
Parallel computation of Feynman loop integrals

E de Doncker1 and F Yuasa2

1 Department of Computer Science, Western Michigan University, Kalamazoo MI 49008, U. S.
2 High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki,
305-0801, Japan

E-mail: elise.dedoncker@@wmich.edu

E-mail: fukuko.yuasa@@kek.jp

Abstract. The need for large numbers of compute-intensive integrals, arising in quantum field
theory perturbation calculations, justifies the parallelization of loop integrals. In earlier work,
we devised effective multivariate methods by iterated (repeated) adaptive numerical integration
and extrapolation, applicable for some problem classes where standard multivariate integration
techniques fail through integrand singularities. In repeated integration, the function evaluations
for the outer integral are independent integral computations for the next lower level and can
be distributed to threads in a multi-core parallelization. The distribution level determines the
number of dimensions in the inner integral below it and thus the granularity of the computation.
We discuss a multi-threaded implementation over the OpenMP Application Program Interface.

1. Introduction

We present a multi-threaded approach for the computation of iterated integrals. An important
application of (numerical) iterated integration has been the computation of Feynman loop
integrals, which are needed in higher order perturbation calculations of the cross section for
particle interactions. Thousands of integrals may be needed for one interaction.

Furthermore, Feynman loop integrals are generally affected by non-integrable singularities,
through vanishing denominators in the interior and/or at the boundaries of the integration
domain. In order to handle singularities inside the domain, a value for the integral is calculated
by introducing a parameter iδ in the integrand denominator, effectively moving the singularity
into the complex plane, and by taking the limit of the integral value as δ → 0. We make use
of numerical iterated integration for computing an integral sequence as δ decreases. In view
of the computational expense we propose a technique utilizing multi-threading for a parallel
computation of the individual integrals.

The goal of an automatic integration procedure is to obtain an approximation Q(f) to an
integral

If =

∫

D

f(~x) d~x (1)

and an error estimate Ef, in order to satisfy a specified accuracy requirement for the error
Ef = |Qf − If |, so that

|Qf − If | ≤ Ef ≤ max { ta , tr | If | } (2)
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for a given integrand function f, region D and (absolute/relative) error tolerances ta and
tr, respectively. This can be interpreted as a black box method for the computation of the
integral (1), where the inputs specify the integral dimension, the region D, the function f(~x)
and the requested accuracy. The output contains the result Qf and error estimate Ef. No
specification of the integrand behavior is needed by the general automatic integration procedure.

Section 2 below gives an outline of global adaptive and iterated integration techniques in
the framework of automatic integration. Our parallelization for a multi-threaded environment
is explained in Section 3, and some background on Feynman loop integrals is provided in
Section 4. Timing results using the shared memory programming OpenMP [1] Application
Program Interface (API) are given in Section 5.

2. Automatic numerical integration

2.1. Global adaptive procedure
A versatile type of algorithm to implement the black box approach is by adaptive partitioning
of the integration region. At each step, a region is subdivided, integral and error estimates are
computed over the subregions, and the overall result and error estimate are updated. Various
strategies are possible for the selection of the region to be subdivided at each step. A global
adaptive strategy maintains a priority queue on the subregion collection (e.g., a linked list or
a heap), keyed with the local error estimates of the subregions. Examples of global adaptive
integrators are the 1D adaptive programs of Quadpack [2], and the multivariate Dcuhre [3]
for integration over an (N -dimensional) cube, which select the region with the highest (absolute)
error estimate for subdivision at each step. As a result, sample points are concentrated in the
vicinity of irregular integrand behavior such as singularities, discontinuities, peaks or ridges and
troughs. The Cubpack [4] package targets adaptive integration over a collection of cubes and
simplices.

The local integral (over a subregion or an interval) is approximated by a (cubature or

quadrature) rule which is a linear combination of function values of the form
∑K

k=1 wkf( ~xk).
By evaluating more than one rule over the subregion, a local error estimate can be obtained
as a function of the difference between local integral approximations. For example, the (1D)
program Dqag of the Quadpack package uses a pair of approximations, given by an r-point
Gauss rule and the interlacing (2r + 1)-point Kronrod rule. The user has the option of choosing
one of the pairs, with r = 7, 10, 15, 20, 25 or 30. The Kronrod rule supplies the local integral
approximation, and the Gauss rule (together with the Kronrod rule) serves to obtain the local
error estimate. The r-point Gauss rule is of polynomial degree of accuracy 2r − 1 (i.e., it
integrates all polynomials of degrees 0, · · · , 2r − 1 exactly, and there are polynomials of degree
2r which are not integrated exactly). The Kronrod rule is of polynomial degree 3r + 1 if r is
even, and of degree 3r + 2 when r is odd (because of symmetry). The multivariate program
Dcuhre applies an embedded sequence of cubature rules [5] in an adaptive setting.

2.2. Iterated integration
For integration over a product region D = D1 × . . . × Dℓ, we consider the iterated (repeated)
integral

If =

∫

D1

d~x (1) . . .

∫

Dℓ

d~x (ℓ) f(~x (1), . . . , ~x (ℓ)).

The integration over the regions Dj can be performed with a multivariate or a 1D integration
code, and different methods can be applied on different levels j = 1, . . . , ℓ. For example, assume
that the computation of a 2D integral over the unit square requires the outer integration over a
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subinterval [a, b] ⊆ [0, 1]. The integral over [a, b] is evaluated in the form

∫ b

a
dx

∫ 1

0
dy f(x, y) ≈

K
∑

k=1

wkF (xk), (3)

where the wk and xk are the weights and abscissae of the local rule scaled to the interval [a, b],
applied in the x-direction. The function evaluation

F (xk) =

∫ 1

0
f(xk, y) dy, 1 ≤ k ≤ K, (4)

is itself an integral in the y-direction, and is computed by the method for the inner integration.
The latter may be adaptive, and subject to an error control condition of the form (2). Note that
the error incurred in the inner integration will contribute to the overall integration error. Work
on the integration error interface is reported in [6, 7, 8].

Subsequently, in Section 5, we give results obtained with 1D repeated integration by the
program Dqag from Quadpack, using the (10, 21)-points Gauss-Kronrod pair. Thus in that
case, the weights and abscissae on the right of the approximation (3) represent those of the
Kronrod rule scaled to [a, b].

Figure 1 from [9] shows adaptive subdivision patterns which may be obtained when the
integrand has a ridge or singular behavior along the (anti-)diagonal of the (square) integration
domain. Figure 1(a) is that of a standard 2D subdivision where each selected subregion is
partitioned into four subsquares of equal size. Figure 1(b) depicts an iterated integration. The
integrand is evaluated at three points in the x-direction, and an adaptive subdivision is shown
vertically at each of the abscissae. As noted in [9] and in low dimensions, the adaptive iterated
integration is found to be more effective than the general multivariate adaptive partitioning, for
handling singularities that do not line up with subdivision directions.

(a) (b)

Figure 1. (a) Standard subdivision; (b) Iterated adaptive strategy for irregular behavior on
diagonal [9]

3. Parallel automatic integration approach

Non-adaptive methods such as Monte Carlo, Quasi Monte Carlo and lattice rules can be
parallelized in a straightforward way, by assigning function evaluations to the available processes
or threads. In the approximation of the integral (1) by

If =

∫

D

f ≈
∑

k

wk f( ~xk), (5)
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the function evaluations f( ~xk) in the weighted sum can be performed in an embarrassingly
parallel way. While these methods are available for high-dimensional integration, they have a
slow rate of convergence.

Adaptive methods are suited for integrals of low to moderate dimensions (say, ≤ 10). These
are more complex than the non-adaptive techniques, and usually parallelized on the subregion
level. Typically a parallel task pool scheme is implemented in a master-slave approach, for
maintaining the priority queue data structure over the subregion collection.

In shared memory applications the task pool is shared, so that some type of mutual exclusion
is required for task pool updates and maintenance. This causes various parallel losses (analyzed,
e.g., in our “archives” [10, 11, 12]). On distributed memory systems, the task pool is distributed
and updated using message passing, as done in programs layered over the Message Passing
Interface (MPI [13] or Open MPI [14]). Load balancing is then needed to control the size of
the local priority queues for problems where the integration has hot spots due to intensive region
partitioning, in the vicinity of singularities and other irregular behavior (see, e.g., the ParInt

strategies [15, 16, 17] and [18, 19]). Apart from the communication times, breaking loss (incurred
at the end of the computations when slaves are working during termination detection) is an
important characteristic of these methods. This also leads to the fact that parallel executions
may be very different from the sequential computation, in an irreproducible manner.

For iterated integration, it would be possible to use a parallelization of the outer integration
on the subregion level. However, in this paper we propose a parallelization on the function
evaluation level(s) of the outer integration. For example, with regard to (3) and (4), this
means that the values of the inner integrals F (xk) are computed in parallel. More generally, if
D = D1 ×D2 and S is a selected subregion ⊆ D1, we approximate

∫

S

d~x(1) F (~x(1)) ≈
K

∑

k=1

wk F ( ~xk
(1)), (6)

with F ( ~xk
(1)) =

∫

D2

d~x(2) f( ~xk
(1), ~xk

(2))

and the integrals F ( ~xk
(1)) are computed in parallel.

Important properties of this method include that

(i) the granularity of the parallel integration is large, especially when the inner integrals

F ( ~xk
(1)) are of dimension two or greater;

(ii) the points ~xk
(1) where the function F is evaluated in parallel are the same as those of

the sequential evaluation; i.e., apart from possibly the order of the summation in (6), the
parallel calculation is the same as the sequential one.

4. Feynman loop integrals

In addition to the lowest order or tree level, higher order corrections are required for an accurate
theoretical prediction of an interaction cross section, and for checking its agreement with the
data observed at colliders. Feynman loop diagrams need to be taken into account, necessitating
the calculation of loop integrals.

A diagram with L loops and N propagators is given in Feynman parameter space as

I =
Γ

(

N − nL
2

)

(4π)nL/2
(−1)N

∫ 1

0

N
∏

j=1

dxj δ(1 −
∑

xj)
CN−n(L+1)/2

(D − i δ C)N−nL/2
, (7)

where C and D are polynomials determined by the topology of the corresponding diagram and
the physical parameters at hand. Loop integrals are generally divergent when denominators
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vanish in the integration region. We assume I does not suffer from other divergences, such as
infrared (IR) divergence, and exists in the limit as δ → 0. To calculate the limit numerically [20],
we generate a sequence of I = I(δ) for (geometrically) decreasing values of δ, and apply
convergence acceleration or extrapolation to the limit with the ε-algorithm [21, 22].

Automatic packages, based on symbolic computations, are available for one-loop integrals [23,
24, 25, 26, 27, 28, 29, 30, 31]. However, many diagrams are required for an interaction, and the
symbolic reduction leads to large sets of integrals. Furthermore, analytic integration is not
possible in general, for higher orders and for general mass configurations. Therefore we apply
the numerical Direct Computation Method (DCM) of [20, 32, 33, 34] as a building block for the
computation, using (automatic) iterated integration and convergence acceleration to the limit
as δ → 0. The motivational intensive nature of the computations motivates a parallelization of
the individual integrations, in particular for 3D and higher-dimensional integrals.

The DCM building block can also be used for integrals resulting from a reduction that is
not necessarily carried through to the primitive level. For example, in [35] we implemented a
reduction by sector decompositions (and dimensional regularization) proposed in [36] for one-
loop integrals through the hexagon, and applied DCM to a resulting set of 2D (vertex) and 3D
(box) integrals. Especially the box integrals may still be computational intensive.

5. Results

We implemented the method of Section 2, as a multi-threaded application layered over
OpenMP [1], and obtained timing results on a multi-core Intel Xeon X5680@3.33GHz CPU
with 6 cores/12 logical cores, for the integrals of If1(δ), If2(δ) and If3 given below in (8-10),
and for a non-scalar (box) loop integral, M4(f, g; δ) from [16]. The function f1 is given in [37] as
a test function (Dice3), for the Monte Carlo integration program Dice, and f2 is a 3D version of
the function Dice1. We treated the non-scalar loop integral M4 in [16], using a calculation that
required the integral for values of δ = 1.230−ℓ, ℓ = 0, · · · , 16, which are large compared to the
value δ = 0.01 used below. We also gathered preliminary results for If3, on a Power7@3.83GHz
CPU of the HITACHI SR16000 system at KEK, Japan, using up to 16 threads (maximum)
assigned to our OpenMP application on this system.

If1(δ) =

∫ 1

−1
dx

∫ 1

−1
dy

∫ 1

−1
dz

δ
√

x2 + y2 + z2 θ(1 − x2 − y2 − z2)

(x2 + y2 + z2 − a2)2 + δ2
, (8)

δ = 0.01, a = 0.8

θ(u) = 1 if u > 0

1

2
, if u = 0

0, if u < 0

If2(δ) =

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz

2 δ y

(x + y + z − 1)2 + δ2
, (9)

δ = 10−6

I(f3) =

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz

1

(x + y + z)2
(10)

and

M4(f, g; δ) =

∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz

[

f(x, y, z)

(D4 − iδ)2
− 2

g(x, y, z)

D4 − iδ

]

, (11)

δ = 0.1
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(a) (b)

(c) (d)

Figure 2. Times (in s): (a) Time for If1, δ = 0.01, a = 0.8, tr = 10−8; (b) Time for If2,

δ = 10−6, tr = 10−14; (c) Time for If3, tr = 10−12 on Xeon X5680 (If3-X) and on SR16000
(Hitachi) node (If3-H); (d) Time for M4(f, g, δ), δ = 0.1 tr = 10−8

where D4 = xT Ax + 2v · x + C, and Aj,k = qj · qk, q1 = −pe−, q2 = pe+ , q3 = pe+ − pW+,
C = M2

0 = M2
Z , vk = 1

2 (−q2
k + M2

k − M2
0 ) with M1 = me,M2 = MW ,M3 = me.

The integrals If1(δ) and If2(δ) exhibit a behavior not unlike that of loop integrals, with
a ridge that becomes steeper and narrower as δ → 0. The integrand f1 furthermore has a
discontinuity on the spherical surface x2 + y2 + z2 = 1, The function f2 has a peaked behavior
at z = 1 − x − y, and f3 has a singularity at the origin. The integrand of M4 in (11) has a
singularity on a hyperbolic surface where D4 = 0 within the (unit simplex) integration region.
Note that we treated the non-scalar loop integral M4(f, g, δ) in [16], using a calculation that
required the integral for values of δ = 1.230−ℓ, ℓ = 0, · · · , 16, which are large compared to the
value δ = 0.1 used below.

On the Intel machine, the Intel ifort Fortran XE compiler was used with flag -openmp. The
f90 compiler with flag -omp was used on the SR16000 node. In all cases the main loop in
the rule routine Dqk21 of Quadpack was parallelized (for the outer integration), by means
of a omp parallel do pragma for the Gauss and Kronrod rule evaluations. On comparing loop
schedules, we found that the dynamic loop schedule outperforms the default static schedule for
the selected test problems. In the static schedule, the participating threads are assigned their
loop iterations at the beginning of the loop, in a round-robin fashion; thus the assigned iterations
are determined only by the thread ID and the total number of iterations. The dynamic schedule
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adjusts the assignments at runtime. The threads can request more work at the completion of
their previously assigned iterations, which is beneficial in cases where the integrand behavior
over the subregion is non-uniform.

The timings show a good speedup pattern for a number of threads within the available number
of logical cores. The runs were performed while several other users were on the system. We were
able to get preliminary results on a node of the Hitachi SR16000 supercomputer at KEK (just
before the system was taken down – and will be down for a move during the coming month).
The SR16000 is suited for multi-core computations on each node, and for message passing
applications between nodes. We plan on performing hybrid runs for loop integral calculations
in the future. It appears that our multi-threaded OpenMP application runs faster on the Xeon
system for the same problem parameters.

6. Concluding remarks

For compute-intensive integral calculations we have developed a multi-core parallelization on
the (outer) function evaluation level in the iterated integration procedure. In this paper we give
timing results of the method implemented in OpenMP, which show good speedups for tests on
a Xeon X5680 based system and on a (Hitachi) SR16000 system node.

So far, only the rule application was parallelized in the outer integration, with a Gauss-
Kronrod scheme for the local integrations. Future extensions of the method include hybrid
(distributed shared memory) parallelizations, where individual problems are distributed to multi-
core nodes, and computed using multi-threading on the nodes. Furthermore, when more cores
are available per node, the rules can easily be evaluated in parallel over subregions resulting
from the local subdivision of a region. Nesting of parallel constructs is also possible, so that
more than one level can be parallelized. GPUs can be used on the lower evaluation level(s),
particularly for cubature rules (of higher dimensions) with many evaluation points. Our future
work will naturally involve implementations and testing for more computational intensive loop
integrals.
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