. mathematics b

Article

Harmony Search Algorithm with
Two Problem-Specific Operators
for Solving Nonogram Puzzle

Geonhee Lee and Zong Woo Geem

https://www.mdpi.com/journal/mathematics
https://www.scopus.com/sourceid/21100830702
https://www.mdpi.com/journal/mathematics/stats
https://www.mdpi.com
https://doi.org/10.3390/math13091470

. mathematics

Article

Harmony Search Algorithm with Two Problem-Specific
Operators for Solving Nonogram Puzzle

Geonhee Lee

check for
updates

Academic Editor: Jodo Nuno Prata

Received: 29 March 2025
Revised: 24 April 2025
Accepted: 26 April 2025
Published: 29 April 2025

Citation: Lee, G.; Geem, Z.W.
Harmony Search Algorithm with Two
Problem-Specific Operators for
Solving Nonogram Puzzle.
Mathematics 2025, 13,1470. https://
doi.org/10.3390/math13091470

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

and Zong Woo Geem *

College of IT Convergence, Gachon University, Seongnam 13120, Republic of Korea; ghlee490@gmail.com
* Correspondence: geem@gachon.ac.kr

Abstract: The nonogram is a logic puzzle where each cell should be colored or left blank
according to row and column clues to reveal a hidden picture. This puzzle is known as
an NP-complete combinatorial problem characterized by an exponential increase in the
number of candidate solutions with increasing puzzle size. So far, some methods have been
investigated to address these challenges, including conventional line-solving techniques,
integer programming, and neural networks. This study introduces a novel Harmony
Search (HS)-based approach for solving nonogram puzzles, incorporating problem-specific
operators designed to effectively reduce the solution search space and accelerate con-
vergence. Experimental results obtained from benchmark puzzles demonstrate that the
proposed HS model utilizing a clue-constrained random-generation operator significantly
reduces the average number of iterations and enhances the solution-finding success rate.
Additionally, the HS model integrating an initially confirmed cell-scanning operator ex-
hibited promising performance on specific benchmark problems. The authors think that
the nonogram puzzle can be a good benchmark problem for quantum computing-based
optimization in the future, and the proposed HS algorithm can also be combined with
quantum computing mechanisms.

Keywords: nonogram puzzle; optimization; harmony search

MSC: 05-08

1. Introduction

The nonogram is a type of logic puzzle in which the goal is to complete a specific
pattern by filling cells based on given row and column clues. This puzzle is known to be an
NP-complete problem [1]; thus, as the puzzle size increases, the number of possible patterns
grows exponentially, leading to a rapid increase in the computational burden required to
find solutions. For instance, a 10 x 10 puzzle has 2100 — 1,27 x 1030 candidate solutions,
whereas a 15 x 15 puzzle has 2?2 = 5.39 x 10%” possible solutions, demonstrating an
incomparably larger complexity.

Previous research has addressed solving nonogram puzzles through various tech-
niques, including line-solving methods [2], depth-first search algorithms [3], dynamic
programming combined with exhaustive search [4], local inference step sequences [5],
modified genetic algorithms (CGA and IGA) [6], Taguchi-based genetic algorithms [7],
chronological backtracking algorithms [8], integer linear programming (ILP) [9], neural
networks [10], and physical card-based zero-knowledge proof protocols [11].

The present study proposes three optimization models based on the Harmony Search
(HS) algorithm to solve the nonogram puzzle. The HS algorithm is a phenomenon-
mimicking optimization technique inspired by the improvisational process of musicians

Mathematics 2025, 13, 1470

https://doi.org/10.3390/math13091470

https://doi.org/10.3390/math13091470
https://doi.org/10.3390/math13091470
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5398-606X
https://orcid.org/0000-0002-0370-5562
https://doi.org/10.3390/math13091470
https://www.mdpi.com/article/10.3390/math13091470?type=check_update&version=2

Mathematics 2025, 13, 1470

2 of 16

creating harmonious notes [12]. It probabilistically explores solution spaces without relying
on gradient information, thus providing the advantage of applicability to non-differentiable
functions [13]. Moreover, HS is characterized by relatively few algorithm parameters, sim-
ple implementation, easy coding, and fast convergence [14], making it suitable for solving
diverse engineering, computing, and medical optimization problems [15].

Examples of such applications include steel bridge design [16], urban drainage plan-
ning [17], vehicle routing with time windows [18], generative Al-based vehicular net-
working [19], unmanned surface vessel scheduling [20], forest monitoring [21], energy
autonomy of greenhouses [22], large language model (LLM) prompting [23], cryptograph-
ing [24], robotics [25], cloud computing-based multi-objective optimization [26], bone age
estimation [27], cognitive impairment detection [28], alcoholic EEG signal detection [29],
lung nodule detection [30], mammography-based cancer detection [31], and RNA multiple
sequence alignment [32]. Also, HS has been applied to recreational problems, including
tour routing [33], music composition education [34], fine art volume cognition [35], Tetris
puzzles [36], and Sudoku puzzles [37].

The objective of this study is to apply the HS algorithm with a couple of problem-
specific operators to the nonogram, providing another way to solve the puzzle. Although it
appears to be a recreational mathematical problem, this combinatorial problem might be
utilized as a benchmark problem for quantum computing, where each cell (binary variables)
can denote a qubit and the relationship between cells can denote quantum entanglement.

The contributions of this study are summarized as follows:

1. Proposal of Novel HS-based Approaches:
This study proposes two novel problem-specific operators tailored to the characteristics
of nonogram puzzles, demonstrating the effective applicability of the Harmony Search
(HS) algorithm to nonogram-solving.

2. Initially Confirmed Cell-Scanning Operator:
The authors introduce an operator that efficiently reduces the search space and ac-
celerates early-stage convergence by identifying and fixing cells whose states can be
definitively confirmed at the initial phase of puzzle-solving.

3. Clue-Constrained Random Generation Operator:
A random generation operator strictly adhering to row clues is proposed, signifi-
cantly enhancing the validity of candidate solutions. This approach substantially
reduces the search space, thereby dramatically decreasing computational burden and
iteration counts.

4. Extensive Experimental Validation:
Through extensive experimental evaluations using diverse benchmark nonogram
puzzles, the authors validate that the proposed operators effectively improve the
performance of the HS algorithm. Particularly, the Clue-Constrained Random Gen-
eration operator demonstrates high success rates and rapid convergence, even in
complex puzzles.

5. Benchmark for Quantum Computing Applications:
The authors suggest the Nonogram puzzle as a valuable benchmark problem for
future quantum computing-based optimization research and propose the potential
integration of the developed HS algorithm with quantum computing mechanisms.

Mathematics 2025, 13, 1470

30f16

2. Problem Definition and Optimization Modeling
2.1. Problem Definition of Nonogram

In a Nonogram puzzle, numerical clues for each row are presented in the leftmost
column, referred to as “row clues”. Similarly, numerical clues for each column are provided
in the topmost row, defined as “column clues”.

Row clues are typically separated by spaces. For instance, in Figure 1, the clue for row 1
is represented as “1 17, indicating two separate occurrences of a single black cell. Conversely,
row 5 displays the clue “3”, indicating one group of three consecutive black cells.

2| |2
11111
11
11
0
11
3

Figure 1. Example of a 5 X 5 size nonogram puzzle.

The clue “1 1” for row 1 implies that within the five-cell row, there must be exactly two
black cells, each separated by at least one white cell. Consequently, there are six possible
configurations for this scenario, as illustrated in Figure 2.

11 BB

Figure 2. Possible combinations when the row clue is “1 1”.

Meanwhile, the clue “3” for row 5 indicates that there must be three consecutive black
cells. Therefore, there are three possible configurations, as shown in Figure 3.

.
3
.

3

Figure 3. Possible combinations when the row clue is “3”.

Examining the six configurations for the clue “1 17, it can be observed that, when
superimposing all configurations, the first column has a black cell in only three out of six
cases; the second column has a black cell in just two out of six cases; the third column has a
black cell in just two out of six cases; the fourth column has a black cell in just two out of

Mathematics 2025, 13, 1470

4of 16

six cases; and the fifth column has a black cell in just three out of six cases. Thus, neither a
definite black nor white cell can be confirmed from these cases.

In contrast, when reviewing the three possible configurations for the clue “3”, it
becomes evident that the third column consistently has a black cell in all configurations.
Hence, given the clue “3”, the third column can be conclusively determined as black, while
the colors of other columns remain uncertain.

In this manner, by iteratively evaluating clues for each row and column and filling
in confirmed black or white cells, new information progressively emerges. Consequently,
cells that were initially indeterminate with the given clues become gradually resolvable.
Repeated application of this evaluation process across all rows and columns ultimately
leads to reducing the search space for the nonogram puzzle.

2.2. Optimization Modeling

In order to solve a nonogram using optimization algorithms such as HS, it is necessary
to formulate an optimization model consisting of two essential elements: a group of
decision variables and an objective function.

Decision variables in this study are defined using a series of binary encoding, repre-
senting black cells as 1 and white cells as 0. Each row is represented as one decision variable.
For example, if row 1 has the configuration shown in Figure 4, the decision variable has a
value of 10100.

11 B

Figure 4. Board situation with a decision variable value of 10100.

This study defines the objective function as the number of clue violations. Thus, the
smaller the better. This error-scoring function quantifies the difference between the current
solution and the given clues. In the situation illustrated in Figure 4, the decision variable is
10100. For scoring, this binary representation must be translated into a clue-like format,
indicating the number and sequence of consecutive black cells separated by white cells.
The above example translates to “1 1”7, exactly matching the given clue, thus yielding an
error score of 0.

Meanwhile, in the scenario depicted in Figure 5, the given clue is “3”, whereas the
decision variable is 10110.

Sl

Figure 5. Board situation with a decision variable value of 10110.

Converting this variable into clue format results in “1 2”. The error calculation com-
pares the clue-based decision variable with the given clue as follows:

1. Calculate the error between the first value “1” of the converted decision variable and
the first given clue “3”.

2. Calculate the error between the second value “2” of the converted decision variable
and the second given clue (0 because there is no second clue).
Sum these two differences to obtain the total error. Thus, in this example, the total
error score is calculated as |1 — 3|+|2 — 0|= 4.

This error calculation is performed separately for each row, from row 1 through the
final row n. Similarly, errors are computed and accumulated for each column from column
1 through column m. The final value of the objective function is the sum of all row and
column errors. In other words, the objective function measures the deviation between the

Mathematics 2025, 13, 1470

50f 16

provided row and column clues and the current solution after converting the solution into
clue-like formats.
Formally, the objective function for an N x M board is expressed as:

N R; M G
Error score =) Z’ryij —rxij|+). Z‘C%‘j — cxjj
i=1j=1 i=1j=1

(1)

Here, ry;; denotes the j-th clue provided for the i-th row. For example, if row 3 has
clues “3 17, then ry;; = 3 and ry;, = 1.

Similarly, rx;; represents the j-th clue derived from the i-th row of the current solution.
If the third row’s decision variable is 101101, it translates into clues “1 2 1”7, yielding
rxz1 = 1, rx3zp =2, and rxsz = 1.

The term R; is the maximum of the number of clues provided for the i-th row and the
number of clues derived from the decision variable. In the above example, the given clue
for row 3 (“3 1”) consists of a total of two clues, while the decision variable (“121”) has a
total of three clues; thus, R3 is 3, the larger value.

Likewise, cy;; represents the clues given for the i-th column, with i being the column
index and j the clue number, analogous to ry;;. Similarly, cx;; represents the clues derived
from the current solution, obtained by reading columns in binary code format. The term C;,
analogous to R;, denotes the larger number of clues between the given column clues and
those derived from the current solution.

3. Harmony Search Algorithm and Its Variants for Nonogram
3.1. Overview of the Harmony Search Algorithm

The HS algorithm is a meta-heuristic inspired by the improvisational process of musi-
cians creating harmonious melodies. HS mainly comprises the following three operators:

e Random Selection: Generates entirely new random solutions to increase search diversity.

e Memory Consideration: Selects elements from existing solutions stored in the harmony
memory (HM) to create new solutions.

e Pitch Adjustment: Slightly modifies solutions from harmony memory to enhance local
search around existing solutions.

The optimization procedure of the HS algorithm is briefly summarized as follows:

1. Initialization (Step 1): Hyperparameters are established, and the harmony memory is
initialized, usually with random solutions.

2. Improvisation (Step 2): New solutions are generated to improve harmony memory,
probabilistically combining the three main operators (Random Selection, Harmony
Memory Consideration, and Pitch Adjustment) based on hyperparameter settings
from Step 1.

3. Evaluation (Step 3): The newly generated solutions are evaluated using the objective
function, assigning scores to each new harmony.

4. HM update (Step 4): If the new solution’s score is better than the lowest-scoring
solution currently in harmony memory, the new solution replaces the worst one in the
harmony memory.

5. Termination or Repeat (Step 5): If the termination condition (usually a maximum
number of iterations) is not satisfied, return to Step 2 and repeat the process of solution
generation, evaluation, and harmony memory update. Once the termination condition
is satisfied, the best-scoring solution in the harmony memory is returned as the
final solution.

Mathematics 2025, 13, 1470

6 of 16

3.2. Harmony Search Variants for Nonogram

This study proposes two variants of the HS algorithm, on top of original version [38],
to be adapted for the nonogram problem.

3.2.1. Basic Version (Version A): This Version Utilizes Only Three Basic Operators (Random

Selection, Memory Consideration, and Pitch Adjustment) of the Original HS Algorithm

e The operator of Random Selection generates random binary sequences of 1 sand 0 s
equal to the number of cells per row. For example, for a problem with a column size of
5, a randomly generated solution might look like 11001.

e The operator of Memory Consideration randomly selects one solution from HM and
adopts one of its decision variable values for generating a new harmony.

e The operator of Pitch Adjustment slightly modifies a solution selected via HM Consid-
eration by flipping one randomly chosen bit (changing 1 to 0 or 0 to 1).

3.2.2. Initially Confirmed Cell-Scanning Version (Version B)

In Version B, the algorithm initially scans all rows and columns to identify cells that
can be definitively confirmed as either black (1) or white (0). These confirmed cells are
fixed in advance, after which the HS algorithm applies the three operators described in the
basic version.

More specifically, for a puzzle with board size N, having clues Xi, X5, ..., X, for
a given row or column, the number of initially confirmed cells is calculated using the
following formula:

n n
Max(Xm— (N—(n—l)—ZXk>,O> 2)
m=1 k=1

Figure 2 is based on the ‘single-line solving” method, the most common technique used
for solving nonogram puzzles. The ‘single-line solving” method, described in Section 3 of
reference [39], determines whether a specific cell can be definitively confirmed as black
based solely on the clues of a single row (or column). This approach involves comparing
the total value of all clues, including mandatory gaps, to the board size.

This is reflected in Equation (2) as N — (n — 1) — Y} _; Xy, where n — 1 represents
the number of mandatory gaps between 7 clues, and Y} _; Xy denotes the sum of all clue
values. Thus, subtracting these from the board size N, the value N — (n — 1) — Y _; Xj
becomes the criterion for judging the existence of cells that can be definitively determined
within the line. For instance, if this value is 3, it implies that the number of confirmed cells
corresponds to the amount by which each clue exceeds 3.

In other words, Equation (2), expressed as Max (X, — (N — (n —1) = Y} _; Xi), 0),
means comparing each clue value Xy, to the value N — (n — 1) — Y} _; X;; if positive, it
indicates that confirmed cells exist within the respective clue. Equation (2), formulated in
this way, sums the number of confirmed cells for all clues in the corresponding line.

For example, as illustrated in Figure 6, for a board size N = 10 and a single clue X; = 3,
it follows that } _; Xj =3. Thus, N— (n—1) -}/ ; X, =10-(1-1)-3=7

3

Figure 6. Example where the column size is 10 and the clue is given as “3”.

After calculating (board size — required spaces — sum of clues), any clue value greater
than this result indicates cells that can be definitively confirmed. In this context, if any clue
exceeds 7, corresponding cells can be confirmed. However, since the clue value 3 is smaller
than 7, no cells can be confirmed in this specific scenario.

Mathematics 2025, 13, 1470

7 of 16

This formula intuitively represents the intersection of cells obtained by placing clues
without unnecessary spaces both from the far left and from the far right, thereby confirming
any overlapping black cells.

Applying this logic to the “3” clue example in Figure 7, filling three cells from the
leftmost and rightmost positions results in no overlapping cells; thus, no cells are confirmed.

Figure 7. Process of identifying confirmed cells when the board size is 10 and clue is “3”.

Another scenario, illustrated in Figure 8, has two clues: “4” and “3”.

43

43

Figure 8. Process of identifying confirmed cells when the board size is 10 and clue is “4 3”.

Placing these clues without extra gaps from the leftmost and rightmost positions,
respectively, results in overlapping colored cells in columns 3, 4, and 8, confirming these
three cells. Substituting this scenario into a part of Equation (2) yields n = 2, X; =4, X, = 3:
N-(n—-1)—-2/ 1 X=10-(2-1) - (4+3) =2

Thus, any clue larger than 2 indicates confirmed cells. Here, the confirmed cell count
is (4 — 2) + (3 — 2) = 3, which matches the previously mentioned visual confirmation in
Figure 8. Consequently, this reduces the number of combinations generated by random
selection from 21 = 1024 to 27 = 128.

For a larger puzzle example shown in Figure 9 (N = 15, n =4, X; = 3, Xp =1,
X3 = 4, and X4 = 2), it can be visually confirmed that filling from the leftmost and
rightmost positions creates overlapping cells in three positions.

EREEEE EEEEEE- B

ERFYEECDOE ERnnEE

Figure 9. Process of identifying confirmed cells when the board size is 15 and the clue is “3 14 2”.

Substituting this scenario into part of Equation (2) yields: N — (n —1) — Y} _; X = 15—
(4—1)—(34+1+4+2) = 2. Completing the calculation of the remaining part of Equation (2)
yields the following: Max(3 — 2, 0) + Max(1 — 2, 0)+Max(4 — 2, 0)+Max(2 -2, 0) =3.

This result matches the visually confirmed cells in Figure 9. Hence, this technique is
particularly effective for puzzles with large total clue sums or large individual clue values,
as it can significantly reduce the complexity of the solution space.

3.2.3. Clue-Constrained Random Generation Version (Version C)

In Version C, rather than generating entirely random solutions of 1 or 0 as in Versions
A and B, the random generation (RG) operator selects solutions that strictly satisfy the

Mathematics 2025, 13, 1470

8 of 16

given row clues. The operator randomly selects solutions from combinations that meet the
row constraints, effectively treating the row clues as constraints for decision variables.
This approach reduces the computational burden, as generated decision variables
inherently satisfy row clues, necessitating the calculation of only column-based error
scores. Moreover, by limiting the solution space, it increases the probability of finding the
global optimum.
The modified random generation operator performs as follows:

1. Step 1: Initially, cells are filled according to the minimal arrangement dictated by the
row clues. For example, given a 10 x 10 puzzle row with clues “3 1 2”, the minimal
arrangement required to satisfy these clues is shown in Figure 10.

312 i

Figure 10. Initial state of the changed RG operator when the clue is “3 1 2”.

2. Step 2: Next, the number and potential locations of extra white cells are determined.
In the example from Step 1, eight cells are already occupied. Given the row size of 10,
there are two remaining extra white cells. Extra white cells must be placed either at
the ends of the row or between groups of black cells to maintain clue satisfaction. As
illustrated in Figure 11, four potential positions for extra white cells are indicated by
green arrows.

312

Figure 11. Candidate positions where extra white cells can be added when the clue is “3 1 2”.

3. Step 3: One of the identified positions from Step 2 is randomly selected to place an
extra white cell. For example, if position #3 is chosen, the resulting configuration is
updated accordingly, as depicted in Figure 12.

312 i | N

Figure 12. Added an extra white cell in the third position when the clue is “3 1 2”.

Since two extra white cells were identified in Step 2, this random selection is performed
one more time among positions 1 to 4. If position #1 is selected, the resulting decision
variable arrangement is as shown in Figure 13.

312 i N | e

Figure 13. Last extra white cell added to the first position when the clue is “312”.

Through this process, decision variables are randomly generated within the constraints
set by the given row clues.

Additionally, information about the number and locations of extra white cells is recorded
for subsequent use by the pitch adjustment operator. For instance, if Figure 13 corresponds to
decision variable x3, then a tracking variable such as x3_extra_blank = [1,0,1,0] would indicate
four potential positions, with one extra white cell each in positions one and three.

Similarly, the pitch adjustment operator is modified to ensure continued satisfaction
of row clues by applying the following method:

Mathematics 2025, 13, 1470 9of 16

—_

Step 1: Extra white cell information is retrieved from the random generation operation.
For the example of Figure 13, x3_extra_blank = [1,0,1,0].

Step 2: One position among those with a non-zero number of extra white cells is
randomly chosen. In this example, positions one and three are eligible. If position
three is randomly chosen, one cell is removed from this position, updating the tracking
variable to x3_extra_blank = [1,0,0,0].

Step 3: Then, another position from the remaining positions (excluding the one just selected)

N

@

is randomly chosen. If position one is chosen, one extra white cell is added to that position,
updating the variable to x3_extra_blank =[2,0,0,0], as illustrated in Figure 14.

312 I H | N
: |

312

Figure 14. Example where the extra white cell is shifted from position 3 to position 1 through the

E €@

pitch adjustment operator.

Thus, the pitch adjustment operator can continue making adjustments within the
constraint bounds defined by row clues, ensuring that the generated solutions consistently
adhere to these clues.

Figure 15 illustrates the number of possible combinations satisfying the clue “3 12" on
a board of size 10. Specifically, the random generation operator in Version C produces only
10 feasible combinations, representing merely 1% of the total 2! = 1024 combinations that
Version A’s random generation operator must explore in the same scenario. By significantly
reducing the solution space, this approach effectively decreases the iterations required for
convergence to the optimal solution.

312
312
312
312
312
312

n

212/ [

22 I B [
JEl | N N
JENE

Figure 15. The number of possible combinations satisfying the clue “3 1 2”.

Mathematics 2025, 13, 1470

10 of 16

4. Experiments and Performance Analysis

The abovementioned HS models were applied to various benchmark nonogram puz-
zles. As an initial step, relatively simple problems (Group I) were tested, including mine

(5 x 5size), crane (6 x 6 size), heart (6 x 7 size), and horse (8 x 8 size), as shown in
Figure 16.

6*6 2 &8 |
crane | 1| 5 2| 5|1 | 2 A L
21 ;_

| 13 3
12 5
3 T
4 KB
1 11

(b) (c) (d)
Figure 16. Benchmark Group I: (a) mine, (b) crane, (c) heart, and (d) horse.

Experiments were conducted with ten trials for each puzzle in Group I using three
HS versions and GA. Detailed computation results are shown in Table 1, which gives the
success rate of puzzle solving (success number out of ten trials) and the average number
of iterations where HS found the optimal solution (when the objective function value
becomes zero). An iteration refers to the entire process of generating a candidate solution
and performing a function evaluation on it.

Table 1. Simulation results for Group I.

Success Rate Average Iteration (Function Evaluation)

(out of 10 Trials) [Min-Max Range]
Puzzle HS HS HS
Name GA HS Ver. A HS Ver. B HS Ver. C GA Ver. A Ver. B Ver. C
. 2190 32222
(‘(’5) 1;415“)6 10/10 10/10 10/10 10/10 [270 [574 [11;(;] [13:52';7]
~6810] ~6192]
(b) Crane 7935 87,376.4 6740.5 3933
6 6 10/10 10/10 10/10 10/10 [2370 [7792 [564 [222
~15,150] ~516,640] ~16,877] ~20,993]
17,901 19,856.2
(%Iie;)rt 10/10 9/10 10/10 10/10 [3240 [6558 : 41132673] [1?3)4119]
~39,360] ~38,207]
() Horse 43,740 500,291.3 172,234 28,121
@ x 8 10/10 3/10 4/10 9/10 [15,240 [337,257 [124,671 [2891
~122,520] ~670,754] ~243,174] ~57,043]

The parameter values used in the simulation are as follows:

For the HS algorithm, the harmony memory size (HMS) was set to 30, the harmony
memory consideration rate (HMCR) to 0.95, the pitch adjusting rate (PAR) to 0.7, and the
maximum number of iterations to 10°.

For the Genetic Algorithm (GA), the population size (PS) was set to 30, the crossover
probability (Pc) to 1, the mutation probability (Pm) to 0.01, and the maximum number of
iterations to 10°.

For the mine puzzle (5 * 5 size, number of cases = 225 =34« 107), all three versions
successfully found the optimal solution without any failure. With respect to average
iterations, while Version A took an average of 3222.2 iterations, with a range of a minimum

Mathematics 2025, 13, 1470

11 of 16

of 574 iterations and a maximum of 6192 iterations, Version B found the optimal solution
from the beginning.

In cases like the mine puzzle, where a large number of cells can be definitively de-
termined in the initial stage, the operator used in Version B proves highly effective, even
outperforming Version C.

In the mine puzzle, Version B is able to confirm 21 out of 25 cells in advance, leaving
only 4 cells undetermined. As a result, the number of possible combinations to be searched
is reduced to just 2* = 16. This extreme reduction in the solution space enabled the
algorithm to identify the optimal solution with high probability among the 30 randomly
initialized harmonies, leading to an average of only 1 iteration in Version B, as shown in
Table 1.

In contrast, the number of possible combinations generated by Version C is 225, leading
to a slightly higher average of 35.1 iterations.

However, as the problem size increases, the number of cells that can be initially
confirmed by Version B generally decreases.

For example, in the crane puzzle, Version B can initially determine 18 out of 36 cells.
Consequently, the number of combinations to be explored is 2! = 262,144. On the other
hand, Version C produces 7776 combinations for the crane puzzle, allowing it to achieve a
lower average iteration count than Version B.

For the horse puzzle (8 * 8 size, number of cases = 264 = 1.8 % 101%), all three versions
found the optimal solution with some failure under the maximum iterations of 10°. Version
A found the optimum three times out of ten, Version B found it four times out of ten, and
Version C found it nine times out of ten. Figure 17 shows several local optima in the horse
puzzle from Figure 16d.

Gl 21] |2 2|

513(2|12(|8]1(1 5(3(2(2|8|1]1
1 1
2 2
13 13
5 5
5 5
22 22
211 27 1
11 11

Figure 17. Local optimum cases in the horse benchmark puzzle.

With respect to average iterations, Version A took an average of 500,291.3 iterations,
with a range from a minimum of 337,257 iterations to a maximum of 670,754 iterations;
Version B took an average of 172,234 iterations, with a range from a minimum of
124,671 iterations to a maximum of 243,174 iterations; and Version C took an average
of 28,121 iterations, with a range of a minimum of 2891 iterations to a maximum of
57,043 iterations.

Figure 18 shows convergence curves illustrating the average error score over five
simulations for each algorithm version, while Figure 19 magnifies the early stages of
Figure 18.

The original HS algorithm (Version A) required significantly more iterations to reach
a local optimum, with an error score between 2 and 4, compared to Versions B and C,
as shown in Figure 19. This indicates that Version B, utilizing the initially confirmed
cell-scanning method, and Version C, employing clue-constrained random generation,
effectively narrowed the search space in the early stage. However, Version B often failed to

Mathematics 2025, 13, 1470 12 of 16

escape local optima, with error scores of 2—4, whereas Version C quickly converged to the
global optimum, typically within 100,000 iterations, as demonstrated in Figure 18.

= —Version A

—Version B
40 —Version C

N » @
S & 8

Average Error score

o

0 =
0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000
iteration

Figure 18. Convergence curves of three versions of the HS algorithm.

—Version A
—Version B
—Version C

Average Error score

2 % L

0 5,000 10,000 15,000 20,000 25,000 30,000
iteration

Figure 19. Convergence curves of three versions of the HS algorithm (early-stage focus).

This suggests that the initially confirmed cell-scanning operator (Version B) is effective
at reducing the search space at the early stage but becomes less impactful once harmony
memory is filled with relatively good solutions.

In contrast, the clue-based generation and pitch adjustment of Version C continued to
effectively refine solutions even at later stages, demonstrating superior overall performance.
We further applied the HS models to more complex problems (Group II) such as (a) musical
note I, (b) musical note II, (c) flower word, (d) leaf, (e) dog, (f) mushroom cloud, (g) tea,
(h) TV, (i) snail, and (j) scorpion, as shown in Figure 20. All puzzles have the same size
(10 * 10 size = 210 = 1.3 % 10%°). Detailed computation results are shown in Table 2.

The experimental results demonstrated the effectiveness of the proposed HS-based
solvers across various benchmark puzzles. In particular, the Clue-Constrained Random
Generation method (Version C) showed the best overall performance, while the Initially
Confirmed Cell-Scanning method (Version B) also demonstrated good results.

For certain puzzles in Group II—(b) musical note II, (e) dog, (h) TV, and (i) snail—the
results are analyzed in detail as follows:

Mathematics 2025, 13, 1470

13 of 16

Improvement in Success Rate

For small puzzles (less than 10 x 10), all algorithm versions (A, B, C) showed high
success rates, with Version C consistently maintaining the highest performance.
For 10 x 10 puzzles, the original HS algorithm (Version A) rarely found solutions.
However, the solving capability significantly improved for Versions B and C.
Specifically, Version C successfully solved some challenging puzzles completely.

Reduction in Average Iterations

Version B showed reduced computational burden and improved convergence
speed by pre-determining confirmed cells, effectively shrinking the search space.
Version C drastically reduced the search space by constraining random generation
within the row clues, significantly reducing the average number of iterations.
While the performance of Versions B and C was similar for easier puzzles, Version
C showed superior performance for puzzles of higher difficulty.

Through the above analysis, it is confirmed that applying improved operators tai-

lored to the specific characteristics of the nonogram problem substantially enhances the

algorithm’s performance compared to using the basic HS algorithm alone. Particularly, pre-

determining confirmed cells and generating solutions constrained by row clues significantly

reduces search space and computational burden.

In Table 1, GA achieved a 100% success rate for all four problems; however, its average

iteration count was consistently worse than Version C, better than Version A, and generally

worse than Version B, except for the horse problem, where GA performed better than
Version B.

As shown in Table 2, GA exhibited a 0% success rate across all ten problems, perform-

ing worse than all versions of HS. This suggests that GA is more sensitive to problem size.

10410

3|52
4la|3|5/3/2/ 1)1

10410
dog

121

#
o
k-]
g
E
w
™~
w
>
ETae
o

()

Figure 20. Benchmark Group II: (a) musical note I, (b) musical note II, (c) flower word, (d) leaf,
(e) dog, (f) mushroom cloud, (g) tea, (h) TV, (i) snail, (j) scorpion.

Mathematics 2025, 13, 1470 14 of 16

Table 2. Simulation results for Group II.

Success Rate Average Iteration (Function Evaluation)
(out of 10 Trials) [Min-Max Range]
Puzzle GA HSVerA HSVerB HSVerC GA s oS oS
385,592
(a) Sol 0/10 0/10 0/10 1/10 - - - [385,592
~385,592]
11,467.9 170,829.7
(b) Note 0/10 0/10 10/10 10/10 - - [5874 [28,453
~17,724] ~426,283]
122,062
(C)VSL‘;Q’“ 0/10 0/10 0/10 1/10 ; ; ; [122,062
~122,062]
432,767.3
(d) Leaf 0/10 0/10 0/10 3/10 - - - [314,904
~585,708]
798,079 13,062.1 100,865.4
(e) Dog 0/10 1/10 10/10 10/10 - [798,079 [5874 [29,212
~798,079] ~17,724] ~205,127]
(f) Mushroom 775,262 20,087.7
loud 0/10 1/10 0/10 10/10 - [775,262 - [248
~775,262] ~59,309]
603,041 81,204.2
(g) Tea 0/10 2/10 0/10 6/10 - [585,912 - [30,448
~620,170] ~173,770]
771,885 110,705.6 143,291.2
(h TV 0/10 1/10 9/10 5/10 - [771,885 [48,405 [83,907
~771,885] ~240,562] ~209,201]
36,689.5 124,208.2
(i) Snail 0/10 0/10 10/10 10/10 - - [5691 [13,839
~179,136] ~285,882]
122,928.1
(j) Scorpion 0/10 0/10 0/10 8/10 - - - [36,311
~282,549]

5. Conclusions and Future Work

This study proposed an HS algorithm-based approach for solving nonogram puzzles
modeled as optimization problems. Experimental findings indicated notable limitations
with the basic HS algorithm (Version A), specifically high failure rates and significantly large
average iteration counts when tackling difficult puzzles. To address these issues, improved
problem-specific operators were introduced. The Initially Confirmed Cell-Scanning method
(Version B) effectively reduced the computational burden by pre-filling confirmed cells,
substantially decreasing the search space. Moreover, the Clue-Constrained Random Gener-
ation method (Version C) optimized the search space by generating solutions strictly within
row clue constraints, thereby significantly accelerating convergence to optimal solutions.
Performance verification of these proposed methods highlighted the superior capabilities of
Version C, which demonstrated improved solving rates and significantly reduced average
iteration counts. Particularly in challenging puzzle scenarios, Version C substantially en-
hanced the success rate, underscoring its effectiveness relative to previous methods. These
results confirm the effectiveness of modeling nonogram puzzles as optimization problems
and adapting the HS algorithm with problem-specific characteristics.

This study provides fundamental insights into applying the HS algorithm to nonogram
puzzles. Future research could explore integrating HS with other optimization methods
to further enhance solving performance and effectively address local optima issues. Ad-
ditionally, developing novel operators with more sophisticated heuristics or leveraging

Mathematics 2025, 13, 1470 15 of 16

puzzle-specific features such as symmetry could improve algorithmic efficiency. Finally, in-
vestigating quantum computing-based approaches could offer substantial advantages due
to quantum computing’s inherent parallel processing capabilities, which are particularly
well-suited for complex combinatorial optimization problems like nonograms.

Author Contributions: Conceptualization, G.L. and Z.W.G.; methodology, G.L.; software, G.L.; vali-
dation, G.L. and Z.W.G,; formal analysis, G.L.; data curation, G.L. and Z.W.G.; writing—original draft
preparation, G.L. and Z.W.G.; writing—review and editing, Z.W.G.; visualization, G.L.; supervision,
Z.W.G.; All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Korea Institute of Energy Technology Evaluation and
Planning (KETEP) and the Ministry of Trade, Industry, and Energy, Republic of Korea (RS-2024-
00441420; RS-2024-00442817).

Data Availability Statement: Dataset available upon request from the authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Ueda, N.; Nagao, T. NP-Completeness Results for Nonogram via Parsimonious Reductions; Tokyo Institute of Technology: Tokyo,
Japan, 1996; pp. 1-8.

2. Batenburg, K.J.; Kosters, W.A. Solving Nonograms by combining relaxations. Pattern Recognit. 2009, 42, 1672-1683. [CrossRef]

3. Wieckowski, J.; Shekhovtsov, A. Algorithms Effectiveness comparison in solving Nonogram boards. Procedia Comput. Sci. 2021,
192, 1885-1893. [CrossRef]

4. Wuy, LC,; Sun, D.J.; Chen, L.P; Chen, K.Y.; Kuo, C.H.; Kang, H-H.; Lin, H.H. An efficient approach to solving nonograms. IEEE
Trans. Comput. Intell. AI Games 2013, 5, 251-264. [CrossRef]

5. Batenburg, K.J.; Henstra, S.; Kosters, W.A.; Palenstijn, W.J. Constructing simple nonograms of varying difficulty. Pure Math. Appl.
2009, 20, 1-15.

6. Tsai,].T.; Chou, PY,; Fang,].C. Learning intelligent genetic algorithms using Japanese nonograms. IEEE Trans. Educ. 2011, 55,
164-168. [CrossRef]

7. Tsai,].T. Solving Japanese nonograms by Taguchi-based genetic algorithm. Appl. Intell. 2012, 37, 405-419. [CrossRef]

8. Yu, C.H.; Lee, H.L.; Chen, L.H. An efficient algorithm for solving nonograms. Appl. Intell. 2011, 35, 18-31. [CrossRef]

9. Khan, K.A. Solving nonograms using integer programming without coloring. IEEE Trans. Games 2020, 14, 56-63. [CrossRef]

10. Buades Rubio,]. M.; Jaume-i-Cap6, A.; Lépez Gonzalez, D.; Moya Alcover, G. Solving nonograms using neural networks. Entertain.
Comput. 2024, 50, 100652. [CrossRef]

11. Ruangwises, S. An improved physical ZKP for Nonogram and Nonogram color. J. Comb. Optim. 2023, 45, 122. [CrossRef]

12. Geem, Z.W,; Kim,].H.; Loganathan, G.V. A New Heuristic Optimization Algorithm: Harmony Search. Simulation 2001, 76, 60-68.
[CrossRef]

13. Geem, Z.W. Novel derivative of harmony search algorithm for discrete design variables. Appl. Math. Comput. 2008, 199, 223-230.
[CrossRef]

14. Saka, M.P; Hasangebi, O.; Geem, Z.W. Metaheuristics in structural optimization and discussions on harmony search algorithm.
Swarm Evol. Comput. 2016, 28, 88-97. [CrossRef]

15. Manjarres, D.; Landa-Torres, I.; Gil-Lopez, S.; Del Ser, J.; Bilbao, M.N.; Salcedo-Sanz, S.; Geem, Z.W. A survey on applications of
the harmony search algorithm. Eng. Appl. Artif. Intell. 2013, 26, 1818-1831. [CrossRef]

16. Kwon, T.Y,; Ma, S.S.; Huh, J.; Ahn,].H. Optimizing steel arch bridge components using multi-objective harmony search. Structures
2025, 73, 108389. [CrossRef]

17. Aderyani, ER.; Mousavi, S.J]. Machine learning-based rainfall forecasting in real-time optimal operation of urban drainage systems.
J. Hydrol. 2024, 645, 132118.

18. Zhang, Y.; Li, J. A Hybrid Heuristic Harmony Search Algorithm for the Vehicle Routing Problem with Time Windows. IEEE
Access 2024, 12, 42083-42095. [CrossRef]

19. Xie, G.; Xiong, Z.; Zhang, X.; Xie, R.; Guo, S.; Guizani, M. GAI-IoV: Bridging Generative Al and Vehicular Networks for Ubiquitous
Edge Intelligence. IEEE Trans. Wirel. Commun. 2024, 23, 12799-12814. [CrossRef]

20. Tang, W.; Gao, K.; Ma, Z,; Lin, Z.; Yu, H.; Huang, W.; Wu, N. Local search-based meta-heuristics combined with an improved
K-Means++ clustering algorithm for unmanned surface vessel scheduling. Int. J. Prod. Res. 2025. [CrossRef]

21. Etaati, A.; Bastam, M.; Ataie, E. Smart forest monitoring: A novel Internet of Things framework with shortest path routing for

sustainable environmental management. IET Netw. 2024, 13, 528-545. [CrossRef]

https://doi.org/10.1016/j.patcog.2008.12.003
https://doi.org/10.1016/j.procs.2021.08.194
https://doi.org/10.1109/TCIAIG.2013.2251884
https://doi.org/10.1109/TE.2011.2158214
https://doi.org/10.1007/s10489-011-0335-7
https://doi.org/10.1007/s10489-009-0200-0
https://doi.org/10.1109/TG.2020.3036687
https://doi.org/10.1016/j.entcom.2024.100652
https://doi.org/10.1007/s10878-023-01050-5
https://doi.org/10.1177/003754970107600201
https://doi.org/10.1016/j.amc.2007.09.049
https://doi.org/10.1016/j.swevo.2016.01.005
https://doi.org/10.1016/j.engappai.2013.05.008
https://doi.org/10.1016/j.istruc.2025.108389
https://doi.org/10.1109/ACCESS.2024.3378089
https://doi.org/10.1109/TWC.2024.3396276
https://doi.org/10.1080/00207543.2025.2470991
https://doi.org/10.1049/ntw2.12135

Mathematics 2025, 13, 1470 16 of 16

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

Gholami, M.; Arefi, A.; Hasan, A.; Li, C.; Muyeen, S.M. Enhancing energy autonomy of greenhouses with semi-transparent
photovoltaic systems through a comparative study of battery storage systems. Sci. Rep. 2025, 15, 2213. [CrossRef] [PubMed]
Pan, R. Plum: Prompt Learning Using Metaheuristics. Mater’s Thesis, Hong Kong University of Science and Technology, Hong
Kong, China, 2024.

Mitra, S.; Mahapatra, G.; Balas, V.E.; Chattaraj, R. Public Key Cryptography Using Harmony Search Algorithm. In Innovations in
Infrastructure; Deb, D., Balas, V., Dey, R., Eds.; Springer: Singapore, 2019. [CrossRef]

Mokhtari, M.; Taghizadeh, M.; Mazare, M. Impedance control based on optimal adaptive high order super twisting sliding mode
for a 7-DOF lower limb exoskeleton. Meccanica 2021, 56, 535-548. [CrossRef]

Li, W,; Du, W.; Tang, W.; Pan, Y.; Zhou, J.; Lin, Z. Parallel algorithm of multiobjective optimization harmony search based on
cloud computing. J. Algorithms Comput. Technol. 2017, 11, 301-313. [CrossRef]

Sharma, P. Bone age estimation with HS-optimized Resnet and Yolo for child growth disorder. Expert Syst. Appl. 2025, 259, 125160.
[CrossRef]

Li, A; Li, J.; Hu, Y.;; Geng, Y.; Qiang, Y.; Zhao,]J. A Dynamic Adaptive Ensemble Learning Framework for Noninvasive Mild
Cognitive Impairment Detection: Development and Validation Study. JMIR Med. Inform. 2025, 13, 60250. [CrossRef]
Manivannan, G.S.; Mani, K.; Rajaguru, H.; Talawar, S.V. Detection of Alcoholic EEG signal using LASSO regression with
metaheuristics algorithms based LSTM and enhanced artificial neural network classification algorithms. Sci. Rep. 2024, 14, 21437.
[CrossRef]

Zamanidoost, Y.; Ould-Bachir, T.; Martel, S. OMS-CNN: Optimized Multi-Scale CNN for Lung Nodule Detection Based on Faster
R-CNN. IEEE]. Biomed. Health Inform. 2025, 29, 2148-2160. [CrossRef]

Kumar, M.G.; Kocharla, S.; Yaswanth, N.; Swamy, T.V.N.; Prasad, U.; Vamsee, T. EHA-LNN: Optimized light gradient-boosting
machine enabled neural network for cancer detection using mammography. Biomed. Signal Process. Control 2025, 105, 107540.
Saif, M.; Abdullah, R.; Adib, M.; Ahmed, A.A.; Omar, N.A.; Mostafa, S.A. Analysis of Objective Functions for Ribonucleic Acid
Multiple Sequence Alignment Fusion Based on Harmony Search Algorithm. Fusion Pract. Appl. 2025, 17, 1-10.

Geem, Z.W.,; Tseng, C.L.; Park, Y. Harmony Search for Generalized Orienteering Problem: Best Touring in China. Lect. Notes
Comput. Sci. 2005, 3612, 741-750.

Navarro, M.; Corchado,].M.; Demazeau, Y. MUSIC-MAS: Modeling a harmonic composition system with virtual organizations to
assist novice composers. Expert Syst. Appl. 2016, 57, 345-355. [CrossRef]

Koenderink, J.; van Doorn, A.; Wagemans, J. Picasso in the mind’s eye of the beholder: Three-dimensional filling-in of ambiguous
line drawings. Cognition 2012, 125, 394-412. [CrossRef] [PubMed]

Romero, V.M.; Tomes, L.L.; Yusiong,].P.T. Tetris Agent Optimization Using Harmony Search Algorithm. Int. J. Comput. Sci. 2011,
8,22-31.

Geem, Z.W. Harmony Search Algorithm for Solving Sudoku. Lect. Notes Comput. Sci. 2007, 4692, 371-378.

Lee, G.H.; Geem, Z.W. Harmony Search for Soving Nonogram Puzzle. . Korean Inst. Intell. Syst. 2021, 31, 422-428.

Batenburg, K.J.; Kosters, W.A. A reasoning framework for solving Nonograms. In International Workshop on Combinatorial Image
Analysis; Springer: Berlin/Heidelberg, Germany, 2008; pp. 372-383.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/s41598-025-85418-z
https://www.ncbi.nlm.nih.gov/pubmed/39820541
https://doi.org/10.1007/978-981-13-1966-2_1
https://doi.org/10.1007/s11012-021-01308-4
https://doi.org/10.1177/1748301817713185
https://doi.org/10.1016/j.eswa.2024.125160
https://doi.org/10.2196/60250
https://doi.org/10.1038/s41598-024-72926-7
https://doi.org/10.1109/JBHI.2024.3507360
https://doi.org/10.1016/j.eswa.2016.01.058
https://doi.org/10.1016/j.cognition.2012.07.019
https://www.ncbi.nlm.nih.gov/pubmed/22939735

	Introduction
	Problem Definition and Optimization Modeling
	Problem Definition of Nonogram
	Optimization Modeling

	Harmony Search Algorithm and Its Variants for Nonogram
	Overview of the Harmony Search Algorithm
	Harmony Search Variants for Nonogram
	Basic Version (Version A): This Version Utilizes Only Three Basic Operators (Random Selection, Memory Consideration, and Pitch Adjustment) of the Original HS Algorithm
	Initially Confirmed Cell-Scanning Version (Version B)
	Clue-Constrained Random Generation Version (Version C)

	Experiments and Performance Analysis
	Conclusions and Future Work
	References

