structure. If we assume that the '"bare'' Hamiltonian, i.e. the Hamiltonian
without the influence of strong interactions, has a pure V,A form, we can
write for the effective matrix element for the process (£=e oru)
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ntyeptg (5.1%)

_l . A
Mo, i (1% 90wl

+ 27 Wy my (1 + 75) up<n gV |p> (5. 18)
Jz;i = Pyl Y)\.qu-(')qjN (+ pion current ?)
I = Tyva O ¥y (+ pion current ?) (5.19)

g8 and g9 are the ""bare' coupling constants.
We are supposing that the U.F.I. holds for the bare couplings

B0_ _Mco_ g
gv=8v T 8v

gy

gl = gf= gh=gf .

In the following y and ¢ denote annihilation and creation operators respeciive-
ly and not the ordinary wave functions (cf, App.II). u, and uy are the spincrs
(c numbers) for the neutrino and lepton, |n)and {p) are the physical states
of the neutron and proton respectively. For the following the explicit ex-
pression for Jf and JX is not relevant. The only thing that matters is the
axial vector or vector behaviour of these expressions.

One imposes the following requirements on (5.18):

(1) Lorentz invariance;

(2) charge independence of the strong interactions;

(3) invariance for time reversal,

With conditions (1), (2), (3), one can show that the most general form for
the ""nucleon currents' is (cf, also 7.2)

0 AN - — . _ — — )
<n|ghif]p> = Awpiyiys Ty - By yavsup + Elaonp Gpysup, (5. 20"
Y o e S ,
<n [gVJ)\ lp> = Cuymup - iDUp oxpgpup + i FUnqrup (5.21

The constants A ,.. F are functions of the invariant q?= (p) - n;)% qy = p.
-ny; 0,, p) are the four-momenta of the neutron and proton

oae = (1/2) (yaye - vem).

In the limit q —0 (B decay), the terms with coefficients B, D,E, and F ap-
proach zero. This is the reason why in 8 experiments the terms with A ani
C are sufficient. In the following section we shall see that if one looks for
more subtle effects the term with D has some measurable consequences. In
the muon capture process with g2 =~ mﬁ , we shall see that the effect of
the terms with D and B becomes quite large (section 7). The terms with E
and ¥ were absent in the original paper by Goldberger and Treiman. How-
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ever, one then has to assume that the nucleon currents transform "normal-
ly' for the transformation G.

(4) A -
Gitgl= -3
_ (5.22)
GIHG1= +J}

with G = C elrT%

C is the operator for charge conjugation. e"T? is a rotation over 7 on
the 2-axis inthe isospin space (cf. [8] and also 7.2). Requirement 4 has not
yet been verified by experiment (see also next section). If we assume that
invariance for time-reversal holds, it follows that the "form'" factors A...F
are real.

6. THE THEORY OF THE CONSERVED VECTOR CURRENT: THE PSEUDO-
SCALAR IN B-DECAY

6.1. The hypothesis of the conserved vector current

We shall confine ourselves in the first part of this section to the vector
part of the interaction.

At the end of section 5 we discussed the fact that, although nucleons
have strong interactions, one can nevertheless write down a general effective
matrix element for the 3-process. In ~decay it is almost sufficient, because
of q2~0, to consider only the first term of (5.18), which is the classical
vector covariant with coupling constant: C (g2~0). This constant, which we
also call gg = g,‘g/ is the result of a renormalization process and there is no
direct connection with the unrenormalized coupling constant g\9. In muon
decay there is no such renormalization effect (apart from small electro-
magnetic corrections) and the measured coupling constant gp is also the
bare coupling constant (cf. Fig. 3).

Experiments on 8 -decay and u -decay suggest that almost exactly (5.15)

C(0) = gp = gu. (6.1)

Now one can hardly believe that the bare coupling constant and the renorma-
lization effects are such as to yield g equal gu. If one assumes a U,F.I.

for the "bare' processes, the problem is to explain why here is no renorma-
lization effect for the f3-interaction:

(0
gs=gs . (6.2)

FEYNMAN and GELL -MANN [39} , and independently ZELDOVICH and
GERSHTEIN [40] remarked that there is a striking analogy with the situation
in electromagnetism.

The electromagnetic interaction of a proton is originally not influenced
by the strong interaction: e = eo; i.e. the total charge (this is the coupling
with the photon field) of the physical proton is equal to the charge of the
"pare' proton. We are supposing that the charge of the bare proton is equal
to the charge of the electron.

‘ In Fig.4 we give the diagrams for the electromagnetic interaction of
the proton.
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¥
eﬂ
e [
Fig. 4(a) ’ Fig. 4(b)
E. M. interaction of the electron E.M. interaction of the bare proton
¥
&
1['-;/ \\'ﬂ'+
7/ \\
! \
L 1
P n P
L5
§
p S p
T NG
4 0) \
/ \
! \
R e i L
I P P P n p

Fig. 4(c)

E. M. interaction of the physical proton

The reason why there is no renormalization effect is, of course, the
fact that the charge is conserved in the strong interactions; the r* has the
same charge as the proton.

We get an explanation of the equality gg= géo), by assuming that the pion
has also a direct coupling with the lepton field, with the same coupling cor-
stant as the bare nucleon, Thus we replace the ? in Fig. 5(cf Fig. 3 (¢)) by
a diagram (Fig.6) with a direct coupling of 7 with the lepton field.

Fig.5 Fig.6

Let us now consider the analogy more closely. The operator for the
electromagnetic current can be divided into an isoscalar and an isovector
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part. Both are conserved. If we consider only the contribution of the vector
part to the electromagnetic interaction we can write: :

V 2 _5 a0
HooE—ieJp A, (6.3)
Ay is the electromagnetic field, If we include the strong interaction,J i is
the third component of the total isotopic vector current operator

& =%%Yyl‘l‘u +¢;1:52Vp¢1r+... (6.4)

We use isotopic spin notation (c¢f. App.IV).

By a wavy line we indicate that we have a vector in the isospin space.
If we also include the strong interaction of the nucleons with the strange
particles (e.g. L) we have to add more terms to (6.4).

Conservation of isotopic spin implies that this current is so constructed
that

7]

Ju=0. 6.5
ong X (6.5)

Now the matrix element of the vector part of the electric current oper-
ator between two physical proton states can be written as
(2) (3

3 _ _ . .
<p'le°dy Ip> =Hipre FI(a?) v, i “o"F} (a®) o arfup.  (6.6)

#(S)and M® are the anomalous magnetic moments of the proton and neutron
wB=1.8; w@=-19. (6.7)

FY (q?) and F} {q2) are the well-known nucleon form factors which are meas-
ured in the Hofstadter experiments. They are normalized to 1 at g2 = 0, One
can now prove that because of the conservation law (6. 5) for the third com-
ponent e® = ¢, which means that there is no renormalization due to the strong
interactions. In analogy with (6. 5) the vector part of interactionn + v s p+e
can be written generally as (cf, (5, 14))

Wy =(1/2% g0 3 i, (6.8)
with .

Jp = 0,7 (T+ys5) ue. (6.9)

Now we suppose that this current operator for the vector part J} (or u

capture; e — M) is described by the - isovector component of the current (6.4).
This means that we take for the operator Jﬁ (cf. (5. 17)) the definite form

- v - ) % )
Ji=Jdx = Oy am@uyn + 65 TOV, 6, +... (6. 10)

Comparing (6.10) with. (6.4) we see that the factor ¢ in the first term of
(6. 4) has disappeared in (6. 10). The reason is the difference between the
definition of 7(-) and T} (cf. App. IV).
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In analogy to the electromagnetic case (6. 6), the effective matrix element
then becomes for the - component

<nlgy N Ip> = Tngy{Fy@®) vy - iFyla®)or,aqfu, (6,11

with gy = g{ and F(c) = 1, because of the conservation (6. 5).
Furthermore, we have a definite prediction for Fy(q2) and Fum(q2) (cf,
FUJII and PRIMAKOFF [41])

Fy (q2) = F}(q2), (6. 12)

a)
F, (2) = (8- d3/20) Fi(?).
Comparing (6, 11) with the more general (5. 18) we see that the non-G-in-
variant term with F in (5. 18) is absent in (6. 11). This is easy to prove. Con-
sider

{nl(8/8x) 331pd> = - iqy < nl Y Ip>. (6. 1%)

If we now substitute (5. 18) we find with the help of the Dirac equation
that the first two terms (with C and D) become zero. We then have, using
(6.5), for the - component

0=iFunpqaqrup = F = 0.

6.2, Experimental evidence for the conserved vector current theory

In this section we consider several experimental consequences of the
theory of the conserved vector current.

(a) As we have already remarked, the second term in {6.9) put into
(6. 7) will give a direct coupling of the pion to the lepton field. The process

7t sa%+et + v (6, 14)
is not only predicted to occur but one can also calculate its lifetime (partiul
with respect to the main process 7t— ut + v), One then obtains 2. 4 sec.
This process will also occur in other theories but it is not possible then
to predict a definite value for the lifetime, because of the strong vertices
(Fig. 7).

Fig.7

Process (6. 14) has been measured by several groups but the uncertairty
is as yet too large for any conclusion to be drawn.

The other tests of the conserved vector theory all rest on the detection
of the second term in (6. 11). Here we should stress the point that this terin
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will also occur generally in other theories. However, the C.V.C. theory
gives a definite prediction about its magnitude. I should be mentioned that
(6. 11) with (6. 12) is derived for the case of free nucleons whereas in B-decay
mostly the nucleons are bound by the nuclear potential, Luckily, it is some-
times possible, again from the analogy between electromagnetic vector inter-
action and B-vector interaction (in section 7 we will consider the effect on
the muon capture interaction), to make certain definite predictions which
can be tested experimentally. Another difficulty is that in B-decay the second
term of (6, 11) generally makes a rather small contribution to the allowed
transitions, Moreover, there is an uncertainty in the magnitude of often
small terms coming from the first term in (6. 11) and from the G. T. coupling.

{b) The spectrum; GELL-MANN [42] drew attention to a very nice
example where one can use the analogy to predict some consequences of the
C.V.C.theory.

This is the case when A = 12,

In Fig. 8 we have a f-transition from B2 » C1? a B*-transition from
N2, C!? and a parallel y-transition from C12¥»C12, The ground states

T=1.J=1 T=1.J=1 T=1.J=1

12.5 ISOTRIPLET
msec

12

B* ¢ N 1SOSINGLET

Fig.8

of B2 and N!2 and the excited state of C12 are members of an isotriplet
with T = 1(T; resp. -1, 1 and 0). The spin J is 1 and the parity + 1. The ground
state of C12 has I =0, J =1 and parity + 1, The B-transitions are allowed
G.T. transitions, the ytransition M 1. One now finds the following cor-
rection factor for the allowed spectrum (cf, SCHOPPER [43]):

K, = 1% —;-a(ZE - Eg- I/E)-éb(Eo - 1/E) (6. 15)
with :
v 1 @ X3) ifys®
= .g... . . =
a= Ig: | o b= . (6. 15a)

The minus sign is for a B+, the plus sign for a B—transition. This comes
from the fact that the term with a is an interference germ between Ja X;()
coming mainly from the second term in (6, 11) and /o the main matrix ele-
ment from the G. T, coupling. If one goes from B~ to B+ the only thing that
differs is the sign of ga and thus of the term with a, this being in contrast
to the term with coefficient b which is an interference between two G.T.
matrix elements, This is very helpful because if we now measure the ratio
of the Bt and B--spectra we get rid of the unknown matrix elements from the
G.T. coupling. The coefficient a can now be predicted from the analogy. If
one assumes that the decaying nucleon is a free particle one easily gets by
means of (6.11) and (6.12)

a =((1+ 4D -u@)AM) ~ 4/ M. (6.16)
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If one uses the analogy of the matrix element f&@X X with the correspond- )
ing 4 matrix element from the y-transition in CI2 one has

= (2t /a M)/ | B). | (6.17)
With
= (u?/3.137)(E$/M?) =653+ 11)e V [44] (6.1¢)
one has
a ~(4.6/M) (6.1¢)

which is in agreement with the rough estimation (6.16). A more detailed
calculation by GELL-MANN and BERMAN [45] (cf. also WEIDENMULLEE
[46]), who take into account also electromagnetic effects, gives for the ratio
of the 8% and B~-spectrum

(K (E, B2)/K, (B, N'2)) = const {1+(3a+8)E}(E);  (6.20)
6 and f(E) are electromagnetic corrections. r\
One now predicts using (6. 18),

-—g-a+6=(1.33j: 0.15) +(-0.25+ 0.15) % ‘
(6.21)

=(1.08 + 0.30)%.

Recently the spectra from B12 and N12 were measured by MAYER -
KUCKUK and MICHEL [47]. They found:

-g-a +6§=(1.13 £ 0.15)%. _ (6.22)

This agrees very well with (6.21) and the conserved vector current theory
seems nicely confirmed. However, the experiment is very difficult and an
independent determination by a different group remains very desirable.

. {e) B -v and B - a-angular correlation. The matrix elements from the
2nd forbidden category to which the second term of (6.11) belongs, give an-
isotropic B- v and B - @ angular correlations.

One has

W(6) = 1+ A,(cos’ 0 -2); (6.23

@ is the angle between the 8 and y or 8 and a-particle

Ag ~ (E —%;)(:t a + 2b); o (6. 24)

a and b are defined in (6.15).

NORDBERG et al. [48] have measured the 8 - a angular correlation for
the case when A = 8. The situation here is analogous to the case when A = 12.
However, there is no experimental value of the analogous +-transition in
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T=1J=2 T=1 J:2 T:1 J:2
Tp=-1 2%, Tz=0 21
/

Fig.9

Be? since a precise measurement of the B spectra of Li# and Be® has not
yet been made.
The result obtained by NORDBERG et al, [48] is

6=AL - AN =(0.0069 + 0.008)E. (6.25)
A calculation by WEIDENMULLER [49] gives with the C,V.C. theory
0.005E < 6< 0.009E, (6.26)

which means that there is at least no contradiction between theory and ex-
periment.

BOEHM et al. [50] have measureda 8 - y angular correlation for the
sequence F20(1.17) &Ne20 (0.27 LNe2 (0.01). They found Az = (0.94 +
+ 0.28) % whereas the C.V.C. theory predicts a value of about 0.45%. Here
the influence of the b term is not cancelled because a ratie is not measured
and therefore the predicted value is very uncertain.

(d) BOUCHIAT ([51] considered another consequence of the C.V.C.
theory. In this theory one expects that the Fermi matrix element Mr (= J 1)
is strictly zero in the case of a AJ = 0, AT f 0 trjansition.

This is so because now the Fermi operator (cf.(6.10)) contains the total
isospin (if one takes e.g. (5.16) without pion terms the virtual pions in the
physical nucleon states can cause a Fermi transition with AT # 0).

Information on the ratio of My to Mgt is now obtained by measuring the
B - v circular polarization correlation.

This angular correlation is given by (cf. section 3; (3.97) (3.98))

WPY(6,7) =12 % AY %TchOSG’. (6.27)

The coefficient AY contains essentially the ratio of Mg to Mgt (cf.(3.98)).
The + sign is for the 8-, the - sign for the analogous 8% transition. A com-
plication now arises. Because of the Coulomb interaction there can be an
admixture of wave functions with different T value in the initial and final
states. Bouchiat shows that under charge conjugation {i.e. gt B~) Mr is
even if its contribution comes from this admixture, odd if there are mesic
effects (i.e. when the C,V.C. theory is not correct). Thus the C.V.C.theory
predicts that exactly

AT +AY =0, (6.28)
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There is an interesting case when A = 24:
M (4%,1) B Mg (4%,0) B Mg (0+,0)
Na? (4%,1) & Mg (4%, 0) 5 Mg (0%, 0).
For Na?* the experiment has been done
AY=0.07 £ 0.03. {6.29)

- As yet Al has not been measured (it is a very short living nucleus). Fromn
(6.28) and (6.29) one predicts AY=~ . 0.07.

Summarizing, we can say that there are several experiments which
indicate that the C.V.C. theory is right; at least they are not in contradict-
ion with this theory. However, bearing in mind that one should have quanti.-
tative agreement, more experiments (and a theory to compute certain cor-
rections) are desirable.

+

6.3. The axial vector current

-If it is assumed that g¥ = -g& and if the C.V.C. theory is accepted then
it seems that there is a renormalization effect in the axial vector coupling
constant because X = |ga/gv| # 1. Attempts have been made to. compute the
magnitude of this renormalization effect but then the perturbation theory
has to be applied to the strong interaction {cf.e.g. [40]). Therefore, the
resulis are very doubtful. Moreover, nothing is known about possible pion
terms in the bare coupling (5.16). That there is no conservation law analo-
gous to (6.5) for the current Jﬂ can be proved in two different ways.

(1) The first argument is given by GOLDBERGER and TREIMAN [53].
Suppose

2] A _
5;—; dp = 0. ' (6.30)
Now we can compute
90 1A = A
<p| 5%y Jh |n>— 1qu<p|Jp ‘n} (6.31)

If we now take the general expression for {p|J# |n)> from (5.17) and
use the Dirac equation, which states that the term with E vanishes, we get
a relation between the coefficient A = ga and B (with meB = gS“ ; see 6.4.).

‘B = 2MA/(p - n)*> (6.32)

or .
e Jga = 2me/q® 2 10°. (6.33)

However, such a large (induced) pseudoscalar is certainly not measured in
B-decay (see 6.4).

(2) TAYLOR [54] remarks that the conservation law (6. 30) is in con-
tradiction to the occurrence of the leptonic decay of the pion

T-— -t v, (6.34)
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If we assume a primary V, A interaction Hamiltonian the effective
matrix element for (6.34) can be written as

<O‘J£l”>ﬁp7p(1 +.’Y5)uu- ~ (6.35)

The vector current does not make a contribution because of the con-
servation of parity in the strong interaction (the pion has an intrinsic nega-
tive parity). )

Now the momentum vector ky of the pion is the only vector that occurs
in this process. If follows that

o))y = Pk, (6.36)
From (6. 30) we obtain
. CAY L 9 AL o
-1k,_¢<OlJ#|1r>—<0\a—xp Jg|#> =0, -~ (6.37)
With (6.36) we then have
k, k, C(k?) =0.
Tt
Therefore (kp kp = -m?) C(k2?) = 0 and process (6.34) should not occur.
6.4. The pseudoscalar in B-decay
Pseudoscalar coupling can appear in the effective matrix element from
two sources.
(1) The pseudoscalar is already present in the bare interaction, as are
the Vand A coupling terms: '
(2) The pseudoscalar can be induced by mesonic effects from the origi-
nal axial vector coupling term; if we put the second term (with coefficient B)

of (5.17) into (5. 14) and apply the Dirac equation, using pa - nx= Iy - v,
for the leptons we get

. _ B .
‘/—ngBu,,(/l+‘ys)u¢un Y5 Up. (6.38)
This shows that the induced pseudoscalar appears with the effective
coupling constant m,B. GOLDBERGER and TREIMAN [55] (cf. also

WOLFENSTEIN [56])have computed the coefficient B using methods of dis-
persion theory. They assume that the main contribution comes from Fig.10.

Fig. 10 °

The first vertex describes strong interaction whereas the second describes
the process:

T— v+ 4, ‘ (6.39)
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It is found that
2
fx (1/27)(G2/4n)(mpmny fmy +m2))| g, ). (6.40)

G is the effective coupling for the strong vertex (n—p + 7). If £ =g (in mucn
capture) we have

¢l 8| g,l, (6.41)
whereas in 8-decay, mjp = m,, we get

geff= (1/20) | g4l (6.42)

This, as we shall see, is certainly not detectable in 8-decay experiments. - f
one assumes that the 7-meson decay (6.39) is caused by the primary axial
vector coupling one finds that the sign of gp is the same as the sign of ga.
The reason why it is so difficult to detect the pseudoscalar is that the
main contribution belongs to the category of the first forbidden transitions
because of the selection rules AJ = 0 and change of parity. The nuclear
matrix element is f8y,. Now there are other terms coming from the axial
vector interaction with nuclear matrix elements [y and Jj&.%. The matrix
elements fys; and [B vy, are relativistic: y; connects the non-relativistic part
of e.g. the initial nucleon wave function with the relativistic part of the final
wave function. As yet there is almost no information regarding the relativ-
istic part of the nucleon wave function in a nucleus. The only thing which
can be done is to approximate these matrix elements. This is done with
the Foldy-Wouthuysen transformation, which reduces odd operators such as
v5 (0odd means that the operator connects relativistic with non-relativistic
parts) to even operators with a certain power of 1/M (M is the nucleon mass).
The first step (i.e. to an order of l/M, which is sufficient in our case
because of the relatively low energy of the nucleons) can be made by ex-
pressing simply the small components in terms of the large ones, using the
Dirac equation in an approximate form.
The Dirac equation for a nucleon in an external field U(r) (the potential of
the nucleus) is as follows

@ -BM+U(r)W = E (6. 43)

We put ¢ = ( » ), ¥1 and 2 are two component spinors,
(6. 43) one ‘can then be wr1tten as two coupled equations for ¥ ; and ‘112

. PP+ (M+U{r)-EW1=0

& PY1 +(-M-U(r)-EN2=0 . (6. 44)
From (6. 44) we get
2B oo
Ve M+E+U(r)“’1'f(r)'? PY1 (6. 45)
with
() e Y (6. 46)

M+E+U(r) 2M
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Thus ¥ 9 is the relativistic part of ¥. If one applies this result to the matrix
elements [Bys and [ys one gets the following effective matrix-elements for
ot -0~ transition (r=1% )

M= &[_if(é’.m 2 _lgff<%§;i?- 2. sv(r)>vs]

+-71§ gp[-i (°_2>M’—8) k2+if6’->'c‘§'(r) Bst (6.47)
1 1 du

S -me 7w (6. 48)
1_<)=5",_+13§r ;

With (6. 47) one can now calculate e.g. the spectrum and the polarization of
the electrons. However, one has three parameters, [(@- P), [(@- ) and
[@ XE(r)).

ROSE and BHALLA [57] find on the basis of an acecurate analysis of the
spectrum and the B-polarization, especially in the case of Prj44, as an
upper limit for g :

|82 ] < s0. (6. 49)

The experiments are in agreement with gp = 0.

TADIC [58] has argued that a strong increase of the nuclear matrix
elements occurs as a consequence of the Coulomb field of the nucleus, from
which one would conclude a lower value than (6.43). However, BLOKHINTSEV
and DOLINSKY have shown [59] that requirements of gauge invariance in-
validate Tadié’s argument.

Comparing (6.43) with (6.42) we conclude that nothing can be said about
the induced pseudoscalar in S-decay. '

7. MUON CAPTURE
7.1. Introduction

When muons are stopped in solid matter the process of slowing down
is so fast that they generally come to rest before disintegrating. When
positive muons are stopped they will be repulsed by the atomic nuclei and
will also decay in matter according to utT— et +v + ¥, However, the negative
muons are attracted by the atomic nuclei and are captured at the end of their
trajectory in a Bohr orbit around a nucleus, with which they then form a
"muonic atom'. The Bohr orbit will mostly be highly excited and subsequent-
1y de-excitation will occur by emission of muonic X-rays or by the Auger-
effect. It turns out that de-excitation is so fast that the muon has only a
negligible chance to disintegrate during this process. After the de-excitation
the muon is found in a "K-orbit" of the muonic atom for which the radius
of the Bohr orbit is given by

Bho T o eTZ T o 7 %0r (7.1)
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where Z is the nuclear charge and

. _h? -8 :
a, = ——3 =0.529X10"cm (7.2
mee
is the radius of the first Bohr orbit in a hydrogen atom. We see from (7.2,
that the radius of the muon orbit is at least 200 X smaller than ao because
my = 206.7 me. This means that the muon in the muonic atom is so close
to the nucleus in the centre of the electron cloud, that there is practically no
screening of the nuclear charge by the electrons. apo becomes so small for
high Z that.the muon wave function (for the K-orbit) is situated for a con-
siderable part within the nucleus (for example for Pb). We should then take
into account that the nucleus has a field deviating from the Coulomb field of

r

_Ze? couLOMB POTENTIAL
T OF A POINT CHARGE Ze

ELECTRIC FIELD OF A
NUCLEUS WITH RADIUS R

Fig. 11

Electric potential of a nucleus

a point charge (cf, Fig.11). Once the muon has arrived in a K-orbit we have
the possibility of two (competing) processes

u—e tyty v (7.3)
U +p—n ty, (7.4)

It (7.4) is considered as a process occurring for free particles initially
at rest the energy balance is

B, =m,c?=206.Tm.c? =105.6 MeV = p,c +(py?/2mn)  (7.5)

py is the magnitude of the momentum, which the neutrino and the neutron
obtain (By and -By respectively). Solving (7.5) for py, one obtains: py = 196
mec, from which one calculates for the velocity and energy of the emitted
neutron and neutrino

vp=0.11¢, E, = 5.3 MeV, E, = 100.3MeV. (7.86)

This shows that most of the energy corresponding to the rest mass of the
muon is carried away by the neutrino.

When the process {7.4) occurs in a complex nucleus the protons in the '
initial state may have a certain motion. However, (7.86) shows qualitatively
what must then be expected: the major part of the energy mypc? = 105.6 MeV™ -
will be carried away by the neutrino; the remaining nucleus will be relatively
little excited (of the order of 5 MeV); sometimes one or even two neutrons
may be emitted from the nucleus. Although the average excitation of the
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nucleus is not too high (it may be some 20 MeV) there will also exist smaller
probabilities for high excitations in which a large fraction of myc? is trans-
mitted to the nucleus as excitation energy. )

The total rate for muon. capture by a complex nucleus consists of many
partial transition rates. The final nucleus will be de-excited by y-emission
for the lower excitations and often by n-emission for the higher excitations,

In Fig.12 we represent the muon capture by a complex nucleus in a
simple diagram. A characteristic difference between muon-capture and

-y

- } n-EMISSION

u-CAPTURE .
' FINAL NUCLEUS

Fig.12

electron capture is ihat in muon capture many partial transitions occur,
while only one or a few partial transitions are found in electron capture.
Of course this difference is due to the fact that my >> me.

For negative muons the processes (7.3) and (7.4) compete once the
muon has arrived in a K-orbit. It now appears that muon capture (7.4) in-
creases strongly with the nuclear charge Z, while the decay (7.3) in a K-
orbit depends only slightly on Z. Experimentally it turns out that for Z > 11
muon. capture is the preponderant process, while for Z < 11 the decay (7. 3)
is most probable.

The strong dependence of the muon capture probability Agyc on Z is main-
ly caused by the fact that Ayc contains as a factor {¢u(0)] 2, the square of
the muon wave function evaluated in the origin. It is easily seen that-

1 mp 23

2
I¢p(0)|~m§=-—£{; ¥~ (7.7)

Hence this factor provides a Z3 dependence in Ayc. If the sum of nuclear
matrix elements were proportional to Z, one would have a total dependence
of Apc on Z proportional to Z4. Often an approximate law proportional to

Z %4 is used, where a certain difference between Z.ff and Z takes account
of the finite extent of the nuclear charge.

From the strong dependence on Z, roughly Auc~ Z&; andthe approximate
equality of the rates for (7.3) and (7.4) at Z = 11, it follows that muon capture
occurs only in a small fraction of the cases for hydrogen or other light nuclei,
when it is very difficult to detect. Muon capture is most easily observed for
complex nuclei, which are not too light. ¥For such nuclei muon capture rates
were already reasonably known about 1950, while muon capture in Ho was
observed for the first time only in 1961. The invest/igation of muon-capture
interaction involves the difficulty, in comparison with the investigation of
beta-interaction (to which it is analogous to a great extent), that for obvious
energy reasons only the process (7.4) analogous to electron capture can be
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* observed, but not the processes analogous to B* or B~ -decay (neither for
free nucleons nor for nucleons contained in nuclei):

nopte +v
. (7.8)
P sn+etH, -

Hence one is forced to exploit all the possibilities for observations of
processes fundamentally given by {7.4) occurring either for free nucleons
or nucleons contained in nuclei. We mention here the following effects which
may be observed:

(1) Partial and total capture rates for muon capture. Up till now mosily

total capture rates have been observed. Partial capture rates can be observed
in principle by measuring the radioactivity of the final nucleus, by meas-
uring the emitted gamma rays,etc.

(2) The hyperfine structure effect: dependence of total capture rate on

relative orientation of muon spin and nuclear spin.

(3) Neutron emission after muon capture; both absolute numbers and

energy spectra. )

(4) Non-conservation of parity in muon capture will have as a con-

sequence:

(a) After capture of polarized muons the emitted (primary) neutrons
will have an asymmetric angular distribution (i.e. the latter con-
tains a cosf-term); '

(b) the emitted neutrons will be polarized.

(5) Analogous toinner bremsstrahlung in electron capture the possibiii-

ty of the emission of an additional photon exists in muon capture: in radia-
tive muon capture,

- Fp—ont+tvt g, B (7.9)

the energy myc? is mainly distributed over the neutrino and photon. Although
(7.9) is a rather rare process its observation seems quite important.

Because muon capture in hydrogen is such a rare process, one will
probably be forced for quite a number of years to study the above-mentionec!
effects (except for total capture rates) for complex nuclei and not for free
nucleons. This means that the analysis of the phenomena requires a combi-
nation of elementary particle physics and a knowledge of nuclear structure.

-After-these general remarks we shall now consider some points in more
detail.

7.2. The coupling constants for muon capture; an effective Hamiltonian

When a universal V-A interaction (with the two-component neutrino
theory) is assumed,the Hamiltonian for the muon capture interaction should
read (cf. (3. 35)) ’

“

ﬂ#c = (g“°°.2'%)(?; 7“(1 +’Ys)('7'&) Y )@u')’p(l + 'Ys)ll/pv) +h.c.(7.10)

(¥i and ¥¢ initial and final nucleon wave functions; ¥, muon wave function,
¥y neutrino wave function), '

When calculating the matrix element ME of (7.10) for a process (7.4)
where the nucleons are in plane wave states, we obtain from {7.10)
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VZ-ME = g [(uy(1 - 7s5) vy vs 4 ) @nim vsip) -
$ @l - vs)mud@ayaup)l s (7.11)

uy, uy, uy and up are the 4-component Dirac spinors for neutrino, muon,
neutron and proton respectively. However, as in the case of B-radioactivity,
the nucleons involved also have strong interactions. It follows that the ex-
pression for the "currents" related to nucleons may deviate from the ex-
pressions given in (7.11), . The more general expression for the matrix
element, which is in accordance with general invariance requirements is
(cf. [55], [38))

V2 ME = (—u(l = 'Ys) i‘Y)\'Y5up)[A(En i’Y)\’Ysup)’ -B (U, axysYp >+ E(l—anXpr'Y5up )]

+ (Wy(1 - v5)rau) [C{tnyaup) -1D@moxeqgup) +1F (G qxup)l. (7.12)

We have put here
g = p) - 1) 4-momentum transfer in the process
P 4-momentum of the proton
n, 4-momentum of the neutron

Oap =2 N7y - B

For B=E=D=F=0 and C= -A =g©, (7.12) would reduce to {7.11), i.e. simple
V-A interaction. However, we assume that only the ''bare' interaction is
V-A, but that the "effective" interaction which is observed and in which the
strong interactions also have an influence may deviate from . this.

The coefficients A, B, C, D, E, F need not be constants but are 'form
factors', which may depend on the magnitude g2 of the 4-momentum transfer
ar-
They are real if T-invariance holds. When g2 does not vary too much
they may be ''constants'' for practical purposes and we can consider them
as a kind of "apparent coupling constants''. We introduce the following notation
so that all "coupling constants'' have the usual dimension of a 4-fermion
coupling constant:

C=gy vector apparent coupling constant

A=g, axial vector apparent " "

m, B =gp (induced) pseudoscalar " " .
2MD = gm weak magnetism " " (7. 12a)
my F = gs (induced) scalar " "

2ME = g1 (induced) tensor " "

Hence we assume that the strong interactions may cause gv and ga to
deviate from g¥ and g3 (while g = -gV) and may "induce' effective couplings
characterized by 'coupling constanis'" gp, gm, gs and gr. Some further
hypotheses may restrict the values of these apparent coupling constants (see
below).

We shall give here a treatment of muon capture in which we introduce
an éffective Hamiltonian for two-component spinors (cf.[65] for such a treat-
ment). Hence we proceed here somewhat differently from our calculations
for B-radioactivity; this is not a matter of principle but is merely to demon-
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strate somewhat different procedures. In order to derive the effective
Hamiltonian we make use of the Dirac equation for free particles

{(v,pp - im)u = 0. {7.13)
We write the 4-component Dirac fields as
- X
¢= ((E+m)/2E)$ ey (7.14)

where X and ? are 2-component spinors related by
X==((@- P)E+m)o (ok = iy,v4vs) (7.15)

as follows from (7.13) where we are using a répresentation such that
10 /o0 1
74:( 0 1> ’ 75=<1 0>' (7. 16)

Of course the use of (7.13) and (7.15) involves a certain approximation,
which seems, however, rather reasonable. Substitution of (7.15) into (7.12)
provides the following "effective Hamiltonian'' for a system of A nucleons
(to be applied to the 2-component spinors ®, which give the '"large' com-
ponents of ):

Htff =37 (1- 6'-)'}7_))21217(1-) [Gyl1; + G0 01 - Gp (v/2M) ((—I)-il/’)(-&)i 112

- gy(BNE- /M) - gy @ VE, B/MIS @ - 7y (7.17)
{7, 1;, i, B, are operators for the ith nucleon,
T, v , 1 are lepton operators,
4 ' is the neutrino momentum,
v : is the unit vector in the direction of 7,
) and 79 are the operators decreasing and increasing, the charge

of the nucleons (or leptons) by one unit.

Gv., Ga and Gp are combinations of the quantities (7.12a) and might be called
"effective coupling constants''; they are given by

Gy = C(1+ (v/2M)) + m,F = gy(l + (v/2M)+ g,

G,=A-((C/2M)+Dpw =g, - (g, +8))(v/2M)
: _ _ (7. 18)
Gp = (muB - A)J(¥/2M) -((C/2M)+D - E)v

= [(gp - ga) - (gv + gm - grw/2M) .

In (7. 17) the first order terms in v /2M and p; /M are retained, but second
and higher order terms in these quantities are neglected. We do not give

the calculation for the transition from (7. 12) to (7. 17) in full, but indicate
the reduction for a typical term. For the reduction from (7. 12) to (7. 17) it
is convenient to note an alternative form in which (7. 12) can be written as
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V2 ME = Alu, (1 - ¥)i7\vsu, ] (@ivyavsup,)
+my Blu, (1 - vs )’Ysup] (ﬁn'Ysup)
- (iC/M) [ﬁv(l ~ s )‘?'Xup] (ﬁnp)\up)
SEC /M)A, (1 - vs v (ks - vy ] (@)
+3{(C/2M) + D)[Ty (1 - Y5 )y 5 (Hp - Vp Juu] (GaOx puip)
+ E[Hv(l - 75)17)\7511“](—‘5“0)\9(13{, -n, )75up)
+ mpF[av(l -5 )uu] (ﬁnup)v (7.19)
As an example of a reduction from (7. 12) to (7. 19) we consider the term with
B as coefficient; in the reduction we make use of (7. 13) and of the equation
of the conservation of 4-momentum in the process
Py - D= Yy -y (7.20)

(# and v give the 4-momenta of muon and neutrino respectively). We can
thus reduce i

[T, (1 - v5)ivavsu, ) (@, (P - ny)vsup)
C= = [T (1 - vs My vs (B - vadw 1 (@Y up)
= [T, (1 - 9 s (im0t u) + (@ 1)L+ 95 Divg ] (@, v u )
= my [Ty (1 - Y5 Y5 uy ] (Tnysup) (7.21)
(as MHMA ug = imgup and Wyava = 0).
This shows the reduction of the term with B from (7. 12) to (7. 19); from

this term one then obtaing a term in the interaction density given by (apart
from the factor m,B)

[Ts] = Wi Ya(l - ¥5)% U (D] @hvavs ¥y )- (7.22)

Introducing 2-component spinors according to (7. 14), we obtain, using
(7. 16) and taking a non-relativistic approximation for the muon,

—>% "
b3 - 0
UYslys - 1) (1/ (1/‘/— - ¢ ¢>'Y4 (’Ys - 1) <¢“>

v (T 0 G DI wea (T2 6D @)
= -(IM2)$5 (1 - Ny (7. 23)

We have further (the nucleon normahzatlon factors are equal to unity in the
approximation considered).
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UEY Y5 b = <-(G- n¢/3M)¢H> *<(1) _é ) <—(?'%/|32M)¢P>

- % @ H/2M)¢p - 9% (@ B/2M) ¢, = - 6% (@-P/2M)p,. . (7. 24]

We have used here p = I + ¥, which is a consequence of (7. 20) when taking
#=0. From (7. 23) and (7. 24) we obtain

[Tg)= (1M/2)SK1-T-D), 11657 T/ 2M)B, ). (7. 25

This term then provides the contribution to Heff arising from the term with
B as coefficient

A
Higp= -3 mB70(1-2 N E10w/eM) @-V) @ - V) (7.26]
we have used here (1-&.0)(@.P)=-(1-02 D).

By means of analogous reductions the other terms of (7. 17) can be found.

As regards the magnitude of Gv, Ga and.Gp, it seems probable that Gy
and gy as well as Gy and ga do not differ very much; at least it seems prob-
able that g5 is substantially smaller than gy and that gy 'is not much larger
than ga. With v/2M =~ 0,04 < 1 it then follows that the values of Gy and gy
will be quite close as well as those of G, and g,.

The last two terms in (7. 17) have the character of correction terms;
hence we see that no appreciable difference should be expected if we substi-
tute Gy for gy and G, for ga. We thus see from (7. 17) that one can scarcely
hope to obtain more than the three combinations Gy, G, and Gp .of the six
quantities gy, ga., gp, '‘gM. gs and gt from experiments on effects, for which
(7. 17) applies. Until now we have considered the "coupling constants' in this
section as purely phenomenological coefficients. However, a number of
theoretical proposals have been formulated which restrict the values of these
parameters. . i '

(I) Only interactions of the first class exist (in Weinberg's terminology,
cf. [38])

gs=0,g7=0- (7.27)

One may say that interactions are restricted to those with the property of
"G-invariance' or ''normal G-symmetry'. G is the transformation given by

G=cCeitT® (7. 28)
where C is the charge conjugation operator and e'i’TT(z) is the operator for a
rotation of # about the 2-axis in isospace.
" Currents defined according to
Ji = ¢pTivy,
have as a transformation property for the G-transformation
GJiG-1= ‘EiJi: (729)

with &; = +1for S,A,P, and & = -1 for V, T.
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' We refer to the property that possible additional terms to J; should have
the transformation property for G expressed by (7. 29) as ""G-invariance'.
This has (7.27) as a result, :

(II) The validity of the conserved vector current hypothesis means that
the weak magnetism coupling constant has the special value

(@ (),
= (Mp -Hy)gy = 3.7gy (7.30)

(#® and u{® are the proton and neutron anomalous magnetic moments in
nuclear magnetons).
(III) Several considerations (cf [565, 56] ) provide a plausible value for
‘the induced pseudoscalar coupling constant

gp X 8g,. ‘ (7.31)

- (IV) Thehypothesis of a Universal Fermi Interaction, supplemented by con-
siderations of the conserved vector current hypothesis and dispersion re-
lations, suggests that the coupling constants for the V and A parts of the
interaction should be equal for muon capture and beta radioactivity

gie=gf, 2= gb, (7.31a)

at least within 3%.

Proposals II and III have already been discussed in 6. We emphasize
that we do not yet consider (7.27) (7.30) and (7.31) as firmly established
theoretical values but more as hypotheses to be tested experimentally.

. Using H¥4 according to (7. 17) we obtain for the muon capture rate for
a transition from an initial state |a) to a final nuclear state |b)

Byolaom) =2 [0 (G314 631 [olf + (65 26,600 P o
Gvg"[ SO B+ .. |- Samy A[(vai,-fa’)*fp.mc.c.]}.
v (7.32)

We have used here the abbreviations

J1=01570 e (9 %18, @)la>

f?=<b |2 rexp (-i7- Bo, (F)F; lad
. (7.33)

[B o lereren (19 )4, @7, 12>

[po =< lprem (- 7 F) @B |2 >

¢, () is here the radial muon wave function. In (7.32) averages are carried
out for the initial muon polarization and initial nuclear orientation and sum-
mations for final neutrino polarization and final nuclear orientation. It-should
be noted that we have used the notation (7. 33) for the sake of conciseness,
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although it differs from that usual for beta matrix elements as the neutrino
and muon wave functions still occur under the integral sign. Therefore the
matrix elements (7. 33) still contain "forbidden" contributions.

The expression (7. 32) can be easily derived from (7, 17) in a manner
which is quite analogous to that used in section 3 for S-decay; however, it
is somewhat simpler as we already made a reduction to 2-component spincrs;
we can give the following reduction of the square of a lepton factor with 2-
component spinors (£ is an operator acting on the spinors, v{¥) and v(® _are
the 2-component spinors for neutrino and muon respectively)

pe 2. )3 ® *
pz':} |v(:) QY éﬂ) |2= ﬁ:,, v hag"ﬂ(")) (V(YV) st vé(u) )
% oyt
= LW i @) v = Tr, (DPQDMQY) = Tr (@Q7)  (7.34)

(summation over repeated spinor indices o, VB, v and 6 is not written ex-
plicitly; Tr4 indicates that we have only 2-component spinors).

We have introduced here 2-dimensional '"projection operators'' ana-
logous to (3. 14) in section 3

W) oy 0@
Dyg = ),':’Va vg =1
. (7. 35)
D(ﬂ) = Ev(ﬂ)v“‘)’": 1.
I a B

However in the 2-component case they are simply equal to unity when per-
forming the sums ¥ , § over the polarizations of neutrino and muon.

As an example of the calculation of (7.32) from (7. 17) we deduce the
term wit_}} G2% (we leave the derivation of the factors in front to the reader).
We put £ = f? and have to evaluate

v - evw | - |2
o
= Tr, [ - @)@ D)@ P - 2.9

Tr,((1- B ) (1-0. ) (3 D(T F)]

il

2Tr [(1-3- N (E P+ i? (TX T))

= 4(T. B - 4iV. (IX T*). . (7.386)

When averaged over neutrino direction and nuclear orientation the
second term gives zero and we are left with the first term, which gives the
term with G%]?]z in (7. 32). Similar reductions provide the other terms in
(7.32).

The total capture rate to all final states is obtained by an additional
summation

A=FA @b (7.37)

In a first approximation (7. 32) can be simplified in the following ways:

(1) The terms in the second line of (7. 32) have the character of cor-
rection terms and can be neglected in a first approximation.

(2) The muon wave function in (7. 35) can be considered with good ap-
proximation as constant within the nucleus. A value |¢“|§v will be assumed
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which presents an average of [¢p|2 over the nuclear volume. Under certain
conditions one has for partial transitions

(a1 ad [V 'f?'2=%- |f?l2. (7.38)

Hence, for such cases

Ayela = b) = (45 /2m (@B jam a7 | [11° +G8 [21°1 (7.39)
with
Gp = Gy

\ (7. 40)

2 1 2
Ggr= G, + 3 (Gp - 2GpGy).

For the total capture rates for certain nuclei (e.g. O and Ca4?) one can-
further put

2 [ (@B /am | Pu- [32 =52 [(abi/am]| [P (7. 41)

and

gf(dib/u)lf?l?: 3b>:f.(d2b/41r) | f 1]2 . (7. 42)

Hence for such nuclei one can finally write in first approximation
2 2 ’ .
Aﬂc= (V#2/27r) |¢M |av [GF +3 Gér]Mz’ (7. 43)
with
M? = T (wp /2, )? f(d?ab/4rr>|<bl>;n<'>exp (-174 - F)la D[ (7. 44)
where v, is the maximum possible neutrino momentum given in our units by

v, = m#(105.6 MeV).
From (7. 43) it is seen that the combination of coupling constants, which
is determined in the first instance from total capture rates, is

2 2
G? + 3G&.

7.3. The application of the closure method to a statistical model

Total rates for muon capture are generally composed of many partial
transition rates. The separate and precise calculation of all partial tran-
sition rates involves much work and generally more knowledge of the nuclear
wave functions than is available at present. However, various approximations
may be used for calculating total capture rates. The most drastic approxi-

_ mation is the closure approximation. This consists in using the completeness
relation for the final states

Zb3|b S¢ b= 1 o (7.-45)
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We can apply (7. 45) to (7. 44) only when substituting one average value v
for all neutrino energies V,, . This average value is related to v, according
to ’

V= v}J '<Eb . Ea >a_vr (7. 46

where{Ep - E, >,, isthe average energy difference between the final state
]b > and the initial state Ia). One often takes v ®= 85 MeV, {Eyp - EaDav™
20 MeV (v, = 105.6 MeV). It is seen that this approximation is reasonable¢
in the first approximation, but cannot be expected to be very precise.

When using this closure approximation (7. 43) and (7. 44) can be rewritten
as

Ay = w2 2m e, 12,168 +3GEA2 (7. 47)
with » »
M= g [ @dpam [< ] 5 1o (17 7 o>
= Lf(av/am) Cal B0 exp (417 BB DB | B exp (<17 B) 12>
- [(@iramical gromesy 67 7l (7. 48)

Use was made of (7.45); B§; =T - .

The expression (7. 48) is remarkable as it refers only to the wave
function of the initial state.; if can still be applied to nuclear wave functions
according to any model.

In this subsection we shall use a statistical model for evaluating (7. 48)
(cf.[60],[61] and [63]). For this purpose we consider the evaluation of the
average of an operator

<Ry, =<¥ | [¥> =Tr (%) (7. 49)
where p is a density matrix given by
p=lex vl (7.50)

using Dirac notation. We assume that Q is a sum of one and two-particle
operators:

Q-':iEQi-i-i):j;’Qij; (751)

where Zj; meansE;;with i # j. If X1,..., xa are the coordinates occurring in
the wave function ¥, it is easily seen that (7. 49) can be reduced to

<Q>av=de1fd§1<x1‘91|§1><3§1 |p(1)v‘ x>

+de1de2fd§1 deKX1X2{Q12|§1§2><§1§2lP(2)|X1X2>- (7.52)

The k-particle density p(®is introduced here (it is a kind of "partial density
matrix") as follows
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<xqpovn %y lp(lf),x'l. x>

Al : oyt ,
= (7-\—-—k)’ f‘l’(xl. .. §A)Y*(x1. N S TN XA)dxll. X (7.53)

fdx). . ﬂ indicates integration over all co;ordihateé Xk41,...X5"
Applying (7. 52) to (7. 48) we can write

M= E.fd?1<ﬁ§1|D|?1§{><?1§{ I 178>

§ Sy

+ L fdfideKF’l 88 g IR T8 YXAT 84 [0 F 72t 6.
S (7. 54)

We have designated the one- and two-particle densities p(¥)and p® as D
(density distribution) and g (pair correlation); the coordinates xx are written
more explicitly as T, 8k, where Tk are the space coordinates and §x give
spin- and isospin-coordinates. The expressions for £2i and Qij are diagonal
with respect to space coordinates; they are given by

Qi =4 (1+7) (7. 55)
Q- 7(;’7’.('). exp [i7-(F; - Tj) 1. (7.56)

When averaging over the neutrino directions (f(dﬁ//lﬂ)) this becomes

Qij = 1 (sin vrjur) (v = IR - B 1) (1.57)

It follows that we need only the matrix elements of D and g diagonal with
respect to the space coordinates; however, the non-diagonal elements with
respect to spin and isospin are needed. In the case of a system which can
be specified by a Slater determinant (k indicating the individual nucleon states

i)
Y(xy. .. Xp) = (A!)-f‘g 6p';ﬁ;1§b,<(xPK) (7.58)
()l; denotes the sum over all permutations)bandgare given by
<P DR 6 > = £y @ L)) uxE t) (7. 59)
SRT 68 g P R8> = B 1w (B 81 ) (Pala) 0 (7 81 WA §4)
- U (P8 U@ S F @ EDw (T 8] (7.60)

Up to here the treatment has been fairly general. If we now want to
specify for a statistical model for the nucleus we must have definite ex-
pressions for D and g; we may make the following assumptions in this re-
spect:

(a) The pair correlation function is calculated as if the wave functions
were given by a Slater determinant for plane waves contained in a large cubic
box (with periodi¢c boundary conditions).

(b) For the radial density distribution one may assume, e.g.

D(r) = D {1+ exp (r - Ry/ap)l™ (7.61)
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with parameters ap and Rp determined from the Stanford experiments on
the scattering of electrons by nuclei.

(c) Every space state occupied by a nucleon with a certain spin also
containg a nucleon of the same type with opposite spin.

We shall confine ourselves here to nuclei with N = Z =} A. From the
assumptions (a), (b), (c) we obtain for such nuclei

¢RI IDIRE D=7 A 6 ¢; Dlry) (1. 62,
SRR G g 12125816 D = (1/16 A2)D(ry ) - Dirg) - (6,6, o1 f'(r)églgtsf%% !
with =17 -5h
f(r) = [S(k,r) 12 _ {7.64)
kg = (379 Y3 af2v e (7. 65)
where S(x) = 3x~3 (sinx - X cos x)

=3yt x -t J_ ().

kr is the Fermi-momentum; V is the nuclear volume. It should be emphasiz-
ed that (7. 62) and (7. 63) are not rigorous deductions from (a), (b) and (c);
they are made plausible on this basis. However, the assumption is intro-
duced that the dependence of gonr = '?1 - F’g‘ is the same as for an infinite
Fermi-gas, while the dependence on |7 and [B) is given by D(r;) and D(r,)

The difficulty is that a simple dependence of g on r can only be given
for infinite matter while the problem we have here is one where the finite
extent of the nucleus is essential. Hence it is clear that (7.63) can only be
an approximate expression. It is also of importance to check whether the
expressions (7. 62) and (7. 63) are at least consistent with their definition
(7.53). From this definition it follows simply that D and g have to satisfy
the following conditions

1 . .
fd?z ELR Tl IRRGG D= (- 1K DR (6.67)

Hence g has also to satisfy the normalization condition
fd?l fd?zg §E<f‘-i?2§1 Glgl %% > = A (A-1). (7.68)
1 %2

However, a number of additional 'detailed normalization conditions"
may be obtained in the following way: consider an operator acting on spin
and isospin variables only

u==r U, . ) (7.69)
. ij
It is then easily shown that the expectation value of U for the state of the
nucleus |a > can be expressed with the aid of g
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Calulad=> o [a KB R4, [gBRBY G
) I et
xe e lu,le e, >. (7. 70)

When<alUla > can be easily evaluated without detailed assumptions, we
obtain what we call a ""detailed normalization condition'. For the simplest
choice Uy = 1 we come back to the normalization condition (7. 68). Other
choices which may be made for Uj; are
' @ (. O 6@ 0 ()
o, .o.". T My Ty nij

§j 2y s 0 Ty

where H’{}‘) and Hi‘,") are the projection operators for symmetric and anti-
symmetric pairs. It is found that (7. 63) does not rigorously satisfy the de-
tailed normalization conditions for these operators, However, the following
slightly generalized expression for (7. 63)

Q, = (A%/16) D(r, ) D(ry) {[1+ N NG +11 - £()INn) (7. 71)

(Qgoperator corresponding to g); improves the situation. It is calculated that
if N, and N. have the values '

N,=1+¢€¢; N_=1-¢ with € = (4/A)-(J'/V) (7.72)

the detailed normalization conditions are satisfied up to an order 1/A of the
main terms (but neglecting quantities of order 1/A2). J'/V is defined as

J'/v=f D(r,) - D(r,) - F(r)d, dFy. (7.73)

From (7.64), (7.65),” (7.73) it can then be seen that J*/V if of the order 1/A:
hence € is also of the order 1/A. (7.71) can be expressed alternatively as

<?1?2 ISP le |?1?2§'1§'2 >

= '(Az/lﬁ) D(r,): D{ry)- {[1 +€ f(r)) ﬁgg'ﬁcc/-['f(r‘) +e€l 6{,’5"6{ ¢ }
. 151 P22 _ 12 21(7‘74)

From (7.54), (7.55), (7.56), (7.62), (7.74) and (7. 72)one now obtains

A= FAL1 - FAL - I(1 - (AT /4W)] (7.75)

“with
I, = ff(sinvf/ur,)D(rl)' D(r,) d?, dT, : (7.76)
I =ff(sm vr [vr)Dir, .)‘D(rz) f(r) a7, d¥ . (7.77)

It is not so easy to tell how reliable the result (7. 47) with (7. 75) may be.
Errors may arise through

(a) inadequacy of the physical model, expressed here by (7.62) and (7. 71),
(b) rough mathematical approximations.
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It seems that the mathematical approximations made in deriving the
result (7.75) are not important. We have tried[63] to obtain some idea of the
sensitivity of the result to the physical assumptions made by comparing
different models (statistical model and shell model) for O16 and Ca%0, (cf.
7.4 for a table in which this comparison is made).

PRIMAKOFF [66] has given an estimate ofJgfor nuclei with N # Z, His result
can be written as

M?= Z[1 - 6(A - Z)/2A)). (7.78)

The value of the constant § is estimated by him at about é§ ® 3. The ex-
perimental results of SENS[62] on muon capture up tothe heaviest elendents are
fitted quite reasonably by Primakoff's formula (7. 47) with (7. 78), when ad-
justing somewhat the "'parameters'v and é (withé =3. 13), taking the coupling
constants in accordance with a UFI. However, the derivation of Primakoff's
formula contains appreciable mathematical approximations and it is difficult
to tell what reliability the coupling constant value, obtained in this way, may
have. It seems questionable to us that the coupling constant thus obtained
could be relied upon to have an error better than, say, 40% (cf. also section
7. 4 in this respect). Of course (7. 47) with (7. 78) may be used as an empiri-
cal formula fitting two parameters (v and ) but it should be noted that the
result forM?is very sensitive to the.value of & {(a 10% change of 6 may change

M2 by 30%).

7.4. Shell model calculations for total capture rates

Shell model calculations for total muon capture rates can be made with
or without the use of the closure approximation, using either (7.47) with
(7.48) or (7.43) with (7.44) as a starting point. The use of the closure ap-
proximation means a substantial simplification; however, it requires that
a value for the average neutrino momentum y is assumed, on which the
result depénds rather strongly, and this value is not found from the closure
method itself. Hence the calculation of the transition rate, performing sum-
mation over partial transitions according (7. 44), could in principle give
more reliable results.

LUYTEN, ROOD and TOLHOEK [63] made calculations for shell model
wave functions with and without closure approximation for O!6 and Ca4?,
also comparing them with the results of the statistical model.

For O and Ca%’the wave function may be written as a Slater deter-
minant A

¥ (%1 ... xa) = 77&17 Epép Kﬂl Ve (xpe) (7.79)

xy Specifies the coordinates for the kt nucleon; the ¥k (x) give the individual
particle states

Y (x) = Riy (r) %m (0.9) s () e (1) = wx (P)as €)un). (7.80)

Kk summarizes all other subscripts k = (n, 1, m, s, t), while
A summarizes three subscripts, A = (n, 1, m);

as (&) is a spin function (s = +or -) and

vt {(n) gives the i-spin dependence (t = + or -).
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Substituting (7.79) with (7.80) into (7. 48) one finds for M?, separating
the terms withi=j and i # j in Iyj

MP=2-Q (7.81)

with

AR

Q=2 [(E) Baplin, ) exp (7 %oy F)a]

<.

X[ [wny () exp (-t B)wi(B)dR].
(7.82)

Using standard operations of angular momentum theory this reduces to

: 2
Q= 2Zg Lnygingso X 01090 Inieinosas (7.83)
with
P IANY
Koo = (2£+1)(2.4 +1){242+1) 000 v (7.84)
Inltlnzez‘:fR;wl (r) erzlz (r) jg (vr)ridr. (7.85)

In order to see how sensitive the results are for details of the wave functions
the calculations were made for shell model wave functions belonging to

(A) a harmonic oscillator well;

(B) an infinitely deep potential well;

(C) a finite nuclear potential well with rounded-off edges.

As the transition rates are rather sensitive to the nuclear radius, the
radius parameters of the potential wells were so fixed that the corresponding
radial proton distribution had an r.m.s. radius equal to the r.m.s. radius
found from the Stanford e-scattering experiments.

Without using the closure approximation one has to evaluate M2according
to (7.44) with the same wave functions, which provides:

M2 = Toap,npope2 Iﬁaaanbzbzxeaabz‘ {(vab Jvp)2. (7.86)

This requires more extensive summations than for (7.83) especially for
heavier nuclei. A summary of the various results is given in Table I.

The value for the effective coupling constant obtained from the value
of K (IIC) in Table I and the experimental capture rate [64] is

Ayc = (0.971 0.03)X 105 sec ! (7.87)
P ! -
Ghe" + 3 GES = 0.62 X 10™ergl cmS. - (7.88)

. For Ca%®we get about the same result for the coupling constant. This should
be compared with the value obtained for this coupling constant combination
from the hypothesis of a UFI and the coupling constants for B-radioactivity
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TABLE 1

A COMPARISON OF THE VALUES OFA?OR M? AND K CALCULATED
ACCORDING TO VARIOUS MODELS FOR O16
Ay = K(GE® + GES)

~102
Method of calculation -:( x 10.6 -1
(erg™, cm™. sec™)
I Closure approximation
Ecy=85 MeV M?
A harm. osc. well 1.95 1.34
shell .
model B inf. well 1.75 1.20
8% |C finite well 1.85 1.26
D statist. model * 2.22 1.51
II Summadton over partial m?
transitions
shell A harm. osc. well 1.46 1.54
model B inf. wel 1.26 1.33
C finite well 1.48 1.56

*(The valiles kf =1.33 fm™ and ap = 0. 51 fm were chosen)

(supplemented by assumptions concerning the conserved vector current and
the induced pseudoscalar as specified in [65] cf. 7. 2, I-1IV),

G2 +3 GHcZ= 1,10 X 10" erg? cm® . (7.89)

We conjecture that this discrepancy with the U.F.I. is due to wave function:
in our model, whichmay be simplified too much. The contribution from velocity
dependent (relativistic) terms are not yet contained in the table. It can be
calculated in the closure approximation and can be expressed as

(AM?)ver =Ra(v/M)Q, (7.90)
where Rg is the following coupling constant ratio
- Gvgv + (Ga -Gp) ga ~

2 2
Gf +3 Ggr

(numerical result for assumption about coupling. constants according to [65],
or 7.2).

The result for the contribution of the velocity dependent terms is found
to be ‘

0.35

Rg

OMer [#2 = 10%.

This holds within 2% for O'¢ as well as Ca%0 for all shell model wave functions
used. '
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7.5. Muon capture in hydrogen

The ideal process of muon capture from the point of view of elementary
particle physics is muon capture in hydrogen

pu-+tpontvy. (7.91)

This avoids the complications of nuclear physics which are no longer very
simple even for D or He®. However, atomic and molecular complications
exist for capture in hydrogen, but great progress has been made during the
last few years in analysing these problems of atomic physics. The first
preliminary experimental value for the capture rate inhydrogen was published
in 1961; at the moment 3 independent determinations are available. One

of the experimental problems is that exceedingly pure hydrogen is required;
heavier atoms show a far stronger muon capture and even deuterium must
be removed to a great extent. )

We give a very brief account (cf.[66],[67],[67al) of the atomic compli-
cations which exist here, If abeam of negative muons is stopped in (liquid) hydro-
genboth hyperfine structure states of the muonic atom (pu-) are formed rapidly .
{about 10-10 sec) with a ratio 3:1for (pu=~){1(triplet) to {pu-)1l (singlet). By
means of exchange collisions "

(pulpr + (P)L = (pu~)yq + ()7 (7.92)

a conversion to essentially pure (pu~)titakes place in a time of the order
of 10" sec. By means of the reaction

(pu)yr (Pl (Pu7PlT Y (7.93)

one has then the formation of a molecule with two protons bound by means
of a muon, mostly in an ortho-state: (Spp= 1, Jpup = 3+ )atarateof (1.4 %
0.6) X 106, sec-! (in liquid hydrogen). For a gaseous target the process
would play only a minor role. One has now to consider the capture rates

in the muonic atoms and the muonic molecule ‘

A(pu-)ry > A (pu-)t¢ and A(pu~P)Ti1.

The capture rate in the molecule can be expressed in the capture rates in
the atoms:

A(pu-plryr=2v [ A (pu) 1‘*.L A(pu-n 1l (7.94)

where

. muon prob. density at either proton in (pu'p)m;
muon prob. density at proton in (pu-)y 4 .

0. 585.
(7.95)

We now mention the result for the ratio of the capture rates in the singlet
and the triplet states for a simple V-A A theory; this is
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= Alu Nt _ (Gv - 3Ga)?
TR T Gy FGar (7.96)

Hence we see that R = o for Gy=-G4 and R = 1 for GV Ga . Thus R is secn
to be strongly dependent on the relative sign of the Vand A interaction,
This also holds for A (pu-pMtitandis still true after introducing the terms
for weak magnetism and induced pseudoscalar.

Taking these refinements into account and assuming UFI one obtains
the theoretical capture rates {using the §-~decay coupling constants) mention-
ed in Table II, which compares theoretical and experimental results.

TABLE 11

THEORETICAL AND EXPERIMENTAL CAPTURE RATES IN HY:ROGEW
AND He3 (SEC-1)

Theory Experiment

wp  (F=0 636
w'p  (F=1) 13
(pe'P) 560 515 3 85 (Columbia)!)
0.7(pu7p) + 0.3(1 -p)

(F=0) 583 426 + 60 (CERN+Chicago)?)*
g+ ’He = *H+ v 1400 & 150 1410 & 140 (Dubna) -
. |

1) Counter experiment
8 Bubble chamber experiments
*) Proc. CERN Conf. High Energy Phys. 1962.

From a comparison of the experimental values with the theory one may

draw the following conclusions:

(1) Within the limits of the rather large errors of the present experi-
ments, the experimental values are in agreement withthe theoretical
value according to (7.95).

(2) The present experimental values are not sufficiently accurate for
a test of the existence of the weak magnetism or induced pseudo-
scalar terms.

(3) The experimental values g1ve a clear indication that the relative
sign of the V and A-interactions is negative. The experimental
accuracy only allows the following limits for Ga/Gy,

-2.0< (Gy/Gy) < -1.1. (7.97)

7.6. Comparison of pion decay into electrons and muons

The decay of pions into electrons or muons is supposedtoproceedprima- -
rily via an intermediate state with one nucleon and one anti-nucleon with
subsequent decay via either the 8-decay interaction or the muon-decay inter-
action. Supposing a UFI, or more particularly e, u universality, one can
calculate the ratio for the decay of the pion into electrons or muons. As-
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suming the same V - A A interaction for electrons and muons such that the
currents j {e v} and j (uv) coupled to the nucleons are identical in form, one
finds for the ratio

Alrs et ) mﬁ -m% 2 -
Rieor = Aropuvy) - ( > < = 136X 107,

This value is slightly changed when applying an estimate for the electro-
magnetic corrections

Rieor. = 1.23X 107 . (7. 98)

This value is in very good agreement with the experimental value, first
measured at CERN in 1958 and recently determined very accurately by
H. L. ANDERSON et al. [71] as

Reyp, = (1.21 £0.07) X 1074, : (7.99)
p. A

The good agreement between (7.99) and (7.98) is at the moment the best
evidence available for the equality of gi° and gf (to within a few per cent).

7.7. The hyperfine structure effect and isotope effects in muon capture

It has been mentioned already that the capture rates for (pu-) are quite
different in the singlet and triplet states. For a V - X A interaction they
are proportional to

Ao = A(puiy=C (Gv - 3Ga)? (7.100)

A1 = Alpu-)r1= C (Gv+ Ga)? . (7.101)
Hence the statistical average is
A= }Ag+3A=CI(GY+3GE). (7.102)

From the capture rates in complex (even-even) nuclei it is mostly this com-
bination G3 +3 GE which determines the overall capture rates.

However, it is a matter of much interest as to what ratio exists in muon
capture for the V- and A-interactions:

(a) Total capture rates (of even-even nuclei) are proportlonal to the
combination G&|[1])2+ G|/ & | (taking the leading terms only). If | / & |°
differs substan’clally from 3 | /1]? this permits G%/G% to be determined at
least in principle. This requires an appropriate choice of nuclei (often sepa-
rated isotopes).

(b) Odd A-nuclei have a nuclear spin I, which has the 1nterest1ng possi-

_bility of a hyperfine structure effect in the muon capture rate. The muon in
a K-orbit may couple with the nucleus to a resulting angular momentum
F=1%1% (cf. Fig.13). The capture rates A$?P and AS? in both hyperfine
structure states may be different corresponding to different probabilities
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Fl+d AP L pdeCzp

Fl-F AP+ A% _

Fig.13

for singlet or triplet states of (pp-); this difference will depend on G, /Cv ,
not only on the magnitude of this ratio but also on its sign.

The quantitative analysis of both effects requires a certain knowledge
of the nuclear wave functions. It turns out that the effect is most sensitive
to the ratio G, /Gy, and thus the most suitable for obtaining information on
this aspect of the muon capture interaction. Once the muon capture interaction
is sufficiently known the muon capture rates present a tool for obtaining
information on nuclear structure.

The suggestion that a hyperfine structure effect might be observable
in muon capture was made by BERNSTEIN, LEE, YANG and PRIMAKOFF
[72]. We cannot go into detail here, but indicate simply that it is an effect
for complex nuclei, which goes back to the different capture rates in the
singlet and triplet state of (pu~). Hence we may write, comparing the hypar-
fine structure effect in complex nuclei with that in hydrogen,

AA(Z -
‘Kaj:—((zl) = (1/ZE)(A Ap)/ AP (p) ). (7.103)

AA=A_-MA+: Z indicates a nucleus with nuclear charge Z: p indicates a
proton; & (< 1) is a factor which should be calculated on the basis of a nuclear
model, If all protons contributed equally to muon capture, and only the last
odd proton to the hyperfine structure effect,one should expect £~ 1, How-
ever, in general,the last odd proton will contribute more to the muon capture
than the average proton and one expects £ < 1; Uberall obtained g =0.57
from shell model calculations for F19, We note the following about the way
in which the hyperfine structure effect might be observed.

The total disappearance rates in both hyperfine structure states are
composed of the decay rate and the capture rate (different for both values
of ¥). The way in which A A= A_-A; can be observed depends strongly on
the rate R, with which conversion from the F} = I + 1 to the F. = I - 3 state
takes place. The main contribution to R consists of a magnetic Auger con-
version process; the transition rate was calculated by TELEGDI [73]. De-
pending on the value of R one must distinguish the following cases:

(1) If R « A+one observes (e. g. by measuring the decay electrons) a
superposition of two exponentials (corresponding to A+ and A. for the decay) -

(2) If R » A+a rapid conversion from F; to F. takes place and the totzl
capture rate which is measured is essentially A-. This rate A- may show
a marked deviation from the value interpolated from the capture rates of
neighbouring even-even nuclei thus indicating the hyperfine structure effec:.

The difference AA = A, -Ascan be measured directly when measuring
the neutrals (neutrons and gammas)emitted after the capture process, as
was indicated by WINSTON [74]; it requires a good measurement of the
time dependence of the neutrals between 0.1usec and 1 ysec after a muon
is stopped. This experiment was performed by the Chicago group [75] for
F19, It was found that
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(AP /AP x 1.45 % 0.05 .

This excludes V + A interaction and is in agreement with estimates for V-A
interaction (a shell model calculation was given by UBERALL ({76}). Hence
the relative sign of the V and A contributions seems now well established. .
It seems that a further discussion of the results could also provide a reason-
able value for Ga/Gv.

The fact that total muon capture rates for suitably chosen isotopes will
depend appreciably on the relative contributions of Fermi and Gamow-Teller
interaction to the muon capture interaction was first pointed out by TOLHOEK
and LUYTEN[77]. Such effects depend essentially on the nuclear model. We in-
dicate some typical features on the basis of the shell model (cf. Fig. 14).

2 %:::::::}

PROTON STATES NEUTRON STATES

Fig. 14

The arrows indicate some transitions from occupied proton states to non-occupied neutron states.
(Only a small part of all the possible arrows is drawn)

When considering muon capture in a simple shell model picture, the
total transition rate is composed of all possible partial transitions from
occupied proton states to non-occupied neutron states (all states are con-
sidered as single particle states). The Pauli principle forbids protons going
to already occupied neutron states; hence most protons have to go to 'differ-
ent" non-occupied neutron states. For some outer proton states analogous
empty neutron states may be available. Transitions could also occur from
j=4+ ; statesto j = £ - § stdtes (e.g. p§ —~p} or £] 2f§); such transitions
involve spin-flip and can result only from the Gamow-Teller part of the
interaction and not from the Fermi part.

Estimates by TOLHOEK and LUYTEN [77] and by G. GOULARD and
B. GOULARD (78] by means of simple shell model.calculations showed in-
deed that capture ratios ‘

A(V)/A (Ca), A (Mn)/A (Ca), A (.Co)/A {Ca), A(Ni)/A(Ca)

are 20% to 40% higher for pure A- than for pure V-interaction (the differ-
ence resulting for a considerable part from the f; —{§ transitions). The
difficulties for a quantitative theory of such capture rates is that even the
ratios depend appreciably on details of the nuclear model. Further, the
statistical weight of the Gamow-Teller contribution in G§| /1> + GZ|/& [
is roughly three times larger for the Gamow-Teller contribution than for
the Fermi contribution and although the difference between pure Fermi and
pure Gamow Teller may be considerable, the difference between mixed
interactions with X = Ga /Gv varying between -1 and -2 are far less striking.
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Hence it seems most appropriate to determine A from the hyperfine structure
effect and to consider the discussion of the variation of muon capture proba-
bilities mainly as a problem concerned with nuclear structure, using muon
capture as a tool, In this respect it should be stressed that present experi-
mental data on muon capture rates are generally only available for the natu-
ral isotope mixtures, while it would be interesting to study the variation
with Z and N separately in certain regions, which would require measure-
ment for separated isotopes. Only recently the capture rates for some sepa-
rated isotopes were measured; C13 and C37[70a], Ca%® and Ca%* [70b], U235
and U230 [70c], and Li6 and 1i7, B¢ and B1! [64].

BURKHARDT and CAINE [79] have considered total capture rates for
the nuclei N4, O!% and F1® which appeared to be not very dependent on the
ratio Ga/Gy. The advantage of these nuclei is that quite some knowledge
has beenaccumulated ontheirwave functions. BELTRAMETTI and RADICATI
[80] and DUCK [81] also made shell model calculations on muon capture,
especially on partial transitions to bound states in particular for O,

7.8. Partial muon capture rate in C12

As early as 1954 an experiment was performed by Godfrey which aimed
at a direct comparison of the coupling constants of the Gamow-Teller parts
in muon capture and $-decay.

} n-EMISSION

1+ Eo = (134£0.05)MeV
p-decay { t1,°(206+0.2)msec
tog ft =411

H~CAPTURE

ot ot
Fig. 15

A comparison is to be made between the reactions (cf. Fig. 15)
u-+Cl2 5 B2+ y (7.104)

and

Bl2 5 Cl2+¢-+ 7. (7,105)

The B-decay in this I' ~ 0% transition is determined by the [ & nuclear ma-
trix element; if one could compare the partial muon capture rate between
the same nuclear states one might hope to obtain the ratio |G§°/G£| by
dividing out the matrix element /& occurring for both processes. Experi-
mentally, one measures the B-radioactivity which occurs after the muon
capture. This provides the muon capture probability to those states of B12
which show no particle emission (mostly neutrons), i.e. to the ground state
and the lowest excited states decayingbacktothe ground state by y-emission.
It can be shown that the muon capture leads only in quite a small fraction
of the cases to these excited states, in comparison with the transitions to
the ground state of B'% This is one of the corrections which has to be ap-
plied. Another correction is that the muon capture does not depend only on
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[ & but also on /& r? (using the terminology of 8-radioactivity), because
of the shorter wavelength of the neutrino in muon capture.

It follows that the analysis of the experiment requires a certain knowl~
edge of the structure of the nuclei. Hence it is seen that the theoretical
analysis of the experiment is not without complications.

Unfortunately the experimental situation is worse as appreciably differ-
ent values were found by different groups, differing more than the quoted
errors .

5.9 & 1.5 (82
9.05 % 0.95 [83]
_ 9.18 £ 0,5 (64
A+ Cl2- Bi2+ 4) 4 6.8 £ 1.1 [85] x 10p3gec?
* 5.8 % 1,3 [86]
8.31 % 0,24 [87]
+ 0,30
.‘ 6.75 _ 0. 75

(7.108)

[87a]

- It would be desirable for the experimental discrepancies to be cleared up.

At the moment one can only conclude that |G /GAI equals unity within about
30% (using the ''most plausible" assumptions mentioned in section 7. 2 about
weak magnetism and the pseudoscalar).

7.9. Partial transitions in O!® and the pseudoscalar interaction

In 7.2 we considered the effective Hamiltonian for muon capture and
showed that it seems to be determined by the 3 constants Gy.Ga and Gp even
if we start with the general expression (7.12) containing 6 parameters.

For the sake of simplicity we discussed the hyperfine structure effect
and the capture in hydrogen as if there were mainly two parameters to be
determined, namely Gv and Ga. '

However, it is seen from (7.17) and (7. 32) that Gp also plays an inde-
pendent role and that it 'could be determined independently from a phenomeno-
logical analysis of suitable experiments. In this respect it should be noted

that
2 2 12
ST ram | % [RR =417 P

does not generally hold and for the transitions, for which it does not hold,
Gy,Gpand Gp occur independently and not only in the combinations Gr = Gy
and GgrT .

An interesting proposal for such a determination of Gp was made by
SHAPIRO and BLOKHINTSEV [88]. They pointed out that in the partial
transitions from O — N16 the ratio of the transition rates to the 0~ and 1-
exc1ted levels of N16 (both characterized by the configuration (1pj4 )p
(ZJ%)n ) is quite sensitive to the value of Gp(cf.Fig.16). It can be shown
that the ratio of the partial capture probabilities to the 0~ and 1~ levels is
given in a first approximation by

A(0"=07)/A(0* 1) = (Gp - Ga)l?/GH + 2GR (7.107)

Hence it follows that this ratio is sensitive to the value of Gp. (7.107) is
not yet suitable in this form for an analysis of a possible experiment as it
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u-CAPTURE

ot

Fig. 16

can be shown that the velocity-dependent terms of the Hamiltonian and confi-
guration mixing in the nuclear wave functions cause appreciable deviations
[88,89]. If the calculation of these corrections were sufficiently reliable,
measurement of the above-mentioned ratio would indeed be a good experi-
ment for determining Gp .

7.10, The angular distribution of recoil nuclei and of emitted neutrons

When (polarized) negative muons are captured in a K-orbit of a spin
zero nucleus they have a residual polarization which amounts to 15 to 20%.
This residual polarization can be measured by means of the anisotropy of
the decay electrons from the polarized muons. As a consequence of the non-
conservation of parity the following effects can be expected if the muen
captured in the K-orbit is polarized.

(a) An anisotropic angular distribution may occur for the recoil nuclei

Wrec _(erec) = 1 + B opec COSOhec - (7.108)

(b) An anisotropic angular distribution may occur for the emitted (prima-
ry) neutrons

Wa(8n) =1 +PR o cosbn; (7.109)

—12“ = degree of polarization of the muon captured in the K-orbit;
g = spin direction of this muon, R

6..c = angle between E;; and recoil nucleus momentum piec 5
6, = angle betweengp and momentum of the emitted neutrons pxn .

arec and an depend on the coupling constants Gy, Ga, Gp; they are seen
to be rather similar; especially, if most of the final states are unbound,
it seems plausible to suppose that most of the recoil momentum is carried
off by a neutron.

As an example of the dependence of the asymmetry coefficient on the
coupling constants we give an estimate of « _made by PRIMAKOFF [90] for
the heavier nuclei:

_ (Gv)® - (GAF +(Gr)?-2Ga G
(Gv)2+3(Ga)? +(GpP -2GAGp

(= -0.39). (7.110)

Qrec
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This shows

aree =0 for |Gv| = |Ga| andaGy=0.

However, it is seen that for the values of the coupling constants according
to (7.18) and (7.27) - (7.31) an appreciable asymmetry should occur.
In the first instance the value of @, is something like (7.110). UBERALL

[91] has considered on the basis of a Fermi gas model how o, is changed
for complex nuclei. DOLINSKY, BLOKHINTSEV and AKIMOVA [92] did

this on the basis of a shell model. Various experimental results are now
available for &, for S°2 from the groups in Liverpool [94] and Chicago [93]
*which average to

an = - 0,24 % 0,06. (7.112)

A value for Ca was recently obtained in Dubna [95]. Although the accuracy
is not yet very high, the existence of an asymmetry seems to be now well
established. This seems to be a rather clear indication of the existence of
an induced pseudoscalar coupling, The data were recently extensively
analysed by BLOKHINTSEV and DOLINSKY [96] .

"~ A further consequence of the non-conservation of parity, which we want
to just mention here, is that one must expect that recoil nuclei and emitted
neutrons will in general be polarized.

7.11, Radiative muon capture: spectrum; directional distribution of the
" photons; circular polarization of the photons [60] [97] [98] [99]

Radiative muon capture is a second-order process, with one weak inter-
action vertex and one electromagnetic interaction vertex; the main contri-
bution is represented by the Feynman diagram, (see Fig.17 (a) ). However
also the following contributions must be considered (interaction with charge

_of proton) (cf.Fig. 17(b)) and the interactions via the anomalous electro-
magnetic moments (cf.Fig.17(c) and (d)).

Fig.17(a) Fig. 17(b)

Fig. 17(c) . Fig-17(d)

The energy m, ¢2 = 105 MeV is mostly divided between neutrino and
photon so that the I. B. photons (internal bremsstrahlung photons) may have
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quite a high energy here; they have a continuous spectrum extending to ener-
gies which are considerably higher than the gammas from the de-excitation
of the final nucleus. However, radiative capture is estima*ed to occur only
in about 1 in 10% of all captures so that one can expect that it will be studied
only for complex nuclei (and not for hydrogen) in the near future. An ex-
periment at CERN (CONVERSI et al.,[99a]lhas established experimentally:
the occurrence of radiative ¢ -capture at about the expected rate (cf.Fig.18),

Ny

Ey

Fig. 18

The probability of the radiative muon capture

Radiative muon capture can provide independent information on the muon
capture coupling constants; the experiments will, however, be difficult.
The interesting feature in radiative muon capture is that for high E, the
muon inthe intermediate state is not "at rest' with respect to the nucleon
as is always (approximately) the case for normal muon capture. This can
enable usinprinciple to obtain different combinations of the coupling con-
stants gv, ga, M, gp, Zs, gr than are given by Gv, Ga, Gp.

We shall not discuss now specific theoretical results but we mention
éoncisely what can be observed about radiative muon capture:

(a) Form and intensity of the photon spectrum.

(b) If the muons, which are captured, have an initial polarization B,
the 1. B. photons can be expected to have an anisotropic angular
distribution

W(0) =1 +B, Bcosby . : (7.113;

8y is the angle between the direction of emission of the photon anc
the direction of the muon spin 5. The anisotropy coefficient woull
be equal to one: B = 1 for Gv= gy, Ga = ga, Gp = 0. However the
induced pseudoscalar interaction will change this value, which pro-
vides a means of determining Gp.

(c) Even when the initial captured muons are not polarized it must be
expected that the emitted I.B. photons have a-ircular polarization
B' . It can be shown that this-parameter 8/ = 8, so that it provides
the same information on the coupling constants as the 1.B. photon
angular distribution.

The experimental study of radiative muon capture has only just started.
Much work has also still to be performed on the theory, both on the influ-
ence of the binding of the nucleons in nuclei and on the influence of diagrams
{b), (c) and (d) of Fig.17. ’
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8. NEUTRINO PROCESSES; THE HYPOTHESIS OF AN INTERMEDIATE
VECTOR BOSON; ARE THERE TWO KINDS OF NEUTRINO?

In this section we want to consider the theory of weak interactions in
a somewhat wider context. If we consider all kinds of weak interaction pro-
cesses, the four following types may be distinguished:

I Processes with leptons only; example:

ut sty +7, (8.1)

II Processes in which baryons or mesons occur in addition to leptons,
but in which the strangeness does not change; examples:

n >pte +V (8.2)
e” +p—=>n + vy : . (8.3)
u Ftp~—n + vy (8.4)
T o u+ 7, (8.5)

III Processes, in which baryons or mesons occur in addition to leptons
and in which the strangeness changes; examples:

Ku2 Kt ut +y (8.6)
Ku3 K*- p* +y+ 7, (8.7)
Ke3 Kt—> et + v + 17y - (8.8)

IV Processes, in which no leptons occur and in which the strangeness
changes; examples:

Kn2 KY - 7+ + qo (8.9)
K73 K*¥=> g+ + - +q+ {8.10)
Z¥on + ot
v } (8.11)
Ao + o7
3 f’l +7ro} (8.12)

Up to now we have confined our attention to processes of types I and II, in
which the strangeness does not change. The four types of processes have
characteristic differences, although they are all weak interaction processes.
We shall mention only a few points about processes III and IV, as the time
available does not allow us to go into any detail in this field in which much
work has been done during the last few years.

It is possible to try whether the processes of all four types I..IV can
be characterized by 4-fermion interactions. We now indicate which formal
expressions should then be chosen for the types I...IV. We use the following
expressions for lepton currents and nucleon currents. )
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Lepton currents: we write for electrons

)

jex = Gemn(l +ys)uy (8.13)

L SR § SR 2 (8.14)
Analogously we write for muons

j;(t:)x = G (1 +ys5)d (8.15

Jﬁf) = Yoy (1 + )ty (8.186;

The superscripts (+) and (-) indicate whether the electric charge is increased
or decreased. We'can also write a lepton current for electrons and muons
together

0 VS S I 2 (8.17)

o= 8 T+ (8.18)
Nucleon currents: we write

K= Tl +Ays) Uy | (8.19)

I = G (1 rys) vy (s.20)

The constants A =~ 1,2 prov1des the ratio of A and V interaction in f-decay.
The usual Hamiltonian for §-radioactivity can be written in the following
form, using the preceding notation

22 =gz [ AN + R 3(2,) . (8.21)

The two terms in {8.21) are each others Hermitian conjugate. The factor
1A/2 is just added to conform to the historical convention for the coupling
constant. -If the hypothesis of the conserved vector current is accepted,
(8.19) and (8.20) have to be supplemented with terms for the pion-field as
was explained in 6. The interaction for muon :capture can be written in a
form -analogous to (8.21) as

Sue

HC = T2 [ % J(;f.)x + I N . . (8.22)

JJAB as well as #{° are concerned with processes of type 1I. Muon decay is
a process of type I and can be characterized by

M= 5-’1 | (e,)x J#X +3e,;\] . (8.23)
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Experimentally it was found that gui™ gué =~ g and it is tempting to suppose
that all weak interactions amongst nucleons and leptons can be summarized
in the expression

R A E YR VIE GV (8. 24)

This expression has an attractive simplicity, being simply of the form

J; =g X current X current . (8. 25)

{8.24) can be considered to be the expression of the hypothesis of a Universal
Fermi Interaction (UFI) amongst nucleons and leptons. The expression (8. 24)
contains the interactions (8.21), (8.22) and (8. 23) as cross terms; however,

it contains in addition terms such as ’

Y =% #h 8. (8. 26)

which provide the possibility of e-v scattering by a UFI. Hence (8.24) implies
that electron neutrino scattering

etv > etv (8.27)

should occur with a small cross-section, which is easily calculated. Of
course, it would be of the utmost importance if it could be tested experi-
mentally whether (8. 27) occurs in nature.

8.1. Generalization to processes of types Ill and IV with a change of
strangeness S

It seems a plausible generalization to introduce for such processes a
strangeness-non-conserving current S). One can form such currents with
the A-hyperon in the following way

SR = Tom (1 +1g)ta (8. 28)

V S():) = wA Y (1 +‘Y5)WP' ) (8.29)

Of course, analogous expressions can be formed with the I-and Zhyperons.
In contrast to S), J) can be called a strangeness-conserving current. For
processes of type III (leptonic decays with change of strangeness) one may
now write down an interaction

Hy —J%— U L R L T (8. 30)

For processes of type IV (non-leptonic decays with chahge of strangeness)
one may write finally

Y R E U G N B (8.31)




430 H. A. TOLHOEK

When considering (8. 30) and (8.31) as the fundamental weak interactions,
the decays of K-mesons and hyperons have to be considered as second- or
higher-order processes. One can easily draw Feynman diagrams with one
weak interaction vertex and one or more strong interaction vertices, which
explain these decays qualitatively. One might attempt to generalize the UFI
for nucleons and leptons, such as formulated in (8.24), also for strange
particles, writing for example

» g W) oL-
Hio= g @00+ sPOXA 45D, (8.32)

Such an expression would be an elegant unification of all weak interactions
into one expression of the type (8.25). However, much research will be
required before it can really be established whether a form more or less
of the type (8.32) might really be possible. We cannot go into a discussion
here of the different rules which have been proposed and are under investi-
gation for processes Il and IV, we only mention the rules concisely:

(1) no IASI = 2 rule,

(2) AQ_= AS rule (leptonic decays),

(3) |Aa = 1 rule for non-leptonic decays (’? is isospin),

(4) |A 3+ rule for leptonic decays.

Rule No.(3) now seems to have been quite well established by experiments:;
recent experiments seem to be in contradiction with (2) and (4); rule No.(1)
has not yet been extensively tested.

A rule, which seems well established by experiments for processes
both conserving and not conserving strangeness is: no four-fermion inter-
actions occur with neutral lepton currents. This means that processes wtich
need a four-fermion interaction, in which a lepton pair with zero total charge
necessarily occurs, are strictly forbidden. Examples of such forbidden, .
processes are : :

M- o e~ tet te- (8.33)

p- +p2p te . (8.34)

The non-occurrence of these processes has been verified experimentally
with great precision. This is an important experimental fact for weak inte: -
actions between nucleons and leptons.

8.2. The hypothesis of an intermediate vector boson

It is possible to replace a weak 4-fermion interaction by two ''semi-
weak'' interactions of fermions with an intermediate boson B. In many re-
spects this gives identical results. We specify by means of Feynman dia-
grams which couplings have tobe assumed for the boson B (cf. Figs. 19 and 20).
We note here the following points:
(1) The diagram drawn for §-decay or muon capture is the same as
is assumed for the main contribution to the induced pseudoscalar
in B-radioactivity or muon capture. However in this case the bosoa
B is the pseudoscalar pion from which there results an effective
pseudoscalar coupling. _ B

(2) In order to obtain an effective V-A coupling one has to take a
{charged) vector boson for B. If we indicate by B the field oper-
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B = ¥
B Bev—esvey

]

Fig.19

/N .
n—=p+B—»=pte +v¥ %\

FTHp = P +B +n—=V4n
Fig. 20(a) Fig. 20(b)

ator for this particle,the couplings which have to be assumed for
B can be written as

’

Jn =1 Byjih + hic. (a)

#f =Byl + hec. (b)

HY =iy BA Y 4+ hee. (c) f (3'35)
4% =1sBas® + h.c. (d

The effective coupling constants for processes I and II which result from
the interactions (8.35) are (g = mass of the boson)

gp N2 ‘= fofy/m8§
gue/N2 = fuin/mi . (8. 36)

Eu N2 = fefu/ml%
Because gs = gyc = gu, it must be assumed that
fe = f,_; = fN.
(3) As regards the mass of the boson, it must be assumed that
mg F myg (8.37)

in order to explain the absence of the process

K> BY +y. (8.38)
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(4) Possible decay modes of the boson are

B*§£*+V (L:eorpu)
27 (8.33)
K*+7 (if mp > mg +my).

One calculates for the decay rate

' 3
AB* = ut + p) = A(B* > et +) =-§£——?—2B- > 8X 1016 secd. (8.40)
T

Hence we see that the intermediate boson should be a particle with a very
short lifetime (<10717 s) as was to be expected from the fact that it decays
via a "semi-weak" interaction and not via a "weak' interaction.

(5) When only charged intermediate bosons are assumed, this has the
attractive feature that a kind of "explanation" is given for the rule
that no neutral lepton currents are found.

(6) The theory with charged intermediate vector boson, is not renorma-
lizable. However, this can scarely be considered as an argumen;
against the existence of such a particle.

Up to now we have mentioned the coupling scheme with an intermedia’e
boson only to the extent that it is equivalent in many ways to a 4-fermion
interaction, which is considered as a fundamental interaction. But it is not
clear whether the scheme would in any way be more attractive than an ele-
mentary 4-fermion interaction. However, the intermediate boson hypothesis
was worked out by Lee and Yang and by d"Espagnat in such a way that cer-
tain advantages are indeed obtained. They try to formulate such a coupling
scheme for the intermediate bosons that rule No.(3): IA’FI = 1 for non-
leptonic decays, results from it. It turns out that this is still possible in
various ways and one can use the remaining arbitrariness to incorporate
one or more of the other rules (1) to (4) in the scheme (for a detailed de-
scription cf.{101, 32]). Lee and Yang propose a scheme, in which the bosons
(which they indicate by W and call ""schizons'} are coupled in the W-Jx and
the W-5, interactions in different ways as regards their isospin properties.
They postulate 4 bosons W*, W-, W3, Wg which can be grouped either in
a triplet (W" W2 W*) and a singlet W, or in two doublets (W°, W*) and (W™,
W?°) (where WS = = 3 (W° +W°); Wp = 3 (We- Wo)).

One may say that in the proposed coupling scheme the isospin is con-
served both in the W-J, and in the W-S, interaction, but that the boson
behaves as an isospin -1-particle ih its coupling to J) and as an isospin- -
particle in its coupling to S). This two-fold "schizoid" behaviour has then
the IA’ﬂ =% - rule (3) as a result and also the leptonic |A'?| = 4. rule can
be incorporated in the scheme. Also rule (1) (no |AS| = 2) can easily be
incorporated in this scheme. The rule that no neutral lepton currents occtir
has to be added in a rather artificial way.

D’Espagnat has postulated in his "veton''-coupling scheme only charged
bosons (one or two kinds). This results in neutral lepton currents being
forbidden in a natural way, hence the name 'vetons'. Rules (3) and (4) are
incorporated in the scheme either rigorously or in a certain approximation.
In one of his proposals the rule that nolASI = 2 processes take place is not
valid for leptonic decays, so that for example
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Eo>nte +7

should occur with a measurable probability (which cannot,however, be ex-
cluded on the basis of the present experimental data). Although many results
are the same with or without an intermediate boson, one can of course con-
centrate on cases in which it makes a difference whether intermediate bosons
do or do not exist in order to make a decision on the basis of experiments.
Possibilities in this respect exist in the form of reactions in which real
bosons B should be produced,for example,by means of pions or neutrinos

of high energy. Because of the short lifetime of B (<1971"sec)suchpro-
duction processes (occurring with small cross-sections) will not be easily
observed: one cannot observe the bosons by means of real "tracks', but

one has to make an analysis of the decay products. However, such investi-
gations seem possible with existing techniques.

8.3. v-decay of the muon

The possible occurrence of y-decay of the muon is a very fundamental
problem. If an intermediate boson B is assumed, this decay is possible
up to first order in the weak interaction according to the diagram given

po——e" 4y

Fig. 21

Fig. 21 diverges; a cut-off ® my gives as an estimate for the branching ratio

(theoretical

Au e +v) .4 estimate with

Alu—-e tv +17)~ 3x10 intermediate (8.42)
boson B).

Experimentally a very low upper limit was determined for this process (cf.
[106] and [107]).

Afu-e +q)
A(u-e +v +7)

< 0.6 X 1077 (experiment). (8.43)

The experimental value (8.43) obviously contradicts the theoretical value
(8.42). The theoretical result (8.42) depends strongly on the chosen cut-off,
but it seems impossible to obtain agreement with experiment with a reason-
able value of the cut-off (cf. MEYER and SALZMAN [108] ). In order to
maintain the intermediate boson theory the following hypothesis has now
been introduced:

Two-neutrino hypothesis: it is assumed that two kinds of neutrinos exist,
of which one kind ve is connected to the electron and the other kind vy to
the muon. One should then write
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n- pte- +y; (a)
W tp=2ntuyy (b)

out e AT tuy (c) (8.44)
TR ) (d)

The intermediate boson should then be coupled both to the pair (e, ve) and
to the pair (4, vy). Introducing two kinds of neutrinos in this way means
that we have two lepton conservation laws; we may introduce two kinds of
lepton numbers

Le
£

+1 for e and v.; £, = -1 for et and Ve
(8. 45)

+1 foru” and yy; £e = -1 forp* and 7, .

Le and £, should then be conserved separately. This provides an additional
selection rule so that (8.41) is rigorously forbidden; we see that in the dia-
gram (Fig.21) first emission of 1 takes place, but for reabsorption by the
electron a v would be required, which is not available.

With regard to their helicity, both neutrinos v. and v, are supposed
to be identical. The hypothesis that two kinds of neutrinos exist does not
seem very attractive at first sight; one would probably prefer one kind of
neutrino rejecting the intermediate boson. However, the process uy - e +4v,
also rejecting the intermediate boson, is not necessarily excluded. For
example, one obtains a contribution to this process from the following dia-
gram, of second order in the weak interaction.

’

Fig. 22

It is assumed here that an expression of the type (8. 24) is valid (cf.
JOFFE {109] for quantitative results; if no e + v @ e + v existed this dia-
gram would not contribute). The diagram is strongly divergent and the resu't
greatly depends on the cut-off which is assumed. If a cut-off A=30 GeV
is assumed the contribution of the last diagram reduces sufficiently to ex-
plain (8.43). However, introducing a cut-off resembles introducing a certain
“non-locality" of the interaction and this again threatens to cause the process
# = e t+ (up to the first order in the weak interaction, as for the inter-
mediate boson). Hence it turns out that it is not easy to forbid effectively
the process pu—e+y even without supposing an intermediate boson. Thus it
may be attractive to introduce the two-neutrino hypothesis, causing an ad-
ditional selection rule, even when not assuming an intermediate boson.

The electron and muon are two fermions, which seem very analogous
in their behaviour in weak interactions as well as in their electromagnetic
behaviour (e.g. magnetic moment); only their masses are different. It is
tempting to suppose that the existence of two charged leptons, which are
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thus analogous, also corresponds to the existence of two strongly analogous
neutral leptons ve and vg.
Of course these arguments are purely theoretical speculation. It is
of the utmost importance to try to find experimental checks of the two-
neutrino hypothesis. This seems possible by means of an experiment with
neutrinos of a high energy in the following way (we write the processes as
if two kinds of neutrinos existed). '
Neutrinos of a high energy are obtained from the decay of very energetic
pions {(which are produced in proton-nucleon collisions)

Trout + oy (8. 46)

One then looks for processes of the following kind when the neutrinos of
very high energy fall on nuclei ’

Vg +n— p i (8.47)
v, +tnp pte . (8. 48)

When two kinds of neutrino exist, one should find only process (8. 47) (of
course the energy of the neutrinos should be sufficient for muon production).
In case only one kind of neutrino exists one should also find process (8. 48).
The practical realization of this very fundamental neutrino-experiment
is under way at CERN and in Brookhaven. The pions are first produced by
means of protons in a 30 GeV proton synchrotron. The difficulty is the very
small cross-section. This means that only very few events can be expected,
of the order of one event per ton of matter per day. For the experiment one
has, e.g., a propane bubble chamber with about a ton of matter, while also
a spark chamber with 10 tons of iron plates could be a very useful instru-
ment. Although the experiment is very exacting, it can already provide a
decision on the very fundamental issue of whether the two-neutrino hypo-
thesis is correct or not withéut reaching a high accuracy. Recently (July
1962), the existence of two types of neutrino has been established in the
Brookhaven National Laboratory (see Phys. Rev. Lett. 9 (1962) 36 and Proc.
1962 High Energy Phys. Conf. at CERN).

8. 4. Experiment Brookhaven

In this experiment 10 tons of material were used in the detector, con-
sisting of a combination of 10 spark chambers of 1 ton each, Extensive
shielding consisting of concrete and iron was essential. Anticoincidence
counters were used to suppress the cosmic-ray background. It was essential
in this respect to have a gating system which makes the detector sensitive
only when the protons arrive at the target; the protons are circulating in
12 bunches per pulse, each 20 usec long separated by 220 #sec; the machine
produces 2 X 10" protons per second; in the experiment 3,5 X 107 protons
came to the target.

The spark chamber photographs were examined for muon tracks of
high energy (py > 300 MeV/c) produced according to (8. 47), and for showers
arising from electrons, in case reaction (8. 48) occurred.

After correcting for the cosmic-ray background, 29 events were ob-
tained for muons produced according to (8. 47) while no events due to the
process (8. 48) could be observed. The observed cross-section for (8. 47)
was in agreement with the value predicted by theory.
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No evidence was found for production of intermediate bosons according
to :

v+ Zou + Bz, (8. 49)

and subsequent decay of B* according to (8.39). Of course, this does not
yet prove the non-existence of intermediate bosons either.

Except for their importance with regard to the two neutrino hypothesis,
high energy neutrino experiments are very important in the following re-
spects: .

(1) - As was discussed in connection with the matrix elements (7. 12)
the '"'coupling constants' are as a matter of fact "form factors' which can
depend on the 4-momentum transfer.

In the normal processes of B-radioactivity, muon capture or muon °
decay the 4-momentum transfer is nearly the same for all processes whick
are studied. However, the neutrino reactions provide the possibility of
studying the behaviour at different values of the 4-momentum transfer.

(2) For sufficiently high neutrino energies one should expect the pro-
duction of real bosons B if the intermediate boson hypothesis were correct.
Although we have already mentioned that their lifetime is too short to give
visible tracks in bubble chambers, for example, one would still expect ob-
servable consequences, e.g.in cross-sections of such boson production.

It is clear that high-energy neutrino physics will become a field of great
importance. Because of the small cross-sections the experimental diffi-
culties are great and precise values for cross-sections will become availakle
probably only very slowly. It is relevant in this connection to stress that
the processes (8.47) and (8. 48) will have to be studied in complex nuclei
(pure neutron samples not being available for this purpose). This means
that nuclear complications again appear in the analysis of these processes.
For example, the influence of the Pauli principle should be studied carefull;s
for the reactions (8. 47) and (8. 48) occurring in nuclei. Berman has made
some calculations on this point. (cf. [102] ).

APPENDIX 1
NOTATIONS FOR THE DIRAC EQUATION AND THE DIRAC MATRICES
As various notations are used for the Dirac equation by different authors, we specify here the notation

which we use. We also give explicit representations for the Dirac matrices which are used in some cases.
We may use the Dirac equation in the form

[ Elc+ Py + 2Py + aspz+ agnclP(x, .z, 1) = 0 (A1)
or
[Efc+ &P+ agmcly=0 (A.2)
E and p are the operators
=-@/afor px = m/7i)(a/an; (4.3
oy, ..., Oare (4 X 4) matrices satisfying

af=1 (A.4)
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o o= -ajag Gifhn.
The o’ s may be chosen as follows .
01 A 10 10
0-i
e o) G0 . 0-1 \ [
=l ; z 0-i ; s 10 ;

10 -i 0 0-1
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(A.5)

({A.6)

(elements which are not written are o). We shall often write 8 instead of o. We note that these a's are

Hermitian. The wave function has 4 components and thus summarizes 4 functions of x, y, 2, t:

Hix, ¥, 2, )
Uy(X, ¥, 2, 1)
%(X- ¥z, 1)
WX vz

w:

Y

(A.7)

We may also write the Dirac equation in components ¥, ... y4. Using the representation (A. 6) for

the a's we obtain

(Elc+ me) h +(Px-ipy)¥ + Pz ys =0
(E/c + me) g;+ (px+ipy) 95~ Pz yy =0
(Efc - mc) gy (px ~ipy) ¥,+ pz ¢y =0
(E/c - mc) g+ (Px+ipy) W~ Pz =0.

An alternative form for the Dirac equation is

(EJc+ p, 0 p+pyme) p = 0.

The p's and ¢’ s are related in the following way to the o's

ag = p, 0k tk=1,2 3

04 =Ps .

The ds and s are represented by the following matrices

10 -i0 10
oi 0-i 01

1= 10 H P2® i0 H Ps= -1 0
01 , \ ol \  0-1

01 0-i 10

_{ 10 fioe o 0-1
%= o0 |3 %7 0-i | 3 97 10
10 io 0-1

The matrices p and o satisfy the following relations

A=1; pipj +pjpi =0 (i7i); AP, =ipy  (and cyclic),

pf =1i 0j0j + 0joi =0 (if); o0,=103 (and'cyclic);

every matrix p commutes with every matrix a.

(A.8) 7

4.9

(A.10)

(A.11)

(A-12)

(A.13)
(A.14)

(4.15)
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i

“.The form (A.1) is not the most convenient one, if one wants-to consider the relativistic transformation
properties. With this in view we write

Py = (/1) (foxy) (x =icn),

(A.16)
We multiply (A. 1) 'to the left Ell:y icqand obtain
; . - . i : '
(iogaipx + iogoepy + iceaspy + e Ef imc)p =0 (A.17)
or putting (in the following, sumation over repeated-Greek indices from 1 to 4 is understood)
A
{yupy - imc) ¢ T 0, (A.18)
putting
yk=-ia,ar (k=1,2,3); o = =1ygyx
' . Pt (A.19)
Ya= - % O = Y4

The y matrices which are so defined are hermitian as well as the a's, We shall use the Dirac equation mostly
in the form (A.18), or writing py explicitly according to (A. 16) ’

a mec
('yu",']7p+li Yy = 0.

(A.20)
The yu' s satisfy the commutation relations
P (unt wrw =S (A.21)
Taking the complex conjugate of (A.18) and changing the order of the §*s and the y's one obtains
. ® %
™ | oy* me #= 0 22
Ke1,2,30% X oxg YetH VO (4.22
Putting
: T=u*y, » (A.23)
(A.20) takes the following form after multiplication to the right by A (adjoim Dirac equation)
o mes
- ax,,,"‘ 5 V70 (A-24)
A Lorentz transformation is specified by
X}.& FagXy L . . o
_ ) (A. 25)
Xy = apyXp
where

apd auo=6go}
agy aop =840

(A. 26)
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It follows from (A.25) that

. . ?
2%y = a5~ (A.27)
We shall write (A. 25) in an abbreviated form as
x =L x
x =L1x’, (A. 28)

The Dirac equation and its adjoint are invariant for Lorentz transformations; this means that the equation has
the same form in x and x’-coordinates:

Oy *(0/8xy) + (me/fi))¥ ()= 0 (A. 29)

(9 - (H/0xp) + (me/M)F(x) = 0. (A. 30)

' and y are related for coordinates related according to (A. 28) by

VH =S¥ (LEx) =59 (%) . (A.31)
S is a(4 X 4) matrix satisfying
S-irp $ = auyy, | (A.32)
¥ wansforms according to
PO =L st =g s (A.39)
S has also to satisfy '
s*i=yst oy, . (A. 38)

1t is often useful to introduce yg according to

Ys=NrYys - (A. 35)

We note that for ys
2
() =1, YsYut R¥s = O (A. 36)
Hence we see that (A, 21) remains valid for g, v = 1, ..., 5 when intwoducing the matrix ys.

The covariants of the Dirac theory

1f gand s are Dirac wave functions transforming according to (A.31), (A.33) it is easily proved that
the following quantities have the indicated transformation properties ((A.32) is used for this purpose) :

S scalar P 2 (A.37)

V vector Yy¥ v, (A. 38)

T tensor 1 -
(antisymmetric) Uiz Opw - "mdve (A.39)

A axial vector

(pseudovector) DLW Ys Y2 . ) ‘ (A. 40)

P pseudoscalar V175 V2 : (A.41)



440 H. A. TOLHOEK

The relations between our different notations of Dirac matrices are given by

ak= P1ok; a4=py(=8) T © (A.42)
ay =-inyk: 4% - Ya (A.43)
Yk=-lagak; y=-a (A.44)
Yk= P20k .
_ : (A. 45)
Ya="Ps : ,

We specify the 16 independent Dirac matrices, used in the representation, in the following table (these matrices
are all Hermitian).

Table of the Dirac matrices

B=py

it
© e
= o
=3
o
~ o
-
"
O
= o
o =
= o

01 : 0-i \ 10
10 i0 o 0-1
4= po; = 01 3 Q3 L0 = 0-i y A3 =poy = 10
10 ) io0 0-1
01 0- 10
10 io _. 0-1
Bor po; = i Bor pyy= . I Bogpgy = .
b o 0-1 0i . 10
-10 -i0 / 01
0i : : 01 io
: i0 . -10 . 0-i
1Ba,= -pyoy= i i 1Bay=-ppo5= 0-1 i 1Bay=-gos~ -i0
-0 10 0l
© o1 0-i 10 .
. 0-1 .
10 _[i0 . O = ,
0y = o1 : Oz 0-i i s 10 ‘
10 io/ . o
10 io
oi
01 : = =
ys=p1 = 10 H iBys=-pp = “io0
01 . 0-1
APPENDIX II

THE USE OF FIELD OPERATORS OR WAVE FUNCTIONS IN THE FORMULA TION
OF FOUR-FERMION INTERAC TIONS

It is often not stated clearly whether field operators or wave functions are meant, when formulating
a four-fermion interaction. We want to state here precisely how both formulations are related in order to avoid
confusion.

In this appendix $(¥'t) will mean the operator for the quantized fermion field. We can write down

the following Fourier development for  and y* (an asterisk with the field operator indicates the hermetian
conjugate operator) ’

x
KRD = 53 B, Laih- ud) exp (G250} + biD - vickDexpl-iB - RED} (A.46)
* s 1 * * SR * =5 =

YR =52 2 [aP) - uipd exp {57 REm}+biPD) - vi-pD exp {1} B}

(A.4T)
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2P, ;i(ﬁ) , bi(PY), t:ki(ﬁ)-) are operators,

aﬂi((p—r)) is the creation operator forva negaton in the state (i, pr),
ai(;T,)) is the annihilation operator for a negaton in the state (i, pr),
bﬂig(p—r)) is the creation operator for a positon in the state (i, pr),
by(Pp) is the annihilation operator for a positon in the state (i, py),
ui(p—r)) and v; (-p_r’) are spinors (not operators but c-numbers),

i indicates the state of polarization; p specifies the momentum. We have considered a cube with volume

v =13 as normalization volume, taking periodic boundary conditions. The possible momentum eigenstates

can then be specified as Pr- where r is a discrete index. We shall often indicate a fermion state by one

index s, which summarizes (i, p;) :

In the expression for a four-fermion interaction, e. g the B-interaction, the y's can be considered as
field operators

® 0k * %
Hp(x) =g LWp Rin) (Ye 2 ¥y) +(¥nQHPp) (Wt ¥e) ] - (A.48)

The initial and final states may be charactetized by the numbers nd" = number of fermions in the state s and
rig = number of antifermions in the state s. The field operators g and y* have the following matrix elements
forvtransitions between states with zero and one particle

it =o|uH |nt =

1
F uPD exp {1t X-Em} @

(A.49)

(g = 0|w®|ns = Vi(-BD exp {iFR-Em} ©

2"“

1=

il eo> = jucmor gral o
1> =
=0>=

-1 | ot 2,43 exp{ -t RED} @

(all other matrix elements between states with zero and one particle are zero).

In the right-hand terms of (A.49) we find :

(a) the one-particle wave function of the absorbed negaton,

(d)- the complex conjugate of the one-particle wave function of the emitted negaton,

(b) the ’negative energy’ one-particle wave function corresponding to the emitted positon and

(c) the complex conjugate of this positon wave function.

Using (A.49) one obtains immediately the matrix element of Hp = [ d® X’ Ap(x) (where Mg (@) is
specified by (A.48)) for a process of B™-emission n—sp + e~ + ¥ (all particles in plane wave states), The
matrix element obtained corresponds exactly to the first term of (A.48), where the p's have now to be taken
as one-particle wave functions. Analogously one obtains the matrix element for 8% -emission: p—sn+ et + v.
This corresponds to the second term of (A.48), again taking the y's as one-particle wave functions. In this
way we have specified in what sense the s in (A.48) can be taken to be either field operators or one-particle
wave functions. Generalizations to particles with more complicated wave functions are possible.

APPENDIX III

THE PROJECTION OPERATORS D
(cf. (3.14), (3.16) and (3,17)}.

A general plane wave solution with momentum p may be written as
1) 2 3 4
¢=C1¢( +Cq w( )4 Cs w( V. Cup( ) (A.50)

positive energy negative energy
solution ' ‘ solution
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The indices (1) and (2) refer to two opposite spin states; also (3) and (4) define opposite spin states, 1t
is easily shown that the four states w( ) are mutually orthogonal

OO I (A.51)

It now follows that D* according to (8. 14) is the projection operator into the (2- dimensional) space
of positive energy solutions; according to (3.14) and (A.51) one has

(O ) = ZPho ¥p = ZpZia, 2 G0 WO B g inl) = 5y e (ausy)

This expresses that D* projects out the positive energy part of , Now it is easily seen that this (uniquely
determined) projection operator can be written as

pr-HxIEL | (A.53)

2 ||
When acting on a positive energy solution (") (Hg (*) = E¥(+) ) one has D 3™ = ¢f+), while for a

negative energy solution ¢¢~) (Hp{” =-E¢(*) Jone has D*y{=) =0, It follows from (A.1) and (A.53) taat
Dt can be written as

=3 - ; .
n+=§[1-—“—%+—éﬂ‘]. {A.54)

- +
where p and E now have to be considered as numbers (not operators) .
In an entirely analogous way one sees that the projection operator for negative energies has to be writtzn

’ - _=-Hx |E
! D ——Eﬁgll . (A.55)

When we consider the projection operator for negative energy -E and momentum -F’(absbrpn’on ofa
particle in this state corresponds to creation of the anti-particle with energy E and momentum §') we obtain

as

—9.—9-
D=4 [1-_2__“ - ﬂmjl (A.56)

(F) and E are again numbers in this formula).
APPENDIX 1V
THE ISOSPIN OF NUCLEON AND PION
One of the reasons that the conceﬁt of the isospin is so useful is the fact that the nuclear forces (i.e.
strong interaction, neglecting electromagnetic and weak interaction) are charge independent. There is an
analogy with the ordinary spin in the magnetic field. As long as the field is not present, the two spin states
cannot be distinguished. We shall not go into detail. We just want to specify our notation for systems with

nucleons and pions.
We introduce a specific “isotopic spin” or charge wave function; this is a two-component spinor in the

case when we have a nucleon
1 0
p=lg)i M=) _ (A.57)

The nucleon wave function (or operator) is written as

e’
b= ¥papt wﬂ"ﬂ’(;ﬂﬁ) v
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In analogy with the ordinary spin we introduce the isopsin operators;

0
O BT R
™ =3¢ +ir) =<g(1’>

and

) (A. 59
=) = - =’ 00 \
) =3 i) | <1o> .
with the properties ' )
A P = p . Tyfn =Wy
rthn =np. . e = 7, (A.60)

The isopsin is defined by 4 7, from which it follows that the isospin of a nucleon is 4, The pions occur -
in a triplet of charges %, 10. We attribute to them an isospin T = 1. The T spin operatoss are defined by

L o 0-i 0 10 0
=5 (101) T, = (101> Ty={ 00 o)
010 0i0 00-1
1 0 -0
"ﬂ+=<0> ; nﬂ0=<1>; n“- =<0>
0 0 1

T® =71 44T,

(A.6Y)

Generally we have
Pyt
Y = O Mgt O+ Pyl = O

Or-

The isospin of a system of nucleons and pions is denoted by T. We have a relation between the total
charge Q and the third component of the total isospin of a system of pions and nucleons

Q=T, +$N : - (A.62)

where N is the number of nucleons.
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