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Abstract: Quantum secret sharing (QSS) is an important branch of quantum cryptography. Identity
authentication is a significant means to achieve information protection, which can effectively confirm
the identity information of both communication parties. Due to the importance of information
security, more and more communications require identity authentication. We propose a d-level
(t,n) threshold QSS scheme in which both sides of the communication use mutually unbiased bases
for mutual identity authentication. In the secret recovery phase, the sharing of secrets that only
the participant holds will not be disclosed or transmitted. Therefore, external eavesdroppers will
not get any information about secrets at this phase. This protocol is more secure, effective, and
practical. Security analysis shows that this scheme can effectively resist intercept-resend attacks,
entangle-measure attacks, collusion attacks, and forgery attacks.

Keywords: quantum secret sharing;
(t,n) threshold scheme

identity authentication; mutually unbiased bases;

1. Introduction

Secret sharing is an important research field in cryptography. It has important ap-
plications in many aspects, such as network communication, signature checking, and
identity verification. In 1979, Shamir [1] proposed the first secret-sharing protocol based
on Lagrange interpolation formula. With the rapid development of quantum technology,
quantum secret sharing (QSS) has also made great progress. In 1999, Hillery et al. [2]
proposed the first QSS protocol using the Greenberger-Horne-Zeilinger (GHZ) state. Since
then, more and more relatively complete QSS protocols [3-17] have been proposed by
scholars. Like the (1,1) threshold QSS protocol [3-5], the secret is divided into n parts.
Only n participants can cooperate to recover the secret. However, due to practical needs
and consideration of flexibility, some (¢, n) threshold QSS protocols [6-17] have received
great attention. The secret is also divided into n parts, but ¢ participants can recover the
secret and fewer than ¢ participants cannot recover the secret. In addition, to detect the ex-
istence of external attackers and check the integrity of internal participants, some verifiable
QSS protocols [11-17] have been proposed. They mainly include message authentication
(verify the correctness of the message) and identity authentication (verify the correctness of
identity). Identity authentication is a systematic process to verify the identity of legitimate
users, components and devices. Therefore, it is the security guarantee of various encryption
tasks. In the identity authentication scheme, the sender registers the secret information
as his identity information in the receiver’s database before communication. Afterwards,
the sender proves the secret identification information to the receiver, that is, his identity
information. The receiver can prove that the sender is a legitimate user before establishing
the communication channel by using an authentication scheme, so he avoids the occur-
rence of an illegal sender. In quantum cryptography, quantum secret sharing [15-17],
quantum key distribution [18-21], quantum secure direct communication [22,23], etc., all
require identity authentication. In real life, the importance of identity authentication is also
reflected everywhere.
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In 2013, Yang et al. [3] constructed an QSS using entangled state and quantum Fourier
transform (QFT). In 2015, Tavakoli [4] proposed a d-level QSS based on GHZ state and mu-
tually unbiased bases. The above two schemes are (1, n) threshold. In 2017, Song et al. [7]
proposed a d-level (t, n) threshold QSS based on Shamir’s secret-sharing scheme and the
Lagrange interpolation formula. However, restricted by private secret shares, the scheme
is infeasible. In 2020, Sutradhar et al. [8] proposed an QSS without credible participants.
Nevertheless, in the actual process, the reconstructor needs to compare secrets and the hash
value of secrets, so the reconstructor must be trustworthy. In 2020, Mashhadi [9] pointed
out the problems in the protocol of Song et al. [7] and gave an improvement scheme. In this
improved protocol, each participant applies the inverse quantum Fourier transform (IQFT)
on its own particle. Then, each participant measures and publishes the measurement results.
At this time, everyone can recover the original secret, but there is no identity authentication
process in the transmission of quantum states, and we cannot guarantee that the corre-
sponding operation is performed by the corresponding participant. In 2021, Hu et al. [17]
proposed a dynamic QSS using GHZ state in a high-dimensional quantum system. In this
protocol, each participant performs corresponding unitary operations according to its own
measurement results.

In this paper, we overcome the above problems. The innovation of this article is to
improve [8] by combining relevant knowledge. We mainly add identity authentication
content to make the protocol more secure and complete. Our protocol is a d-level (t,n)
threshold scheme that both parties can be mutually verified. Each participant can act as
a reconstructor to recover the secret. When a participant wants to recover the secret, he
can cooperate with participants in an authorized subset to obtain the secret. The direct
communication parties will conduct mutual identity authentication through mutually
unbiased bases. After passing the authentication, other participants use direct product
operation on their own particles and auxiliary particle passed by the reconstructor. Then,
the reconstructor measures the final secret after performing the IQFT. Finally, he verifies
whether the correct secret is obtained by comparing the secret and the hash value of the
secret published by the dealer.

The rest of the article is organized as follows. In Section 2, we give the preliminary
knowledge needed for this article. In Section 3, we propose a (t, 1) threshold quantum
secret sharing scheme with identity authentication. In Section 4, we give the correctness
proof of the agreement. In Section 5, we analyze the security of the protocol. In Section 6,
we compare and analyze this protocol with some previous protocols. In Section 7, we give
a specific example to better understand the protocol. In Section 8, we summarize the full
text and draw conclusions.

2. Preliminaries

In this section, we introduce some basic knowledge needed in this article, including
quantum measurement, mutually unbiased bases, QFT, IQFT, and CNOT operation.

2.1. Quantum Measurement

Quantum measurement can be described based on a set of measurement operators { M }.
These measurement operators satisfy the completeness equation:

ZM}MZ-:L 1)

When the quantum state |¢) is measured, the probability that the result is i is:

p(m) = (| M] M;|p). )
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After measurement, the quantum state collapses as follows:

M;|p)

__Vile) 3)
(pIM]M;]p)

!/
9=
Therefore, quantum measurement will change the original state of the quantum state.

2.2. Mutually Unbiased Bases

Let d be an odd prime number and Z; be a finite field. Suppose Vi = {|u;)}4_,,
Vo = {|v >} __, are two sets of standard orthogonal bases on d-dimensional Hilbert space.

If they satlsfy
1

u;|v)| = —.

| (uilv;)| 7

Then these two groups of bases are called mutually unbiased bases. If any two sets of
basesin V = {V3,V,,- -,V } are mutually unbiased, V is called mutual unbiased bases

set. Additionally, there are at most 4 4- 1 elements in set V. Specifically, the calculation base
{|z)}, z € Z4, is one of them. The remaining d groups can be expressed as:

)

el \/» Z W l+]z (5)

wherel,j € {0,1,--- ,d—1},w = e%, j represents the sequence of bases, and I represents
vector sequence in a set of bases. They satisfy the following relation:

A ®)

Additionally, among mutually unbiased bases, the following unitary operation makes them
transform each other:

(ellel)| =

Xy = Z w"|u) Z W' ), (7)

let
Uy = X5Y7. (8)
We have )
+
ux,y|e{> |e§+z> )

2.3. QFT, IQFT
The QFT in the d-dimensional system can be expressed as follows:

Flx) = w*¥y). (10)
L
where w = esz, X,y € Z;. Similarly, the IQFT can be expressed as:

Flx) = f Zw"‘yly (11)
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It is easy to know that both discrete QFT and discrete IQFT are unitary transformations. In
addition, by
i1 0, s#0modd,
) W= (12)
=0 d, s=0modd,

We can obtain
FY(F|x)) = [x). (13)

2.4. CNOT Operation

CNOT is a two-qubit gate. In the d-dimensional system, it can be expressed as follows:

CNOT(|x1), |x2)) = ([x1), |x1 © x2)), (14)

where |x1) is control bit, |x;) is the target bit, x1, x, € Z;.

3. Proposed Protocol

In this section, we propose a quantum secret-sharing scheme with d-level and
(t,n) threshold. Participants can verify each other mutually. Dealer Alice distributes
secret shares among the set of participants B = {Bob,Boby,- - - ,Bob,}. At least ¢ participants
can recover the secret. As the participants mutually verify, the protocol is more secure and
practical. The entire scheme consists of three stages, namely the secret-sharing stage, iden-
tity authentication stage, and secret-recovery stage. The continuous identity authentication
is included in the entire secret-recovery phase. Here, we use Figure 1 to briefly represent
the entire process. The specific scheme of the protocol is shown below.

Secret sharing phase

l

Identity authentication phase

Secret recovery phase

Figure 1. The process of this scheme.

3.1. Secret-Sharing Phase

In this phase, The dealer Alice performs the following operations:
(I) Alice selects a binary symmetric polynomial F(x,y) of degree (t — 1) in the Z;.
The (t — 1) degree polynomial can be defined as:

F(x,y) = S+ a1ox + aqry + asx* + agy® +apxy + -+ a1, 3y, (15)
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where Z; is a finite field, S is secret, d is an odd prime number, coefficients ajj € Za, ajj = ajj,
i,je{0,1,---,t—1}.

(ID Alice calculates polynomials F(x;,y) (i = 1,2,---,n), respectively, by (15) and
sends them to the corresponding participants Bob; through a secure classical channel,
where x; € Z; is the public identity information of the corresponding participant Bob; with
X #xjfori 75]

(ITT) According to the characteristics of binary symmetric polynomials, we define the
following two groups of constants:

ki’j = F<xi’ x]) = F(xj/ xi) = kj,i/ (16)

skij = F(xi, x;) = F(xj,x;) = vkj;. (17)

Remark 1. Here, these four values are the same. However, in the following text, different symbols
have different meanings. k; j and k; ; represent the symmetry keys during encryption and decryption.
sk j and vk ; represent one’s own identity information, used to indicate one’s identity, which can be
understood as one’s own signature information.

(IV) Alice chooses a one-way hash function /(). Then, Alice discloses the hash algo-
rithm and hash value H = k(S) of the secret S.

3.2. Secret-Recovery Phase

Suppose Bob; (reconstructor) wants to get the secret S. Then at least another
t — 1 participants need to be selected to form a qualified subset with him to jointly re-
cover the secret S. Let us suppose By = {Bobj, Boby, - - -, Bob;} is a qualified subset from all
the qualified subsets. Each participant in the set has the ability to independently produce
a single photon. The corresponding participant will perform the following processes to
recover the secret:

(I) Each participant Bob;, i = (1,2,--- ,t), calculates the shadow (S;) of the share
according to own polynomial and prepares computational basis state |S;) with d-level.

t
Si=F(x,0) [
J#

P mod d. (18)
i X

Remark 2. Here, is the modular multiplicative inverse of the integer (x; — x;). According

Xi
to the recent literature, this calculation has a fast calculation method. We will not expand here as
readers can refer to [24].

(ID) Bob; applies QFT on the computational basis state |S1) and gets the result |¢1).
¢1) = QFT(|$1)) = —= Z W [k). (19)

(II) Bob; again prepares computational basis state |0) with d-level and performs
CNOT operation according to |¢1) and |0). |¢;1) is the control bit and |0) is the target bit.
When the operation is completed, Bob; obtains the entangled state |¢s).

d—

fk

The subscript H and T here are used to distinguish two particles.
(IV) Bob; and Bob, mutually conduct identity authentication:

1 d—1
[92) = CNOT(|¢1),]0)) = CNOT(—= Y w1 [k), |0)) = } Y S R k. (20)
d =0
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Step 1. Bob; prepares a d-level initial quantum state |e)), two random numbers ¢y, p;,
and opens p;. Bob; performs the unitary transformation Up, ¢, on the initial quantum state
and obtains a new quantum state [¥;) = Up, ¢, |¢f) = |ej} ). Then according to own polyno-
mial F(x1,y), Boby can obtain skj , = F(x1, x2). Subsequently, Bob; performs the unitary
transformation U, , 0 on [¥1) and obtains [¥ ) = \e;}l N sk12>‘ Bob; again determines a
random moment t 5. Lastly, Bob; sends messages Ex,, (c1, tle), which has been encrypted,
and |¥; ) to Bob, through secure classical channel and quantum channel, respectively.

Step 2. After Bob; receives the quantum state and encrypted information, he first
calculates vky 1 = F(x2,x1) according to the own polynomial F(x,,y). Afterwards Bob,
performs the unitary transformation U_, , o on [¥12) and obtains [¥1)’ = |e;1] tsk12—0ks ).
Then, Bob; obtains a number pair (c1,t12) = Dy, (E,,(c1,t12)) by decrypting the received
classic information. Finally, Bob, uses the basis {|¢;') }(I € Z;) to measure |¥;)’ to obtain
the measurement result (p;1)’ and compares (p;)’ with the published random number p;.
If (p1)’ = p1; then, Bob, considers that all the information comes from Bob;. The identity
information of Boby is authenticated. Otherwise, Bob, considers that the message does not
come from Bob; or is destroyed in the middle of the process and terminates this agreement.

Step 3. After Bob, confirms that the message originated from Boby, he also prepares
a d-level initial quantum state |e]), two random numbers c;, p2, and opens p,. Then,
Bob, performs the unitary transformation Uy, ¢, on |e]) and obtains a new quantum state
[¥21) = Upy,e,le)) = |ej3). Bob, decides another moment £, 1 and sends encrypted message
E,, (c2,t21) to Boby. Lastly, Bobs is ready to send |¥5,1) to Boby at moment #5 ;.

Step 4. Bob; decrypts the encrypted classical information to obtain a random number
pair (c2,t21) = Dy, (Ekz1 (c2,t21)). After receiving the message particle from Bob, at mo-
ment f5 1, Boby selects the basis {|¢;?) } (I € Z;) to measure |¥,1) to obtain the measurement
result (p2)’ and compares (p;)’ with the published random number p;. If (p2)’ = p2, Boby
believes that all the information comes from Bob, and Bob, has received an own message.
So, Bob; will send the auxiliary state |k)7 in his own hand to Bob, through the secure
quantum channel at moment ¢;,. The entire identity authentication process is shown
in Figure 2 below:

Remark 3. Here, secure quantum channel refers to a quantum channel that is not subject to
external interference. That is, an authenticated quantum channel. Participants can engage in
quantum direct communication.

|V"1:>
Ek:Lz[clJ tl,z)

BDb1 Bobz vee

V":,l) ’

g E,,(cait21) \_
"i’; .~+1>
Egypn (o tiinn)

BDbt ves ‘w 1;> BDbi

Ekpy (Civns tivn)

Figure 2. Identity authentication process between participants in this scheme.
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(V) After Bob; receives |k)r at moment f1 5, he treats |k) 1 as the control bit and |S;)
as the target bit. Then, Bob, performs controlled black box operation Cy on these two
quantum states, where Cj can be expressed as:

Cr : [k)7]S2) — [K)rUX[Sy). (21)

U is a linear transformation and it satisfies U|S,) = w®2|S;). That is to say, |S;) is an
eigenvector of U with an eigenvalue of w>2. After performing the controlled black box
operation, Bob; next conducts the direct product operation of |S;) and |k)7. Then, the
whole quantum state system becomes |¢3).

d—1
) = (1@ 1®ck><¢13kOw51k|k>H|k>T|sz>>

1
WS [k) | k) TU¥ [ S3)
(22)
w (k) [k 72K [ Sy)

w552k k) k) 7Sa).

(VI) Each participant, Bob; and Bob; 1, repeat the above mutual authentication and
operation process of Bob; and Bob,. When Bob; and Bobs complete mutual authentication,
Bob, will send the auxiliary state |k) in his own hand to Bobjs through the secure quantum
channel at moment #; 3. Bobs also performs a similar controlled black box operation first.
Then, he performs the direct product operation on his quantum state |S3) and the whole
quantum system, and so on, until the last participant Bob; completes the direct product
operation. At this time, the whole quantum system becomes ¢y ).

t
1 4= (Csk
= — i=1

k=0

k) ulk)T]S2)[S3) - - - |St)- (23)

(VII) When Bob; completes the direct product operation, Bob; completes the identity
authentication process with Bob; in the same way. After completing the authentication oper-
ation, Bob; retransmits the auxiliary state |k) back to Bob; through a secure quantum chan-
nel. After Bob; receives the auxiliary state |k)r again, he performs CNOT operation on
the two particles in his hand, where |k) g is control bit and |k) is target bit. At this time,
the whole quantum system becomes |¢s).

141 (s
#5) = (CNOT(—= P = R)nlkyr)[92)159) -+ 151)
. 24
1 d=1 (¥ sk (24)
= ﬁ 2 wi=t kY [0)7]S2)[S3) - - |Sh).
k=0

(VIII) Bob; uses computational basis to measure the quantum state |k)7 which has
been handled by the CNOT operation. If the measurement result is |0), Bob; believes
that his auxiliary particles have not been destroyed or replaced. Bob; will continue to
perform the following steps. Otherwise Bob; has reason to believe that the auxiliary state
is damaged or replaced during the transmission process, thus ending the entire agreement.
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(IX) Bob; applies IQFT on his first quantum state |k)y and measures the output to

obtain the final secret S’ = Z S; mod d.
=1

(X) Boby calculates H = h(S") according to hash function 4() released by Alice and
compares it with public H = h(S). If H = H, S, the secret obtained by Bob; is the real
secret. If not, Bob; has reason to believe that there is at least one dishonest participant, thus
terminating the agreement.

4. Correctness Analysis

In this section, we show the correctness of the protocol in the secret recovery phase
through two theorems.

Theorem 1. The sum of t shares of participants is the secret to be recovered.

Proof. According to the Lagrange interpolation formula, we have

t t oy 1 .
Y Simodd = F(x,0)]] I 4. F(x,0 H mod d
= =2 x]' — X1 1 x] xt
(25)
— F(0,0)
=S.

O

Theorem 2. When Boby applies the IQFT on the first quantum state |k) g in his hand and measures
the output result, he could gobtain the secret S.

Proof.

d-1 (v s, d—1
(7 @ (o) 0

1=0

- 1 '715‘k

~( =T o5 TR0
1
d

t 1 d—1 d—1 (Z S;— (26)
|ZSZ mOdd>H+E Z Zw' H)‘O>T
k=0 i=1 t k=0
1=0l#£Y. S;
i=1
d—1

t
1
:(|Zsim0dd>H+H Y. 0[)m)[0)r
=1 I=0£Y S:
i=1

t
=[)_Si mod d)|0)1
i=1

=[F(0,0))n|0)T
=|$)ul0)7-
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5. Security Analysis

In this section, we analyze the security of our scheme against quantum attacks [25-29].

5.1. Intercept—Resend Attack

Suppose that there is an eavesdropper, Eve, who wants to steal secret informa-
tion by performing an intercept-resend attack. When Bob; communicates with Bob;,
there will be three quantum states interacting through the quantum channel. They are
|¥iit1) = |ep sk 1+1> [Fir1i) = |e;,"l:11), and auxiliary state |k)r. When Eve intercepts
|'¥ii+1) and |¥i11 i), she needs to obtain information by measuring, but Eve does not know
the measurement basis c; and c;;1. If Eve arbitrarily chooses a set of bases to measure,
the probability of success is % when d — oo, % — 0. Therefore, the possibility of success
is negligible. Even if Eve succeeds, |¥;;11) and |¥;11 ;) are also just the quantum states
needed for Bob; and Bob; 1 to verify their identities. These two quantum states have no
information about secrets. As for auxiliary state |k)r, it is only the control bit in the secret
recovery process and also has no information about secrets. Therefore, the intercept-resend
attack is not successful.

5.2. Entangle-Measure Attack

In this attack, the eavesdropper Eve prepares an auxiliary state |e). By using uni-
tary transformation to entangle the auxiliary state |e) onto the transmission particle, Eve
measures the auxiliary state and compares it with the original result to obtain relevant
information about the secret. In our scheme, only particle |k)r is transferred between
participants in the secret recovery phase. Therefore, suppose that when Bob; transfers
particle |k)7 to Boby, Eve performs the d-level CNOT operation to entangle the auxiliary
state |e) to the particle |k)7. At this time, |¢,) becomes |¢7)’.

d—1

fko

When Bob; completes its own operation and transfers particle |k) 1 to Bobs, Eve performs
d-level CNOT operation again. Where particle |k)7 is the control bit and auxiliary state
|k + e) is target bit. At this time, |$3) becomes |¢3)’.

|¢2)" = (CNOT([k)1, le)))|¢2) = W k) [k 7|k @ e). (27)

|¢3)" = CNOT(|k>T,|k€B€> )|3)

N (S1+52)k 1) 4 1K) 71S2) [k @ k
\/;i];)w k) rlk)7|S2) | e) (28)

_ 1
Vi

Next, Eve obtains the result ¢ by measuring the auxiliary state particle. She concludes
that the particles transmitted between participants are the same. The particle |k)1 has no
information about sharing the secret. She cannot obtain any information about the secret.
Therefore, the entangle—measure attack is not feasible.

w5k ) 1K) 7[S2) fe).

5.3. Collusion Attack

In the collusion attack, some collusive participants want to obtain information about
others’ sharing of secrets through cooperation. Then, they can obtain the original secret.
In our protocol, the sharing of secrets is calculated by each participant Bob; through the
own share polynomial F(x;,y). Each participant only knows his own share. In addition,
the sharing of secrets will not be disclosed or transferred to other participants. As a
consequence, it is impossible for participants to obtain the others’ sharing of secrets. So
collusive attack is not feasible.



Entropy 2023, 25, 827

10 of 15

5.4. Forgery Attack

Suppose the participant Bob; wants to perform a forgery attack. Then, in the identity
authentication phase, to prove his identity to Bob;_; and Bob; 1, Bob; must use the correct
authentication information. He cannot use forged information, or the agreement will end
early. In the secret-recovery phase, on the one hand, if Bob; forges an auxiliary state |k)7’
and transmits it to Bob; 1, then the measurement result of Bob; in (VIII) will not be |0).
Bob; believes that the auxiliary state has been damaged and terminates the agreement
in advance. On the other hand, if Bob; uses his sharing of S; to forge a false computational
basis state |S;)’, Bob; will get the wrong secret S’ eventually. By comparing (S") # h(S),
Bob; believes that at least one participant is dishonest and ends the agreement. Therefore,
our protocol can resist forgery attacks.

6. Scheme Comparison

In this section, we analyze the quantum resources needed by our protocol and compare
it with some previous protocols.

The protocol of Yang et al. [3] operates in d-dimensional space; it is a (1, 11) threshold
scheme. The scheme needs (n — 1) message particles and performs n number of QFT
operations and n number of measure operations. It uses fewer quantum resources, but the
scheme is not flexible enough. This scheme can resist any computational attack, but it
cannot resist collusion attacks.

The protocol of Song et al. [7] operates in d-dimensional space, it is a (¢, n) threshold
scheme. The secret reconstructor prepares t message particles and distributes (¢t — 1) num-
ber of them to the other participants. The reconstructor starts with an QFT. Until the other
participants complete the operation, the reconstructor performs an IQFT and measures
particles to obtain the secret. Finally, the reconstructor verifies it through the hash function.
This protocol can resist various common attacks. However, after some calculation and
analysis, due to the mutual entanglement between particles, simple IQFT cannot recover
the secret.

The protocol of Sutradhar et al. [8] is d level with (¢, n) threshold. Using the Lagrange
interpolation formula, the reconstructor first applies QFT to a particle. After each par-
ticipant adds its share to the whole recovery process, the reconstructor uses the IQFT to
recover the secret and measures to obtain the secret. The whole secret recovery process
is repeated twice using two polynomials to restore the secret and the hash value of the
secret, respectively. Through this method, the reconstructor can verify the correctness of
the message. However, the protocol must require a trusted reconstructor, so the protocol
can not resist collusion attack and can resist other common attacks.

The protocol of Mashhadi et al. [9] is an improvement to the protocol of Song et al. [7].
The protocol points out the inadequacy of its entanglement and proposes an improved
scheme. Since the IQFT performed by the reconstructor cannot obtain the secret, ¢t par-
ticipants are required to perform IQFT in the entanglement system and summarize the
measurement results to obtain the initial secret. Therefore, the protocol cannot resist
intercept-resend attacks and collusion attacks.

Our protocol is also d level with (¢, n) threshold. The dealer uses the binary symmetric
polynomial to distribute the share polynomial. Each participant can use its own share
polynomial to calculate the secret share and complete the identity authentication process.
The protocol uses 2t number of message particles to complete the mutual authentication
process of both parties. Finally, the reconstructor restores the secret by performing IQFT
and obtains the secret through measurement. Although our protocol uses more quantum re-
sources, every step is necessary. The identity authentication process will make the protocol
more secure and reliable. Our protocol can also resist some attacks well. The comparison
of these protocols is shown in Table 1 below.
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Table 1. Comparison of parameters among our protocol and previous protocols.

Protocols Yang [3] Song [7] Sutradhar [8] Mashhadi[9] Our
(t,n)threshold N Y Y Y Y
QFT n 1 2 1 1
IQFT - 1 2 t 1

measurement " 1 5 ¢ 241

operation

dimensional space d d d d

message particle n—1 t t+1 t 3t+1
hash function 2 2 2 2 2
intercept-resend - Y Y N Y
entangle-measure - Y Y Y Y
collusive attack N Y N N Y
forgery attack - Y Y Y Y
identity authentication N N N N Y

7. Example

In this section, in order to better understand our protocol, we give a quantum secret
sharing scheme with (4,6) threshold. In this protocol, t =4, n=6,d=17,S =2.

7.1. Secret-Sharing Phase

Alice performs the following operations:
(I) Alice selects a binary symmetric polynomial F(x, y) of degree 3 in the Z;.

F(x,y) =2+ 7x + 7y + 3x* + 3y> + 9xy + 4x° + 4y° + 5x%y + 5xy/ 29)
+10x%y + 10xy> + 8x%y? + 3x°y? + 3x%y% + 15233,
where secret S = 2.
(IT) Alice calculates polynomials F(x;,y) (i = 1,2, - - ,6), respectively, by Equation (29)
and sends them to the corresponding participants Bob; through a secure channel, where
x; = i. Here, the polynomial obtained by each Bob; is:

Bob; : F(1,y) = 16 + 14y + 2y* + 15¢°;

Bob, : F(2,y) = 9 + 6y +y* + 3y°;

Bobs : F(3,y) =5+ 9y +y* + 7> 0)
Boby : F(4,y) = 11 + 15y + 3y* + 15¢°;

Bobs : F(5,y) = 16y + 8y* + 15°;

Bobg : F(6,y) = 14 + 4y + 124°.

(ITT) According to the characteristics of binary symmetric polynomial, constants have
the following relationship: sk; ; = vk;; = k;; = kj; = F(x;,x;) = F(x;j, x;). According to the
selected binary symmetric polynomial and the identity information of each participant, we

can obtain:

sk12 = vkyy = k12 = ko1 = F(x1,x2) = F(x2,x1) =2

skas = vksa = ks = k3p = F(x2,%3) = F(x3,x2) = 15; 31)
sksq = vky3 = k34 = kg3 = F(x3,x4) = F(x4,x3) = 12;

skyy = vki4 = ka1 = k14 = F(xg,x1) = F(x1,%4) = 10.

(IV) Alice chooses a one-way hash function /(). Then, Alice discloses the hash algo-
rithm and hash value H = h(2) of the secret S = 2.
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7.2. Secret-Recovery Phase

Suppose Bob; (reconstructor) wants to get the secret S. Bob; chooses Bob;, Bobs, and
Boby to help him recover the secret. Each participant has the ability to independently
produce a single photon.

(I) Each participant Bob;, i = (1,2,3,4), calculates the shadow (S;) of the share
according to the own polynomial F(x;, y).

2 3 4
2-13-1 4-1
Similarly, S, = 14, S3 = 3, S4 = 6. Then, they separately prepare a 17-level computational
basis state |13), |14), |3), and |6).

(ID) Bob; applies QFT on the computational basis state |13) and obtains the result |¢7).

Bob; : S; = F(1,0) -

mod 17 = 13. (32)

16
1) = QIT(13)) = 2 ) ). @)
=0

(ITT) Bob; again prepares computational basis state |0) with 17-levels and performs
CNOT operation according to |¢1) and |0). |¢;) is the control bit and |0) is the target bit.
When the operation is completed, Bob; obtains the entangled state |¢s).

16 16
|¢z>—CNOT<|4>1>,o>>—CNOT<jT7k wl3kk>,|o>>—\/11f7k WKk (34)
=0 =0

(IV) Bob; and Bob, mutually conduct identity authentication:

Step 1. Bob; prepares a 17-level initial quantum state |¢J), 2 random numbers ¢; = 6,
p1 =8, and opens py. Bob; performs the unitary transformation Uy, ., = Usge on the initial
quantum state and obtains a new quantum state [¥;) = Usg|ed) = [eS). Then, according
to the own polynomial F(1,y), Bob; can obtain sk;, = F(1,2) = 2. Subsequently, Bob;
performs the unitary transformation U on |¥;) and obtains [¥1,) = Upple§) = [€,)-
Bob; again determines a random moment ¢; , = 9. Lastly, Bob; sends message Ekl,z (6,9),
which has been encrypted, and |¥; ») to Bob, through secure classical channel and quantum
channel, respectively.

Step 2. After Bob, receives the quantum state and encrypted information, he first
calculates vk, ; = F(2,1) = 2 according to the own polynomial F(2,y). Afterwards, Bob,
performs the unitary transformation U_» on |¥;,) and obtains [¥;)’ = U_pgleS)) =
|e95_,) = |€§). Then, Bob, obtains a number pair (6,9) = Dy, (E,,(6,)) by decrypting the
received classic information. Finally, Bob, uses the basis {|ef) } (I € Z;7) to measure |¥;)’
to obtain the measurement result (p1)’ and compares (p;1)’ with the published random
number p; = 8. If (p1)’ = 8, then Bob, considers that all the information comes from Bob.
The identity information of Bob; is authenticated. Otherwise, Bob, considers that the mes-
sage does not come from Bob; or is destroyed in the middle of the process and terminates
this agreement.

Step 3. After Bob, confirms that the message originated from Boby, he also prepares
a 17-level initial quantum state |¢]), 2 random numbers c; = 5, p, = 12, and opens p,.
Then, Bob, performs the unitary transformation Uy, ,, = Ujp5 on |e)) and obtains a new
quantum state |¥51) = Uja5/e]) = |e3,). Bob, decides another moment f51 = 7 and sends
encrypted message Ey, , (5,7) to Bob;. Lastly, Bob; is ready to send |¥2,1) to Bob; at moment
t2’1 =7.

Step 4. Bob; decrypts the encrypted classical information to obtain a random num-
ber pair (5,7) = Dx,,(Ek,,(5,7)). After receiving the message particle from Bob, at
moment t,7 = 7, Boby selects the basis {|¢})}(I € Z;7) to measure [¥,;) to obtain the
measurement result (p;)" and compares (p;)’ with the published random number p; = 12.
If (p2)) = p2 = 12, Boby believes that all the information comes from Bob; and Bob, has
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received an own message. So, Bob; will send the auxiliary state |k)r in his own hand to
Bob; through the secure quantum channel at moment ¢, = 9.

(V) After Boby receives |k)T at moment t1, = 9, he treats |k)7 as the control bit and
|S2) = |14) as the target bit. He performs controlled black box operation Ci on these
two quantum states. After performing the controlled black box operation, Bob, next conducts
the direct product operation on |S;) = |14) and |k) 1. Then the whole quantum state system
becomes |¢3).

6) = (101G 6w13k|k>H|k>Tu4>>

1 1
v1 k

W |k) k)T U*[14)

ﬁ\

(35)

ﬂ\

Sr
16
2 13k|k H|k 14k|14>
16
Z (319K k) k) 7[14).

(VI) Each participant Bob; and Bob;; repeat the above mutual authentication and
operation process of Bob; and Bob,. When Bob; and Bobs complete mutual authentication,
Bob, will send the auxiliary state |k) 7 in his own hand to Bobs through the secure quantum
channel at moment f,3 = 15. Bob3 also performs a similar controlled black box opera-
tion first. Then, he performs the direct product operation on his quantum state |S3) = |3)
and the whole quantum system, and so on, until the last participant Bob; completes the
direct product operation. At this time, the whole quantum system becomes |¢4).

|¢4 \/»Zé (l3+14+3+6)k|k>H|k>T|14>|3>|6>
1 = (36)
= 5 L ulrliafsle)
=0

(VII) When Bob, completes the direct product operation, Bobs completes the identity
authentication process with Bob; in the same way. After completing the authentication
operation, Boby retransmits the auxiliary state |k)1 back to Bob; through a secure quantum
channel. After Bob; receives the auxiliary state |k)r again, he performs a CNOT operation
on the two particles in his hand, where |k) j is control bit and |k) is target bit. At this time,
the whole quantum system becomes |¢s).

1 16

V175

Zw2k|k )E[0)T[14)[3)16).
V17 = 0

[¢5) = (CNOT(—= Y w*k)nlk)1))[14)[3) 6)

(37)

(VIII) Bob; uses computational basis to measure the quantum state |k)7 which has
been handled by CNOT operation. If the measurement result is |0), Bob; believes that his
auxiliary particles have not been destroyed or replaced. Bob; will continue to perform the
following steps. Otherwise Bob; has reason to believe that the auxiliary state is damaged
or replaced during the transmission process, thus ending the entire agreement.
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(IX) Bob; applies IQFT on his first quantum state |k)y and measures the output to
obtain the final secret S’ = 2.

1 16
V17 (5

16

2 W™ IQFT|k) 1) [0) 7

IQFT ® I(— Y w?|k) |0V 7)

16

i Z 1)) 10) 7

k —
16 16

7%2; ZIk‘l >T
16
172\2H+1i7 Y (%@ ) 0)r

1=0,1#2 k=0

17 2 0l g

1=0,1#£2
=[2)p[0)7.

(38)

(X) Bob; calculates H' = h(2) according to hash function /() released by Alice and
compares with public H = h(S). If H = H, S, the secret obtained by Bob; is the real
secret. If not, Bob; has reason to believe that there is at least one dishonest participant, thus
terminating the agreement.

8. Conclusions

In this article, using QFT, IQFT, mutually unbiased bases, and other relevant knowl-
edge, we propose a quantum secret-sharing scheme that both sides of the communication
can mutually verify the identity. Each participant holds his own share which will neither be
disclosed nor transferred. Only at the secret-recovery stage, each participant will directly
integrate his information into the whole quantum system, which avoids being stolen. Any
participant has reason to recover the secret and only the reconstructor obtains the secret
and is responsible for it. Since only t participants can recover the secret, the protocol is
more flexible and practical. After our analysis, the protocol can resist intercept-resend
attacks, entanglement-measurement attacks, collusion attacks, and forgery attacks, so it is
safe enough.
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