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Abstract
Low-latency noise regression algorithms are crucial for maximizing the science
outcomes of the LIGO, Virgo, and KAGRA gravitational-wave detectors. This
includes improvements in the detectability, source localization and pre-merger
detectability of signals thereby enabling rapid multi-messenger follow-up. In
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this paper, we demonstrate the effectiveness of DeepClean, a convolutional
neural network architecture that uses witness sensors to estimate and subtract
non-linear and non-stationary noise from gravitational-wave strain data. Our
study uses LIGO data from the third observing run with injected compact binary
signals. As a demonstration, we use DeepClean to subtract the noise at 60 Hz
due to the power mains and their sidebands arising from non-linear coupling
with other instrumental noise sources. Our parameter estimation study on the
injected signals shows that DeepClean does not do any harm to the underlying
astrophysical signals in the data while it can enhance the signal-to-noise ratio
of potential signals. We show that DeepClean can be used for low-latency noise
regression to produce cleaned output data at latencies ~1-2s. We also discuss
various considerations that may be made while training DeepClean for low
latency applications.

Keywords: gravitational waves, Mschine learning, noise regression
1. Introduction

The current network of ground-based laser interferometers, consisting of advanced LIGO
[1, 2] and advanced Virgo [3] have facilitated the detection of approximately one hundred
gravitational wave (GW) events from coalescing compact binaries consisting of neutron stars
and/or black holes [4-6]. In the third observing run (referred to as O3), LIGO Livingston
(L1), LIGO Hanford (H1) and Virgo (V1) had a sensitive median range for detecting binary
neutron stars (BNSs) of approximately 133 Mpc, 115 Mpc and 51 Mpc, respectively [4]. The
fourth observing run, referred to as O4, has been officially started in May 2023, with recent
technological upgrades leading to substantial improvements in the sensitivities”, and with the
addition of a fourth detector, KAGRA (K1) [7, 8].

Upgrades in technology have improved the sensitivity of interferometers by reducing fun-
damental noise sources such as thermal and quantum fluctuations [9, 10]. However, environ-
mental and instrumental processes also contribute to the noise in the interferometer strain.
The presence of such noise can reduce the sensitivity of the detectors to astrophysical transi-
ent signals [10, 11], in particular, sources without well-known theoretical models (e.g. super-
novae) [12]. Noise regression methods are used to remove these contaminants, typically by
identifying their origin [13]. Gravitational-wave interferometers are equipped with auxiliary
witness sensors or channels to independently monitor these processes in addition to the strain
channel [14]. Identifying the couplings that exist between these witness channels is the key in
estimating their contribution to the strain and removing them. However, there are thousands
of witness channels tracking different noise sources, and non-linear couplings between them
may result in noise that is challenging to identify using standard filtering techniques such as
Wiener filtering [15-18].

The developments of machine learning neural networks have significantly enhanced our
capability of noise regression in the interferometer strain data. This includes the recent deep
learning algorithms that are developed to subtract non-linear and non-stationary couplings
originating from instrumental and environmental sources [19-25]. These algorithms have suc-
cessfully removed noise couplings such as the 60 Hz power-line noise and their sidebands,
which arise from the non-linear coupling of the strain with instrumental control systems.

9 The exact sensitivity may vary over time during the course of observing run, which can be tracked at this url.
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However, these deep learning noise regression algorithms have thus far been demonstrated
primarily in high latency, or offline, analysis scenarios, where time-series data of several hours
are analyzed long after they were originally recorded.

Multi-messenger astronomy, where gravitational-wave sources are followed up for their
counterparts in the electromagnetic spectrum and neutrinos, is one of the most promising
aspects of gravitational-wave observations [26, 27]. Detecting electromagnetic counterparts
that fade quickly after the gravitational-wave detection, such as ~-ray bursts and x-rays from
BNS mergers, requires sending out low-latency alerts to trigger follow-up observations across
electromagnetic frequencies [28-33]. Ground-based detectors are still below their designed
sensitivities at lower frequency ranges (below 60 Hz) [34, 35], indicating the potential for
substantial improvements in the capability of sending pre-merger (or early-warning) alerts by
performing low-latency noise regression at low frequencies. Even incremental improvements
in the sensitive distances can lead to significant improvements in the number of detections,
which scale as the cube of the distance (proportional to the volume). These improvements
could result in the detection of compact binary mergers that would not have otherwise been
identified at low latency.

Performing low-latency (a.k.a online) noise regression poses significant computational
challenges compared to offline regression. To not become the dominant source of latency in
the release of alerts, a low-latency noise regression should produce cleaned strain with the
overall delay not more than a couple of seconds. Gunny et al [36] discussed in detail how to
meet such computational demands in low latency, by employing the as-a-service computing
paradigm [37, 38] into the context of gravitational-wave data analysis, in order to leverage
hardware accelerators (such as GPUs) and other heterogeneous computing resources.

In this paper, we demonstrate and validate the application of DeepClean [23] infrastruc-
ture on GW strain data from LIGO Hanford and LIGO Livingston. DeepClean is a deep
learning convolutional neural network algorithm for noise regression in gravitational-wave
strain. DeepClean targets those noise that are environmental or technical'® in origin and can
be tracked independently with witness sensors. We perform a mock data challenge (MDC)
to demonstrate the effectiveness of DeepClean as a production pipeline for low-latency and
high-latency noise regression applications.

This paper is organized as follows: section 2 provides a concise overview of the DeepClean
architecture and the end-to-end infrastructure. Section 3 presents the details of our MDC.
In section 4, we delve into the application of DeepClean on our mock data and present the
corresponding performance metrics. Section 5 demonstrates the validation tests performed
using astrophysically motivated metrics, including detection and parameter estimation (PE).
Section 6 focuses on the feasibility of utilizing DeepClean for low-latency noise regression.
Finally, section 7 concludes the study and discusses future prospects.

2. The DeepClean infrastructure

The DeepClean architecture has been described in detail in [23]. In this section, we provide
a brief overview of the algorithm. The strain readout from an interferometer, A(#), can be rep-
resented as the sum of a possible astrophysical signal s(#) and the detector noise n(¢), such that
h(t) = s(t) +n(2).

10 Technical noise, a.k.a control noise, usually refers to the noise generated by the apparatus that control the optics in
the interferometer.
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The goal of DeepClean is to minimize the noise n(¢) to enable the detection of the astrophys-
ical signal at the highest possible signal-to-noise ratio (SNR). While some noise sources are
fundamental and cannot be eliminated, others can be removed with the help of witness sensors
[35]. We can classify the noise into two categories: witnessed and non-witnessed noise. The
environmental and instrumental processes that contribute to the witnessed noise n,,(¢) are mon-
itored by a set of channels denoted as w;(7), as discussed in [23]. Mathematically, the noise
contributed by these channels can be expressed as an output of some activation function F,
i.e. ny, (1) = F(wi(1)).

In general, the activation function JF involves non-linear and non-stationary couplings, par-
ticularly in gravitational-wave interferometers. DeepClean is a convolutional neural network
that encodes this activation function using trainable weights 6. Thus, we can express the neural
network as

ny (1) :f(w,- (t);9_> . (1)

The DeepClean architecture was designed to be a symmetric auto-encoder that has four
downsampling layers (convolution) and four upsampling layers (transpose convolution). The
input layer has a flexible dimensionality to match the sampling frequency and number of wit-
ness channels in the input data. the first downsampling layer is designed to have 8 channels
(features) with the same sampling frequency as in the input data. Each successive layer down-
sample the data by a factor 2 and increases the number of features by a factor 2, meaning that
the latent vector has 64 features. The four up-sampling layers halves the number of features and
doubles the sampling frequency at each layer, thereby regaining the same dimensionality as the
input data. An output convolutional layer is then applied to map the data into a one-dimensional
time series of noise prediction. At each layer, convolution or transpose convolution is followed
by batch normalization and a tanh activation function to improve the model’s generalization
ability. A schematic diagram of the DeepClean architecture, along with a flowchart of a typical
DeepClean workflow, is presented in figure 1.

The weights 6 are trained using the gradient descent algorithm [39] by minimizing an appro-
priate loss function. In the case of DeepClean, the loss function is defined as the ratio of the
noise spectrum of the cleaned strain to the original strain, summed over all frequency bins
within the analysis bandwidth [fiin,finax]:

1 {
J=3 @)
NS\ s

Here, SEi) is the power spectral density (PSD) of the residual strain at ith frequency bin after
subtracting n,,(f). Likewise, S,(,') is the PSD of the original strain at ith bin before subtracting
ny(1).

Prior to processing with DeepClean, both the strain and witness time-series are pre-
processed by normalizing the time-series to ensure they have zero mean and unit variance.
The strain data is further bandpass filtered to the frequency range of interest [fiin,fmax)- The
pre-processed data is then input into the trained DeepClean to predict the noise contamination.
To prevent boundary artifacts, predictions are made on 8 s segments with 4 s overlaps. These
overlapping noise predictions are then combined after applying Hann windows to improve the
prediction quality.

Subsequently, the predicted noise is band-pass filtered to [fiin,fmax] to exclude any frequen-
cies outside this range. After reversing the normalization steps, the predicted noise is subtracted
from the original strain, yielding the cleaned strain.

4
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Figure 1. The top diagram illustrates the DeepClean architecture and the workflow.
DeepClean takes timeseries data from multiple witness channels as input and runs it
through a fully convolutional autoencoder. The autoencoder has four convolution lay-
ers for downsampling and four transpose-convolution layers for upsampling. After each
layer, batch normalization and a tanh activation function are applied. Finally, an output
convolutional layer generates the one-dimensional noise prediction. The flowchart at
the bottom depicts a typical training workflow for DeepClean. The ADAM optimizer is
employed to minimize the loss function by navigating through the gradient space.

In the following sections, we will use a MDC to evaluate performance of DeepClean and
to conduct validation tests.

3. AMDC

To evaluate the effectiveness of DeepClean, we performed an end-to-end analysis of mock data
through a MDC introduced by the LVK to benchmark and prepare the low latency analysis
pipelines. The mock data is generated by injecting compact binary signals into the O3 strain
data from LIGO Hanford and LIGO Livingston. We selected the low-latency O3 data (labeled
as GDS-CALIB_STRAIN) from the 20 day period between 01 September 2019, 00:00:00 UTC
and 20 September 2019, 00:00:00 UTC. This period exhibits high coherence between the strain
and intended witness channels in both H1 and L1, making it well-suited for testing the per-
formance of DeepClean. Though this study is considering data from two LIGO detectors, the
framework is applicable to Virgo and KAGRA. Virgo and KAGRA have different implement-
ations of their auxiliary channels which vary in their names as well as functionality from those
at LIGO. Therefore, the nature of the noise coupling, and the channels involved, will also be
different.

The injected compact binary signals comprise binary black hole mergers, BNS mergers,
and neutron star-black hole mergers. The parameters of the injections such as masses, spins,
luminosity distance, and other extrinsic parameters, are drawn from simulated distributions
that are consistent with the O3-inferred population models [40] The coalescence times of the
25000 injections are uniformly distributed over the 20 day period in such a way that there are
no overlapping signals. Additionally, all the signals are generated by using 10 Hz as the lower
cut-off frequency.
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Figure 2. This schematic shows the training strategy used for analyzing the mock data.
The grey shaded segments represent science-quality data, and the yellow indicates that
a model training is performed at the beginning of each science-quality segment. The
green segments represents one-hour long inference periods where the trained model is
used. That means, once a model is trained at the beginning of a science segment, all the
subsequent data until the start of next science segment is cleaned using that model.

4. Applying DeepClean on the mock data

The noise regression analysis is performed in two steps; training and cleaning (also referred
to as the inference). Below we describe the operational parameters of training and cleaning
considered in this study.

4.1. Strategy for training and cleaning the MDC data

To train and clean the 20 days of MDC data, we adopted a strategy that involves selecting
only science-quality data labeled as DMT-ANALYSIS_READY:1 [41]. In total, we identified 47
science sub-segments (a.k.a active segments)!! in H1 and 72 in L1 over the 20 day period. We
used DeepClean to clean each science segment, with training performed once using the first
2000 s of the sub-segment, regardless of the length. This approach is supported by a detailed
study outlined in section 6.3. A visualization of this strategy can be seen in figure 2. There
are exceptions to this strategy when a science segment is overall less than 2000 s. A realistic
strategy going forward is to clean such segments using the most recent trained model, i.e. the
very previous model and perform training on a segment only if at least 2000 s data is available.

Furthermore, it is not a good ML practice to use models trained on some data to clean the
same data because our model may have been over-fitted to the training data and hence may
bias the analysis results. For that reason, we exclude the injections on the very first 2000 s data
on each segment as they are the training data.

4.2. Target noise: power-line at 60 Hz and the side-bands

To illustrate non-linear and non-stationary couplings, we consider the 60 Hz line of the power
mains, which is modulated by low-frequency noise from LIGO’s alignment sensing and control
system [13]. This coupling produces sidebands around the central frequency, and we use a set
of witness channels that were previously used to subtract these sidebands during the third
observing run (O3) [22].

' For the time between two science segments, the data is either not collected or does not meet the quality standards.
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4.3. Data pre-processing

The original strain data, recorded at a rate of 163 84 Hz, is down-sampled to 4096 Hz during
pre-processing. This implies that the eventual cleaned strain will also be at this sampling rate.
This choice aligns with the current needs of the downstream analyses in this study, such as
the detection and PE of binary black hole mergers. Higher sampling rates may be preferred
for cases like the PE of neutron star mergers. If such use cases arise, the framework is flexible
enough to run at any sampling rate. The primary constraint is that the data must be sampled
at a rate higher than the frequency of the noise coupling we aim to subtract. In this study,
the targeted coupling is at 60 Hz, and most other instrumental and environmental noise that
significantly impacts sensitivity occurs below 100 Hz. Therefore, a sampling rate of 4096 Hz
is a reasonable choice, providing storage and training speed advantages over 163 84 Hz.

Most witness channels that are coupled to 60 Hz power-line noise have lower sampling rates
than the strain data, often below 100 Hz or even below 10 Hz (known as fast and slow channels).
However, DeepClean requires all input channels to have the same sampling rate. Therefore, we
upsample these channels to match the strain data rate. As discussed in section 2, each channel’s
data is normalized independently to have zero mean and unit standard deviation. The strain
data is bandpass filtered to limit the relevant frequency range for the target noise. Specifically,
DeepClean uses an 8th-order Butterworth filter to bandpass filter the data to the 55-65 Hz
range. The frequency range considered here is wide enough to contain all the sidebands around
60 Hz.

4.4. Training

During the training process, the pre-processed data is divided into overlapping segments a.k.a
kernels'?. These kernels are then grouped into batches, with each batch consisting of a fixed
number (batch_size) of kernels. For this analysis, we used kernels of 8 s duration with 7.75 s
overlap between two kernels, leading to a total of 7969 overlapping kernels. The training data
is then passed to DeepClean in batches, with the size (batch_size) of 32 kernels resulting in
atotal of 249 batches. When the entire training data is passed through DeepClean once (known
as one epoch), the algorithm takes 249 iterations, with one batch taken at each iteration. At
every iteration, the loss function is calculated, and backpropagated to compute the gradients,
and subsequently updates the weights. In the process of weight optimization, DeepClean uses
ADAM optimizer [42] to navigate through the gradient space and minimize the loss function.

Our analysis indicates that the loss function converges in approximately 20-25 epochs dur-
ing typical 60 Hz noise subtraction. This translates to roughly 4980—6225 iterations using the
settings described in this example.

4.5. Cleaning and post-processing

As mentioned before, we only clean the science-quality segments and they are typically several
hours to days of length. For offline cleaning of such long segments, it is convenient to split
them into shorter chunks, to avoid memory issues. In this study, we use 1 h chunks. The model
trained on the 2000s at the beginning of the same science segment is used to clean all the 1 h
chunks, as previously described.

Every 1 h chunks of inference data are pre-processed to make them overlapping kernels
of 8 s with 4 s overlap between them. The overlapping kernels are not necessary in inference

12 Not to be confused with the filter kernel used by the convolution operator in the CNN architecture.
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Figure 3. (Left) Amplitude spectral densities (ASD) of the original and cleaned data
are shown in the top (H1) and middle (L1) panels where ORG represents the original
strain and DC represents the Deepcleaned strain. The bottom panel shows the cleaned-
to-original ASD ratio for both H1 (red) and L1 (blue). The plots are made using ran-
domly picked 2048 s of MDC data from both H1 and L1. (Right) ASD ratios computed
over the 20 day period of MDC data for H1 (upper) and L1 (middle and lower). Each
point on the x-axis represents 256 s of data starting from there on and the y-axis shows
the minimum (blue), maximum (red) and the mean (orange) of the ASD ratio from the
[55, 65] Hz band. For L1, due to quality issues (see the descussion in the text), the ana-
lysis is repeated with a narrower frequency band;z [58, 62] Hz which is shown in the
bottom panel while the middle panel shows the results obtained with [55, 65] Hz.

in ideal situations, because, given a set of trained weights, the predictions for a certain data
segment are always the same and do not benefit from averaging over overlapping kernels.
However, CNN architecture underweights the edges of the segments by design, which can lead
to artifacts at the kernel edges. These artifacts get enhanced during the bandpassing step in the
post-processing, and they can also spread to samples farther from the edges. To prevent this,
we apply Hann windows to the predictions from overlapping kernels and employ a weighted-
averaging procedure before they are being band-passed. Therefore, the overlapping kernels
are utilized to make sure the kernel edges are under-weighted compared to the mid-region in
terms of their contribution to the final prediction of the noise'>.

4.6. Performance: improvements in the noise spectral density

To assess the quality of noise regression, we compared the ASD of the cleaned strain to the
original strain in the frequency band of 55-65 Hz using ASD ratio as a metric. The ASD ratio
was computed on 2048 s of data from both H1 and L1 data, and the resulting plot (figure 3, left
panel) showed a well-subtracted peak at 60 Hz and its sidebands. The right panel in figure 3

13 To avoid confusion, it is important to note that overlapping kernels are used only internally within the pipeline. At
the top level, the pipeline processes non-overlapping 1 h (or any desired length) chunks of input data from the witness
channels and outputs noise predictions for non-overlapping 1 h chunks.
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shows the ASD ratio computed over the 20 days of MDC data. Each point on the x-axis (in
units of seconds) represents the 256 s data starting from that second onwards. For each x value,
there are three y values, which are the minimum, maximum, and the mean of the ASD ratio of
that particular 256 s. For example, at each point, there will be an ASD ratio curve similar to
the bottom panel on the left. The mininum will represent the subtraction achieved at the 60 Hz
peak. The maximum is plotted with the intention of capturing ASD ratio that goes above 1,
i.e. any noise that is contributed by DeepClean. The mean is meant to showcase the overall
subtraction in the band including the sidebands.

In the top right panel, we have the ASD ratios from H1 noise subtraction. the maximum
stays around 1, the mean and minimum below 1 consistently over the 20 days. This indic-
ates a quality subtraction. On the other hand, for L1 subtraction in the middle right panel, we
notice that the maximum of ASD ratios are well above one for many segments. These peaks
in the ASD ratios are understood to be happening at 56 Hz and 64 Hz while the exact reason
is not well understood. It can be a data quality issue either in the strain or the witness chan-
nels, leading to poorly converged models of the neural networks. We repeated the analysis
by narrowing down the frequency band to 58—62 Hz such that the frequencies of noisy peaks
(56 Hz and 64 Hz) are excluded from the band. The results are shown in the bottom right
panel. It shows that the unwanted features are filtered out by appropriately narrowing down
the frequency band of the analysis.

5. Validation tests with astrophysical metrics

In the preceding section, we explored the use of DeepClean on mock data and demonstrated
improvements in the ASD ratios. This section concentrates on astrophysically-motivated val-
idation tests to ensure the effectiveness and safety of applying DeepClean to data containing
astrophysical signals. We examine two specific areas: the impact on the sensitivity of compact
binary searches, demonstrating effectiveness, and the assurance of signal integrity in source
PE.

5.1 Compact binary search sensitivity

The GstLAL-based inspiral pipeline (referred to as GstLAL) is a matched-filtering based
pipeline used to detect compact binary mergers [43—47]. GstLAL has played an instrumental
role in low-latency detections of gravitational-waves [27, 48], and directly enabled the obser-
vation of electromagnetic counterparts associated with a BN'S merger [49, 50].

We perform two GstLAL analyses on ~20 days of O3 data to assess the performance of
DeepClean. The first analysis acts as a control and uses the final strain frames cleaned and
published by Advanced LIGO and Advanced Virgo [51]. The second analysis ingests the
frames processed by DeepClean. In each analysis, we search for a set of astrophysically dis-
tributed simulated gravitational-wave signals, or injections. The injection masses are chosen
based on their coalescence frequencies. The coalescence frequency, also known as the fre-
quency of the last stable circular orbit of a binary evolution, is given by fi,, = (6>/>7m)~! Hz,
where m = m| + m is the total mass of the binary in the observer frame. The injections span
m; € [5Mg,50M )], distributed uniformly in component masses, and with mass ratio and chirp
mass restricted respectively to the ranges [0.25M,, 1M] and [21M,35M)]. This ensures
that the f, lies between 55 Hz and 70 Hz, for all injections. This frequency range is preferred
because our target noise is around 60 Hz and signals with a peak frequency around 60 Hz
would demonstrate the most significant scientific benefits. The spins are uniformly distributed

9
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Figure 4. The fractional improvement in sensitive volume (V7)) measured by GstLAL
(after DeepClean to before DeepClean) shown as a function of the estimated false-
alarm-rate (FAR) combined across two detectors. DeepClean improves the sensitive
volume of the search for false-alarm-rates of approximately 2 per day to 1 per 100 years,
but there is a slight loss in sensitivity to very high significance events.

and s;, € [0,0.99] in component spin aligned with the orbital angular momentum. The lumin-
osity distance is distributed as uniform in comoving volume up to redshift ~0.5. We evenly
space the resulting 54000 injections 32 s apart, using SEOBNRv4_ROM waveform model, and
separately place them into each data stream.

Figure 4 shows the results where the ratio of population-averaged sensitive volume VT [52]
is plotted against the false-alarm-rates (FARs) [53]. We find that we recover more injections
in data cleaned by DeepClean for FAR between 2 per day and 1 per 100 years, as shown in
figure 4. For highly significant simulations (FAR less than 1 per 100 years), here is a slight
loss in sensitivity. We do not expect that this loss significantly impacts the chance of detection
for these loud events. We hypothesize that this behavior is a result of DeepClean focusing on
removing quiet noise artifacts while leaving loud noise transients from other sources in the
data, causing the slope of the extrapolated background to lessen. In the limit of more data,
we expect the VT ratio at high significance to asymptote to 1; we leave confirmation of this
behavior to future work.

5.2. PE of coalescing binaries

After applying a denoising pipeline, it is critical to perform PE of the underlying astrophysical
signals as a validation test. This serves two purposes: firstly, to ensure that the regression
analysis has not affected the original signals and, secondly, to assess any improvement in the
credible intervals of the estimated parameters resulting from noise-subtraction. In this study,
we focus only on the first purpose since the noise subtraction of 60 Hz alone may not yield
any notable improvement in the credible interval.

To perform this test, once again, we selected injections from our MDC dataset based on
their coalescence frequencies—that the f,, lies between 55 Hz and 70 Hz, as described in

10
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section 5.1. We found 258 BBH injections that satisfy this source criterion in the science-
quality segments.

The literature contains well-described methods for estimating parameters from
gravitational-wave signals, and there are standard analysis pipelines available that use
stochastic samplers [54, 55]. For our analysis, we utilized tools from the Bilby [55] Bayesian
library. We ran the Dynesty sampler [56] with IMRPhenomPv2 waveform model [57], to
sample from a 15-dimensional parameter space that included the luminosity distance, two
mass parameters, six spin parameters, the time and phase of the binary coalescence, and four
angles defining the binary’s sky-location and orientation relative to the line of sight.

Out of the 258 injections, only 84 events met the minimum SNR criterion of 4 at both detect-
ors, confirming their detection and indicating the potential for reliable PE. Similar detection
criteria have been used in the literature [58, 59], rather than relying solely on the network SNR
as the threshold. This approach is preferred because having a minimum SNR across multiple
detectors results in higher detection significance and a lower FAR compared to an equival-
ent network SNR primarily coming from a single detector. Additionally, it provides better PE
results due to improved localization of the source.

Additionally, we did encounter sporadic instances where the cleaned data was noisier than
the original data. We subsequently excluded these affected segments from our analysis and we
were then left with 78 injections for our PE study. We also removed 13 injections that sit in
the training segments since those segments are cleaned by the DeepClean models trained from
those segments. Finally we were left with 65 injections for our PE study In order to address
this issue for practical online setups, we need to incorporate validation tests to ensure that
the outputs of the DeepClean algorithm are not noisier than the original. If the DeepClean
output is found to be noisier, one needs to replace them with the original data as a baseline
solution. More involved approaches to resolve this issue would include increasing the cadence
of training.

We conducted PE on both the denoised and original strain data, and compared the results.
In figure 5, we present 3D posteriors of the luminosity distance and two mass parameters
obtained from one of the 258 injections we analyzed. The posteriors from the cleaned data
(orange) are consistent with those of the original data (blue). This indicates that the noise
regression analysis did not introduce any unwanted noise components or remove any spectral
features from the signal itself. The same is true even if DeepClean is trained on data that has
injections, as shown in the green curve.

Figure 6 displays p—p plots for the fifteen parameters from the 65 events, showing excellent
agreement between the p—p plots before DeepClean (left) and after DeepClean (right). This
observation is essential as it validates the safety of the underlying astrophysical signals when
the DeepClean algorithm is applied. This result demonstrates that the algorithm does not harm
the underlying astrophysical signals and hence supports the reliability of the analysis.

6. Feasibility study for low-latency deployment of DeepClean

To perform noise subtraction in low-latency, we must employ a different approach from the
offline analysis outlined in the previous section. The offline analysis involved dividing the data
into chunks of 3600 s, predicting noise on overlapping kernels of 8 s, and then combining them
after applying window functions (see section 4 for more details). This approach necessitates
having a substantial amount of data available at once, enabling the creation of overlapping 8 s
kernels. In contrast, the online analysis aims to clean the data as soon as it becomes available
and make it accessible to low-latency search pipelines downstream of DeepClean. Therefore,

1
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Figure 5. Corner plot showing the posteriors of the mass parameters and the luminosity
distance before and after the subtraction of the 60 Hz power-line and their side-bands
using DeepClean.

we need a different workflow and strategy for the online version of DeepClean. A fully func-
tional model of online DeepClean complemented with the Inference-as-a-service model will
be presented in a future publication. Here, we discuss the key differences that separate it from
the offline model, the issues it raises, and some preliminary figures of merit.

6.1 Edge effects

The need to develop a new strategy arises from edge effects, which occur when the noise
prediction quality deteriorates towards the edges of a kernel. Figure 7 shows that the first and
last approximately 0.5 s of a 4 s kernel are susceptible to noisy spectral features. The width of
each 4 s segment along the vertical axis shows the difference between the online and offline
predictions. The offline prediction is made on segments that are much longer than 4 s so that
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Figure 6. P—P plots generated from the parameter estimation studies of 65 binary black
hole injections, comparing the results before (upper left) and after (upper right) the
application of the DeepClean algorithm for offline noise subtraction. The x-axis rep-
resents the credible interval, while the y-axis shows the fraction of injections recovered
within that interval. These P—P plots are used to validate whether the injected para-
meters, after noise regression, can be recovered within the statistical uncertainty limits.
As seen in the figure, the parameter recovery after DeepClean is at least as good as, if
not better than, that achieved prior to applying the algorithm. The P-values included in
the plots are derived from the Kolmogorov—Smirnov test, which quantifies the degree
to which the credible interval distributions differ from the expected distributions. The
figure below shows the difference of the curves in the P—P plots above (DeepClean—
Original). We see that the difference fluctuate around 0 showing the similar distribution
of the posteriors in both cases.

the prediction for the target 4 s are far from the edges. To mitigate these effects, DeepClean
uses overlapping kernels and Hann windows to give more weight to the center of each kernel.
This approach has been found to work well for offline cleaning. For online cleaning, our aim
is always to clean the 1 s segment that is recorded most recently. Even if we divide the 1 s data
into shorter overlapping kernels, there are no data available to overlap with the very last kernel
and hence the edges can not be fully suppressed.

The reduction in quality at the edges of the kernel can be attributed to the natural tendency
of CNN architectures to discard information at the edges of input data. This is particularly

13
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Figure 7. The diagram shows how DeepClean will be used for low-latency (online)
denoising. The figure compares the online and offline predictions, both normalized, for
4 s duration segments. The offline prediction for the same segment is extracted from
the middle of a very long segment of prediction. The difference bars indicate that the
predictions differ only at the edges, which are less than a second long. To avoid edge
effects, DeepClean is applied to 8 s of data, consisting of 6 s from the past and 1 s
from the future, in addition to the 1 s of target data. This is done for every 1 s frame,
and the wait for a future frame causes an additional 1 s of latency. After the prediction,
everything except the 1 s target data are discarded from the 8 s segment and written to
disk as cleaned frames, ready for downstream analyses.
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relevant in DeepClean, where we employ filter kernels of size 7 and strides of 2, resulting in
the features at the edges being captured at a lower level compared to those at the middle of the
kernel during convolution. For example, a sample from the middle is captured four times by the
sliding filter, while a sample at the edge is only captured once. While DeepClean attempts to
alleviate this issue by using zero-padding of size 3 at the edges, the edges are still captured only
three times with this padding size. Increasing the padding size could be a potential solution,
but it could lead to array size problems since the padding size is also constrained by the input-
output sample size matching.

6.2. A working model for ~1 s latency

While ongoing work aims to comprehensively address edge effects, a simple modification to
the workflow can mitigate the issue in the meantime. This resolution comes at the cost of a
latency of approximately 1 s. To ensure that the quality of our online analysis matches that
of our offline analysis, we employ a 4 s kernel that includes data from before as well as after
after the 1 s target segment. The additional data ensures that the target segment is located
away from the edges of the kernel. The choice of 4 s kernel comes as a standard choice in the
DeepClean configuration. Ideally, one may place the target segment exactly at the middle of
the 4 s segment, however, we push it forward as much as possible, in the interest of reducing
the latency. The DeepClean is then applied on the 4 s kernel, and the 1 s target segment is
extracted for analysis. A cartoon depicting this is shown in figure 7.

As the affected edges are not exactly 1 s in length, we can select a part of the output that is
closer to the edge where we aggregated the future data. This edge, where future data is aggreg-
ated, is referred to as the aggregation latency. Figure 8 displays a scatter plot with the achieved



Class. Quantum Grav. 41 (2024) 195024 M Saleem et al

1.6 1 *

»F salivpliilianentye?’ 5

=
w
L

=
IS
|

=
w
L

=
=
L

=
=)
|

* Agg.latency =1s

Agg. latency = 0.75 s A
A Agg.latency =0.5s AL
0.94 0.95 0.96 0.97 0.08 0.99 1.00
ASD ratio averaged over [58-62] Hz band

DeepClean overall latency [s]
=
N

<
©
1

o
©

Figure 8. Scatter plot showing the latency vs quality trade-off, produced using O3
Hanford data. The overall latency referred to here is the time taken by DeepClean to
produce the output strain after the raw strain is made available. The ASD (amplitude
spectral density) ratio on the x-axis is computed from every 32 s of the data. The three
different colors shows the different aggregation latencies. Notably, the quality of the
ASD ratio improves with higher aggregation latency, at the cost of increased overall
latency.

ASD ratio on the x-axis and the overall latency'* on the y-axis, for different aggregation laten-
cies. It is evident that the subtraction quality gets better by allowing higher aggregation laten-
cies as shown by the reduced ASD ratios in the graph.

6.3. A case study for training DeepClean at low latency

To enable low-latency GW data cleaning, it is necessary to train and validate the machine learn-
ing model in short timescales. Unlike offline analysis where there is sufficient time to optimize
and fine-tune the trained model, online cleaning requires that the model be trained quickly and
validated frequently. This is because the noise features in the data are generally non-stationary,
and the noise coupling that DeepClean once learned could change after a certain time, making
it necessary to have new models periodically trained on the most recent data.

To explore this in detail, we conducted a case study using the 20 days of MDC data. We
trained the model once for each science segment, resulting in a total of 47 trained models for
H1 and 72 for L1 over the 20 days. We then took two examples of inference data, one from day
1 and the other from day 20, and cleaned them with all the models available. Figure 9 shows
the ASD ratio results on the y-axis and the time (from the 20 days) where the model is trained
on the x-axis. The solid line represents the data from day 1, and the dashed line represents the
data from day 20, for both the detectors.

14 The overall latency is the term referred to as the latency in producing the cleaned frames w.r.t the time when the
original frame became available. It is comprised of the time taken to load the data, perform subtraction, and write the
output frame to disc, in addition to the aggregation latency.
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Figure 9. The figure underscores the significance of periodically retraining the neural
network, deepClean. It presents two traces for each detector: one representing the
cleaned strain data from day 1 (solid line) and the other displaying the cleaned strain
from day 20 (dashed line), derived from our 20 day MDC dataset. The horizontal axis
depicts the GPS time of the training data, with an initial time conveniently set to zero.
Meanwhile, the vertical axis represents the Amplitude Spectral Density Ratio (ASDR)
averaged over 58—62 Hz band (which differs from figure 3 for H1). Notably, there is an
observed increase in ASDR when the training data is selected from a segment further
away from the cleaning data, particularly noticeable in H1. In contrast, the disparity
in ASDR between training and cleaning data is less prominent in L1 over this 20 day
period. Overall, the figure emphasizes the importance of regular retraining to ensure
optimal performance and accurate data cleaning.

It is observed that the ASD ratio changes as we move away from the time of the training
dataset, particularly in H1 data. For instance, the day 1 data has an ASD ratio below 0.6 when
trained with data from day 1, 2, or 3, but the ASD ratio goes above 0.6 when the training
dataset is from day 20. The same observation is true for cleaning the data from day 20, which
is best cleaned with the model trained on day 20.

Although this study indicates that trained models become sub-optimal over time, we noticed
that it does not happen over the timescale of minutes or hours, but rather changes over the
timescale of days. In L1, we do not notice any significant change in the ASD ratio over time,
which may be an indication that the coupling features in L1 are rather stationary. Overall, our
observations emphasize that there is enough time for training and validating a model that is
trained at low latency.

It should be noted that these observations are based on our cleaning of 60 Hz powerline
and sidebands. The timescale over which the coupling features change will also depend on
the coupling itself. For example, a different coupling in a different frequency range, can be
highly non-stationary and would require model retraining at a higher cadence. Fortunately,
our production deployment of DeepClean is highly compute-efficient due to leveraging the
GPU resources and hence training can be performed in less than ~30 min, making it feasible to
update the model once every 30 min or less. The details of that is differed for a later publication.
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7. Summary and outlook

We conducted noise regression using the DeepClean algorithm on bulk offline O3 data with
high latency. For offline analyses, we focused on exploring optimizing various factors con-
cerning the neural network architecture. The cleaned data are validated using downstream
applications, such as detection and PE of detected compact binaries.

In a separate analysis, we demonstrated the applicability of DeepClean for low-latency
noise subtraction, where unclean data is fed as 1 s-long segments.

We observed that the specific architecture we used is effective in noise subtraction, how-
ever can create some edge effects, causing quality issues for a fraction of a second at the
segment edges. With a workaround of additional 1 s latency, we were able to replicate the
results obtained from the high-latency analysis, showing the effectiveness of the low-latency
DeepClean application.

To evaluate the efficacy of DeepClean over time, we investigated how frequently the trained
models need to be updated. Our analysis of 20 days of MDC data revealed that retraining the
model every 1 or 2 days is sufficient for subtracting the 60 Hz noise though this interval may
vary slightly depending on the nature of the coupling. The DeepClean deployment described
in [60] allows frequent model training, as often as every 30 min, which we anticipate would
be sufficient for most of the couplings we encounter in the future.

Our ongoing work includes extending DeepClean to different frequency ranges especially
aiming the broadband noise in LIGO detectors below 30 Hz. Efforts are also going on to apply
DeepClean on Virgo and KAGRA data. Further, as mentioned before, an end-to-end model
of online-DeepClean is being built, deployed, and tested with different validation methods.
This comes as part of preparing for production application of DeepClean in O4. The details
pertaining to all the ongoing efforts will be detailed in future publications.
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