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Abstract. In this paper, we study about Maxwell-Klein-Gordon system with non-trivial
coupling in four dimensional Minkowski spacetime with potential turned on. We start from
Lagrangian of non-trivially coupled Maxwell-Klein-Gordon, then we derive the equations of
motion and energy of the system. The coupling and potential function is chosen such that the
Lagrangian is gauge invariant. Using Coulomb gauge and conservation of energy, we prove some
inequality for energy which will be important to proving the existence of solution.

1. Maxwell-Klein-Gordon System with Nontrivial Coupling
In this section, we will write the Lagrangian for four dimensional Maxwell-Klein-Gordon system
with nontrivial coupling.

Our spacetime is a four dimensional Lorentzian manifold, M* with standard coordinate,
a', p = 0,1,2,3 and equipped by Minkowski metric denoted by 7,, = diag{—1,1,1,1}. As
usual, we split the spacetime coordinates * into time coordinate z° = ¢ and space coordinates
r = (2")i=1,23-

The Maxwell-Klein-Gordon system in four dimensions consist of multiplet (¢, A,) where ¢
is the complex valued scalar field and A, is the real vector valued Abelian gauge field. The
Lagrangian of Maxwell-Klein-Gordon is given by,

L= —%Dmm& - ihw, )y F™ + i%, OV Ew "™~V (9,9) (1)

where D, ¢ is a gauge covariant derivative, F),, is the Abelian field strength tensor, 1*:'/“, =

%EWPUF""’ denotes the Hodge dual of field strength with €,,,, is the standard Levi-Civita

tensor. Relative to A, we have

D, = 0,+iA,0, (2)
Fo = 0,A,—0,A,. (3)

We also have the Bianchi identity, B
0 F" =0, (4)

which equivalent with Maxwell homogeneous equations.
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We split the field strength tensor F),, into electric and magnetic fields,
. 1 .
E; = Fy;, B; = Iy = §€iijJk : (5)

We also decompose the gauge fields A, into temporal component Ay and spatial components A;.
For given function ¢(¢, x), we denote the spatial gradient by V¢ = (0;¢)i=1,2,3 and the spacetime
gradient by d¢ = (0, V). We also denote the wave operator (or D’Alembertian operator) by
0= —8t2 + A= —8? +816Z

2. Gauge Invariant Conditions

The coupling between scalar and Maxwell fields are determined by three scalar dependent real
functions (h,k,V). The non trivial coupling is introduced by a real functions h(¢,$) and
k(¢, ). This form of nontrivial coupling function is motivated by the coupling in N = 1 global
supesymmetric gauge theory in four dimensions [1, 2, 3]. The real function V (¢, ¢) denotes the
scalar potential which we assume to be non-negative, smooth and satisfy the following conditions,

(i) V(0)=0,

(ii) 04V (0)=0.

The conditions above tell that the lowest order must be at least a quadratic term which
correspond to mass term. The conditions are satisfied by several known scalar potential, for

examples, the ¢* theory and the sine-Gordon potential. We also impose that Lagrangian (1)
invariant with respect to local U(1) transformation. Hence we have,

hU,Ud) = h(s,9)

kU¢.U) = k(¢,9)

V(U Ug) = V(¢,9) (6)
where U(z) = e *(®) € UU(1). Based on discussion above, for the sake of simplicity, we take the
simple form which the functions are only depend on |¢| = \/%

h6.6) = h(é)
KU®,3) = k()
V({Us.¢) = V(¢*) (7)
The corresponding equations of motion are
D,D"¢ — %Fwa(pgwwaw (8)
oG = —Im(¢D"9) , (9)

where G, = hF}, — kFW.

Since we impose the gauge invariant condition to Lagrangian (1), then we have a freedom
to choice a particular gauge condition. In this paper, we construct solutions of Maxwell-Klein-
Gordon with additional condition, namely Coulomb gauge,

9A =0. (10)

The Coulomb gauge condition implies that the gauge field are uniquely determined from the
field strength tensor F),, by solving elliptic equations [4],

AAy = O'Fy, (11)
AA; = O'Fy. (12)

In particular we have the following,
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Preposition 1. Let F,, is a field strength tensor defined by (3). Given F,, € L*(R3), there
exists a unique A, belongs to homogeneous Sobolev space H'(R3) such that (10) holds. In
particular, we have

D N0 ALt ) r2@sy < 1B z2e) + 1B )2 - (13)
(2

Proof. In Coulomb gauge, the field A; is pure transversal. Then, from (3), we can express A;
as,

A = /3 eiji K7 (x —y) B*(y) dy (14)
R
where K/(z —y) = —ﬁ li:yﬁ; Taking the Fourier transform of 9;A; and using Fubini theorem,
we get
kK .
(0;4i) = “iﬁeukBk : (15)

Thus, from Plancherel’s theorem, we have
105 Aill L2 (rsy < [|Bl| L2 (rs) (16)

Since curl grad = 0 and from (3) and (10), we conclude that 9; Ay is a longitudinal components
of electric fields E?. Thus, we have

0o = [ 5000 x ) Bw) dy. (17)
R3
Using similar step as before, we have

10 Aoll 23y < 1Bl 22(r3) (18)

and complete the proof.

3. Energy Inequality
The energy-momentum tensor for Lagrangian (1) is given by,

1 - - 1 L -
T = =5 Dpd D6 + Re (DudDud) + 5 (GuoFY +GoFY) — V', (19)

where g~up is the Hodge dual of G,,,. The conservation laws are encoded in equation,
0, IT" =0. (20)
In particular, we have conservation of total energy,
H(t) = H(0), (21)

where the total energy at time ¢ is given by,

HE) = /R T, ) da

1 3
B 2/]1%3 {|D0¢|2 +Z|Di¢‘2+h(|E|2 + ’B|2)} dz (22)

i=1
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In this paper, we construct the global solution of non-trivial coupled Maxwell-Klein-Gordon
system in Coulomb gauge by assuming that the initial data, ¢(0,-), 9;¢(0,-), E(0,-) and B(0,-)
satisfy finite energy condition,

H(0) < o0, (23)

Based on (13), we define an approximate energy norm,

T (A0, A, 8) (1) = S 103 (6(t, ) Au(t, Ml p2es) + (2, Moy + S 10,0 ) 2ges) - (24)
JT8% @

Then we have the following,

Preposition 2. Let ¢, Ay and A be a smooth solution of Maxwell-Klein-Gordon system given
by (8)-(9) in the Coulomb gauge with

Jo=J(0) < 0, (25)
Then, for all t > 0 and some positive constant C' depends only on Jy, we have
Tt < C+t). (26)

Proof. Clearly, H(0) = H(t) < J¢. From the proof of preposition 1, we get

SR (6t NOALE N lr2@sy < IR DB ) r2qms) + 172 (6(8, ) B, )| 2oy
(7

< CH2(t) < C (27)

Consider,

a/ |p|? dz = 2Re/ $Do¢ dx
ot Jgrs R3
2(|9llL2®s) |1 Dol L2rsy < CTollll L2 (ws) -

IN

Integrating the inequality, we get
ot ) z2m@s) < CIo(1+1) . (28)

From Sobolev inequality, we have [[¢[oms) < C||V|p2msy as well as [[Aroms) <

C||V A 2(rs). Since h(¢, #) > 1, then |VA|? < h|VA|? which implies

IA]| ore) < ClIVAlp2ms) < ClIAY VA p2re) < CTo -

Making use of Holder inequality, we derive

1/2 2
l8lls@s) < I8l s 18] oges)

1/2
Cj01/2(1 +1)1/2 (Z ||Vi¢>HL2(R3)>

<
1/2
< C'~701/2(1 +)1/? (Z |1 Di¢| L2 (r3) + ”AWHLQ(]R@))
1/2
< CPA+ Y2 (CTo + 1 Aill o sy 6] o))
< CTH(L+1) (1+ 0]l zs@s)
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which proves that
[l L3®sy < CTo(1+1),

for some constant C'. Thus, we get

IVigllL2(rs)

IN

Z 1 Di¢l| 2 (m3) + | Ai¢ll 2 (m3)

CJo + [|Aill s (r3) |9l 23 (w3

<
< CHo(1+1). (29)

Similarly, we have [|Aollrems)y < C|[VAollp2ms)y < Cth/QVA()HLQ(RS) < CJ, then by
definition of Dg¢, we get

10cllL2@sy < Dol r2ms) + [[Aod L2 (ms)
< CJo+ ([ AollLsws) ||l 3 (r3)
< Ch(l+1). (30)
Hence, the proof of the preposition is complete. O

The Maxwell-Klein-Gordon system in Coulomb gauge can be formulated as follows,

hAA = —Im (¢D°@) — €7%0;k 9; Ay — 9;h (07 A° — 90 AY) (31)
hOAT = hd'9gA° + 9% (Ook 9; Ay — 0;k O Ao + Ojk o Ay)

—doh (A" — 9 A%) — ;h (7 A* — §'AT) — Im (¢D'3) (32)

D,D'¢ = %Fwaﬁgﬂy + 20,V (33)

DA = 0. (34)

We have the following preposition:

Preposition 3. If the initial data for gauge field A satisfy divergence-free condition,
9;AY0,-) =0, o 9;AY0,-) =0, (35)

then for all t > 0, we have ‘
0;A'(t,-)=0. (36)

Proof. Let ¥(t,z) = 0; A'(t,x). Taking divergence to the equation (32), we get

WO = 0, + 0 (O B = 9uh ) — % (I + Ok B — 0, F™) + hpAA”, (37)

where J# = —Im (gi) Dl‘(f)). From equation (31), we have

RAAY = 801”4 By (O B — 0, F10) — azi (S0 + Buke 0 — 8, F1) . (38)

Thus, from equations (37) and (38), we get

Oyh
h

WO = B0 + By (O B — 0 ) = 22 (¥ 4+ 9,k B = 9,h F™) - (39)
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Note,
1 1
uOyh FH = 5 (OuOyh F*" + 0,,0,h F') = 5 (0uOyh F* + 0,0,h ")
1
= 3 (OuOyh F* — 0,0,h F*) =0,
then using Bianchi identity and equation (9), we get
hp = 8, J" (40)

By definition of gauge covariant derivative and equation (8), we have
0,D"¢p = %F“”%QW — 204V +1iA,D"¢ . (41)
Thus,
0 (60%6) = Dy D6+ 6 (30,6, — 20, ) (@2
Using equation (7), we find that the right hand side is a real function. Hence,
hOy = 9, J* = —Im 0,9 D' =0,
and from Kirchofl’s formula for solution of linear wave equation, the proof is complete. ]
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