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Abstract. In this paper, we study about Maxwell-Klein-Gordon system with non-trivial
coupling in four dimensional Minkowski spacetime with potential turned on. We start from
Lagrangian of non-trivially coupled Maxwell-Klein-Gordon, then we derive the equations of
motion and energy of the system. The coupling and potential function is chosen such that the
Lagrangian is gauge invariant. Using Coulomb gauge and conservation of energy, we prove some
inequality for energy which will be important to proving the existence of solution.

1. Maxwell-Klein-Gordon System with Nontrivial Coupling
In this section, we will write the Lagrangian for four dimensional Maxwell-Klein-Gordon system
with nontrivial coupling.

Our spacetime is a four dimensional Lorentzian manifold, M4 with standard coordinate,
xµ, µ = 0, 1, 2, 3 and equipped by Minkowski metric denoted by ηµν = diag{−1, 1, 1, 1}. As
usual, we split the spacetime coordinates xµ into time coordinate x0 = t and space coordinates
x = (xi)i=1,2,3.

The Maxwell-Klein-Gordon system in four dimensions consist of multiplet (φ,Aµ) where φ
is the complex valued scalar field and Aµ is the real vector valued Abelian gauge field. The
Lagrangian of Maxwell-Klein-Gordon is given by,

L = −1

2
DµφD

µφ̄− 1

4
h(φ, φ̄)FµνF

µν +
1

4
k(φ, φ̄)FµνF̃

µν − V (φ, φ̄) , (1)

where Dµφ is a gauge covariant derivative, Fµν is the Abelian field strength tensor, F̃µν =
1
2εµνρσF

ρσ denotes the Hodge dual of field strength with εµνρσ is the standard Levi-Civita
tensor. Relative to Aµ, we have

Dµφ = ∂µ + iAµφ , (2)

Fµν = ∂µAν − ∂νAµ . (3)

We also have the Bianchi identity,
∂µF̃

µν = 0 , (4)

which equivalent with Maxwell homogeneous equations.



7th Asian Physics Symposium

IOP Conf. Series: Journal of Physics: Conf. Series 1204 (2019) 012130

IOP Publishing

doi:10.1088/1742-6596/1204/1/012130

2

We split the field strength tensor Fµν into electric and magnetic fields,

Ei = F0i, Bi = F̃0i =
1

2
εijkF

jk . (5)

We also decompose the gauge fields Aµ into temporal component A0 and spatial components Ai.
For given function φ(t, x), we denote the spatial gradient by ∇φ = (∂iφ)i=1,2,3 and the spacetime
gradient by ∂φ = (∂0,∇φ). We also denote the wave operator (or D’Alembertian operator) by
� = −∂2t +4 = −∂2t + ∂i∂

i.

2. Gauge Invariant Conditions
The coupling between scalar and Maxwell fields are determined by three scalar dependent real
functions (h, k, V ). The non trivial coupling is introduced by a real functions h(φ, φ̄) and
k(φ, φ̄). This form of nontrivial coupling function is motivated by the coupling in N = 1 global
supesymmetric gauge theory in four dimensions [1, 2, 3]. The real function V (φ, φ̄) denotes the
scalar potential which we assume to be non-negative, smooth and satisfy the following conditions,

(i) V (0) = 0 ,

(ii) ∂φV (0) = 0 .

The conditions above tell that the lowest order must be at least a quadratic term which
correspond to mass term. The conditions are satisfied by several known scalar potential, for
examples, the φ4 theory and the sine-Gordon potential. We also impose that Lagrangian (1)
invariant with respect to local U(1) transformation. Hence we have,

h(Uφ, Ū φ̄) = h(φ, φ̄)

k(Uφ, Ū φ̄) = k(φ, φ̄)

V (Uφ, Ū φ̄) = V (φ, φ̄) (6)

where U(x) = e−iλ(x) ∈ U(1). Based on discussion above, for the sake of simplicity, we take the

simple form which the functions are only depend on |φ| =
√
φφ̄,

h(φ, φ̄) = h(|φ|)
k(Uφ, φ̄) = k(|φ|)
V (Uφ, φ̄) = V (|φ|2) (7)

The corresponding equations of motion are

DµD
µφ =

1

2
Fµν∂φGµν + 2∂φV (8)

∂µGµν = −Im
(
φDν φ̄

)
, (9)

where Gµν = hFµν − kF̃µν .
Since we impose the gauge invariant condition to Lagrangian (1), then we have a freedom

to choice a particular gauge condition. In this paper, we construct solutions of Maxwell-Klein-
Gordon with additional condition, namely Coulomb gauge,

∂iA
i = 0 . (10)

The Coulomb gauge condition implies that the gauge field are uniquely determined from the
field strength tensor Fµν by solving elliptic equations [4],

4A0 = ∂iFi0 , (11)

4Aj = ∂iFij . (12)

In particular we have the following,



7th Asian Physics Symposium

IOP Conf. Series: Journal of Physics: Conf. Series 1204 (2019) 012130

IOP Publishing

doi:10.1088/1742-6596/1204/1/012130

3

Preposition 1. Let Fµν is a field strength tensor defined by (3). Given Fµν ∈ L2(R3), there

exists a unique Aµ belongs to homogeneous Sobolev space Ḣ1(R3) such that (10) holds. In
particular, we have ∑

i,µ

‖∂iAµ(t, ·)‖L2(R3) ≤ ‖E(t, ·)‖L2(R3) + ‖B(t, ·)‖L2(R3) . (13)

Proof. In Coulomb gauge, the field Ai is pure transversal. Then, from (3), we can express Ai
as,

Ai =

∫
R3

εijkK
j(x− y)Bk(y) dy , (14)

where Kj(x− y) = − 1
4π

xj−yj
|x−y|3 . Taking the Fourier transform of ∂jAi and using Fubini theorem,

we get

(̂∂jAi) =
kjkl
|k|2

εilkB̂
k . (15)

Thus, from Plancherel’s theorem, we have

‖∂jAi‖L2(R3) ≤ ‖B‖L2(R3) (16)

Since curl grad = 0 and from (3) and (10), we conclude that ∂iA0 is a longitudinal components
of electric fields Ei. Thus, we have

∂iA0 =

∫
R3

δjk∂iK
j(x− y) Ek(y) dy , (17)

Using similar step as before, we have

‖∂iA0‖L2(R3) ≤ ‖E‖L2(R3) (18)

and complete the proof.

3. Energy Inequality
The energy-momentum tensor for Lagrangian (1) is given by,

Tµν = −1

2
ηµνDρφD

ρφ̄+ Re
(
DµφDν φ̄

)
+

1

2

(
GµρF βν + G̃µρF̃ βν

)
− ηµνV , (19)

where G̃µρ is the Hodge dual of Gµν . The conservation laws are encoded in equation,

∂µT
µν = 0 . (20)

In particular, we have conservation of total energy,

H(t) = H(0) , (21)

where the total energy at time t is given by,

H(t) =

∫
R3

T 00(t, x) dx

=
1

2

∫
R3

{
|D0φ|2 +

3∑
i=1

|Diφ|2 + h
(
|E|2 + |B|2

)}
dx (22)
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In this paper, we construct the global solution of non-trivial coupled Maxwell-Klein-Gordon
system in Coulomb gauge by assuming that the initial data, φ(0, ·), ∂tφ(0, ·), E(0, ·) and B(0, ·)
satisfy finite energy condition,

H(0) <∞ , (23)

Based on (13), we define an approximate energy norm,

J (A0, A, φ)(t) =
∑
µ,ν

‖h
1
2 (φ(t, ·))∂µAν(t, ·)‖L2(R3) + ‖φ(t, ·)‖L2(R3) +

∑
µ

‖∂µφ(t, ·)‖L2(R3) . (24)

Then we have the following,

Preposition 2. Let φ, A0 and A be a smooth solution of Maxwell-Klein-Gordon system given
by (8)-(9) in the Coulomb gauge with

J0 = J (0) <∞ , (25)

Then, for all t ≥ 0 and some positive constant C depends only on J0, we have

J (t) ≤ C(1 + t) . (26)

Proof. Clearly, H(0) = H(t) ≤ J 2
0 . From the proof of preposition 1, we get∑

i,µ

‖h
1
2 (φ(t, ·))∂iAµ(t, ·)‖L2(R3) ≤ ‖h

1
2 (φ(t, ·))E(t, ·)‖L2(R3) + ‖h

1
2 (φ(t, ·))B(t, ·)‖L2(R3)

≤ CH
1
2 (t) ≤ CJ0 (27)

Consider,

∂

∂t

∫
R3

|φ|2 dx = 2 Re

∫
R3

φD0φ̄ dx

≤ 2‖φ‖L2(R3)‖D0φ‖L2(R3) ≤ CJ0‖φ‖L2(R3) .

Integrating the inequality, we get

‖φ(t, ·)‖L2(R3) ≤ CJ0(1 + t) . (28)

From Sobolev inequality, we have ‖φ‖L6(R3) ≤ C‖∇φ‖L2(R3) as well as ‖A‖L6(R3) ≤
C‖∇A‖L2(R3). Since h(φ, φ̄) ≥ 1, then |∇A|2 ≤ h|∇A|2 which implies

‖A‖L6(R3) ≤ C‖∇A‖L2(R3) ≤ C‖h1/2∇A‖L2(R3) ≤ CJ0 .

Making use of Hölder inequality, we derive

‖φ‖L3(R3) ≤ ‖φ‖1/2
L2(R3)

‖φ‖1/2
L6(R3)

≤ CJ 1/2
0 (1 + t)1/2

(∑
i

‖∇iφ‖L2(R3)

)1/2

≤ CJ 1/2
0 (1 + t)1/2

(∑
i

‖Diφ‖L2(R3) + ‖Aiφ‖L2(R3)

)1/2

≤ CJ 1/2
0 (1 + t)1/2

(
CJ0 + ‖Ai‖L6(R3)‖φ‖L3(R3)

)1/2
≤ CJ0(1 + t)

(
1 + ‖φ‖L3(R3)

)1/2
,
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which proves that
‖φ‖L3(R3) ≤ CJ0(1 + t) ,

for some constant C. Thus, we get

‖∇iφ‖L2(R3) ≤
∑
i

‖Diφ‖L2(R3) + ‖Aiφ‖L2(R3)

≤ CJ0 + ‖Ai‖L6(R3)‖φ‖L3(R3)

≤ CJ0(1 + t) . (29)

Similarly, we have ‖A0‖L6(R3) ≤ C‖∇A0‖L2(R3) ≤ C‖h1/2∇A0‖L2(R3) ≤ CJ0, then by
definition of D0φ, we get

‖∂tφ‖L2(R3) ≤ ‖D0φ‖L2(R3) + ‖A0φ‖L2(R3)

≤ CJ0 + ‖A0‖L6(R3)‖φ‖L3(R3)

≤ CJ0(1 + t) . (30)

Hence, the proof of the preposition is complete.

The Maxwell-Klein-Gordon system in Coulomb gauge can be formulated as follows,

h4A0 = −Im
(
φD0φ̄

)
− εijk∂ik ∂jAk − ∂ih

(
∂iA0 − ∂0Ai

)
(31)

h�Ai = h∂i∂0A
0 + εijk (∂0k ∂jAk − ∂jk ∂kA0 + ∂jk ∂0Ak)

−∂0h
(
∂0Ai − ∂iA0

)
− ∂jh

(
∂jAi − ∂iAj

)
− Im

(
φDiφ̄

)
(32)

DµD
µφ =

1

2
Fµν∂φGµν + 2∂φV (33)

∂iA
i = 0 . (34)

We have the following preposition:

Preposition 3. If the initial data for gauge field A satisfy divergence-free condition,

∂iA
i(0, ·) = 0 , ∂t ∂iA

i(0, ·) = 0 , (35)

then for all t > 0, we have
∂iA

i(t, ·) = 0 . (36)

Proof. Let ψ(t, x) = ∂iA
i(t, x). Taking divergence to the equation (32), we get

h�ψ = ∂iJ
i + ∂i

(
∂µk F̃

µi − ∂µh Fµi
)
− ∂ih

h

(
J i + ∂µk F̃

µi − ∂µh Fµi
)

+ h∂04A0 , (37)

where Jµ = −Im
(
φ Dµφ̄

)
. From equation (31), we have

h∂04A0 = ∂0J
0 + ∂0

(
∂µk F̃

µ0 − ∂µh Fµ0
)
− ∂0h

h

(
J0 + ∂µk F̃

µ0 − ∂µh Fµ0
)
. (38)

Thus, from equations (37) and (38), we get

h�ψ = ∂µJ
µ + ∂ν

(
∂µk F̃

µν − ∂µh Fµν
)
− ∂νh

h

(
Jν + ∂µk F̃

µν − ∂µh Fµν
)
, (39)
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Note,

∂µ∂νh F
µν =

1

2
(∂µ∂νh F

µν + ∂µ∂νh F
µν) =

1

2
(∂µ∂νh F

µν + ∂ν∂µh F
νµ)

=
1

2
(∂µ∂νh F

µν − ∂µ∂νh Fµν) = 0 ,

then using Bianchi identity and equation (9), we get

h�ψ = ∂µJ
µ , (40)

By definition of gauge covariant derivative and equation (8), we have

∂µD
µφ̄ =

1

2
Fµν∂φGµν − 2∂φV + iAµD

µφ̄ . (41)

Thus,

∂µ
(
φ Dµφ̄

)
= Dµφ D

µφ̄+ φ

(
1

2
Fµν∂φGµν − 2∂φV

)
. (42)

Using equation (7), we find that the right hand side is a real function. Hence,

h�ψ = ∂µJ
µ = −Im ∂µφ D

µφ̄ = 0 ,

and from Kirchoff’s formula for solution of linear wave equation, the proof is complete.
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