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Abstract

In this work, we examine ideas connected with the noncommutativity of spacetime and its
realizations in string theory. Motivated by Matrix Theory and the AdS-CFT correspon-
dence, we propose a survey of selected noncommutative objects, assessing their implications
for inflation, gauge theory duals, and solvable backgrounds. Our initial pair of examples,
related to the Myers effect, incorporate elements of so-called “giant graviton” behavior. In
the first, the formation of an extended, supersymmetry-restoring domain wall from point-
brane sources in a flux background is related to a nonperturbative process of brane-flux
annihilation. In the second, we reexamine these phenomena from a cosmological vantage,
investigating the prospect of slow-roll inflation in the noncommutative configuration space
of multiple d-branes. For our third and final example, we turn to the solvable pp-wave
background, outlining a combinatorial, permutation-based approach to string physics which
interpolates between gauge theory and worldsheet methods. This “string bit” language will
allow us to find exact agreement between Yang-Mills theory in the large R-charge sector and

string field theory on the light cone, resolving some previous discrepancies in the literature.
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Chapter 1

Introduction: The

Noncommutative Bestiary

What are the fundamental degrees of freedom of string theory? In the earliest days of the
first string revolution, the answer seemed simple enough: strings, with their two-dimensional
worldsheets, were the only renormalizable choices. Yet as our understanding of the theory’s
dual and nonperturbative structures grew over the following decade, a satisfactory expla-
nation proved more and more elusive. The cast of characters in Planck-scale physics grew
beyond the bounds of the formalism to contain it. An explosion of solutions grew up around
the problem—matrix models, holography, M-theory—each laying claim to its own regime of
validity. Yet which of these descriptions, if any, underlies the rest is no more a closed issue
now than it was before the second string revolution of the mid 1990s. Paradoxically, as
string theory enters now its third decade as a framework for quantum gravity, it has be-
come nearly impossible for us to say just what exactly the schema called string theory is a
physical theory of.

Not that the notion of strings has been abandoned entirely. Despite revolutions in our
understanding of the theory’s nonperturbative structure, it remains true that “fundamen-
tal,” perturbative strings are the correct description of most phenomena at weak coupling.

Yet the idea that strings and strings alone were the key players in Planck-scale physics met



its death in the early 1990s, when Polchinski and others unleashed the phenomenon of what
came to be known as D-branes. These nonperturbative, solitionic objects, it was found,
carried fundamental charge under the mysterious Ramond-Ramond, fields, and their char-
acterization as planes on which strings could end made manifest deep connections between
open and closed string theories. These connections, part of a new web of nonperturbative
dualities which emerged in the mid-1990s, then implicated the several independent per-
turbative string theories in existence as part of a connected whole [2]. These newfound
dualities, along with the realization that low-energy limits of D-branes could produce a
geometric reformulation of gauge theory, set the stage for developments well into the next
decade.

Still, these newfound connections left the question of fundamental constituents relatively
untouched. While the duality web connected various perturbed limits of the overarching
theory (tentatively called “M”), it had also served to blur the distinction between strings
and branes. In the context of S-duality, it was soon found that the fundamental string
was interchanged with the much heavier D-string under strong-weak coupling duality, while
their bound states filled out a complete SL(2,Z) structure of dyonic objects [3]. In this way,
the supposedly-elementary perturbative strings found themselves inextricably linked with
the solitionic nonperturbative D-branes, and the notion of which was truly fundamental
began to seem more than ever a matter of description.

Unfortunately, no formalism has yet been found for treating strings and branes on a
completely equivalent footing, though important strides have been made. Most notably, the
Matrix Theory proposal of Banks, Fischler, Shenker, and Susskind [4], along with similar
proposals in Type II1B, has managed to relate branes of different dimensions to one another
through a common language. In such an approach, the fundamental degrees of freedom
are taken to be the pointlike DO-branes of Type IIA, and their various bound states can
be shown to generate the nonperturbative spectrum of the theory. The conjecture, then, is

that in a certain limit, the DO-branes are described by a supersymmetric matrix quantum



mechanics [2]
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the (quantum) solution set of which gives the full nonperturbative spectrum of the theory.
From the vantage of string theory, this is a revelation: the operative language is no
longer the extended objects but the familiar point particle, and we have access once again
to the techniques of standard quantum field theory. However, the significance of this more
conventional theory runs deep. In the interpretation of such a theory, we must remind
ourselves that the X* are not merely quantum fields but coordinates on a target spacetime,
and the recognition that these gauge theory coordinates imply a matriz-valued geometry
constitutes a profound conceptual shift. In the vocabulary of matrix coordinates, diagonal
matrices represent the N eigenvalue/coordinates of N distinct particles, a reduction to clas-
sical geometry, whereas non-diagonal matrices represent new objects entirely, a departure
from the realm of distinct, well-separated objects. Indeed, solutions with [X?, X7] # 0 play
a fundamental role, generating extended matrix objects to be identified with D-branes.

This obviously represents a severe departure from traditional notions of space and time.
At the string scale, we are told, the coordinates of our familiar geometry are no longer c-
numbers but matrix-valued noncommuting objects. Only for simultaneously-diagonalizable
matrices can we speak of N distinct point-like objects. All other configurations, subsumed
in the language of “collective coordinates,” must be matched with known objects in the
large-N and long-wavelength limits. Certainly, the idea of the X’ as coordinates on a
smooth manifold seems all but lost.

However, this was not the first time an underlying structure for string theory had been
suggested. Witten, in his early work on string field theory [5], has argued for a noncom-
mutative product on the algebra of string fields, and he, along with others, had cham-
pioned Connes’s work on gauge theories in noncommutative geometry [6]. What’s more,
developments in compactification geometry in the early 90s had yielded Landau-Ginzburg

descriptions of Calabi-Yau manifolds away from the large-volume, geometric limit [7], and



subsequent results in mirror symmetry were driven by increasingly non-geometric, field
theory computation [8].

Yet it was not until the late 90s that simple, calculable noncommutative theories were
discovered in the context of strings. By examining the worldvolume theories of D-branes
in NS B field backgrounds, it was Seiberg and Witten [9] who found the first decoupling
limit in which the low-energy theory on D-branes became noncommutative. In the resulting
theories, the product between quantum fields was no longer simple multiplication, but an
all-orders derivative expansion based on a point-splitting limit. As a consequence, these
models illustrated principles which were suspected to be generic to a full theory of quantum
gravity, among them the existence of stable extended objects, the presence of quasi-nonlocal
interactions, mixing between effects in the deep infrared and far ultraviolet, and an absence
of local observables [10].

However, these noncommutative theories are but one example of a class of string theory
limits which include the noncommutative open string (NCOS) [11] and the BMN [70] limits!
—theories derived from considerations of strings in the presence of background gauge fields.
In most cases, it is the deforming presence of NS-NS or RR background fields that provides
the couplings which modify geometry in the low-energy description. Tied intimately to
puzzles regarding the treatment of RR fields in sigma-model actions, these novel limits
of conventional string theory have provided controlled laboratories for exploring what are
hoped to be generic features of the full theory.

Yet among the many effects stemming from considerations of noncommutativity, the
most prevalent and useful from the vantage of D-brane physics has been the “dielectric” or
Myers effect [12]. Beginning from multiple coincident D9-branes in Type IIB, it was Myers
who generalized the long-wavelength Born-Infeld action by demanding consistency under
T-duality. The result, a nonabelian action for branes in curved backgrounds, given in [12],

takes the form

Spr =T, / "o Tr (e¢ det(P[Eup + Eoi(Q™" = 8)VEjp] + 2ma/ Fup) det(Q;i)) (1.2)

IThe latter to be discussed below.



with P the pullback, E,, = G, + By, and
Q) = 0! + 2mic/ [@, O¥| Ey;. (1.3)

Here ®° is the nonabelian target space coordinate, and Q§~ is the term whose expansion in the
weak-field limit gives the double-commutator term in (1.1) above. Even more intriguingly,

the standard Chern-Simons term is rewritten in the form
Scs = ,up/ Tr (73 [eQmali‘Pi‘I’ (Z C(”)eB)} e2m‘/F) , (1.4)
with ig the interior product which maps p-forms to p — 1-forms:
1o Fypgopy d! ANdzH? AL dat? = VEFy,,,.p, dat? AL dat. (1.5)

Thus there is now a term in the Chern-Simons action where a pair of iy operators contract
a pair of F indices with a commutator of transverse scalars, and the residual two-form

field strength couples as a one-form potential to the collective DO worldline:

~ w?o(Qwo/f/dt Tr(® I 5 P (1.6)
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As a result, the four-form field strength now couples to the collection of DO-branes as it
would to a D2 dipole. Thus not only can branes couple to lower-dimensional field strengths
through induced brane charges of the form C' A B or C' A F, but expanded configurations
of branes can now couple to higher-dimensional forms through their multipole moments.
Conversely, the existence of a background flux of high degree can serve as a source for
multipole fluctuations in concentric branes, inducing effective higher-dimensional charges.
This is a collective effect altogether new, a reflection of physics entirely dependent upon
the nonabelian nature of D-brane geometry. Its inducement of multipole charges further
undermines the distinction among branes of differing dimension, and its translation to the
long-wavelength limit below will provide a link between the regimes of strings and branes.

But what is the consequence of this coupling? The result is surprising. Specializing

once again to the case of D0-branes, we expand (1.2) around flat space with non-vanishing



F® field strength,2 obtaining the potential

Ty i @i ifto - 4
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In the simplest background, in which Ft(142)3 = —2f, this yields static equations of motion

which are solved by the ansatz

f

Pt =L J 1.
57 (1.8)

with J* an N x N sum of representations of SU(2). In the case of the irreducible represen-
tation, this gives an energy Viy ~ —f4N?3/g,, lower than the commuting configuration with
Vo = 0. In fact, the solution (1.8) corresponds to the so-called “noncommutative S2,” or
“fuzzy two-sphere,” a noncommutative generalization of the smooth topological manifold.

More generally, any sum of SU(2) representations will give a solution to the equations
of motion, with the largest irrep giving the lowest energy. These intermediate solutions
represent collections of concentric fuzzy spheres, each with its own radius determined by
the dimension of the representation. Thus there are a large number of energy levels between
0 and Vj, equal to the number of partitions of N. It will be a question for us in this work
whether or not these concentric configurations are in fact unstable to decay into the single
graviton irrep.

As proof of our identification of the solution (1.8) with a two-sphere, let us adduce some
corroborative evidence. Following [12], we can estimate the radius of these noncommutative

spheres by

3 1/2 T
R= (ZZITr[(@i)?]/N> ~ N1 = % (1.9)

Thus the sum of squares of the coordinates is a constant for each representation, and this
number grows with both f and N. Even more encouraging, we can reproduce this result in
supergravity. Beginning with the Born-Infeld action for a D2-brane and including both an

F® background flux and N units of worldvolume flux associated with the U(1) charge of

2We might well worry about the need to take into account backreaction of the flux on the metric. This
problem was considered from the point of supergravity in [13], where it was argued that the instability is
removed while the minimum remains.
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Figure 1.1: The Myers effect for DO branes and strings. In the presence of background flux,
both moving strings and branes have instabilities to expand into “giant graviton” brane
configurations.

the dissolved DO charge, we can write the potential of a spherical D2-brane of radius R as

V(R) = 4Ty <\/R4 + @ra’PN? 2fR3) (1.10)

4 3

27 4T¢
O Rpiy. . — 0

NTy+ ——5—
0t (2ra’)2N 3(2ma)

fR3, (1.11)

where the first term is Born-Infeld, the second Chern-Simons, and we have expanded by
assuming R?/(2ra’N) < 1. We have also substituted Ty = 472a/Tp. Minimizing this
potential then produces two minima, the first a spurious solution with R = 0 and the
second an expanded brane with energy Vy ~ —f*N3/gs, just as before. Thus the DO-
branes, placed in the background field, expand into a fuzzy sphere configuration with D2
dipole charge, a configuration that increasingly approximates a D2 brane as it expands to
macroscopic size.

In fact, it is in precisely this form—the expansion of lower into higher-dimensional branes



in background fields—which has proven ubiquitous in string setups with branes. As a matrix
description of stringy physics, it has provided a link between UV (matrix theory) and IR
(expanded brane) phenomena. As an effect treatable in supergravity, it has demonstrated
that uniquely stringy effects can even become relevant in smooth, low-energy contexts. As
a result, whenever flux is present as a component of brane backgrounds, noncommutative
collective effects are expected to play a role.

Of course, the most fruitful field of application for this technique has been holography;,
particularly the correspondence between anti-de Sitter space and N/ = 4 super-Yang Mills.
In the limit of large 't Hooft coupling gsN = g%,;N > 1 and small string length o/ < 1,
it is known that the geometry is smooth and supergravity accurately approximates string
theory, and this is the regime in which most work has been done. Just as important for
our purposes, N units of RR five form flux (with N = 4mg,(a/)2R?*) thread both the AdSs
and S° factors of the geometry. Thus probe branes placed in this background are immersed
in a nontrivial constant flux, and we find ourselves in a situation strikingly similar to that
encountered above.

As a result, Myers-type effects have been discovered in a variety of holographic contexts:
from the description of Higgs and confining vacua of the N' = 1* Polchinski-Strassler solution
[32]; to the singularity-resolving effects of the enhancon mechanism [14]; to the explanation
of the so-called stringy exclusion principle via expanded brane “giant gravitons” [15]. Each
of these effects was originally motivated by some apparent paradox in Yang-Mills, and each
in turn modified supergravity in some essentially stringy way in order to reconcile gauge
and gravity descriptions.

In fact, it is the last of these, the giant graviton mechanism, which will concern us
in §2. There, we will examine the work of Kachru, Pearson, and Verlinde [17], in which
anti-D3 branes were placed in the conifold background of Klebanov and Strassler. These
branes, which break the ambient supersymmetry, are drawn to the IR tip of the conifold
by a combination of flux and gravitational forces, and there, via their noncommutative

coordinates, they probe a geometry dual to an SU(N + M) x SU(N) N = 1 gauge theory.



This model features a cascade of Seiberg dualities down the AdS throat and chiral symmetry
breaking at the deformed tip. Localized to this tip, the anti-branes will interact with the
flux background, undergoing nonabelianization to an NS5-brane domain wall. This wall,
which separates broken and restored supersymmetry phases of transverse spacetime, then
expands, traversing the three-sphere of the tip and initiating a reverse Seiberg duality. In
this manner, the anti-D3s reorganize the underlying process of brane-anti-brane annihilation
into the nonlinear, dualized mechanism of brane-flux annihilation, connecting unstable and
true vacua of the dual gauge theory. In §2, we will examine these processes in detail, taking
them as further evidence of the ubiquity of noncommutative objects in string theory.

Afterward, in §3, we will extend this line of reasoning to the mechanism of inflation,
evaluating its prospects in the setup of §2. At the same conifold tip, which possesses
an almost exact SO(3) invariance, we will describe a scenario in which a single inflaton
is selected from among the O(N?) scalars describing the positions of the N anti-branes.
Following this, we will outline a uniquely stringy exit mechanism for the inflationary phase
in which the relevant scalars find their minimum by performing a Myers-like expansion into
a noncommutative five-brane. Lastly, following de Wolfe, Kachru, and Verlinde [39], we
will assess the difficulty of engineering such a situation, noting both systemic and incidental
obstacles to slow-roll inflation in string theory compactifications.

More generally, as we have already noted, the fundamental similarity in the noncommu-
tative scenarios is the presence of nontrivial background flux. Both in the case of noncom-
mutative field theory (B, # 0) and of branes in AdS backgrounds (F(®) # 0), the crucial
ingredient in the emergence of non-geometric behavior is a nonzero flux which couples to
the worldvolume of either strings or branes. However, the most vexing corner in the space
of such deformations has long been that of fundamental strings in Ramond-Ramond back-
grounds. Apart from the case of AdS, in which N' = 4 Yang-Mills appears to be an exact
dual® , few examples of even approximately-tractable RR backgrounds exist.

This state of affairs changed drastically, however, with the work of Berenstein, Malada-

3Though a dual in a frustrating regime: the gauge theory in this case is strongly coupled, and until
recently [16], little was understood of the structure of the sigma model actions in such a background
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cena, and Nastase [70], who identified a limit of both AdS space and N' = 4 Yang-Mills
which led to tractable theories on both the string worldsheet and gauge theory sides. While
the former becomes an exactly-solvable string theory background with nontrivial Ramond-
Ramond interactions, the latter reduces to a subsector of Yang-Mills in which large R-charge
operators interact in the planar, large-N limit. Thus, instead of the matrix fields charac-
teristic of the fundamental degrees of freedom of Yang-Mills, the new basis of operators is
spanned by single and multi-trace “words” of basic matrix fields. Of course, the elements of
these words may be permuted by cyclicity of the trace, but their relative order is otherwise
fixed. Here, the situation is analogous to one in which a priori noncommuting matrices are
reduced to their eigenvalues, but we do not return to a trivial limit. Rather, the existence of
a cyclic symmetry, along with the ability to permute indistinguishable eigenvalues, implies
an Sy permutation group structure which complicates the problem. In this case, as we will
find, the “letters” of the single-trace operators are bits of a discretized string worldsheet,
and the Sy symmetry will play a key role in the structuring of a multi-trace/multi-string
Hilbert space. In this way, even the “bit-strings” of BMN will find their place in our non-
commutative discourse, representatives of an odd regime between the standard geometric
and fully noncommutative limits.

Our final chapter, then, will take up this issue of the BMN limit, focusing on the “string
bit” approach of Verlinde and collaborators. This formalism, intermediate between those
of planar gauge theory and light cone strings, makes fullest and most explicit use of the
underlying permutation symmetry, and as such represents an intriguing extension to our
earlier noncommutative considerations. In §4, after a review of both the original work of
BMN and subsequent papers by Verlinde and collaborators, [71, 72, 73], we will end with a
string bit calculation which reconciles several disparate approaches. This result will serve
as both a tantalizing comparison of string and graviton methodologies and the final exhibit

in our noncommutative bestiary.



Chapter 2

Gravitons

2.1 Introduction

In this chapter, we examine an early application of the first of our noncommutative effects,
the giant graviton, to questions in the context of the AdS-CFT correspondence [18]. There,
as in the N'=1* example of Polchinski and Strassler [32], its appearance will provide the
resolution of an apparent paradox present in the gauge theory dual. As we shall see, the
presence of both non-trivial fluxes and anti-D3 branes in the holographic compactification
geometry will lead to the formation of a noncommutative, Myers-like instability.

Our discussion will take place in the context of the supergravity solution given by Kle-
banov and Strassler [19]. It initially appeared, along with the solutions of Maldacena and
Nunez [20], Vafa [21], and others, as an answer to the challenge of finding a geometry dual
to pure N =1 Yang Mills Theory. In this solution, we begin with the warped conifold
geometry of Klebanov and Witten [65] generated by N D3 branes placed on an orbifold of
S5. To this we add M “fractional” D5 branes which wrap the S? of 71!, In the end, all
of these branes disappear, leaving a smooth supergravity solution in which the fractional
branes have been replaced by M units of RR three-form flux and N units of self-dual Fj
charge. The gauge theory dual to this is then a d = 4 SU(N + M) x SU(N) theory with

a residual N’ = 1 supersymmetry which undergoes an RG cascade of successive Seiberg

11
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dualities relating weakly-coupled descriptions with reduced gauge groups. Furthermore, if
N = KM for some integer K, the endpoint of the cascade is pure SU(M) Yang-Mills.

We will begin with this low-energy scenario, embedded as the geometry near a conifold
point of a full-blown compact manifold which represents its Planck-scale UV completion
[22]. This embedding then implies an exponential hierarchy between the Planck and IR!
scales, in a mechanism parallel to Randall-Sundrum brane world scenarios [23]. This done,
we further introduce a small number p < M of anti-D3 branes into the geometry, completely
breaking supersymmetry. In the background of the D3-generated manifold, these are no
longer BPS objects, and the effects of gravity and 5-form add (rather than cancel as in the
D3 case) to produce a force driving these impurities to the tip of the conifold. They then
remain there, metastable, unable to directly annihilate with the BPS branes which have
been dualized to flux. No analogue of brane-antibrane annihilation is apparent.

In the paper [17], we proposed a mechanism for the decay of this system and the subse-
quent restoration of supersymmetry, positing the formation of an NS5-brane via the giant-
graviton effect which traverses the geometry and relates SUSY and non-SUSY vacua. This
process, which may be either exponentially- suppressed or classically allowed, depending
on p, then corresponds to an inverse Seiberg duality, and relates a metastable “baryonic”
branch of the SU(2M — p) x SU(M — p) gauge theory to the standard supersymmetric
“mesonic” branch. Such a transition thus provides yet another example of holography be-
yond mere supergravity, as well as further evidence that a proper understanding of string
geometry must involve noncommutative elements.

The organization of this chapter is as follows: In §2.2, we review preliminaries and
introduce vacua of the KS dual field theory. In §2.3, we give an argument that antibranes
in the KS geometry will expand into as NS5-brane via an analogue of the Myers effect. In
§2.4, we will then describe this expanded brane in terms of a Born-Infled fivebrane action
with worldvolume flux. This will present us with a picture in which the initial brane clump

expands to wrap an S? in the deformed S3 at the conifold tip and creates a domain wall

Lgiven in this case by the scale of chiral symmetry breaking
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in four-dimensional spacetime. For p/M small, this is a metastable false vacuum. Details
of the euclidean domain wall instanton will be presented in §2.4.3, along with a description
of the final supersymmetric state with M — p D3-branes. Finally, in §2.5, we discuss the
relevant gauge theory configurations on either side of the transition and give an explanation
in terms of Type ITA theory. We conclude with remarks on warped compactifications in

more generality and some novel features of our effective supergravity.

2.2 Preliminaries

Here, we review essentials of the Klebanov and Strassler geometry and its gauge theory
dual. Our supersymmetry-breaking scenario is detailed in §2.2.2 and the structure of KS

moduli spaces in §2.2.3.

2.2.1 The Klebanov-Strassler geometry from F-theory

Though most of our discussion will only concern the non-compact limit of KS geometry, for
purposes of describing our model in the context of warped compactifications, we will begin
with the perspective of F-theory. That scenario, containing both H3 and Fj three-form
fluxes, has been previously examined in both M and F-theory in [26, 25, 27, 28, 22, 29]
and others. We will work in the limit [22] that the F-theory fourfold compactification can
be treated as the orientifold of Type IIB theory on a CY threefold Y, and we will allow
the addition of both D3 and anti-D3 branes to the geometry. With numbers N3 and N3,

respectively, the net charge Q3 = N3 — N3 is then fixed by the global tadpole condition:

x(X) 1
op — Wt 212, T

Y

Here x(X) is the Euler characteristic of the CY fourfold that specifies the F-theory com-
pactification, and T3 is the D3-brane tension.
We then proceed to engineer a KS geometry by focusing on a single conifold singularity

in Y, threading M units of F3 RR flux? through the deformed S® A-cycle. Complementing

2corresponding to the M fractional branes of [19)
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this, there will be a companion Hs flux through the dual noncompact B-cycle:

1
— | Fg = M
47T2 /A 3 )

1
— Hy = —K . 2.2
- /B ; (2.2)

In the case that no other crossed fluxes are present, we can then choose M and K such that
MK = 2X—4 and we have no need of additional D3-branes to cancel the tadpole. This results
in a smooth geometry with nontrivial superpotential for the complex structure modulus z

of the A-cycle, stabilizing it at an exponentially-suppressed value
z ~ exp(—2mK/Mgs). (2.3)

The manifold thus consists of a long warped throat, terminating at its infrared end in the
geometry of a deformed confold

Z 2=¢%, (2.4)
with € ~ z exponentially small.

From the dual perspective, this exponential hierarchy (2.3) has a natural explanation
[19, 22]: The geometry (2.4) is dual to an SU(N+ M) x SU(N) gauge theory with nontrivial
[B-function proportional to g;M. Thus its RG flow toward the infrared consists of a cascade
of strong coupling transitions at scales p,, with log(py/tns1) ~ (gsM)~!. Each transition
then involves a Seiberg duality which switches the theory from a strongly to weakly-coupled
description and lowers the rank of the larger gauge group by 2M. In the case N = KM,
there are K such dualities, leaving an IR theory which is pure SU(M) super-Yang-Mills.
The theory thus traverses a range of scales log(uo/pux) ~ K/gsM over the course of its

cascade, a value consonant with the supergravity estimate (2.3).

2.2.2 The SUSY-Breaking Model

We will study the model outlined in §2.2.1 in the case

N3 =0, Ngzp,% = KM —p (2.5)
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Figure 2.1: The decay, described in §2.2.2 and §2.4.3, takes place between an intitial non-
supersymmetric situation with p D3 branes near the tip of the conifold, to a final su-
persymmetric situation with M — p D3-branes. The total D3-charge is preserved via the
simultaneous jump in the Hs flux around the B-cycle by one unit, from K to K — 1.

with p < K, M. That is, we will study the theory of p anti-D3 branes probing the Klebanov-
Strassler geometry.

Of course, the addition of anti-D3 branes to this geometry breaks the remaining super-
symmetry: the branes’ own SUSY is opposite that preserved by the imaginary self-dual
3-form flux of the background. As a result, the configuration should be unstable, and in
the case that the flux were replaced by its D3 sources, should annihilate the excess negative
charge. However, in our configuration, all D3-branes have been dualized to flux, and there
is no clear pathway for the decay to proceed.

In the dual field theory, however, the problem assumes a more lucid form. If we identify
the total D3 charge of the compactification, x /24, with the N of the SU(N + M) x SU(N)
gauge theory, we can imagine taking N = KM + p with p <« M and proceeding by K
cascades until we are left with a SU(M + p) x SU(p) in the infrared [19]. As explained

in [19], this theory has a moduli space parametrized by “meson” fields N;; which can be
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convincingly matched with the moduli space of p D3 branes moving on the deformed conifold
geometry.

By analogy, we might reason that our situation corresponds to one in which & =
KM —p. In that case, however, only K —1 Seiberg dualities would be allowed, ending in an
SU((2M — p) x SU(M — p) theory. Clearly this theory is supersymmetric, and corresponds
not to (2.5), but to a geometry with M —p D3 branes and only K —1 units of Hyg flux

through the B-cycle:

N=M-p, N=0, ;Z:(K—l)M—i—(M—p):KM—p. (2.6)

It is this, we will argue, which must be the supersymmetric endpoint of the decay, the final
description of the gauge theory after (2.5) has undergone brane-flux annihilation. Indeed,
IIB string theory admits a class of domain walls across which Hj3 changes by a single
unit across the noncompact B-cycle—NS5-branes partially wrapping the A-sphere. Thus
it is natural to expect that the decay between (2.5) and (2.6) proceeds via nucleation of
an NS5-brane domain wall surrounding a patch of supersymmetric vacuum. Driven by
the differential of vacuum energies, this patch will then expand to encompass the entire
space, a process we will describe in §2.4.3. There, we will find that the process is indeed
nonperturbative for a wide range of parameters.

However, not even the D3 description is fully appropriate before the decay. Even that
system, as we shall see, demonstrates perturbative instabilities, the onset of a Myers-like
transition from nonabelianized D3-branes to an expanded NS5 partially wrapping the A-
cycle. Provided the number of anti-branes p is sufficiently smaller than M, this maximal
giant graviton fivebrane will prove classically stable, decaying quantum mechanically by an
exponentially-suppressed tunneling process.

To simplify our analysis, we will assume that all of the interesting dynamics takes place
very close to the tip of the conifold. Indeed, it is not difficult to argue that the anti-D3

branes will in general feel a net radial force F,.(r) proportional to the 5-form flux F3

Fo(r) = —2psF5(r) (2.7)
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that will attract them to the tip at » = 0. This force is a sum of gravitational and 5-form
contributions: For a D3-brane these two terms cancel; in the case of D3-branes they add
up to a net attractive force (2.7). Therefore, even if we began with a more generic initial
distribution, we expect the anti-D3 branes to accumulate quickly near the apex at r = 0.

The metric near the apex reads [30] 3
1 -
ds*> = a2 dzudz, + g M b3(§dr2 + 03 + r?d3)

4/3

gsM

1

a? b3 ~ 0.93266. (2.8)

Since we assume that all physics takes place at r = 0, our space-time has the topology

R* x S3. The RR field F3 = dCs has a quantized flux around the S3

Fy = 47’ M, (2.9)
S3
while in the supersymmetric background dictates x¢ H3 = —gsF3, so that
1 1
dB()’:ﬁ*lng:—de/\Fg, (210)
gs gS

with dV; = aé d*z. The dilaton field is constant, and the self-dual 5-form field vanishes at

the tip.

2.2.3 Branches of Moduli Space in the KS system

Here we review one of the relevant features of the KS low energy field theory, following
section 7 of [19]. This will be important in understanding our proposal for the holographic
field theory description of the metastable false vacuum, as well as of the tunneling process
that describes its quantum decay.

Consider the RG cascade of the KS gauge theory with N = K M in its penultimate step.
In this case, the unbroken gauge group is SU(2M) x SU(M), and the SU(2M) factor has
an equal number of flavors and colors. There is also a quartic superpotential whose rough
form is

W = \(A;B; Ay By) ¢! (2.11)

3we work in string units, o =1
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where the A; are in the (2M, M) representation, the B; are in the conjugate representation,
and 7 = 1,2. We know from the analysis of [31] that in N' = 1 supersymmetric QCD with
Ny = N, the moduli space is quantum mechanically modified. Treating the SU(M) as a
global symmetry (i.e. taking its dynamical scale to vanish), this situation reduces to the
one studied in [31] (with the added complication of the quartic tree-level superpotential).

Define the “meson” fields N;; s and the “baryon” fields B, B
Nijop = AiaBjs B = (A)MA)M, B = (B)M(B)M | (2.12)

where o and (8 are SU(M) “flavor” indices. In order to reproduce the quantum modified

moduli space of the SU(2M) theory, we should add a Lagrange multiplier term to (2.11)
W=\ (Nij,agN,gﬁ) eFell 4 X (det(N) — BB — A*M) | (2.13)

where the determinant is understood to be that of a 2M x 2M matrix (coming from the
i,7 and color indices on N).
There are distinct “mesonic” and “baryonic” branches of supersymmetric vacua arising

from the superpotential (2.13). On the baryonic branch
X =N =0, B=B =i\ (2.14)

On this branch, the SU(M) factor in the gauge group remains unbroken, and one is left
with pure A = 1 gauge theory in the IR. However, there is also a branch where B =B =0

and the mesons have non-vanishing VEVs.
det(N) = A™M B =B=0. (2.15)

Now the gauge group is generically Higgsed, and there is a moduli space of vacua consisting
of the theory of M D3 branes probing a deformed conifold geometry.

The fact that the mesonic and baryonic branches of moduli space are disconnected is
a result of the tree level superpotential (2.11). In the theory without (2.11), the quantum
moduli space is defined by the equation det(N)— BB = A*M and one can smoothly interpo-

late between these branches, via a continuous path of supersymmetric vacua. In the present
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case, on the other hand, field configurations that interpolate between the two branches take
the form of localized supersymmetric domain walls with non-zero energy density. These

domain walls solve BPS equations of the form
0,01 = ¢" o, W (@) (2.16)

with & = Ngﬁ ,B,X}, and z the coordinate transverse to the domain wall. The wall
tension is proportional to

AW = [W(®p) — W(Prm)], (2.17)

where ®;, and ®,,, denote the respective vacuum values (2.14) and (2.15) of the two branches.
By considering e.g. the special mesonic vacuum where all meson fields have the same

expectation value (i.e. independent of their “flavor” index), we deduce
IAW| = 2AM A%, (2.18)

In §2.4.2 we will consider the dual supergravity description of the domain wall. In
this case it will represent the transition from the smooth deformed conifold with only flux
(corresponding to the baryonic branch) to the situation with one less unit of NS 3-form
flux and M D3-branes. In §2.5 we will use this dual understanding of the supersymmetric
domain wall to motivate a similar holographic description of our non-supersymmetric D3
background and its decay process. Here we will similarly argue that there are two relevant
branches: The first, the analogue of the baryonic branch, will be the (now nonsupersym-
metric) metastable vacuum; and the second, the analogue of the mesonic branch, will be

the theory with M —p D3 branes probing the deformed conifold (2.6).

2.3 The D3 brane Perspective

We are interested in the dynamics of p D3 branes sitting at the end of the KS throat,
under the influence of the F3 and Hs fluxes (2.2). We will do our analysis within the probe
approximation, taking the KS background as fixed, while ignoring the backreaction due to

the D3 branes. The characteristic size of the geometry is set by R ~ /g,M, while we
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can estimate that the backreaction due to the p anti-branes extends over a region of order
r? o~ \/9sp- Hence the distortion of deformed conifold due to presence of the D3 branes
remains small as long as p < M. We will assume that we are in this regime.

It is now rather well understood how, in a non-trivial flux background, p D3-branes can
expand to form a spherical D5-brane (this phenomenon played an important role in the
analysis of [32], for example). Here, due to specific form of the background fluxes, we will
need to consider the S-dual phenomenon, where the D3 branes expand into wrapped NS 5
branes. A technical difficulty, however, is that it is not yet known how to consistently couple
the background Bg-flux (2.10) to the matrix Born-Infeld action of the D3 branes. (This
problem is directly related to that of finding a Matrix theory description of the transverse
NS 5-brane.) A way around this obstacle, is to use the S-dual description of the D3 world-
volume. In §2.4, we will turn things around, and view things from the perspective of a
wrapped NS5-brane with D3 charge p coming from a world-volume magnetic flux.

Before getting started, we need to warn the reader that strictly speaking, since g; is
assumed to be small and thus the S-dual coupling gs = 1/gs large, we are far outside of the
regime of validity of the S-dual Born-Infeld action. We will nonetheless proceed with using
it; in §2.4 will find a posteriori justification of our description when we establish a precise

match with the results obtained from the NS 5-brane perspective.

2.3.1 Dielectric D3 Branes

The worldvolume action of the p anti-D3 branes, placed at the apex of the deformed conifold

and in the S-dual frame, is given by the Born-Infeld action

Spr = ’Lf/Tr\/det(G + 2mgs F) det(Q) — 2mps /Tr ipip By (2.19)
Here
i i 2mi
Q j= ) i+ g [(I) , P ](ij +gkaj) . (2.20)

Because we are working in the S-dual frame, relative to the usual Born-Infeld action, we
replaced Bz by Cs and Cgs by Bg. The two-form F' here denotes the non-abelian field

strength on the D3 brane worldvolume.
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The scalar fields ® parametrize the transverse location X of the D3 branes, via the
relation ® = 27X. By making these matrix coordinates non-commutative, the anti D3-
branes can collectively represent a 5-dimensional brane which can be identified with the NS
5-brane. The topology of this “fuzzy NS 5 brane” is R* x S2, where the two-sphere S? has
an approximate radius R equal to

2 4r® 2
R* ~ 7Tr((<1> )%). (2.21)

It is instructive to look for the non-commutative solution for p < M, in which case
® remains small relative to the radius of curvature of the surrounding space-time and
variations in the 3-form field strengths. In this case we may write Cy; ~ %”ijlq)l, and

locally we may approximate the metric in the compact space by the flat metric G; = ;.

We find that
) P S 4772 )
@=%+7%@@JH%JM@?W@- (2.22)
Js
So we can expand
272 . 2 o
~p_il [ Nelt) — L VAP
Try/det(Q) ~ p 13A@ﬂﬂ(@,¢]¢) Q?HG@,@]). (2.23)
Furthermore, we are in an imaginary self-dual flux background where dBg = —gist4 A F3.

In an imaginary ant: self-dual flux background, the cubic terms in the full potential for
the D3 worldvolume fields ® would have to cancel (by a “no-force” condition between anti-
branes and TASD fluxes). This logic, or alternatively, direct calculation of the second term
in (2.19), tells us that the full potential coming from (2.19) in this ISD flux background will
be

2 . 2 . .
gsVeff((I)) ~ ,/det(G”) (p - i%ijlTI"([(I)k’ (I)J](I)l) _ ETI“([(I)Z?(I)J]Q) +.. > . (2.24)

As in [12], this potential has extrema away from the origin ® = 0. To get some intuition,
let us set Fi;; = fegj;, where we make the approximation that the A-cycle 53 is large (which
is good in the limit of large g;M'). The magnitude of f can be read off from the normalization
of the integrated RR flux as in (2.2), which requires

2

fﬁ%vﬁM'

(2.25)
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OV (®)
D7

Demanding that = 0 yields the equation of motion

[@%, ®7], ®7] —ig? fe;ji[@7, @F] = 0. (2.26)

To solve (2.26), notice that if one takes constant matrices ®¢ satisfying the commutation
relations

(@1 ®I] = —ig?fe;n®", (2.27)

then (2.26) is automatically satisfied. But, up to rescaling the ®, (2.27) are just the com-
mutation relations which are satisfied by a p X p dimensional matrix representation of the
SU(2) generators

[T, ) = 2ieijp " . (2.28)

So by setting ® = —% g2f J', with J' the generators of any p-dimensional SU(2) represen-
tation, we find solutions of (2.27).

Which solution is energetically preferred? Using the known value of the quadratic
Casimir ca = Tr((J)?) in each p-dimensional SU(2) representation, one can see that the
energetically preferred solution is to take the p-dimensional irreducible representation of

SU(2), for which one finds

1

7.[.2
Vo = E(p- T (7 - 1) (2.29)

s

P (4 872 (p? — 1)
q ( O 3pi2 2 )
s 0

1

(2.30)

The negative term in (2.29) comes about through a competition between the (positive)
quartic term and the (negative) cubic term in (2.24). The other p-dimensional reducible
representations occur as metastable vacua of (2.24), where the D3 branes have blown up
to a number of “less giant” NS 5 branes but can still satisfy Vog < p/gs. These separate
5-branes all want to cluster together to form the “most giant” NS 5-brane, with minimal
energy equal to (2.29).

It is interesting to compare the energy in the giant graviton vacuum (2.29) to the final

energy in the supersymmetric ground state, V = 0. We see that Vg > 0 implies that
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p < M, which is the condition we have chosen to impose. In this regime, we find a self-
consistent picture: the D3 branes are driven by a perturbative instability to expand into
an NS5-brane wrapped on an S? in the A-cycle, and must await a non-perturbative effect
to decay to the supersymmetric vacuum. As we will discuss in §2.4, the complementary
analysis in terms of the NS5-brane worldvolume action indicates that, for sufficiently large
17, the decay to a final supersymmetric state can occur without the intermediate metastable
false vacuum. Based on the above story, we can obtain a reasonable estimate for the onset
of this classical instability by considering the radius R (given in eqn (2.21)) of the fuzzy

NS5-brane in comparison to the radius Ry = by+/gsM of the S°

Am*(p* = 1)

2 ~Y
R =

R? (2.31)

We see that there is a classical minimum only if p/M is sufficiently smaller than b3/27;
otherwise the radius of the NS 5-brane will get too close to Ry and the configuration will

become classically unstable.

2.4 The NS 5-brane perspective

In this section, we take the perspective of an NS 5-brane moving near the tip of the conifold
geometry. The 5-brane is wrapped on a two-sphere S? inside the internal S3 and carries
p units of world-volume two-form flux which induce D3 charge. As noted previously, it
is a point of some concern that the NS 5 world-volume description used below has only
limited validity for small sizes of the S2. For sufficiently large S? radius, however, the NS 5
world-volume curvature is small compared to the string scale and one may expect that the

description as given below becomes reasonably accurate.

2.4.1 Giant Graviton 5-brane

Consider an NS 5-brane of type IIB string theory located at an S? inside S® with radius

specified by a polar angle ¥. The bosonic worldvolume action reads [32]

1
S = ’;g/dﬁg | det(G) det(G 1 + 2mg,F +M5/Bﬁ ) (2.32)
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2nFo =2wFy — Cy . (2.33)

This action has been obtained by S-duality from that of the D5-brane. Here Fp = dA is
the two-form field strength of the world-volume gauge field, G| denotes the induced metric
along the internal S2, and G| encodes the remaining components along the di) and R?

directions. Using the explicit form (2.8) of the metric, we have

ds? = g, M| dz,da’ + dy? + sindQ3] (2.34)

induced
_ 2 2
= dS” + dSJ_

where (relative to eqn (2.8)) we have absorbed the factor of ag/ Ry into z*. (This means that
from now on, all time and distance scales in the R* directions are measured in red-shifted
string units, or in holographic dual terminology, in terms of the dimensional transmutation

scale A of the low energy gauge theory.) We can evaluate the following integrals over S2

/52 Vdet Gy = 4m bt g, M sin?p (2.35)
1
Co(y)) = 47TM(¢ - 5sm(mp)) , (2.36)
52

o2 [ Fy = 4x’p. (2.37)
5'2

This last equation reflects the fact that the NS 5-brane carries D3 brane charge p. Com-
bining (2.35)-(2.37) gives:

/ i \/det(G L+ 21 F) = An? Mg, Vo (¥) (2.38)

\/bo sint ¢ + w——dj—i—fsm(%b)) (2.39)

Adding the us [ By term, obtained from eqn (2.10), gives a total NS 5-brane action

S = / diz [/~ det Gy L(v) | (2.40)

L) = Ao Va1 2 — o (2 — sin2)) | (2.41)

with
4W2u5M o ,u,gM
gs gs

A = (2.42)
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Figure 2.2: The effective potential Veg (1)) for £ ~ 3%, showing the stable false vacuum,

and for {7 ~ 8%, with only a marginally stable minimum.

We can use this action to introduce a canonical momentum P, conjugate to 1, and write

the resulting Hamiltonian density H as

H(p, Py) = —% (20 —sin2y) + \/Ag(vg(w))Q + P2 (2.43)

which generates the time evolution of ¢(¢). For the moment, however, we are just interested
in finding whether there exists a static solution corresponding to the “giant graviton” of

§2.3.
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Some useful intuition is obtained by considering the effective potential
Ver(v) = H(¥, Py =0)

= 4o (Va(w) — o= (20— sin20)) (2.44)

In Figure 2.2 we have plotted this effective potential Vig(1)) for two different values of p
relative to M: the top graph corresponds to p/M ~ 3%, and shows a stable false vacuum,
and the lower graph corresponds to the special case p/M ~ 8% at which there is only a
marginally stable intermediate minimum. For p/M > 8% the slope of the effective potential
is everywhere negative.

In both cases we can draw an interesting conclusion. In the regime p/M > 8%, the
nonsupersymmetric configuration of p D3 branes relaxes to the supersymmetric minimum
via a classical process: The anti-branes cluster together to form the maximal size “fuzzy”
NS 5-brane which rolls down the potential until it reduces to M —p D3-branes located
at the north-pole at ¢y = m. In the regime with p/M (sufficiently) smaller than 8%, the
branes reach a meta-stable state, the fuzzy NS-5 brane located at the location ., for
which %f@mm) = 0. This configuration is classically stable, but will decay via quantum
tunneling. We will study this tunneling process in §2.4.3. In both cases, the end result of
the process is M —p D3-branes in place of p anti-D3-branes with the Hs flux around the
B-cycle changed from K to K —1.

Now let us check the correspondence with the non-abelian description of §2.3. For small

values of 1) we can expand

4 by M
Ver(¥) = Ao (37— 5-0° +502,0") (2.45)

which has a minimum at ,;, = 1724% equal to
0

113D 82 p?
e min) = —— 1 - o0 | 2.4
Vﬁ"(w ) s ( 3 b62M2 ) ( 6)

in exact agreement with the value (2.29) found earlier. Moreover, the size R ~ tinRo
(with Ry the S3 radius) of the NS 5 brane “giant graviton” exactly matches with our earlier

result (2.31).
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Another quantitative confirmation of the result (2.44) for the effective potential is that
the difference in vacuum energy between the south and north-pole is equal to twice the

tension of the anti-D3 branes

Var(0) — Vage(r) = 2];“3. (2.47)

This is the expected result. One way to understand this [33] is to compare our nonsuper-
symmetric model with a hypothetical situation with all p anti-D3 branes replaced by —p
D3-branes, i.e. branes with opposite charge and tension as D3-branes. This last situation
would preserve supersymmetry and would therefore have zero vacuum energy. To change
it back to our physical situation, however, one needs to add back p D3/anti-D3 pairs, with
zero charge but with total tension 2pus/gs. Notice, however, that in order to obtain the

true total vacuum energy, we need to add to the result (2.44) a term

Vit (1) = Vag (1) + 223 (2.48)

gs

so that the supersymmetric vacuum indeed has Viot = 0. This extra contribution comes
from a term % X/24— [ H3 A G35 in the string action which, via the global tadpole condition,
adds up to pus/gs.

Finally, let us return to the validity of our description. As mentioned, this is a slightly
problematic question, since both the S-dual D3-brane variables and the NS 5 world-volume
theory are strongly coupled. It seems reasonable, however, that at least our main qualitative
conclusions, (i) the anti-D3 branes expand to a “fuzzy” NS 5 brane, (i) for small enough
p/M, the NS 5 brane will stabilize at some S%-radius ¢, proportional to p/M, and
(tit) for large enough p/M the anti-D3/NS 5 configuration will be classically unstable, will
remain unchanged in a more complete treatment. One forseeable quantitative difference,
for example, is that inclusion of the backreaction of the NS 5-brane on the S® geometry

might trigger the classical instability for smaller values of p/M than found above.
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2.4.2 BPS Domain Wall

As discussed in §2.2.3, one can consider supersymmetric domain walls that interpolate
between the supersymmetric “mesonic” and “baryonic” vacuum branches in the pure KS
gauge theory with p = 0. As we now show, it is possible to write a special BPS solution to
the NS 5 brane equations of motion that describes a supersymmetric domain wall between
the two phases. Specifically, we assume that the mesonic vacuum is such that all meson
fields (Nij)aﬁ have the same expectation value. In the supergravity, this is described by the
configuration of M D3-branes located at the same point on the S, which we take to be the
north-pole ¢ = .

Before we describe this domain wall solution, we note that, for general p, the total Fs
flux through the S? satisfies

1
2 | Fo = dAn(mp— M@ = gsin(20))

= —an(n(M —p) - M( - %sm(w))) (2.49)

with 1/; = m — 1. In other words, we can think of the F background from the “south-
pole perspective” as carrying p units of D3 charge, or from the “north-pole perspective” as
carrying M—p units of D3-charge. Notice that this implies that there must be M—p units of
F» flux placed at the north-pole, that is, M — p D3-branes. Hence, in the special case that
p = 0, the NS 5-brane at the north-pole represents M D3 branes, while at the south-pole it
can simply shrink from view without a trace.

The domain wall solution corresponds to an NS 5-brane configuration described by
a spatial trajectory 1(z) (z the coordinate transverse to the wall) interpolating between

1 = m and ¥ = 0. Following the same steps as above, we find that the z-evolution of 1 (z)

is governed by the Hamilton equations 9,1 = g};‘; and 0, Py = _ag?; with
Ag : 2 2 2
Haw, Py) = =32 (20 —sin2v) + /A3 (Va()) — P} (2.50)

We look for a trajectory that, for large negative z, starts at rest at the north-pole, i.e.,
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Y = m and Py = 0. Therefore, this solution has ‘H = 0. Solving for P, we find
Py = b3 sin? 1. (2.51)

We thus obtain the following first order equation for v (2)

b2 102
RPN Lo (2.52)
Y — 5s8in2¢
This can be integrated to (choosing the location of the domain wall around z ~ 0)
1 cot 1)
P= (2.53)
0

The right-hand side covers the half-space from z = —oo to z = 1/bg, where the NS 5-brane
trajectory has reached the south-pole at v» = 0. At this point the brane has disappeared,
leaving behind the pure flux KS solution. In the dual gauge theory, this is the baryonic
vacuum.

It is useful to think of the domain wall as an NS 5 brane wrapped around the S3 A-cycle
of the conifold, deformed near the north-pole due to the presence of the M D3-branes ending
on it. From this perspective, it clearly has the property of inducing a jump by one unit in
the Hs flux around the B-cycle. Indeed, if we consider two such B-cycles B(z,) and B(z_)
located at opposite sides of the domain wall, their difference B(z;) — B(z_) represents an
(otherwise contractible) 3-cycle that surrounds the NS 5-brane once. Since the NS 5-brane
acts like a magnetic source for Hs we have

H; —/ Hg = 4x°. (2.54)
B(zy) B(z-)
The tension of the domain wall is obtained by evaluating the classical action of the

above solution per unit time and area. We have

S = / dtd*z\/— det G3 Twau (2.55)

with

™ b2 sin? 2723 (g M)3/2
Twair = Aobo VgsM/O dyp =— v b 09(29 ) (2.56)
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As expected, this result for the domain wall tension breaks up as the product of the NS
5-brane tension ps/g? times the volume of the S3 (with radius Ry = bg/gsM) wrapped by
it. From a holographic viewpoint, this should be compared with the formula (2.18) obtained
from the gauge theory effective superpotential.

We should mention that the probe approximation used here is no longer strictly valid
near the north-pole ¢ = m, since the M D3-branes represent an appreciable stress-energy
that will have a non-negligible effect on the background geometry. Previous experience with
supersymmetric configurations of this kind [32], however, suggests that such backreaction

effects do not significantly alter the results for quantities like the domain wall tension.

2.4.3 Vacuum Tunneling

We now turn to a description of the decay of the non-supersymmetric configuration with
p non-zero. This takes place via nucleation of a bubble of supersymmetric vacuum (2.6)
surrounded by a spherical NS 5 domain wall which expands exponentially as a consequence
of the pressure produced by the drop in the vacuum energy. To obtain the nucleation
rate, it is standard practice to look for a corresponding Fuclidean solution. The relevant
solution for us is an NS-5 brane trajectory ¥ (R), where R is the radial coordinate in R%,
connecting the “giant graviton” configuration at 1 = ¥, at large R to an instantonic
domain wall located near some appropriate radius R = R, at which the solution reaches
the supersymmetric minimum ¢ = 7.

The total action functional for such a trajectory reads

S =By [ dRE (Va(w)y/1+ (00 + % D+ %sinm/))) (2.57)

R*
with

By = 2m2bgusgs M>. (2.58)

As before, it is convenient to write the classical equations of motion for this action in the

form of Hamilton equations drty) = %HTf and OrPy = —8;{757 with
— BoR® ; \/ 2 p6 2 2
Hr(, Py) = == (20 = sin2¢) + /B RS (Va(v)) — P3 (2.59)
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Figure 2.3: The Euclidean NS5-brane trajectory ¢(R) for two values of p/M: the upper
trajectory corresponds to #7 ~ 3%, and the lower one to the near critical value {7 ~ 8%.

In Figure 2.3 we have drawn the resulting Euclidean NS 5-brane trajectories 1(R) for two
values of p/M.

In principle, we could extract the nucleation rate from the above formulas for general
p/M by evaluating the total action of the (numerically obtained) classical solutions, though
this is a laborous prospect. Instead, we can quite easily obtain the leading order decay rate
in the limit of small p/M as follows: From Figure 2.3, the classical trajectory for small p
naturally divides up into two separate regions: it stays flat near the non-supersymmetric

minimum until coming very close to the domain wall radius R, where it quickly moves
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toward the north-pole value ¥ = w. On these grounds, we divide the total action into a
contribution coming from the non-zero vacuum energy (given in (2.48) and (2.46)) of the
non-supersymmetric “giant graviton” at R > R, and a second contribution coming from

the tension of the domain wall. Using the “thin wall approximation” [34] we may write
S = Tyal Vol3(R*) — Viot (¥min) V014(R*) (2.60)
where

1
Vol (R.) = 21263 (9o M )>/ 2R3 Vol (R.) = §7r2b§(gsM)2Rff. (2.61)

denote, respectively, the 3-volume of and the 4-volume inside a 3-sphere of radius R, as
measured by the metric (2.35).

It now seems reasonable to assume that, when p < M, the profile of the domain wall
around R = R, approaches the supersymmetric configuration described in §2.4.2. Based
on this intuition, we will set the domain wall tension T},,; equal to its the supersymmetric
value (2.56). Taking the leading order value Viot(¢min) =~ 2p us/gs for the energy of the
false vacuum, we thus get the following result for the classical action of the domain wall

solution with radius R
S(R,) = 7T2,ugbggsM2(Mb(2)R‘:’ - pRj&) (2.62)

The two terms represent the two competing forces on the NS 5-brane domain wall bubble:
the tension pulling it inward and the outward pressure caused by the lower energy of the

supersymmetric vacuum inside the bubble. At the critical radius

R — 3Mb?
4p

(2.63)

the two forces are balanced. Notice that, as expected, the domain wall becomes flat in the
limit that p/M approaches zero.

Plugging the critical value for R, back into the action, gives the final leading estimate
of the nucleation rate

12 6
_2Tbo 95 M7 ) (2.64)

Decay rate ~ exp( 5197 13
™p
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where we set p3 = 1/273. We see that the rate is very highly suppressed in the p < M
regime we have been considering here.

In general, the above expression gives a negligible rate in the supergravity limit of large
M with gsM fixed. Note, however, that in our derivation of (2.64) we have assumed that
p/M is far below the critical value (about 8% in our probe approximation) where the false
vacuum becomes classically unstable. We conclude that, by tuning p/M, we can make the

non-supersymmetric vacuum arbitrarily long or short-lived.

2.5 Two Dual Perspectives

In this section we consider two dual perspectives on our model. In particular, we propose
a dual holographic description in terms of a nonsupersymmetric, metastable vacuum in the
KS field theory. Secondly, as an additional motivation for this proposal, we summarize how

our model may be described from the type IIA point of view.

2.5.1 Holographic Dual Field Theory

For simplicity, we first consider the case that p = 1, which we expect to be related to the
SU(2M —1) x SU(M —1) KS field theory. In addition to the N' = 1 gauge multiplets,
this theory has bifundamental fields, two in the (2M — 1, M — 1) representation and two
in the (2M — 1, M — 1) representation. So, from the perspective of the SU(2M —1), there
are Ny = 2(M —1) flavors, one less than the number of colors. Hence it is no longer
possible to write the color neutral baryonic combinations B and B, and, as a result, the only
supersymmetric vacuum of the system is the mesonic branch (2.15). This is the holographic
dual of the stable vacuum with M —1 D3-branes, the situation we expect to land on after the
decay process in the case p = 1. The question now becomes, “Where do we find the other,
nonsupersymmetric metastable vacuum corresponding to a single anti-D3 brane probing
the conifold?”

Though qualitatively important, for large M, the presence of the single anti-D3 brane

acts only as a small perturbation of the situation with p = 0. (For example, the effective
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NS 5-brane potential Veg given in (2.44)-(2.39) has a perfectly smooth limit for £z — 0.)
It seems reasonable to assume, then, that the nonsupersymmetric minimum for p = 1 can
be thought of as closely related to the baryonic vacuum of the supersymmetric theory with
p = 0. Indeed, as we have argued in §2.4.2, the NS 5 domain wall that separates it from the
theory with M — 1 D3-branes in the supersymmetric case represents a transition between
the baryonic and mesonic branch.

We will now try to use this intuition to obtain a description of the nonsupersymmetric
minimum. We introduce, in spite of the fact that Ny = N.—1 in our case, the two “baryonic”
superfields

B = (A)M~Y(A)M~1 Bo = (B)M~Y(By)M1, (2.65)

which are no longer colorless but carry a color index a transforming in the fundamental
representation of SU(2M —1). The idea is that the nonsupersymmetric theory corresponds
to a false vacuum of the p = 1 KS gauge theory characterized by a non-zero expectation
value of these color charged “baryon” fields. Naturally, this will cost energy, but it seems
a reasonable assumption that (for p/M very small) this nonsupersymmetric vacuum may
nonetheless be classically stable because it is separated from the supersymmetric minimum
via a potential barrier.

To make this proposal more concrete, let us derive the form of the superpotential of our
model with B% and B® included. To this end, we start by adding to the SU(2M—1) x SU(M—
1) gauge theory a single pair of scalar multiplets A% and B* (with a denoting the 2M — 1
color index), which we will then make very massive. The motivation for introducing these
extra fields is that, before we decouple them, they augment the system to have Ny = N,
so that we can introduce color neutral baryonic fields. Define the combination ¢, = Ay B,.

Now write the superpotential
W =X (NijagNg) €Fel! + X (det N' = 6 B°B° — A*M=2) 4 mtrg (2.66)

with det N’ the determinant of the (2M —1) x (2M — 1) meson matrix obtained by including

A, and B,. Here the last term gives rise to a mass m for the extra fields A, and B,. We
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can decompose

detN' = (tré + ¢ AT B)*(N~1)5;) det N. (2.67)

The lagrange multiplier term in (2.66) is the standard one for an A/ = 1 gauge theory with
Ny = N.. Notice that the extra field ¢4, does not appear in the first term in eqn (2.66); we
omit it here to avoid a symmetry breaking expectation value for ¢,. Instead, we would like
to keep N, equal to 2M —1 after integrating out ¢4,. The supersymmetric ¢4, equations of
motion now read

m+ X (det N — trBB) =0 (2.68)

from which we can solve for X, and
) 7b - ¥ R
APBIY (NI det N = BB (2.69)

Inserting the solution for X back into W gives the superpotential (with p = 1)

a B ik jl AZ11 P !
W= Ni' N, ps eIt 4 = 2.70
( ])ﬂ< ké) © b ((161@‘]'703 N —tr BB) ( )

with A‘llM —1 = mA*M~=2_ This is our proposed superpotential of the theory with the “bary-
onic” superfields present.

In case of general p, we can similarly write color charged “baryon” fields, which transform
in the p-th anti-symmetric product of the fundamental. Although we have not done the
explicit analysis in this general case, a natural guess is that the superpotential will take the
form (2.70). As a primitive reasonability check, we note that the supersymmetric equation
of motion for the “baryon” field, dgW = 0, yields the condition that B% = B® = 0, so the
mesonic vacuum remains present as the only supersymmetric vacuum, according with our
expectations.

In general, without more detailed control over the dynamics, the superpotential on its
own provides at most inconclusive evidence of the possible existence of other, nonsupersym-
metric vacua of the theory. Still, if our proposal is right, it should at least give some hint. A
general comment: Formally, the equation dgW = 0 also admits one other solution, namely

tr BB — oo. While it is of course dangerous to suggest that this implies the existence of
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another supersymmetric vacuum, it does indicate that, as a function of the baryon conden-
sate, the full potential V = |dW|? of the theory will have a maximum at some intermediate
scale (which one would expect to be near tr BB ~ A%M%p ). It is conceivable, therefore,
that there exists another minimum at large tr BB.

The strongest evidence for the existence of the nonsupersymmetric “baryonic” vacuum,
however, still comes from the supergravity analysis. The characterization of the nonsuper-
symmetric model in terms of p anti-D3 branes inside the conifold geometry suggests that,
somewhere in the dual field theory, there should be a hint of an (unbroken) SU(p) gauge
symmetry. Indeed, our proposed dual interpretation in terms of a phase with a non-zero
condensate for tr BB naturally leads to a breaking of the SU(2M —p) gauge symmetry to
SU(p). It seems natural to identify the worldvolume theory of the p anti-D3 branes with
the effective low energy description of this SU (p) sector. In the following subsection, we will
find an independent indication from the type IIA perspective that the nonsupersymmetric

theory is described by an SU(p) x SU(M —p) gauge theory.

2.5.2 Type ITA Brane Configurations

The RG cascade in the KS system can also be understood via a dual type IIA perspective
[19]. In the ITA description, one studies a theory on D4 branes suspended between NS 5
branes. Consider an NS 5 and an NS 5’ brane, the first filling out the 012345 directions,
and the latter the 012389 directions in spacetime. Suppose them separated only along the
2% direction, compactified on a circle. One can then stretch N D4 branes around the circle,
and M D4 branes on one of the two segments. The former correspond to the N D3 branes
and the latter to fractional branes. The resulting field theory has SU(N + M) x SU(N)
gauge group and the matter stretching across the NS 5 and NS 5 branes gives precisely the
bi-fundamentals which arise in the KS field theory.

In this description, the forces on the branes are not perfectly balanced — the NS branes
bend together on the segment with the additional fractional branes. This corresponds to

the fact that the SU(N + M) gauge theory has Ny = 2N flavors and becomes strongly
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coupled as one flows to the IR. One can move the 5" brane through the NS 5 brane and
around the % circle to avoid this intersection; this will have the effect of reducing the gauge
group to SU(N) x SU(N — M). This is the first step in the RG cascade, and it is repeated
until the rank of the gauge groups is low enough that Ny < N, in one of the factors and
the non-perturbative dynamics becomes more subtle.

The difference in our setup is the addition of p D3 branes to the conifold. In the dual
brane configuration, these should appear as p D4 branes stretched between the NS 5 and
the NS 5’ branes in addition to those already present in the KS setup. There are now (at
least) two obvious options:

e The p anti-branes can annihilate with the D4 branes in each segment, leaving an SU(N+
M—p) x SU(N—p) gauge theory. This subsequently undergoes the RG cascade as described
above; assuming N = KM and p < M, the endpoint is a supersymmetric SU(2M —p) X
SU(M —p) gauge theory. This is, of course, the dual gauge theory description of the final
state (2.6).

e Alternatively, one can first go through the KS RG cascade with the D4 branes, leaving
a pure SU(M) gauge theory from the D4 brane sector. Then, including the p anti-branes,
one finds a nonsupersymmetric theory with gauge group SU (M —p) x SU(p). Special cases
of this theory were discussed in [35]. This is a type ITA dual description of our nonsuper-
symmetric configuration. It would be interesting to understand the vacuum structure and
gauge symmetry breaking patterns found in §2.3 from the IIA perspective. The analysis in
[35] finds evidence of a symmetry breaking pattern which depends sensitively on the radius

of the x¢ circle, but is carried out far from the p < M, N regime of interest to us here.

2.6 Concluding Remarks

We have found that the configuration of p D3 branes probing the KS geometry constitutes a
rich system with several interesting properties. The basic physics is apparent in Figure 2.4.

For p < M, the system relaxes to a metastable nonsupersymmetric vacuum but eventually
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Figure 2.4: Schematic depiction of the brane/flux annihilation process for (i) subcritical
and (ii) supercritical values for p/M.

tunnels to a supersymmetric final state. This decay has a strongly suppressed rate given in
(2.64) and the nonsupersymmetric vacuum can therefore be made arbitrarily long-lived. For
p/M larger than some critical value (of about 8% in our probe approximation) the decay
takes place classically. In both cases, the decay is effected by “brane/flux annihilation”
where the branes first form an NS 5-brane which later unwinds around the S2, creating
M —p D3 branes in the process. An important remaining problem is to find a supergravity
solution of the nonsupersymmetric minimum that includes the backreaction of the p NS
5-branes.

The same basic brane/flux transmutation process whereby fluxes are traded for D3

branes may also provide a new perspective on many of the dualities currently under study
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as geometric transitions. An analogue of our microscopic description of this process via
NS5-brane nucleation may also play an important role in those transitions, which encode
the information about D-brane gauge theories in terms of dual geometries with fluxes (see
e.g. [21, 37]).

In most of this chapter, we have restricted our attention to the infrared physics of
the model, implicitly assuming that it embedded in a non-compact warped geometry with
fixed boundary conditions in the UV. It is an interesting question, however, to ask what
happens when we embed our model in a true string compactification with a finite volume
as constructed in [22]. In this case, the holographically dual gauge theory will be coupled
to 4-d gravity. Looking at the form of the potentials in Figure 2.4, it is then natural to ask
what type of cosmological evolutions are possible in this set-up. Indeed, this is a question
to which we will turn in the next chapter.

Besides the 1 field, the string compactification will generally give rise to many other
light moduli fields. In the basic model of [22], all can be made massive except for the Kéhler
modulus u(x) controlling the overall volume of the 6d internal space Y. If we ignore the

backreaction due to the branes and fluxes, it is defined by
ds® = g datdz” + 62“gﬁdzid25, (2.71)

where ds? is the 10d string frame metric and g;; the Ricci-flat metric on Y. Following the

steps outlined in [22], one obtains for the 4d low energy effective action

= 2% / d'a (~ga)"/? (ﬁu —6(9u)” — ag e Vo () (0,9 + age vm(@b)), (2.72)

with gy the 4d Einstein frame metric, and V5 and Vio as in (2.39) and (2.44)-(2.48). The
coeflicient ag is the warpfactor at the location of the anti-D3-branes.

The dynamics of this low energy field theory is dominated by the steep inverse-volume
dependence evident in (2.72), which implies that the presence of the extra energy density
in the anti-branes will quickly force the Calabi-Yau manifold to decompactify. In addition,
it prevents the model from giving rise to any appreciable inflation. To stop this decompact-

ification process, or to get an inflationary solution, it seems that one would have to find
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a novel means of stabilizing the Kéhler moduli (for a discussion of moduli stabilization in
roughly this context, see e.g. [22, 36] and especially the proposed de Sitter solution of [43].
In the next chapter, we will return to these and several related questions.

Lastly, the gravitational effect of brane nucleation processes that induce discrete flux
jumps has recently been investigated in [38], as a possible dynamical mechanism for neutral-
izing the cosmological constant. In particular the set-up considered in the second reference

appears closely related to ours.



Chapter 3

Inflatons

3.1 Introduction

There are few theoretical elements in modern cosmology so crucial as inflation [40]. As
a mechanism which purports to solve a host of cosmological problems—the homogeneity
of the universe, the miniscule monopole density, the scale-invariant spectrum of density
perturbations—it now seems indispensable to any modern theory of the early universe. As
a premise sufficiently generic to seem inevitable, it is deemed a necessary component of
every cosmological particle theory. However, other than the empirical facts it was designed
to corroborate, inflation has remained a success of theory more than observation, and more
data is desperately needed to identify and constrain its source.

Yet the prospectus for verifying some form of inflation is rapidly improving. Over
the next decade, a series of extensive and unprecedented experiments in observational
cosmology—BOOMERANG, WMAP, PLANCK, the Sloan Digital Sky Survey—will begin
returning precision data from the early universe, and a confirmation not only the existence
but a specific model of inflation is expected.

For these reasons and more, then, one would expect inflation to emerge from a complete
theory of quantum gravity, particularly string theory. Unfortunately, efforts along this

direction have encountered a daunting series of obstacles. For starters, models based on

41
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string compactifications contain a host of light moduli fields which correspond to unfixed
parameters of the underlying geometry. These fields, which would mediate long-range forces
in the universe, must then be stabilized by some as-yet-unknown process which renders them
massive in the present epoch. Secondly, in order to produce significant inflation, the inflaton
must roll along a potential which is both flat enough to maintain an extended period of
slow roll and contains a stable minimum in which reheating can occur. For string theory,
this has proven to be a notoriously difficult problem, as quantum corrections are generically
expected to break all accidental symmetries in the theory, and such a symmetry is usually
necessary to produce the nearly-flat potential needed for slow roll. In fact, the challenge of
stabilizing all compactification moduli—apart from inflation—has been met only in a select
few models [42, 43].

As we have already intimated, most studies of inflation have focused more specifically
on the scenario known as “slow roll”! , a particularly simple, solvable scenario in which it

is assumed that the potential and kinetic energy satisfy the relations
V>K, V>K, V>|V| and V> |V, (3.1)

where V' = dV/d¢ and the last two inequalities follow from the additional assumption that
there is but a single inflaton. Furthermore, it is typical to rewrite these constraints in terms

of the inflaton potential itself as the condition that

M2 V! 2 v
€= % <V> and n= Mglv (3.2)

are both much less than 1 [62]. In this approximation, the number of e-foldings is given by

the integral over the inverse of 7,

1 V
N, = — — )
e M}Q)l /d¢ Vv (3 3)

and the Hubble expansion is exponential, with the universe experiencing a prolonged de

Sitter phase.

!For an interesting exception to this trend, see [51].
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In the models we will consider, the potential V' will be supplied by the four-dimensional
effective action of some compactification—usually with brane sources—and the vacuum
energy of these ingredients will serve as the cosmological constant of the dimensionally-
reduced supergravity. It is this energy which will source the Friedmann equations and drive
the expansion of the universe, continuing until the slow roll conditions cease to hold and the
inflaton begins to oscillate in the stable minimum of its potential. From there, the kinetic
energy of the inflaton will redshift away, reheating the universe through its couplings to
regular matter.

As to experiment, we note as a theoretical constraint that at least 60 e-foldings are
presumed necessary to reproduce the observed Hubble horizon and flatness of the universe.
In addition, the spectrum of gravitational perturbations produced by inflation is nearly

scale-invariant, with tilt parameter
n=1-—06e+2n~1.13+0.08 (3.4)

[41]. Ideally, this spectrum would be produced by an analysis of quantum inflaton fluctu-
ations in the background of our effective supergravity, though we will not perform such a

2 Nevertheless, agreement with experiment on this point is expected of

calculation here.
any successful inflationary model.

Nevertheless, there do exist scenarios in string theory in which a suitable inflaton may
be found. In the case of brane inflation [48], the inflaton is taken to be the relative position
between a brane and its corresponding anti-brane, and as the two move slowly toward one
another and annihilate, the worldvolume of each undergoes an extended period of inflation.
The typical setup is that of a D3 — D3 pair, one of which is presumed to be our universe. In
this case, for distances r > [, the inter-brane potential can be calculated in supergravity,
with the result

CTs

V(r) ~ 2T — =, (3.5)

C some constant of order 1 in Planck units. Thus potential becomes very flat at large

?In fact, there are proposed mechanisms to produce scale-invariant curvature fluctuations by fields other
than the inflaton. In what follows, we reserve the right to invoke mechanisms such as [52] at will.
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distances, growing increasingly steep as the branes approach.
We would like to know how far apart the branes must begin in order to generate sufficient

inflation. Plugging (3.5) into (3.2), we derive?

0~ (L)ﬁ, (3.6)

r

where L is the typical length scale of the compactification (M3, = MF8,Z710L6) and we have
neglected constant factors. Clearly, we need r > L for slow roll, and we are thus forced into
the absurd requirement that the branes be separated by a distance larger than the manifold
which contains them.

However, exactly this problem was recently solved by an inventive mechanism in [49]. In-
stead of a standard compactification, we are instructed to consider the inclusion of five-form
flux in our internal manifold. With this addition to the supergravity equations, there exist
new solutions corresponding to warped compactifications [24], in which the transverse geom-
etry is multiplied by an exponential “warp factor.” As is well known, these compactifications
are the inevitable result of three-brane sources and generically exhibit a large hierarchy of
scales [22]. The best-known case of this is of course anti-de Sitter space, where the warping
is proportional to R/rg, with R ~ 4mg; N—N the number of five-form flux units—and r
some minimum radius at which we assume the AdS space truncates smoothly. In these
scenarios, the large warp factor implies a sizable redshift between Planck and throat-scale
physics, and the effective string scale at the bottom of the throat is consequently reduced.
In most of what follows, we will limit ourselves to the case in which this hierarchy is some
exponential in ratios of fluxes.

Now let us consider brane inflation in such a warped scenario. First, recall from §2.2.2
that, when placed in such a flux background, D3 branes are governed by a no-force BPS
condition* while anti-branes are drawn by the combined force of gravity and flux to the tip
of the geometry. Clearly, the dynamics of our brane-antibrane pair will be modified in this

background: While the anti-brane is held by a combination of forces at the tip, the brane

3We ignore e. Generally, the n < 1 is the more restrictive condition.
4This can be easily verified by writing the Born-Infeld and Chern-Simons actions for a three-brane and
expanding both in the low velocity approximation [49].
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experiences a cancellation of these forces and remains free to roam the manifold. Thus the
brane-antibrane symmetry of the problem is broken, and the characteristic scale of physics
on each is drastically modified. Recalculating the inter-brane potential in supergravity with

the inclusion of the anti-brane perturbation, we arrive at a new expression

4 4

V ~ 2Ty (;g) (1 - % (7;?) ) , (3.7)
where r is the relative position of the branes. Note that the first term, corresponding to
the vacuum energy of the two branes, is now reduced by the fourth power of the redshift
factor, and our slow-roll parameter 7 is suppressed by an exponential factor (r9/R)*. Thus
warping has resolved the difficulty discovered above: by sequestering the physics on each
brane to hierarchically-separated scales, the potential is warped away and 7 is made small
by the redshift. As a result, the branes need no longer be separated by a distance larger
than the manifold to achieve slow roll.

Unfortunately, embedding this setup in a full string theory context raises a serious
additional problem, that of moduli stabilization. In [17], it was pointed out that the effective
action for warped compactifications, considered as a function of the overall Kahler modulus
p, contained terms inversely proportional to p® and p'2. Thus the minimization of the
effective energy for such a model would lead to a maximization of the Kahler volume, and
the manifolds themselves would be unstable to rapid decompactification.

Recently, however, a particular solution of this problem was conjectured in the work
of Kachru, Kallosh, Linde, and Trivedi [43], who considered the addition of anti-branes
to the supersymmetric AdS warped compactifications. Beginning with the well-known KS
geometry, they discovered AdSs x T1! solutions to the supergravity equations with tunably
small cosmological constants. Adding anti-branes to these solutions then contributed a
positive vacuum energy, which, when added to the negative cosmological constant of AdS
sufficed to give a net positive result. Thus the effective four-dimensional geometry of the
AdS plus anti-brane geometries became de Sitter space, and, as was argued in [43], these
approximate solutions had energies small and decay barriers wide enough to be metastable.

Thus these setups represented long-lived de Sitter phases of string theory, in which the
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four-dimensional universe was expanding exponentially. Better still, in the class of models
considered, the volume modulus was stabilized by the addition of the anti-brane potential,
and thus the dS solution fixed all moduli. In this case, runaway decompactification was
separated from the dS minimum by both a small energy and a wide potential barrier.

However, this is not the end of our dilemma. In the discussion of warped brane inflation
above, it was tacitly assumed that all moduli had been stabilized. And while it is known
from specific examples [50] and general suspicion [22] that the presence of fluxes stabilizes
the dilaton and all complex structure moduli, we needed special measures to deal with even
a single Kahler modulus. Thus any proposed inflationary potential must consider the size
of the manifold itself to be a variable field, and any attempt to embed brane inflation in
strings must take into account the need to stabilize all moduli.

In order to see why this a problem, consider the superpotential for a warped compacti-

fication, which takes the general no-scale form [53]

K(p,p,d,¢) = =3log(p + p — k(¢, 8)). (3.8)

Here we see that the Kahler modulus and the complex coordinates ¢ of the Calabi-Yau are
present nonlinearly in the geometry, and thus we expect that stabilizing the modulus p will
impact the treatment of warped potentials dependent upon ¢ in brane inflation.

We can see this in another way as follows: The presence of a four-form flux in the theory®
is four-dimensionally dual to an axion propagating in spacetime. This axion then couples
to the worldvolume of the D3-brane, yielding a moduli space with the axion nontrivially
fibered over the Calabi-Yau [49]. As a result, the moduli space metric of the D3-brane—the
metric of the Calabi-Yau itself—is only derivable from a Kahler potential if the Kahler

modulus p is some combination of the volume r and complex coordinates ¢:
2r =p+p—k(¢, ). (3.9)

However, this leads to a conundrum: Imagine an arbitrary superpotential, dependent upon

the chiral superfields p and ¢. With standard sources, this will lead to a scalar potential of

®Specifically, one of the form C.,,pq, with two indices in spacetime and two in the compactification
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the form X /r®, with X holomorphic in p and ¢. In every known example of brane inflation,
the potential will exhibit this characteristic radial falloff, approaching zero as the distance
becomes infinite.

Now suppose there exists a mechanism for stabilizing the modulus. Because this mech-
anism fixes p and not r, the terms in the potential, which have denominators given by (3.9),

now have an expansion about fixed p given by
Y (p b2
Vip.0) ~ p”(u | ’) 20 1, (3.10)

with Y = X (p,0) and Z ~ 8(15543)( . Thus corrections to the potential will generically induce
contributions of order 1 to the slow roll parameter n and slow roll inflation will not take
place. Of course, there is the possibility that these corrections will cancel against each
other, but this would necessarily require a fine-tuning in the potential.®

Thus we see that even though warped compactifications solve some of the problems of
brane inflation, the need for moduli stabilization once again calls into question their viability.
Fortunately, such scenarios do not exhaust the possibilities for inflation in string theory
compactifications. In the next section, we shall discuss a new setting for brane inflation
which avoids the difficulties of moduli stabilization while posing new challenges of its own.
This model will make explicit and deliberate use of the nonabelian character of D-brane
geometry, in particular the ideas of [61], in which a process of successive nonabelianizations
takes place among branes in the presence of background fluxes. With this as context, we
will discuss the process of graviton amalgamation and expansion in terms of the rolling
of a collective coordinate along potential energy landscapes, finding evidence that such
transitions are always classical processes. In addition, we will examine the process of branes
finding each other across intervening distance before expanding once again into a nonabelian
configuration. We will compute slow roll parameters for a simple example.

Following this, we will consider quantum modifications to the landscapes of §3.2, com-
puting one-loop corrections to the potential and discussing their impact on giant inflaton

scenarios. We will see there that, while such corrections do not destroy the classical decay

5For a discussion of exactly how much fine-tuning is required, see the discussion in Appendix F of [49].
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trajectories they do hold the potential to make both € and n large. This will serve as a
correction to our earlier estimates, casting doubt upon the viability of our matrix model
scenario.

Finally, we will embed these matrix models in warped geometries following [39] and dis-
cuss ways in which naive inflationary scenarios are thwarted in the process. Placing ourselves
in the brane-flux annihilation scenario of [17], we will examine the formation and trajectory
of the supersymmetry-restoring five-brane domain wall, linking our previous discussion to
studies of the giant inflaton. There, our slow roll field will be a noncommutative pseudo-
Goldstone boson of the SO(4)-invariant A-cycle, and the exit mechanism will involve the
domain wall traversing the compact three-sphere. In this context, we will have occasion to
discuss interactions among anti-branes, noting the way in which their flux-mediated poten-
tials ruin the possibility of slow roll. We conclude with a number of cautionary statements

about the search for inflation in warped compactifications.

3.2 Matrix Dynamics of Fuzzy Spheres

Let us now consider a very simple situation: a cluster of p anti-branes (though the distinction
here will be unimportant) transverse to a background of three-form Ramond-Ramond flux.
For the moment, we will ignore backreaction, taking our metric as flat Fuclidean space.
We make no further assumptions about embedding or context. Such a setup could just as
easily be found in noncompact space as in the S2 tip of the KS solution which we will evoke
later. For the concerns of this section, the distinction will not enter. Our program will be to
investigate the prospects for inflation from giant graviton dynamics in this background, and
we will do so in a pair of related examples. In the first, following [61], we will begin with a
pair of concentric gravitons and study its (classical) evolution to a single fuzzy sphere. In
the second, we will consider a pair of branes initially separated in the flat background and
compute their dynamics as they approach and subsequently nonabelianize. In each, we will
be concerned with the emergence of flat, slow roll directions from the configuration space

of large numbers of fields.
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We begin with the well-known action for such branes given in [12]:
S = Tp/dt Tr in + X[X“Xj] — g’ieiiji[Xjan] . (3.11)

Here, T), is the brane tension (we will not, as in [12], assume DO-branes, though we will
assume the branes are pointlike in the flux directions), the matrices X; are p x p for the
p branes, k is related to the background three-form flux, and 2ma’ is set equal to 1. In
keeping with the discussion of the Myers effect in §1, we derive the equations of motion
(X5, ([Xs, X5 — inesn[ X, Xi])] = 0, (3.12)
for which we have both the trivial solution X; = 0 and the giant graviton solution
s
[Xi, Xj] = iken Xy = Xi=r@DJr, (3.13)
r=1

a sum of representations of SU(2). Again, each of these representations will constitute
its own giant graviton with radius proportional to its quadratic Casimir: R? ~ k2j,(j, +
1). Similarly, the energy is a sum over representations, each with individual energy E =
Ty k%5, (jr + 1)(2j, + 1). As before, this energy takes its maximum value of zero for the
trivial solution and its minimum value for the largest-dimension irreducible representation.
All other such solutions, corresponding to nested configurations of fuzzy spheres, have
energies intermediate between these two. We therefore expect transitions between such
configurations, though there remains the natural question of whether such transitions are
classically allowed.

As we will presently demonstrate, the answer is yes, despite the fact that fluctuation
analysis of these solutions performed in [61] discovered no negative modes. There, it was
found that the existence of marginal solutions to the equations (3.12) is a crucial component
of the classical energy landscape, and that instabilities to giant graviton decay only appear
as the system evolves along these flat directions. In some cases, the instability is present
with even an infinitesimal deformation, while for others, the tachyon does not appear until
the system has traveled a finite distance along the marginal path. In all cases, however,

such instabilities do exist, and the decay proceeds without exception by classical processes.
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To this end, let us reconsider the equations of motion (3.12), seeking new solutions of
the form

Zi = XZ + CiaYa, [Yav }/b] = O) [Ya7 Xl] = 07 (314)

with X; the nested SU(2) configuration of (3.13). With such an ansatz, it is not difficult
to verify that if the Y, exist and satisfy (3.14), the Z; solve (3.12) and the ¢;, generate a
continuous family of degenerate solutions. On this basis, we recognize the Y, as marginal
directions in the nonabelian D-brane geometry.

Of course, this new class of solutions reopens the question of stability, and as shown
in [61], the inclusion of the deformations Y, introduces tachyons into the previously-stable
nested graviton configurations. For instance, in the 4 x 4 matrix % @ 0 & 0 solution, which
represents two free branes and a single spin—% giant graviton, even an infinitesimal marginal
deformation removes the flat directions found in the unperturbed stability analysis. After-
ward, all modes are massive, with two stable and two tachyonic. Similar conclusions hold
for the 1 & 0 and % & % configurations.

Let us then examine the dynamics of the decay process, focusing on the transition from
multiple spheres to the single irrep. In what follows, we will consider a pair of simple
examples, the % P % — % and 0 0 — % transitions, each with its own set of initial

7

conditions.” In both, we will see how the energy landscape alters our naive expectations

of the system’s dynamical behavior.

We begin, as in [61], with the ansatz
Xi(t) = n (J+ F(O)(T = ) (3.15)
imposing as boundary conditions the constraints

f(to) =0, flt) =1 (3.16)

Here J; is the initial configuration, a direct sum of SU (2) representations, and J; is the final

"While it would seem simpler to consider two sets of initial conditions for the 060 — % decay, the nested

configuration in this case is classically unstable even without the inclusion of flat directions. The % <) % — %

case is the simplest nontrivial case of the concentric analysis we would like to illustrate.
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Figure 3.1: One-parameter potential for the % @ % — % transition. Note that without the

marginal direction, the two spin—% gravitons are stable against decay.

configuration, the maximal graviton irrep. We wish to study the dynamics of the transition
between these two configurations, and if a classical trajectory should exist, f(¢) will be the
parameter of its curve.

Plugging the ansatz (3.15) into (3.12) then gives an equation of motion f = —V'(f),
with

V(z) = —a + bx? — ca® + dz? (3.17)

and a,b,c,d (all positive) dependent upon the final spin. Thus in Figure 3.1, we see that the
j = 3/2 solution is the lower minimum, though no classical path connects it to the initial
configuration. This partially substantiates our earlier remark—that in general these solu-
tions are stable without flat directions—and we see that the search for a classical trajectory
necessitates a more general ansatz.

Let us begin again, then, with the expanded ansatz
Z; (t) = X@(t) + /ig(t)diY, (3.18)

where X;(t) is again given by (3.15) and Y is the marginal direction which commutes with

the X;. Here d; is an arbitrary constant, and ¢ satisfies the boundary conditions

g(to) = 0 = g(tl). (319)
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Figure 3.2: Plot of the j = 3/2 effective potential of (3.21). The variables (f,h) begin at
(0,0) (the &% configuration) in the upper left and roll to a minimum at (1,1) (the j = 3/2
configuration) in the lower right. The transition is purely classical.

As a specific example, let us specialize the 4 x 4 case of % &) % — % Evaluating
S = [dt (K — V) on this ansatz then gives a kinetic term
K =2((4-V3)f*+2f5+), (3.20)

and diagonalizing (3.20) with the substitution h = f + g gives an effective potential
1
V=t (2= 12+ (1= V3)) f2 =82 = V3)F* + (10 - 4v/3) /%, (3.21)

depicted in Figure 3.2.

Examining this expression, it is clear that there is no real energy barrier to prevent
the initial two-graviton configuration (f = h = 0) from rolling to the single-sphere irrep
(f = h = 1). Thus the amalgamation is a purely classical process, proceeding by detour
along the flat directions of the potential landscape. In an analogous fashion, this conclusion
is expected to hold in the more generic case as well. There, we might also expect to find
the decay taking place by a series of staggered stages, the system rolling between successive

minima via a cascade of shallow ridges. However, we expect that in order to have inflation,
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at least one of these ridges must be of finite length and relatively shallow, a situation which
fails to obtain in our present example. For slow roll to become feasible, we would like a
potential in which the path of graviton amalgamation is narrow and sequestered by some
long distance in field space from the emergence of a tachyon.

Fortunately, we have just such an example. Consider the situation in which, rather than
beginning as concentric, a pair of graviton spheres are initially separated by a distance xg. In
this case, we expect that the branes will have to reach some minimum distance of approach
before the amalgamation instability is present, and until they reach this nonabelianization
range, the potential between them should be approximately flat. This is exactly the type of
setup we expect for p point branes scattered randomly over some compact space, and their
expansion into a maximal giant graviton should follow just such a process of “Brownian”
clumping. As random density perturbations grow and the branes amalgamate, we expect
the time scale for graviton formation to be much shorter than the time scale over which the
branes find each other within the space. This appears to be a promising scenario for slow
roll, provided we can successfully identify the inter-brane distance with a shallow potential,
and it is exactly this prospect we wish to analyze below.

Now let us treat only the simplest example of such a scenario: two gravitons which find
each other across some initial separation and subsequently abelianize. Moreover, in our
setup, these two gravitons will be single branes, and we will study the 0 0 — % transition
to a 2 x 2 graviton configuration.

Begin, then, with the action (3.11), supplying the ansatz (for later convenience, we also

take the case of three-branes):

Xi(t) = EA(E) Xa(t) = TEF() Xa(t) = T2g(0), (3.22)
along with boundary conditions
FO) =0, f1)=1, g(0)="2, g(1)=1. (3.23)

Thus the initial center of mass separation is xy along the X3 direction, and the branes end
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Figure 3.3: Potential landscape for a pair of pointlike branes. The two branes begin sepa-
rated along the g direction at f = 0. The point which represents their center of mass then
rolls around the corner and into the spin-% graviton basin.

in the spin—% giant graviton configuration at ¢t = 1% . Plugging (3.22) into (3.11), we then

derive an effective potential
alg 1 2
V =Tk (Zf + (59 - 9)f) (3.24)

plotted in Figure 3.3. From the diagram, we see that two branes initially separated along

the g axis will roll slowly along this direction until turning the corner, at last falling into

10

the giant graviton basin. As the branes move together, they experience a very shallow

potential, until, at some minimum distance, they begin to sample each other’s nonabelian

80f course, we might consider more a more general ansatz for the X;, but this parameterization will
suffice because the barrier sequestering the flat direction from the instability is expected on physical grounds
to be a generic result.

In [61], it was necessary to first diagonalize the kinetic term. We have no such need here.

0Ty be precise, the marble roving over the landscape in our example represents the center of mass
coordinate of the two branes.
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Figure 3.4: Plots of € and n vs. go = ¢/ for slow roll along the direction f = 0.1 in (3.24).
Integrating from g = 20 to g = 10 with Mp; = 1 gives well over 60 e-foldings.

natures, developing a steeper tachyonic direction. We also note that in the limit g — 0 of
concentric spheres, we see a pure instability to nonabelianization.

It thus becomes feasible to ask (perhaps naively) how much inflation this scenario would
produce. Without worrying for the moment whether k is large or small or whether the
requisite space for inflation would exist in a compact setting, we can certainly calculate the
slow roll parameters € and 7 for the potential landscape in Figure 3.3. Taking as our inflaton
the g direction along f = 0, we expect slow inflation along the shallow valley trajectory,
exiting as the field turns the corner at some minimum distance x,,in. However, because
f =0 is an exactly marginal direction, some initial fluctuation is necessary before slow roll
can begin. Thus we assume that the field is slightly perturbed from its minimum at f =0
while keeping ¢ large. Fortunately, even a small fluctuation in f will suffice to start the
roll, and even a large fluctuation will not significantly alter its slowness.

As seen in Figure 3.4, this landscape produces very small 7 and € over a large range
of go. However, we have not said anything about whether x is large or small, and thus
it remains unclear whether gg can take values sufficiently large to produce 60 e-foldings is
possible. Nevertheless, we can provide an estimate. If, as in the next section, we imagine
embedding this landscape in the setup of [17], with p the number of anti-branes and the

background geometry that of the S3 tip, we know there exists a maximum value of /g, M
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for any coordinate distance xg. Furthermore, matching coefficients to the matrix model of
[17], K ~ M~/2. This is a good sign. In the dimensionless units of our numerics, we can
keep zop ~ ls (and the matrix model within its regime of validity) for M ~ O(100) and
gs ~ O(1/10). These numbers then give a go of the order of 10-20, which looks promising.

However, such an analysis is really doomed from the start. In the above, we have as-
sumed that the string scale at the tip is the unwarped string scale, and thus that factors
of Mp; in (3.2) are of order 1 in string units. Unfortunately, the conifold warping lowers
exponentially the effective scale of inflation, and this suppression of the relevant mass trans-
lates to an exponential enhancement of the slow roll parameters. Thus, excepting cases of
anomalously-mild warping, we are effectively redshifted out of the slow roll regime. In fact,
this verdict—that all but the most highly-suppressed interactions among branes at the tip
spoil inflation—is one which will be echoed in the analysis of [39] below.

Lastly, as a prelude to the corrective analysis of the next section, we would like to
consider the addition of masses to the model (3.11). With a mass term Tr(X?), the equations

of motion (3.12) now read:
(X5, ([Xi, X;] — ireijp Xg)] — m*X; = 0. (3.25)

Perhaps surprisingly, these still permit a solution of the form (3.13), provided we rescale

the coefficient < as
k — (K + VK2 —2m2) /2. (3.26)

As expected, this deformation generically lifts flat directions in the potential landscape,
leaving only gauge transformation zero-modes. For this reason, we no longer anticipate a
classical interpolating trajectory between graviton minima, and the only possible transition
is one by quantum tunneling. Nevertheless, there does exist a special value m = 2x/3 for
which the model becomes supersymmetric. In this case, it is possible to rewrite the action
in Bogomolnyi form: as a the sum of a perfect square which yields the first-order equations
of motion and a total derivative piece which only depends on the difference between initial
and final configurations. In this case, all giant graviton solutions have zero energy, and the

classical transitions connecting them are contained in the moduli space of vacua.
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More interesting, however, is the effect of a mass term on the non-concentric dynamics
we have just considered. In our example, a mass term clearly lifts the f = 0 flat direction,
and the center-of-mass field is then governed by a quadratic potential. Thus no fluctuation
is necessary to start the rolling process, and the calculation of € and n will be that of
standard quadratic inflation [62]. There, the values of the slow roll parameters will be set
by the ratio of mass-term and Planck scales, and without some restriction to small mass
terms (or the unfeasible scenario of a trans-Planckian vev for the radial inflaton), it will no
longer be possible to maintain the approximation of slow roll.

Nonetheless, it is an important observation that a mass term of the form Tr(X?) will
not destroy the classical instability. Because the branes are initially separated, they never
find themselves inside the well at X = 0, and just as before, they will approach but ulti-
mately avoid this point en route to the expanded graviton minimum. Note, however, that
if the mass is too large, the graviton minimum might be raised above the level of the com-
muting solution, in which case one expects a quantum transition from the spherical to the
commuting case.

Of course, we generically expect mass terms to be generated by quantum corrections to
the potential. Our question then becomes one of the size of such terms, and we take it up
in the next section in the computation of a one-loop correction to the action (3.11). We

will compare this result to similar estimates provided by the giant inflaton scenario of [39].

3.3 A One-Loop Amendment

As already noted, the effect of a mass term on matrix models such as those studied above
can be pronounced, with the capacity to destroy the prospects for inflation. In this section,
we would like to estimate the size of such terms as generated by quantum effects. In [39],
similar terms were considered in a closely-related setup, and their impact on the giant
inflaton scenario was assessed. Here, after giving a treatment of our own, we will briefly
discuss that scenario and compare our results with the approach presented there.

In order to make this a meaningful process, however, we must embed our matrix model
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in a compact framework. As suggested earlier, we will take this to be the brane-flux anni-
hilation setup of [17]. Thus we will once again consider a cluster of p anti-D3-branes on the
S3 tip of the KS warped deformed conifold with radius R ~ /g;M. These branes, in the
presence of the background five-form flux, will held to the tip by a combination of flux and
gravitational energetic considerations, and we will consider motion only along the directions
of the sphere. Moreover, these anti-branes will also inherit a Tr(®3) Myers term from their
interaction with the M units of Ramond-Ramond three-form flux through the sphere, an
interaction which will generate the giant graviton instability.

Moreover, we will also assume that the overall volume of the compactification has been
stabilized, by the mechanism of [43] or some other. The specific scheme will not be im-
portant for our purposes, but we will take as given a solution to the problem. As for the
pitfalls of warped brane inflation discussed in [49], we will sidestep these by staging our
nonabelianization on the compact A-cycle, a submanifold of constant Kahler form. Thus
the potential for our inflaton, arising from the p? anti-brane degrees of freedom, will receive
no corrections from moduli stabilization effects.

From this setup, we hope to extract an inflationary scenario as follows: Beginning with p
anti-branes scattered over the sphere, we follow the process of brane amalgamation, allowing
the branes to cluster and nonabelianize by a series of staggered classical decays. We hope
that in this process there exist a number of long, marginal directions along which clumps of
branes approach each other, driving inflation before the onset of giant graviton instabilities.
At last, when the branes have assembled themselves into a single expanded graviton/brane,
inflation will end when this object traverses the three-sphere as a supersymmetry-restoring
domain wall [17]. This process, which leaves behind M — p SUSY-preserving branes on
the sphere, represents both a uniquely stringy exit mechanism and a fundamentally non-
perturbative transition between cosmological phases. Such a scenario was studied from the
supergravity point of view in [39], and the results of that work will be discussed below.!!

To this end, we will return to the matrix model (2.24), this time including the kinetic

"For a related idea which follows along somewhat different lines, see [54].
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Figure 3.5: One loop corrections to the matrix model and v masses. In the first graph, the
propagators are for a field X ~ &g, Y2 There is a factor of p from the trace around the

loop. In the second diagram, the field in the loop is ¥ ~ R.

term:

L= L;Bp + ? (Tf(@')z) + 1§Tr([<1>i, ®7P) + %eijkfrr(cpi[qﬂ , @k})) , (3.27)

again with f ~ Fjp ~ 1/1/g2M. Of course, a straightforward calculation of the diagram in

Figure 3.5 gives a mass correction to this model

p
1672

m2~

p
(FVa) 05 1) ~ 3 (3.28)

S
where p comes from the trace over the internal loop and the ,/gs results from properly
normalizing the kinetic term. Such a mass is conceivably quite large: for subcritical numbers

of anti-branes, p/M is of the order of a few percent, while g5 is expected to be of order
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% or less. This is obviously problematic from the standpoint of inflation, and stands to
undermine our earlier optimism, even apart from concerns of warping.

Furthermore, we anticipate that the continuous NS5-brane description should tell a
similar, if not identical, story. Beginning with (2.32), we can follow the calculation of
§2.4.1, arriving once again at the effective potential (2.44). However, in considering the
correspondence between this and the matrix configuration, we will be more interested in
the small-radius potential (2.45). Once again, it will be worth our while to add the kinetic

term, yielding a Lagrangian

_ H3p 2 ﬂ 3
L= <<gsM><auw> ot

gs

w‘*) (3.29)

272p?
without the constant potential.

As in [39], we might ask how large a mass correction is generated in this theory. To
do this, we define a new, canonically-normalized field y and calculate the corrections to its

mass from a similar one-loop term to that in Figure 3.5, yielding an answer

1
giMp3

m? ~ 2~ (3.30)

Certainly this is a much smaller result, down by a factor of p* from our matrix model
estimate. And yet we expect that the two computations are morally equivalent, since the
leading deformation to the theory of the NS5-brane should be related to the first-order
correction to the matrix model. However, we have failed in this estimate to take into
account two crucial factors. First, we have compared the weakly-coupled description of the
anti-brane matrix theory to the strongly-coupled NS5-brane description. A priori, there is
no expectation that these will produce the same numerical result, and we should take the
agreement in g5 and M dependence as a gratuitous confirmation. In fact, this follows from
the almost identical form of the actions: for small radius, sin? ¢ ~ ¢? ~ R? ~ 1Ty ((97)?),

and by defining the matrix variable
— oot ~ YIMY i (3.31)

where J? is the SU(2) generator and we have used Tr((Jl)2) ~ p? for large p, we can derive

a complete term-by-term correspondence between (3.27) and (3.29).
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The real reason, then, that these nearly identical actions do not lead to the same mass
can be found in our second caveat: By using (3.29) to calculate (3.30), we have implicitly
ignored the other O(p?) degrees of freedom of the matrix model. Thus the effective action
calculation (3.30) fails to take into account the complete phase space of contributing fluctu-
ations and thus wildly underestimates the mass term. In effect, the fact that Tr(®)? ~ py?
means we should expect phase space enhancements by powers of p.

Unfortunately, as mentioned above, this only makes the prospects for inflation worse.
Because g, is assumed to be small with M large and p/M of the order a few percent, there
is little hope that € and n can be made small in the case that inflation is driven by the mass
term above. Nevertheless, we have found an encouraging agreement between the matrix
and Born-Infeld dynamics, and that lends credence to our use of the matrix model as an
approximation.

All of this, of course, corroborates the pessimistic assessments of [39], which examined
long-wavelength supergravity descriptions of the same brane setup. There, it was found that
mass terms were generated from a host of sources, including SO(4)-breaking effects on the
A-cycle from distant fluxes. These terms, generated by nonvanishing integrals over closed

2

cycles not present in the KS solution,'? yield mass terms in the supergravity equations

according to
_ 9GP

2
A
v 48

(3.32)

where the warp factor is written as e4. Compared to the KS flux, which integrates to M
over the A-cycle, these fluxes are suppressed by powers of the warp factor, and thus the
masses which affect physics at the tip are exponentially small.

The more important story in this context is that of the interaction among anti-branes.
Whereas in supersymmetric backgrounds, probe branes which preserve the supersymmetries
of the ambient space are governed by a BPS no-force condition, supersymmetry-breaking
probes, as we have seen, do experience net forces, often quite strong. There is still some

question, however, as to whether mutually BPS objects, even those which break the back-

2These fluxes were, however, assumed to preserve the imaginary self-dual condition. In the example given
there, they were proportional to the holomorphic three-form.
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ground supersymmetry, feel any force from one another. Obviously, should such a force
exist, it must be the result of supersymmetry-breaking effects in the background.

This is in fact the case, as argued in [39]. There, ISD fluxes on the A-cycle, in combina-
tion with gravitational effects, mediate a net attractive force between anti-branes, leading
to strong dynamics which destroy the potential for slow roll. According to the authors, the
gravitational warping caused by a large number of clustered anti-branes on the sphere traps
flux in the branes’ own throat. This pinned flux then screens the charge of the anti-branes,
giving them at long distance a net positive three-brane charge. Thus a wandering anti-brane
on the S3 will experience the clump as an object with positive three-brane charge and will
be attracted as if the configuration were a normal three-brane. As a result, there exists an

effective potential

4
27 oag

V(X) = U X2 (3.33)

where X is the normalized rms brane separation X2 = 1% Zi#(yi — yj)2 on the sphere.
Unfortunately, as is the case with all dynamics at the bottom of the throat, the n parameter
for this potential is made large by the warping which exponentially lowers the Planck scale.

More problematically, this is a generic result. The picture which emerges from the
analysis of [39] is one of roaming anti-branes which are quickly drawn together on the
sphere and form an expanding NS5-brane which traverses the S as in [17]. All of these
processes, it would seem, are much too fast to produce significant inflation.

However, there is a final optimism in the evolution of the five-brane trajectory. Recalling
the effective potential (2.44) plotted in Figure 2.2, we might wonder if the transition through
a near-critical inflection point might provide velocities sufficiently small for slow roll. In
fact, numerical results presented in [39] do manage some 60 e-foldings for values of

2172
agM;
2
Mg,

B= (3.34)

of order 1. Therefore, in cases of very mild warping, ag ~ 1, we might hope to discover
inflation either in amalgamation dynamics of gravitons on the sphere or in the expansion

of the nonabelianized NS5 domain wall. However, such a regime lies beyond the range of
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many of our approximations, which relied on an approximate treatment of highly-warped
geometries, assuming fluxes K ~ gsM or greater. Our understanding of mildly-warped
geometries is comparatively weaker, and it seems that until we gain control of this mild

warping regime, the case for a giant inflaton will remain suggestive at best.



Chapter 4

Twisted Bits

4.1 Introduction

As it is conjectured, AdS-CFT is not merely a correspondence between supergravity and
gauge theory, but between gauge theory and strings [18]. However, results beyond the
supergravity approximation, including o/ corrections and the regime of small 't Hooft cou-
pling, have proven more difficult to calculate. For this reason, there has been keen interest
in finding sectors of conformal field theory which would correspond to stringy effects, as
well as theories which capture the full string theory dynamics [66, 67].

In addition, there have long been efforts to find and classify exactly solvable string
theories, both as a means of understanding strings in nontrivial'! backgrounds and as a
testing ground for ideas beyond the arena of flat space [68, 69]. It has been hoped that
such backgrounds, where they exist, would further our understanding of strings at strong
coupling.

Thus it is unsurprising that plane waves [74] have proven a subject for repeated and
serious investigation as exactly solvable backgrounds of string theory. While it has long been
known [69] that the NS version is a solvable background, not until the analysis of [76] was

it understood that the same was true of its RR counterpart. There, it was found that the

!Especially spaces with nonvanishing Ramond-Ramond flux.
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complicated interaction of the Ramond-Ramond flux with the worldsheet fermions reduces
to a simple, diagonal mass term in light cone gauge, and the string worldsheet reduces to a
theory of equi-massive fermions and bosons.

This presents an intriguing possibility: since plane waves are known to emerge as the
generic outcome of so-called Penrose limits of spacetimes [75], it becomes possible, by taking
such a limit of AdS, to find a correspondence between some subsector of the gauge theory and
strings with massive worldsheets. Such a procedure, undertaken in the work of Berenstein,
Maldacena and Nastase [70], thus provided a novel means of comparison between large-N
gauge theory and lightcone string field theory. Using this idea, subsequent authors have
found agreement over several orders of approximation for three and four-point amplitudes
[94, 82, 92, 73].

The plan of this chapter, then, is as follows: In §4.2, we will review essential elements of
what has come to be known as the BMN correspondence, outlining the dictionary between
gauge theory computations and the strings themselves. This will allow us to review several
proposed checks on the theory, as well as noting in advance some historical subtleties in the
literature. Then, in §4.3, we will review the so-called “string bit” formalism of Verlinde, a
framework reminiscent of matrix string theory [4] which effectively lies between the gauge
and string field approaches. Lastly, in §4.4, we will use string bits to perform a nontrivial

test of the correspondence, finding exact agreement among all three approaches.

4.2 The BMN Correspondence

We begin with the Penrose limit of AdSs. Starting with the global metric,

ds® = R? {—dt2 cosh? p + dp? + sinh? pdQ3 + dip? cos? 0 + db? + sin® GdQ/g} ) (4.1)
we imagine zooming in on a null geodesic situated at p = 0 and § = 0, moving in the ¥
direction. Defining, Z+ = (¢ £ 1) /2, we do this by rescaling coordinates

T =3", 2z =R, p=

Y
o=+ (4.2)
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and taking the limit R — oo. This serves to boost the graviton along the ™ direction while
scaling out the details of the metric transverse to its worldline, leaving us with the much

simpler effective metric
ds* = —4dxdz™ — p?|z|?(dz™)? + dz? (4.3)

with background flux
Fi1234 = Fysers ~ p. (4.4)

Here z represents the SO(8)-invariant space transverse to the light cone, and p is the vestige

of the AdS five-form. This is the solution for a plane wave geometry, studied in [74].
However, we would also like to match gauge theory charges to dynamical quantities in

spacetime. To do this, we identify £ = i0; = A and J = —idy and perform the same

scaling as before, giving

2p = —pr=A—-J (4.5)
L - A+J
2p = - = ﬁ - R2 ’ (46)

where we anticipate identifying A with the conformal dimension of an operator in gauge
theory and p~ > 0 by the BPS condition. Recalling that R? ~ /N for AdS-CFT and
demanding that these charges remain finite in the limit, we then find ourselves restricted
to the sector with J ~ v/N and A — J fixed.?

Now let us return to the other half of the correspondence, namely string theory on an
RR plane wave background. After fixing light cone gauge and specializing to (4.3), we then

arrive at the worldsheet action [76]

1 | 1 1 <
5= o /dt /0 do [222 - 52,2 = gh?E +iS(@ + pr S| (4.7)

where S is Majorana on the worldsheet and has positive chirality under SO(8) rotations

of the 2z’. Note also that the length of the string is proportional to its momentum p*, in

2As we have already argued in §1, this regime is intermediate between that of gauge theory degrees of
freedom and giant gravitons. According to [78], giant gravitons correspond to certain “subdeterminant”
operators in gauge theory, the maximal example of which is Oy ~ det X. That is, such operators are the
orthogonal basis of states in the sector where J ~ N.
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keeping with the proposed UV-IR correspondence, and that the presence of I''23* breaks
the bosonic SO(8) to SO(4) x SO(4).
Of course, this action has a straightforward quantization (even the zero modes are

now harmonic oscillators), and in analogy with the flat space lightcone string, it has a

2p” = —py = H= Noy/p2 + ————. 4.8
" n;oo "\ (a/pt)? 5

Here we see that the theory is controlled by the parameter \ -1 upTa/, and that varying it

Hamiltonian

takes us between two distinct limits. In the first, A’ > 1, the effect of p is small, and we
recover the spectrum in flat space. This corresponds to scaling out flux from the plane wave
background. In the second case, \' < 1, the second term under the square root becomes
unimportant, and the string becomes an infinite series of nearly degenerate oscillators. This
is the case in which the RR flux dominates over the curvature, and is the limit in which
most tractable computations can be performed.

Let us see what this means for gauge theory. Rewriting (4.8) as

Aa-n=3% Nn,/1+47;92Nn2, (4.9)

where we have scaled out ;1 — 1 and used the definition of p* in (4.5) along with R* =

ArgNa/?. Notice that N = 47}92]\[ remains finite in this limit,> and that it, not the *t Hooft
coupling, is now the relevant parameter.

Turning again to the gauge theory, we see that the relevant basis of operators is a
restricted sector of what was N = 4 super Yang-Mills. According to the limit we have
taken, keeping the momenta (4.5) finite requires both A — .J fixed and J ~ v/N. Thus we
are interested in gauge theory operators with large R-charge J but finite twist. Classifying

these operators by their A — J eigenvalues and writing Z for the complex combination of

SO(6) scalars whose J-charge is 1, the first state we can write down has A —J =0

1

W”ﬁ[z“’] — |0,p4) (4.10)

3We have also kept g fixed.
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and should be identified as the ground state of a single string with light cone momentum p
[70]. Each Z, of which there are pT, is a single “bit” of the string, and excited states can be
built from (4.10) by acting on it with operators of nonzero A — J. These operators—either
broken SO(6) generators, covariant derivatives, or supersymmetry generators—will replace
Z’s with other complex scalars, D;Z’s, or fermions, and the new state will have twist 1. In
fact, in our limit of large NV, such excitational impurities can act several times in succession,
producing a string with multiple modified bits.* Thus new operators will be of the form

(writing ¢ and v as the other SU(3) scalars)
Tr[¢p" 27", Tr[p"zFys2777=57K], Tr[pZvZe...], et (4.11)

Of course, in the large-N limit, planarity implies that we cannot reorder these “words”
will. The only symmetry we can impose is cyclicity of the trace.

And yet the above examples are insufficient to serve as string states at nonzero mo-
mentum. The correct prescription, according to [70], is to insert each impurity with a

position-dependent phase:

I1,ps)  — Z AT J+1)/2 Tr [Zlgpz7 Y ePmimil (4.12)

Such a state, however, clearly vanishes by cyclicity of the trace, a statement we shall justify
more easily below. The next attempt, then, consists of two inserted impurities and takes
the form

Lpips) Z meHTr (pZ'pz7 e it (4.13)

This does not vanish, and represents a string with relative momentum between the ¢ and
1) impurities.

We understand this as follows: In the case of the massive worldsheet, the lightcone
spectrum is generated by eight bosonic and eight fermionic operators, a pair for each of the
transverse directions. These correspond in the gauge theory case to the four non-Z scalars,

the four covariant derivatives, and the eight fermionic partners to the scalars. Acting on the

4Along with the large-N limit, however, we will restrict the numbers of these impurities such that they
remain dilute along the string.
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worldsheet vacuum with an operator (a;)Jr thus produces a state which must be projected
out of the spectrum, as it fails to satisfy the condition Ly — Ly = 0. Two impurities, on
the other hand, may be generated by acting with (aé)T(azp)T, which obeys the Ly — Lo
constraint. Thus our putative single-impurity state above was forced to vanish while our
two-impurity state survived, and this projection of the spectrum was accomplished by the
cyclicity of the trace. In this way, we build up the Fock space of the plane wave string,
reproducing its spectrum from the gauge theory side.

Thus far, we have only established that the numbers of states in the string theory and
gauge theory are equal. We have not, as yet, reproduced (4.9) beyond leading order for
N < 1. However, in order to calculate the anomalous dimensions of our BMN operators
beyond leading order, we must take into account interaction terms in the gauge theory,

terms of the form

L O ¢gw(Z¢)Z,¢) + agTr([Z,00) (4.14)

with g ~ g5 ~ g%,M. These interactions, in diagrammatic form, operate by exchange or
splitting of bits, and, at the planar level, they do so only between nearest neighbors. As
such, they will renormalize the naive A — J calculation and reproduce the full square root
of (4.9) as calculated in [70].

What’s more, these basic interactions, when exponentiated, can be rewritten as the
action of a scalar field which decomposes spatially as a sum of creation and annihilation
operators acting on each bit. This field, as was shown in [70], then has an effective Hamil-

tonian

A
H~ / do 5 [X*+ x4 X7 (4.15)
0

which is precisely that of a worldsheet embedding coordinate. It is this computation which
justifies the identification of the single-trace operator as the discretized worldsheet of a
string with length proportional to its light cone momentum, as well as the identification of

the anomalous dimension of the gauge theory with the value of the light cone Hamiltonian.
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Figure 4.1: Exchange interactions on the BMN string. In (a), nearest neighbor bosons bits
interact via the double-commutator, four-scalar interaction. In (b), a pair of fermionic bits
combine to form a boson. The crossing-symmetric versions of these interactions take place
as well.

However, we have said nothing of string interactions, those interchanges which would
split and join the string worldsheet. Presumably, these are calculable in a light cone string
field theory [109] in plane wave background, and the process should also be describable in
the language of gauge theory. Subsequent to [70], this calculation of strings in light cone
gauge was carried out [82, 92] and found to agree exactly® with the gauge theory result we
now proceed to describe.

From the vantage of gauge theory, the process of string splitting appears to have a simple
interpretation: If Tr[Z J ], or some other, more complicated impurity state, represents a
single string, then multiple strings must live in the tensor product of such spaces, and a

two-string state must take the form of a double-trace operator:

12, k,y)

J1
1 .
N Tr gzl z T T (2770 2R (4.16)
VA = BN S

This suggestion was first put forward in [84], and was used there to calculate the three-point
string vertex by the overlap of a long single-trace with two shorter double-trace operators.
Actual string splittings, in this language, corresponded to non-planar diagrams, with the
genus expansion parameter not the 't Hooft 1/N but its BMN modification go = J?/N. In

this way, it was argued, the gauge theory two-point function would reproduce all multi-string

5 After some mutual confusion among gauge theory, string-bit, and string field theory collaborations.
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scattering amplitudes order-by-order in X', provided that the pair of operators contained
appropriate numbers of traces for the in and out Hilbert spaces of the strings. Unfortunately,
such an approach proved inadequate for reasons we will discuss below, and its extension to

finite go proved one of the central achievements of the string bit model.

4.3 String Bits

As we have already seen, strings in plane wave backgrounds may be viewed as discretized
worldsheets whose interactions are given by large-N Yang-Mills theory. In this limit, there
are two new parameters, corresponding to the genus factor and the ’t Hooft coupling of
normal large-N gauge theory, which are modified in the correspondence to go = J?/N
and \ = 872gN/.J?.5 Perturbation theory is thus a dual expansion in these two numbers,
both of which have most often been taken in the literature as small [18]. Quantities which
are well-defined on both sides of the correspondence—most interestingly string splitting and
joining amplitudes—are then calculable in both gauge theory and string field theory in light
cone gauge. There is, however, a third approach, based on the combinatorics developed for
long string twisted sectors, which reproduces both of these and serves as a bridge between
the two. It is this “string-bit” model which we intend to describe.

The inspiration for this approach is of course matrix string theory [79, 80|, originally
conceived as a IIB matrix formulation of non-perturbative string theory T-dual to the matrix
theory of Type IIA. Matrix strings are thus governed by an N’ = 8 d = 2 super Yang-Mills
theory, the eigenvalues of its matrix-valued fields representing bit-like “short strings” which
join under permutation symmetry into the “long strings” of conventional string theory. If
we denote by M the Hilbert space of a single short string, the full multi-string space is then

equivalent to the quotient of its N-fold product by an orbifold action:
H = Sym¥ M = MY /Sy, (4.17)

where Sy is the permutation group on eigenvalues. For this reason, the correct classifica-

SHere we change the definition of X by a trivial constant factor
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tion of states is based upon the enumeration of twisted sectors, and the full Hilbert space

decomposes into a sum over conjugacy classes of the permutation group [81]:
H = @ H. (4.18)
¥

Most importantly, as argued in [79, 80], interactions take place by the splitting and joining of
long string conjugacy classes, effected by an interaction which is composed of twist operators
on the string worldsheet which interchange bosonic and fermionic matrix eigenvalues.

All of these elements will reappear in strikingly similar contexts in our consideration of
string bits. In fact, as argued in [71], RG relations are expected to link the two as the string
bit size becomes much larger than the length scale set by the worldsheet mass. Fortunately,
in the opposite limit, even as we lose the power of worldsheet techniques, the combinatorial
apparatus of the bit model provides us with an effective means of replicating gauge theory
calculations.

The program of this section, then, is as follows: First, we review the basic formulation
of the string bit model and its attendant discretized supersymmetry algebra, identifying
the structure of the multi-string Hilbert space as a sum of permutation cycles. Further,
we comment on the imposition of the Ly — Ly condition, finding it as a direct result of the
formalism. Then, we discuss the problem of operator mixing at finite go and its solution in
terms of a redefined inner product which contains terms of all orders in the genus expansion.
Lastly, we introduce the framework for a supersymmetry algebra at finite g9 containing
string interactions.

We begin by discretizing the string worldsheet to a collection of J bits satisfying canon-

ical commutation relations, labeled by an index n:
7 j - 5] a pb 1 ab na nb 1 ab
(o, xl ] = i0Y 0 {607,0,.} = 55 Omn {07,0,).} = 56 Omn - (4.19)

For a conjugacy class v of the permutation group corresponding to a single string, the action

of the centralizer subgroup C, then acts on the bits according to

{p;,x;,@ﬁ} — {pfj(n),l'zo.(n),eg(n)}, (RS C»y. (420)
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The result is that the J bits are partitioned into groups of cyclic permutations, and the
state v becomes the product

(J1)(J2) - (Js), (4.21)

each cycle of some length Jy. Interpreting .Jy as the discrete light cone momentum, invariance
under the centralizer group then corresponds to translation of each bit along its string (but

not between strings) by the operation of
Uy = e2i(Lo—Lo)/ e (4.22)

As with cyclicity of the trace in gauge theory, invariance under such a symmetry imposes
for us the Ly — Ly constraint.
In the same way, then, we should discretize the supersymmetry algebra of [76], graded

by powers of the 't Hooft coupling \? = g% uV:

(0) (1)

Qo1 =Q"+2Q" , Qo2 = Q" = 20", Hy=H”+ H"+X2H?  (4.23)

As we saw in §4.2, the H® and H® terms contain gauge interactions which produce
“hopping” of string bits at the nearest-neighbor level. In terms of the phase space variables,

the interactions can be written explicitly:

(0) i i ;i (1) i i
H = S+ a2, + 20,00,), (4.25)
1) . ~ 2) 1 i i
H = =3 1040, () — 0n0rm)) H =% 5 (@ oh)’. (4.26)

Lastly, we will introduce the permutation operator X,,,, defined by its action on indi-
vidual bits

(X, = {p}, 2% ,0%}), along with the permutation invariant operator

1
=4 > Som. (4.28)

n<m
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At the conclusion of §4.2, we mentioned a puzzle which concerned the genus expansion:
that while to lowest order, two-string states in string field theory corresponded to double-
trace operators in Yang-Mills, and string splitting corresponds to what appears to be a
three-point function, the situation is actually more complex. Here, we will elaborate on
that somewhat cryptic claim, proceeding thereby to an evaluation of amplitudes in the
string bit model.

Put simply, the conundrum is as follows: Even at A\ = 0, when the Yang-Mills theory
is non-interacting, there still exists nontrivial overlap between BMN operators. That is to
say, even without interactions, there exists a genus expansion of correlation functions in go
to all orders. Thus correlation functions involving single BMN strings can and do involve
double-trace operators as intermediate states, and such an effect induces operator mixing
at large-INV.

Clearly, this produces problems for the proposed identification of numbers of strings
with numbers of traces. As N — 0, string splitting effects vanish, and the gauge theory
operator which represents a single string cannot be allowed to mix with those operators
which correspond to two or more. The operators we identify with multi-string states must
diagonalize the X' = 0 gauge theory Hamiltonian, and for this reason, we must redefine our
inner product at finite go.

To this end, then, we start by defining
(V1| ¥2)go = (U1] S| W2)o, (4.29)
with S a weighted sum over permutations
S=> Ny, (4.30)
g
This operator, which has the large-NV expansion

1 1
—Yo+ —=23+... (4.31)

=1
S -I-N e

is a sum over successive n-permutation operators, each of which might be said to constitute
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a single splitting or joining of the bit string. For instance, the first term
Yo=Y Sum) (4.32)
n<m
is the simple permutation discussed above, while the second nontrivial operator will either
split the initial string into three or split and recombine the strands into a single outgoing
cycle.

Unfortunately, expressions for the higher-order splitting-joining operators are unwieldy
and computationally cumbersome. However, it was argued in [72] that all such higher
operators can be written as a sum of powers of (4.32) and terms which become negligible
in the large-N limit.” Thus we can, up to higher terms in 1/N, rewrite the change of basis

operator as
1

S = 92> EEJ2

S, (4.33)

using the total permutation operator of (4.28). This redefined inner product now gives the
correct overlap between string states at zero coupling, successfully reproducing the genus
expansion of the 1 — 1 string amplitude [72].

Having resolved the question of identifying gauge operators with strings, we are now left
with another challenge—to incorporate string interactions into the supersymmetry algebra.

Such a task will require evaluating matrix elements of the form
(ol H |¥1)g, = (¢2| SH [¢1)0 (4.34)
and for consistency, this will require hermiticity of H:
H=H'"=8"1H1g (4.35)

where H'0 denotes the hermitian conjugate relative to the bare inner product. In addition,

we will also require closure of the supersymmetry algebra:

QR QY = 67 H + P, (4.36)

"This is essentially a result of our “dilute impurity” approximation for BMN strings. In the large- N limit,
the probability that successive splits or joins occur at the same site falls off as 1/N.
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where J% is a suitable contraction of gamma matrices with the SO(4) x SO(4) Lorentz
generators J% (see [76]).
To accomplish this, we will write the free supersymmetry generators in schematic form

as a sum of left- and right-acting operators®

Qo=Q, +Q, . (4.37)

While there exist explicit expressions for these charges in terms of creation and annihilation
operators [72], it will suffice here to stipulate that Q; will only be modified to split or join
strings to the right and Q; will only, when modified, induce string interactions on the left.
In the gauge theory, these would correspond to terms of the form Tr (6[Z, ¢]), which have
a double contraction with the incoming and single contraction with the outgoing state.

As we will see in §4.4 a consistent ansatz for these interacting supercharges can be found,
one which shares, up to a sign, the original form posited by Verlinde [71]—a commutator of
the free algebra with ¥. Moreover, we will address ourselves to the evaluation of correlations
of multi-trace operators, relating them to the splitting and joining amplitudes of strings in
light cone string field theory. We will find, as advertised, exact agreement among all three

approaches.

4.4 'Tracing the String

4.4.1 Introduction and Philosophy

The BMN correspondence [70] equates type IIB string theory on a plane wave background
with a certain limit of AV = 4 gauge theory at large R-charge .J, where N is taken to infinity

while the quantities

2 2
, 9ym N _J
ot (4.38)

are held fixed. The proposal is based on a natural identification between the basis of string

theory states and the basis of gauge theory operators, and between the light-cone string

8In what follows, we will ignore nonlinear fermionic contributions to the supersymmetry generators, as
they do not affect the relevant bosonic terms in the Hamiltonian.
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Hamiltonian P~ and the generator A of conformal transformation in the gauge theory via®

2
P A (4.39)

BMN argued, and it was subsequently confirmed to all orders in X [85, 112], that this
identification holds at the level of free string theory (g2 =0).

This beautiful proposal equates two operators which act on completely different spaces:
the light-cone Hamiltonian P~ acts on the Hilbert space of string field theory, and allows
for the splitting and joining of strings, while H = A — J acts on the operators of the field
theory, and in general mixes single-trace operators with double- and higher-trace operators.
Light-cone string field theory in the plane wave background has been constructed in [82, 92].
On the field theory side, a number of impressive papers [83, 90, 84, 114, 93, 98, 94, 115]
have pushed the calculations to higher order in go with the aim of showing that (4.39)
continues to hold, thereby providing an equality between a perturbative, interacting string
theory and perturbative N' = 4 gauge theory. It is clear, however, that at finite go the
natural identification between single string states and single trace operators breaks down.
For example, 1-string states are orthogonal to 2-string states for all go, but single-trace
operators and double-trace operators are not. This raises the question how to formulate
the BMN correspondence in the interacting string theory.

In order to prove that two operators in (4.39) are equal, it is sufficient to prove that
they have the same eigenvalues. If they do, then there is guaranteed to exist a unitary
transformation between the spaces on which the two operators act. A basis independent
formulation of the BMN correspondence, therefore, is that the interacting string field theory
Hamiltonian %P‘ and the gauge theory operator H must have the same eigenvalues.

While this is the minimum that we are allowed to expect from the BMN correspondence,

we can hope to do better. Light-cone string field theory, as formulated in [113, 82, 92], comes

9The parameter p can be introduced by performing a boost and serves merely as a bookkeeping device.
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with a natural choice of basis: this string basis (of single and multiple strings) is neither
the BMN basis (of single and multiple traces) nor the basis of eigenstates of the light-cone
Hamiltonian. But how do we identify the string basis in the gauge theory?

One guess for the string basis was made in [84, 94], where it was argued that matrix
elements of P~ between 1- and 2-string states should be equated with the coefficient of the
three-point function of the corresponding BMN operators, multiplied by the difference in
conformal dimension between the incoming and outgoing states. This proposal appeared
to be supported by the subsequent string field theory calculation done in [92] (see also
[106, 107, 110, 116, 118, 117]). It turns out, however, that the final step of the calculation
in [92] suffered from a minus sign error (which we will correct below), which renders the
alleged confirmation of this proposal invalid.

In this paper we propose a new, specific form for the transformation between the BMN
basis and the string basis, valid to all orders in go. This basis transformation is trivial
to write down, and has the pleasing feature that it does not depend on the conformal
dimensions of the operators. In fact, our choice of transformation was already identified
as a natural choice in [72], where it was shown that all computed amplitudes in gauge
theory are reproduced via a relatively simple string bit formalism [77, 71, 103]. While most
calculations in [72] were done in the BMN basis, it was pointed out that there exists a
basis choice with the properties that (i) the inner product is diagonal, and (ii) the matrix
elements of the supersymmetry generators () are at most linear in go (i.e. @ leads to only
a single string splitting or joining). Here we will show that, when evaluated in this new
basis, the matrix elements of the string bit Hamiltonian, which via the results of [72] may
be identified with the gauge theory operator on the right-hand side of (4.39), agree precisely
with the corrected answer of [92] for the matrix elements of the continuum string field theory
Hamiltonian P~ appearing on the left-hand side!

The precise match between the three point functions means that, by combining the two
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formalisms, we can start filling in some important questions left open in [82] and [72]. A
major technical obstacle in continuum light-cone string field theory is that higher order
contact terms are needed for closure of the supersymmetry algebra, and that their value (at
order g5) affects the leading order shift in the eigenvalues of P~. However, these contact
terms are difficult to compute [100]. The supersymmetry algebra of the bit string theory,
on the other hand, is known to all orders in g but only to linear order in the fermions.
It appears to be a fruitful strategy, therefore, to make use of the discretized theory to fix
the order g2 contact terms of the continuum theory, while the known non-linear fermionic
form of the continuum interaction vertex may be of direct help in deriving the complete

supersymmetry generators in the string bit formalism.

4.4.2 Identification of the String Basis in Gauge Theory

N = 4 gauge theory in the BMN limit comes with a natural choice of basis, which coincides
with the natural string basis when g =0: an n string state corresponds to a product of n
single trace BMN operators. We call this basis the BMN basis, denoted by |¢, ). At non-
zero g2, the inner product (defined as the overlap as computed in the free gauge theory)
becomes non-diagonal in this basis. The explicit form of the inner product is conveniently
expressed in terms of the string bit language of [71, 72] as
albidn = (%) m=5Ym, (1.40)
i<j
where J;; is the operator which interchanges the string bits via the simple permutation
(7). As explained in [71, 72], when acting on a BMN state |¢)) with n strings, ¥ effectuates
a single string splitting or joining.
This meaning of ¥ in the gauge theory language can be made concrete as follows.

Consider a long BMN string in its ground state. We can write the corresponding operator
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as

Oy =Te(Z)) = N Zi5 Zyz, . Z; 7, 010 520 | §0) (4.41)

1111 1212 9L
iy
0.0
with v = (12....J) the cyclic permutation of J elements. The action of ¥, 7, which imple-

ments the simple permutation (J;.J), is now defined as
Xns0s(v) =04(ye (J1J)) (4.42)
Since yo (J1J) = (1...J1—=1J)(J1...J — 1) we have that
Ena 0s(v) = Te(Z7)Te(2777), (4.43)

showing that the simple permutation ¥ ;, ; indeed induces a single splitting of a single trace
into a double trace operator. It is easy to generalize this result to other operators, to show
that 3 can either split a string or join two strings.

The identification of (4.40) with the inner product of the free gauge theory was motivated
in [72] and explicitly verified for string ground states to all order in g and for two-impurity
states to order g3.

States with different number of strings are therefore no longer orthogonal relative to
(4.40). In the string field theory basis |1, ), on the other hand, the inner product should be

diagonal for all go. The simplest basis transformation that achieves this goal is

[0.) = (e792),1,,) - (4.44)

This is not the most general diagonalization, however, since we still have the freedom
to redefine the new basis |1, ) via an arbitrary unitary transformation [98]. The above
redefinition (4.44), however, has the attractive feature that it is purely combinatoric and
does not depend on the dynamics of the gauge theory. Furthermore, as we will see shortly,
it has the desirable property that the (linearized) supersymmetry generators and light-cone

Hamiltonian acquire a simple form in the new basis. We emphasize that the only way to
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check the proposal (4.44) for identifying the string field theory basis in the gauge theory
is by comparing matrix elements of H calculated in the \15,0 basis to those of %P‘ in
light-cone string field theory. We show below that the proposal (4.44) passes this test.

In the following, we will study the consequences of this basis transformation for the spe-
cific class of two-impurity BMN states investigated in [83, 93, 84, 94, 98]. We will denote by
|1, p) the normalized state corresponding to the single trace operator 3, e*™P/ Tr(p Z44p Z7 1),
while |2,k,y) and |2,y) will denote the normalized states corresponding to the double
trace operators 32, 2™k Ty (¢ Zhp 271 =) Te(Z7=71) and Tr(¢Z71)Tr (1 Z7~'1) respectively,

where y = J;/J. The action of ¥ on |1, p) reads

2‘17p> :Zcpky‘27k7y> + Zcpy‘27y>7 (445)
k,y Y

1—y sin’(mpy) sin®(7py)
_ _ , 4.4
G =\ Ty ke T Ty (440

Via (4.44) we now introduce the corresponding two-impurity states in the string basis, which

with

we will denote by |1,p,y), |2,k,y) and |2,y), respectively. By construction, these form an

orthonormal basis at finite gs.

4.4.3 Interactions in the String Basis

In this section we obtain the matrix elements of the right-hand side of (4.39) in the string
basis proposed in the previous section. For this we will employ the string bit model of
[72], but by virtue of the established correspondence with the gauge theory amplitudes of
[93, 94], the following calculation can also be viewed as a direct calculation within the gauge
theory.

It was shown in [72] that the linearized (in the fermions) interacting supercharges in the

string bit model can be written in the string basis as

Q= Qo+ 2003, Qo= Q5 -Q: (4.47)
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Figure 4.2: An insertion of the supercharge in the gauge theory will lead to a single splitting
of the BMN string with which it has a double contraction.

where Q, = Q5 + Qg is the free supercharge of the bit string theory and the superscripts
indicate the projection onto the term with fermionic creation (<) or annihilation (>) opera-
tors only. These charges generate the interacting superalgebra of string theory in the plane
wave background, modulo higher order terms in the fermions. Our interest is to compute
the matrix elements of H between the bosonic two-impurity states in the string basis.

The supercharge (4.47) truncates at linear order in gs. As indicated in Figure 4.2, this
truncation is expected from the BMN correspondence: matrix elements of the supercharges
Q = Tr0[Z,¢] in the gauge theory can lead (for connected diagrams, where @) has at
least one contraction with either the “in” or “out” BMN state) to at most one single string
splitting or joining [72]. For now, however, one may view (4.47) as a new starting point of the
string bit model; in the remainder we will re-establish its equivalence with the perturbative
gauge theory, by showing that, at least for the special class of two-impurity states, it leads
to the same order g5 mass renormalization (shift in conformal dimension) as computed in
[93, 94].

From (4.47) we thus deduce that the interacting Hamiltonian truncates at order g3:

H = Hy+ g,Hy + g>H> (4.48)



83

with!?

Ho={QnQ),  Hi={QuQu3l},  Ho= {1010} (449

From these expressions, it is straightforward to compute the matrix elements between the

various two-impurity states. Using that @, annihilates bosonic states, we find that

(o Hy i) = £ (ol (Ho + SH,) i) — 2015 SQ5 1) (4.50)

Both matrix elements on the right-hand side have been computed in [72], with the result

(2,k,yl(HoX + SH,)|1,p) = X (0 + £ /y*) Cphy , (4.51)
- N . N
<27 k, y| Qo b3 Qo |17p> = 5 (pk:/y) Cpky > (4'52)

where Cpy, are the three point functions defined in eqn (4.46). Inserting the explicit ex-

pressions, we find

~ ~ "1 — ysin®(mpy) = = N 1 sin®(mpy)
2,k y|Hi|l,p) = —| ——5— 2,y|H1|l,p) = —— —=—7F5—. 4.53
< ) 7y‘ 1‘ 7p> 2 Jy 2 ) < 7y’ 1’ 7p> 2 \/j 2 ( )

In a similar way one can obtain the order g5 matrix elements between single string states.

We postpone this discussion to later, and turn now to the continuum string field theory.

4.4.4 Light-Cone String Field Theory

We now investigate the matrix elements of the left-hand side of (4.39) in the continuum
string theory, in order to compare with the gauge theory results of the previous section. In
light-cone string field theory the cubic interaction is conveniently represented as a state in
the three-string Hilbert space. If we restrict our attention to string states which have no

fermionic excitations, this state can be expressed as

2 . y(l—-y)
;ypl )= =PIV (4.54)

10The notation in these equations is somewhat symbolic: the left-hand side in each equation is equal to the
projection onto the §%° component of the anti-commutator on the right-hand side. Furthermore, as stated
above, this formula for the Hamiltonian is valid only for computing matrix elements between bosonic states;
for fermionic states, the non-linear fermionic corrections to (4.47) will become relevant.
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Here |V) is a squeezed state in the 3-string Hilbert space,

|[V) = exp Z Z ,;Z n(s 51J |0}, (4.55)

=1mn=—o0

and the prefactor P is given by

3
P = 2:1 Z ) m(r a’ m(r) VLT 5 (4.56)

N — Ma(r

where vr; = diag(ls, —14), Wiy = (/M2 + ,u?oz%r), and o) = o/pz;), with the convention
that «,) is negative for incoming strings 1 and 2 and positive for the outgoing string 3.
In order to write P in this form, we have employed a very useful factorization identity
derived in [119, 95]. The sign error in the original version of [92] amounts, after tracing
through some changes of basis, to replacing the a_,, by a,, in (4.56), making manifest
the incorrect claim that the prefactor gives the difference of energy between incoming and
outgoing states.!!

Implicit formulas for the matrix elements of N, valid for all X', were presented in [82].
While explicit formulas for the leading terms in an expansion around X' = 0 are known, it
is very difficult to extract exact formulas for higher-order terms [111]. At X = 0 the only
nonzero Neumann matrices are

—3) (=D)L sin(mpy)
R R A (57

w9 _ 1 sin(ap(l—y)) (4.58)

hp VIi—yrlp—k/(1—y))

Using the above formulas, it is straightforward to derive the leading O()’) contribution

to the matrix elements

2 ~ .- N sin?(mpy)
2 - - N sin?(mpy)
—(2,y|P; 1 = —— 1—y)————.
M< 7y‘ 1 | 7p> 9 y( y) 2

"The error can also be understood as a missing factor of 4 in eqn (3.15) of [82], as pointed out in [95].
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This result, which corrects the one originally reported in [92], is in precise agreement with
(4.53) after taking into account the factor y/Jy(1 — y) which arises because (4.53) is written

in terms of unit normalized states while (4.59) is expressed in terms of continuum states

satisfying (i|j) = p;r(;(p;r —pj)-

4.4.5 Contact Terms and Mass Renormalization

Having established that the matrix elements of H evaluated in the ]Jn) basis agree at order
go with those of %P‘ in the natural string field theory basis, let us now revisit the issues
of contact terms and the one-loop mass renormalization of the single-string state |1, p).

A significant advantage of the |1Z> basis is that the matrix elements of the supercharge
(4.47) terminate at order go. Therefore the Hamiltonian terminates at order g3, with the
term Ho which comes from squaring the order go term in the supercharge; there is no need
for all of the higher-order contact terms which seem to plague continuum light-cone string
field theory. Turning this observation around gives a definite prediction for string field
theory: that the only contact term surviving in the large p limit is the one which comes
from squaring the cubic vertex in the dynamical supercharge.

The order g matrix element between single string states has been computed in [72] (see

equation (71)), with the result

2
93(1,q/Hs|1,p) = %(Ld[@iﬁ][&@ﬂ!iﬁ

SN 1
= BEN R = 507+ )CpiCai = 75 By (4:60)

7
Here the sum runs over intermediate 2-string states i of both types: |2,%,y) and |2, %) (and
includes an integral over y). The explicit form of B, is as given in [93, 94].

To obtain the order g mass renormalization of the state |1, p), we should add the matrix
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element (4.60) to the iterated Hy interaction:'?

I(1 p\H1|Z>| 1, (0—k/y)'C
S5 U W 4.61
Z E; 492 Z p2_k2/y2 ( 6)
1
= 19 BN (0° = K /y*) CpiC—pi (4.62)
1 g3\
= _142?3“‘1" (4.63)

An additional subtlety in the calculation is that the states |1,p) and |1, —p) are degenerate
at lowest order; we should check therefore whether we need to use degenerate perturbation

theory. It is easy to see that

7 N 7 24/
PRI
gives the same result as (4.61). The sum of the contact term Hy and the iterated Hj
interaction is diagonal in the {|1,p), |1, —p)} basis, signalling that the degeneracy remains
unbroken to this order.!3

Putting everything together, we find that the order g3 contribution to the eigenvalue is

(1, ) .

4 472 (Byp = Bp,—p) = 472 32m2p?
This agrees precisely with the shift in anomalous dimension of the conformal eigen-operators,
as reported in [93, 94].
4.4.6 Conclusion

We have proposed an explicit form (4.44) of the basis transformation that relates single
and multi-trace BMN operators in the gauge theory to single and multi-string states of

the dual string field theory in the plane wave background to all orders in go. This basis

2
2Here in the second step we use that C_pr, = % Chpky-

13Tn fact, supersymmetry requires these two states to be exactly degenerate [94]. The fact that we find
degeneracy at this order is consistent with our observation that no additional contact terms are required for
closure of the supersymmetry algebra.



87

transformation is natural from the point of view of the bit string theory of [72]: besides
the fact that it diagonalizes the inner product, it has the property that the supersymmetry
generators in the new basis truncate at linear order in gs.

Our most encouraging result, however, is that the 3-point function in this basis precisely
matches with the 3-string amplitude of the continuum string field theory [92]. In itself this
match does not yet prove anything, because one can always find two bases that would lead
to the same 3-point function. One also needs control over the order g3 contact interactions
before one can honestly compare the shift in the conformal dimensions in the gauge theory
with the mass renormalization in the string theory [100]. However, we have more informa-
tion than just the 3-point function: because the supersymmetry charge of the bit string
model is linear in g9, via the closure of the supersymmetry algebra we have a principle that
uniquely determines the order g3 contact interaction. It also tells us that any higher order
contact terms are absent.

It would clearly be of interest to give a precise construction of the continuum limit of
the bit string theory by taking the large J limit while keeping X’ fixed. The correspondence
found in this paper is an encouraging indication that this continuum limit will coincide with

the continuum light-cone string theory.
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