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Abstract

An electron-positron cascade in the magnetospheres of Kerr black holes (BHs) is a fundamental ingredient to
fueling the relativistic γ-ray jets seen at the polar regions of galactic supermassive BHs (SMBHs). This leptonic
cascade occurs in the spark gap region of a BH magnetosphere where the unscreened electric field parallel to the
magnetic field is present; hence, it is affected by the magnetic field structure. A previous study explored the case of
a thin accretion disk, representative of active galactic nuclei. Here we explore the case of a quasi-spherical gas
distribution, as is expected to be present around the SMBH Sgr A* in the center of our Milky Way galaxy, for
example. The properties and efficiency of the leptonic cascade are studied. The findings of our study and the
implications for SMBH systems in various spectral and accretion states are discussed. The relationships and
scalings derived from varying the mass of the BH and background photon spectra are further used to analyze the
leptonic cascade process to power jets seen in astronomical observations. In particular, one finds the efficiency of
the cascade in a quasi-spherical gas distribution peaks at the jet axis. Observationally, this should lead to a more
prominent jet core, in contrast to the thin disk accretion case, where it peaks around the jet–disk interface. One also
finds the spectrum of the background photons plays a key role. The cascade efficiency is maximum for a spectral
index of 2, while harder and softer spectra lead to a less efficient cascade.

Unified Astronomy Thesaurus concepts: Plasma astrophysics (1261); Jets (870); Black hole physics (159);
Gamma-rays (637)

1. Introduction

The environment surrounding rotating supermassive black
holes (SMBHs) is not only fully general relativistic but can
contain an extreme astrophysical plasma environment. These
systems are surrounded by a plasma-rich magnetosphere and
emit highly energetic γ-ray jets emanating from near the
horizon. Blandford and Znajek (BZ; Blandford & Znajek 1977)
were the first to theorize how the magnetospheric plasma could
power the γ-ray jets by converting the rotational energy to
electromagnetic energy via the Poynting vector (S). This
process can be expressed using the spin-down luminosity
(Koide et al. 2002)

( ) ( )L B r c , 1F H F Hsd
2 4 1w= W - W ^

-

where ΩF denotes the angular frequency of the magnetic field
lines rotating about the BH, ωH= ac/rsrH defines the angular
frequency, rs= 2GMc−2 is the Schwarzschild radius, rH is the
horizon radius [( ) ]r GM c r a2H s

2 2 2 1 2= + - , a= J/Mc is
the spin parameter of a BH, and B⊥ is the perpendicular
component of the magnetic field with respect to the BH
surface. Blandford (1993), Blandford & Levinson (1995),
Levinson & Blandford (1996), and others (Beskin et al. 1992;

Hirotani & Okamoto 1998; Globus & Levinson 2013;
Levinson & Globus 2016) further proposed a mechanism to
fill the magnetosphere of a rotating, uncharged BH with
plasma that could then undergo the BZ mechanism. A similar
mechanism works in a pulsar magnetosphere (see (Sturrock
1971; Michel 1975; Cheng et al. 1986a, 1986b; Beskin et al.
1986; Sulkanen & Lovelace 1990; Sturner et al. 1995;
Higgins & Henriksen 1997, 1998; Lovelace et al. 2006, and
the references therein). These mechanisms for powering jets
often assume that the magnetospheric plasma is force-free:

( )E j Bc 0, 2er + ´ =

where ρe, E, j, c, and B are the charge density, electric field,
current density, speed of light, and magnetic field (respec-
tively). For a force-free plasma, the magnetic pressure
(PB= B2/2μ0) must also greatly exceed the plasma pressure
(PP= nkBT). This allows nonmagnetic forces to be neglected.
The region where e± plasma can be produced is called the
spark gap or just the gap.
If the conditions are right in the gap, an e± plasma cascade

occurs, filling the force-free magnetosphere with plasma which
in turn powers the γ-ray jets through the BZ mechanism. This
cascade exists in a cyclical lifespan described in the following
paragraph.
Assume the Kerr BH (KBH) is effectively in a plasma with a

magnetic field that threads the horizon. Also, assume that there
is a bath of soft photons originating from the accretion disk
surrounding the KBH. The KBH can now act as a conductor,
the spin of the BH creates a motional electric field with frame-

The Astrophysical Journal, 960:4 (22pp), 2024 January 1 https://doi.org/10.3847/1538-4357/ad07d5
© 2023. The Author(s). Published by the American Astronomical Society.

6 Adjunct Research Support.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0001-9003-0737
https://orcid.org/0000-0001-9003-0737
https://orcid.org/0000-0001-9003-0737
https://orcid.org/0000-0001-5987-2856
https://orcid.org/0000-0001-5987-2856
https://orcid.org/0000-0001-5987-2856
https://orcid.org/0000-0001-6805-9787
https://orcid.org/0000-0001-6805-9787
https://orcid.org/0000-0001-6805-9787
mailto:mcsitarz@ku.edu
mailto:medvedev@ku.edu
mailto:alexlford@ku.edu
http://astrothesaurus.org/uat/1261
http://astrothesaurus.org/uat/870
http://astrothesaurus.org/uat/159
http://astrothesaurus.org/uat/637
https://doi.org/10.3847/1538-4357/ad07d5
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ad07d5&domain=pdf&date_stamp=2023-12-18
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ad07d5&domain=pdf&date_stamp=2023-12-18
http://creativecommons.org/licenses/by/4.0/


dragging effects. If the component of the electric field parallel
to the magnetic field is nonzero, then particle acceleration can
occur. Electrons and positrons accelerated by this parallel
electric field have a chance to Compton upscatter the soft
photons existing around a BH (produced by an accretion flow,
for example). The up-scattered γ-ray photons have a chance to
interact with each other and produce an electron-positron pair:

( )e e , 3g g+  ++ -

provided their total energy in the center-of-mass frame exceeds
2m2c

2. With two new charged particles, this process of e±

acceleration, Compton up-scattering, and γγ pair production
repeats.

This process has two threshold parameters that can dictate
the efficiency and productivity of the process. The size of the
region of plasma (referred to now as the gap) must be large
enough. The larger the gap, the more region is available for a
particle to accelerate and scatter, and the higher the probability
of scattering. Second, the photons must have enough energy to
exceed the rest mass of the secondary particles. If the mass-
energy threshold is not met, the pair production will not occur.

This work will extend the study of Ford et al. (2018) by
sweeping the parameter space of BH mass and spectral index
using a different magnetic flux function than that of previous
works:

( ) ( ( )) ( )1 cos , 4q qY = -

which represents the force-free split monopole configuration.
This new model more accurately reenacts what occurs in nature
which can further our understanding of various systems seen in
observations without the use of assumptions or limiting the
types of environments covered by the previous flux model.
Section 2 introduces the mathematical framework of the study,
which is conducted along with the cascade mechanism
expressions and system of equations that are solved along
with the boundary conditions imposed on the system (Hirotani
& Okamoto 1998; Hirotani & Pu 2016). Section 3 details the
techniques involved in solving the rigid system of equations
that govern Blandford–Levinson processes. The data of the
study is presented in Section 4, followed by a discussion of our
results and a conclusion in Section 5.

2. Mathematical System

2.1. Metric and Coordinate System

Given a KBH with mass M, angular momentum J, and
charge Q, we assume that the force-free magnetosphere
surrounding the surface is stationary and asymmetric. To study
this system, we employ the Kerr metric (Kerr 1963) expressed
through the Boyer–Lindquist coordinate system (Boyer &
Lindquist 1967). This system of coordinates describes space-
time in the vicinity of a BH. The coordinate transform for an
oblate spheroid is as follows:

( ) ( ) ( )x r a sin cos , 5a2 2 q f= +

( ) ( ) ( )y r a sin sin , 5b2 2 f f= +

( ) ( )z r cos , 5cq=

with the time dimension still expressed by t.
In the KBH scenario, charge Q= 0. This constraint

simplifies the Boyer–Lindquist coordinates while also allowing

for a dimensionless spin parameter, a, to be defined. BH
characteristics angular momentum J and charge Q are
constrained by mass M, which may take any positive value.
The constraint equation

( )Q

GM

J c

GM
J, 6

2

2

2 2

2
+ 

simplifies to

( )J
GM

c
. 7

2


This can be rearranged to express limits on the value

( )Jc

GM
0 1. 8

2
 

In natural units (c=G= 1), J/M is labeled the Kerr parameter.
This work will employ a unit system in which the spin
parameter a≡ J/Mc (found by multiplying the original
expression by GMc−2). With a defined, the horizon radius
can be re-expressed using the gravitation radius rg=GM/c2

and spin parameter, r r r aH g g
2 2= + - . With these para-

meters, the Kerr metric under the Boyer–Lindquist coordinates
system can be properly expressed using coordinates (t, r, θ, ψ).
The Kerr metric can be succinctly expressed via tensor

notation

( )ds g dt g dtd g d g dr g d2 . 9tt t rr
2 2 2 2 2y y qº + + + +y yy qq

Here we can note that the term dtdψ implies a time–space
coupling in the plane of rotation as long as J> 0 holds. The
field tensors can be defined in terms of length scales Δ (called
the discriminant), Σ, A, rH, and a:

⎜ ⎟
⎛
⎝

⎞
⎠

( )
( )

( )g
r r r a a

r a
c

sin

cos
, 10att

s
2 2 2 2

2 2 2
2q

q
º -

- + -
+

( )
( )

( )g
r r ac

r a

sin

cos
, 10bt

s
2

2 2 2

q
q

º
-

+y

( ) ( ) ( )
( )

( )g
r a r r r a a

r a

sin

cos
, 10cs

2 2 2 2 2 2 4

2 2 2

q
q

º
+ - - +

+yy

( ) ( )g
r a

r r r a

cos
, 10drr

s

2 2 2

2 2

q
º

+
- +

( ) ( )g r a cos . 10e2 2 2 qº +qq

Using the above expressions, the line element ds2 can be
fully expressed in terms of the Boyer–Lindquist coordinates
and BH base characteristics (shown in full in Appendix A).
From the full expression, it can be condensed using the spin
parameter, radius rs, length scales ρ2, Δ, Σ2, and scalar
functions introduced by Price & Thorne (1986) α, ω, and w̄.
These new condensing expression are defined as

( ) ( )r a cos , 11a2 2 2 2r qº +

( )r a r , 11bs
2 2D º + -

( ) ( ) ( )r a a sin , 11c2 2 2 2 2 qS º + - D

( ), 11d1 1 2a rº S D-

( )acr , 11es
2w º S-

¯ ( ) ( )sin . 11f1w r qº S -

2
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The line element can now be expressed in its final form

( ¯ ) ¯
¯ ( )

ds dt dtd

dr d d

2

. 12

2 2 2 2 2 2

2 1 2 2 2

w w a ww y
r r q w y

= - -
+ D + +-

2.2. BH Magnetosphere Field Equations

To describe the electromagnetic fields and phenomena that
occur in the magnetosphere of a KBH, we apply the 3+ 1 split
rule of electrodynamics laws (Price & Thorne, 1986), where 4D
spacetime is split into global time t and 3D curved space.

Before moving on, the fields inside the gap must be defined
according to the force-free condition of the gap. We recall the
force-free condition for the magnetosphere (ρeE+ j/c× B=
0), where we now define

( ) ( )e n n 13er = -+ -

as the charge density in the plasma contributed by the positrons
and electrons. This then recovers the starting Poisson equation

· ( )E 4 . 14epr =

For a force-free magnetosphere that follows the degenerate
condition E ·B= 0, see (Macdonald 1984), the toroidal
magnetic field can be written as

( )
¯

ˆ ( )B
I2

, 15T
aw

f=
- Y

where I(Ψ) is the current flowing back toward the BH surface
with constant flux Ψ(r, θ) (the actual form of the flux function is
discussed below). The poloidal field is defined as

ˆ

¯
( )B

2
. 16P

f
pw

=
Y

From this point, we use the notation for fields FT=F⊥ and
FP= F∥, interchangeably in relation to the surface of the KBH.
To find the electric field components, we recall the gap has a
frozen-in condition. The electric field can either be calculated
through

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

· · ( ) ( )E
B

E
B

B B
, 17= = -Y

or more simply

( )E
v

B
c

. 18P
F

P=
-

´

Here we define the rotational velocity of the field lines
measured by a ZAMO (zero angular momentum observer) by

( ) ¯ ˆ ( )v , 19F
F w w
a

f=
W -

where the angular velocity of the field lines ΩF= df/dt and
angular velocity of BH ω= (dτ/dt)ZAMO. From these prescrip-
tions, the electric field components recovered are

( )E 0, 20T =

and

( )E
2

. 21P
F w
pw

= -
W -

Y

This gives a Poisson equation of the degenerate, force-free
magnetosphere as

· ( )E
4

. 22P
GJr

p
=



This is defined as the Goldreich–Julian charge density
(Goldreich & Julian 1969). Rewriting the electric field as

( )E E E , 23P= ¢ -

the Poisson equation inside the gap is finally

· ( ) ( )E 4 . 24P e GJp r r = -

For a tensor notation-based discussion of ρGJ please see
(Hirotani & Pu 2016).
The last expression to be defined is the flux Ψ(r, θ). Previous

works used a double split monopole defined by

( ) ( ) ( )sin . 25M
2q qY = Y

This flux function was used to mime the existence of a thin
accretion disk in the vicinity of a horizon. In the current work,
we instead use the split monopole configuration. This
configuration naturally occurs in numerical simulations when
the accreting gas is hot. This corresponds to a geometrically
thick accretion flow, such as advection or convection-
dominated accretion flow (ADAF and CDAF). Such accretion
flows are generally X-ray bright (in contrast to thin disk
accretion), so they are likely present in many active galactic
nuclei (AGNs). Splitting the monopole into two hemispherical
planes (Michel 1973) can be expressed as

⎧
⎨⎩

( ) ( ( )) [ )
( ( ) ( ]

( )1 cos , 0, 2
1 cos , 2, .

260

0
q

q q p
q q p p

Y =
Y -
Y +




As one can see, a discontinuity arises at the equatorial plane
(θ= π/2), where a current sheet is present. For this work, θ will
be swept from 0 to π/2, avoiding the discontinuity and
assuming symmetry in the magnetosphere.
The field configuration derived above is chosen for the

following reasons. First, this depicts a simplified model of an
accreting BH where the jets are located in the polar regions and
the disk is associated with the equatorial plane. Second, inside
the gap, the field will always be radial. Therefore, the gap and
the plasma production within it are nicely captured by the
above configuration.
While the gap in the magnetosphere has been mentioned and

the fields inside defined, the null surface has yet to be fully
explained. There is a surface that exists in the magnetosphere
where ρGJ= 0. This null area has a very strong E|| parallel to
the magnetic field lines. There exists a surface of charge deficit
around this electric field. As described above, an e± cascade in
this region is required to maintain the force-free condition on
the gap that will power the BH jets.

2.3. e± Cascade Process

With the global field equations established, we can shift
focus to the gap itself and the equations that govern the cascade
system. Recall that E can no longer be screened out near the
gap due to insufficient plasma, giving rise to the important E||
field. This phenomenon generates the flowing, charge-sepa-
rated plasma seen in the magnetosphere. A schematic of the
system can be seen in Figure 1. While the poloidal magnetic

3
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field, Bp, (Equation (16)) may be oblique in general, it can be
constrained to the full perpendicular case for this discussion. In
this circumstance, the acceleration of charges by the parallel
electric field (Equation (21)) is at its most efficient, and
therefore, the cascade system itself is at its most efficient.
Further limiting the system into one dimension, define the x-
coordinate to be perpendicular to the null surface and zero at
the center of the gap.

( )x r r , 270= -

with r0 being the null surface of the gap. For a spherical gap,
with x increasing outwardly, r0 is the radius at which ρGJ is
zero. With the dimensional reduction, the Poisson equation
(Equation (24)) now reads as

[ ( ) ] ( )∣∣dE

dx
e n n4 . 28GJp r= - -+ -

With the gap (r0) considerably smaller than H (less than 1%
of rH), the Poisson equation can be adjusted by expanding
ρGJ(x, θ) about x= 0

[ ( ) ] ( )∣∣dE

dx
e n n A x4 . 29p= - - q

+ -

This recovers the expansion coefficient Aθ= ∂rρGJ(x= 0, θ),
which is on the order of (ΩFB/2πce).

Inside the gap, E|| is accelerating the e± charges and
Compton scattering them off of UV photons from the accretion
disk, making the charges rapidly lose momentum. However,
longitudinal motion is still steady due to E||. From this setup,
the equation of motion for a charge can be written using the
Lorentz factor Γ, the Thompson scattering cross section σT, and
the energy density of the background radiation field Ub;

( ) ( )∣∣m c
d

dx
eE U1 . 30e T b

2 2 s
G

= - G -

The Thompson scattering cross section is defined by

⎜ ⎟
⎛
⎝

⎞
⎠

( )q

mc

c

m c

8

3 4

8

3
. 31T

e

2

0
2

2 2 2 2

2 4
s

p
p

pa
= =




The second term in the equation of motion (Equation (30))
represents Compton drag, which may be overestimated in a
general sense due to simplification. This simplification still
holds for pair production. At the boundaries of the gap, E|| is
expected to be zero. Except for at this condition (everywhere
else E||> 0), the right-hand side (RHS) of Equation (30)
cancels out in the first order, where Γ reaches a terminal value
of

( )
( )

( )∣∣x
eE x

U
1 . 32

T bs
G = +

The newly created e± have perpendicular momentum P⊥.
This momentum is gradually lost as the charges scatter off
background radiation photons in a drag length defined by

( )
( )

∣∣
l

m c

U

m c

eE x U
. 33e

T b

e

T b
drag

2

2

2

s s
=

G
G

=

This drag length is smaller than the Compton mean free
length,7 where the charges scatter off background soft photons
to produce the desired γ-ray photons required for pair
production. Using these lengths, and the length of the half
gap, H, the following relation is defined:

( )l l H. 34cdrag < <

From this relation, two major approximations are deduced:
charges migrate in one direction and the charges have a
monoenergetic motion with respect to Γ(x). This relation holds
due to X-ray and UV photons contributing to the drag term.
Despite the various non-simplified drag terms, the charges can

Figure 1. Schematic depiction of the spark gap and SMBH system. Generally H < < r0, unless the cascade is not efficient or present at all.

7 The mean free length is the inverse of the cross section and average length
between collisions. For Compton scattering, ldrag is on the order of 1010 cm.

4
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still produce the necessary γ-ray photons with energies up to
Γmec

2. These γ-ray photons are emitted from inverse Compton
scattering (Beskin et al. 1992), not curvature radiation or
synchrotron radiation. These new γ-ray photons are free to pair
and produce charges by collisions with background photons.

For a γ-ray photon of energy òγmec
2 to undergo pair

production it must collide with a background photon with
energy òsmec

2. The photons must satisfy

( )1

1
, 35s

m-
g  

where μ is the cosine of the collision angle θ. The minimum
energy required for production occurs when the photons collide
head-on (μ=− 1) with the most energetic soft photon collision
occurring with s max=  . Only γ-rays at energies greater than
the above minimum energy ( max

1- ) can contribute to pair
production.

2.4. Basic Physical System Equations

With the physical process of the cascade described, the
equations governing the charges and fields can now be
examined in the cascade context. To begin, it is necessary
and helpful to define the motion of the electrons and positrons
in the gap. The motion of the charges is set by the direction of
the current as it moves toward the polar regions. For this
system, the electrons will migrate inward toward the BH, while
the positrons migrate outward away from the BH. This setup is
accurate in lower latitudes (a small distance away from BH)
and appears opposite in high latitudes. However, the treatment
of physics holds in each scenario as the signs of the various
terms in Equation (28) resolve themselves and create the same
effect. This research will consider low latitudes only. The speed
of these mobile charges can be defined as

( ) ( )v c x , 36e b=

with

( )
( )

( )x
x

1
1

37
2

b = -
G

defined for brevity. The speed is shared by all charges due to
the monoenergetic assumption. From this, the continuity
equation (Berestetskii et al. 1989) can then be defined as

[ ( ) ( )]

( )[ ( ) ( )] ( )

d

dx
n x x

F x F x d, , . 38p
0ò

b

h



= +g g g g



¥
+ -   

F± are the Boltzmann equations for the γ-ray photons, defined
later in the section (Equation (45)). ηp(x) is defined as the angle
averaged pair production redistribution function expressed via

( ) ( )
( )

x d d
dN

d

1

2
. 39p s p

s

s1

1

1
1

max

ò òh m s=
- m g-








Here, σp represents the cross section of pair production in
collisions between photons of energies mec

2òs and mec
2òγ

moving angle μ with respect to each other;

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

( )

( )

( ) ( ) 40

3

16
1

3 ln
1

1
2 2 ,

p T
2

4 2

s s n

n
n
n

n n

º -

´ -
+
-

- -

only when the energy relation is met (Equation (35)) does the
above expression have a nonvanishing value. With ν defined as

( ) ( ), , 1
2

1

1
. 41s

s
n m

m
º -

-
-g

g
 

 

n±(x) and F±(x, òγ) represent the number density of outwardly/
inwardly moving particles and γ-ray photons in the± x-
direction in a nondimensional energy interval òγ≈ òγ+ dòγ,
respectively. Finally, dN ds s is the number density of soft
background photons in a nondimensional energy interval
òs≈ òs+ dòs. The γ-ray photons created by inverse Compton
scattering are highly beamed in the same direction as the
charges, e±, which is to say that the distribution functions can
be fully described by F±.
Current is conserved as it is carried along the field lines.

From one combination of the continuity equation
(Equation (38))

[( ( ) ( )) ( )] ( )d

dx
n x n x x 0, 42b+ =+ -

which recovers

[( ( ) ( )) ( )] ( )n x n x x
j

e
. 430b+ =+ -

E|| must go to zero at the borders of the gap, which occurs
when j0= jcrit. j0 is now defined as the current density along a
field line, outflowing from the gap at a constant rate. When j0
takes the value, within an order of magnitude (Price &

Thorne 1986), of ( ) ( )( )( )j 10 a

M

M

M

B

G cm0
15

10 10

abamp
8 4 2» -


, then

energy and angular momentum can be effectively extracted
from the KBH. Another combination of the continuity equation
recovers

([ ( ) ( )] ( ))

( )[ ( ) ( )] ( )

d

dx
n x n x x

F x F x d2 , , . 44p
0ò

b

h

-

= +g g g g

+ -

¥
+ -   

In place of the original continuity equation (Equation (38)), the
two combinations of the continuity equation presented above
(Equations (43) and (44)) will be used.
The single dimensional motion of γ-ray photons obeys a

Boltzmann equation of the form

( ) ( ) ( )
x

F x n x F, . 45c ph b h
¶
¶

= -g
  

Above, ηc(x) is the Compton redistribution function

( ) ( ) ( ) ( )d
dN

d
, , 46c s

s

s
s sKN

2

min

max

òh s dG º G - Gg g 


  



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with σKN as the Klein–Nishina (Klein & Nishina 1928) cross
section defined by Lightman & Rybicki (1979):

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

( ) ( ) ( )

( )
( )

( )

z
z

z

z z

z
z

z

z

z

z

3

4

1 2 1

1 2
ln 1 2

ln 1 2

2

1 3

1 2
. 47

TKN 3

2

s sº
+ +

+
- +

+
+

-
+
+

There is the assumption that energy transfer from e± with
Lorentz factor Γ to a photon with incident energy mec

2òs is
approximately mec

2Γ2òs in the Compton redistribution func-
tion. This holds in its simplified form, but can be more complex
if need be.

The migrating e±ʼs and γ-rays are described by the
differential equations (Equations (29), (30), (44), and (45),
while the number density functions n± are related by
Equations (43) and (45) (independent of each other). This
sums to a system of five differential equations to be solved.

For the system of five equations to be solved, there must first
be assumptions about the background radiation field made first.
The spectral number density of background radiation per unit
interval of òs can be modeled by a power law,

( ) ( )dN

d
C . 48s

s
sa= a-




This C(α) term is a decreasing function with respect to α

expressed via

( ) ( )C
U

m c

2
, 49b

emax
2

min
2 2

a
a

º
-
-a a- - 

with the epsilon terms defining the cutoff of the spectrum. Ub is
the background radiation field’s energy density.

2.5. Non-gray Analysis of the γ-Ray Distribution

Examining the expression for ηp (Equation (39)), no gray
approximation can be attributed to it to solve the Boltzmann
equation (Equation (45)), due to its òγ dependence. To rectify
this, òγ is split into bins so that ηp is approximated in each bin.
To do this, let ξi and ξi−1 be the upper and lower limits of the
ith bin (limits are sufficiently close). Using this, the RHS of
Equation (44), and using a summation instead of solving the
following integral types results in

( ) ( ) ( ) ( )F x d f x, , 50p p i i,
i

i

1
ò h h»
x

x
g g g

 

-

  

where

⎛
⎝

⎞
⎠

( )
2

, 51p i p
i i

,
1h h

x x
º

--

and

( ) ( )f F zx d, . 52i
i

i

1
ò= x

x
g g

 

-

 

Figure 2. Visual comparison of the charge density environment of the KBH. ( )sin 2q is shown on the left and ( ( ))1 cos q- on the right. In arbitrary units, ρGJ is plotted
around the KBH with blue signifying positive density and red negative. The new model shows a less layered distribution of charge with lesser magnitude areas being
seen outside the null surface, away from the KBH. The differences in the null surface distribution are seen in the red solid line to follow the less complex distribution
of charge as the new model shows a single shell around the KBH while the old model (left) shows a farther-reaching trend.

6

The Astrophysical Journal, 960:4 (22pp), 2024 January 1 Sitarz, Medvedev, & Ford



In place of integral (44), the following is used:

[( ( ) ( )) ( )] [ ( ) ( )]

( )

d

dx
n x n x x f x f x2 ,

53

i p i i i1 ,b h- = S +c+ -
=

+ -

with χ the number of energy bins. Then Equation (45) can be
integrated over an energy bin between each limit to form

( ) ( ) ( ) ( ) ( ) ( )d

dx
f x n x x f x , 54i c i p i i, ,h b h = G -  

where

( ) ( ) ( )d, . 55c i c,
i

i

1
òh hG = G
x

x
g g

-

 

The system of equations is now composed of Equations (29),
(30), (53), and (54).

2.6. Gap Boundary Conditions

To fully study the physical processes and environment
within the gap, it is helpful to consider the case(s) when the
functions of E||, Γ, n

+, and fi
 have symmetric conditions.

These boundary conditions are defined in a way so symmetries
allow the conditions to be set at the center of the gap (x=H)
and at the edge of the gap (x= 0), allowing only integration
over half of the gap. This gap width should only be within a
few percent of the BH radius. The gap boundary is defined
when the parallel electric field vanishes. Using Equation (28) at
x=H and E||= 0, a smooth curve resulting in ∣∣ 0

dE

dx
= at the

half gap width can be found with Equation (43) and

( ) ( )j x A x 0. 560b - =q

To begin, E|| should not change sign within the gap and the
function should vanish at the boundaries of the gap itself. With
H<< r0 (Equation (27)), we may assume that E|| is an even
function with respect to x. This condition also applies to Γ;

( ) ( ) ( ) ( ) ( )∣∣ ∣∣E x E x x x; . 57= - G = G -

Next, the assumption of functional symmetry is imposed on n±

(particles)

( ) ( ) ( )n x n x , 58= -+ -

and F± (γ-ray photons)

( ) ( ) ( )F x F x, , . 59= -g g
+ - 

The consequences of the symmetric functions include essential
requirements and features of the pair production cascade.
Therefore, Equations (29), (30), (53), and (54) are solved
within 0� x�H.
With these functional conditions imposed the derivation of

the full boundary conditions at x= 0 and x=H can begin.
First, we derive the conditions for the inner boundary. From
Equations (29), (30), and (57),

( )d

dx
0, 60

G
=

Figure 3. Visual comparison of the parallel electric field of the KBH. ( )sin 2q is shown on the left and ( ( ))1 cos q- on the right. In arbitrary units, E|| is plotted around
the KBH with orange signifying the positive field and blue negative. Again, the new model shows a less complex distribution of the field. The same contours are
plotted for each model, and with this, we see the relative bunching of the field in the old model as well as the less circular shapes of the new model’s contours as it
folds around the event horizon.
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which is equivalent to

( )∣∣E
U

e
61T b

2s
=

G

is found for x= 0. From Equations (43) and (58), x= 0 also
recovers

( ) ( )n x
j

e
2 . 620b =+

Then, following the second symmetric function,
(Equations (52) and (59))

( ) ( )f f i m1, 2 ,..., , 63i i= =+ -

for each value of òγ.
The boundary at x=H is formulated to be a free boundary

that ensures E|| smoothly vanishes as it approaches H. To
accomplish this, any inwardly propagating particle—in this
scenario, the e−ʼs—should not enter the gap from x>H.
Combining this condition with Equation (43) at x=H results
in

( ) ( ) ( )n H n H
j

e
0 . 640b= - > =- +

Additionally, the charge density distribution must remain
continuous at the outer boundary through Equations (29) and
(64) to recover

( ) ( )∣∣dE

dx
j x Ax

1

4
. 650p

b= -

Similar to the inner boundary, no γ-ray photons may come into
the gap from the outside (all up-scattered photons must be
created inside the gap), represented mathematically via

( ) ( )f i m at x H0 1, 2, , . 66i = = ¼ =-

3. Simulating an e± Cascade

From the above derivations, there are now (2m+ 5) total
boundary conditions for (2m+ 3) total unknown functions for
E||(x), Γ(x) (which is contained in the β(x) function), n+, and

( )f xi
 for (i= 1, 2,K, m) and two uncalculated constants H

and j0. These are formed from the conditions E(H)= 0 and
( )E H 0x¢ = , so j0 now plays the role of an eigenvalue of the

boundary value problem.
It is sufficient for the investigation into the pair production to

consider γ-ray photons satisfying

( )
( )2

1
, 67

s m
>

-
g



which is a dimensionless energy parameter. Below the
minimum energy threshold of min max

1= -  , photons fail to
contribute to pair production. The lowest energy bin may be
defined as β0mec

2 with 0 max
1b = - . These may be chosen based

on the study at hand and will be numerically defined in the
following section. The underlying goal is then to seek solutions

Figure 4. The transition between the two flux models can be viewed as a
function of the percentage of the old model. Though these figures only show
the axis of rotation, it does provide insight into how the gap will change over
all angles. We see the gap widen as the new model takes over, this widening
leads to more space for particles to decelerate. This shows up in the Lorentz
factor of the particles steadily decreasing. With this decrease in velocity, the
outgoing flux follows, as seen in the exponential decrease of outgoing flux.
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Figure 5. After the new flux model is fully integrated, the two expressions can be directly compared at the axis of rotation (θ = 0). The normalized trends are shown
on the right, while the unnormalized data is plotted on the left. As expected, the direction of the new model’s trend is opposite of that of the old model. The new model
also shows less severity as the model sweeps from the pole to the equator.
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to the boundary conditions by way of the shooting method of
solving boundary value problems. This method involves taking
the boundary value problem and reducing it to an initial value
problem at different conditions until the solution that satisfies
the original problem is met. For this study, the shooting
algorithm begins at x= 0 and finishes at the outer bound-
ary x=H.

For a realistic model of a BH, the current flowing along each
field line is determined more by the global system physics
rather than the microscale physics inside the gap. (Price &
Thorne 1986) shows that the load connecting wind/jet to the
unipolar induction is the reasoning behind this. We define the
null surface to be where the gap center is located and where ρGJ
vanishes. This definition imposes a symmetrical center point in
the gap, and allows j0 to be treated as an eigenvalue in a
standard boundary value problem (facilitating the shooting
method) and focusing on finding j0 with the outer bound of
x=+H. Following this, the shooting method scheme can be
listed as follows:

1. Very small values of j0 (with |n+− n−| is also very
small), Equation (29) can be approximated by

( ) ( )∣∣
∣∣

dE

dx
E Ax0 4 . 682p» -

2. The above quadratic form function cannot solve

( ) ∣ ( )∣∣dE

dx
j x H Ax

1

4
0. 69H0p

b= = - =

3. As j0 increases, the RHS will also increase (monotoni-
cally) with x in Equation (29),

[ ( ) ] ( )∣∣dE

dx
e n n Ax4 . 70p= - -+ -

4. As j0 increases further, ( )
∣∣dE

d x H=
continues to decrease until

it vanishes at some jcr(Ub, α).
5. Above jcr, the second condition cannot be satisfied, no

matter what initial conditions (ICs) are given.

Figure 6. Comparison of gap widths in old and new models (left and right panels, respectively). The old model ( ( ))sin2 q is plotted on the left with the normalized trend
above the unnormalized trends. We can immediately see the opposite and more complex nature of the ( ( ))1 cos q- model. We also note that the old model's trends are
more bunched in the normalized plots while the new model has a variance.
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To summarize thus far: the system seeks a solution that satisfies
the second condition by adjusting j0 to jcr(Ub, α). This resulting
system is then molded by 29 different equations for 31 different
unknown variables, which are then integrated under 31
boundary conditions. A table summarizing these boundary
conditions can be seen in Appendix C, Table 2.

To study the e± cascade seen in the magnetospheres of
KBHs, a C++ code (Hirotani & Okamoto 1998; Ford et al.
2018) is used to solve the system of equations for a given set of
ICs. To conduct this analysis, a set of ICs was set and solved.
This control IC set can be found in Appendix B, Table 1. From
here, a single parameter is incrementally changed (swept) and
the new system is then solved. This generates a new set of ICs
the code then solves for and the process repeats: set, change,
solve, set. This incremental change must be small enough that
the code can start its process using the previous set of ICs and
the new parameter.

This code relies on the shooting method of solving a
boundary value problem (BVP) using a set of initial parameters

defined at the top of the code (gap width, Lorentz factors,
energy bins, etc.). The shooting method takes the multi-
dimensional BVP and simplifies it to a single initial value
problem (IVP). From the IVP, the code takes the solution to the
equations at one boundary (x= 0) and attempts to find the
solution that solves the equations at the other bound (x=H) by
shooting different solution guesses to the boundary. Once the
solution is found, namely, j0, the remaining parameters are
solved, the parameter under analysis is incrementally changed,
and the code solves the system again. If the change in the swept
parameter is too big, the guess of the solution will be too far off
to solve, and the system of equations will collapse.
While this code accurately solves the mathematics within the

gap, the scope of the code stops there. Despite the importance
of the solutions found in this gap, it is also important to
visualize how this plasma fuels the jets at the poles. Various
studies, including ones done by Ptitsyna & Neronov (2016),
Chen et al. (2018), Crinquand et al. (2020), and Kisaka et al.
(2020) use PIC codes to model the system globally, from soft

Figure 7. Comparison of γ-ray fluxes in old and new models (left and right panels, respectively). The old model ( ( ))sin2 q is plotted on the left with the normalized
trend above the unnormalized trends. We see the same behaviors and inter-model relationships as before. Interestingly, the total γ-ray flux increases toward the
equator, in contrast to the old model.
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photon baths to jets. These studies are just as important as they
allow us to study the state of plasma and gap and view their
effects on the jets themselves, which we view through
observational astronomy.

4. Analysis of the Changing Flux Model

One of the main goals of this study is to alter the flux model
used from the simplified model seen in previous studies (Ford
et al. 2018) to a more realistic model motivated by simulations
(Crinquand et al. 2020). The old flux expression, ( )sin 2q ,
represents a toy model of accretion. A caveat is a pathology at
large distances, represented by a diagonal line at large r. The
updated model, ( ( ))1 cos q- , has no caveat present. Physically,
this model represents sites with no accretion (Milky Way-type
systems), accretion from a thick, hot disk (AGN systems), and
faraway, thin disks. Pictorially, we can see the null surface
reaching outward from the surface of the KBH for the toy
model. Mathematically, the difference between the flux models

θ dependence of Aθ≡∂rρGJ. This difference stems from the
expansion's coefficient’s (A) distribution of field around the
null surface, x= 0 (within first order). For the updated model,
the null surfaces stretch at equal latitudes around the BH. This
new flux model more accurately represents the magnetic field
structure split monopole. Simulations show the split monopole
configuration forms near KBHs, so it is a natural force-free
configuration. A table of the ICs used in this paper can be
found in Appendix B, Table 1.
The differences in the flux model can be examined through

global visualizations of the solutions to many of the equations
presented in the section above. Looking at distinct theoretical
solutions for ρGJ, stagnation point (flow of inflowing or
outflowing material is zero), light cylinders (regions of warped
spacetime so severe that there is no subluminal path out), and
ergosphere (the region in which an observer must rotate with
the KBH and can no longer be a stationary observer), initial
differences in the models can be seen, but are not complete.
Building on these solutions, we can view more differences in

Figure 8. Comparison of peak Lorentz factor in old and new models (left and right panels, respectively). The old model ( ( ))sin2 q is plotted on the left with the
normalized trend above the unnormalized trends. We again see the same behaviors and inter-model relationships as before. This is coupled with the intuitive
understanding that as the gap widens, the Lorentz factor will decrease.
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the flux models by the plasma density ρGJ (Figure 2) and the
parallel electric field (Figure 3). These plots more greatly
illustrate the major differences in field and plasma density
distribution. We see two very distinct model structures in both
quantities: in structure, magnitude, and distribution. The effects
these differences have on the structure of the gap will be
examined in the following subsections.

4.1. Flux Transition

To study this model, the code must first be set up for the new
flux conditions. As stated above, the code must sweep a
parameter from the control ICs to the desired point, as opposed
to plugging in the new model directly. To achieve this, the flux
models are written in a summation form with each other as a
function of percentage, with η representing the percent of the
old model and ι representing the percent of the new model:

( ) ( ( ) ) ( ( )) ( )sin 1 cos , 712q h q i qY = + -

where we define ι= η1 to restrict the free variables to only one.
The code begins with η= 1 and incrementally decreases until
η= 0, where the new flux model is fully implemented. This
change of flux is done at the axis of rotation of the KBH θ= 0.
Plotting the three main gap characteristics viewed in this

study (half gap width, Lorentz factor at gap center, and
outgoing particle flux), we can examine the transition of fluxes
at the polar cap of the KBH. As a note: the plots shown in this
paper that are labeled “normalized” are normalized to the initial
value in that specific parameter sweep. This allows a
progression trend to be seen with respect to the starting point.
We can immediately see in Figure 4 that the size of the gap

gradually increases as the flux shifts to the new, realistic model.
With the increase in gap size, there is also a decrease in the
Lorentz factor within the center of the gap. This can be from
the expanded space in which particles decrease motion and lose
energy. The most drastic change in trend is shown in the
normalized outgoing particle flux, where we see a trend that

Figure 9. Comparison of Aθ = ∂rρGJ in old and new models (left and right panels, respectively). The old model ( ( ))sin2 q is plotted on the left with the normalized
trend above the unnormalized trends. The unnormalized trends are plotted on the logarithmic scale. We see that for both flux models, the mass is inversely related to
the trend’s magnitude, but does not affect how the trend behaves. In contrast, the flux function does affect the trend behavior.
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leads to an almost 100% decrease in flux at the polar cap. The
loss of energy in particles from the Lorentz trend hints that they
can no longer scatter photons, decreasing the flux. While these
trends can show a general behavior or trend, they are not
indicative of the whole system, as they are only at θ= 0.

Viewing the comparison of the old model to the new model
(Figure 5) in the same KBH system (that is only the flux has
changed from the control ICs ) gives a more complete view of
what should be expected with the split monopole model.
Immediately, it can be seen that all three plots show an
oppositely directed trend, which is what is expected in this
switch. It can also be noted the lack of severity in the trends
when compared to the ( )sin 2q model. This depicts a more
evenly structured gap and a less drastic change in emission
based on the viewing angle to the axis of rotation.

The observed opposite trends for the quasi-spherical gas
distribution studied here and the thin accretion disk studied in a
previous paper (Ford et al. 2018) indicate the importance of the

magnetic field geometry. The former (quasi-spherical) case
shows the highest cascade efficiency at high latitudes, toward
the jet axis. The latter, in contrast, indicates the highest
efficiency around the jet–disk interface. This can be a direct
prediction of our study and a possible observational diagnostic
of the field geometry at astrophysical sources.

4.2. Varying Mass

To fully investigate the differences in the flux models, direct
comparisons from parameters studied in the old flux model
must be made. For this study, KBH mass was varied and then
examined as a function of angle θ. For the old flux model, data
from (Ford et al. 2018) was used to study KBHs of 106, 107,
and 108Me. For the updated mass model, 107, 108, and 109Me
were used. To begin, the half gap width of the gap is examined
in Figure 6. In the unnormalized plots, the higher the mass, the
larger the gap is in a general sense. Continuing in the

Figure 10. Comparison of plasma density (ρ) as a function of gap coordinate (x in centimeters) from the center of the gap at x = 0 to the gap edge at x = H, where H is
the half gap width, for three different BH masses (line colors) for both flux models (shape of the point) when applicable. The panels represent different, discrete angle θ
values around the BH where θ = 0 is the axis of rotation and

2
q = p is the equator. The square boxes in the legend represent color, while the shapes on the left of the

legend denote which flux is being plotted. By definition, the electric field reaches zero at the edge. The difference in the gradient of the trends is explained by lower
masses having a higher starting field magnitude; thus, they must reach zero in a shorter distance. The divergence seen at low mass can be attributed to a numerical
issue due to the stiffness of the system of equations.
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unnormalized trends, not only is there no drastic slope change
as the gap approaches the equator, but the direction of the trend
itself is opposite, with the new model constantly decreasing.
Viewing the trend as a ratio from the pole to the equator, we see
many differences in the models. Starting with the obvious,
instead of an increasing exponential we see a decreasing quasi-
linear relation, with plateaus at the x-axis limits. We also see
more definite spacing between the masses as opposed to the
tight grouping of the ( )sin q model.

The outgoing flux is discussed (Figure 7) next. We see that
for both models the higher the mass of the KBH, the less
outgoing flux overall. The updated model sees a small general
increase within the mass trends versus the exponential decrease
of the toy model, in the unnormalized figures. Under normal-
ization, the old model again displays a bunched exponential
trend with a decrease in flux as the angle increases. The new
model displays a bunching of spread relationships between the
masses, with the lowest mass being between the highest and
lowest mass. The trend shows a ( )xsin 2 function, see
Appendix D, Table 3.

Next, the Lorentz factor of the gap is examined in Figure 8.
Beginning with the unnormalized plots, we see an inverse
relationship between increasing mass and decreasing Lorentz
factor. For the new model, as the gap reaches the equatorial
plane where the gap is smaller, the Lorentz factor slightly
increases, as opposed to the exponential decrease seen in the
old model. This inverse relationship between Lorentz factors
(and by extension γ-ray energies) and gap width can be
attributed to the E|| field within the gap. The bigger the gap
present, the smaller the electric field needed to accelerate
particles to the cascade condition. When the cascade begins, it
begins to screen the field out. Viewing the normalized trends,
the updated model continues to show a more complex trend as
well as bunching near the pole of the KBH. These trends show
a counterintuitive ( ( ))xcos cos dependence that encapsulates the
distinct double inflection line see Appendix D, Table 3.
Following the Lorentz factor, the value Aθ= ∂rρGJ is studied

(Figure 9). This factor shows an inverse dependence on the
magnitude of the trend, but the behavior of the trend is not
affected by the varying mass. In the normalized plots, the new

Figure 11. Comparison of electric field (E||) (in statvolt per centimeter) as a function of gap coordinate (x in centimeters) for three different BH masses (line colors) for
both flux models (shape of point) when applicable. The square boxes in the legend represent color, while the shapes on the left of the legend denote which flux is being
plotted. The panels represent different, discrete angle θ values around the BH where θ = 0 is the axis of rotation and

2
q = p is the equator.
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flux continues to show a polynomial-type trend that increases
as θ increases around the BH, compared to the decreasing
exponential given by the ( )sin2 q flux model. The unnormalized
trends again show a steadily increasing behavior opposite the
linear to decreasing trends of the old flux.

The last three figures (Figures 10–12) discussed show trends
at discrete polar angles (with the axis of rotation set to θ= 0).
These angles are (from closest to the axis of rotation to the
equator): π/58, π/4, π/3, and π/2. The most striking
observation is seen in the length of the trends as the mass
increases. This is due to the effect of Gauss’s law on the outer
boundary position. x=H (outer boundary) is determined by the
condition that the Goldreich–Julian charge density ρGJ(x=H)
matches the actual charge density ρ, which is given by the
current density J divided by c. Here, J is conserved along each
flow line because of stationality. Because boundary conditions
dictate no particle injections at boundaries, the leptons are
composed of either electrons or positrons at the boundary,
which means that the real charge density ρ is given by J

c
at

x=H. Therefore, if the gap half width H is measured in
gravitational radius, H is solely determined as a function of the
dimensionless conserved current density, ( )

j J

x H cGJ
=

r =
. Sub-

sequently, if we compare at the same dimensionless current j,
the actual gap width (e.g., in centimeters) increases with
increasing BH mass because the gravitational radius increases
accordingly. The second overarching observation is the relative
angular symmetry within the three trends. While the previously
discussed trends had a more direct relation to the θ dependence
of the flux model, the following trends, including E||(x), ρ(x),
and voltage V(x), appear to show a minimal dependence on θ.
Despite a small sample size, the figures show minimal
difference in magnitude and overall trend behavior across the
entire calculated area for a given plotted value. This is a
primary observation, as the entire calculated range (0

2
- p ) is

only represented by four polar angles. Finally, the difference in
trends between the flux models. For the first three θ values in
Figures (10–12), there are two trend lines per mass, where the
square data point represents the old flux model and the triangle

Figure 12. Comparison of voltage ( ( ) ( )V x E x dx
x

0ò=  ) (in statvolt) as a function of gap coordinate (x in centimeters) for three different BH masses (line colors) for
both flux models (shape of point) when applicable. The panels represent different, discrete angle θ values around the BH where θ = 0 is the axis of rotation and

2
q = p

is the equator. The square boxes in the legend represent color, while the shapes on the left of the legend denote which flux is being plotted. The H/2 voltage peak is
another result of the electric field vanishing at the boundaries. With the inverse relationship between electric field strength and distance, as the Electric field tends to
zero, the coordinates continue to rise, giving way to a parabolic fit to the voltage patterns in the gap.
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data point represents the masses in the new flux model. For
each θ value where both fluxes are plotted, the difference
between the two fluxes for 108 and 109Me is noticeable, but
minimally relative to the difference generated by the difference
in mass. This includes the previously discussed observations
(trend length along the x-axis and angular symmetry) The mass
containing the largest differential between fluxes is the lowest
mass. However, the trend lines for 107Me are consistently
approximately one magnitude apart.

The first trend (Figure 10) depicts the plasma density (ρ) as a
function of x in centimeters from the center of the gap at x= 0
to the gap edge at x=H, where H is the half gap width. Along
with the observations previously discussed, the trends show a
direct relation between the mass of the BH and the steepness of
the rise in plasma density from the center to the edge of the gap.
This difference in slope can be seen at two points on the trend.
As the lines begin, there is a steep increase in plasma density
right after x= 0, after which there is an area of inflection where
the trend levels out and continues the remaining way to the
edge of the gap, x=H. It can be seen that the higher the mass
of the BH, the lower these two slopes are in relation to lower
BH masses. Recall, that the boundary of the gap x=H is
defined as the region where plasma density ρ is equal to ρGJ.
The null surface x= 0 is defined as the region ρGJ= 0. As the
charge density (ρGJ) increases (rapidly from 0 at first, then
gradually as x increases), plasma density rises as well until the
two meet. The steepness in trends can be explained by the
relative distance the plasma density has before it meets the
charge density. With a thinner gap, the density gradient must be
larger to cover the same two magnitudes of the higher mass
systems that possess a smaller gradient over a much larger
distance.

Next, the electric field E|| (in statvolt/centimeter) (Figure 11)
as a function of gap coordinate center (in centimeters) x= 0 to
edge x=H is plotted. The electric field peaks, for each mass,
just after the null surface and exponentially drops as it
approaches the edge. This is a result of the electric field being
screened as it approaches the edge of the gap. Also recall, that
by definition, the electric field must be zero at the edge. This
explains each mass tending to zero as x approaches H. The
difference in gradient of the masses is explained by this
concept. Because the lower masses have a higher starting field
magnitude, they must reach zero in a shorter distance.

This can be shown if we recall

( ) ( )
d

dx

B

H
, 72GJr w

»
W -

and

( ) ( ) ( )E x
d

dx
H x , 73GJ 2 2r

µ -

(Hirotani & Pu 2016), where ρGJ denotes the Goldreich–Julian
charge density, Ω denotes the angular frequency of the
magnetic field lines, ω does the frame-dragging angular
frequency at position x in the gap, B the magnetic field
strength at point x, and rg=GM/c2 the gravitational radius.
After some algebra, Equations (72) and (73) can be related
through

( )E
B

r

M

M
M . 74

g

1 4
5 4µ µ =

-
-



Figure 13. In the top right, the spectral number density as a function of photon
energy is plotted for different levels of spectral index (α) in log–log scale. The
functional trend as a function of energy across the differing indices illuminates
the challenges of sweeping the system of equations. The remaining three plots
show the spectral number density as a function of alpha for the minimum,
average (semi-log), and maximum (semi-log) photon energy used in this study.
The function’s most drastic changes all center around the IC of α = 2, creating
a challenge to sweep to other spectral indices.
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Note that dimensionless gap width H/rg cancels out on the
RHS. Thus, E∥∝M−5/4, which is shown by the curves in
Figure 11. As E||(x) (cgs) increases, so does Γ(x) for e−ʼs.
Which in turn creates an increased pair production rate,
resulting in more efficient screening of E||(x) near the outer
edge at x=H. This results in a smaller gap H for lower BH
masses M, confirming the previous statement.
Finally, the voltage drop in statvolt between the center of the

gap (in centimeters) and a point in the gap is plotted and
studied (Figure 12). The voltage in the gap is calculated via

( ) ( ) ( )V x E x dx, 75
x

0ò= 

where dx is the x-coordinate (the center of the gap is x= 0)
interval. Again, some symmetries and relations can be
immediately deduced. The relative difference between the old
and new flux modes (with one exception) and the difference
between the different angles plotted both continue to be
minimal. We see that as E|| decreases as x increases in
Figure 11, the voltage’s gradient correspondingly remains
positive throughout the gap. The voltage increases with a
steepness corresponding to mass (and therefore gap width) with
steeper trends being seen at lower mass (thinner gap width).
Looking at all of the trends from the ( ( ))1 cos q- model, we

examine the relationships between the three main parameters
within the model. The trends for Aθ and voltage show some
changes based on flux, but mainly the difference can be
explained by the previous values or the varying mass. Despite
the wildly different functional expressions for the trends, we
can derive behaviors in the gap seen across the three masses.
We can see a direct relationship between the Lorentz factor and
the outgoing flux from the gap. As the ZAMO moves down
from the pole to the equator, more radiation is produced.

4.3. Changing of Spectral Index, α

The first challenge to the extended spectral study of e±

cascade in the magnetosphere of BHs comes with changing the
spectral number density of ambient soft photons of the system
of equations. As expressed in an earlier section, the system of
equations that governs this system is rigid, and pushes back any
changes to the equations when the system is stable. Viewing
the spectral number density as a function of photon energy for
different α in Figure 13 illuminates the drastic difference in
function between integer spectral index numbers. The remain-
ing panels show the spectral energy density as a function of α
for the minimum, average, and maximum input spectral energy.
The steep curves and sharp inflection are the source of the
challenge when it comes to sweeping the index variable. The
abrupt change is not ideal for the shooting method and this
system of equations, causing the calculations to require
immense computational resources.
While changing the spectral index has stretched computa-

tional resources and the analysis of different spectral states
incident on the KBH system is ongoing, the main trends as a
function of α at the axis of rotation have been recovered
(Figure 14). While the half gap width and Lorentz factor show
a manageable change in parameter, the outgoing flux poses
certain numerical challenges.
The change in the trend of the half gap width, Lorentz factor,

and particle flux as a function of spectral index illustrates the
drastic inflections encountered when the code is solving the

Figure 14. Depictions of the three main parameter trends (half width, Lorentz
factor, and outgoing flux) as a function of α. The different colors represent
different data sets from the simulation as the spectral index is swept from
α = 2. The sharp inflection seen around α = 2 is believed to be the main
challenge.
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BVP, shown in Figure 14. These inflections are the main
challenge when solving for different spectral states, as the code
must begin at the known solution (α= 2) to solve for the next
spectral state. The different colors of the line signify the various
data sets used to create a semicontinuous trend. The code runs
for such an extended period of time that a single sweep is not
feasible at this time. We emphasize that the α= 2 spectrum
yields the most favorable conditions for the pair cascade. This
is seen from the minimum Lorentz factor and minimum gap
width. Softer (α> 2) and harder spectra (α< 2) reduce the
cascade efficiency.

5. Results and Discussion

In this paper, we have explored the role of the magnetic field
configuration around a spinning BH on the electron-positron
cascade and its properties in particular. Two models,
representing a thin accretion disk and a quasi-spherical gas
distribution were compared. We have shown that the new
magnetic flux model for a KBH e± cascade has not only shown
the expected oppositely directed trends, but delivered a more
complex mathematical relationship as a function of polar angle.
In comparison with the original flux model of ( )sin2 q ,
( ( ))1 cos q- allows a more realistic treatment of accretion
disks far away from the KBH, close disks that are filled with
thick, hot material, and systems that have no disk at all such as
the Milky Way.

This paper details the beginning of an extended study on this
new flux model as well as the first computational challenges
seen when beginning a study on the spectral states of KBH
systems. This study suggests that the parameter trends as a
function of θ are not simple monotonic functions, but more
complex expressions that have a greater variance within the
differing parameter sets, such as the varying mass shown in this

work. The intuitive nature of behaviors in the gap remain; the
γ-ray photon flux correlates with the max Lorentz factor and
anticorrelates with the gap width.
Particularly interesting results of this study concern the

efficiency of the pair cascade. First, the efficiency of the pair
cascade in a quasi-spherical gas distribution case studied here
increases with latitude and peaks at the jet axis. In contrast, in
the thin disk accretion case, the highest efficiency is shown
around the jet–disk interface. This finding is a prediction of our
study and a possible observational diagnostic of the field
geometry at astrophysical sources. Second, the spectrum of
background photons is also a key factor in the leptonic cascade
phenomenon. The efficiency is maximum for a spectra index of
two. Both harder and softer spectra result in a less efficient
leptonic cascade.
Follow-up studies are underway examining different para-

meters and will be readily compared to the results found in
Ford et al. (2018). The physical and spectral parameter space
available can help shed light on how these systems utilize the
BZ mechanism to fuel powerful general relativistic jets seen in
observations.
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Appendix A
Full Line Element Expression

The line element ds2 can be fully expressed in terms of the
Boyer–Lindquist coordinates and BH base characteristics. The
unsimplified expression can be seen in Equation (A1).
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Appendix B
ICs

Table 1 shows the initial code conditions for the control
simulation (left) and new flux model (right).

Appendix C
Boundary Conditions

The cascade system is modeled by 29 different equations for
31 different unknown variables, which are then integrated
under 31 boundary conditions. The general boundary condi-
tions are detailed in Table 2.

Table 1
ICs for the Old Flux Model ( ( )sin 2q ) and New flux Model (( ( ))1 cos q-

Simulation Code Parameter ( )sin 2q ICs ( ( ))1 cos q- ICs

BH mass (comp. units) 2 × 1040 2 × 1040

BH mass (physical units) 1 × 107Me 1 × 107Me

BH spin factor 0.999999 0.999999
Half gap width 25516783911.8834 25516783911.8834
Lorentz factor at center (Γ0) 14195.3939198398 14195.3939198398
Lorentz factor at edge (ΓH) 2219.643845290660465252586 2219.643845290660465252586
Number of energy bins 51 51
Bin spacing 2 2

max (
m c

energy

e
2 ) 2.0 × 10−1 2.0 × 10−1

min (
m c

energy

e
2 ) 8.0 × 10−6 8.0 × 10−6

ρGJ 5.0 × 10−16 5.0 × 10−16

j AH 1.00
1

H
2= -

G
0.0000127584 0.0000127584

Field drag parameter fd=0.45 fd = 0.45
B|| (initial B field) 1.0 × 104 1.0 × 104

Ψ0 (initial flux) 1.0 × 1032 1.0 × 1032

Background field energy density (U
m c

b T

e
2

s ) 0.8125532 × 10−13 0.8125532 × 10−13

Table 2
Boundary Conditions for the SMBH System Cascade Equations in the Gap, Recreated from Ford et al. (2018)

Condition Equation Used Symmetric Assumption Boundary

E|| = (Γ2 − 1)σTUbe
−1 ( )∣∣eE U1m c d

dx T b
2e

2
s= - G -G E||(x) = E||(−x) and Γ(x) = Γ(−x) x = 0
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j

e
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Appendix D
Approximate Trend Fits

The mathematical expression fitted to the trends show the
difference in complexity and the direction of the different flux
models (Table 3).

Table 3
Trend Fits for the Plots Shown in the Body of the Paper

Figure and Line Functional Fit

Change of flux: norm. gap half width 1 + 0.019e2.141 x

Change of flux: norm. Lorentz factor 1 − 0.032e1.956 x

Change of flux: norm. outgoing flux 1 − 0.016e4.281 x

Flux comparison: ( )sin2 q norm. gap half width 1 + 0.75x5

Flux comparison: ( )sin2 q norm. Lorentz factor 1 − 0.03x − 0.08x2

Flux comparison: ( )sin2 q norm. outgoing flux ( )x0.1 0.9 cos 2+
Flux comparison: ( )sin2 q norm. A 1 − 0.2x2 − 1.9x3 + 14.5x4 − 78.6x5 + 264x6 − 577x7 + 814.9x8 + 356.6x10 − 76.9x11 − 716.7|x|9

Flux comparison: ( )sin2 q norm. j0 ( )x1 0.92 x7.7 sin 3.2 3-
Flux comparison: ( ( ))1 cos q- norm. gap half width 1 + 0.03x + 0.1x2

Flux comparison: ( ( ))1 cos q- norm. Lorentz factor 1 − x3

Flux comparison: ( ( ))1 cos q- norm. outgoing flux 1 + 0.65x2

Flux comparison: ( ( ))1 cos q- norm. A 1 + 0.6x2

Flux comparison: ( ( ))1 cos q- norm. j0 ( )x2 cos-

Flux comparison: ( )sin2 q gap half width 1928.85 − 832.465x4

Flux comparison: ( )sin2 q Lorentz factor 1.188 × 1010 + 7.715 × 109x5

Flux comparison: ( )sin2 q outgoing flux 1.733 × 1012x
Flux comparison: ( )sin2 q A Too small to approximate
Flux comparison: ( )sin2 q j0 0.002 − 0.002x2.7+ x

Flux comparison: ( ( ))1 cos q- gap half width 11423.3 + 373.036x + 1172.47x2

Flux comparison: ( ( ))1 cos q- Lorentz factor 2.9 × 1010 − 7.9 × 108x − 2.27 × 109x2

Flux comparison: ( ( ))1 cos q- Outgoing flux ( )x x8.5 10 5.6 10 3.2 10 tan 1.7511 11 2 7´ + ´ + ´
Flux comparison: ( ( ))1 cos q- A Too small to approximate
Flux comparison: ( ( ))1 cos q- j0 0.002 + 0.002x2

Mass comparison: ( )sin2 q norm. gap half width 1 + 0.0005e7.421 x

Mass comparison: ( )sin2 q norm. Lorentz factor 10.0024e5.357 x

Mass comparison: ( )sin2 q Norm. outgoing flux 10.0168e4.223 x

Mass comparison: ( ( ))1 cos q- norm. gap half width 1.013 − 0.109x
Mass comparison: ( ( ))1 cos q- norm. Lorentz factor ( ( ))x0.751 0.457 cos cos+
Mass comparison: ( ( ))1 cos q- norm. outgoing flux ( )x1 sin 0.63 2+

Mass comparison (106Me): ( )sin2 q gap half width 4.1 × 109 + 446408e9 x

Mass comparison (107Me): ( )sin2 q gap half width 1.2 × 1010 + 7.1 × 106e7.2 x

Mass comparison (108Me): ( )sin2 q gap half width 4.2 × 1010 + 1.3 × 107e8.1 x

Mass comparison (106Me): ( )sin2 q Lorentz factor 14205.4 − 39.6e5.4 x

Mass comparison (107Me): ( )sin2 q Lorentz factor 1946.4 − 6.3e5 x

Mass comparison (108Me): ( )sin2 q Lorentz factor 611.8 − 1.6e−54837.4 x

Mass comparison (106Me): ( )sin2 q Outgoing flux e1.5 10 4.5 10 x13 11 .63´ - ´
Mass comparison (107Me): ( )sin2 q outgoing flux 1.4 × 1011 − 2.8 × 109e4 x

Mass comparison (108Me): ( )sin2 q outgoing flux 1.8 × 109 − 4.4 × 107e3.8 x

Mass comparison (107Me): ( ( ))1 cos q- gap half width 3 × 1010 − 2.8 × 109x
Mass comparison (108Me): ( ( ))1 cos q- gap half width 8.1 × 1010 − 9.1 × 109x
Mass comparison (109Me): ( ( ))1 cos q- gap half width 2.7 × 1011 − 3.4 × 1010x
Mass comparison (107Me): ( ( ))1 cos q- Lorentz factor ( )x x11044.3 2091.8 285.6 cos 5.3+ +
Mass comparison (108Me): ( ( ))1 cos q- Lorentz factor 2931 + 477.5x
Mass comparison (109Me): ( ( ))1 cos q- Lorentz factor ( ) [ ]x x1064.2 164.2 cos sin 123.993+ +
Mass comparison (107Me): ( ( ))1 cos q- outgoing flux 8.5 × 1011 + 8.3 × 1010x + 9.9 × 1011x3 − 4.9 × 1011x4

Mass comparison (108Me): ( ( ))1 cos q- outgoing flux 5.8 × 109 + 5 × 109x
Mass comparison (109Me): ( ( ))1 cos q- outgoing flux 7 × 107 + 5.2 × 107x

Change of alpha: norm. gap half width 518.3 − 1126.3x + 986.8x2 − 434.3x3 + 95.9x4 − 8.5x5

Change of alpha: norm. Lorentz factor 211.76 − 366.1x + 239.3x2 − 69.8x3 + 7.7x4

Change of alpha: norm. outgoing flux −48807.5 + 141702x − 170545x2 + 108927x3 − 38943.8x4
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