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Chapter 1

Introduction and motivations

The aim of this work is investigating marginal deformations of a specific class of supersymmetric
field theories. These theories appear in the framework of the AdS/CFT correspondence. Here we
will review the general scenario of this correspondence and make a link to the specific research
presented in the thesis.

It was already since t’Hooft’s [9] work anticipated that string theories are linked to gauge
theories. The basic idea of t’Hooft was based on two simple facts. The first fact is that pure
gauge theories consist of fields in the adjoint representation of the gauge group which appears in
the product of fundamental and anti-fundamental representations (for SU(NV)), and thus every
adjoint index can be described by two indices - one fundamental and one anti-fundamental. In the
Feynman diagrams we can describe each index by a line, so the propagators in pure gauge theories
can be represented by two lines. The other simple fact is that in the double line notation we can
attach for any Feynman diagram to every index loop a surface. Thus, we can view a diagram
as a decomposition of some closed surface (for vacuum or gauge invariant diagrams). The main
result here is that if we take the large N limit with fixed g% u N then the N dependence of any
diagram will now be determined by the topology of the surface which it decomposes: the power
of N we get is (2 — 2g), where g is the genus of the surface. For a sphere g = 0, for a torus g = 1.
In particular, g simply counts the handles of the surface (In other words: when we say that a
diagram has a topology of surface G, we mean that it can be drawn on surface G in double line
notation without any line crossings).

When the number of colors, N, is taken to infinity!, one can expand the path integral in a
power series in %, such that the leading contribution is of the planar diagrams. So we get a power
series with powers being linear functions of the genera of oriented closed surfaces, exactly like
in oriented closed string theory ( If we add matter fields in (anti)fundamental representation we
get open surfaces, leading to an open string theory-like expansion, and if we look at gauge group
SO(N) for example we get an unoriented string theories-like expansion, because here the adjoint
is a product of two fundamentals). We stress that we don’t see from here any well defined string
theory appearing, but only that the perturbation series is very similar to the perturbation series
of string theory, with the string coupling constant being %

It was Maldacena’s work [52] that for the first time translated t'Hooft’s idea of similarity be-

LN is taken to infinity while keeping g%, N fixed.



tween large N gauge theories and string theories to a definite, although still conjectured, relation
between a subclass of conformal field theories and a class of well defined string theories. Malda-
cena’s conjecture was based on the following observation. In superstring theories appear solitonic,
non-perturbative, objects called Dg-branes. These objects have at least two descriptions:

e In string-perturbative language they are defined as manifolds ( extended in ¢ directions) on
which an open string can end.

e In the supergravity language, which is supposed to describe the low energy limit of string
theories, they are defined as extended (in ¢ directions) black hole solutions.

We now look at a system of N coincident D3-branes. In the string-perturbation theory lan-
guage, in the low energy limit, the physics of the system is described by N'=4 SYM with U(N)
gauge group? on the brane and by supergravity in the bulk, with these two systems decoupled. It
is well known that in order for field theory perturbation theory to work g% u N should be much
smaller than one. In the supergravity language we will have some black hole solution, which
in the near horizon limit is described by AdS5 x S° geometry. Here again we can describe our
physics by two decoupled systems: supergravity in the bulk and the type IIB string theory on
AdSs x S°. The supergravity solution is valid only if the radius of curvature is much larger than
the string scale, which leads us to demand large N, since the radius in string units of AdS and
the radius of the sphere are both proportional to (gstringN )% Thus, we see that the same object
is described on one hand by field theory and supergravity and on the other hand by string theory
and supergravity. This led Maldacena to conjecture that :

N =4d=4 SU(N) SYM is equivalent to type IIB string theory on AdSs x S° in the large
N limit.

There is also a stronger conjecture that these theories describe the same physics for every value
of N.

There are many different indirect checks of this conjecture. One such check is the striking
property of S-duality. S-duality relates two theories, one with small and the other with large
coupling. Both N/ = 4 SYM and type IIB string theory are believed to be self dual under the
S-duality.

The AdS/CFT correspondence relates expectation values in string theory to coupling con-
stants in the field theory. For instance we get from the correspondence that g% M X Gstring, and
from string theory we know that gssring is related to the vacuum expectation value of the dilaton
field. Thus we conclude that changing the gauge coupling on the field theory side, which is done
by adding some marginal operator, is equivalent to changing the expectation value of the dilaton
field on the string theory side. The marginal operators of the field theory are related to some
moduli of the string theory3. In general, scalar supergravity fields ¢ which live in AdS couple to
operators O which live on the boundary of AdS via ng,,l @O, where ¢q is a restriction of ¢ to
the boundary (up to some power of the radial coordinate). The dimension of O, A, is related to
the mass m? of the scalar field by:

2The U(1) part is free so we will discuss essentially only the SU(N) part.
3We need operators to be marginal in order not to spoil the conformal properties of the field theory.



m? = A(A - d). (1.0.1)

Here d is the dimensionality of the space-time which the field theory lives in. We see that the
massless, massive and tachyonic fields on the supergravity side correspond to marginal, irrelevant
and relevant operators, respectively, on the field theory side.

The classification of operators to marginal, relevant and irrelevant in this way is meaningful
before we deform our theory with them. After we deform our theory with these oprators the
conformal dimensions of operators can receive corrections (via the anomalous dimensions). The
marginality of an operator, as defined in the previous paragraph, can not assure that it will remain
marginal after deforming the theory: the operators can be exactly marginal, marginally relevant
or marginally irrelevant.

On the field theory side adding an irrelevant operator strongly affects the UV limit of the
theory. Thus, because usually we define field theories in the UV and then flow to the IR, it does
not make sense to discuss theories with irrelevant deformations. On the other hand, relevant
deformations affect weakly the UV limit but break the conformal invariance. Finally, the exactly
marginal operators keep the conformal properties of the theory.

On the string theory side giving a VEV to a massive field will change significantly the behavior
on the boundary of AdS, which is equivalent to demanding a new UV description on the field
theory side. The tachyonic fields will go to zero on the boundary, thus this deformation will affect
only the interior and asymptotically we will still have an AdS background. Giving a VEV to a
massless field (if it corresponds to an exactly marginal operator) will always leave us with an AdS
factor.

Thus we see that by finding exactly marginal operators on the field theory side we can learn
about the moduli of string theory.

Adding additional operators to the theory will in general change the supergravity background.
The AdSj5 space has as its symmetry group SO(2,4), which is exactly the conformal group in four
dimensions (the boundary of AdSj5 is four dimensional). Thus, if we demand conformality, this
factor will remain even after deforming the original theory. The second factor (the five-sphere)
is related to the SU(4) global symmetry of the SYM in some sense, and thus can be and will be
deformed after deforming the original theory, if we break some supersymmetry®. Thus, we can
say that if we deform the original N' = 4, d = 4 SYM by some marginal operators, then on the
string theory side we have to deform the supergravity solution: AdSs x S° — AdSs x M, where
M is some five dimensional compact manifold and sometimes we will also have to turn on some
fields.

1.1 Marginally deformed backgrounds

Marginal deformations of N' = 4 super Yang—Mills theory have recently drawn much atten-
tion in the context of conformal generalizations of AdS/CFT correspondence. The so—called

4The breaking of supersymmetry here is inevitable, because essentially there is only one renormalizable, consistent
N = 4 theory in d = 4 which is the SYM theory. Thus, by adding additional operators, other than the change of
the gauge coupling, we always break the N'= 4 SUSY.



(B—deformation is an interesting example of this class of theories thanks to the work of Lunin and
Maldacena [66] where its gravity dual description has been found. From the field theory point
of view this deformation is realized by enlarging the space of parameters of the original N' = 4
theory with the following modification of the superpotential:

i gy ar Tr (B1Bo®s — By B3By) — ih'Tr (e”ﬂ B, Dydy — ¢~ <I>1<I>3<I>2) (1.1.1)

where h and ( are two new complex coupling constants in addition to the gauge coupling gy s,
which is chosen to be real. The resulting theory preserves N’ = 1 supersymmetry and a U (1) x U (1)
non-R-symmetry®. It is expected that this theory becomes conformally invariant only if a precise
relation among the coupling constants exists [57].

This deformation can be viewed as arising from a new definition of the product of fields in the
Lagrangian, namely
where ®; ®; is an ordinary product and (Q!, @?) are the U(1) x U(1) charges of the fields. Though
this prescription is similar in spirit to the one used to define non-commutative field theories [1, 2],
the resulting theory is an ordinary field theory. All that happens is that (1.1.2) introduces some
phases in the Lagrangian, see (1.1.1).

Suppose that we know the gravity dual of the original theory and that this geometry has two
isometries associated to the two U(1) global symmetries. Thus the geometry contains a two torus.
The gravity description of the deformation (1.1.2) is surprisingly simple. We just need make the

following replacement
-

1467
in the original solution, where ,/g is the volume of the two torus. We can view (1.1.3) as a solution
generating transformation. Namely, we reduce the ten dimensional theory to eight dimensions on
the two torus. The eight dimensional gravity theory is invariant under SL(2, R) transformations
acting on 7. The deformation (1.1.3) is one particular element of SL(2,R). This particular
element has the interesting property that it produces a non-singular metric if the original metric
was non-singular. The SL(2, R) transformation could only produce singularities when 7 — 0.
But we see from (1.1.3) that 73 = 7 + o(72) for small 7. Therefore, near the possible singularities
the ten dimensional metric is actually same as the original metric, which was non-singular by
assumption.

As a first example, let us consider a string theory background with two U(1) symmetries that
are realized geometrically. Namely there are two coordinates ¢1, p2 and the two U(1) symmetries
act on these two coordinates as shifts of ¢;. Then we will have a two torus parametrized by ¢;,
which, in general, will be fibered over an eight dimensional manifold. A simple example is the
metric of R4

T=B+i/g— 13 (1.1.3)

ds® = dp? + dp3 + pidet + p3dis (1.1.4)

As this example shows, the two torus could contract to zero size at some points but nevertheless
the whole manifold is non-singular.

®By a non-R-symmetry we mean a symmetry that leaves the N' = 1 supercharges invariant. In addition, N' =1
superconformal theories have a U(1)r symmetry.



When we compactify a closed string theory on a two torus the resulting eight dimensional
theory has an exact SL(2,Z) x SL(2,Z) symmetry which acts on the complex structure of the
torus and on the parameter®

7= Ba+i\/g (1.1.5)

where /g is the volume of the two torus in string metric. The SL(2,Z) that acts on the com-
plex structure will not play an important role and we forget about it for the moment. At the
level of supergravity we have an SL(2, R) x SL(2, R) symmetry. This is not a symmetry of the
full string theory. The SL(2, R) symmetries of supergravity can be used as solution generating
transformations. The SL(2, R) symmetry that plays a central role in this paper is the one acting
as

(1.1.6)

where 7 is given by (1.1.5). Of course, we can also think of (1.1.6) as the result of doing a T-duality
on one circle, a change of coordinates, followed by another T-duality. When + is an integer (1.1.6)
is an SL(2,Z) transformation, but for general v it is not. This transformation generates a new
solution. For example, applying this to (1.1.4) we get

pluty: i__P1p2 (1.1.7)
1+9%003 14 72pip3

T=ipipy —> T =

The metric after the transformation (1.1.7) is

ds®> = dpt +dpi + ————(p?de? + pides 1.1.8
p1 + dps 1+%ﬁ£@1% padp3) (1.1.8)
B, — i
1 + 202}
1
Q26— o200

1+ ~2p2p3

where the change in the dilaton is due to the fact that the SL(2, R) transformation leaves the eight
dimensional dilaton invariant, not the ten dimensional one. (¢q is the original ten dimensional
dilaton).

Moreover, if we start with a non-singular ten dimensional geometry after applying (1.1.6), the
resulting geometry turns out to be non-singular[66]. The reason is that the only points where we
could possibly introduce a singularity by performing an SL(2, R) transformation is where the two
torus shrinks to zero size. In this case 7 is small and 7’ becomes equal to 7. The region near
the possible singularity becomes equal to what it was before the transformation. Thus the metric
remains non-singular.

Let us consider a D-brane on the original background that is invariant under both U(1) sym-
metries. Such a brane will be left invariant under the action of (1.1.6). In other words, there is a
corresponding brane on the new background. Now, what is the theory on this brane in the new
background? Lunin and Maldacena conjecture give us the following answer. Suppose that the

SThroughout this section we are setting o/ = 1 and we are using a normalization for the B field such that its
period is Biz ~ Bia2 + 1.



original brane, on the original background, gave rise to a certain open string field theory. Then
the open string field theory on the brane living on the new background is given by changing the
standard product as in (1.1.2)

D, — Dxd; = QUY-QU @, 3, (1.1.9)

The basic idea leading to this conjecture is the following. In [2] it was pointed out that in the
presence of a B field the open string field theory is defined in terms of an open string metric and
non-commutativity parameter

- - 1 w 1

Gipen + 0" = <g+—B> ~ (1.1.10)
where the last expression is schematic. Note that under the transformation (1.1.6) 1/7 — 1/7/ =
1/7+7. All that happens in (1.1.10) is that we introduce a non-commutativity parameter 012 = +.
The open string metric remains the same. The reason we called this a “conjecture” rather than
a derivation is that [2] considered a constant metric and B field while here we are applying their
formulas in a case where these fields vary in spacetime.

Let us now consider branes sitting at the origin. In general, the “origin” is the point where
both circles shrink to zero size. Notice that for this brane the transformation (1.1.9) does not
lead to a non-commutative field theory at low energies, since the U(1) directions are not along its
worldvolume but they are global symmetries of the field theory. The net effect of (1.1.9) for the
field theory living on a brane is to introduce certain phases in the Lagrangian. In other words,
starting with the low energy conventional field theory living on the brane, we obtain another
conventional field theory with some phases in the Lagrangian. Viewing the deformation as a
x—product allows us to show that all planar diagrams in the new theory are the same as in the
old theory [3]. Then, for example, if the original theory was conformal, then this is a marginal
deformation to leading order in V.

An interesting question is whether the deformation that we are doing preserves supersymmetry.
In principle we can perform this transformation independently of whether we break or preserve
supersymmetry, but sometimes we are interested in the ones that preserve it. If the original
ten dimensional background is supersymmetric under a supersymmetry that is invariant under
U(1) x U(1), then the deformed background will also be invariant under this supersymmetry. In
particular, a D3-brane at the origin leads to an N/ = 1 theory.

1.1.1 The Lunin—-Maldacena Supergravity solution

It follows from the analysis of the Kaluza Klein spectrum on AdS5 x S° that there is a massless
field in AdS5 that corresponds to the deformation in question. In fact, there are more massless
fields in AdS5 than there are exactly marginal deformations. In [55] the super-gravity equations
were analyzed in a perturbative fashion and a constraint was found. There are as many solutions
to this constraint as there are exactly marginal deformations of N = 4.

Now we will review the exact solution found in [66] for deformations which preserve U(1)xU(1)
global symmetry. All we need to do is to apply the method described in the previous section.
After we apply the transformation (1.1.6) to a particular two torus inside the S° geometry in the



AdSs x S° background, we can find the solution corresponding to the gravity dual of the deformed
theory

ds® = R?|dshus, + > _(dp} + Gpide?) + 4°Gpipsp3 (D dey)?
G = 14+5%(ips +paps +p103) .  A=R’y,  R'=4me”N =)\
2 — 62¢OG
B = AR’G(pipsdey Adsy + psp3dds A des + pipides A dey)
3 3
Cy = —4’?R26_¢0w1 A ; do; , dwi = % sin@cos@dr N db
3
Cy = 4R*e % <w4 + Guw A Zd@) , Wads, = dwy (1.1.11)
=1

. . . . 2 2
where we find convenient to parametrize p; coordinates via p3 = 1 — 77 p3 = e cos® 0, pg =

1’%—22 sin?f. Note that Z?:1 p? = 1 and we have 0 < r < R. We consider only the case of real
deformation parameters 4 where the axion field Cy is a constant and can be set to zero. Moreover,
¢g is the dilaton of the undeformed background. The metric is written in string frame.

The corresponding R-R field strengths are given by the general prescription F'q = dCy_1 —
dB N Cy—3. In particular, the five form field strength of the background is

Fs=dCy — Cy NdB * F5 = F5 (1.1.12)

The missing forms of higher degrees can be found by applying the ten—dimensional Hodge
duality operator . . . B
F7 = —*Fg, Fg = xF (1113)

From the first identity and using the equation of motion for Cs
d(xF3) = dCy A\ dB, (1.1.14)

it is easy to see that d(C¢ — B ACy) =0, i.e. C4 — B ACy = dX for an arbitrary 5—form X. In
what follows
Ce=CyNB (1.1.15)

Finally, from the second identity in (1.1.13), by using (1.1.15) and taking into account that
BAB=0and Cy =0 we find Fy = dCs = 0. Therefore, we also set Cs = 0.

Let us now examine the regime of validity of this solution. The solution which is presented
here has small curvature as long as

Ry<1l, R>1 (1.1.16)

The first inequality can be understood as the condition that (at a generic point) the two torus
does not become smaller than the string scale after the transformation. We also computed the



square of the Riemann tensor on the deformed fivesphere and looked at the region where it is
a maximum as a check of the first condition (1.1.16). The topology of this solution (1.1.11) is
always AdSs x S°, since our transformation (1.1.6) does not change the topology.

In the case of real deformation parameter 3 = ~ the new AdSs x S° background can be also
obtained from the original AdSs x S° solution by applying a TsT (T-duality, shift, T-duality)
transformation in S°. A natural non-supersymmetric generalization of the Lunin-Maldacena
background has been obtained in [67] by performing a series of TsT transformations on each
of the three tori of S° but with different shift parameters 4;. This background is believed to
be dual to a non—supersymmetric but still conformal gauge theory obtained by a related three—
parameter deformation of the N' =4 SYM. If all the 9; are equal, the deformation reduces to the
Lunin-Maldacena one. We will review these constructions in the following sections ’.

1.1.2 T—duality transformation

First we present the T-duality transformation useful to obtain these deformed backgrounds [67].
We start with the following string theory action
VA

d . .
§=- d72—0 [’yo‘ﬁaaXMﬁﬁXN Gun(X') — €P9, XM XN Byn(XH)| . (1.1.17)
T

Here ¥' =1, M =1,2,3...,i=2,3..., and the background fields G y;x and Bjsn do not depend
on X'. The action can be represented in the following equivalent form

Gim By 1
dr— |p* [ aX™ — Yape P9, XM 03 P°p° 1.1.1
\F/ T [ <f9 Gy Yap€ " Op G11> 51, Yo PP ( 8)
+17a68aX28ﬁX] Gij — G1iGy LSSV ) 1e"‘ﬁaa)(laﬁ)(f Bi; — GuiBy; 1iGy )
2 Gll 2 Gll

Indeed, variating with respect to p®, one gets the following equation of motion for p®
* =P XM G010 X M By . (1.1.19)

Substituting (1.1.19) into (1.1.18) and using the identity €*77,,e?® = v’ we reproduce the action
(1.1.17). On the other hand, variating (1.1.18) with respect to X! gives

Oap®=0. (1.1.20)
The general solution to this equation can be written in the form
p* =Pz X, (1.1.21)

where X! is the scalar T-dual to X'. Substituting (1.1.21) into the action (1.1.18), we obtain the
following T-dual action

-5 [

5 B9, XM XN Gy — B0, XM 95 XN BMN] , (1.1.22)

"Other interesting generalizations can be found in (68, 69]



where

1 = G1iG1j — B1iByj = By;

Gi=—, Gii=Gi— , Gy = , 1.1.23
T an ! ! G TG ( )
~ G1;B1j — B1;Gh; ~ G
B’i' = BZ - ) B T = A
7 Gui YT G

Gaﬂag)zl = yaﬁaﬁXMGlMew@@XMBlM s XZ = Xi .
We can also apply the rules of T-duality for RR fields [4] to find Cy and Cjy.

1.1.3 The Frolov argument

We start from the string theory sigma model action on AdSs x S°, and derive the metric and the
two-form field part of the LM-background in the case of real § = ~ by using a T-duality on one
circle of S, a shift of a second angle variable, followed by another T-duality.

Since the TsT-transformation involves only variables of S° it is sufficient to consider the S°
part of the string action that can be written in the form

§:—\/—X deU

2 2 77 (DapiDspi + p20adiD30) + A(p? ~ 1)] - (1.1.24)

Here VA = R?/d’, R is the radius of S®, A is a Lagrange multiplier, i = 1,2,3, and yB =
V—hh®? where h®? is a world-sheet metric with Minkowski signature. In the conformal gauge
78 = diag(—1,1) but we do not fix the world-sheet metric in this section. The action is invariant
under the SO(6) group, and the three U(1) isometry transformations are realized as shifts of the

angle variables qgl
To derive the y—deformed background it is convenient to make the following change of variables
[66]

¢1 = @3 — o, by = B3+ B1+ Po, b3 = @3 — @1, B3=1. (1.1.25)
In terms of these new angle variables the action (1.1.24) takes the form
z VA do o4
S = —7/ dr e |77 (Dapidspi + 91 0a5:05%;) + Ao} = 1)] . (1.1.26)
where the metric components g;; are

g = ps+ 3, 922 = pi+ P, gs3 =1, (1.1.27)
912:p%7 913=P%—P§7 923=P%—P%-

Then we make the T-duality transformation on the circle parameterized by g~51. By using the
formulas collected in the previous Section, we get the action for the T-dual theory

~ VA do 1 - S o - b7 S A~
S = —7/ dfg [7 B (0apiOspi + Gij0apiOpp;) — €*Pbij0apiOsd; + Ap? — 1)] . (1.1.28)

9



Here €' = 1, the T-transformed metric § and the skew-symmetric B-field lN)Z'j are given by

_ 1 _ pinstpins ey - (=) .
g1 =—5—5, g22= y gx3=1——"5—5—, g12=0q13=0,
P} + 03 p3+ 3 P} + 03
PO T Vo el VS S L Il B S
3+ p3 ’ P+ p}’ p3+p}’
The T-dual variables ¢; are related to g~52 as follows
P51 = 1P 0s%; g1i & 0Py = Yape” 10vP1 G11 — OaPi bii » (1.1.29)

Py = P2, P3 = Q3 -

The relations (1.1.29) are satisfied only on-shell, that means that their consistency conditions lead
to the equations of motion for ¢; and ;.
Next, we make the following shift of the angle variable %o

P2 — Q2+ P1, (1.1.30)

where 4 is any constant. After the shift the T-transformed metric g acquires the following form,
9ij — Gij:

G—l
P+ 03

G =g, Gs3=0s3, Gr=4Gn, Gi3=%Gs, Go=3joss,

Gi1 =11+ 5% Jo2 = Gt =1+4%(pp} + pins + p3p3) .

and the eq.(1.1.29) transforms into
OaP1 = Yape” 0y @1 G11 — Oai bri — A Dap1 b1z - (1.1.31)

The final step is to make again the T-duality transformation on the circle parameterized by ¢1.
This leads to the string action on the y—deformed background

\/X do a a
S = 5 dT% [’Y p (OapiOppi + GijO0apiOgp;) — € 6Bij OatpiOp; + A(p — 1)| . (1.1.32)

The variables ¢; are related to the T-dual variables ; as follows
Gaﬁaggal = 70‘585@ élz‘ — Gaﬁagﬁi Blz’ = aa951 = 7a565787g02' Glz‘ — Oaq¥Pi Bh‘, (1.1.33)
P2 = P2, P3 = 3.

The egs.(1.1.29), (1.1.31) and (1.1.33) allow us to determine the following relations between the
angle variables ¢; and the TsT-transformed variables ¢;:

Oapy = (QllGu +4b12By; — 51¢> Oatpi — (’7 b12G1; + flllBu) Vo€ 0ypi,  (1.1.34)
OaPs = Oapr — 4 B1i0api + 4 G1iVase™ 10,0
801@3 = 801@3 .
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The ~—deformed metric in (1.1.32) is given by
Gij=Ggiy, ifbothi,j #3;  Gaz=Ggss+ 95> G plp3ps -

It is easy to see from this form of the metric that in terms of the angle variables ¢;, eq.(1.1.25),
the action takes the following simple form

VA dor .
S=-5 / dr o= |1 | QapiDspi + G pR0a0:030i +47 G o33 (Y 0a0) (Y 056y)

J
—24 G e (03030001002 + p3p30ad20505 + P3P 0adsdadr) + A(p? — 1)} . (1.1.35)

It is in this form the gravity background was written in (1.1.11).

It is possible to use a chain of TsT transformations to generate a three-parameter deformation
of the AdSs x S® supergravity background. In the case when all the parameters are equal to each
other the deformed background reduces to the one-parameter Lunin-Maldacena background we
just discussed.

We saw that to obtain the y-deformed supergravity background from AdSs x S° by using
a TsT transformation we had to choose a very special torus in S°. This choice is related to
supersymmetry of the Lunin—Maldacena background but in general one may be interested in
studying non—supersymmetric deformations too. In that case, the choice of the torus looks rather
superficial. On the other hand, in the parametrization of S® we use in (1.1.24) there are three
natural tori: (¢1,¢2), (¢2,¢3) and (¢p3,¢1). One may ask how one could get the y—deformed
background by using TsT transformations on the three tori. The answer appears to be very
simple. One should just perform a chain of three consecutive TsT transformations on each of the
three tori with the same shift parameter 4. If we allow the TsT transformations to have different
shift parameters 4; we get a non-supersymmetric deformation of AdS5x S® . The three-parameter
supergravity background should be dual to a non—-supersymmetric but marginal deformation of
N =4 SYM.

Since the details of the derivation are very similar to the case of the y—deformed background
we present here only the final results. We apply the first TsT transformation with T-duality
acting on the first angle ¢; and the shift parameter equal to 43 to the torus (¢1, ¢2), then the
second TsT transformation with the shift parameter equal to 41 to the torus (¢, ¢3), and finally
the third TsT transformation with the shift parameter equal to 42 to the torus (¢s, ¢1).

The resulting type 1IB supergravity background written in string frame takes the form

ds* = R |dshus, + Y _(dp} + Gpide?) + Gpipsp3 (Y Aidei)?

Gt = 1+A43p105 +Ai030s + 50105 . =R, R = 4mwe N = \
2 = 2@
B = R*G(33pip3ddr A dos + 1p3p3des A ds + Aep3pidds A dér)
3 3
Co = —4R2e%0u; A ; Audepy | dwy = % sin 0 cos 0 dr A df
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3
Cy = 4R*e~%0 <W4 + Guwi A Z d¢z> , WAdSs = dwy (1.1.36)

i=1
where again (0 < r < R) p? =1 — 2—22, p3 = %60829, p3 = }’%—zsin29 so that Zg’zlpf = 1.
Moreover,

Co=Cs=0 and Ce=0C4yNB (1.1.37)

as in the supersymmetric case.
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Chapter 2

Conformal invariance and chiral ring
for non—planar Leigh—Strassler
theories

In this chapter we discuss deformations of the conformal field theory in order to generalize the
standard AdS/CFT correspondence towards more realistic theories.

Conformal field theories have many applications in their own right, but since our main interest
(at least in the context of four dimensional field theories) is in studying non-conformal field
theories like QCD, it is interesting to ask how we can learn about non-conformal field theories
from conformal field theories. One way to break conformal invariance while preserving Lorentz
invariance, is to deform the action by local operators,

S— S+ h/d4x(’)(x) (2.0.1)

for some Lorentz scalar operator O and some coefficient h.

The analysis of such a deformation depends on the scaling dimension A of the operator O !. If
A < 4, the effect of the deformation is strong in the IR and weak in the UV, and the deformation
is called relevant. If A > 4, the deformation is called irrelevant, and its effect becomes stronger
as the energy increases. Since we generally describe field theories by starting with some UV fixed
point and flowing to the IR, it does not really make sense to start with a CFT and perform an
irrelevant deformation, since this would really require a new UV description of the theory. Thus,
we will not discuss irrelevant deformations here. The last case is A = 4, which is called a marginal
deformation, and which does not break conformal invariance to leading order in the deformation.
Generally, even if the dimension of an operator equals 4 in some CFT, this will no longer be true
after deforming by the operator, and conformal invariance will be broken. Such deformations can
be either marginally relevant or marginally irrelevant, depending on the dimension of the operator
O for finite small values of h. In special cases the dimension of the operator will remain A = 4
for any value of h, and conformal invariance will be present for any value of h. In such a case

'If the operator does not have a fixed scaling dimension we can write it as a sum of operators which are
eigenfunctions of the scaling operator, and treat the deformation as a sum of the appropriate deformations.
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the deformation is called ezxactly marginal, and the conformal field theories for all values of h are
called a fized line (generalizing the concept of a conformal field theory as a fixed point of the
renormalization group flow). The ezactly marginal deformations of the N' = 4 SYM have been
first classified in [57] and extensively studied in a field theory approach [57, 58, 59, 60] and in the
context of the AdS/CFT correspondence [61, 62, 63, 64, 65].

The interest in marginal deformed SYM theories has recently received a considerable boost
thanks to the work of Lunin-Maldacena [66] where the gravity dual of the so called f—deformed
theory has been proposed?. It corresponds to the low energy limit of a string theory on a deformed
background AdSs x S% obtained by SL(2,R) transforming the 7 modulus of a two—torus inside
S5. Alternatively, it can be obtained from the original AdSs x S° solution by applying a TsT
transformation in S° [66, 67, 68, 69].

A considerable effort has been devoted so far to provide tests of the correspondence in its
marginal deformed version. As for the AdSs x S° original correspondence, perturbative properties
of the field theory have been investigated: For the SU(N) case the condition which constrains the
couplings of the theory in order to have A/ = 1 superconformal invariance has been determined
perturbatively up to three loops [70, 71, 72]. In the large N limit the exact superconformal
condition has been found in [74]. Nonrenormalization properties of operators in the chiral ring
have been established perturbatively [70, 71, 72] and multiloop amplitudes have been computed
[71, 72, 76]. The exact anomalous dimensions for spin-2 operators of the form Tr(®{®;) have
been determined [74] for N, J unrelated and large®. Finally, the gauge one-loop effective action
has been computed [78] for a particular background configuration. Nonperturbative instantonic
effects have been also considered [79].

Integrability properties of the original N' = 4 SYM theory (see [80] for a review and list of
references) survive the f—deformation [81, 82, 67, 140, 83] and Bethe ansatz techniques can be
used also in this case to compute the spectrum of anomalous dimensions of composite operators.

On the string theory side BPS states have been investigated in [84] for orbifold configurations.
Integrability properties have been exploited on the two sides of the correspondence in order to
match the energies of semiclassical fast rotating strings with one-loop anomalous dimensions of
scalar operators [85, 86, 87, 88, 89]. The spectrum of states has been also investigated in the BMN
limit [90, 91].

Non—supersymmetric generalizations of the Lunin—-Maldacena f—deformation have been pro-
posed [67] and further investigations have been carried on [92, 68, 93, 94, 95]. Very recently,
deformations obtained by acting with TsT transformations in AdSs have been also proposed [96].

Finally, the Lunin-Maldacena deformation has been applied in the context of dipole theories
with the purpose of disentangling the KK modes (whose dynamics gets affected by the deforma-
tion) from the gauge modes [97, 98, 99, 100, 101].

In a previous paper [71] it has been initiated the study of the chiral ring of the SU(N) (-
deformed SYM theory by exploiting perturbative techniques in N' = 1 superspace [102, 103, 106,
107, 108]. There, the single-trace sector of the chiral ring has been considered: For the lowest
dimensional scalar operators it has been proved the vanishing of their anomalous dimensions up

2First steps in the direction of studying the correspondence with a lower number of supersymmetries were
undertaken in [55].
3The same kind of limit has been recently considered in [77] for studying magnons in the A" = 4 SYM theory.
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to two loops and the appearance of finite corrections to their correlation functions, in contradis-
tinction to the N/ = 4 case. In particular, the two-loop results confirmed the protection [70] of
the operator Tr(®;®;), i # j which was missing in the list of CPO’s of the theory [61, 62, 66].

In this chapter we intend to pursue our investigation and extend it to higher dimensional
sectors of the chiral ring for scalar chiral superfields. We work at finite NV and take into account
mixing among sectors with different trace structures. Exploiting the definition of quantum chiral
ring we reduce the determination of protected operators up to order n in perturbation theory to
the evaluation of the effective superpotential up to order (n — 1). Precisely, from the knowledge
of the effective superpotential we determine perturbatively all the quantum descendant operators
of naive scale dimension Ay, and find the CPQO’s as the operators which are orthogonal order by
order to the descendants.

For the 3-deformed theory we investigate the spin-2 sector? and applying our procedure to
simple cases (Ag = 4,5) we determine the protected operators up to three loops. In the sectors we
have studied we can always define descendant operators which do not receive quantum corrections.
This seems to be a general property of the spin—2 operators: Despite the nontrivial appearance of
finite perturbative corrections to the effective action, the quantum descendant operators defined in
terms of the effective superpotential coincide with their expressions given in terms of the classical
superpotential (up to possible mixing among them).

We then investigate the spin—3 sector where, due to the appearance of Konishi-like anomalies,
we need restrict our analysis at two loops in order to avoid dealing with mixed gauge/scalar
operators. Up to this order the descendant operators we consider are the classical ones. However,
in this sector we expect higher order corrections to the descendants to appear together with a
nontrivial dependence on the anomaly term. Therefore, the non—renormalization properties of the
descendant operators that we experiment for the spin—2 sector are not a general feature of the
theory.

We generalize our procedure to the study of protected operators for the A' = 1 superconformal
theory associated to the full Leigh—Strassler deformation. Even if the gravity dual of this theory
is not known yet, it is anyway interesting to figure out the general structure of its chiral ring.
Still at finite IV, we study explicitly the weight—2 and weight—3 sectors up to two loops and
perform a preliminary analysis of the general sectors at least at lowest order in the couplings. An
interesting result we find is that, because of the discrete Z3 symmetries of the theory, the sectors
corresponding to conformal weights which are multiple of 3 have a different operator structure
from the other ones.

Then, we study the conformal invariance of non—planar 3-deformed N' = 4 SYM theory for
complex values of the deformation parameter. Recall that from the field theory side this can be
realized by enlarging the space of parameters of the original N' = 4 theory (1.1.1):

{9} — {9h, 8 geR hpeC (2.0.2)

The resulting theory preserves N = 1 supersymmetry and it is expected to become conformally
invariant only if a precise relation among the coupling constants exists [57]. Several papers have

4We use the notation of [85] and call “spin—n” the sector containing operators made by products of n different
flavors.
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been devoted to the study of an explicit realization of this condition in the planar case ([74]-
[45]). Keeping [ real, the Leigh—Strassler constraint turns out to be satisfied at all order in
perturbation theory by the exact solution hh = g2 [74]. The case of complex ( requires a more
careful investigation since the conformal condition gets perturbatively corrected. In order to
properly describe the fixed point surface in the space of couplings, the coupling constant reduction
(CCR) program has shown to be a powerful tool ([46]-[51]). Using this approach, in [44] it is
claimed that conformal invariance and scheme independence of the theory can not be achieved at
the same time for the complex 3 deformed case in the planar limit®.

Our aim is to achieve a better understanding of the problem by looking at the finite N case (see
also [70]-[143]). Working perturbatively we will ask for the chiral and gauge beta functions to
vanish in order to define the theory at its conformal point.

The plan of the chapter is as follows: After introductory sections on the full Leigh—Strassler
superconformal theory, in Section 2.2 we introduce the definition of perturbative chiral ring and
discuss the general procedure we adopt to determine the CPO’s of the theory. In Section 2.2.2
we compute the perturbative effective superpotential up to two loops as required to determine
protected operators up to three loops. These are then the subject of Sections 2.2.3 and 2.2.4 for
the spin—2 and spin—3 sectors, respectively. In Section 2.3 we study the more general N' = 1
superconformal theory described by the full Leigh—Strassler superpotential.

In Section 2.4.1 we analyze the properties of the two—point chiral correlator for complex S.
We make use of the CCR procedure to obtain the vanishing of the anomalous dimension. This
amounts to express the chiral couplings as functions of the gauge coupling g. As a consequence
the perturbation theory is naturally defined in terms of powers of g instead of powers of loops.
At order g% we meet the first non-trivial situation because at this stage different loop diagrams
start contributing at the same order in g. We will see that up to order g'°, differently from the
planar case, there is enough freedom to remove the scheme dependence without reducing to the
real (3 case.

Then we turn to consider the gauge beta function in Section 2.4.2. As CCR approach allows
different loop orders to mix, it is not obvious that standard finiteness theorems [144, 145] should
hold. So, having canceled the chiral beta function up to O(g”) does not automatically imply the
vanishing of the gauge beta function at O(g°®). The fact that this is still the case is a highly
non—trivial check that we will cover in details in Section 3. The same problem was studied in
[44] in the planar case where it was shown by an explicit computation that the condition for the
vanishing of the anomalous dimension « at O(g®) actually ensures the vanishing of the gauge beta
function at O(g'!). This result was obtained making use of background field method combined
with covariant V—algebra. However it is worth noting that the procedure followed in [44] is not
the standard one (extensively explained in [146]), which turned out to be too involved. Here,
working at a lower order in g but keeping N finite, we will be able to get through the calculation
adopting both of the methods and checking explicitly the equivalence of the two.

5The possible scheme dependence of the vanishing v condition has been first noted by the authors of [73]. In
[44] we explicitly considered this feature and studied its implications.
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2.1 The Leigh—Strassler deformations

In this section we discuss the marginal deformations of field theories coming from a system of
N coincident D3-branes. The whole discussion is done from the field theory perspective. The
theories we discuss have N = 4,1 supersymmetry.

An operator is eractly marginal if upon adding it to the original conformal theory all the
[-functions still vanish. Generally if we have p couplings in the theory we also have p G-functions.
The conditions for the theory to be conformal are:

0 = ﬂgl(glah])

= Bni (9, hy)

(Here h; are the couplings and g; are the gauge couplings of the system.) We have n + k
equations in n + k variables. Thus, in general, we expect to have isolated, if at all we will have
any, solutions of this system of equations.

However, in supersymmetric field theories we have several simplifications. The first one is
that from nonrenormalization of the superpotential in supersymmetric theories we get a relation
between the anomalous dimensions of the fields and the coupling associated with the superpotential
term(see [8]). For a superpotential W = ¢Y 75®;®;®;, we get:

pitk = YPUAR) — yiPak o (ks i)+ (k > 5). (2.1.2)

Here fy;f is the anomalous dimension related to the (®¥®,,) correlator. The second simplification
is the relation between the gauge coupling and the anomalous dimensions - the NSVZ g-function
[114],

¢ [Q-27'TrhC(R)
1672 |1 —2C(G)g2(1672) "
The symbols appearing here will be defined later. We conclude that in a supersymmetric field

theory, in order to find exactly marginal deformations we have to solve a set of linear equations

in the anomalous dimensions. These equations can be linearly dependent, giving a manifold of
solutions [57]. The equations ( 2.1.1) become:

By

(2.1.3)

0 = 591(7[7.92'7}1]')

0 = ﬁqn('ﬂ’gi’hj)
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0 = Bn(n 9 hj)

0 = Bn,(n 9 hj) (2.1.4)

Here usually we will get that the righthand sides of these equations depend only on s which
will greatly simplify our job.

In order to find exactly marginal directions we have to solve a set of linear equations, to find
the possible values for the anomalous dimensions (s) such that all s vanish. Then, by loop
calculations we calculate the dependence of the «s on the couplings and other parameters of the
theory, and finally we impose the conditions from the first step on the vs and see if they can be
satisfied. This will be the strategy in our search for ezactly marginal deformations throughout
this work.

When solving the set of linear equations ( 2.1.4) we can get possible solutions which will be
ruled out from the loop calculations®. We will see examples of this below.

2.1.1 N =4 theory

First we review some basic properties of N' = 4 SYM with gauge group SU(N). In N = 0
language the theory contains six scalar fields, four Weyl fermions and a real vector field. All fields
are in the adjoint representation of SU(N). In N/ = 1 language the six scalars can be coupled to
form three complex scalars which together with three Weyl fermions form three chiral superfields
®,;, while the vector and the remaining Weyl spinor can be joined to form a vector superfield V.
The Lagrangian in N' = 1 language is then:

— . 1
S = / dz Tr (e 9V ®;e9Y @) + 557 / d®z TeW W,

g

a d®z e, Tr(®[®7, ®F)) + h.c. (2.1.5)

_l’_

This is a pure Yang Mills theory with sixteen supercharges, in particular for U(1) gauge group
this theory becomes free. The (-function of the gauge coupling vanishes identically (at one loop
it is a trivial consequence of having three chiral superfields in the adjoint representation), thus
it is a conformal theory. It is believed to be exactly self S-dual. This symmetry of the theory
exchanges the strong coupling regime with a weak coupling regime, and the perturbative, electric,
degrees of freedom with non-perturbative, magnetic degrees of freedom.

In string theory we get N' = 4 SYM with SU(N) gauge group by putting N D3-branes in
type IIB string theory together. In this picture we have six ”vibrational” modes of the branes (
which are related to the six transverse directions to the brane) which become six scalars, which in
turn when joined in pairs comprise the N' = 1 scalar part of three complex chiral supermultiplets.
The possibility of the fundamental string to end on one of the N branes gives an SU(N) gauge
group and puts the scalars (as well as the other fields) in the adjoint representation. To all these

SWe can count on the loop calculations only in the weak coupling regime. Thus, we can not rule out these
solutions from appearing in the strong coupling regime.
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integer spin fields we have fermionic counterparts, and all in all we get an SU(N) gauge group in
4d with three chiral and one vector multiplets. In type IIB superstrings we have 32 supercharges,
D-branes are BPS states and thus they break half of the supersymmetry. Finally we have 16
supercharges in d=4 which give us N' = 4 supersymmetry. Three N' = 1 chiral multiplets and the
vector multiplet in NV = 4 language give an N’ = 4 vector multiplet. Thus to summarize we get
on the D-branes N = 4 pure Yang Mills with SU(N) gauge group.

Another, related, way to obtain N' = 4 SYM in d=4 is [7] to look at pure ' = 1 SYM in
d=10 and then do the dimensional reduction procedure to d=4. In d=10 we had only the vector
multiplet, six scalar components of which lose their vector nature after the reduction. They can
be coupled in pairs to form complex scalars which will be the scalars of three chiral N' = 1,
d=4 multiplets. Of course in this procedure we have a global SO(6) ~ SU(4) symmetry, which
becomes the R symmetry of N = 4.

There is extensive literature on this field theory, in particular regarding its finiteness and
the exact S-duality of this theory. There is also research concerning the relevant deformations
of N =4 ([, 108, 6] for example). Relevant deformations break the conformal invariance by
introducing a scale to the theory. We will be interested only in marginal deformations throughout
this work.

2.1.2 Marginal deformations

In this section we investigate some ezactly marginal deformations of N' = 4 SYM. There are
essentially only three types of marginal deformations which one can add to the lagrangian above”.
The obvious deformation is just changing the gauge coupling constant, the two other types are
superpotentials of the form:

ih . .

3—!16ijkTr(<1>2[c1>ﬂ, o))

hijk irdd HE

5 Tr(@'{e7,0}), (2.1.6)

where h;j;, is totally symmetric. These operators are marginal (by power counting), obey
gauge invariance and preserve N’ = 1 supersymmetry. So by adding these operators we get N' = 1
SQCD. What has to be determined is under what conditions these marginal deformations are
exactly marginal, i.e. the g-functions vanish to all orders in perturbation theory.

N =1 SQCD was analyzed for general superpotentials and general simple gauge group G
([104] and references therein). We will briefly summarize the general results:

We write the superpotential as:

W= éyiﬂ'k@i@j@k. (2.1.7)

We assume that the gauge group is simple and that there are no gauge singlets. The (§ —
function of Y can be written in terms of the anomalous dimensions:

"There are also relevant deformations, inserting mass terms for the fields, and they were discussed in [5, 108].
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BEE = YPUgk) = yirak 4 (ko ) + (k < j). (2.1.8)

The one loop gauge (-function and the anomalous dimensions are given by:

1672 él) =¢3Q, and 1672y (1) Pji, (2.1.9)
where we have defined:
1 .
Q=T(R)—3C(G), and Pj= §Y“flyj,d —29°C(R)’, (2.1.10)
and:
T(R)6ap =Tr(RaRp), C(G)dap = facpfecp and C(R) = (RaRa)}. (2.1.11)

R 4 is the representation of the chiral superfields. A,B,C,D are indices in the adjoint represen-
tation. For the gauge coupling we use the NSVZ 3 — function [114]:

9> [ Q—2r"'"Tr [hCO(R)]

= 2.1.12
s 1672 |1 — 2C(G)g?(1672) " ( )

(here r = d44) which at one loop gives (as in (2.1.9)):
167°81 = g*Q. (2.1.13)

Now we have set the general stage and return to the specific marginally deformed N = 4
theory. The superpotential can be rewritten in the form:

1 a C
W= (=hgfapceiji + davchiji) £ P; Yo (2.1.14)
YaZZf = (_hgfabceijk + dabchz’jk) (2.1.15)

where fupe = —iTr (T,[Ty, Te]) and dgpe = Tr (T {Ty, T.}). Here T, are the generators of the
Lie algebra of G in the fundamental representation of the group and hy = g + hy. The groups for
which dgp. is not vanishing are only SU(N > 3) or Es. Here we discuss only the SU (V) case.

®, are in the adjoint of SU(N):

% 0 0
Ra=| 0o T o (2.1.16)
p
0 0 T

Here Tzdj are the adjoint representation matrices. From here we can calculate the parameters
appearing in the general setup above:
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C(G)oap = facpfeep =Cidas (2.1.17)
T(R)op = Tr(RaRp) =3Tr(TSTE) = 3C108(= —3facpfBDC)
C(R)%; = (RpRp)f; = C1o36!

r = N?2-1.

(' depends on the normalization of the Lie algebra generators, for the moment we will keep
it arbitrary which will not affect our results. The one loop gauge 3 — function is proportional to

Q:

Q = T(R) — 3C(G) = 3C} — 3C) = 0. (2.1.18)

So the gauge 8 — function vanishes at one-loop. The gauge 8 — function vanishes at one loop
in general gauge theories with three chiral superfields in the adjoint representation.
First we do the general Leigh-Strassler analysis [57]. We have here:

By o< Tr(y)
Bn o Tr(y) (2.1.19)

So in general we have 10 h;;i, h1 and the gauge coupling g, total of 12 couplings, we have
to demand that Tr(y) = 0 and Bhi;, = 0 giving a total of 11 conditions. So we expect a one
dimensional manifold of the fixed points which we have already in A/ = 4 and it is parameterized
by the gauge coupling, with hy = h;j;, = 0. But we can do a more complicated thing. If we assume
also that  is proportional to identity matrix® we get B, x T r(7y). So we will have 12 couplings,

one condition Tr(vy) = 0 and 8 conditions for 75 x 5? , giving a total of 12-8-1=3 free parameters.
So we expect to have a three dimensional manifold of exactly marginal deformations. We will see
below that we essentially get only these three marginal directions.

Now we continue with the perturbation theory analysis. For SU(N): dgcqdped = o N ?{4 Cg’éab,
where Cydy, = Tr(T,T3). So we can write:

ai _ 2 o NP4 5
ij - (201(|hg| g )52] + N O2hij )5ab- (2.1.20)
Here hg) = hilmﬁjlm. And finally we get the one-loop anomalous dimensions and 3 —
functions:
as 1 N2 —4
’nggl') = W(QCl(‘th — g%)8i; + Cé”hﬁ))éab (2.1.21)
1)ijk 1 ik, N? =4 7 3
Bébij = 1672 {601(‘}19‘ - 92)Yaic + N CS <_hgfabchz’jk +dabch§jlz;> (2.1.22)

8There are also other restrictions we can make on the s and get the same dimensionality of the manifold of
fixed points, but they all are related by the global SU(3) symmetry we have here.
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hS’])€ = }_lplm(hz'jphklm + hkjphilm + hikphjlm) (2.1.23)
i (2) @ 2 (2.1.24)

hijk = eijphkp + Gpjkh + eipkhg'

hiji, is totally antisymmetric, thus because (i j k) run over (1 2 3), h;;j, has only one independent
component:

iL123 = 6123h§§) + 6123}1522) + 6123h§21) = T?“(h(2)) (2.1.25)
hige = Tr(h®)eijp. (2.1.26)

Now we can look separately on the part of the 8 — function proportional to f,;. and on the
part proportional to dgp.:

h N2 -4

5;%,) 67 {601(|th2 -9+ OS’Tr(h@))} (2.1.27)
1 N? -4

Ok = o {601(\hg\2 — i+~ CSh(j’,l} . (2.1.28)

When we constrain ourselves only to the case of hi23, hi11 = haga = hass, hy non zero (which
is the only case where we will get ezactly marginal deformations as we will see later), we get:

) = hipTr(h®). (2.1.29)
And in this case:
Bry  Bijk
— = . 2.1.
By g (2.1.30)

So if we are looking for fixed points we have only one condition on four couplings, and thus
we have a three dimensional manifold of fixed points in the coupling constants space [57].

2.1.3 RG-flow analysis

Here we will analyze the 8 — functions obtained in the previous section. The equations will
simplify if we rescale the coupling constants:

va va VG [N -4 (2.1.31)

97 47 9 he = Tghe and e = S e

The B — functions become:

2g3

T 1-2g2
Here the trace is taken only over the SU(3) indices and not over gauge indices. From these
G — functions we can obtain a differential equation:

ﬁg:

Tr(y), Bn, = hgTr(y). (2.1.32)
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—2—;3dg + édg = dh—}:g. (2.1.33)
This can be easily solved to give:
1
hy _ _get (2.1.34)
h; g*ew

This result means that the RG flow lines in the hy — g plane are exactly known (to the extent
that we can count on the NSVZ 3 — function). It is easy to convince oneself that there is no line
with the couplings going to zero in the UV, except the trivial case when one of the couplings is
constantly zero. This implies that there is no choice of coupling constants for which this theory
is asymptotically free.

Another interesting question is the existence of fixed points. In order to have a fixed point we
have to satisfy T'r(v) = 0 which implies at one loop that:

Tr(h?) = —=6(|hy|* — ¢°) (2.1.35)

And we can substitute this into 3;;; to get another condition:

3
Tr(h®)hjp, = hgj;.

(2.1.36)
We will argue that these conditions can be satisfied (in the limit g — 0 ) only if the anomalous

dimensions matrix is proportional to identity matrix.

~ First we don’t assume any special property of v. By multiplying (2.1.36) on both sides by

hijx we get:

3Tr(h?)?2) = (Tr(h?))2 (2.1.37)
We denote:
a b c
R? = | d e f (2.1.38)
g h k
(2.1.39)
And then:
(Tr(h)? = (a+e+k)? (2.1.40)
Tr((h?)?) = (a®+ e+ k?) + 2(bd + cg + hf). (2.1.41)

So (2.1.37) implies:
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(a—e)?+(a—k)>2+(k—e)?+6(cg+bd+ fh) =0 (2.1.42)

But remembering that A is hermitian:

c=g f=h b=d, (2.1.43)
we get that the only possibility for (2.1.42) to hold is if:

a=e=k, h=f=b=g=c=d=0, (2.1.44)

which implies: hg) = azél-j and « which is proportional to identity matrix. So the theory at
weak coupling only has fixed points when the anomalous dimensions matrix is proportional to
identity matrix.

If the anomalous dimensions matrix is proportional to the identity then:

Vi = pds. (2.1.45)
From here and from (2.1.8) we obtain:
The one loop v implies further that:
@) _ 2 o _ 1 2
hi = %6y, o = gg;mijﬂ : (2.1.47)

So the condition (2.1.36) is automatically satisfied and from (2.1.35) we get:

a? = =2(|hy|* — ¢*). (2.1.48)

The fixed points we found are essentially IR stable fixed points, we have:

Tr(y) = 3(2(|hg|* = ¢°) + ), (2.1.49)

and the condition for a fixed point is Tr(y) = 0. From the § — functions we calculated we
see that if we increase one of the couplings hg, hiji, Tr(y) becomes positive thus decreasing these
couplings and increasing the gauge coupling in IR, till we get again zero. And the same if we
decrease the couplings. Thus we can conclude that in the weak coupling limit all fixed points that
exist imply diagonal v and are IR stable. Consequently nothing is known of the UV behavior of
the theory, and we can unambiguously define it only at the conformal fixed points. Now if we
restrict ourselves only to the case of hi11 = hoss = h3z3 = h' # 0 and hyo3 # 0, with all other
couplings vanishing, then from the symmetry of the interactions we see that 7;- is proportional to
the identity (fy; = 75;-).

Finally, turning back to the original couplings (before the rescaling (2.1.31)), working with our
conventions in which C; = N, Cy =1 (see Appendix A) and making the last coupling redefinition
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hi23 +ihg = he'™ (and hig3 — ihg = he™"™8 so that the new parameter 3 is real), the conformal
condition becomes
1
|:|h|2 <1 — m e

All the calculations in this section were done based on the one loop anomalous dimensions. An
interesting question is how the results are altered by higher loop calculations. As just discussed the
request for the anomalous dimensions of the elementary chiral superfields to vanish guarantees the
theory to be superconformal invariant. In general we do not know the superconformal condition
exactly. However it is possible to perform a perturbative analysis and define the superconformal
theory order by order in the couplings.

To summarize, the full Leigh-Strassler A = 1 deformation of the A’ = 4 SYM theory can be
rewritten using the following action [57]

i e—iwﬁ

2 N?2 -4

_ ) 1
S = / d32Tr(e 9V @;e9V @) + 507 / dS 2 Tr(WW,,)
g
-
+ {ih/dGzTr(q D1 Dy®3 — G P3Dy) + % /dﬁzﬁ(qf{’ + &3+ ®3) + h.c.}

(2.1.51)

where we have set ¢ = ¢, § = e, 8 real. The gauge coupling ¢ has been chosen to be real
in order to avoid dealing with instantonic effects, whereas h is generically complex.

Recall that the superfield strength W, = iﬁ2(e_9VDaegv) is given in terms of a real prepo-
tential V' and ®; 23 contain the six scalars of the original N' =4 SYM theory organized into the
3 x 3 of SU(3) subgroup of the R-symmetry group SU(4). We write V = VT, &, = ®¢T, where
T, are SU(N) matrices in the fundamental representation?.

First set A’ = 0. The so called S—deformation breaks N/ = 4 supersymmetry to N’ = 1 and the
original SU(4) R-symmetry to U(1) g. However, two extra non-R-symmetry global U(1)’s survive.
Applying the a—maximization procedure [109] and the conditions of vanishing ABJ anomalies it
turns out that U(1)g is the one which assigns the same R—charge w to the three elementary
superfields, whereas the charges with respect to the two non-R-symmetries U(1); x U(1)2 can be
chosen to be (®1, Py, P3) — (0,1,—1) and (—1,1,0), respectively.

The action (2.1.51) possesses two extra discrete symmetries. One is the Z3 associated to cyclic
permutations of (®1, P9, P3) which is a remnant of the original SU(3) C SU(4) symmetry of the
undeformed theory, whereas the other one corresponds to exchanges

Q=P iFy and q——q (B—1-0) (2.1.52)
The equations of motion for the chiral superfields are
D2(e7 9V @969V = —ih®5®5 [q(abe) — G(ach)] (2.1.53)

and cyclic, where (abc) = Tr(TTT*).

9For more details on our conventions we refer to Appendix A and paper [106, 107, 108, 71].
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At the quantum level the theory is superconformal invariant (and then finite) up to two loops
if the coupling constants satisfy the following condition (vanishing of the beta functions) [70, 71]

|nJ? [1 -~ la—d ] 9 (2.1.54)

Superconformal invariance at three loops has been discussed in [72] for any N. In the large N
limit this condition reduces simply to |h|?> = g2, independently of the value of g. In [74] it has
been proven that this is the ezact superconformal invariance condition for the large N theory dual
to the Lunin-Maldacena supergravity background [66].

Now consider the full superpotential with h’ # 0. The original SU(4) R-symmetry is broken
to U(1)gr and no extra U(1)’s are left. However, the action is still invariant under the cyclic per-
mutation of (®1, ®2, ®3) and the symmetry (2.1.52). Moreover, a second Z3 is left corresponding
to

((I)l,q)g,q)g) - (@1,2@2,22(1)3) (2155)

where 2 is a cubic root of unity.
The equations of motion derived from (2.1.51) are

D?(e79V®%edV) = —ih®4®S [q(abe) — Glach)] — ih/ DS (abe)
D?(e79V®5edV) = —ih®®S [q(abe) — Glach)] — ih' ®SDS(abc) (2.1.56)
D?(e79V®5e9V) = —ih®®5 [q(abe) — Glach)] — ih' ®SDE (abe)

Since the three chirals have the same anomalous dimension due to the cyclic Z3 symme-
try, superconformal invariance requires a single condition v(g,h,h’,3) = 0 and we find a three—
dimensional complex manifold of fixed points.

To this purpose we evaluate the anomalous dimension of the chiral superfield ®; up to two
loops. The calculation can be carried on exactly as in the case of b’ = 0 by taking into account
that compared to the previous case the present action contains three extra chiral vertices of the
form B d,, 0¢PLDS, i =1,2,3.

As long as we deal Wlth diagrams which do not contain the new h’ vertices we have exactly
the same contributions as in the A’ = 0 theory [70, 71]. We only need evaluate all the diagrams
which contain these extra vertices.

At one loop, besides the h—chiral and the mixed gauge—chiral self-energy diagrams [71] we
have a h/-chiral self-energy graph whose contribution is proportional to |h/|2. This new diagram
modifies the one-loop superconformal condition (2.1.54) as

N%—4
[Ihl2 (1 -~ la—q > + | NoE ] =g’ (2.1.57)

in agreement with [115, 58, 65]. As for the A’ = 0 case it is easy to verify that the one-loop condi-
tion is sufficient to guarantee the vanishing of the beta functions (i.e. superconformal invariance)
up to two loops.
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2.2 The chiral ring of the (5-deformed theory

We are now interested in studying perturbatively the structure of the chiral ring for the (-
deformed theory (2.1.51) with A’ = 0. As discussed in [110], for a generic N' = 1 SYM theory
scalar operators in the chiral ring can be constructed as products of scalar chiral superfields ®;
and/or times (W*W,,), where W, is the chiral field strength. In this paper we will focus only on
the ®d—sector, neglecting operators with a dependence on W,,.

In [61, 62, 66] the single—trace sector of the chiral ring has been identified as given by chi-
ral operators of the form Tr(<I>‘1h<1>2‘]2<I>é73) with weight Ag = J1 + Jo + J3 and (J1, J2, J3) =
(J,0,0),(0,J,0),(0,0,J),(J,J,J). In [70, 71] it has been shown perturbatively that also the as-
signements (Jy, J2, J3) = (1,1,0), (1,0,1),(0,1,1) give protected operators.

This classification identifies the CPQO’s according to their dimension and their charges with
respect to the two U(1) global invariances of the theory. However, it does not give any information
on the precise form of the protected operator corresponding to a given set (J1, Jo, J3), which turns
out to be in general a linear combination of single-trace operators with different order of the
fields inside the trace. Moreover, if we work at finite N, mixing with multi-trace operators is also
allowed.

A first example has been studied in [70] for the weight—3 sector. There, it has been shown
that the correct expression for the protected operator correponding to (J1,Ja,J3) = (1,1,1) is a
linear combination

Tr(®1P2P3) + aTr (P P3P9) (2.2.1)
where at one—loop
(N —2)¢* +2
= 2.2.2
TN 2422 (222)

showing an explicit dependence on the coupling 3.

We are interested in the generalization of this result to higher loops in order to investigate
whether and how the linear combination gets modified order by order. Moreover, we extend this
analysis to other sectors of the chiral ring in order to discuss mixing at finite V.

In general, given a set of primary operators OJ; with the same dimension Ay and the same
global charges, we can read their anomalous dimensions perturbatively from the matrix of the
two—point correlation functions. Precisely, this matrix has the form

(0:(2)05(0)) = —z7 (i — piglogpa® + - ) (2.23)

where dots stay for higher powers in log 222. Here A is the mixing matrix, whereas p signals the
appearance of anomalous dimensions. Both matrices are given as power series in the couplings.

In order to determine the anomalous dimensions we need diagonalize the two matrices by
performing the linear transformation @’ = LO which maps the operators into an orthogonal basis
of quasi—primaries. In a perturbative approach it is easy to see [111, 112] that the diagonalization of
the p matrix at order n fixes the correct orthogonalization (resolution of the mixing) at order (n—1)
uniquely, up to a residual rotation among operators with the same anomalous dimension. This
means that in general an order n calculation is required to determine the anomalous dimensions
at this order and the correct linear combinations of operators O; at order (n— 1) which correspond
to quasi—primaries with well-defined anomalous dimensions up to order n.

27



In our case, since we are interested into chiral primary operators, the procedure to deter-
mine perturbatively the correct linear combination which corresponds to a protected operator is
made simpler if we also use the definition of chiral ring.

In our conventions the chiral ring is the set of chiral operators which cannot be written, by
using the equations of motion, as D?X, being X any primary operator.

In general, given a set of linearly independent chiral operators C;, ¢ = 1,---,s characterized
by the same classical scale dimension Ay and the same charges under the two U(1) flavor groups
they will mix and we need solve the mixing in order to compute their anomalous dimensions.
Since we are working with chiral operators, we know a priori that once we have orthogonalized as
C; = L;;C; in order to have well-defined quasi-primary operators, some of them will turn out to
be descendant, i.e. they can be written as D?X for some primary X. The remaining operators
will be necessarily primary chirals with vanishing anomalous dimensions.

Exploiting this simple observation, in order to find the correct expression for the protected op-
erators, we then proceed as follows: In a given (J1, Jo, J3) sector, we first select all the descendants,
that is all the linear combinations

D =Y d’c (2.2.4)
J
which satisfy the condition B
D; = D?X; (2:2.5)
Let us suppose that there are i = 1,---,r < s independent linear combinations of this type. Then,

for a generic operator P = Zj ¢;C; we impose the orthogonality condition
(PD;)=0 i=1,---,r (2.2.6)

where D indicates the hermitian conjugate of D. These constraints provide r equations for the
s unknowns c¢;. In this way we select a (s — r)-dimensional subspace of operators orthogonal to
the descendant ones. We can choose an appropriate (orthogonal) basis in this subset, obtaining
(s — r) independent operators which are protected. This procedure has been already applied in
the undeformed N = 4 case [113].

The problem of determining the CPO’s of the theory is then traslated into the problem of
finding all the linear combinations of operators which satisfy the condition (2.2.5). In particular,
since we are interested into a perturbative determination of the chiral ring we need find descendants
which solve eq. (2.2.5) order by order in perturbation theory. This can be done by introducing a
perturbative definition of quantum chiral ring, as we are now going to explain in detail.

2.2.1 The perturbative quantum chiral ring

As previously discussed, the chiral ring is defined as the set of chiral operators orthogonal to null
operators, i.e. linear combinations of chirals which can be written in the form D?X, X primary.
At the classical level a linear combination (2.2.4) gives rise to a null operator every time the

(@)

coefficients dji are such that the operator D; can be rewritten as a product of chiral superfields
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times gTW, where W is the classical superpotential °
k

W =ih[q Tr(®1P2P3) — ¢ Tr(P1P3P2)] (2.2.7)
Indeed, if this is the case, we can use the classical equations of motion D?®;, = —% to express
the operator as in (2.2.5). It follows that we can alternatively define the chiral ring as
. / = ow
C = {chiral op.s P | (PD) =0, for any D ~ ((I)(I)E)} (2.2.8)

where in D we do not indicate trace structures and flavor charges explicitly. In the undeformed
N = 4 theory, an immediate consequence of the definition (2.2.8) is that all the CPO’s correspond
to completly symmetric representations of the SU(3) C SU(4) R-symmetry group [54].

This definition for the chiral ring allows for a straightforward generalization at the quantum
level. Since the quantum dynamics of the elementary superfields is driven by the effective su-
perpotential rather than the classical W, it appears natural to define the quantum chiral ring
as

5W5ff
5o

where now Dy is a quantum null operator. Using the quantum equations of motion D{%ﬁ =

—Mgf;f I where K is the effective Kahler potential which takes into account possible perturbative

D-term corrections, it is easy to see that Dg is a null operator at the quantum level. In the
undeformed AN = 4 case the symmetries of the theory constrain D¢ to be proportional to D and
the quantum chiral ring coincides with the classical one (2.2.8).

When Wy is determined perturbatively, eq. (2.2.9) gives a perturbative definition of chiral
ring. Precisely, given W, at a fixed perturbative order!!

Co = {chiral op.s P | (PDg) =0, for any Dg ~ (..®...P... (2.2.9)

Wepp = WA AW+ WS+ 4 AIw ) (2.2.10)

we can construct independent descendants 2 at that order as

ow)
D="Dy+ Dy + XDy +---+ Dy, Di:q)...% (2.2.11)
and determine the protected operators P by imposing the orthogonality condition (PD) = 0 order
by order. Since P will be in general a linear combination of single/multitrace operators, these
conditions allow to determine the coefficients of the linear combination order by order in the
couplings. If we set
P =Po+ APy + NPy + -+ AP (2.2.12)

10This is true only for operators which are not affected by Konishi-like anomalies or as long as these anomalies
do not enter the actual calculation (see the discussion at the beginning of Section 2.2.4).

"Tn principle, perturbative corrections to Wess would depend on both g and h couplings. Here we mean to use
the superconformal invariance condition to express |h\2 as a function of g2 and write the perturbative expansion in
powers of the t Hooft coupling A = ig.

12 A5 long as we are interested in orthogonalizing with respect to the whole space generated by the descendants,
we do not need the precise form of pure descendants, but just a suitable set of linear independent states. From now
on we will refer to this definition of quantum descendants.
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the perturbative corrections P; will be determined by

o) : (PoDo)o =0
o) (PoD1)o + (PoDo)1 + (P1Do)o = 0 (2.2.13)
o\l (PoDr)o + (PoDr—1)1 + -+ + (PoDo)r. + (PiDr—1)o + - - - + (PrDo)o = 0

where ( ); stands for the two-point function at order AJ.

Conditions (2.2.13) together with the general statement that orthogonalization at order (n—1)
is sufficient for having well-defined quasi—primary operators at order n, brings us to formulate the
following prescription: In order to determine perturbatively the correct form of chiral operators
with vanishing anomalous dimension at order n it is sufficient to determine the effective superpo-
tential at order (n — 1), select all the descendant operators at that order by (2.2.11) and impose
the conditions (2.2.13) up to order (n — 1). In so doing, we gain a perturbative order at each
step. Moreover, in order to have all the descendants at a given order it is sufficient to compute
the effective superpotential once for all.

As follows from its definition, the structure of the chiral ring is directly related to the structure
of the effective superpotential. Therefore, the perturbative corrections to the CPO’s depend on the
perturbative corrections to the effective superpotential. In particular, this explains universality
properties of the protected operators we will discuss in Section 2.2.3, as for example the fact that
in any case the orthogonalization at tree level is sufficient for the protection up to two loops.

2.2.2 The effective superpotential at two—loops

Since we are dealing with a superconformal (finite) theory any correction to the effective action
must be finite. By definition, the effective superpotential corresponds to perturbative, finite
F—terms evaluated at zero momenta. It is given by local contributions which are constrained by
dimensions, U(1)xU (1) flavor symmetry charges, reality and symmetry (2.1.52) to have necessarily
the form

Wess = ih [b Tr(®1P2®3) — b Tr(®1P3P,)] + h.c. (2.2.14)

The constant b is given as an expansion in the couplings, b = q(1 + biA + baA% + ---), with
coefficients b; which are functions of ¢ and N, whereas b is the hermitian conjugate. We note that
in principle the symmetries of the theory would only constrain the form of the superpotential to
Wers = {ih [b(q) Tr(®1P2P3) + b(—q) Tr(P1P3P2)] + h.c.}. However, it is easy to show that
b(—G) = —b(q) since the b; coefficients are rational functions of ¢? with real coefficients (loop
diagrams always give real contributions and they always contain an even number of extra chiral
vertices compared to the tree-level vertex).

At a given order L we can have two kinds of corrections to Wess: Corrections which do not
mix the two terms in the superpotential and are then of the form

L
W)~ AL W (2.2.15)

where W is the classical superpotential. These contributions do not affect the structure of the

) swL)
descendant operators at order L since 53 LN %—g and Dy, ~ Dy. As a consequence at order L
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the correlation function (PyDp)o in (2.2.13) vanishes and the protected operator is determined
only by loop corrections to its two—point function with descendants of lower orders.
The second kind of corrections to W,y mixes the two terms in W and gives rise to a linear

combination We(}:} of the form (2.2.14) which is not proportional to the classical superpotential
anymore. For these corrections the request for the protected operator to be orthogonal to a
s
eff
0P

descendant proportional to modifies in general its structure by contributions of order \*
proportional to (PoDr)o.

In this section we evaluate explicitly the effective superpotential up to two loops. Our result
is useful for determining the correct CPQO’s up to three loops.

The diagrams contributing to the effective superpotential up to this order are given in Fig. 2.1
where the grey bullets indicate the one—loop corrections to the chiral and gauge—chiral vertices,
respectively. These corrections are exactly the ones of the undeformed N = 4 theory once we use

the one—loop superconformal invariance condition (2.1.54).

/N A
A

Figure 2.1: Diagrams contributing to the effective superpotential up to two loops.

The one-loop diagram 2.1b), compared with the tree level diagram 2.1a), does not contain
any extra g—deformed vertex. Moreover, using standard color identities it is easy to see that its
contribution is proportional to AW, where W is the classical superpotential.

The same happens at two loops for the diagrams 2.1c), 2.1d) and 2.1e) which do not contain
any extra g—deformed vertex and have a color structure which does not mix the two traces, so
reproducing W.

Diagram 2.1f) vanishes for color reasons.

Diagram 2.1g) contains four extra g—deformed vertices. Moreover, by direct inspection one
can easily see that the nonplanar chiral structure which corrects the tree level diagram mixes
nontrivially the two terms of W. As a result at two loops the superpotential undergoes a nontrivial
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modification of the form
W)~ ih [g P Te(®10585) — 7 P Tr(@1®305)] + hee. (2.2.16)

with
(¢* —1)3[N? + 3+ ¢*(3N?% — 10 + 7¢?)]
¢*lg* + 14 (N2 - 2)¢?]?

Here we have used ¢§ = 1/q. We note that the nontrivial g-dependence of this diagram is a
direct consequence of its nonplanarity. In fact, as discussed in [74] planar diagrams depend on
the particular combination ¢ = 1, while the nonplanar ones have generically nontrivial phases.
Moreover, a ¢-dependence has also been introduced by using the superconformal condition (2.1.54)
to express the coefficient |h|* from the four chiral vertices in terms of A\2.

To evaluate the various contributions from Fig. 2.1 we first perfom D-algebra to reduce
superdiagrams to ordinary loop diagrams and compute the corresponding integrals in momentum
space (for the description of the procedure and our conventions we refer to [106, 107, 108, 71]). As
reported in Appendix A the one and two—loop integrals are all finite and they give a well-defined,
local value for external momenta set to zero. Therefore, collecting all the contributions, at two
loops the superpotential has the structure (2.2.14) with

P= (2.2.17)

3
b=q|(1+Xes + Neo) + )\2§§(3)P (2.2.18)
where the coefficients c¢1, ¢o are numbers, independent of ¢ and IV, determined by the loop integrals
2.1b) and 2.1c)-2.1e), respectively (we do not need their explicit values).
It follows that in general a descendant at this order will have the form

Dg = (1+ Aex + Nea)Dy + ADy (2.2.19)

with D2 75 Do.

2.2.3 Chiral Primary Operators in the spin—2 sector
The (J,1,0) flavor

We start considering operators of the form Tr(<I>‘1] ®,). In this case, due to the ciclicity of the trace,
there is no ambiguity in the ordering of the operators inside the trace. In the large N limit these
operators do not belong to the chiral ring, they are descendants and their anomalous dimensions
have been computed exactly [74] for J large. However, for finite N they can mix with multitraces
and give rise to linear combinations of single and multi-trace operators which are protected. We
are going to construct them perturbatively up to three loops. For simplicity we consider first the
particular cases of J = 3,4 and postpone the discussion for generic J at the end of this section.

The (3,1,0) case: The first nontrivial example where mixing conspires to give rise to protected
operators is for J = 3. This sector contains the two operators

O =Tr(P3Dy) Oy = Tr(P3)Tr(P1Py) (2.2.20)
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Using the classical equations of motion (2.1.53), it is easy to see that

D?Tr(®3e 9V ®3e9Y) = Tr (@%%) = —ih(q — q) [Tr(®3D,) — %Tr(@%)Tr(q)ﬁI)Q)] (2.2.21)
3

and a descendant can be constructed as (we always forget about the normalization of the operators)
Dy=0 ! o (2.2.22)
0= =2 2.

The knowledge of Dy allows us to determine the one-loop protected operator. We consider the
linear combination
Po =01+ apOs (2.2.23)

which, for any oy # —%, gives an operator in the chiral ring. We then impose the orthogonality
condition (PyDy)p = 0 and find

N%—6
2N
This result coincides with the one found in [72] where the one-loop CPO has been determined by
diagonalizing directly the one—loop anomalous dimension matrix.

In order to extend our analysis to higher loops we need establish the correct form of the
descendant operator order by order, as described in Section 2.2. If we look at its perturbative
definition (2.2.11) and the way the equations of motion work in this case, we easily realize that as
long as the effective superpotential has the structure (2.2.14) we obtain

ap = (2.2.24)

Tr <<1>§5W6ff> = —ih (b—b) [Tr(®}Py) — L T (@2)Tr(®,B,)] (2.2.25)
0P3 N
whatever b might be (determined perturbatively at a given order). It follows that the linear
combination on the r.h.s. of this equation, which is nothing but the operator (2.2.22), is always
a descendant operator independently of the order we have computed the coefficient b. Therefore
we conclude that (2.2.22) is the ezact quantum descendant up to an overall coupling-dependent
normalization factor, that is Dg ~ Dy.
An alternative way [113] to establish the relation Dg ~ Dy is to consider the combination

_ _ 1
D*Tr(®Fe 9V ®3e9Y) + ih (g — q) [Tr(®FPq) — NTr(@%)Tr((I)lq)g)] (2.2.26)

which is zero at tree level and check that it is order by order orthogonal to the three monomials
D2Tr(®2e=9V ®3e9V), Tr(®3®5) and Tr(®?)Tr(P;Py), separately. In fact, if this is the case, there
is no extra mixing of the linear combination (2.2.26) with the three operators at the quantum
level and (2.2.26) must be necessarily zero at any order in perturbation theory. We have checked
the absence of mixing perturbatively up to two loops confirming our conclusion.

In order to determine the protected operator we consider the linear combination

P =0 +a0, (2:2.27)
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with « given as an expansion in A
a=ag+ o A+ az N2 +0(\®) (2.2.28)

In the notation of Section 2.2 we have Py = O1 + apOs with «q already determined in (2.2.24)
and Pj = OthQ.
As a consequence of the relation Dg ~ Dy the orthogonality conditions (2.2.13) become
o) - {(PoDo)1 + (P1Do)o = 0 (2.2.29)
O(\?): (PoDo)2 + (P1Do)1 + (P2Do)o = 0 (2.2.30)

The first condition (2.2.29) gives

_ (01 + a909) Do)
oy = B (2.2.31)

In order to select the diagrams which contribute to the two—point function at the numerator we
note that the tree level correlation function at the denominator, when computed in momentum
space and in dimensional regularization (n = 4 — 2¢), is 1/e divergent. This divergence signals the
well-known short distance singularity of any two—point function of a conformal field theory.

If the denominator of (2.2.31) goes as 1/e, in the numerator we can consider only divergent
diagrams (finite diagrams would not contribute in the € — 0 limit). It is easy to show that at this
order the only diagram which we need take into account is the one in Fig. 2.2 where on the left
hand side we have an insertion of the operator (O; + a9O2) while on the right hand side we have
Dy.

Figure 2.2: One-loop diagram contributing to the evaluation of a;.

By a direct calculation one realizes that if oy is chosen as in (2.2.24) this diagram vanishes.
The reason is very simple to understand: If we cut the diagram vertically at the very right end,
close to the Dy vertex, from the calculation it comes out that the left part would be nothing but
a one—loop divergent contribution to the operator (O; + a9Os3) which vanishes since o has been
determined just to give a protected (not renormalized) operator at one—loop.

From the one-loop constraint we then read a; = 0 and the expression (2.2.23) with «ag as in
(2.2.24) corresponds to the protected chiral operator up to two loops.

Next we analyze the constraint (2.2.30). Setting P; = 0 there, we obtain

(01 + apO2) Do)z

o9y — — —
? (O2Do)o

(2.2.32)
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and consequently the exact expression for the CPO up to three loops.

Again we select only divergent diagrams contributing to the numerator. They are given in
Fig. 2.3. We have not drawn diagrams associated to the two—loop anomalous dimension of the
operator (O; + apOz) which vanish when «ag is chosen as in (2.2.24).

-
S-S

Figure 2.3: Two-loop diagrams contributing to the evaluation of «as.

These diagrams contribute nontrivially to as since, cutting the graphs at the very right hand side,
their left parts cannot be recognized as corrections to the tree-level operator (nontrivial mixing
between O; and Oy occurs). Evaluating the diagrams by using the results in Appendix A we
obtain

IN? —9)(¢® — 1)*[(N! — 8N? — 8)(¢" + 1) + 2(N" + 8)¢’]
80N[g* + 14 (N2 —2)¢?)?

ay = ¢(3) (2.2.33)

where we have used the one—loop superconformal condition (2.1.54) to express all the contributions

of Fig. 2.3 in terms of A\? and set ¢ = 1/q.
Therefore the protected operator P up to three—loops can be written as

N2 -6

P=0- 7y

(147X Oy (2.2.34)

with
o (N2 —9)(¢> — 1)?[(N* —8N? —8)(¢* +1) + 2(N* + 8)¢?]

r=— = —

Qg 40(N2? —6)[g* + 1 + (N2 — 2)¢?]?

¢(3) (2.2.35)

We note that in the 't Hooft limit, N — oo and A fixed, Qs dominates and gives the protected
operator up to three loops. This is consistent with the fact that, in the absence of mixing, the only
primary operators in a given A sector are necessarily products of single-trace primaries Tr(®7?)
and Tr(®;Pq).
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The (4,1,0) case: It is interesting to analyze this case in detail since it is the first case where more
than one descendant appears.
This sector contains three independent operators

O = Tr(®]®y) , Oy = Tr(ONTr(®1Dy) , O3 = Tr(03)Tr(dID) (2.2.36)

Using the classical equations of motion (2.1.53), we can write

D2Tr (@369 BaedV ) = Tr (qﬁ’%) = —ih (g — q) [Tr(®1®y) — %Tr(@{’)Tr(@l%)] (2.2.37)
D? [Tr(®2)Tr(®re~ 9" ge9")] = Te(@2)Tr (@1%> = —ih(q — q) Tr(®3) Tr(P3dy)  (2.2.38)

Therefore, in this case we can consider the two descendants
P =0, - %02 . DY =04 (2.2.39)

or any linear combination which realizes an orthogonal basis in the subspace of weight-5 descen-
dants.

As in the previous example it is easy to prove that, given the particular structure (2.2.14) of
the effective superpotential and the way the equations of motion enter the calculation, the linear
combinations D(()l) and D(()2) provide two independent descendants even at the quantum level.

Proceeding as before we consider the linear combination

P=014+a0s5+ (303 (2.2.40)

and choose the constants o and [ (expanded in powers of \) by requiring P to be orthogonal to
the two descendants up to two loops.
Solving the constraints <73015(()Z)>0 at tree level we determine the correct expression for the
operator characterized by a vanishing one-loop anomalous dimension
N% 12

2
P() — (91 - BT 02 - N 03 (2241)

)

As in the previous case, this operator is automatically orthogonal to D(()l) and D(()2 also at one
loop and so we expect it to be protected up to two loops.

The orthogonality at two loops can be imposed exactly as in the previous case and allows to
determine the corrections ag and (32. The diagrams contributing are still the ones in Fig. 2.3 with
one extra free chiral line running between the two vertices. Performing the calculation we find

the final expression for the operator protected up to three loops

P=0;— % (1 + 51 )\2) Oy — % (1 + S9 )\2) O3 (2.2.42)
where
s (N?=16)(¢* — 1)2[(1IN? +21)(¢* + 1) + 2(N? — 21)¢?] 5
e T TV~ DT+ 1+ (V2 — 9) 2P @
N?2—16)(¢> — 1)2[(N?2 +5)(¢* + 1) + 2(N? — 5)¢?
5 :% o )(q 8[q21££1+JEN)2(q— ;r)q%; ( )q°] ¢(3) (2.2.43)
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Again, the coefficients depend on IV in such a way that in the large N limit only the Q9 operator
in (2.2.36) survives in agreement with the chiral ring content of the theory in the planar limit.

We note that these coefficients, as well as r in (2.2.35) are real. This is a consequence of
the fact that in the sectors studied so far the descendant operators are g—independent and the
two—point correlation functions are real.

The previous analysis can be applied to the generic operators of the form (<I>{ ®,). The peculiar
pattern Dy ~ Dy for the descendants occurs in any (J,1,0) sector since it only depends on the
particular structure of the superpotential and the particular way the equations of motion work for
this class of operators. Therefore, the determination of CPO’s proceeds as before. In particular,
we expect the tree level orthogonality condition to be still sufficient for protection up to two loops
since the only one-loop diagram relevant for the calculation would be the vanishing one—loop
anomalous dimension diagram in Fig. 2.2. At two loops diagrams of the kind drawn in Fig. 2.3
should be still the only relevant ones.

Without entering the details of the calculations which would be quite involved and not very
illuminating, we can determine the dimension of the corresponding chiral ring subspace, i.e. the
number of independent protected operators corresponding to U(1) flavors (J,1,0).

To be definite we consider J even (J = 2p). In this case the list of chirals we can construct is

single — trace Tr(92P®,)

double — trace  Tr(®T) Tr (PP ™ dy) my=2,---,2p—1
triple — trace Tr(®7) Tr(®72) Tr(®F ™" dy)
ml:27"'7p_17 m2:m17"'72p_1_m1
ptrace  Te(®2). - Te(@3) Te(@3y) , Tr(@]) TH(@3) - Te(®2) T(@10)

(2.2.44)

In order to find how many independent primaries we can construct out of (2.2.44) we need first
count how many descendants of the form (2.2.5) we have. As explained in the previous simple
examples, given the generic n—trace, Ag = J sector, null conditions come from considering the
operators

Tr(®7) - Te(®)" ) D> Tr(®F ™ 179V HgedV) (2.2.45)

as long as 2p— 1 —mq — ... —my_1 > 1. In fact, once we act with D? on ®3 and use the equations
of motion (2.1.53) we generate the linear combination

Tr(®T) - Tr(®)" ) Te (PP~ "1 gy)

1 m S
= Tr(@) - T (@] Ty (@™ OTr(0,Py)  (2.2.46)

which is then a descendant. Therefore, the complete list of descendants is

single — trace D? Tr(q)%p_le_gvégegv)
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double — trace ~ D? [Tr(q)?“) Tr(2P 1™ em 9V PyedV) my=2,--+,2p—2

triple — trace D? [Tr(CI)Tl) Tr(P7"?) T‘r(@%p_l_ml_m%_gviget‘]v)}
ml:27‘”7p_17 m2:ml7”‘72p_2_m1
p—trace D? [Tr(q)%) - Tr(®?) Tr(@le_gvégegv)] (2.2.47)

Counting how many operators we have in (2.2.44) and subtracting the number of descendants in
(2.2.47) we find that the number of protected chiral operators is > - _, X, where X, is the number
of partitions of (2p — 1) objects into (n — 1) boxes with at least 2 objects per box. Analogously,
the number of chiral primary operators for J odd is Zﬁilz Xn-

This result is consistent with the number of primary operators which survive in the large
N limit where mixing effects disappear and the chiral ring reduces to products of single-trace
operators Tr(®%), Tr(®;®y).

The (2,2,0) flavor

In the class of more general operators with weights (J1,J2,0) we consider the particular case
J1 = Jo = 2. This sector contains four operators, two single— and two double—traces

O = Tr(P303) , Og = Tr(®P201P2)
Oz = Tr(®)Tr(®3) , O4 = Tr(B Do) Tr(P1Dy) (2.2.48)

Using the classical equations of motion (2.1.53), we can write
D? [Tr(®1Poe 9 3e?") — Tr(@o®re 9 @3e7")] = —ih(q+ q)[O2 — O]
D? [Tr((plq)2e—9‘/(i>369v) + Tr(®2q)1e_gv<fgegv)] = —ih(q— Q)[01 + O — %04]
(2.2.49)

We note that on the right hand side of these equations the g—dependence is still factored out as
it happened in the previous cases (see eqgs. (2.2.21, 2.2.38)). Therefore, tree level descendants can
be defined as linear combinations

pl) = 0,-0,
D

2
01+ 0Oy — N04 (2.2.50)

Because of their g—independence these operators correspond indeed to a suitable choice of quantum
descendants.
The general structure of a chiral primary operator in this sector is

P =a0,+B0y+705+60, (2.2.51)

where the coefficients are determined order by order by the orthogonality conditions <7325((Jl)> and

<7775(()2) ). Having two conditions for four unknowns we expect to single out two protected operators.
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At tree level, for the particular choice ag = 2,8y =1 and ag = 1, Gy = —1, we find

PL =20, +0 —1'2_6(0 +20,)
- 1 2 IN 3 4
P —01—02——4 O3+ NO, (2.2.52)

These are one-loop protected operators and coincide with the ones found in [72]. They are not
orthogonal but a basis can be easily constructed by considering linear combinations.

According to the general pattern already discussed for the previous cases we expect the opera-
tors (2.2.52) to be protected up to two loops. The condition for these operators to be protected up
to three loops requires instead nontrivial A2-corrections to (2.2.52) which can be determined by
solving the orthogonality constraints at this order. The diagrams contributing nontrivially to the
2-point functions are still the ones in Fig. 2.3. Since the final expressions are quite unreadable,
we find convenient to fix g = (B3 = 0 for both the CPO’s and we obtain

2_6 N2 _—6
(1+t1)\2)03—

N
P =20, + 0y — (1+1t22%)04

PR =0 -0y — g(l +u1 A2)O3 + N(1 + uz )04

(2.2.53)

where

fy = J? — (@ — D[V~ 6N? — 4)(" +1) + 2N = 2N + 4)¢°] o)

20(N2 — 6)[¢* + 1 + (N2 — 2)¢2]2
2 2

= 10(9157]\[_ 6)[2,( 1 fz( 7 ; 72 $G) (2.2.54)

and
uy = g Z DPNG — ON — 16N? + 18)(g" + 1) + AN° — LAN' + 3AN2 —18)¢"] o

20N2%[g* + 14 (N? — 2)¢%]?
2 _ 1)2 4 2 _ 4 _ 4 2 _ 2
9(q° —1)*[(N* = 3IN* - 18)(q" + 1) — 2(TN* — 13N* — 18)q"|

e A0N2[q + 1+ (N2 - 2)¢2)2 <3 (2:2:55)

2.2.4 Chiral Primary Operators in the spin—3 sector

This sector contains operators of the form (®¥®,®5) with all possible trace structures.
The simplest case is for k =1 = m = 1 and involves the two weight—3 operators

01 = Tr(<I>1<I>2<I>3) 5 (92 = TI‘((I)lq)g(I)Q) (2256)

As already mentioned, the correct one-loop expression for the protected operator has been de-
termined in [70] by computing directly the anomalous dimension at that order. It turns out that
the protected operator is a linear combination of the two operators (2.2.56) with coefficient « as
n (2.2.2). The result has been confirmed in [72] by using a simplified approach based on the
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evaluation of the difference between the one-loop two—point function of the deformed theory and
the one for the NV = 4 case. This approach is very convenient since it avoids computing many
graphs containing gauge vertices but, as recognized by the authors, in this case it cannot be pushed
beyond one loop.

Using our procedure, we can easily re-derive the Freedman—Gursoy result by working at tree
level and extend it to two—loops by performing a one-loop calculation. The correct application
of our procedure beyond this order would require a substantial modification in the definition of
quantum chiral ring (2.2.9) since in this sector descendants of Konishi-like operators are present
and the equations of motion need be supplemented by the Konishi anomaly term. As a consequence
the corresponding chiral ring sector necessarily contains operators depending on W *W,,.

In fact, from the anomalous conservation equation for the Konishi current we can write

Lnvew,)  (2257)

D?Tr(e 9V ®;e9V ®;) = —3ih[q Tr(® Py ®3) — GTr(®1P3D5)] + 397

We remind that in our conventions W, = iD?(e79V D,e9") and it is at least of order g. From
the previous identity it follows that a descendant operator has to be constructed out of the two
operators (2.2.56) plus the anomaly term

Do = qO1 — GOy + ———Tr(WOW,) (2.2.58)

9672 h
However, since the operator Tr(W®W,) is of order g?> and has vanishing tree level two-point
function with @7 and Os it does not enter the orthogonality conditions at tree level and one—loop.
Therefore we can safely use our procedure to find CPO’s up to two loops forgetting about the
anomaly.
Thus we consider the linear combination

Po =01+ ap O (2.2.59)

for any value of ag # —g2. In order to determine the exact expression for the CPO at one-loop
we need impose the operator to be orthogonal to the descendant (2.2.58) at tree level. A simple
calculation proves that (PyDp)o = 0 iff ap is given in (2.2.2), in agreement with the result of [70].

At one loop first we need determine the correct expression for the descendant at this order. As
it follows from the calculations of Section 2.2 at one loop the effective superpotential is proportional
to the tree level W and the corresponding descendant operator is still proportional to Dy in eq.
(2.2.58). Given the generic linear combination P = O1 + (g + a1 A) O2 we then impose the
orthogonality condition up to order A to uniquely determine «; as in (2.2.31). As in the previous
examples, if aqp is given in (2.2.2) the ay coefficient is identically zero being this a consequence
of the one-loop protection of Py. Therefore the expression (2.2.59) with aq given in (2.2.2)
corresponds to the protected chiral operator up to two loops.

The next case we investigate is for k = 2, [ = m = 1. There are five operators

O = Tr(P3D,P3) : Oy = Tr(®1D3D,) O3 = Tr (P P01 P3)
Oy = Tr(D?3)Tr(P2P3) : O3 = Tr(®1 o) Tr (D P3) (2.2.60)
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Using the classical equations of motion (2.1.53) we can write three descendants

1
D(()l) = qO03— @02 — —(q—q)Os

N
@ _ . 1 .
Dy” = 401 - 703~ (- 905 (2.2.61)
1
DY) = qO1 - GOy - N(q —q)04
We expect to find out two protected operators of the form
P=a01+0024+703+004+ €05 (2.2.62)

By imposing the tree-level orthogonality condition with respect to the three D(()i) we can fix for
instance v, § and € in terms of o and 3. The calculation proceeds exactly as in the previous case
and we find

alg* —2¢> +1 - N?] = B[(1 = N?)g* —2¢* + 1]

T N2(¢* - 1)
5 — a[(N? +2)¢* +2(N? — 2)¢® + N* — 5N? + 2]
2N3(¢* - 1)
BI(N* — 5N? 4 2)g* + 2(N? — 2)¢> + N? + 2]
B 2NF(g"— 1)
al2(N? +1)¢* + (N* — 4)¢® + N* — 4N? + 2]
< N3 (g 1)
CBINT —4N2 4+ 2)¢" + (N —4)¢® + 2(N? + 1)] (2.2.63)
N3(g* — 1) o
We expect these operators to have a vanishing anomalous dimension at one loop. If we set
a=pf=1and a = —( =1, we recover the two protected operators found in [72].

As in the previous cases, the operators D(()l), D(()2) and D(()3) keep being good descendants at one
loop. Moreover, the one-loop orthogonality conditions do not modify the CPO’s (2.2.62, 2.2.63)
and we expect these operators to have a vanishing two—loop anomalous dimension.

If we were to push our calculation beyond this order we should first determine the descendant
operators at two loops. It is easy to realize that in this case the relation Dg ~ Dy does not hold
anymore, for two simple reasons:

1) At higher orders the Konishi anomaly cannot be ignored anymore. In particular, the correct
expression for the descendant operators from two loops on will have a nontrivial dependence on
(WeW,).

2) Differently from the spin—2 case, the nontrivial corrections to the effective superpotential which
appear at two loops determine nontrivial corrections to the descendants since in this case they
depend on ¢ not only through an overall coefficient (see eq. (2.2.61)).

2.3 The full Leigh—Strassler deformation

Now we consider the chiral ring of the full Leigh—Strassler theory given in (2.1.51). Once the theory
is made finite with (2.1.57), we are interested in the perturbative evaluation of finite corrections
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to the superpotential, as observed in the previous sections. Taking h’ # 0, the symmetries of the
theory force the effective superpotential to have the form

”
Wess :ih/dﬁzTr[b(q)@l@g@g—|—b(—q_)<I>1<I>3<I>2] + %d/d%ﬂ(@%@%@%) + h.e (2.3.1)

where the coefficients b and d are determined as double power expansions in the couplings h
and b/ 3. In particular, the invariance under cyclic permutations of the superfields requires the
d correction to be the same for the three <I>§ terms, whereas the other global symmetries force
the particular ¢ dependence of the corrections to (®1Po®P3) and (®1P3P3). We note that in
this case we cannot apply the previous arguments (see the discussion after eq. (2.2.14)) to state
that b(—g) = —b(q) since the perturbative corrections to (®;®;®3) and (®;P3P;) are not always
proportional to ¢ times functions of ¢%. In fact, it is still true that diagrams contributing to
the effective potential contain an even number of extra chiral vertices compared to the tree level
diagrams, but part of these vertices could be h’—vertices not carrying any g—dependence.

The topologies of diagrams contributing to the superpotential up to two loops are still the
ones in Fig. 2.1 where now chiral vertices may be either h or h’ vertices. Performing the explicit
calculation as in Section 2.2.2 we discover that at one loop the various terms in the superpotential
do not mix and receive separate corrections still proportional to the classical terms. Precisely,
we find that We(}} coincides with W, up to an overall constant coefficient. This is also true at
two loops for the diagrams 2.1c), 2.1d) and 2.1le), whereas the diagram 2.1g) with all possible
configurations of h and h’ vertices mixes nontrivially the various terms of the superpotential.
Similarly to what happens for the S—deformed theory, this leads to a nontrivial correction We(;}
which has the form (2.3.1) but with the b and d coefficients nontrivially corrected by functions of
g and N. We then expect descendant operators to get modified at this order as in the previous
case (see discussion around eq. (2.2.19)).

The exact supergravity dual of the theory (2.1.51) is still unknown even if few steps towards
it have been undertaken in [55]. However, it is interesting to investigate the nature of composite
operators of the superconformal field theory waiting for the discovery of the exact correspondence
of these operators to superstring states.

The chiral ring for the h’-deformed theory is not known in general (however, see [62]). Com-
pared to the chiral ring of the S—deformed theory (k' = 0) which contains operators of the form
Tr(®7), Tr(®{®J®J) plus the particular operators Tr(®;®;), i # j, we expect the chiral ring
of the present theory to be more complicated because of the lower number of global symmetries
present.

Here we exploit the general procedure described in Section 2.2 to move the first steps towards
the determination of chiral primary operators. In particular, we concentrate on the first simple
cases of matter chiral operators with dimensions Ay = 2,3 and study how turning on the h'-
interaction may affect their quantum properties. We then take advantage of these results to make
a preliminary discussion of the CPO content for generic scale dimensions.

13Here we use the superconformal condition (2.1.57) to express g2 as a function of h and h’. Any other choice
would be equally acceptable.
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2.3.1 Chiral ring: The Ay = 2 sector

Weight—2 chiral operators are Tr(®?) and Tr(®;®,), i # j. These operators can be classified as in
Table 1 according to their charge Q with respect to the Z3 symmetry (2.1.55).

| Q=0 | Q=1 | Q=2 [
On = Tr(99) O33 = Tr(93) On = Tr(®3)
023 = Tr(<I>2<I>3) 012 = TI‘((I)l@Q) 013 = TI‘((I)lq)g)

Table 2.1: Operators with Ay = 2.

The charged sectors can be obtained from the Q = 0 one by successive applications of cyclic
Zs—permutations ®; — ®; 1. This is the reason why the three sectors contain the same number of
operators. In the A’ = 0 theory their anomalous dimensions have been computed up to two loops
and found to be vanishing [70, 71]. According to our discussion in Section 2.2 this was an expected
result since for these operators there is no way to use the equations of motion (2.1.53) to write
them as D?X. Therefore they must be necessarily primaries and belong to the classical chiral
ring. Since this sector does not contain descendants this property is mantained at the quantum
level. In the b’ = 0 case these operators have different U(1) flavor charges and do not mix. The
matrix of their two—point functions is then diagonal and receives finite corrections at two loops
[71].

The same analysis can be applied in the present case. Again, there is no way to write these
operators as descendants by using the classical equations of motion (2.1.56). Therefore, we expect
them to belong to the chiral ring.

In order to check that these operators do not get renormalized but their correlators might
receive finite corrections we compute directly their two—point functions.

The smaller number of global symmetries surviving the h’-deformation do not prevent the
operators to mix. For instance the operator Tr(®?) can mix with Tr(®,®3) since they have the
same charge under the Z3 symmetry (2.1.55). Therefore, we need compute the non-diagonal
matrix of their two—point functions.

To this purpose we concentrate on the operators @11 and Os3 and evaluate all the correlators
up to two loops. The calculation goes exactly as in the A’ = 0 theory with the understanding of
adding contributions from diagrams containing the new h’-vertices.

At one-loop, as in the undeformed [106, 107] and the S—deformed cases [71] we do not find
any divergent nor finite contributions to the two—point functions as long as the superconformal
condition (2.1.57) holds.

At two loops the topologies of diagrams which contribute to (O11011) and (O230s3) are the
ones in Fig. 2.4.

Here the grey bullets indicate two—loop corrections to the chiral propagator and one-loop
corrections to the mixed gauge-chiral vertex. Using the superconformal condition (2.1.57) their
q,h, 1/ dependence disappears and these corrections coincide with the ones of the N' = 4 theory
[102, 106, 107]. Therefore the first three diagrams give the same kind of contribution to both
correlators.
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Figure 2.4: Two-loop diagrams for (011011) and (Oa30a3).

The last two diagrams contain chiral vertices and they instead differ in the two cases for the
number of h vs. h' insertions: Diagram 2.4d) gives contributions proportional to |h|* and |W/|* to
(011011), and contributions proportional to |h|* and |h|?|h/|? to (O23023). Analogously, diagram
2.4e) contributes to (O1;O11) with a term proportional to ¢g2|h/|? and to (D230,3) with g?|hl|?.

Diagrams contributing to the mixed two—point function (O1; @23> at two loops are of the type
2.4d) with two h and two h’ vertices (contributions proportional to h2h/?), with three h and one
R’ (contributions proportional to |h|2h'h) and 2.4e) with one h and one h’ vertices (contributions
proportional to g2hh/).

Performing the D—algebra and computing the corresponding loop integrals in momentum space
and dimensional regularization, it is easy to verify that the diagrams 2.4a)—d) have at most 1/¢
poles which correspond to finite corrections to the two—point functions when transformed back to
the configuration space.

The only potential source of anomalous dimension terms would be the graph 2.4e) since, after
D-algebra, the corresponding integral has a 1/¢2 pole, that is a log (u?2?) divergence in config-
uration space. However, when computing the correlators <011@11> and <(911@23> this diagram
gives a vanishing color factor, whereas for the third correlator there is a complete cancellation
between the contribution corresponding to a particular configuration of the ®,, ®5 lines coming
out from the O3 vertex and the one with the two lines interchanged (the same happens in the
R’ = 0 theory [71]).

Therefore, all the correlators in configuration space are two—loop finite, the anomalous dimen-
sion matrix vanishes and the two operators are protected up to this order.

It is interesting to give the explicit result for the two—loop corrections to the correlators. We
find

sW (6, — 6y)
[(z1 — 22)?]?
W (6, — 6y)
(1 — 22)22

(Tr(®F) (1) Te(@F) (22))2-100ps ~ Fi

(Tr(@a®3)(21) Tr(P2®3)(22))2-loops  ~ (2.3.2)
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where

N2 _—4 o (N?2—-1 ~
F o= [Ihl4 e g — ql? < yite I 1>
(N? —20)(N? —4) N2 -4 1 ~
+ W — PP P (1 - s la — al? (2.3.3)
and
N?—4 (N? —4)?
_ 4 -4 114
N2 4 N2_—5 -
+ |h]2|H|? Toe <3— Nz Iq—QI2>] (2.3.4)

We note that all the g* contributions cancel and we are left with expressions which vanish in the
N = 4 limit (8 = b/ = 0, |h|?> = ¢g?). Moreover, both the contributions survive in the large N
limit in contradistinction to the A’ = 0 case where Fs is subleading [71].

2.3.2 Chiral ring: The Ay = 3 sector

The next sector we investigate contains operators with naive scale dimension Ay = 3. We classify
them according to their Zs3—charge as in Table 2.

| -0 [ o=t | 9-2 |
O = Tr(®3) Op = Tr(®302) | Og = Tr(®1d3)
Oy = Tr(®3) O7 = Tr(®3®3) | O19 = Tr(P3d,)
O3 = Tr(®3 Og = Tr(®39;) | O11 = Tr(P3P4)

Table 2.2: Operators with Ag = 3.

We note that the neutral sector does not contain the same number of operators as the charged
ones. This is due to the fact that, in contradistinction to the previous case, the Q = 0 sector
is closed under the application of cyclic permutations ®; — ®;;; and tranformations (2.1.52).
Therefore, we cannot generate the charged sectors from the neutral one by using these mappings.

The charged sectors are also closed under permutations but they get exchanged under trans-
formations (2.1.52). This is the reason why they still have the same number of operators.

We first focus on the set of operators with @ = 0. As for the A’ = 0 theory, in this sector the
Konishi anomaly enters the game when we try to use the equations of motion to write descendants
which involve O4 and Os. However, as discussed in Section 2.2.4, the Konishi anomaly can be
neglected as long as we are interested in the construction of CPO’s up to two loops. We will then
restrict our analysis at this order.
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Using the equations of motion (2.1.56) we can write three descendant operators

Do = h(qO4 —qOs) +h O
D? = h(gO,—qOs)+h Oy (2.3.5)
DB = h(qOs—qO5) + N Os

According to the discussion of Section 2.2 we expect to single out two protected operators. We
consider the most general linear combination

P =00+ B0y +~v05+3504 +¢Os (2.3.6)

and require tree-level orthogonality to the three descendants. These constraints provide the con-
dition o« = 8 = v = a (as expected because of the Z3 symmetries of this sector) and the extra
relation

3ah/(N? —4)g+h [6 (N* —2+2¢°) —€ (N* —2)¢> +2)] =0 (2.3.7)

which can be used to express a in terms of two arbitrary constants.
Any CPO in this sector has then the following form

P:a(01+02—|—03)—|—(504+605 (2.3.8)

An explicit check on its two-point function at one loop leads to (P P); finite, independently of
the choice of § and €. One can choose the two constants in order to select two mutually orthogonal
operators.

As it happened in the previous cases, these operators are guaranteed to be protected up to
two loops as a consequence of their one—loop protection plus the result We(jlc} ~ W which insures
that the classical descendants (2.3.5) keep being good descendants also at one loop.

The sectors characterized by Z3 charges Q@ = 1,2 do not contain protected operators. In fact,
one can see that any charged operator in Table 2 can be written as @; = D?X; by using the classical
equations of motion. We expect this result to be valid at any order of perturbation theory since
the structure of the effective superpotential for what concerns its superfield dependence cannot
change.

To summarize, in the Ag = 3 sector we have found two protected operators which are linear
combinations of Tr(®?), i = 1,2, 3, Tr(®;P2®3) and Tr(®1P3P5). We note that among all possible
weight—3 operators these are the only ones which belong to the chiral ring of the S-deformed
theory. The rest of weight—3 operators which were descendants for A’ = 0 keep being descendants.

The protected operators we have found are neutral under the Zz symmetry (2.1.55). As
discussed in [62], the neutral sector of the chiral ring (the untwisted sector) coincides with the
center of the quantum algebra generated by the F—terms constraints. In particular, for the h'—
deformation one element of the center has been constructed explicitly (eq. (4.83) in [62]). This
element coincides with one of the CPO’s (2.3.8) we have found, once we set D) = 0 in the chiral
ring (see eq. (2.3.5)), use these identities to express the operator Os in terms of the other ones
and make a suitable choice for the coefficients ¢ and e.
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2.3.3 Comments on the general structure of the chiral ring

The Ay = 2, 3 sectors studied in the previous section are very peculiar and do not provide enough
informations to guess the structure of the sectors for generic scale dimension. In fact, for Ag = 2
no descendants are present and we cannot even apply the orthogonality procedure to construct
CPO’s. The Ay = 3 sector contains only protected operators which are Z3 neutral and are linear
combinations of “old” CPQ’s, that is operators which were protected for h’ = 0.

A naive generalization of our results to higher dimensional sectors would lead to the conjecture
that the chiral ring for the h’-deformed theory, at least for what concerns its neutral sector with
Ag = 3J, would be given by linear combinations of Tr(®3”) and Tr(®{ ®J®J). However, we expect
more general operators of the form Tr(@i"]_m_"@gnég), m + 2n = mod(3) to appear. Moreover,
nontrivial Z3—charged sectors should appear for Ag = 3J even if they are absent in the particular
case Ag = 3.

To investigate these issues we should extend our analysis to higher dimensional sectors and this
would require quite a bit of technical effort. However, without entering any calculative detail, but
simply performing dimensional and Zs—charge balances we can figure out few general properties
of the O—sectors of the chiral ring.

We consider the generic chiral operator O = (®¢®5®5) for any trace structure with scale
dimension Ag = a + b+ ¢ and Zs—charge Q1 = b+ 2¢ with respect to the symmetry (2.1.55).

We now perform ®; < ®; exchanges according to the symmetry (2.1.52) and Z3 permutations.
In this way of doing we generate all the operators with the same trace structure in a given Ay
sector. Let us consider for example the operators Oy = (®404®S) and O3 = (P4PLPS) obtained
by a ®; « ®5 exchange and a cyclic permutation, respectively. They have charges Qs = a + 2¢
and Q3 = 2a+c. It is easy to see that if Ag = 3J then Qs = Q3 = 0 (mod(3)) iff Q1 = 0 (mod(3)).
This property holds for any operator that we can construct from (1 by the application of the
two discrete symmetries. On the other hand, if Q1 = 1,2(mod(3)) operators obtained from it by
cyclic permutations still mantain the same charge, but the application of field exchanges (2.1.52)
map charge-1 operators into charge—2 operators and viceversa.

Therefore, for Ag = 3J the @ = 0 class is closed under the action of Zs—permutations and
(2.1.52) symmetry, and being independent, may contain a different number of operators compared
to the charged sectors which instead are related by (2.1.52) mappings. In particular, as it happens
for Ay = 3 charged classes of the chiral ring might be empty while the corresponding neutral one
is not.

If Ag # 3J a simple calculation leads to the conclusion that starting from operators with zero
Z3—charge we generate operators with @ = 1 by applying ®; < ®5 if Ag = 3J + 1 and a cyclic
permutation if Ag = 3J + 2. Correspondingly, we obtain operators with @ = 2 by applying a
cyclic permutation in the first case and a ®; «» ®9 exchange in the second case. Therefore, in any
sector with Ag # 3J the number of operators with @ = 1 is the same as the ones with @ = 2 and
coincides with the number of neutral operators.

If we apply the same reasoning to the descendant operators of each sector (to simplify the
analysis we work at large N to avoid mixing among different trace structures) we discover that
every time Ag # 3J the descendants of the charged classes can be obtained from the neutral ones
by field exchanges. As a consequence, the three classes contain the same number of descendants
and then the same number of protected operators.
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To summarize, the sectors of the chiral ring behave differently according to their scale di-
mension: If Ag # 3J the corresponding operators are equally split into the three Q classes. On
the contrary, if Ay = 3J the neutral class is independent and may contain a different number of
CPO’s.

As a further example we have studied the Ay = 4 operators. In the large NV limit and at the
lowest order in perturbation theory we have found that the neutral single-trace sector contains
one independent CPO (we have eight single-trace chirals and seven descendants). Therefore, we
conclude that also the charged sectors contain one single protected operator and we know how
to construct it once we have found the Q@ = 0 operator explicitly. In the single-trace sector the
protected operator turns out to be a linear combination of

Tr (@)
Tr(®®03) , Tr(0®3) |, Tr(®302) , Tr(Dyd3P.P3)
Tr(®30y®3) , Tr(®id3dy) , Tr(®;Py®P3) (2.3.9)

It remains the open question whether for Ag = 3J, J > 1, the charged sectors are trivial as
in the weight—3 case. A systematic analysis of the charged protected operators is a difficult task
in general. However, working at large N it is easy to realize that for J even and J > 1, there
are nontrivial protected operators for Q = 1 and Q = 2. These are operators with the 3J chiral
superfields split into the maximal number of traces allowed by SU(N), i.e. 3J/2. In fact, for these
operators it is impossible to exploit the equations of motion and write them as descendants. For
J odd the same arguments do not lead to any definite conclusion. However, we expect to generate
nontrivial charged protected operators by multiplying the neutral CPO’s of weight 3 previously
constructed by 3(J — 1)/2 traces containing two operators each and carrying the right Z3 charge.

2.4 Conformal invariance and finiteness theorems for complex
S—deformation
2.4.1 Chiral Beta Function and Conformal Condition

Let us consider the A/ = 1 3-deformed action for complex values of 3. We rewrite the action as
follows

_ ) 1
S = /d82’ Tr (e 9V eV @) + 52 /d6z Tr(WWa)
1
—I—z'h/dGz Tr( g &1 Py05 — . D1 P3 Dy )

+ih / dOZ Tr( = ©,DyP3 — § D3P, ) g=e™’ (2.4.1)

| =

Here h and 8 are complex couplings and g is the real gauge coupling constant. In the undeformed
N = 4 SYM theory one has h = g and ¢ = 1. From now on we will be considering 't Hooft
rescaled quantities
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h
ho v gL (2.4.2)

VN VN

in order to easily make contact with the planar limit. Moreover we notice that the phase of h
can always be reabsorbed by a field redefinition, so that the effective number of independent real
parameters in the superpotential is actually three. For later convenience we choose them to be
|h1|?, |ho|? and |h3|?, where

h

hi =hgq ha hs =hq— 7 (2.4.3)

SERS

In the spirit of [57] the idea is to find a surface of renormalization group fixed points in the space
of the coupling constants. To this end one can consider the coupling constant reduction program
([46]-[51]) and express the renormalized Yukawa couplings in terms of the gauge one:

hi]? = a19® + asg* + azg® + ...
|hol? = big® + bag* + bg® + . .. (2.4.4)
\hs|? = 19 + cag +e3g® + ...

This operation has an immediate consequence: we are forced to work perturbatively in powers
of g instead of powers of loops. To single out a conformal theory we will ask for the chiral and
gauge beta functions to vanish. In this section we will concentrate on (5 and adopt dimensional
regularization within minimal subtraction scheme. The chiral beta function is proportional to the
anomalous dimension v of the elementary fields and the condition 35 = 0 can be conveniently
traded with v = 0. Even working in a generic scheme, one can easily convince oneself that at
a given order in g2 the proportionality relation between 3, and v gets affected only by terms
proportional to lower order contributions to . Therefore, if we set v+ = 0 order by order in
the coupling, we are guaranteed that (3, vanishes as well [104]. So the object we will be mainly
interested in is the two—point chiral correlator.

In [44] this issue has been analyzed by considering the planar limit where only two independent
real constants enter the color factors, namely |h1|?> and |ha|?. As a result the definition of the
conformal theory was found to be scheme dependent as long as 3 was complex. In the non—planar
case all of the three parameters enter the calculation of the two—point chiral correlator. We will
see that this difference will be important in the definition of the fixed point surface.

The idea is to proceed perturbatively in superspace. Supergraphs will be evaluated performing
the D—algebra inside the loops and the corresponding divergent integrals will be computed using
dimensional regularization in n = 4—2e. In this framework one could allow the coefficients a;, b;, ¢;
in (2.4.4) to be expanded in power series of € [45]. Doing this, evanescent terms are introduced ad
hoc in order to deal with the 1/e poles and ensure the complete finiteness of the theory. However,
after sending € — 0, they do not enter the relation between renormalized coupling constants so
we will neglect their possible presence hereafter.

Let us start at order ¢g2. As first proposed in [72] it is convenient to consider the difference
between divergent diagrams in the 3-deformed and in the N’ = 4 theory. This amounts to the
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evaluation of the chiral bubbles in Fig. 2.5 which give the following divergent contribution to the
chiral propagator

1
(4m)?

where we have explicitly indicated the factors coming from dimensionally regulated integral (here
p is the external momentum and p is the standard renormalization mass).

2 AT
2 2 2 2
P+ haf? = glnal? - 22|+ (45) (2.45)

Figure 2.5: One-loop diagrams.

At this stage, in order to obtain a vanishing chiral beta function, the following condition has to
be imposed

2
O(g%) : ay + by — NIC = 2 (2.4.6)

Moreover, it is well known that

2
[P ? + [hof® — m\hsp = 2¢° (2.4.7)

ensures 7 = 0 up to two loops [71]. So, looking at the chiral two—point contribution (2.4.5) at
order g%, we have the following additional requirement

O(g*) : ag + be — 0 (2.4.8)

2
Nz =

It is easy to see that equations (2.4.6) and (2.4.8) reduce to the ones found in [44] in the large N
limit. When we move up to the next order the situation becomes more involved with respect to
the planar case. In fact, working with finite N we need to consider the non—planar graph in Fig.
2.6, whose contribution is:

2\ 3€
(4717)6 2¢(3) ]—"% <%> (2.4.9)
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where F = F (|h|%, |ha|?, |hs|?, N?) reads [72, 143]

N2+5
N2

_ N?2-—4

f_ N4 ‘h3|2

(| = 3lhs*([ha | + [hal?) + 3(|ha]* — [haf*)? (2.4.10)

Figure 2.6: Three loop non—planar diagram.

Notice that the color factor in (2.4.10) is suppressed as 1/N? for large N. Due to the expansion
in (2.4.4) both the one loop (2.4.5) and three loops (2.4.9) structures contribute to the evaluation
of v at O(g%). The final result can be recast as

1 M2 € B M2 3e
- A(p—2> +W<P (2.4.11)

where we have defined for concision

1 2
A= oz (@ F b = 1ges) (2.4.12)
2(3) N2—4  [N2+5
b= @ms N2 | TNe i = 3ei(ar +b1) + 3(ar — br)? (2.4.13)

The vanishing condition of the anomalous dimension at order g% can be read directly from the
finite log term in (2.4.11):

O(¢%) : A+ =0 (2.4.14)

We emphasize that at this order the condition for the vanishing of v and 3}, is completely scheme
independent. However, from now on we will have to care about the scheme dependence in the
definition of the fixed points. To see this, let us consider the counterterm needed at this stage to
properly renormalize the propagator in an arbitrary scheme:

B 1

¢° (At 53) (- +0) (2.4.15)
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where p is a constant related to the choice of finite renormalization. In fact, if we were to push
the conformal invariance condition one order higher we should compute the chiral beta function
at order g°. We expect to have several sources of nontrivial contributions to « at this order: one
coming from the one-loop bubble proportional to (a4+ by — N%C4), then from two—loop, three-loop
and four—loop diagrams. All of the diagrams containing subdivergences, namely the two and four
loop contributions, will be subtracted making use of the appropriate counterterms. To be specific,
a term like

2\ €
& (At %) (% +p) % (%) (2.4.16)

will appear in the calculation of v. Therefore the request for vanishing anomalous dimension
depends unavoidably on the arbitrary constant p which appears in the form

(A+ %) p (2.4.17)

If we wanted to kill the scheme dependence of the result we would also need to impose the vanishing
of the combination A+ B/N? which together with (2.4.14) would lead immediately to A = B = 0.
The crucial observation is that in the non—planar case we deal with three parameters and at this
stage we have enough freedom to eliminate the scheme dependence from the conformal condition
without reducing to the real 3 case. In fact, the constraint A = 0 gives

2
as + bg — ch, =0 (2.4.18)

while the condition B = 0 combined with equation (2.4.6) yields

(2.4.19)

or,if ¢; #0

a1 +bp = 2(1—|—%)

al—bl = :|:\/261 (1—%01)

These solutions allow for a non vanishing imaginary part of § (which is proportional to the
combination |hi|? — |ha|?). At the same time, they define the surface of renormalization fixed
points without any ambiguity related to the choice of regularization scheme. It is clear that in the
planar limit only the condition coming from A = 0 survives as the B = 0 condition is subleading.
So we are left with a3 + b3 = 0, in complete agreement with the result found in [44].

If we move to the next order, a new scenario will show up. Having imposed (2.4.19) or (2.4.20)
only three graphs will contribute to the anomalous dimension at order ¢® (Fig. 2.7).

(2.4.20)
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Since these diagrams are primitively divergent (no subdivergences are present) the condition for
v = 0 at this order turns out to be completely scheme independent.In fact we have to consider

the following expression:
2\ € B /L2 3e /.l2 4e
A(E) + 2= (£ oL 2.4.21
<p2> g <p2> i <p2> (2420

Figure 2.7: Diagrams contributing to 7 at order g®.

where we have denoted

A = (471r)2 <a4 + by — % C4> (2.4.22)
2 _ 2 _
B = ?435?6) NN 1 [(a1 —b)?e2 + 1 (NN2 ! crez +4 (a1 — b1)(az — %) - 402)] (2.4.23)
5¢(5 1 1 16(N? + 12
H= —% [(m — b)) + (a1 +01)* + N2 f(al,bl,cl, m) - %} (2.4.24)

where we have used the relations (2.4.6) and (2.4.8). The form of the function f can be read in
Appendix B.
The vanishing of v reads

!/

3B
O(g®) : A+ e

Again, in order to remove scheme dependence from the O(g'") conformal condition we have to
impose:

+4H =0 (2.4.25)

B/
Atz +H=0 (2.4.26)

At this stage, independently of the choice (2.4.19) or (2.4.20), we have enough parameters to solve
both equations without restricting to the real g case as in the planar theory. If one sends N — o0,
equations (2.4.25) and (2.4.26) reduce to the ones found in [44]. This large N limit turns out to
be smooth and does not present any sort of singularity, so there is no contradiction between our
results and those found in [44]. We observe that a scheme—independent definition of the complex
(G conformal theory can be achieved only thanks to subleading coefficients which are projected out
by the planar limit.
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2.4.2 Gauge Beta Function and Finiteness Theorems

Now we turn to consider the gauge beta function. Standard finiteness theorems [144, 145] ensure
the vanishing of 3, at L+1-loops once [3;, has been set to zero at L-loops. Here, as a consequence
of coupling constant reduction, we are forced to work order by order in g2 instead of loop by loop
and it is not obvious that such theorems still hold. Nevertheless in [44] it was shown that in the
planar $-deformed theory the vanishing condition for 3, at O(g”) was sufficient to have vanishing
By at O(g''). This result was a strong indication that finiteness theorems could be generalized as
follows: if the matter chiral beta function vanishes up to order ¢g>**! then the gauge beta function
vanishes as well up to order ¢?"*3. Here we are going to check this result at finite N and for
n = 3. In order to do this, we take advantage of covariant supergraph techniques combined with
background field method [146].

The standard procedure consists in looking at vacuum diagrams at a given perturbative order
and performing covariant V-algebra. Then by expanding propagators one extracts tadpole type
contributions with vector connections as external legs. Moreover one only selects diagrams con-
taining at least a 1/€2 pole (see [145] for details). In the present case, contributions to the gauge
beta function at O(g°) come from two and four loop vacuum diagrams (Fig. 2.8).

Figure 2.8: Two and four loop vacuum diagrams.

The analysis of the two loop diagram is straightforward and completely analogous to the one in
[145]. Expanding the covariant propagators one obtains three times the diagram in Fig. 2.9 which

corresponds to the term
1 / d"k d"q 1

— Tr (T'°T',
e N (R

(2.4.27)

where I',, is the vector connection.

This integral contains a one-loop ultraviolet subdivergence and it is infrared divergent. It is
convenient to remove the IR divergence using the R* subtraction procedure of [105]. After UV
and IR subtractions one isolates the 1/€2 term and rewrites the result in a covariant form, obtaining
the following contribution to the two loop effective action:

1 3(N2-1)
(4m)?2 4N

Almy / dz 20 WW, (2.4.28)
€

where we have inserted the A factor defined in (2.4.12).
Now we turn to consider the four loop contributions. In this case the computation is much more
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Figure 2.9: Two loops tadpole diagram.

involved because we need to perform very non trivial V—algebra operations. In [44] an analogous
problem was solved by using an alternative procedure, though different from the one just described
which turned out to be too hard to deal with. Here we want to consider both methods and show
that they indeed give the same result. Let us start with the standard procedure. A detailed
explanation of V-algebra operations can be found in Appendix B. Finally, the only surviving
terms sum up to give nine times the same diagram, shown in Fig. 2.10.

Figure 2.10: Four loop total contribution to the gauge beta function.

The corresponding bosonic integral is:

d"kd"qd"rd"t 1
GO PP —aP (07 (0P (kP

% Tr(°T,) / (2.4.29)

So the total four—loop contribution to the effective action, after inserting color and combinatorial
factors and subtracting IR and UV subdivergences is given by:

1 9(N?2-1)
(4m)2  8N3

1
B-Tr / dz d?0 WeW, (2.4.30)
€

with B defined as in (2.4.13). This completes the computation of the four loops contribution with
the standard method.
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Had we followed the alternative procedure developed in [44] we would have first expanded
each of the nine propagators of the four-loop vacuum diagram in Fig. 2.8 and then performed
V-algebra. In this case, the only possible contributions would come from two types of diagrams:
I. the ones with flat D? and D? factors at the vertices, flat propagators and one tadpole insertion,
for which now standard D—algebra can be performed
and
II. the vacuum diagrams with flat propagators but V2 and V? at the chiral vertices in which the
tadpole insertion will have to appear after completion of the V—algebra.

Analogously to [44], it is easy to see that only type I diagrams contribute. The computation is now
straightforward. As the vacuum diagram is completely symmetric we have nine equivalent choices
for the propagator to expand. Once a choice has been made the standard D-algebra gives rise
to a unique contribution, producing precisely the result depicted in Fig. 2.10. We have therefore
checked that as expected the two methods actually give the same answer.

Now we come back to the computation of the gauge beta function and combine (2.4.28) and
(2.4.30). We can easily read the vanishing condition at order ¢g°:

At i’v_lj ~0 (2.4.31)
which is exactly the one obtained by requiring the vanishing of 3, at order ¢’. Thus we provide
one more confirmation that finiteness theorems for the gauge beta functions hold even in the CCR
context.

2.5 Summary

In this chapter we have considered N' = 1 SU(N) SYM theories obtained as marginal deformations
of the N/ = 4 theory. In particular, we have focused on the perturbative structure of the matter
(not gauge) quantum chiral ring defined as in (2.2.9) in terms of the effective superpotential.
According to our general prescription, CPO’s can be determined by imposing order by order the
orthogonality condition (2.2.6) to all the descendants of a given sector. This requires constructing
first the descendants as a power expansion in the couplings. According to the definition (2.2.9),
this can be easily accomplished once the effective superpotential is known at a given order.

For the Lunin-Maldacena (—deformed theory (2.1.51) we have studied quite extensively the
spin—2 sector of the theory. For the particular examples of weights (J,1,0) and (2,2,0) we have
considered, a special pattern arises which allows for a drastic simplification in the study of the
orthogonality condition: In any of these sectors descendants can be always constructed at tree
level which turn out to be good independent descendants even at the quantum level. This is
due to the particular form (2.2.14) of the superpotential and the peculiar way the equations of
motion work which allow for constructing ¢g—-independent descendants, insensible to the quantum
corrections of the theory. This property persists even for other examples of the form (Ji,Js2,0).
Therefore, we conjecture that it might be a property of the entire spin—2 sector: For any weight
(J1,J2,0) quantum descendant operators can be constructed which coincide with the descendants
determined classically.

We have then studied the spin—3 sector. In this case the determination of quantum descendants
of weights (Ji, Jo, J3) cannot ignore the Konishi anomaly term. Being its effect of order A it only
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enters nontrivially the orthogonality condition from two loops on, that is it will affect the form
of the protected operators at least at three loops. For weights (1,1,1) and (2,1,1) we have
determined the CPO’s up to two loops. In particular, for the first case we have proved that up
to this order the correct CPO is the one found in [70]. Higher order calculations would require
computing two—point correlation functions between matter chiral operators and Tr(W*W,,). It
would be interesting to pursue this direction since it represents the first case where the descendant
operators, apart from acquiring an explicit dependence on the Konishi anomaly term, get modified
nontrivially at the quantum level due to the nontrivial corrections to the superpotential which
start appearing at order A\2.

We have extended our procedure to the study of protected operators for the full Leigh—Strassler
deformation. We can think of this theory as a marginal perturbation of the f-deformed theory
induced by the h'-terms in (2.1.51). In this case the determination of the complete chiral ring
is a difficult task and only few insights have been discussed in [62]. We have moved few steps
in this direction by studying perturbatively the simple Ay = 2,3 sectors. For operators of scale
dimension two we have found that the h’-deformed theory has still the same CPO’s as the h’ =0
one, i.e. Tr(®?) and Tr(®;®;), i # j.

For the Ag = 3 sector we have found a two—dimensional plane of CPO’s given as linear
combinations of the CPO’s of the corresponding h’ = 0 theory, i.e. Tr(®3) and Tr(®1P2Ps3).
In fact, in this case the lower number of global symmetries surviving the deformation allows for
mixing among the operators who were protected in the previous case and belonged to different
U(1) x U(1) sectors. The class of protected operators we have found contains the central element
of the quantum algebra proposed in [62].

What turns out is that in the Ag = 2 sector the chiral ring is made by operators which are
both charged and neutral with respect to the Zs—symmetry (2.1.55) that the theory inherits from
the parent A’ = 0 theory. On the other hand, in the Ay = 3 sector all CPO’s we can construct are
neutral under (2.1.55). The generalization of our results to higher dimensional sectors leads to the
result that the chiral ring for the h’'~deformed theory can be divided into two subsets: Sectors with
scale dimension Ay = 3J have an independent Q = 0 class which may contain in general a different
number of CPO’s. Instead, whenever Ag # 3J we can generate the chiral primary operators of
the charged classes from neutral CPQO’s by the use of the other discrete symmetries, i.e. cyclic
permutations of the three superfields and the symmetry (2.1.52). It then follows that the three
classes contain the same number of protected operators. In particular, for any non—empty neutral
sector (for instance Ag = 2,4) the corresponding charged ones are nontrivial. Neutral CPO’s will
be in general linear combinations of operators of the form Tr(®7 ™ "®5®%) with m + 2n = 3p.

The Z3 periodicity we have found in the chiral ring structure should have a counterpart in the
spectrum of BPS states of the dual supergravity theory. Therefore, it might be of some help in
the construction of the dual spectrum.

For all the cases we have investigated the CPQO’s do not get corrected at one-loop, whereas
they start being modified at order A\?. This one-loop non-renormalization found for a large
class of chiral operators is probably universal for all the CPO’s and might be traced back to
the one-loop non-renormalization properties of the theories. Precisely, the conditions (2.1.54,
2.1.57) which insure superconformal invariance at one—loop are maintained at two loops, i.e. the
superconformal theories at one and two loops are the same. It is then natural to speculate that
the corresponding chiral rings should be the same. The theory instead changes at three loops
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where the superconformal condition gets modified by terms of order A2 [72]. Therefore we expect
that at this order the chiral ring will be modified by effects of the same order.

Then, we have focused on the superconformal condition working perturbatively with a complex
deformation parameter § at finite N.

We have addressed the issue of finding a surface of renormalization fixed points by requiring
the theory to have vanishing beta functions and using the coupling constant reduction (CCR)
procedure. In the CCR prescription the renormalized chiral couplings are expressed in terms of a
power expansion in the real gauge coupling constant ¢ and this amounts to face loop mixing at a
given order of g.

First, we have concentrated on the chiral beta function (3;) up to O(g"). To this end we
have fixed the arbitrary coefficients which appear in the power expansions of the chiral couplings
(2.4.4) by requiring v = 0 order by order. If we want to work with a well-defined and a physically
meaningful quantum field theory, we believe that the condition §; = 0 should not be affected by
scheme dependence. Scheme independence of the conformal definition of the theory introduces
a further constraint on the couplings. Here comes the novelty with respect to the planar case
studied in [44]. The planar limit involves only two of the three independent constants in (2.4.3)
and scheme independence of the theory forces 8 to be real. On the other hand, keeping N finite, all
of the three parameters |h1|?,|hz2|?, |h3|? enter the superconformal condition allowing for a complex
deformed theory which is scheme-independent at least at O(g'®). We expect this pattern should
hold even for higher orders.

Then we have considered the gauge beta function 3,. Working in the CCR context we are not
guaranteed that standard finiteness theorems [144, 145] are valid. In [44] a generalization of these
theorems was proposed: if 3, = 0 up to O(¢g?"*1) then 3, = 0 up to O(g?"*3). This statement
was checked in the planar limit for n = 4 using an alternative procedure for covariant V-algebra.
Here we have provided another highly non—trivial confirmation of this proposal in the non—planar
theory for n = 3. Moreover, we have explicitly checked that the simplified V—algebra technique
used in [44] is equivalent to the standard one.
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Chapter 3

Giants on deformed backgrounds

Dualities in string theory have proved to be powerful tools in our understanding of its physics.
As we have seen, the most studied of these is the AdS/CFT correspondence which relates the
N = 4 SYM conformal field theory to the type IIB string theory on AdS5 x S°. This being
a strong-weak duality to test, one usually relies on some non-renormalisation theorems. In this
context the 1/2-BPS operators of the CFT, corresponding to the 1/2-BPS states on S? x R via
the state-operator correspondence, played a very important role as their conformal dimensions are
protected from quantum corrections. Under the AdS/CFT correspondence these states are dual
to 1/2-BPS states in the type IIB string theory on AdS5 x S5. However it is well known that the
chiral primary operators have many possible dual descriptions on the string theory side when the
effect of angular momentum along S° (the R-charge in the holographic dictionary) is taken into
account. For small values of R-charge they are dual to multiparticle supergravity/closed string
states. As the R-charge increases to J ~ N the point like states are no longer good descriptions
and they are better described by large D3-branes’.

In fact, inspired by the work of Myers [120], the authors of [121] found a stable expanded
brane configuration in the AdSs x S° background with exactly the same quantum numbers of a
point particle: The giant graviton. It was described as a D3-brane sitting at the center of AdS’,
wrapping an S® onto the S° part of the geometry and traveling around an equator of the internal
space. Although spherical branes are unstable against shrinking due to their own tensions in
the trivial vacuum, there is an additional repulsive force due to the coupling to the background
Ramond-Ramond field in its presence. The main feature of the giant graviton is that it provides
another example of IR/UV non-decoupling that often occurs in AdS/CFT theories. In fact, in
conventional (20th century) physics, high energy or high momentum came to be associated with
small distances. The physics of the 21st century is likely to be dominated by a very different
perspective. According to the Infrared/Ultraviolet connection [28] which underlies much of our
new understanding of string theory and its connection to gravity, physics of increasing energy or
momentum is governed by increasingly large distances. Examples include the growth of particle
size with momentum [29, 30] and the IR/UV connection in AdS spaces. Another important
manifestation is the spacetime uncertainty principle of string theory [32, 33, 34]

AzAt ~ . (3.0.1)

For J ~ N? new geometries arise [11].
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Similar uncertainty principles occur in non-commutative geometry where the coordinates of space
do not commute. An important consequence of the non-commutativity is the fact that the particles
described by non-commutative field theories have a spatial extension which is proportional to their
momentum [35, 36]. The angular momentum of a single quantum field in non—commutative theory
turns out to be bounded and it is a large distant effect. Probe branes seem to share the same
feature. In fact, the motion of the giant is characterized by the angular momentum J and as
this increases the probe brane blows up in size very much like the quanta of non—commutative
field theories. When the size reaches the radius of the S°, the growth can no longer continue and
the tower of Kaluza—Klein states terminates. This is the origin of the stringy exclusion principle
[40, 41, 42].

In [122, 123] it was shown that also stable configurations blown up into the AdS part of the
geometry exist: The dual giant gravitons. In this case, they have a completely different behavior
due to the fact that the AdS space-time is non—compact and then there are no constraints on
their size. However, it is also possible to explain how stringy exclusion principle manifests itself in
terms of the dual-giants. Just as there is an upper bound on the angular momentum of a single
giant, it turns out that there is an upper bound, namely N, on the number of dual-giants [160].

A remarkable fact is that both the configurations saturate a BPS bound for their energy, which
turns out to be equal to their angular momentum in units of the radius of the background. The
BPS bound follows from their embedding in a supersymmetric theory because they preserve half
of the supersymmetries involved [122, 123]. This makes (dual) giant graviton a natural object to
study in the framework of AdS/CFT correspondence. A lot is known from the field theory side
[124, 125, 126] and the elegant description of these states in terms of free fermions [127] has led
to a complete classification of all the half-BPS solutions of Type IIB supergravity [128]. Other
results on giant gravitons can be found in [129].

Our aim is to study giant graviton probes in the framework of theories with less (or no)
supersymmetries which preserve their conformal feature. This is the case of the three—parameter
deformation of the AdSs x S® background described discussed in this dissertation. In [130] giant
graviton configurations were analyzed on the non—supersymmetric three—parameter deformation
of the AdSs x S® background. They did not find energetically favorable solutions making the giants
unstable states. On the other hand, they showed a striking quantitative agreement between the
open string sigma model and the open spin chain arising from the Yang—Mills theory. Moreover,
as noted in the recent paper [131] it seems strange that giant gravitons have been not found in the
supersymmetric 4; = 4 Lunin—Maldacena background yet and it would be also interesting to study
giants which expand in AdS directions. In this chapter we try to shed light on these problems,
revisiting the construction of (dual) giant gravitons in the three-parameter deformed background.
Our results can be easily translated to the superconformal Lunin—Maldacena deformation by
setting §; = 4.

The plan of this chapter is as follows. After introductory sections on the (dual) giant graviton
story of the standard AdSs x S® background we turn to its three-parameter LM-Frolov deforma-
tions. In Section 3.2.1 we propose an analysis from a point—particle point of view to understand
how (and if) the deformation manifests itself in the study of geodesics of the deformed back-
ground. In Section 3.2.2 we give an ansatz for extended brane solutions blown up in the deformed
S5 part of the geometry (giant gravitons) and also in the AdSs5 space-time (dual giant gravitons).
We find potentially stable states in both cases and an identical scenario to the undeformed one
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where (dual) giant gravitons behave as point-like gravitons. We note that the symmetric 4; = 4
case is not special as long as the procedure seems to be independent of the specific value of the
deformation parameters. In Sections 3.2.3 we prove that our giants are effectively solutions which
minimize the action. Moreover, we examine the bosonic spectrum of small fluctuations around the
classical solutions where the deformation of the background plays a crucial role and we show that
all fluctuation modes have real frequencies. This signals that (dual) giant gravitons are stable over
perturbation even in the presence of non—vanishing 4; parameters. In Section 3.2.4 we compare
our Dirac-Born—Infeld results with qualitative and, where possible, quantitative expectations from
the dual C'F'T pictures. The main focus of this section is on possible directions along which our
work can be extended. Then we summarize and conclude.

3.1 Giant gravitons and BPS bounds

Let us start with the analysis of dynamical probe brane in the string theory background of the
form of AdS5 x S°. To be more specific let us recall the coordinate system for AdSs in global
coordinates:

l2 2

dl
alsims5 =—(1+ ﬁ)dtQ + L +1° [da% + sin” oy (da% + sin? OéQdOé%)] (3.1.1)
Rr?

The scale of the AdS space-time is R, which is also the radius of S° and there is a constant
5-form flux on S® with N quanta of flux. Let us analyze the sphere S° embedded in RS with
coordinates X1 ... X6

(X2 +...(X%?% = R? (3.1.2)

and we choose the following parametrization

X' =V/R? -2 cos ¢y
X% =+/R? -2 sing, (3.1.3)

where 0 < r < R. The remaining X2 --- X% are chosen to satisfy
(X3)? 4 (X2 =42 (3.1.4)

These may be written in terms of three angles, we take (6, ¢, ¢3) for future convenience, and r
in the form of standard spherical polar coordinates in four dimensions. Then the metric on S°

becomes )

ds® = %dﬁ + (R% — r%)d¢? + r2d03 (3.1.5)
where dQ3 = d6? + cos 02dp3 + sin 6?d¢3 is the volume element on a unit 3-sphere.

Giant gravitons [121] are D3-branes wrapping an S® inside the S® and rotating along one of
the transverse directions within the S®. We now consider giants sitting at the center of AdS.
Since they do not wrap any homological cycle they do not carry any net D3-brane charge, but
they do have a D3 dipole moment. They preserve 16 of the 32 supersymmetries? of AdSs x S°

2There are also giant gravitons that carry more than one R-charge which are 1/4 or 1/8 supersymmetric [12].
We will not consider these configurations here.
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[122, 123]. The time coordinate in AdS is denoted by ¢. In the 4 dimensional world volume of the
brane with coordinates (7,01, 02,03) we choose a static gauge

T=1 0; = (07 ¢27 ¢3) (316)

The dynamical coordinates are now r(7,0;) and ¢1(7,0;). We will look at motions of the brane
where there are no oscillations, i.e. 7, ¢ are independent of the angles ¢;, so that our ansatz is

r=r(r,oi)  p1=¢i(r,05) l=ar1=ar=a3=0 (3.1.7)

In general, the dynamics of a D3-brane in a given background is described by the action (see
Appendix C)

S =Sppr+ Swz (3.1.8)

where the Dirac-Born—Infeld term is

Sppr = —T3/ drd®c e=?/—det(gap + Fap) (3.1.9)
34

With gap = Gun0. XM XN we mean the pull-back of the ten-dimensional space-time metric
Gy on the worldvolume ¥4 of the brane. T3 is the D3-brane tension®. The gauge potential
A, enters the action through a U(1) worldvolume gauge field strength Fi; in the modified field
strength Fu, = 2w F,, — bap, where by, is the pull-back to the worldvolume of the target NS-NS
two-form potential, by, = Byn0, XM, XN. We are now setting o/ = 1. D-branes are charged
under R-R potentials and this feature determines that their action should contain a term (the
Wess—Zumino term) coupling the brane to these fields,

SWZ:Tg/ P ZOqe_B
>4 q

where P[...] denotes again the pull-back and the wedge—product is implicit.

Our analysis focuses on purely scalar solutions so we drop all the fermions and we also set the
gauge potential A, on the brane to be vanishing.

Taking the configuration ansatz (3.1.7), the effective brane lagrangian coming from (3.1.8) is
given by

et (3.1.10)

. .92 .
L=— [r?’\/l — Grr(r)i2 — Gy 9, (1)1~ — r4(;51] (3.1.11)
where
N
£= =
R2
Gr(r) =72 (3.1.12)
G, (r) = R? —r?
3In our conventions T5 = ﬁ, see [132] for example.
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The first term is the Dirac-Born-Infeld (DBI) term. The coefficient ¢ is a rewriting of the tension
of the brane in terms of N and R. This follows from the corresponding classical supergravity
solution. It is crucial in what follows that we have exactly the same coefficient in the second term,
the Wess—Zumino term. This is the coupling of the brane with the 5—form field strength and the
precise coefficient follows from standard flux quantization.

The canonical momenta for r and ¢, are p, and pg, respectively and are given by

3 .
pr=EP = S/ —
\/1 - Grr(T)TQ - G¢1¢1 (T)¢l
. .
o, = &j = S Corn 1 + &t (3.1.13)

2

\/1 = G (r)i? — Gy, (T)ﬁb.l

The lagrangian (3.1.11) is independent of ¢1 so the momentum pg, is an angular momentum and
is conserved. On the other hand p, is not conserved. From (3.1.13) one gets

P2 . (j —r4)2 -1/2
Grr(r) G 1 (r)

The canonical hamiltonian can be now derived in a standard fashion and becomes

} 2 (3.1.14)

1- Grr(r)fg - G¢1¢1( )¢1 =’ [TG +

. ' P2 (j — r4)2
H=1py 1 +p7—L=E[r6+ + 3.1.15
g \/ o) T Gorar (1) (3.1.15)

3.1.1 BPS bounds

Motion can be labelled by the quantum number j. It is easy to show that for some given j there is
a lower bound on the energy, a BPS bound. This is not immediately obvious from the form of the
hamiltonian (3.1.15). However a straightforward algebra allows us to rewrite H in the following

form
r2(j — R2r2)2
H=¢ 7+ (3.1.16)
\/ (r) R2G¢1¢1 (r)
Since G, (r) = (R?* —r?)~! and Gy, 4, (r) = R? — r? are positive it is clear that
&
H> == 3.1.17
2 (3117

This is the BPS bound.

In deriving the form of the hamiltonian given in (3.1.16) it is absolutely crucial that the relative
coefficient between the DBI term and the Wess—Zumino term is what it is. This happens because
the 5-form flux is quantized in the standard way. Furthermore the exact form of the metric on
the sphere is also crucial. All the details of working in a consistent supergravity background has
entered in the calculation.
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3.1.2 BPS saturated states and angular momentum bounds

The bound is saturated when
pr=20 (3.1.18)

and
r(j — R*r?) =0 (3.1.19)

The latter has two solutions

Thus BPS motions have constant r, which is the size of the brane.
The potential energy for such motion is
205 _ R2p2)2
Vir)=" & ) (3.1.21)

R2(R? — r2)

This potential has two minima with a maximum inbetween. These minima are precisely r = 0
and 7 given in (3.1.20). Thus there are two kinds of BPS states : the one which correspond to
zero size branes and the other with branes with sizes scaling as 1/j/R. Since the range of r is
between 0 and R this immediately implies that there is an upper bound for j

j <R (3.1.22)
This implies that the physical angular momentum has a maximum value given by
Py =N (3.1.23)

When the brane has maximal size R, the angular momentum is the maximum value N and this
turns out to be interbreted as the manifestation of the stringy exclusion principle. In a quantum
theory one expects that pg, is quantised. A general configuration of giants is then given by an
N-vector 51 = (r1,72,--,7rn) where the integers ry € [0,00) denote the number of giant gravitons
with angular momentum pg, = k. The total energy (and therefore the angular momentum) of
this configuration is Z,]j:l krg.

For a BPS state, H = £j = py,/R. This is the same dispersion relation as that of a massless
graviton which is moving purely on the sphere. What is surprising is that states of branes, which
are by themselves heavy objects, can lead to a light state. The reason this behind this is of course
the coupling to the 5-form field strength. The effect of this cancelled the effect of brane tension.

From the point of view of 5-dimensional supergravity in the AdS space, the stable brane
configurations correspond to massive states with M = pg, /R. The motion on the S5 means
that these states are also charged under a U(1) subgroup of the SO(6) gauge symmetry in the
reduced supergravity theory. With the appropriate normalizations, the charge is @ = p4, /R, and
hence one finds that these configurations satisfy the appropriate BPS bound Q = M. In the above
discussion, we have used the phrase “BPS configuration” in its original sense. In a supersymmetric
theory one would expect that these configurations also preserve some of the supersymmetries and
this fact has been proved in [122, 123].
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It is also interesting to consider in details the motion of these stable configurations. First,
considering the fixed size brane 7 = 0, we can invert the second of (3.1.13) to write

oA
$1 = i (3.1.24)

(p )2
Goren (r \/527“6 MG

Evaluating this expression for any of the BPS solutions, remarkably one finds the same result: ¢; =
1/R, independent of py,! Note then that the center of mass motion for any of the configurations
in the full 10-dimensional background is along a null trajectory, since

ds? = [Gtt + G, (r)¢'12] dt? = [ 1+ (R? — )¢y ] dt? =0 (3.1.25)

when evaluated for » = 0 and <]51 = 1/R. This is, of course, the expected result for a massless
‘point-like’ graviton, but it applies equally well for the expanded brane configurations. However,
note that in the expanded configurations, the motion of each element of the sphere is along a
timelike trajectory, with ds? = —(r2/R?)dt>.

It is important to specify that we have chosen global coordinates in AdS and we have put the
brane probe at the center of AdS (I = 0). Then, the giant does not move in the radial direction
and the energy in global coordinates is equal (in units of the radius) to the angular momentum.

3.1.3 Dual giant gravitons

In the previous section, we have seen that a spherical D3-brane configuration has the same
quantum numbers as the point-like graviton. Motivated by the analysis in [120], one might also
consider the possibility of a brane expanding into the AdS part of the spacetime. In this section,
we will show that there is in fact a stable expanded D3-brane configuration in the AdS space,
which again carries the same quantum numbers as the point-like graviton.

In this case, we again begin with the same world—volume action (3.1.8). Now, however, we
wish to find stable solutions where a D3-brane has expanded into the AdS5 space to a sphere of
constant radius [ while it orbits in the ¢; direction on the S°. Choosing again a static gauge, we
identify

T=t, 0= (3.1.26)

Our trial solution will be

r=20, ¢1 = ¢1(7) | = constant . (3.1.27)

Now one can calculate the pull-backs of the metric and the 4-form potential, substitute the
trial solution and integrate over the angular directions. The resulting Lagrangian is

L——glz?’\/+£—R2¢52—E (3.1.28)
- R? 'R -

where again ¢ = N/R*.
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The conjugate momentum for ¢; now becomes

Py = R = (3.1.29)
Vi+ L - R4,
Then, one can calculate the Hamiltonian to be
H=pgé1— L= (1 + é—é) (5216 + %) - g% (3.1.30)
Examining 0H /0l = 0, one finds minima located at
=0 and  (I/R)*=ps /N . (3.1.31)

The energy at each of the minima is H = pg, /R, matching the BPS mass found in the previous
section. The physical reasons for this structure are the same as in the case for the branes expanding
on the 5-sphere. An essential difference from that case, however, is that the minima corresponding
to expanded branes persist for arbitrarily large values of py, .

As we did above, we consider the center of mass motion of these brane configurations. One
again finds for any of the stable minima that <;51 = 1/R, independent of py,. The center of mass
motion then follows a null trajectory in the full 10-dimensional background spacetime for either
the point-like state or the branes that have expanded into the AdS space. In the latter case, the
motion of each element of the sphere is along a time-like trajectory with ds? = —(I/R)? dt>.

Several comments are in order regarding the spherical brane configuration in AdSs.

e The spherical brane in AdS5 couples electrically to the background Ramond-Ramond field
and should be thought of as a dielectric brane. The spherical brane in S® couples magneti-
cally and should be thought of as a dimagnetic brane.

e There are two solutions, one at [ = Ry/pg, /N and the other at [ = 0, just as in the previous
section. All of these brane configuration preserve the same 16 of the 32 supersymmetries
of type IIB theory on AdSs x S°. At first sight this is natural for they saturate the BPS
bound. Nonetheless, this is a very non-trivial statement since different patches of the brane
world volume are oriented in different directions.

e All of the solutions | = Ry/pg, /N, 1 =0, r = R\/py, /N, and r = 0 have the same energy
and angular momentum quantum numbers.

Since [ is not bounded (it ranges from 0 to oo ), the dual-giants can have arbitrary (integer
valued) angular momenta pg, .

This raises the question of how the stringy exclusion principle manifests itself for the dual-
giants. To answer this let us note a subtle effect which restricts the total number of dual-giants
that one can place in AdS5 x S° (see also [13]). Since a dual-giant occupies three of the four
spacelike coordinates in AdSs, it acts like a domain-wall and the flux of F®) measured on either
side of this domain-wall differs by one unit with the lesser value on the inside of S3 that the
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Figure 3.1: I collapsed spherical D3-brane of zero size, II spherical D3-brane embedded in S?,
and III spherical D3-brane embedded in AdS5. These states are degenerate in energy and angular
momentum quantum numbers.

dual-giant wraps [123]. So if we have m dual-giants in AdS5 the F ) flux measured inside the
inner most dual-giant will be N — m units. For m = N the five form flux inside the innermost
dual-giant vanishes. Since it is crucial to have non-zero flux to stabilise a dual-giant at a non-zero
radius and to produce a geometry where there are closed orbits, it follows that we can not have
any more dual-giants in the system. This is the manifestation of ‘stringy exclusion principle’ for
the dual-giants.

Taking this into account a general configuration of dual-giants is also given by an N-vector gg
= (s1, S2, -+, sn). Here the integers s are such that 0 < sy < --- < 7 < 0o and s denotes the
angular momentum of the k* dual-giant away from the boundary of AdSs. The total energy of
this configuration is given by H B, = Zszl Sk

3.1.4 Gravitons vs Expanded Branes

Summarizing, in the AdS5x S® background there are three different configurations characterized by
the same quantum numbers. The first one is a point-like graviton spinning around an S! direction
contained in S°, then there is a giant graviton corresponding to a D3-brane wrapping an S C S°
and the third one is the so called dual giant graviton with the topology of an S3 C AdSs. These
configurations are illustrated in figure 3.1.

Extended objects possess a set of low energy excitations arising from small vibrations about
their equilibrium configuration. Such modes are very important to provide a way of checking
whether the spherical brane ansatze used in the previous sections are stable over the whole spec-
trum of harmonic fluctuations. Since we will cover this issue for the brane probes expanding in
the deformed geometry and since there exists a smooth limit to the undeformed cases, we refer to
Section 3.2.3 for a detailed analysis of the problem. The solution defines the ground state for a
subsector of the D3—brane field theory, based on normal coordinates expansion, which turns out
to be stable since all fluctuation modes have real and positive frequencies.

In general one would expect that the descriptions in terms of a graviton and an expanded
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brane state are vaild in different regions of parameter space?.

In analyzing the graviton states one can think of doing a Kaluza Klein reduction on the S°.
The graviton then turns into a massive state with mass

Doy
M ~— 3.1.32
B (3..32)
where again pg, refers to the angular momentum. In order to demand that the resulting mass is
smaller than the string scale and treat the graviton in a controlled manner we need

Dy K ZE (3.1.33)
S
The alternative description in this case involves an expanded 3-brane. This description in
under control when the corrections to the space-time geometry and the Born—Infeld action can
be ignored. In string theory the former requires g; < 1 and gsN > 1, so that the dilaton is small
(e? < 1). On the other hand, the corrections to the Born-Infeld action are suppressed if the
induced curvature scale on the world—volume is much larger than the string scale which gives

Ppy ls
— — .1.34
Vs 2 (3.1.34)

Now, if (3.1.33) and (3.1.34) are simultaneously valid,

2
ZE > N (%) (3.1.35)

But then it follows, from the standard AdS5 x S° relation R* ~ g,Ni?, that
2> N (3.1.36)

which is in contrast with the previous requirement e? < 1.

In summary then, we have seen above that the massless particle description and the expanded
brane description are valid for different values of the angular momentum. As the rotational
energy for the graviton increases and becomes larger than the string scale the gravitons turn into
an expanded brane configuration. This is made all the more plausible by the fact that in several
cases even without supersymmetry, as we will see later, the expanded brane solutions has the
same energy, for fixed angular momentum, as the massless particle.

Even though there are dualities between different descriptions of chiral primaries on the string
theory side, one has to keep in mind that for most of the situations only one of the three candi-
dates, namely the point like KK modes, the giant gravitons or the dual-giant gravitons, is a good
description but not all. In some cases none of them alone describes the true physics in which case
one has to work with the full supergravity solution [11].

4The use of the word graviton should not be taken literally. We simply mean a fluctuation about the AdSs x S°
supergravity background which is massless in 10 dimensions.
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3.1.5 The CFT picture

The type IIB superstring theory on AdSs x S° and the dual N' = 4 super Yang-Mills in four
dimensions have different realizations of the same superconformal group. In AdSs x S® we have
the isometry group SO(2,4) x SO(6) or better its covering group SU(2,2) x SU(4) (since spinors
are also involved on this background) and there are thirty-two real supercharges that enhance
the invariance group to the supergroup SU(2,2[4). On the field theory side, the SU(2,2) part is
realized as the conformal group of flat four-dimensional Minkowski space-time, while the SU(4)
part corresponds to the R-symmetry group. Although, at first sight, there are only sixteen real
supercharges @, the extension to the superconformal group provides the necessary sixteen extra
real supercharges S, to reach the grand total of thirty-two real supercharges.

As we have seen, the checks of this conjecture are mostly restricted to the strong coupling limit
of the 't Hooft coupling constant, in the large N approximation of the SYM theory, corresponding
to the supergravity regime of superstring theory. In this limit, the analysis of Kaluza-Klein
excitations due to compactification on S° leads to several families of field modes with well-defined
transformation properties under the SU(2,2|4) group. At this point, a study of superconformal
representations is needed, since the conjecture translates into a series of predictions concerning
the spectrum of SYM operators. In particular, short representations are specially useful due to
the fact that some of their properties are protected from quantum corrections. In fact, chiral fields
(fields belonging to these representations) in SYM theory correspond to Kaluza-Klein harmonics
on the gravity side.

Primary fields are defined as fields annihilated by all supercharge operators S and all generators
of special conformal transformations K at the origin. Chiral primary fields are additionally annihi-
lated by some of the Q. For example, we construct the half BPS family by considering symmetric
traceless combination of the scalar fields X! of N' = 4 SYM of the form OtIn = ¢tr (X (... x I"))
5. These operators have protected scaling dimension A, coinciding with their R-symmetry charge
J

A=J (3.1.37)

Supersymmetry protects the conformal dimensions of chiral primaries from receiving quantum
corrections. X! is in the 6 representation of the R-symmetry group SU(4) and therefore OQ71-I»
has weight (0,7, 0), which matches precisely one of the unitarity bounds for short representations
of the superconformal group®. The full chiral multiplet is generated by the repeated action of
the operators Q and P on the chiral primary. All the multiplet is annihilated by some of the
@ and, due to the structure of the superconformal algebra [(Q), K| ~ S, half of the S also give
zero on all the states of the multiplet, recovering in this way the notion of sixteen conserved real
supersymmetries, i.e. eight generated by the @ and eight by the S.

Normally, single trace operators in the CFT side are related to single particle states in the
gravity side since, in the large N limit, single trace operators form an orthogonal set. Nevertheless,
this is only correct if the R-symmetry charge of the single trace operators is not comparable with
N. If this is not the case, the orthogonality property is lost, and we have to use a different type

®The U(N) and SU(N) gauge group indices are here denoted i, 7,... = 1,..., N and for the R-charges we use
m,n,...=1,...,6 indices when described in terms of the fundamental of SO(6) and capital I, J,... = 1,2, 3 indices
when described in terms of the fundamental of SU(4).

6See [14] for a short review.
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of operators to describe the corresponding dual single particle states. Giant gravitons and duals
are among this type of particles with very high R-charge. Therefore, they are not expected to be
described by single trace operators.

Giant gravitons have been identified with a particular class of half-BPS operators made out of
the real scalars X™ of N/ = 4 SYM theory. We now turn to the AN/ = 1 decomposition, where the
scalars are usually written as three complex scalars &7 = %(X T 4iX™3), with I = 1,2,3, and all
the fields transform in the adjoint representation of U(N). Giant gravitons are a combination of
single-trace and multi-trace operators in ®/, labeled by their R-charge n. These operators are then
identified with Schur polynomial in ®/, written either in the totally symmetric representation U of
the associated symmetric group S;, (corresponding to a dual giant graviton in AdSs) or the totally
antisymmetric representation U’ of the symmetric group S,, (corresponding to a giant graviton in
S%) [154]. To be more precise, Schur polynomial operators are defined as

1 7 in
X(n,R) ((I)) = ﬁ Z XR(U) (I)Ul(ll) T (I)U(in) (3138)
gESy

where, without loss of generality, we have set the SU(4) indices I to 1 and will neglect it for the
rest of this section. We also have written explicitly the U(N) indices ‘i’, taking values from 1 to
N. The sum is over all the group elements o of the symmetric group S,, and x(o) is the character
of the element o in the chosen representation R. The result of the permutation ¢ acting on the
natural number ‘7’ is written as o ().

For example,

[(tr @) — tr (9?)] (3.1.39)

N

1
X(2,U) = 5 [(t'f’ (I))Q +tr (@2)] and X(Q,U’) =
are respectively the Schur polynomials of degree n = 2 in the U and U’ representations’.
The operator corresponding to an individual giant graviton with R-charge n can be rewritten
also as a subdeterminant operator [155]:

X(@,U’) ~ geil'“ininﬂ"'iz\reh it ZTL(I)jll o CI);Z (3.1.40)

These operators have the correct orthogonality property when n is comparable to N and therefore
are good candidates to describe single particle states. They belong to a short representation
preserving half of the total supersymmetry, more precisely to a chiral family of SU(4) with (0,7, 0)
weight. Note that these operators reproduce the correct bound for the R-charge, saturated by
giant gravitons with n = N. In fact they do not exist for n > N which is the manifestation of the
stringy exclusion principle.
On the other hand, the explict local gauge theory operator representing an AdS giant graviton
with n units of angular momentum is proposed to be
Xnoy ~ SITnol . Pl (3.1.41)

i1 in J1

"This is just an example to understand the structure of the Schur polynomial, and it must be remembered that
we always work in the case where n is comparable to N.
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where Sfff: is a tensor totally symmetric in all its indices. One very concrete and interesting
observation is that the spherical branes in AdS5 (as opposed to the spherical branes in S° and
the point-like brane) turns out to have a concrete interpretation as a classical solution from the
field theory point of view. Since the deformed case is related to the undeformed one performing
a smooth limit in the space of deformation parameters, we will discuss in details this issue in the

deformed case (see Section 3.2.4).

3.2 Giants on deformed backgrounds

In this section we study giant graviton probes in the framework of the three—parameter deformation
of the AdS5 x S® background. We examine both the case when the brane expands in the deformed
S part of the geometry and the case when it blows up into AdS5. Then we perform a detailed
analysis of small fluctuations around the giants to understand the stability properties of these
configurations.

The Type IIB supergravity background we will study is related by T—dualities and shift trans-
formations to the usual AdSs x S° and is the generalization of the background first proposed in
[66] to the case of three unequal 9; parameters [67]. The corresponding background is a non—
supersymmetric deformation of AdSs x S° and should be dual to a non-supersymmetric but
marginal deformation of N'= 4 SYM. Since the deformation is exactly marginal, the AdS factor
remains unchanged. The metric of the so called AdS5 x S° solution (written in string frame and
with o/ = 1) can be read from

ds® = dshys, + dss (3.2.1)
where again
2 R dr’ 27,2 1 ain2 2 o2 2
dsgs. = —(1+ ﬁ)dt + L + 1% [dof + sin® aq (doj + sin® aadas) | (3.2.2)
Rr?

represents the usual AdSs space—time and

2
dr? r? 3 3
2 _ p2 2 2 7.2 24 2 2 92 foap
sk, = R <W + 270 + G;pi do? | + R*Gp?p2p? ;%d@ (3.2.3)
is the deformed five-sphere. Here
G™' = 1+A47p3p3 + 430103 + 330105, 4 = Ry, (3.2.4)

.. . . . . 2 2 2,
and it is convenient to parametrize p; coordinates via p% =1- % , p% = % cos? , pg = % sin 4.

Note that Z?:1 p? =1 and we have 0 < r < R. We consider only the case of real deformation
parameters 7;, when the axion field x is a constant and is set to zero. With respect to the dilaton
¢g of the undeformed background, the dilaton ¢ of the solution is

e = 27@ (3.2.5)
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and we have the usual AdS/CFT relation R* = 41e? N = ), relating the radius of the background
and the 't Hooft coupling constant. Note that the dilaton field ¢ is not simply a constant, but it
depends on the coordinates of the deformed sphere S°.

There is a non—zero NS-NS two form

B = R*G (43p3p3der A dds + A1p5p5dds A dos + Fap3pides A dey) (3.2.6)
while the R-R forms are

3 3
Cop = —4R%ePwi A Aidd dwy = % sin 0 cos 0 dr A df (3.2.7)
i=1
and
14
Cy = e %0 = sin? oy sin aiadt A day A das A das +
+ 4R PG wi Addy A dgs A des (3.2.8)
The five form field strength of the background is
F5 :dC4—Cg/\dB *F5 :F5 (329)

When all the three deformation parameters are equal, 4; = 4, we recover the Lunin—Maldacena
supersymmetric background [66].

3.2.1 A rotating point particle probe

As a warm up for what follows, we focus on the motion of a massless point-like particle in the
deformed AdS5 x S® background which rotates on the S® and minimizes its energy in this internal
space. For convenience we start from the action for a massive particle in ten dimensions and later
take the mass M to zero,

S = —M/dts/—(g = %) (3.2.10)

where g and b are, respectively, the pull-backs of the space-time metric and of the NS-NS two
form onto the particle’s worldline and are given by

g=GunXMxN b= ByyXMx¥ (3.2.11)

Here XM are coordinates on the ten-dimensional space-time with X? = ¢ and XM denotes the
derivative of XM with respect to ¢t. The metric Gy and the NS-NS two form Bjsn can be read
in (3.2.1) and in (3.2.6), respectively. The rotating point particle we want to analyze sits at the
center of AdSs and spins in the ¢; direction. For this configuration we have g = G + Gy, 4, (;5%,
b = 0 and the action becomes

S=-M / dt\/l — R2Gp3(1 + 43 p3pd) b3 (3.2.12)
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From now on, to save space we introduce the positive quantity Q% = R?Gp?(1 + @%p%pg). Since
the action we have written down presents no explicit dependence on the cyclic coordinate ¢1, we
can replace ¢ with its conjugate momentum

L
g 9L _ _QMh (3.2.13)

8 .
®1 A1 = Q2 ¢%
which is conserved in time. So we can define the Hamiltonian in the standard way

. J
H=¢pJ-L=— (3.2.14)

Q
where we have already taken the limit M — 0. We need to find the minimum of the Hamiltonian
and it is easy to convince that this occurs when ) is maximum, namely when r = 0 and so Q) = R.

Substituting this value in equation (3.2.14) we obtain the energy of the rotating point particle
J

E=— 2.1
’ (3:2.15)

Finally, we find a geodesic which represents a BPS state® with energy E equal to the angular
momentum J (in units of 1/R) and does not depend on the deformation parameters, i.e. is the
same as in the undeformed theory. This is one of the cases already analyzed in [92] (see also [69]).

3.2.2 The equilibrium configurations

Our main purpose is to probe the deformed and non—supersymmetric background with giant
gravitons. We want to understand if it is possible to find minimum energy configurations, study
their stability and eventually their dependence on the deformation parameters. Recall that in the
standard AdSs x S® background there are three different configurations characterized by the same
quantum numbers: the point—like graviton, the giant graviton and the dual giant graviton. What
about the deformed case?

Branes expanding in the deformed S° space—time: Giant gravitons

The first solutions we want to study are D3-branes wrapped on the deformed sphere part of
the geometry, moving entirely in the S® and sitting at the center of AdS5. The time coordinate
in AdSs is denoted by ¢t. In what follows it is convenient to choose a static gauge such that
the worldvolume coordinates of the brane (7,0;) are identified with the appropriate space—time
coordinates. In particular the brane wraps the (0, ¢2, ¢3) directions,

F=t, alzee[o,g], gy = o €[0,27], 03 =3 € [0,2n] (3.2.16)

The D3-brane action (3.1.8) can be rewritten as

8In all our discussions we use the term BPS in its original sense. We do not refer to supersymmetry.
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S = —T3 dtd@dgﬁgdqbg €_¢\/—d€t(gab - bab) + T3/ P [04 — 02 VAN B] (3.2.17)
24 E4

Our giant graviton has constant radius (r¢), it orbits the S5 in the ¢ direction with a constant

angular velocity (wp) and all the worldvolume modes are frozen. While it is not a priori obvious

that this is a consistent way of embedding the brane, we will see that it gives in fact a minimal

energy configuration. So we propose an ansatz of the form

r=rgp  ¢r=wl I=a1=a=a3=0 (3.2.18)
which, after integration on the spatial coordinates of the worldvolume, leads to the effective
Lagrangian

L=—h\/1-a2¢" +mé (3.2.19)
with
o 2 2 2 o
h:Nﬁ, a®=R"—rj, m:Nﬁ (3.2.20)

We have the constraint rg < R because the size of the brane cannot exceed the radius of S5 and
so a® > 0. We have also used A3 T5e~ %0 = %, where Ag is the area of a unit 3—sphere. Note that
the effective Lagrangian is exactly the same found in the undeformed case [121, 122, 123] and this
appears to be strange at first sight because the giant has blown up in the deformed 5%, We will
comment later on this particular behavior which is in contrast with the results obtained in [130].

The conjugate momentum to ¢, is

L ha®¢
g9k _ a7¢12 +m (3.2.21)
agbl A /1 _ CL2¢.1
This relation can be easily inverted to obtain
. J—
b1 = n (3.2.22)

a2+/h2 + (J;;n)z

The corresponding Hamiltonian of the giant graviton becomes

(J —m)?

H=d¢1J—L=4/h?+ 5 (3.2.23)

and it is independent of ¢, so that the equations of motion can be solved with constant mo-
mentum. For fixed J, we have two extrema of (3.2.23) now regarded as the potential that de-
termines the equilibrium radius. In particular, there are two degenerate minima at ro = 0 and

at ro = R4/, where the energy is E = %, as for the point graviton, and wy = (;51 = %. This
analysis obviously gives the same results already found in the undeformed case and the stringy

exclusion principle manifests itself in the relation between the radius of the giant and its angular
momentum.
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Branes expanding in AdSs space—time: Dual giant gravitons

In the previous section we have seen that there is a D3—brane configuration with the same quantum
numbers as the point-like graviton, even in the deformed AdSs x S° background. Now we also
consider the possibility of dual giant graviton solutions where the D3-branes are wrapped in
the 3-sphere (1, a9, as3) contained in the AdSs part of the geometry. In contradistinction to
the previous case we expect a priori the effective Lagrangian not to depend on the deformation
parameters because they do not enter the AdS space-time [130, 131]. Again the dynamics is
described by the action (3.1.8) and we use the static gauge for the worldvolume coordinates of
the brane (7, 0;),

T=t, o1 =aoq € (0,7, o9 =g € [0,7] , o3 = ag € [0, 27] (3.2.24)

The giant graviton has constant radius (lp) and again orbits rigidly in the ¢; direction on the S5,
Our ansatz is

= l() qbl = wpt r= (;52 = qz53 =0 0= Z (3.2.25)

We will see that with the parametrization of the deformed 5-sphere as in (3.2.3), the choice
6 = 7 /4 is the most natural one in the study of fluctuations around the giant. The dependence
on the deformation parameters of the vibrations turns out to depend on the position of the giant
into the internal space. This ansatz yields the effective Lagrangian

L=—h\/b? - R, +m (3.2.26)

A I g Lo
as in the undeformed case [122, 123]. Again we have used A3T3e %0 = %. The conjugate
momentum to ¢; now becomes

with

oL hR2¢,
J=—r= (3.2.28)
91\ e _ R2<;512
and from this relation we obtain
: b
¢ = . (3.2.29)

R2\/h2 + &

We can calculate the corresponding Hamiltonian of the dual giant graviton and obtain

: N
H=61] = L=b\[1?+ 5 —m (3.2.30)
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Again H, as a function of [y, has two minima located at lp = 0 and Iy = R4/ % The energy at
each minima is

E=— 3.2.31
. (3:231)

and wg = <]§1 = %, matching the results of the previous sections. Of course now there is no upper
bound on the angular momentum .J because AdS space-time is non—compact and the radius [y of
the giant can be greater than R [122, 123].

So far we have seen that even for the deformed background AdSs x S°, there are three potential
configurations to describe a graviton carrying angular momentum J: The point-like graviton, the
giant graviton of section 3.2.2 consisting of a 3-brane expanded into the deformed 5-sphere, and
a dual giant graviton consisting of a spherical 3-brane which expands into the AdS space. This is
exactly the same situation known from the standard undeformed AdS5x S° background. Moreover,
if we consider the collective motion of both brane configurations, we see that their center of mass
travels along a null trajectory in the ten—dimensional space-time once evaluated in <;51 =1/R. We
stress that this is the expected result for a massless point—like graviton, but it is also true for the
expanded (dual) giant gravitons. So we have really found that giant graviton states which are
degenerated with massless particle states exist classically even in a background which in general
preserves no supersymmetries. This result is not so strange because it is a feature of a large class
of non-supersymmetric backgrounds [133] and of particular configurations in theories with non
zero NS-NS B field [134].

3.2.3 Stability analysis and vibration modes

One of the main issues related to giant gravitons is their stability under the perturbation around
the equilibrium configurations. In the last two sections we found expanded branes with the same
energy of a point graviton and so they should be stable. In order to verify this expectation we
will consider the spectrum of small fluctuations around the giants, as first studied in [135]. A
vibration of the brane can be described by expanding our previous ansatz as follows

X = Xo + 65X(t, O‘Z') (3.2.32)

where X is a generic space-time coordinate, Xy denotes the solution of the unperturbed equilib-
rium configuration, the fluctuation § X (¢,0;) is a function of the worldvolume coordinates (¢, o;)
and ¢ is a small perturbation parameter. We work in a Lagrangian setup [135] and we expand the
action of the probe brane in powers of ¢ as

S = /dtd3a{£0 +ely+e* Lo+ -} (3.2.33)

Obviously L gives a zeroth order Lagrangian density related to that we have found in the previous
sections. To state that those solutions really minimize the action we have to focus on the £; term.
The second order term Lo is useful to study the stability of the configurations we have found
and the bosonic fluctuation spectrum, which we expect to depend on the deformation parameters,
as in the analysis of vibrations around other BPS states of this background [92]. Perturbative
instability will manifest in the spectrum as a tachyonic mode. We closely follow [135]. A slightly
different method has been proposed in [136].
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Giant graviton fluctuations

To study the fluctuations around the configurations found in section 3.2.2 it is useful to rewrite
the AdSs part of the metric as suggested in [135]

4
ds% g, = — (1 + Zv,ﬁ) dt? + R? <5Z-j + #) dv;dv; (3.2.34)
k=1 k=1"k

Then we change our previous ansatz as

r=1rg+ 8(57‘(t, 0'7;) ¢1 = wot + 56¢1 (t, 0'7;) Vi = E(S’Uk(t7 Ui) (3235)

with o; = (0, ¢2, ¢3). Expanding the action to the linear order we get

L1 = —Tse % sinfcosd
{ 4r3wd +3(1 — R%w})

VI— (- )
(R? — T%)Towo 2] olJost }
The first order Lagrangian density (3.2.36) does not contain the deformation parameters and is
08¢

r
ViR =g 0] o

exactly the same found in the undeformed analysis [135]. The term in front of “g7* is a constant

and so it brings no contribution to the variation of the action with fixed boundary values. The

coefficient of the term dr vanishes if we take

— 47“0&)0 (5T+

<
o

(3.2.36)

w = (3.2.37)

This confirms that the giant graviton described in the previous section (the zeroth order solution)
is the right solution which really minimizes the action. Now we consider the second order term in
e. With the choice (3.2.37) we get

Ly = Tze %72 sinfcosh
R3 0%6r R
- Ags é
{ [ S(RE_r2) o o) ST
L <A28257‘+A2825T_2A . 0%r ) .
2R \0003 " 2007~ T 96,005
R3}(R? —r2) 82661  R(R%?—13)
[ B 2r} ot? + 2r} Ao 001 | 01 +
2R? 061
o o T
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R30%v, R R
[ - TW_‘_EASS&U]{:_E&%

R? — 7“8 2825vk 2825vk 0%5vy,
q q — 29993 ———+— | | O 3.2.38
+ R <73 962 T 062 72738@528@,) Uk ( )

where the sum over k is understood and A gs is the Laplacian on the unit 3—sphere. In writing Lo
some terms are integrated by parts; there are no surface contributions because the worldvolume
of the brane is a closed surface and the variations are assumed to vanish at ¢t = to0.

Because of the U(1) x U(1) worldvolume symmetry, corresponding to translations of ¢o and
¢3, it is convenient to introduce spherical harmonics Vs> (0, g2, ¢3) with definite U(1) x U(1)
quantum numbers (mg, mg) [130, 131]. In particular we have

Ags YI2M3(0, ¢o, 3) = —Q2VI23(0, o, P3)

0
S V20, 92, 03) = imo V0, b2, d3) (3.2.39)
O0¢2.3

For spherical harmonics on S2, Q2 = s(s + 2). We expand the perturbations as

5T(t79a¢27¢3) = AT e—iwt y;?lg,m3(07¢2’¢3)
51 (t,0,p2,03) = Ay e YI3(0, ¢2, p3) (3.2.40)
5’1)k(t,9,¢2,¢3) = Avk e_th ygl27m3(97¢27¢3)

The form of Lo tells us that the dvy perturbations decouple from 7, d¢1 and have frequencies
given by

1 .
=7 (1 +Q+ FQ) (3.2.41)
where we have defined the positive quantity
) 5\ s A 2
I'“ = <1 - ﬁ) (’yng - ’}/ng) (3242)

which contains the whole dependence on the deformation parameters and on the radius rg =
R+\/J/N of the giant. The fluctuations dr, d¢; are coupled and the resulting frequencies are
obtained solving the following matrix equation

A~ i 2
dplemar) e
0 i R2 R(R2—T‘8) 2152 9 A — 0 (3243)
2iw = B (w?R?* — Q?) $1
The determinant brings us to a quadratic equation for w? from which we obtain
1 I2 12 12
2 _ 2
Wi= T3 2—|—Qs+?i2 1+Q§+?<1+§> (3.2.44)
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The condition for a giant graviton to be stable over the perturbations is that all the frequencies
are real, i.e. w? > 0. The existence of imaginary part in w means that the e~™’ term can
grow exponentially, which gives instability to the configuration, a tachyonic mode. We have the
constraint rop < R and so it is easy to conclude that there are not unstable modes in the system
at this quadratic order, as all the w? we found are real and nonnegative. Note that because of
the deformation parameters these frequencies depend on the radius ro of the giant (3.2.42). In
the undeformed background all of the frequencies are independent of r( [135] and this is the main

difference with respect to the deformed theory.

Dual giant graviton fluctuations

Now we want to study the fluctuations around the configurations found in section 3.2.2. The
AdS space-time is now better described by the global coordinate metric (3.2.2). Hence the ansatz
becomes

=l —|—€5l(t, O‘Z') o1 = th+€5¢1(t,Gi) (3.2.45)

and

r=cor(t,o) 0= % L e00(t, o) do=edpa(t,on) by =cdbs(t,or)  (3.2.46)

with o; = (aq, a2, ag). Expanding the action to the linear order we get the same contribution as
in the undeformed background [135]

T3 _40 . .
Ly = _Eg e~ sin? oy sin as
412 + 3R*(1 — R*w})
VIE+ R2(1 - R2W?)
loW0R4 85¢1 }

VE TR R Ot

—4ly | o1+

Again, the coeflicient of the term 8%’1 is a constant and so it brings no contribution to the variation

of the action with fixed boundary values. The coefficient of the term &l vanishes if we take

This fact confirms that the giant graviton written in the previous section is a solution to the
equation of motion following from the D3-brane action. With this choice the term linear in e
vanishes, while the second order term is

Lo = Tye % l% sin? oy sin
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I 3 2
{ o 2(1811 R?) 8@1&? * 2(l3fR2) Bsaol) ol +
| B R?’(lil‘é' R?) a;‘zfl + R(li?é ) Ags d¢r| 0¢1 +
+ 21—]:2858? ol +
_ g% + % Ags 0r — % (1 + g (32 + @3)) 57“] 5r} (3.2.48)

~ 2 ~
Of course Ags is the Laplacian on a 3-sphere and b> =1 + %, as in (3.2.27). Let Ys(aq, a9, a3)
be spherical harmonics so that the usual relation holds

Ags Vs(a, ag, a3) = —Q%Vy(ay, az, a3) (3.2.49)

We expand the perturbations as

5[(15,0[1,042,0&3) = /Il e_id)t 5)3(041,042,043)
5¢1(t,0&1,0&2,0&3) = /Lz)l e_iajt 5)3(041,0(2,0(3) (3.2.50)
or(t,aq,ag,a3) = A, et 373(@1, g, as)

The dr perturbation decouples from I, d¢p1 and it has a frequency given by

9 1 o VP o
w 1+Q5 + - (%2 +93)

P 5 (3.2.51)

The 61, d¢1 fluctuations are coupled and the resulting normal frequencies are obtained solving

~ . 2 ~
g (R - Q) et [ A ] 0 (3.2.52)
2 2 ~ — /N
2w R(loliérm (@*R*-@Q3) | L Ae
which yields
1
A (2+Q+2v1+Q?) (3.2.53)

Again there are not unstable modes in the system at this quadratic order, as all the frequencies
are real. The deformation parameters 47 3 enter the frequency Cuf which brings a dependence on
the radius lp = R+/J/N. The frequencies ©3 are the same as in the undeformed case and do not
depend on [y [135].
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Summary of the excitation spectrum and role of deformation

In this section we discuss how the deformation enters the vibration modes. First of all, we stress
that turning off 4; manifestly reduces all the frequencies to those of the undeformed case. This is
a good test of our results.

e When the giant graviton expands into the deformed sphere, it has six transverse scalar
fluctuations, of which four correspond to fluctuations into AdS; (w?) and two are fluctuations
within S® (w}). In particular from (3.2.41) and (3.2.44)

1 .
v, — w,%:ﬁ(l—FQ?—i-Iﬁ)

I? I2 I2
(6r,6¢1) — wi= 24+ Q%+ — +2 1+Q§+—<1+—> (3.2.54)

R? 2 2 8

All the vibrations involve the deformation parameters 95 3 (3.2.42) because the perturbations
0X(t,0, P2, p3) are functions of the worldvolume coordinates of the brane and in particular
they depend on ¢s , ¢3. So, once we perturb the giant around the equilibrium configuration
in Xo the fluctuations feel the effect of the deformed background. Note that a similar 23
dependence appears also in [92] in the calculation of quadratic fluctuations near a (J,0,0)
geodesic. The frequencies just discussed are very similar to the ones obtained in [131]; the
main difference is our dependence on the radius of the giant.

e Similarly, the vibration mode frequencies corresponding to the giant graviton expanded in
the AdS part, are (3.2.51) and (3.2.53)

- O
o = @p =g [1HQ0+ (32 +35)
B.60) — = (24Q2 211 Q2 2
(01,061 2 R2< 2 ) (3.2.55)

An accurate analysis of the quadratic expansion tells us that Gy, 4, brings the whole de-
pendence on the deformation, once one is calculating the pull-back. In section 3.2.2, we
have mentioned that the choice of the parametrization of the p; in (3.2.3) is important in
the study of the dual giant vibrations. Physically, their dependence on the deformation is
expected due to the location of the giant into the deformed sphere. The coordinates p; are
functions of the angle § and we are now expanding around 7/4. So, up to €2 we obtain
Gorpn ~ R% —2(2 + 43 4+ 43)0r? /2 and the 42,3 dependence manifests itself only when we
study perturbations in 35, as for @f The original ansatz 6 = 7 /4 does not select a partic-
ular deformation parameter. The frequency &2 is symmetric in the exchange 49 « 43 and
depends on the radius [y of the dual giant. On the other hand, we expect independence from
the deformation when studying perturbations in AdS directions.
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From (3.2.54) and (3.2.55) we see that w? = 0 and &2 = 0 are solutions when Q2 = 0. These zero
modes correspond to the fact that we have no constraints on r¢ and ly, namely they can be taken
to have any value allowed by the geometry.

3.2.4 Undeformed giants in a deformed background

At a classical level we have found that the effective Lagrangian and hence the energy of a giant in
the 4;—deformed background are independent of the deformation parameters. This is an expected
result for the dual giant (brane expanded in the AdS part of the geometry), but seems quite strange
if the brane expands into the deformed 5-sphere. Analytically, this is due to the particular form
of the D3-brane action. The kinetic part (3.1.9) is independent of the deformation because of the
presence of the modified dilaton (the same behavior found in [130]). The Wess—Zumino part of
the action is

Swz = T3/ P [04 —Cy A B] (3.2.56)
34

It is important to note that, even before taking the pull-back on the worldvolume of the brane,
the combination

4

l
Cy—CyNB = e—¢o§ sin? vy sin aadt A dag A das A dog +

+ AR*e % wi Adpi Adgy A dps (3.2.57)

is exactly the same as the R-R 4-form in the undeformed AdS5 x S® space-time (recovered after
setting the deformation parameters 4; to zero). So, the independence of the deformation seems to
be a feature of the Wess—Zumino term for a D3-brane configuration with vanishing worldvolume
gauge field strength F in this particular background?.

Can we speculate more on our 4;—independent results? Remember that we have pointed out
that the existence of degenerate point-like and giant graviton states is not a new feature even in
non-supersymmetric backgrounds [133] and in theories characterized by B # 0 [134]. Moreover,
our giant graviton solutions are classically BPS states in the deformed model, i.e. states that have
the minimal energy for the given charge. The authors of [92] discuss geodesics on 4;—deformed S5
labeled by three conserved angular momenta (Ji, Jo, J3). These geodesics depend in general on
the deformation parameters. In the standard AdSs x S° background all geodesics represent BPS
states with energy E equal to the total angular momentum J = J; + Jo+ J3, while in the deformed
case only few of them are characterized by this property. In particular, in the 4,—deformed model
special solutions with energies that do not depend on the deformation parameters exist, i.e. they
are the same as in the undeformed theory. This is the case for states labeled by (J,0,0). We
want to stress that our giant gravitons are (J,0,0) BPS states and follow a geodesics of §5, SO
that their classical independence on the deformation parameters is not a new feature. Moreover,
studying giant gravitons on a deformed (.J,0,0) PP—wave, the authors of [131] also found a classical

9The authors of [130] get a dependence on the deformation parameters but their conventions do not coincide
with ours and with those of [137, 66, 67].
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configuration independent of the deformation and with a spectrum of small fluctuations almost
identical to the one obtained in section 3.2.3. This similar behavior could be an interesting point
to study in detail.

The background we have studied breaks all the supersymmetries of AdS5 x S® and so it should
be dual to a non-supersymmetric but marginal deformation of the N' =4 SU(N) SYM [67]. More
precisely, the gauge theory is conformal in the large N limit [92, 138, 139], which we assume from

now on. The bosonic part of the deformed YM has the following form
W ="Tr _E[q)“q)]]cw [(I) , ® ]CZ—FZ [(I)Z,(I)] [q)J,(I)] (3258)

where ®; are the three holomorphic scalars of N' = 4 SYM. The deformation manifests itself in
the modified commutators

[®;. ®jl¢, = i, o — e D, B, i,j=1,2,3 (3.2.59)

and similarly for the conjugate fields ®;. The matrix C reads [140]

0 v -
C=n| -3 0 " (3.2.60)
Y2 -1 0

The real deformation parameters 4; appearing in (3.2.3) are related to the «; deformations on the
gauge theory side (3.2.60) via the simple rescaling 4; = R?v;. The potential can be also obtained
from the undeformed one by replacing the usual product ®;®; by the associative x-product of
[66, 92].

The fact that the energy is independent of the deformation parameters is general and persists
both in the case of unequal 4; and in the N' = 1 supersymmetric 4; = 4 theory. In order to
simplify our analysis of the dual CF'T picture of the giant gravitons, we restrict to the more
studied NV = 1 case where we are protected by supersymmetry. We have not checked that in the
supersymmetric case our giant gravitons preserve some of the supersymmetries but the fact that
they saturate a BPS bound is an indication of this feature. It would be interesting to prove this
expectation. From now on we set v; = 7.

Via AdS/CFT, states in supergravity are expected to map onto states of Yang—Mills theory on
R x 52 and the energy in space-time maps to energy in the field theory. Using the state-operator
correspondence, the energy of states on R x S% maps to the dimension A = RE of operators
on R%. In the undeformed case, the operators corresponding to (dual) giant gravitons have been
first introduced in [124, 125]. Our giant graviton solutions correspond to the case where we have
only one non—vanishing angular momentum (a (J,0,0) BPS state in the language of [92]) and
we should construct the dual operators on the CFT side with only one holomorphic scalar field.
Let Z = ®; = ¢° + i¢® be a complex combination of two of the six adjoint scalars in the YM
theory, then in the undeformed case giant gravitons are dual to states created by a family of
subdeterminants [124]

19We use the notations of [139].
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_ Lilylyalagan—y i1 i i
Oy = Z€irizmigaagay_, € 27NN ZI TR 7 (3.2.61)
Moreover,
O —iEjzil zZ2 ...z (3.2.62)
T = e Vo) () -
ocdy

with Sy the permutation group of length J, is supposed to describe a dual giant graviton in the
undeformed theory [125]. Once the deformation is turned on we are instructed to use the x-
product among the fields, so introducing a set of relative phases [141]. However, the field content
of the operators (3.2.61) and (3.2.62) implies a vanishing phase factor, and so we guess that the
same operators could describe giant graviton states even in the y—deformed theory [131]. All these
operators form a good basis in the large J ~ N limit and have classical scaling dimension A = J,
matching the results of sections 3.2.2 and 3.2.2. This is an agreement between a strong and a
weak coupling limits and so the operators (3.2.61) and (3.2.62) seem to be protected even in this
less—supersymmetric case. Remember that single trace operators of the form (J,0,0) are BPS
states of the y—deformed gauge theory which have zero anomalous dimension [66, 65, 142, 143]
but we expect this property to hold also for the more complicated operators (3.2.61) and (3.2.62)
because they can always be written as (Schur) polynomials in Z [125, 147]1.

Comments on the dual gauge theory picture of giant gravitons

We have seen that the deformation seems to manifest itself in the vibration modes around the sta-
ble configurations. It would be very interesting to find the CFT dual of these scalar fluctuations,
as in [148, 149]. In general, most fluctuations of giant gravitons are not BPS and so from the field
theory side we expect anomalous dimensions to develop quantum mechanically: The calculation
would involve the full potential (3.2.58) and of course the deformation parameters. From the
brane side we read A = RE,,, where E, is the excited energy of the giant graviton, i.e. if we
switch to the quantum—mechanical system F,, ~ E+w (with & = 1), and w is a general fluctuation
frequency. To be more explicit!? let us focus on the spectrum of small AdS fluctuations when
the giant graviton expands into the deformed 5—sphere 5%, The frequencies of the four modes are
given by (3.2.54)

(s+1)2 4172
R

with Q2 = s(s+2). The radius rq of the spherical D3-brane enters in the definition of I'? (3.2.42)
and the energy now reads

Wg = (3.2.63)

J D2 F A2
Bu =5+ (s + ])% T (3.2.64)

"The authors of [92] have shown that also in the non—supersymmetric case of three unequal ~y;, operators of the
class (J,0,0) are protected in the limit of large N. It is possible that the operators (3.2.61) and (3.2.62) could

represent giant graviton states even in the non-supersymmetric case.
12The following analysis can be extended in the same way to the other giant fluctuations.
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We have used R* = 41e? N = g2, N = X and 4 = R?y, so that from (3.2.42) and 73 = JR?/N,
the relation

. J

[?=AT? =)\ (1 - N) 72 (mg — m3)? (3.2.65)
naturally follows. Note that for a maximal giant graviton J = N, I'?> = 0 and we recover the
frequency obtained in the standard AdSs x S° case [135]. If we want to find the dual description
of these fluctuations, we can introduce suitable impurities in (3.2.61) as first proposed in [148]
(the x-product is implicit)

S L. i ll l2~~~lJa1 az-aN_J il i2 iJ—l S iJ
OF ~ €5y iniyay agan s € ZP 2P 2y (W)Y (3.2.66)

Here W} is a word built out of the sth symmetric traceless product of the other four scalars ¢; of
the YM theory (i = 1,---,4) to match the scalar spherical harmonics of S® on the brane side. In
order to consider fluctuations along the AdS directions we have to include a covariant derivative
Dy, in the word, so the index k = 1---4 refers to the four Cartesian directions of R* in radial
quantization of R x S3. We stress that the deformation parameters introduce a dependence on the
't Hooft coupling A and, if the AdS/CFT correspondence holds, the energy E,, gives the scaling
dimension of O} in the limit of large 't Hooft coupling

A=J+4++/(s+1)2+AI? (3.2.67)

We do not exclude the possibility that the interactions of the Yang—Mills theory do produce a per-
turbative (weak coupling constant A < 1) anomalous dimension for the operators just introduced,
related to that predicted by the other side of the correspondence. This is a heuristic discussion,
since the precise form of a general operator of the type (3.2.66) is still unknown. Moreover, we
are now talking about non—protected quantities and a direct comparison is a very difficult task
because we are facing a strong/weak coupling duality. If we want to match the results, it is simpler
to study the correspondence in novel limits, for example where quantum numbers become large
with N [150].

Dual giants and semi—classical solutions of CFT

The fluctuations around dual giants can be similarly described using operators on the field theory
side (see the recent [151]). However, a more efficient approach is to identify a classical field theory
configuration which encodes the same properties of the spherical brane in AdS [123] and then try
to study fluctuations around this solution similarly to [149].

Configuration of spherical branes in AdS5 is such that the flux of RR 5-form in the interior of
the spherical D3-brane is less by one unit compared to the exterior. In light of the UV/IR relation
of the AdS/CFT correspondence, this suggests that the gauge symmetry is broken from SU(N) to
SU(N —1) xU(1) at low energies. Therefore we should look for a classical configuration involving
Higgs expectation values.

Since the D3-branes do not act as a source for the dilaton and the axion, the supergravity back
reaction of the spherical D3-branes is trivial in the dilaton/axion sector. Trivial dilaton/axion
background corresponds to trivial F? and F F expectation values. The field theory counterpart
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of the spherical brane is therefore not likely to involve the gauge fields. Furthermore, the fact
that the energy (3.2.31) of the solution we are after does not depend on the coupling constant
suggests that the commutator term in the action of the SYM should not play any role. We are
therefore left with the bosonic part of the dual C'F'T which lives on the boundary of AdSs, namely
on R x S? with metric ds? = hydztdz”

1 _ ) 1 - .
S=——— d*zv/—h [Tr <8M¢i(‘9ﬂ@’ + _2@Z.qﬂ> + W] (3.2.68)
9y M R

where W is defined in (3.2.58) with 7; = 7. Since the background is of the form R x S3, the
conformal invariance of the theory imposes a mass term for ®; and R is the radius of AdS5. By

rescaling the ®; fields
gy uN

_ 1 -
/ d*zv/=h [Tr (-@M@iauqﬂ - ﬁqmﬂ) + WA] (3.2.70)

the action can be rewritten as

N
 4m2R?
The rescaled potential W), is

S

A 50 Hi A
Wy =Tr <m [(I)i7 (I)j]Ci- [QJ ’ q)]]ci' N m

The matrix Cj; is defined in (3.2.60) with now 7; = . Next, we consider the ansatz

[®;, @] [@;, eIﬂ']) (3.2.71)

&, (t,Q) = diag(n,0,0,---,0)e”®  with = const. Dy 3(t,Q) =0 (3.2.72)

To properly account for the SU(N) field content of the SYM, simply parameterize ®1(¢,€2) ac-
cording to '
&y (t,Q) = 7 et (3.2.73)

where 7 is a traceless diagonal N x N matrix

n
N -1 T N-1

= —— : 2.74
Ul N (3.2.74)

N-1

To leading order in 1/N, all but the first diagonal element can be ignored and the analysis reduces
to treating ®; as an ordinary scalar field. The subleading 1/N correction can be thought of as
the back reaction of the spherical brane to the background geometry.

The Lagrangian turns out to be

_NR 242 772
L= 5 <170 iz (3.2.75)
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We see that the angular momentum J = 9L/ 90 is conserved and the energy
J? . Nn?
2N Rn? 2R

is minimized at n?> = 12 = J/N where its value is E = J/R. Let us make some comments
regarding this solution

E=J0—-L= (3.2.76)

e The energy of the classical solution E = J/R is precisely the energy of the spherical brane
in AdSs.

e The classical solution is invariant under half of the supersymmetries. This can be verified
easily by acting on the solution with the supersymmetry transformation rules given in [156].
(Strictly speaking, one can check that the solution is invariant with respect to 8 out of 16
Poincare supersymmetries [123].)

The fact that the classical solution of the SYM shares many properties in common with the
spherical brane configuration in AdS5 is a good indication that the former is the field theory
realization of the latter. There are some subtle differences, however. The potential (3.2.76) is
the field theory counterpart of (3.2.30). To be more precise, (3.2.30) is the effective action for
the spontaneously broken U(1) at large A after integrating out the massive W-bosons. Equation
(3.2.76) can simply be thought of as the small A\ limit of the same quantity. To facilitate the
comparison, let us re-express (3.2.30) in terms of n = ly/R

N 2
H=> <\/1+n2\/% +n6—n4> : (3.2.77)

Potentials (3.2.76) and (3.2.77) differ from each other in one very important sense. The potential
at strong coupling (3.2.77) has two minima, one at 7 = 0 and the other at n = /J/N. At small
coupling, (3.2.76) has only one minima, at n = /J/N.

Thus, we have found an argument based on duality that the minima at n = 0 is lifted by
1/X corrections. When A\ < 1, semi-classical description of the SYM becomes reliable, but the
configuration at 7 = 0 simply does not exist as a solution of the classical equation of motion. It
would be very interesting to understand the status of 7 = 0 solution when the quantum effects on
the SYM side is taken into account. Studying the quantum correction to (3.2.76) perturbatively
should teach us a lot about this issue.

Unlike the solution at n = 0, the solution at n = y/J/N is a robust result. This can be seen
in the following way. For large values of J/N, the spherical brane will grow to have size much
greater than the radius of AdSs. In [152], Seiberg and Witten showed that the DBI+WZ action
of the n-brane in AdS,,+1 has the following form for n > 2 near the boundary of the AdS (see
eq.(3.17) of that paper)

S ~ / V7 <(8¢)2 + T2 Ry 0(¢%)> (3.2.78)
4(n—1)
The form of this action is dictated by the fact that the extension of the metric on the boundary
of AdS to the bulk is unique in the neighborhood of the boundary. The leading term in large ¢
of (3.2.78) exactly matches the field theory action (3.2.70).
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This effect can be also seen by studying the transverse fluctuations of dual giants which in the
gauge theory are represented by modes of the scalars ¢; for i = 1,-- -, 4 as explained in the previous
section. The coordinates (p;, ¢;) which parametrize the deformed sphere S° (3.2.3) correspond to
the three complex scalars ®; of Yang—Mills theory and in particular the dictionary tells us that
®; = p;e’®. On the supergravity side the modified ansatz (3.2.46) yields to pa3 ~ €dr/v/2 and
so if we want to translate this vibrations in the dual CFT' it seems natural to consider diagonal
fluctuations of the form

op(t,€2)
V2

Since in this C'FT analysis 1 covers the role of the radius of the giant, while 0 is the angular
velocity (at the minimum of the energy its value is = 6y = 1/R as in (3.2.47)), we guess that
the study of small fluctuations in radius and in the orientation of angular momentum could be
performed thanks to the modified ansatz

By (t, Q) = B3(t, Q) = ¢ diag( ,0,0,---,0) (3.2.79)

& (t, Q) = diag(n + € on(t,2),0,0, - - - ,0)e 1)< 30(t2)) (3.2.80)

Exactly as in section 3.2.3, we study the action up to second order in € and we expand the generic
perturbation dx(t,€2) in spherical harmonics

ox(t, Q) = Age =ty (Q) (3.2.81)

The calculation runs parallel to that of section 3.2.3 so we are free to omit the details; we only
stress that the linear term in e vanishes when evaluated in the classical vacuum and the first
commutator in (3.2.71) covers a crucial role in what follows. The 7, 60 perturbations are coupled
and the resulting frequencies are

) |
A (2+Q+2v1+Q?) (3.2.82)

in perfect agreement with (3.2.53). The dp perturbation decouples from 7, 00 and has a frequency

1 A J
~2 2 —12
wy, = ﬁ <1 + Qi+ 4—7_‘_2|q — q! N) (3283)

where we have defined ¢ = e™. Note that the frequency (3.2.83) is very similar to the exact
anomalous dimension obtained in [74]. When the deformation parameter is set to zero (¢ =
g = 1), we recover the frequencies obtained in the undeformed theory [149]. Because of the
A-dependence of (3.2.83) we have to be careful in comparing it to the result of section 3.2.3.
Quantum mechanically, the energy (in units of 1/R and with # = 1) has the form

A J
Ecpr=J+ 114+ Q2+ -“5|qg—ql2= 3.2.84
CFT +\/ T+ Sla—aPy ( )

On the other hand, from the value of the small fluctuation frequency given in (3.2.51) and with
42 = 43 = 4% = \y?, the energy of the brane is
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J
Eprane =J + \/1 + Q2+ (1 + N) Y2 (3.2.85)

What happened? The two energies are remarkably similar but again we have to check the regime
of validity of our analysis of the small vibrations, both in the gauge theory and in the supergravity
side. To be more precise, the energy Eprang (3.2.85) is a well defined quantity at large A and in
the small v limit, with 42 = Ay? fixed [66]. The CFT energy (3.2.84) was computed for small
where the semi—classical description of the Yang—Mills theory becomes reliable, and at arbitrary
q. So we expect a function to exist which smoothly interpolates between the weak coupling result
(3.2.84) and the strong coupling one (3.2.85). Note that if we expand the |¢ — | term into the
square root of (3.2.84) for a particularly small value of 7, we obtain

J
Ecppr ~J+ \/1 + Qg + )\’}/2 N (3.2.86)

On the other hand, if J/N > 1 we can safely ignore the 1 appearing in (3.2.85) and up to their
regime of validity, the two energies are identical. This is the same limit analyzed before in order
to show that for large values of J/N the dual giant becomes a large brane and the leading term
of its Dirac—Born—Infeld and Wess—Zumino action in AdS exactly matches the CFT action. We
leave the complete understanding of these features for future works. Another useful strategy to
interpret these results could be the one used in [153].

Our CFT analysis applies equally well to the case of unequal v; and reproduces the s 3
behavior obtained on the brane side. So, let us conclude noting that in particular the authors of
[92] and [139] have found non-trivial examples where implications of the AdS/CFT duality are
observed even in the non—supersymmetric case and where the non-renormalization theorem seems
not to be dictated by supersymmetry. We do not exclude a possible extension of this AdS/CFT
comparison to the more general case of unequal 7; deformation parameters.

3.3 Summary

The main subject of this chapter is the analysis of giant graviton configurations on the Type IIB
supergravity background which can be obtained by a non-supersymmetric but marginal three—
parameter deformation of the original AdSs x S° solution. In particular, we have shown the
existence of giants which are energetically indistinguishable from the point graviton, even in
absence of supersymmetry. This feature holds for both the two sets of giant graviton solutions,
namely when the D3-brane expands into the deformed 5-sphere part of the geometry and when
it blows up into AdSs. The (dual) giant dynamics turns out to be independent of the deformation
parameters with a behavior which is exactly the same found in the undeformed theory. The
deformation of the background affects both the NS-NS and the R—R sectors. The D3-brane
couples to the two and four forms but with a precise mechanism which exactly compensates the
changes induced by the deformation. More striking, this complete cancellation of the deformation
parameters does not depend on their values and remains valid in the presence of unequal 4; (the
non-supersymmetric case) and in the special case 4; = 4, corresponding to the supersymmetric
Lunin—Maldacena deformation. In order to understand the stability of the configurations we have
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found, we have also performed a systematic study of the spectrum of small fluctuations around
the giant graviton solutions. This is where the deformation manifests itself providing the first
important difference with respect to the undeformed case. In fact, the deformed spectrum turns
out to depend on the radius of the (dual) giant which is always coupled to the deformation
parameters. Despite this fact, the deformation enters into the spectrum as a positive contribution
and the frequencies do not allow tachyonic modes. The (dual) giant gravitons are perturbatively
stable and this characteristic works in favor of the perfect quantitative agreement between the
gauge theory and the string theory found in [130]. Finally, restricting to the supersymmetric case
of equal 4;, we have proposed qualitative and quantitative comparisons obtained from the dual
gauge theory picture, generalizing what is known in the original undeformed correspondence. In
the case of dual giant gravitons, a semi—classical C F'T picture seems to capture a lot of the physics
of the brane configuration, giving the correct energy, angular momentum and a remarkable similar
spectrum of small fluctuations.

The study of giant graviton dynamics is certain a fascinating subject. One of their most
striking features is their ability to relate UV and IR regimes by enlarging their size with the
increasing of the energy. Another interesting feature of giant graviton solutions is their stability
even in a non—supersymmetric background. Further investigations of this property could give new
insight in the understanding of the role played by supersymmetry in the gauge/gravity dualities.
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Chapter 4

Mesons in marginally deformed

AdS/CFT

In the large N limit the Feynman diagrams of SU(N) Yang-Mills theory reorganize themselves
into a genus expansion of closed string theory [9]. This closed string is believed to propagate in
a five dimensional background [10]. At each point on the worldvolume of the string, we have to
specify its position in 4d Minkowski space and its thickness, which is represented by its position
in the 5th dimension. The metric structure of the 5th dimension describes the internal structure
of the string. This expectation has been realized in many supersymmetric examples starting with
[52], where in addition to the 5th dimension, the closed string background includes an internal
compact space, representing the additional fields in the theory. Thus, pure Yang-Mills, with
only glue as degrees of freedom, is expected to map to an entirely 5d non-critical string theory
background [10].

It is hoped that methods based on gauge-gravity duality will eventually be applicable to QCD.
A difficulty with describing QCD in this way arises due to the asymptotic freedom of QCD. The
vanishing of the 't Hooft coupling in the UV requires the dual geometry to be infinitely curved
in the region corresponding to the UV. In this case classical supergravity is insufficient and one
needs to use full string theory. Formulating string theory in the relevant backgrounds has thus far
proven difficult. The existing glueball calculations involve geometries with small curvature that
return asymptotically to AdS (the field theory returns to the strongly coupled N/ = 4 theory in
the UV), and are in the same coupling regime as strong coupling lattice calculations far from the
continuum limit. There is nevertheless optimism that the glueball calculations are fairly accurate,
based on comparisons with lattice data [161, 162, 163].

The standard AdS/CFT duality conjectures the equivalence of a particular string (or super-
gravity) theory and a pure Yang-Mills theory with matter in the adjoint representation of the
gauge group. For a more realistic gauge-gravity duality the inclusion of matter in the fundamen-
tal representation (“quarks”) is a mandatory requirement. The introduction of quarks into the
AdS/CFT correspondence is a prerequisite for studying a number of non-perturbative phenomena
in QCD in terms of a weakly coupled string theory. Examples are the formation of hadrons, spon-
taneous chiral symmetry breaking, pion scattering and decay, quark confinement, etc., to mention
only the most prominent among the strong coupling phenomena.
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Adding fundamental flavors effectively introduces boundaries in the 't Hooft expansion, that
is one adds an open string sector. Since the open strings should be allowed to have a thickness
as well, one is led to believe that adding fundamental flavors in the gauge theory maps to adding
spacetime filling D-branes in the 5d bulk theory. In the limit where Ny, the number of flavors,
is much smaller than N, the backreaction of the D-branes on the bulk geometry can be ignored:
this corresponds to the quenched approximation of lattice gauge theory. The spacetime filling
D-branes should be stable. Moreover, making the quarks very heavy should decouple them from
the IR theory, so D-branes dual to massive quarks should be spacetime filling in the UV region
but than end at a finite distance in the 5th dimension, and be absent in the IR. The gauge fields
living on the D—branes map to global flavor currents in the gauge theory.

In particular, for the AdS5 x S® geometry the appropriate flavor branes are D7-branes which
fill the spacetime directions of the gauge theory and are extended along the holographic direction
[164, 166].

So, the dual description of a 4D supersymmetric Yang—Mills theory with fundamental matter
can be obtained by considering a system of D3-D7 branes which intersect along three common
spatial directions. If the number of D3-branes is large we can take the decoupling limit and
substitute them by the AdS5 x S° geometry. Moreover, when the number of D7-branes is small
compared to the number of D3-branes, we can assume that the D7-branes do not backreact on
the geometry and treat them as probes. The fluctuations of the probes correspond to degrees
of freedom of open strings connecting the brane probe and those that generated the background
[168, 169].

Finally, the near horizon geometry of a system of N D3-branes in the presence of Ny spacetime—
filling D7-branes, in the large N limit and Ny fixed, gives the dual description of a N/ = 4
SU(N) SYM theory living on the D3-branes with supersymmetry broken to N' = 2 by Ny
hypermultiplets of dynamical quarks in the fundamental representation of SU(N). The field
content of the hypermultiplets is given by excitations of fundamental strings stretching between
D3 and D7-branes.

When the D3 and the D7-branes are separated along the mutual orthogonal directions the
hypermultiplets acquire a mass which is proportional to the distance between the branes. For
coincident branes (vanishing masses) the N' = 2 theory is superconformal invariant.

As proposed in [166] (see also [165]), excitations of fundamental strings with both ends on
the D7-branes represent mesonic states of the corresponding SYM field theory. Studying these
fluctuations allows for determining the mass spectrum of the mesonic excitations. The spectrum
turns out to be discrete with a mass gap [167].

Since the original proposal of inserting D7-branes in the standard AdSs x S® geometry, a lot
of work has been done in the direction of finding generalizations to less supersymmetric and/or
non—conformal backgrounds. In particular, flavors and meson spectra on the conifold and in the
Klebanov-Strassler model have been studied in [173]. The Maldacena—Nunez background has been
considered in [174], the class of metrics of the form AdSs x Y74 and AdS5 x L%*¢ in [175], while
for the Polchinski-Strassler set—up see [176]. Supersymmetric embeddings of D-branes and their
fluctuations in non-commutative theories have been investigated in [177]. Further generalizations
concern other stable brane systems [178, 179]. Chiral symmetry breaking and theories at finite
temperature have been first studied in [180, 181]. Moreover, several attempts have been devoted
to going beyond the probe approximation and studying full back-reacted (super)gravity solutions
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[182]. Further interesting results can be found in [183, 184, 185, 186, 187].

Among the formulations of the AdS/CFT correspondence with less supersymmetry, the one—
parameter Lunin-Maldacena (LM) background [66] corresponding to N' = 1 -deformed SYM
theories plays an interesting role, being the field theory and the dual string geometry explicitly
known. The gravitational background is AdSs x S® where S? is the S—deformed five sphere obtained
by performing a TsT transformation on a 2-torus inside the S® of the original background. This
operation breaks the SO(6) symmetry group of the five sphere down to U(1) xU (1) xU(1). On the
field theory side, this deformation corresponds to promoting the ordinary products among the fields
in the N' = 4 action to a xproduct which depends on the charges of the fields under two U(1)’s
and allowing for the chiral coupling constant to be different from the gauge coupling. Consistently
with what happens on the string side, these operations break N’ = 4 to A/ = 1 supersymmetry, as
the third U(1) (the one not involved in the *—product) corresponds to the R—symmetry. Further
generalizations [188] lead to a dual correspondence between a non-supersymmetric Yang—Mills
theory and a deformed LM background depending on three different real parameters 1, v2 and
v3 L.

All these models are (super)conformal invariant since the string geometry still has an AdS
factor. As such they cannot be used to give a realistic description of the RG flow of a gauge
theory towards a confining phase. However, it is interesting to investigate what happens if we
insert D7-branes in these deformed backgrounds 2. In particular, we expect to find a parametric
dependence of the mesonic spectrum on -;’s which could then be used to fine—tune the results.

In what follows we accomplish this project by studying the effects of inserting D7-branes
in the more general non—supersymmetric LM—Frolov background. In the probe approximation
(Ny < N), we first study the stability of the D3-D7 configuration. We find that, independently
of the value of the deformation parameters, an embedding can be found which is stable, BPS and
in the v; = 72 = 73 case it is also supersymmetric.

We then study fluctuations of a D7-brane around the static embedding which correspond to
scalar and vector mesons of the dual field theory. We consider the equations of motion for the
tower of Kaluza—Klein modes arising from the compactification of the D7-brane on a deformed
three—sphere. The background deformation induces a non—trivial coupling between scalar and
vector modes. However, with a suitable field redefinition, we manage to simplify the equations
and solve them analytically, so determining the mass spectrum exactly.

The effects of the deformation on the mesonic mass spectrum and on the corresponding KK
modes are the following: i) As in the undeformed case the mass spectrum is discrete and with a
mass gap, but it acquires a non-trivial dependence on the deformation parameters. Precisely, it
depends on the parameters 2, v3 which are associated to T'sT transformations along the tori with a
direction orthogonal to the probe branes, whereas the parameter ~; associated to the deformation
along the torus inside the D7 worldvolume never enters the equations of motion for quadratic
fluctuations and does not affect the mass spectrum. ii) Since the deformation breaks SO(4) (the
isomorphisms of the three-sphere) to U(1) x U(1) a Zeeman-like effect occurs and the masses
exhibit a non-trivial dependence on the (ms, m3) quantum numbers associated to the two U(1)’s.

'We use the standard convention to name real deformation parameters with ~.
2Several works in the literature are devoted to the study of D-branes in this context [189, 190, 191, 192, 193,
194, 195].
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The dependence is through the linear combination (y2ms — y3ms)? so that the mass eigenvalues
are smoothly related to the ones of the undeformed case by sending ; — 0. iii) The corresponding
eigenstates are classified according to their SO(4) and U(1) x U(1) quantum numbers. Expanding
in vector and scalar harmonics on the three-sphere, we find Type I elementary fluctuations * in
the (l%l, &Tl)(m%mg,) representations and Type II, Type III and scalar modes in the (%, é)(mQ,mS).
For a given [ the total number of degrees of freedom is 8(I + 1)? as in the undeformed theory
but, given the degeneracy breaking, they split among different eigenvalues. For any given triplet
(I,ma, m3) we compute the degeneracy of the corresponding mass eigenvalue. We find that the
splitting is different according to the choice vo # 73 or 72 = 3 (which includes the N' = 1
supersymmetric deformation). In the last case the spectrum exhibits a mass degeneracy between
scalars and vectors which is remnant of the A/ = 2 supersymmetric, undeformed case.

The chapter is organized as follows.

First, we give the foundations for a holographic study of Yang-Mills theories with flavour and
to show that some of the non-perturbative phenomena can be understood in a string theoretical
framework at least in a qualitative way.

Then, we study the embedding of spacetime filling D7-branes in G-deformed backgrounds
which, according to the AdS/CFT dictionary, corresponds to flavoring S-deformed N = 4 super
Yang-Mills. We consider supersymmetric and more general non—supersymmetric three parameter
deformations. In Section 4.2 we review the three-parameter deformation of the AdS5 x S® by using
a set of coordinates suitable for the introduction of D7-branes. In Section 4.2.1 we study the static
embedding of a D7-brane and discuss its stability. In the v1 = ~5 = 3 case, using the results of
[194] we argue that our configuration is supersymmetric. We then find the equations of motion for
the bosonic fluctuations of a D7-brane in Section 4.3.1 and solve them analytically in Section 4.3.2
determining the exact mass spectrum. In Section 4.3.3 we discuss the properties of the spectrum
and analyze in detail the splitting of the mass levels and the corresponding degeneracy. Finally,
in Section 4.4 we formulate the field theory dual to our configuration, whereas our conclusions,
comments and perspectives are collected in Section 4.5.

4.1 The undeformed case

Let us consider an orthogonal intersection of a pi-brane and a po-brane along d common spatial
directions (p2 > pi). We denote this intersection as (d|p; L p2). We shall treat the lower
dimensional pi-brane as a background, whereas the po-brane will be considered as a probe. The
background metric will be taken as:

2 ] 2 ]
U R > =

ds® = o (—dt? + (dz1)? + -+ (dzp,)?) + ﬁ] dX -dX | (4.1.1)
where R, a1 and a9 are constants that depend on the case considered, X = (X1, -+, X9—p,) and

u? =X - X. The supergravity solution also contains a dilaton ¢, which we will parametrize as:

as
_ R?

e 90 = — (4.1.2)

$We use the classification of [167].
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with a3 being constant.
Let us now place a ps-brane in this background extended along the directions:

(t,xr, -, xa, X1, Xpy—d ) - (4.1.3)
We shall denote by 2’ the set of X coordinates transverse to the probe:
2 = (Zl) e 729—p1—p2+d) ) (414)

with 2, = Xp,_q4m for m =1,---,9 — p; — pa + d. Notice that the Z coordinates are transverse
to both background and probe branes. Moreover, we shall choose spherical coordinates on the
po-brane worldvolume which is transverse to the pi-brane. If we define:

p2 = (X1)2 + -+ (ng—d)2 ) (415)
clearly, one has:
(dX1)? + - (dXp,—a)* = dp® + pPdQ, 4 1 , (4.1.6)
where ngQ_ 41 is the line element of a unit (p2 — d — 1)-sphere. Obviously we are assuming that
p2—d>2.

Let us consider first a configuration in which the probe is located at a constant value of |Z],
i.e. at |2] = L. If €% are a set of worldvolume coordinates, the induced metric on the probe
worldvolume for such a static configuration will be denoted by:

ds? = Gupde®de® . (4.1.7)

In what follows we will use as worldvolume coordinates the cartesian ones xq - - - x4 and the radial
and angular variables introduced in egs. (4.1.5) and (4.1.6). Taking into account that, for an
embedding with |Z| = L, one has u? = p> + 72 = p? + L2, the induced metric can be written as:

a1 a2

(dp? + p2d, 4 1) -

(4.1.8)
The action of the probe is given by the Dirac-Born-Infeld action. In the configurations we study
in this section the worldvolume gauge field vanishes and it is easy to verify that the lagrangian

density reduces to:
L= —e?V—detG . (4.1.9)

For a static configuration such as the one with |Z] = L, the energy density H is just H = —L. By
using the explicit form of G in (4.1.8), one can verify that, for the |Z] = L embedding, H is given
by:

2

p2+L2

ds? = 2

(—dt? + (dw1)? + -+ (dzg)?) +

G (d+1) — 2 (p2—d) —a3

P24 Jdet g | (4.1.10)

where ¢ is the metric of the unit (ps —d—1)-sphere. In a BPS configuration the no-force condition
of a supersymmetric intersection requires that H be independent of the distance L between the
branes. Clearly, this can be achieved if the «;-coefficients are related as:

H = J2

oy = Sd+1) = L -d). (4.1.11)
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Let us rewrite this last equation as:

e %) 2003 — a1

d =
041+Ot2p2 a1+ Qo

(4.1.12)

which gives the number d of common dimensions of the intersection in terms of the parameters
«; of the background and of the dimension ps of the probe brane.

In the string frame, the supergravity solution corresponding to a Dp-brane with p < 7 has the
form displayed in egs. (4.1.1) and (4.1.2) with p; = p, R given by

RT-P — 95-p 352 p<7;p) g N ()22 (4.1.13)
and with the following values for the exponents «;:
T—p (T=p)p—3)

a] = ag = T a3 = 3 (4.1.14)

Moreover, the Dp-brane solution is endowed with a Ramond-Ramond (p+1)-form potential, whose
component along the Minkowski coordinates z - - -z, can be taken as:

7—p

2 2

u

v L= e

To " Tp

(4.1.15)

Applying eq. (4.1.12) to this background, we get the following relation between d and po:

_p2tp—4

a 2

(4.1.16)
Let us now consider the case in which the probe brane is another D-brane. As the brane of the
background and the probe should live in the same Type II theory, po — p should be even. Since
d < p, we are left with the following three possibilities:

(p|Dp L D(p+4)) , (p—1Dp L D(p+2)), (p—2|Dp L Dp) . (4.1.17)

In the standard AdS/CFT correspondence, a system of N coincident D3-branes is considered
within Type IIB string theory. In the Maldacena limit, the metric of the D3-branes reduces to
its near-horizon (throat) region which is AdSs x S°. This is a product space of a five-dimensional
Anti-de-Sitter space and a five-sphere. Since we want to generalize the AdS/CFT correspondence
in this direction, we set p = 3 and we study the embedding of an additional Dk—probe brane
directly into the AdSs x S5 background, according to (4.1.17). Depending on the dimension of
the probe brane, the dual field theory of this supergravity set-up is then a conformal field theory
with a space-time defect. These defect conformal field theories (dCFT) involve fields which are
confined to a lower-dimensional subspace of the original four-dimensional space-time. For these
dCFT the four-dimensional conformal symmetry is broken to the lower-dimensional conformal
group of the defect.

There are various strings in the set-up: As usual, open string modes with both endpoints
on the D3-branes generate the N’ = 4 super Yang-Mills theory, while closed string modes give
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rise to type IIB supergravity on AdSs x S°. However, we have additional strings due to the
embedding of a probe brane. First, there are strings stretching between the Dk—brane and the
D3-branes. They give rise to fundamental hypermultiplets (“quarks”) in the low-energy theory.
Due to the decoupling of open strings on the Dk-brane in the infrared, the U(1) gauge group on
the Dk-brane, or U(Ny) in case of Ny Dk-branes, turns into the flavour group of the fundamental
matter. Second, there are open strings ending on the Dk-brane. In the probe approximation,
one neglects the back-reaction of the Dk-brane on the near-horizon background of the D3-branes.
Classically, the fluctuation modes of the probe are then described by the Dirac-Born-Infeld action
of the Dk-brane (plus Wess-Zumino term).

As a special case we have a “defect” of codimension zero corresponding to flavour in four
spacetime dimensions (k = 7): this is the D3-D7 brane configuration, first studied by Karch and
Katz [164, 166], where a spacetime filling D7-brane was added to the AdS5/CFT} correspondence.
The D7-brane completely fills the AdS5 space and wraps a maximal S? inside S°. This supergravity
configuration is dual to a four-dimensional N/ = 2 Yang-Mills theory describing open strings in
the presence of one D7 and N D3-branes sharing 3+1 dimensions. The degrees of freedom are
those of the N = 4 super Yang-Mills theory, coupled to an N = 2 hypermultiplet with fields in
the fundamental representation of SU(N). The latter arise from strings stretched between the D7
and D3-branes.

The D3-D7 configuration is special since fundamental fields are allowed to propagate in all
four space-time dimensions. This opens up the possibility for studying flavour in supersymmetric
extensions of QCD. It is possible to introduce mass for the fundamental matter by separating the
D7-brane from the D3-branes. The dual description involves a probe D7 on which the induced
metric is only asymptotically AdSs x S3. In this case there is a discrete spectrum of mesons.
This spectrum has been computed (exactly!) at large 't Hooft coupling [167] using an approach
analogous to the glueball calculations in deformed AdS backgrounds. The novel feature here is
that the “quark” bound states are described by the scalar fields in the Dirac-Born-Infeld action
of the D7-brane probe.

4.1.1 The probe approximation

The massless open string degrees of freedom of the D3-D7 intersection correspond to a N' = 4
super-Yang-Mills multiplet (generated by 3-3 strings) coupled to a fundamental hypermultiplet
(3-7 and 7-3 strings). The decoupling of closed strings is achieved by scaling N — oo while keeping
the 't Hooft coupling A\ = g%, y N = 4mgsN fixed. This is the usual 't Hooft limit for the gauge
theory describing the N D3-branes. The 't Hooft coupling for the N orthogonal D7-branes is
(see for example [132])

Ap = \27ls)* Ny /N (4.1.18)

which vanishes in the above limit if Ny is kept fixed. This implies that the SU(IN¢) gauge theory
on the D7-branes (generated by 7-7 strings) decouples and the group SU(Nyf) becomes the flavour
symmetry of Ny flavours. For A < 1 the appropriate description of this system is given by a
four-dimensional V' = 4 SU(N) gauge theory coupled to Ny hypermultiplets.

For A >> 1 one may replace the N D3-branes by the geometry AdSs x S°, according to the
usual AdS/CFT correspondence. The D7-branes may be treated as a probe of the AdS5 x S°
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geometry. Comparing the tension of both stacks of branes (see Appendix C),

13:1@;%5213 (v = N;/N), (4.1.19)
we see that the tension 7% and thus the backreaction of the D7-branes can be neglected in the
probe limit v — 0 keeping v/I# < 1. As we will see shortly, the D7-branes act as AdS5 x S3
probe branes. Consequently, for large 't Hooft coupling, the generating function for correlation
functions of the CFT should be given by the classical action of IIB supergravity on AdSs x S°
coupled to a Dirac-Born-Infeld theory on AdSs x S3.

4.2 Flavoring the marginally deformed case

Now we skip to the main topic of this chapter, namely the introduction of flavor in marginal
deformations of AdS/CFT.

Following [66, 188] we consider a type IIB supergravity background obtained as a three-
parameter deformation of AdSs x S°. It is realized by three T'sT transformations (T duality —
angle shift — T duality) along three tori inside S® and driven by three different real parameters
~i- The corresponding metric is usually written in terms of radial/toroidal coordinates (p;, ¢;),
i=1,2,3, Y, p? =1 on the deformed sphere, and in string frame it reads (we set o’ = 1)

2
u? ,  R? .
ds?® = ﬁnw,dx”dw + ﬁdzf + R? Z(dpf + Gp2dd?) + Gpipsp? Z Yid;

(]
G =1+ 43pip3 + 430307 + A1 P50 4 = Ry, (4.2.1)

where R is the AdS5 and S° radius. A further change of coordinates may be useful (we use the
notation cg = cos§, s¢ = siné for any angle §)

pP1L=Ca , pP2=25aCH , P3= 5450 (4.2.2)

leading to the description of this background in terms of Minkowski coordinates z* plus the AdSs
coordinate u and five angular coordinates («, @, ¢1, ¢2, ¢3). The deformations correspond to T'sT
transformations along the three tori (¢1, ¢2), (¢1,3), (¢2,¢3) and are parametrized by constants
43, 42 and 41 respectively.

This background is non—supersymmetric and it is dual to a non—supersymmetric but marginal
deformation of N' = 4 SYM (the deformation has to be exactly marginal since the AdS factor
is not affected by T'sT’s). The N' = 1 supersymmetric background of [66] can be recovered by
setting 41 = 42 = 93.

With the aim of embedding D7—branes in this background we find more convenient to express
the metric in terms of a slightly different set of coordinates. We describe the six dimensional
internal space in terms of X = {p, 0, ¢, ¢3, X5, X¢} which are mapped into the previous set of
coordinates by the change of variables

p=usqy , Xs=ucacyp , Xp=1UCyS¢p, (4.2.3)
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In string frame and still setting o/ = 1, we then have

2 W da*dz” R dXmdX" 4.2.4
ds—Ran,a: x+u2Gmn (4.2.4)

where the non—vanishing components of the metric G,,,, are
G = 1 Goo = p*
2

Goose = G (1+%3p1p3) p3u? Gosps = G (14+430103) p3u
G¢2¢3 = G Y273 pf,o%pg u?

Goxs = —GH1%2 p3p35 Xo Gy xs = G142 p3p3 X5
Gosxs = —GH1%3p3p5 Xs Gy xs = G193 p3p3 X5
X62 2 2 2 X52 2 2 2
Gxsx; = 1- 202 [1-G (1 +41mp3)] Gxoxe=1- oy [1-G (1 +4p303)]
X5X6 .
Gxaxe = a2 [1 -G (1+410303)] (4.2.5)
1

where G is given in (4.2.1) and now

X2 + X2 p2C2 p282
2 5 6 2 0 2 0
= , = ) = 4.2.6
P1 02 P2 w P3 02 ( )
The constraint Y5, p? = 1 is traded with the condition u® = p? + X2 + X2.
The LM—Frolov supergravity solution is characterized by a non—constant dilaton

e = 2@ (4.2.7)

where ¢q is the constant dilaton of the undeformed background related to the AdS radius by
R* = 47e® N = \. For real deformation parameters 4; the axion field Cj is a constant and can
be set to zero.

This background carries also a non—vanishing NS-NS two—form and R-R forms as well. In our
set of coordinates they read

R2G ) . .

B = — ((X5dX6 — X6dX5) A (33p5dda — Aopadds) + 1053 u?dga A d¢3>
X5dXg — Xed X, 4

Cy = 4R%e % A (522220 55 O 4+ Aody + A3des | w1 = ——Cpsedl

upg 4du
4 X5dXg — XgdX
Cy = ARYe 0 (_dt Adwy Adwy Adeg — Guy A =28 26T 5 460 A desg
4R8 u?pi

(4.2.8)
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Moreover, we have
Ce=C4yNB (4.2.9)

and in what follows we also set Cg = 0 (see Section 1.1.1).

The deformed background written in terms of the original internal coordinates (p, ., 0, ¢1, P2, P3)
has a manifest invariance under constant shifts of the toroidal coordinates (¢1, 2, ¢3) which
correspond to three U(1l) symmetries. With our choice of coordinates the invariance under
¢2.3 — ¢23 + const. is still manifest, whereas the third U(1) associated to shifts of ¢ is real-
ized as a rotation in the (X5, X¢) plane.

4.2.1 The embedding of D7—-branes

We now study the embedding of Ny < N D7-branes in the deformed background described
in the previous Section. For simplicity we consider the case of a single spacetime filling D7—
brane (N;y = 1) which extends in the internal directions (p, 0, ¢2,¢3) (we work in the static
gauge where the worldvolume coordinates o® of the brane are identified with the appropriate ten
dimensional coordinates). The X5, X coordinates parametrize the mutual orthogonal directions
of the intersecting system of N sources D3—branes and one flavor D7-brane.
The dynamics of bosonic degrees of freedom of the D7-brane is described by the action (see
Appendix C)
S =Sppr+Swz (4.2.10)

where recall that Spp; is the abelian Dirac-Born-Infeld term (in what follows latin labels a, b, ...
stand for worldvolume components)

Sppr = —T7/ dBo e/ —det(gap + Fap) (4.2.11)
g

whereas Sy z is the Wess—Zumino term describing the coupling of the brane to the R-R potentials

(2ma’)?

(2ma’)3
Swz = 1% 5 P[CQ]/\F/\F/\F+ P[C4—02/\B]/\F/\F
g

(4.2.12)

Here gop = Gun0. XM, XY is the pull-back of the ten-dimensional spacetime metric (4.2.4,
4.2.5) on the worldvolume g and 77 is the D7-brane tension. The U (1) worldvolume gauge field
strength F;, enters the action through the modified field strength F,, = 2wa/Fy, — by, where
bap is the pull-back of the target NS-NS two-form potential in (4.2.8), ba, = Ban0. XMop XN,
Moreover, in (4.2.12) PJ...] denotes the pull-back of the R-R forms on Xs.

We look for ground state configurations of the D7-brane. These are static solutions of the
equations of motion for X5, X¢ and eF' (¢ = 27a’) derived from (4.2.10).

In the ordinary AdSs x S° background static embeddings (see for example [180]) can be found
by setting X¢ = 0, F' = 0 and X5 = X5(p) satisfying

d pg dX5
el =0
dp \ \/1+ (0,X5)? dp
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with asymptotic behavior X5(p) = L + p% for p > 1. The mass solution X5 = L is the only
well-behaved solution and corresponds to fixing the location of the D7-brane in the 56—plane at
X 52 + X62 = L?. This is a BPS configuration since the energy density turns out to be independent
of L [196, 179].

In the deformed background we consider an embedding of the form

XM = (x,unpv97¢27¢37X5(p)7X6(p)) ) F = F(XM) (4214)

where, as in the ordinary case, we allow for a non—trivial dependence of the orthogonal directions
on the non—compact internal coordinate p. Solving the equations of motion for X5, Xg and F' in
the present case requires a bit of care since the non—vanishing NS-NS 2—form in (4.2.8) can act as
a source for the field strength e F'.
We expand the action (4.2.10) up to second order in e¢F'. The WZ action is simply
17

Swz = > P[C4 —C3 A B] NeF NeF (4.2.15)
g

whereas the expansion of Spg; gives

\/—det(g —b+eF)
Ty

L -
DBI NGE
—det(g — b)
= Tr¥X = . \/det(l+Y
7 e ( )
1 1 1
= -1 p38969 v/ Q9 {1 + §TI‘(Y) - ZTI‘(Yz) + g [TI‘(Y)]2 + - } (4.2.16)
where we have defined
Y = (g—b)'eF
Qe = 1+ (9,X5)%+ (9,X6)? (4.2.17)
and set e?0 = 1.
The source for ¢F' comes from the term
1 € . . N
oY) = 20, (X5 0, X6 — X 0pX5) (52 Fpgs — V3 Fogs) = 11822 Fpg] (4.2.18)

In the abelian case the last term is a total derivative and, once integrated on the worldvolume of
the brane, it cancels. We are left with the first term which gives a non—trivial coupling between
the scalars and the vectors. We note that these couplings are proportional to the deformation
parameters and disappear for 4; = 0, consistently with the undeformed case.

Since all the F' components except Fl4, and Fe, satisfy homogeneous equations we can set
them to zero and concentrate on the system of coupled equations of motion for X5, X¢, Fl,4, and
F,¢,. It is easy to realize that a solution is still given by X¢ = 0, Fl,¢, = F) 4, = 0, whereas X5(p)
satisfies eq. (4.2.13) and can be chosen as X5 = L.
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Therefore, even in the deformed case, the ground state of the probe brane is given by a static
location at X2+ XZ = L? with no F flux and absence of non-trivial quark condensate. The choice
X5 = L and X = 0 breaks the rotational invariance in the (X5, Xg) plane.

This configuration is stable (BPS). In fact, the corresponding action

S=-Ty / dBap3sgco (4.2.19)
g

coincides with the one of the undeformed case and satisfies the no—force condition [196, 179].
Setting X 52 + XG2 = L?, the induced metric on the D7-brane reads

ds? = ggpdX%dX?

L+ p? 2 2 ) 2 R? 2 292
= & (—dt® + daf + day + da3) + m(dp + p*df?)
R2G/72 27,2 27,2 02L20383 (Y2dep2 + ’A}’Sdébs)z
+ —— |cpdp; + spdos + 4.2.20
(L2 +P2) Co ¢2 Sp ¢3 (LQ ‘|‘/72)2 ( )
where G in (4.2.1) takes the explicit form
2, 22

G- (L7 +p7) (4.2.21)

(L2 + p?)2 + ﬁ%p%%cé + %L%%’g + '7§L2p20(3

We note that, due to the particular embedding we have realized, the parameter 41 associated
to the T'sT transformation on the (¢2,¢3) torus inside the D7 worldvolume enters the metric
differently from 493 which are instead associated to deformations on tori with one parallel and
one orthogonal direction to the probe.

The different role played by 41 respect to (92,43) can be also understood by looking at the
conformal case (L = 0) or the UV limit (p — o0) of the theory. In both cases the dependence on
(42,43) disappears and the worldvolume metric reduces to the one for AdSs x S3 where S3 is the
deformed three—sphere with metric

2

dsz,
s = d0° + G(cjde} + 53ddf) , G

1
T T

(4.2.22)

Instead, for p finite and L # 0 the AdSs factor is lost, the theory is no longer conformal and a
non—trivial dependence on all the deformation parameters appears.

The particular probe brane configuration we have chosen is smoothly related to the one of the
undeformed case. In fact, sending 4; — 0 we recover the usual Karch-Katz [164] picture of flavor
branes in AdSs x S°. As we have just proved, the stability of the D3-D7 system survives the
deformation.

We have embedded flavor D7-branes in a deformed background. When the D7-brane is space-
time filling and wraps the (¢, ¢3) torus the configuration is stable and no worldvolume flux is
turned on. Alternatively, we could have started with a configuration of D7-branes in the unde-
formed AdSs x S® background and perform the three TsT' transformations as a second step. If
the D7-branes were to be placed along the same directions as before, we would obtain exactly
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the same configuration of stable D7-branes in the deformed background with no flux turned on.
In fact, along the directions (¢1, ¢2, ¢3) affected by T'sT' transformations the probe branes have
Dirichlet-Neumann-Neumann (DNN) boundary conditions. Considering the proposal in [191]
and according to the analysis of [193] a DNN configuration with no flux is mapped into the same
configuration, whatever is the T'sT transformation we perform. Therefore, for the particular em-
bedding we are analyzing the two operations i) Adding a probe to the deformed background and
ii) Performing a T'sT transformation on the undeformed brane scenario are equivalent processes.
The stability of our brane configuration for any value of the deformation parameters then follows
from the fact that T'sT transformations do not affect the BPS nature of the original brane system
[66] (see also [192]).

It is worth stressing that the possibility of applying equivalently prescriptions i) or ii) is peculiar
of the particular brane configuration we have chosen. Had we considered different embeddings,
the two procedures wouldn’t had led necessarily to equivalent settings [191, 193]. Furthermore,
the stability of the configuration would have become questionable.

When the deformation parameters 4; are all equal the AdSs x S background has N = 1
supersymmetry. The question is whether our D7-brane embedding preserves supersymmetry. The
standard way of finding supersymmetric configurations is to look at the k—symmetry condition of
the probes. However, since the f—deformed background can be described by an SU(2) structure
manifold, it is more convenient to work using the formalism of G-structures [197] and Generalized
Complex Geometry (GCG) [198]. In this framework the supersymmetry conditions for D-branes
probing SU(2) structure manifolds have been established in [194]. For spacetime filling D7-branes
a class of supersymmetric embeddings is given by 21 = X5 + iXg = L, with z0 = X7 + i X5 and
z3 = X3 + i1 X4 arbitrarily fixed and no worldvolume flux turned on. This embeddings break one
of the U(1) global symmetries. Since our configuration belongs to this class we conclude that our
embedding is supersymmetric.

4.3 The mesonic scenario

As proposed in [166, 165] D7-brane fluctuations around its ground state are dual to color singlets
which may be interpreted as describing mesonic states of the four dimensional gauge theory. The
mass spectrum of the mesons is given by the Kaluza—Klein spectrum of states which originate from
the compactification of the D7-brane on the internal submanifold. In the ordinary undeformed
scenario the spectrum is discrete and with a mass gap [167].

4.3.1 Probe fluctuations

Our main purpose is to investigate probe fluctuations in the deformed background. A generic
vibration of the brane around its ground state can be described by

Xs=L+ex(c?), Xe =cp(a”) (4.3.1)

together with a non—trivial flux eF,, = (9, A — OpAs). The fluctuations are functions of the
worldvolume coordinates 0% and ¢ is a small perturbation parameter.
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We expand the action of the probe brane in powers of the small parameter
SZSDB[—l-SWZ:/ d80{£0+€£1+€2£2+"'} (4.3.2)
3g

and consider terms up to the quadratic order in e.
We first concentrate on the DBI term

1
Lppr = _T7ﬁ \/—det(g — b+ cF) (4.3.3)

where we have written the dilaton field as in (4.2.7) with e® = 1.
We expand the various terms by writing

g=99 +egW +2g® b= 4 epV) 4 2@

1
== GO 4 a4 2q® (4.3.4)

Therefore, the determinant can be written as

V—det(g—b+eF) = \/—det (9@ —bO)\/det(1+Y)

= \/—det (9@ — b)) [1 + %Tr(Y) - iTr(Y2) + é [Te(Y))? + - - ]

(4.3.5)

where the matrix Y is given by
Y = (g(o) - b(o)) o [E (g(l) — M 4 F) + €2 (g(2) — b(2)) + - } (4.3.6)

At the lowest order the contribution ¢(%) is easily read from (4.2.20), whereas for the pull-back of
B from eq. (4.2.8) we find that the only non—vanishing component is bg;) 6 = A1 R2Gp3p3.
It is convenient to introduce the undeformed induced metric

g _ diag _L2 + p2 L2 + p2 L2 + p2 L2 + p2 R2 R2p2 R2p2cg R2p283
R2 ’ R2 ’ R2 ’ R2 ’L2+p2’L2+p2’L2+p2’L2+p2
(4.3.7)
the auxiliary metric C defined by
d§®> = Cpdo®do®
L? + p2 R?
= (—dt? + da? + da3 + da3) + WW + p2d6?)
R*Gp* [ o 5 oo P L*Gs3(Aadds +43dgs)*
+ m C@d¢2 + 89d¢3 + (L2 T p2)2 (438)
with ) .
A L
. (L= +p) (4.3.9)

(L% + p2)? + A3 L2p%s3 + A3 L% p*c
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and two deformation matrices 7 and J given by
T 202 — ’A}/g% TP3bs — ,3,22 TP203 — Th3b2 —A995
j¢2¢2 -0 j¢3¢3 =0 j¢2¢3 — _j¢3¢>2 =7 (4.3.10)

The metric C is nothing but the induced metric (4.2.20) evaluated at 47 = 0. Its inverse can be
expressed as

2
cl=¢"1+ mT (4.3.11)
It turns out that the matrix (g(o) - b(o))_l in (4.3.6) can be written as
1 2
<g<o> _ b<0>) _clyg—gly R p2)7 L7 (4.3.12)

Since the whole dependence on the deformation parameters is encoded in 7 and J, the 4; — 0
limit is easily understood.

Now a long but straightforward calculation allows to determine the first order corrections
gW b G as well as the second order ones g2, b2 G2 Inserting in £ppr we eventually find

E% ;= —Tup’cpsy
E%)BI = T7p36989’?1F¢2¢3/R2
R? R?
[’(2) - _T 3 o Caba b e aba )
DBI 7P CoSo 2(L2 ‘|‘/72) aXObX + 2(L2 +P2) G 04 00pp
1 L . .
+ ZFabFab + m(’}/gFa(b:; — ’}/3Fa¢2) gababgp (4313)

where F® = C%CYF,; and C* is given in (4.3.11). The first order Lagrangian is a total derivative
since our embedding X5 = L, Xg = 0 is an exact solution of the equations of motion.
The Wess—Zumino Lagrangian starts with a second order term in € given by

(L2 + p2)2

1
=T--P — BINFANF =T
Lwz 72 [04 Cy A ] A 7 Tl

€189, A;0; Ay (4.3.14)
where we use latin indices to indicate coordinates on the three-sphere parametrized by (6, ¢2, ¢3),
A; is the flux potential on it and €¥* is the Levi-Civita tensor density (e’23 = 1). This term
turns out to be independent of the deformation parameters since the combination (Cy — Cy A B)
at lowest order gives exactly the 4-form of the AdSs x S® undeformed geometry.

Determining the equations of motion from the previous Lagrangian is now an easy task. In-
troducing the fixed vector

v = '3/255 — ’3/355 (4.3.15)
for the x and ¢ scalars we find
R2 ab L2 a, b
aa |: —det(g) (mg + m?) v > abX:| =0 (4316)



R? L
0a [ —det(G) m gab <ab90 + ﬁUCFbC>] =0 (4.3.17)
whereas, using (4.3.17) the equations of motion for the gauge fields take the form

4p(L?

2
Ba { “det(G) Grghd ch] - ij)ebjkﬁjflk (4.3.18)

L L
— /—det(G) m vty [gbc <8cg0 + ﬁUchf>] -0

It is interesting to note that the equations of motion depend only on the deformation parameters 49
and 43 hidden in the vector v. In fact, at this order the dependence on the parameter 41 associated
to the torus inside the D7 worldvolume completely cancels between the factors \/—det(g — b + €F)
and 1/ VG.

The scalar fluctuation y along the direction where the branes are located at distance L de-
couples from the rest. The scalar ¢, instead, interacts non—trivially with the worldvolume gauge
fields through terms proportional to the deformation parameters.

The vector v has non—vanishing components only on the three—sphere and selects there a fixed
direction. As a consequence, the equations of motion (4.3.16 — 4.3.18) loose SO(4) invariance.

As a first application we consider the L = 0 conformal case. The vibration of the brane is
given by X5 = ¢ x(0?%) and X = ¢ ¢(0®). The equations of motion reduce to

R2
Dq [ —det(G) = G abq/] =0
3
Ba [\/—det(g) gacghd ch] - %ebjkajAk = 0. (4.3.19)

where ¥ = (¢, x) and G% is the inverse of the matrix (4.3.7) evaluated at L = 0. We see that the
dependence on the deformation parameters disappears completely and the equations of motion
reduce to the ones of the undeformed case [167]. In particular, the scalar and gauge fluctuations
decouple. Written explicitly, the scalar equations read

R* 1 1
—0M0, Y + —0,(p°0,0) + 5 Ags ¥ =0 (4.3.20)
p p p
where 1 1 !
AU = —9, O + =02V + — 920 4.3.21
g3 050 o (cospOp V) + Cg H ¥ + Sg 3 ( )

is the Laplacian on the unit 3-sphere (02 = 04,, 03 = 04,).
According to the results in [164, 167] the corresponding AdS5 masses are above the Breitenlohner—
Freedman bound [199]. This is a further check of the stability of our brane configuration.

4.3.2 Mesonic spectrum

We now concentrate on the more general situation X5 = L + ¢ x(c%), X¢ = € p(c®) and solve the
equations of motion (4.3.16 — 4.3.18) for scalar and vector modes. We write the abelian flux in
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terms of its potential one-form, Fy;, = 0,4, — OpA,4, and choose the Lorentz gauge d,A"* = 0 on
the spacetime components.

We find convenient to introduce covariant derivatives on the unit three—sphere (0, @9, ¢3).
Given its metric g = diag(1, ce, s2), we have V;VJ = 9;V/ + FJ V¥ with the only non—vanishing
components being F22 = —F33 = cySyp, F29 = —i—g and F

In order to simplify the equations we introduce the special operators

R* 1 1 . L2

= AV _ 7 o 2 2
O"f - (L2 +p2)28 a'/ + p38 ( 8 ) \/— (\/_a ) + (L2 +p2)2 (7283 '7382)
N, = R v 1 2 22 1 l
05 = (L2 + p2)2 0”9, + p(L2 +p2)2aﬂ [p(L* + p*)70,] + ?VN
L? . )
Ty e s A302)° (4.3.22)

along with their undeformed versions Og = O4|5,=4,-0, Oy = (’54,|4,2:4,3:0.
Equation (4.3.16) for the y mode then takes the compact form

Oy x =0 (4.3.23)

whereas equation (4.3.17) can be rewritten as

L . R 1 1
Op® - ﬁ(’}’za?, — 4302) ﬁap(PgAp) + ?VIAZ =0 (4.3.24)
where we have defined
L L . .
=t ppvtda = ¢+ 55 (T2ds — G34ds) (4.3.25)

Equations (4.3.18) for the vector modes come into three classes, according to b being in
Minkowski, or b= p or b =i = {0, ¢2, ¢3}. We list the three cases.

e b in Minkowski: For b = u and expressing the F' flux in terms of its one—form potential,
equation (4.3.18) becomes

LR?

1., 4 1o
O?y AM - 8# [Eap(p Ap) + ?VlA + m

(9203 — 4302) <I>] =0 (4.3.26)

with ® defined in (4.3.25).

We apply 0" to this equation and sum over p. Using [0*,05] = 0 and Lorentz gauge,
solutions corresponding to non-trivial dispersion relations (k2 # 0) satisfy

1., 4 Lo g LR* .
Fap(p Ap) + FVlA + ) (’}/283 — ’}/382)(1) =0 , Oa/ A“ =0 (4.3.27)

(L2 + p2)2
e b= p: Again, expressing the flux in terms of the vector potential we obtain

LR?
(L2 + p?)2

0; A, [pl 0,(p%0,4,) + p—gaplel + (3205 —’7382)8,)@] =0 (4.3.28
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e b =14: On the internal S3 sphere we have

) 1 l 402 I gm
O’y Aj - F <VZV]'A L2 n p CQS ]lmV A (4‘3‘29)
1 2, 2\24 LR?* . o
p(Lz peIp [p(L? + p?)%0;A,)] T 208 = 3002) 0,0 = 0

where we have used (\/_F“) V,F9 =V,ViA —V,;VIA.

Now, collecting all the equations and using the first of (4.3.27) in (4.3.24) the system of coupled
equations we need solve is

(0) O,:/X =0 ) Oa, AM =0
(4.3.30)
(1) 053 =0

(L2

1 LR*> .
(2) [pgap + V A+ TQ)Q(W@?, — 4302) @} =0
2
O;

1 L
3 l ~ N
5 A, — [ 0p(p°0,A,) + ?@V A+ m(’}’zag — 7382)8/)@)} =0

~ 1 - 4p2 1
(4) O5 A; P <VNJA T2 P opes —— i VI A™ >
LR?

1
0y [p(L? + p?)?0;A,] — T+ )

TRt e (203 — 4302)0;® = 0

Equations (1)—(4) exhibit a non-trivial interaction between the scalar ® and the components of
the vector potential along the internal directions. The modes x and A, instead decouple.

It is convenient to search for solutions expanded in the particular spherical harmonics on S3,
described in Appendix D. Scalar spherical harmonics are a complete set of functions ym”% in
the (2, 2) representation of SO(4) and with definite U(1) x U(1) quantum numbers (mq,ms)
satisfying |mg + mg| = |mg — mg| =1 — 2k, I,k = 0,1,.... For fixed [ the degeneracy is (I + 1)2.
Their defining equations are 4

AS3 ym2,m5 — l(l + 2) ym%md
8 me,ms . mo,ms
’ = imae3), 4.3.31
0o 3 23 ( )

Vector spherical harmonics come into three classes. Choosing them to be also eigenfunctions of

5 q? we have longitudinal harmonics H; = V;),"*"™? [ > 1 which are in the (5, %) representation

of SO(4) with (mg,mg3) ranging as before. Transverse harmonics are M; = y(l’m*m”;* with
[ > 1 in the (;1, l+—1) and M; =), (Lima;ma)i= ith | > 1 in the (l+—1, l%) Their degeneracy is

4For their explicit realization see for instance [157, 190].
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[(I+2) and it is counted by |mo + ms| =1+ 1 — 2k,|ms — mg| = I F 1 — 2k. These harmonics
satisfy

ViV'M; —RIM; = —(1+1)° M
e VIMEF = £ g1+ 1) MF
ViMF = 0
9
8¢23Mf = imgy M (4.3.32)

where /g = cpsg is the square root of the determinant of the metric on S3, whereas R;'- = 25;- is
the Ricci tensor.

As in the undeformed case [167] we require the solutions to be regular at the origin (p = 0),
normalizable and small enough to justify the quadratic approximation. All these conditions are
used to select the actual mass spectrum of the mesonic excitations.

The scalar mode x

We start solving the equation for the decoupled scalar x. Using the general identity %&(\/ﬁ)is) =
V,;V's valid for any scalar s, the equation O = 0 reads explicitly
2

R4 v 1 3 1 l
50”0, x + ;ap(p dpX) + ?vlv X +

5 2 2
(L2 + p2)2 72 (203 — 4302)"x = 0 (4.3.33)

L
(L2 +p
We look for single-mode solutions of the form
X(0®) =1(p) €™ V"6, ¢a, b3) (4.3.34)

Inserting in (4.3.33) we obtain an equation for r(p) that, after the redefinitions

p - KR R s g A ,
=T [ = =75 = (h2ms = J3ma)” = M” — (Joma — J3ma)”, (4.3.35)
becomes A
3 I? I(1+2)
Dgr+ =01 + - —0 4.3.36
QT Q QT (1 + Q2)2 92 T ( )

This has exactly the same structure of the equation found in the undeformed case [167]. The
only difference is the presence of the deformation parameters in I'> which in the undeformed case
reduces simply to M?. Following what has been done in that case [167] we find that the general
solution is

r(p) = p(L* + p*) " F(—a, —a+ 1+ 1;1+2;—p* /L?) (4.3.37)
where F' is the hypergeometric function and o = SR ARV Se ”21+F2 This solution satisfies the conditions

of regularity and normalizability if the quantization condition

M2 =4(n+1+1)n+1+2) neN, nl>0 (4.3.38)
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is imposed. Using (4.3.35) and M? = —k?2, the mass spectrum of scalar mesons then follows

2L Y9 — Agmg 2
M, (n,1,ma,mg) = ﬁ\/(n+l+1)(n+l+2)+ <w> (4.3.39)
with n,l > 0 and |ms + mg| = |me — ms| = — 2k, k a non—negative integer.

We see that the deformation parameters induce a non—trivial dependence of the mass spectrum
on the two U(1) quantum numbers (ms, m3), so breaking the degeneracy of the undeformed case.
The mass spectrum is smoothly related to the one of the undeformed case for 4; — 0.

The Type II modes

We look for excitations of the form
Au(0%) = Cu Zi1(p) e Y2 (0, 2, ¢3) . k(=0 (4.3.40)

Following the classification introduced in [167] for the undeformed case we call them Type II
modes. The equation 054, =0 in (4.3.30) yields to

2

5 (3203 — 4302)° A, =0 (4.3.41)

R4 v 1 3 1 !
28 8,,AM + ﬁap(p 89"4#) + ?VN AM + m

(L% + p?)

This is exactly the same equation as the one for the scalar mode y. Therefore, for each component
A, we follow the same strategy of subsection 5.1.1 and find the mass spectrum

2L Somns — Azma \ 2
st ms) = 2 2 ¢ (e o) 1312

with n,1 > 0 and |mg + mg| = |me — ms| =1 — 2k.
Even for this type of vector fluctuations the spectrum is smoothly related to the undeformed
one for 4; — 0.

The Type I modes

Having performed the field redefinition (4.3.25) we solve the coupled equations (1)—(4) by consid-
ering elementary fluctuations of ®, A, and A;.

Being in a different representation the harmonics M;t do not mix with the others. Therefore
we can make the ansatz °

=0, A,=0, A0 = ZF(p) ™ MF (0, pa, b3) (4.3.43)

SWe note that if we were to follow closely the classification of [167] we would call Type I modes the elementary
modes with ¢ = 0, i.e. with no fluctuations along the X° coordinate. However, given the structure of the equations
of motion, in our case we find the definition (4.3.43) more convenient. In any case, the two definitions coincide for
¥ = 0.
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By using the identity V;A? = 0 as follows from (4.3.32), equations (1), (2) and (3) in (4.3.30) are
identically satisfied whereas eq. (4) reads
1 4p? 1

. A. _ Al . Lgm | _
O"/ AJ P2 <VZV]A + L2—|—p2 C@S@Eﬂmv A > 0 (4344)

Considering the explicit expression for the operator Oy in (4.3.22) and using properties (4.3.32)
we find that ZF(p) is a solution of the equation

%ag [0(0® + 1)?0,ZF] + [fQ — @:;21)2(1 +1)2 F4(* + 1)1+ 1)} ZF=0 (4.3.45)

where we have used the definitions (4.3.35). This is formally the same equation as the one of the
undeformed case, except for the different definition of I'2. Therefore, following the same steps
[167] we find that the solutions are still hypergeometric functions

Zf(p) = P (P + L) TP 42— o, =1 — o1+ 2%/ 1?)
Zr (p) = P (p? + L) TPl — o1 — i1+ 2%/ 17) (4.3.46)
where q = =1V 1+ V21+F2 Requiring them to be regular at infinity we obtain the following quantiza-

tion conditions

2 =4(n+14+2)(n+1+3)
2 =4n+)(n+1+1) n>0 (4.3.47)

As a consequence the mass spectrum reads

2L ) _A 2 = _— —
M \/(n+l+2)(n+l+3)+<w> {|m2+m3| l—1—2k

’ :ﬁ 2 \mg—m3|:l+1—2k
_ 2L Y2mg — Y3ma ? |ma +mg| =1+1—2k
M[,——ﬁ\/(n+l)(n+l+l)+<—2 Iy — ms) =1 — 1— 2k

(4.3.48)
where [ > 1 and k is a non—negative integer.

The Type III modes

Finally, we consider the following fluctuations

O(0") = Xrrr(p) €™ V"0, do, b3)
Ap(0®) = Yirr(p) €™ V"0, ¢, d3) (4.3.49)
Ai(0®) = Zii(p) €™ VY0, 2, ¢3) = ViA(0®)
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with [ > 1. We note that [ = 0 corresponds to having A; = 0. We will comment on this particular
case at the end of this Section.

Inserting in (4.3.30) and using the identities (4.3.31) for the scalar harmonics, after a bit of
algebra the equations (1)—(4) can be rewritten as

R* Y 1 3 I(1+2) 12 A ) )
(1) [ma Oy + Eap (P 817) - 2 - L2+ p2)2 (Aams — A3ma)*| ® =0
1 (142  LR? R )
(2) Eap(pgAp) — ( p2 )A + Z(L2 n 02)2 (’ygmg — fy3m2) d=0
Rt 1. /1
(3) ma oA, + Faﬁ <;8p(p314p)>
(l+2 L? A A
- [ ( P’ | i (L2 +p2)2(72m3 —737”2)2} Ap
) L2 _ 2 . R
+ 21LR2W(727713 —A3mg) ® =0
R v 1 2 212
L? R . 1
~ @ s~ ) A = SO [ A
. LR? R )
iy ey 12ma ~ Jama) @ =0 (4:3.50)

It is worth mentioning that eq. (1) in (4.3.30) contains the operator ﬁai(\/gai) which acts
differently on scalars and spherical vectors. Therefore, when this operator is applied on & = ¢ +
%(%Ag —A3As), in principle one should split it as acting on ¢ and A; separately. However, since
in the present case A; = V,;A, exploiting the algebra of covariant derivatives and the properties
of scalar harmonics in (4.3.49), it is easy to show that

L
NG

This is exactly the same relation satisfied by the scalar ¢, so we are led to %@-(\/@92‘@) =

9;(/g0'V;A) = V,V'V,;A - 2V;A = (1 +2)V,A (4.3.51)

—I(l +2)®. This confirms that considering ® as an elementary scalar fluctuation is a consistent
procedure.

Equations (4.3.50) are four equations for three unknowns Xyrr, Y771, Zrrr and lead to non—
trivial solutions only if they are compatible. Indeed it turns out that equation (4) is identically
satisfied once the others are. We then concentrate on the first three equations.

We first solve equation (1). By observing that it is identical to the equation for the scalar x
(see eq. (4.3.33)) we immediately obtain

Xrrr(p) = p' (L + p*) " R (= (n+ 14+ 1), —n; 1+ 2, —p? /L?) (4.3.52)
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where the quantization condition (4.3.38) has been used. As a consequence, the mass spectrum is

2L Jomg — 4 2
Ma(n,1,ma, m3) = ﬁ\/(n+z+1)(n+z+2) + (M) (4.3.53)

where n > 0,1 > 1 and |mg + mg| = |me — mg| =1 — 2k.
Equation (2) can be used to express the mode A in terms of ® and A,. Inserting the expressions
(4.3.49) we obtain

211 = 77—~

1 3 . LR?p?
Il +2)

Z0.(0%Y; e -4 X 4.3.54
P (P Y1r1) +Z(L2 +p2)2(72m3 A3ma) HI:| ( )

We then consider equation (3) which exhibits an actual coupling between X ;7 and Y77. In order
to solve for Y7rr given the solution (4.3.52) for X 75 we set

Yir(e) = 07 (1 + 0*)~ P(o) (4.3.55)

Using the definitions (4.3.35) together with the quantization condition (4.3.38) and defining y =
—0?, after some algebra the equation for P reads

y(1=y)P"(y) + [(1+2) + (2n+ 1) y] P'(y) —n(n+14+1)P(y)
=7 ((11;'—5))2 F(—-(n+14+1),—n;l+ 2;y) (4.3.56)

where we have defined n = i% (Aams3—43ms). This is an inhomogeneous hypergeometric equation
whose source is a polynomial of degree n, solution of the corresponding homogeneous equation.
The most general solution is then of the form

P(y) =cF(—(n+1+1),—n;l+2;y) + P(y) (4.3.57)
for arbitrary constant ¢, where P is a particular solution of (4.3.56). Exploiting the general identity

1=y F'(—(n+1+2),—n;l+Ly) + n+1+2)F(—(n+1+2),—n;l+ 1;y)
(Al D) (n+1+2)
B (14+1)

F(—(n+1+4+1),—n;l +2;y) (4.3.58)

valid for hypergeometric functions with integer coefficients, it is easy to show that a solution is
given by
_ l+1 F(—(n+1+2),—n;l+ 1Ly
Ply) =y FD) (= ) )
m+1+1)(n+1+2) 11—y

The general solution of equation (3) is then

(4.3.59)

Yirr(p) = p NP+ )T IR e (L2 4 ) F(=(n+ 1+ 1), —n51 + 2, —p? /L7

(1+1) ' '
+ 77(n+l+1)(n+l+2)F(—(n+l+2),—n,l+1,—p2/L2)] (4.3.60)
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This solution is regular at the origin and not divergent for p — oo. Due to the quantization
condition (4.3.38) the corresponding mass spectrum is still given by

~ ~ 2
w) (4.3.61)

2L
M[]](TL,Z,THQ,M;J,):—\/(n+l+1)(N+l+2)+< 9

R2
withn > 0,1 > 1 and |mg + ms| = |mg — m3| =1 — 2k.

Before closing this Section we comment on the particular [ = my = m3 = 0 mode. In (4.3.49)
this corresponds to turn off A; = V; A since A(c®) is independent of the three—sphere coordinates.
Equation (2) reduces to 9,(p*>A,) = 0 which, together with the condition of regularity at p = 0,
sets A, = 0. Equations (3) and (4) in (4.3.50) are then automatically satisfied, whereas eq.
(1) provides a non-trivial solution for ® as given in (4.3.52) with mass (4.3.53) where we set
= mo = m3 = 0.

As a slightly different attitude we can consider the configuration with all the vector modes
turned off (Y771 = Zrrr = 0) and study only scalar @ fluctuations of the form (4.3.49). In this
case ® is still solution of equation (1) but, as follows from the rest of equations, it is constrained
by the further condition

(’A)/ng - ’A}/ngg)(I) =0 (4.3.62)

In general, for non—vanishing and distinct deformation parameters, non—trivial solutions can be
found only for mg = mg = 0, i.e. only the U(1) x U(1l) zero-mode sector is selected and the
fluctuations are independent of (¢2,¢3). A greater number of solutions, corresponding to the
modes mo = mg, is instead allowed when A9 = 43, therefore in particular for the supersymmetric
deformation. In any case, the mass spectrum is given by

2L
Mg (n,1) = ﬁ\/(n +1+D)(n+1+2) n>0 1 (even)>0 (4.3.63)

and coincides with the undeformed mass.

4.3.3 Analysis of the spectrum

From the previous discussion it follows that the bosonic modes arising from the compactification
of the D7-brane on the deformed S? give rise to a mesonic spectrum which is given by

e 2 scalars and 1 vector in the (%, %) with [ > 0, |mg £ m3| =1 — 2k and mass

2L

A N 2
Moty = 22 ¢ (a2 me)

R? 2

e 1 scalar in the (%, %) with [ > 1, |mg £ m3| = [ — 2k and mass

2L

MIII(n7l7m27m3) = _\/(n+l+1)(n+l+2)+ <

R2

M)Q
2
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e 1 scalar in the (I_Tl Lus

L) with 1> 1, |mo £ mg| =1 F 1 — 2k and mass

2L S _A 2
My (n,l,mg,mg) = ﬁ\/(n+l+ 2)(n+1+3)+ <M>
e 1 scalar in the (HTI’ Z_Tl) with [ > 1, |mg & mg| =1+ 1 — 2k and mass
2L Jymz — Azmy \ 2
My —(n,l,ma,m3) = I m+Dn+1+1)+ <#>

for any n > 0. This matches exactly the bosonic content found in the undeformed case [167].
However, in this case the y—deformation breaks SO(4) — U(1) x U(1) and induces an explicit
dependence of the mass spectrum on the the quantum numbers (mg, m3) with a pattern similar
to the Zeeman effect for atomic electrons where the constant magnetic field which breaks SU(2)
rotational invariance down to U(1) induces a dependence of the energy levels on the azimuthal
quantum number m 6.

The dependence on the deformation parameters disappears completely in the mg = mg = 0
sector (or for 49 = 43 and my = mg3) and the mass eigenvalues coincide with the ones of the
undeformed theory. When 49 = 43 the mass spectrum acquires an extra symmetry under the
exchange of the two U(1)’s and an extra degeneracy corresponding to mo — ma+m, mg — ms+m,
m integer.

For any value of 4; there are no tachyonic modes, so confirming the stability of our configura-
tion. Moreover, massless states are absent and the spectrum has a mass gap given by

L
Myap = 2\/§ﬁ (4.3.64)

This is exactly the mass gap present in the undeformed theory [167].

In order to analyze in detail the mass splitting induced by the deformation and study how the
modes organize themselves among the different eigenvalues it is convenient to rewrite the mass of
a generic eigenstate X as

2 412
My (n,1,ma, ms) = \/ (M§§>(n,1)) + 7 (AM (mg, m3))? (4.3.65)
where M )(? ) is the undeformed mass, whereas
AM (my, ms) = (M) (43.66)

is the Zeeman—splitting term.
Since for any [ > 2 the following mass degeneracy occurs

M 11 (n,0) = M9y (n,1) = M) (n,0 — 1) = M (n, 1 + 1) (4.3.67)

A similar effect has been observed in the case of backgrounds with B fields turned on in Minkowski [185, 200].
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for 4; = 0 we have 8(I+1)2 bosonic degrees of freedom corresponding to the same mass eigenvalue.
For the particular values [ = 0,1 the number of states is reduced since for [ = 0 modes A ;) and
Ajr are both absent, whereas for [ =1 A7,y is still absent. For any value of [ they match the
bosonic content of massive N' = 2 supermultiplets [167].

In the present case mass degeneracy occurs among states which satisfy the above condition
and have the same value of AM (mgy, m3). Therefore, having performed the [-shift for the (I, +)
modes as in (4.3.67), we concentrate on the degeneracy in AM (mg, m3) for fixed values of (n,l).
It is convenient to discuss the 42 = 43 and 49 # 43 cases, separately.

A9 = 43 = 4: This case includes the supersymmetric LM—theory. The deformation enters the mass
spectrum only through the difference (mo — mg) and the splitting term AM depends only on a
single integer j

[ even 2j = |mgy —m3| =0,2,---,1 AM(5) =4

1
I odd  2j+1=|mg—mg|=1,3,--,1 AM(j):ﬁ<j+§> (4.3.68)

Excluding for the moment the I = 0,1 cases, for any given value of 25 and 2j + 1 the degeneracies
of the corresponding mass levels are listed in Table 4.1 and Table 4.2, respectively.

H State ‘ |mo — ms| = 27 ‘ Degeneracy H

0 l+1

X (1)7 AIII 2,47"',l 2(l+1)
A, 0 l+1

2.4, -1 20+ 1)
0 [—1

AL+ 2.4, 1 21— 1)
0 [+3

AI’_ 2747"'al 2(l+3)

Table 4.1: Degeneracy of states in the case 42 = 43 and [ > 2 even. The degeneracy in the third
column refers to every single value of j.

H State ‘ |ma —ms| =25+ 1 ‘ Degeneracy H
X, (I), A[]] 1,3,”‘,[ 2(l+1)
A, 1,3,---,1 21+ 1)
Ay 1,3, .1 20— 1)
Ar 1,3, .1 2(1+3)

Table 4.2: Degeneracy of states in the case 45 = 43 and | > 3 odd.

For any value of [ > 2 we observe Zeeman-like splitting as shown in Fig. 4.1. Precisely, the
splitting occurs in the following way: For [ even there are 8(I + 1) d.o.f. corresponding to j =0
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and 16(1+ 1) for each j # 0. Since we have [/2 possible values of j # 0, the total number of states
sum up correctly to 8(1 + 1)2. Analogously, for odd values of | the number of levels is (I + 1)/2,
each of them corresponds to 16(I + 1) d.o.f., so we still have 8(I + 1) modes.

16(1+1)
) j=l/2 16(1+1)
/ , —— Jj=0-1)/2
/ ; / -
/ 16(1+1) / Z
, /- , s _d60+D)
8(+1)° , ~ 8(I+1) 0 8(+1)° , —~

Figure 4.1: The Zeeman-splitting of the undeformed 8(I + 1)? d.o.f. for 45 = 43 and [ even (left)
or odd (right).

The | = 0 case corresponds to mg = mg = 0 (j = 0). The deformation is then harmless and we
are back to the bosonic content of the undeformed theory, that is three scalars x, ®, A(; _y and
one vector with M©)(n,0). Similarly, for I = 1 (j = 0), excluding A(1,4) we have three scalars
and one vector in the (1/2,1/2) of SO(4) and one scalar in the (3/2,1/2), all corresponding to
M? = (M©(n,1))? + 4°L*/R*. These cases can be included in Tables 4.1 and 4.2 with the
agreement to discharge modes which are not switched on.

We note that there is an accidental mass degeneracy which is remnant of the undeformed
N = 2 theory. In particular, in the supersymmetric LM case this allows to organize the bosonic
states in NV = 1 supermultiplets.

In principle, this unexpected degeneracy could be related to the particular theories we are
considering which are smooth deformations of their undeformed counterpart. In order to better
understand A" = 2 vs. A/ = 1 supersymmetry at the level of mesonic spectrum, the study of the
fermionic sector is a mandatory requirement.

42 # 43: The splitting term AM now depends on both m3 3 and no longer on their difference. In
order to make the comparison with the 49 = 43 case easier, for fixed [ it is convenient to label
AM by two numbers j and s

(J+s)+0U—9%
2
. l A~ . l _ A~
I odd  AM(js) = YTzt ;r U+3—-9)% (4.3.69)

[ even AM(j,s) =

where j is still defined as before, whereas s is integer if [ is even and half-integer if [ is odd. Its
range can be read in Tables 4.3 and 4.4.

As appears in the Tables the degeneracy is almost completely broken. In fact, except for the
mg = mg = 0 case, only a residual degeneracy 2 survives due to the fact that the mass (4.3.65) is
invariant under the exchange (mg,m3) — (—mg, —ms3).
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H State ‘ |mg — ms| = 2j ‘ s ‘ Degeneracy H

0 0 1
X ©, Arrr 12,3 2
. l l
2’47 ’l R 707 ’ 9 2
0 1
Ay ’ 1,2, 4 2
. l l
2,4,--- 1 — L0, )
0 1
0 =
AI7+ 1727"'7% 2
=2 -2
2’47 ’l o 707 y 9 2
0 1
A[_ 0 1727"'7Z+Tz 2
+2 +2
2’47 7l _%7 707 7% 2

Table 4.3: Degeneracy of states in the case 45 # 43 and [ > 2 even. The degeneracy in the fourth
column refers to every single pair (7, s).

H State ‘ |mo —ms| =25+ 1 ‘ s ‘ Degeneracy H
! !
X (1)7 AIII 1 3 7l X ' 9 2
! !
Au ’l _57 "’5 2
1—2 1—2
AI,+ 1 3 7l T T Ty T 2
1+2 1+2
AI,— al T T Ty Ty 2

Table 4.4: Degeneracy of states in the case 45 # 43 and | > 3 odd.

To better understand the level splitting it is convenient to compare the present situation with
the previous one. In fact, fixing j, the degenerate degrees of freedom of the 45 = 43 case further
split according to the different values of s. If [ is even and j = 0, the previous 8(/ + 1) degenerate
levels split in (I/2+ 2) new mass levels, while for j # 0 the 16(I+ 1) levels open up in (I + 3) levels
(see Fig. 4.2). If | is odd we find (I + 3) different mass levels as drawn in Fig. 4.3.

The particular cases [ = 0,1 can be read from Tables 4.3 and 4.4 by discharging (A 1), Arr1)
and A(j 1), respectively. For [ = 0 three modes x, ® and A, correspond to AM =0 (j = s = 0),
whereas the three degrees of freedom of A(; _y split into one d.o.f. with AM =0 (j = s = 0)
and two with AM = 2233 “’3 (j = s =1). Already in the simplest [ = 0 case the SO(4) breaking
is manifest. For [ =1 (] = 0) the four degrees of freedom of each mode x, ®, A;;; and A, now
split into two states with AM = 49/2 and two states with AM = 43/2. On the other hand, the 8
d.o.f. corresponding to Ay _y split into two states with AM = 45/2, two states with AM = 43/2,
two states with AM = (292 — 43)/2 and two with AM = (293 — 42)/2.
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s=(1+2)/2 L s=(+2))2
/ /
,— o2 f—2 sy
lr_ 16 422 lr_ 16 4o
"y - 11, '
y 16 o ly 16 o
//// - B l// - B
=0 8(+1) , ~ <=0 16(1+1) \2 ~ 16 s=0
N
No~_ 16
A\Y '
\\\ f
\ .
Q\L s=-(1-2)/2
\\1—4 s=-1/2
\
2 s=-(1+2)/2

Figure 4.2: The Zeeman—splitting of the 42 = 43 = 4 d.o.f. for 49 # 43 and [ even. The value of
AM here appearing is pictured considering the case 3 < 4 < Js.

As discussed in [167] the undeformed spectrum exhibits a huge degeneracy in v = n + [ which
can be traced back to a (non-exact) SO(5) symmetry. This originates from the fact that the
induced metric on the D7-brane is conformally equivalent to E(13) x S If in the quadratic
action for the fluctuations the conformal factor can be re—absorbed by a field redefinition the
corresponding equations of motion are invariant under S* diffeomorphisms. Therefore, solutions
can be found by expanding in spherical harmonics of S* and the mass spectrum of the elementary
modes depends only on the SO(5) quantum number v. This happens for instance for scalar
modes and vectors which, for a given v, organize themselves into reducible representations (0, 0) ®
(1/2,1/2)--- & (v/2,v/2) of SO(4). This is indeed the decomposition of the highest weight
representation [v,0] of SO(5) in SO(4) representations.

In principle, the same analysis can be applied also to our case. Here the induced metric (4.2.20)
is conformally equivalent to E(1:3) x S* where S* is the deformed four-sphere (set o = p/L)

R* 4

2 2 102
CT e + ) (4.3.70)

2
d8§4 =

and . .
02253 (Aadga + Y3dps3)?

d02 = d6* + G | c2dp3 + s2dp? + 11 )

(4.3.71)
is the deformed three—sphere.

It follows that a dependence on the SO(5) quantum number v = n + [ still appears if the
conformal factor (1 + o?)L%/R? can be compensated by a field redefinition and the action can be
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s=(+2)/2

I 14
| f——— s=lI/2
1/ 16
T s=0-2)/2
/) '
/// .
% 16
v - s=1/2
16(1+1) % -
~N
\\\\\ ~ L S=—1/2
\\\ :
W\ 16
N s=-(-2)/2

\ \1—4 s=-1/2

\
s=-(1+2)/2

Figure 4.3: The Zeeman-splitting of the 49 = 43 d.o.f. for 49 # 43 and [ odd. Once again
Y3 < ¥ < A2

entirely expressed in terms of the metric of E(13) x S* plus deformations. A close look at the
action (4.3.13) reveals that this is always the case for the decoupled modes x, A, and also for ®.
Despite of the presence of the deformation terms which break explicitly the SO(5) invariance, we
can still search for solutions expanded in spherical harmonics on S* and, consequently, the mass
spectrum exhibits a dependence on n and [ only in the combination n + [. In particular, in the
zero-mode sector mgo = m3 = 0 a degeneracy appears which is remnant of the SO(5) invariance.
Of course, the eigenstates corresponding to degenerate eigenvalues never reconstruct the complete
[v, 0] representation of SO(5), being organized into a direct product of SO(4) representations with
integer spins only (0,0) & (1,1)--- ([v/2],[v/2]), since ma = m3 = 0 only occurs for even values
of .

4.4 The dual field theory

In this Section we construct the 4D conformal field theory whose composite operators are dual to
the mesonic states just found.

As already discussed in Section 3, in the supergravity description the operations of T'sT de-
forming the AdSs x S° background and adding D7-branes commute. Since on the field theory side
T'sT deformations correspond to promoting all the products among the fields to be x—products
[66], whereas the addition of D7-branes corresponds to adding interacting fundamental matter
[164] we expect that in determining the action for the dual field theory the operations of *—product
deformation and addition of fundamental matter commute. Therefore, in order to obtain the dual
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action we proceed by promoting to *—products all the products in the A/ = 2 SYM action with
fundamental matter corresponding to the undeformed Karch—Katz model.

Given Ny probe D7-branes embedded in the ordinary AdSs x S5 background with N units of
flux, N > Ny, in the large N limit the dual field theory on the D3-branes consists of N’ = 4 SU(N)
SYM coupled in a A/ = 2 fashion to Ny N = 2 hypermultiplets which contain new dynamical fields
arising from open strings stretching between D3 and D7-branes. In A/ = 1 superspace language
the N = 4 gauge multiplet is given in terms of one AN/ = 1 gauge superfield W, and three chirals
O, Oy, P3 all in the adjoint representation of SU(N). The N = 2 hypermultiplets are described
by Ny chiral superfields Q" transforming in the (N, Ny) of SU(N) x SU(Ny) plus Ny chirals Q,
transforming in the (N, Ny).

According to the AdS/CFT duality the lowest components of the three chirals ®; are in one—
to—one correspondence with the three complex coordinates of the internal 6D space as (we use
notations consistent with Section 2)

X' 4iX? = upze® — ®3)p_5_,
X3 40Xt = upee® — Boly_s_, (4.4.1)
X° 40X = up1e — @1)p_5_,

For a configuration of D7-branes placed at distance X° + iX% = L from the D3-branes the
Lagrangian of the corresponding gauge theory is [164]

L = / d*o [Tr (e_gviiegvfbi) +tr (QegVQ + Qe‘gvé)} + %/ d?0 Tr (WW,)
+ i/d26 [g T (&1 [02,3%)) + gtr(@@lQ) +mitr (QQ)} +he. (4.4.2)

where the trace Tr is over color indices and tr is over the flavor ones. This action is N =
2 supersymmetric with (W,, ®;) realizing a N' = 2 vector multiplet and (P2, P3) an adjoint
matter hypermultiplet. The coupling of ®; with massive matter fields leads to a non—trivial vev
(®1) = —m/g which gives the displacement between the D3 and the D7-branes according to the
identification L = —m/g.

The theory has a SU(2)¢ x SU(2)g invariance corresponding to a symmetry which exchanges
(P9, ®3) and to the NV = 2 R-symmetry, respectively. In addition, for m = 0, there is a U(1)
R-symmetry under which (Q",Q,) and (®3,®3) are neutral, whereas ®; has charge 2 and W,
has charge 1 [201, 183]. In the dual supergravity description these symmetries originate from
the SO(4) x SO(2) invariance which survives after the insertion of the D7-branes [164] and
which are related to rotations in the (X!, X2 X3 X%) and (X°, X°) planes, respectively. Fixing
X5 4 4iX% = L # 0 breaks rotational invariance in the (X?, X°) plane and, correspondingly,
the mass term breaks the U(1) R-symmetry in the dual gauge theory. Finally, the theory also
possesses a U(1) baryonic symmetry under which only (Q”,Q,) are charged (1,—1). This is a
residual of the original U(NN¢) invariance.

For m = 0 and in the large IV limit with N; fixed the theory is superconformal invariant. In
fact, the beta—function for the 't Hooft coupling A = g?N is proportional to A>N ¢/N and vanishes
for Ny/N — 0.
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Since we are interested in non—supersymmetric deformations of this theory we need the La-
grangian (4.4.2) expanded in components. Given the physical components of the multiplets being

* = (d' ) Q= (d".x%)
WOé = ()‘067 faﬂ) Qr = ((j?”7>27“0¢) (4.4.3)
after eliminating the auxiliary fields through their algebraic equations of motion, the Lagrangian

(4.4.2) takes the form
L=LN=s+Ly+Ls~+ Lin (4.4.4)

where 7
1 _ . . _
Lyn—y = Tr <—§faﬁfaﬁ +iA [V, A] + @0a’ + iy’ [v,w&)
1
+¢* Tr <_Z [a',ai] [@/,a;] + 3 [a*,a] [ai,aj]>
+{ig Tr ([?Z)z, Aa'+ %Eijk [, 7] ak> + h-C-} (4.4.5)
is the ordinary N = 4 Lagrangian,

L, = tr(q‘(D—lmlz)q+ﬁ(D—|m|2) 5)

g - 2
—tr<qqqq+qqqq—2q

dq+4ci<§qq> + St (q[aha) - qda) )

=]

4

2
_ {tr <gm(qa1q + Ga1q) + % (q@lalq + q~a1a_1(j + 2q [(_12, (_13] q)) + hc} (4.4.6)

describes the bosonic fundamental sector and its interactions with bosonic matter in the adjoint,
Ly=itr <>Zv)x — 5((?)_2) + {zm tr ()Zx> + h.c.} (4.4.7)
describes the free fermionic fundamental sector and
Lint = igtr <X)\q — GAX + Gt + XYt + )Zalx> + h.c. (4.4.8)
contains the interaction terms between bosons and fermions.
The most general non—-supersymmetric marginal deformation of this theory can be obtained
by promoting all the products among the fields in the Lagrangian to be x—products according to

the following prescription [140, 92]

fg — frg=eTaCm gy (4.4.9)

"We use superspace conventions of [103]. When %X indicates the product of two chiral fermions it has to be
understood as ¥ A,. The same convention is used for antichiral fermions.
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where ~; are the deformation parameters, whereas (Q1,Q2, @3) are the charges of the fields under
the three U(1) global symmetries of the original NV = 4 theory associated to the Cartan generators
of SU(4). On the dual supergravity side they correspond to angular shifts in (4.4.1). Accordingly,
the charges of the chiral ®; superfields are chosen as in Table 4.5 [140, 92] with the additional
requirement for the charges of the spinorial superspace coordinates to be (1/2,1/2,1/2). This
insures invariance of the superpotential term [ d?6Tr(®![®?, ®3]) under the three U(1)’s. The
charges for the matter chiral superfields are determined by requiring the superpotential term
/ d20tr(Q¢>1Q) to respect the three global symmetries in addition to the condition for Q and Q
to have the same charges.

L Jet]e?|e*]Q]
Qi 1]07]o0
Qo010
Qs 0101

ool © @z

NI—OIH O©

Table 4.5: U(1) charges of the chiral superfields. The corresponding antichirals have opposite
charges.

The gauge superfield W, and the gaugino have charges (1/2,1/2,1/2), whereas the gauge field
strength f,s is neutral under the three U(1)’s.

In the absence of mass term in (4.4.2) the corresponding currents (Jg,, Jg,, Jg,) are conserved,
whereas Jy, fails to be conserved when m # 0. Moreover, (Jg,, Jy,) are ABJ-anomaly free also
in the presence of fundamental matter, whereas Jg, is non—anomalous only in the quenching limit
Ny /N — 0.

As is well-known, the ordinary Lunin-Maldacena U(1) x U(1) charges [66] are associated to
(1, p2) angular shifts after performing the change of variables (in our notations)

1= %(% + 2 — 2¢3), 2= é(cbz +¢3—2¢1), 3= %(% + ¢2 + ¢3), (4.4.10)

Expressing the (J,,,J,,) generators in terms of (Jg,, Jy,, Jp,) we easily find that the Lunin-
Maldacena charges are given by

D =0,-0s . MM = -u (4.4.11)
In the case of supersymmetric deformations the third linear combination Qg ~ (Q1 + Q2 + Q3)
provides the R—symmetry charge.

We are now ready to derive the deformed action by using the prescription (4.4.9) in the original
undeformed one.

We begin with the one-parameter deformation, v; = 72 = 3. In this case N' = 1 supersym-
metry survives and we can work directly with the superspace action (4.4.2). Since only for m =0
the *—product is well-defined being the three U(1) charges conserved, the correct way to proceed
is to deform the massless theory and then add the mass operator as a perturbation. Following this
prescription and taking into account the superfields charges given in Table 4.5, the Lagrangian of
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the deformed theory is

L = / d*o [Tr (e_gvi%equ)i) + tr (Qeng + Qe_gvéﬂ + #/ d?0 Tr (WW,,)

+ ig/d29 [Tr (€777, ®as — ¢, By D) + tr (chlQ) +mtr (QQ)] (4.4.12)

We note that a non—trivial deformation appears in the superpotential only in the pure adjoint
sector. The interaction and the mass terms involving flavor matter do not change, so that the vev
for ®; which is related to the D7-brane location through the dictionary (4.4.1) is the same as in
the undeformed theory, (®1) = —m/g = L. Since in the supergravity description we have chosen
L to be real (X® = L, X% = 0) here and in what follows we restrict to real values of m.

As already stressed, for m # 0 the Q1 charge is not conserved, neither is QgLM). Therefore,
this deformed theory possesses only one U(1) non—-R-symmetry corresponding to Q](LLM).

The action (4.4.12) has been obtained by *—product deforming the N =2 SYM action (4.4.2).
However, it could have been equivalently obtained by adding fundamental chiral matter to the
N =1 p-deformed SYM theory of [66]. In particular, the appearance of the gauge coupling
constant in front of the adjoint chiral superpotential insures that for m = 0 and in the probe

approximation the theory is superconformal invariant [74].

We now consider the more general non—supersymmetric case. We implement the x—product
(4.4.9) in the action (4.4.4). Using the deformed commutator [140, 92]

[XZ', Xj]Mij = eiﬂ-Mij XZX] — e_mMij X]XZ (4413)
where for X; fermions
0 T +72) —1%(71 +73) —%(’m )
_ —5(n +72) 0 s(e+1)  —3(m—mn)
Miormions = B = 2 (1 2 ? 4.4.14
formion %(73 + 1) - 3(v2 +73) 0 —5(n—72) ( )
s(2—=73) s(n—m) 3(n—) 0
whereas for scalars
0 v -
Mscalars =C= -3 0 Y1 (4415)
Y2 -1 0

the deformed L —4 takes the form
1 _ . . _
Ln—y = Tr <—§faﬂfag +iX [V, A] + @0a* + ' [V, zM)
1., . I o
+ ¢*Tr <_Z la*,a;] [, a;] + 3 la ,aj]cij [ai’aj]cij>
. YRR i 1 i g k
+ QigTe( [¥i, Al o' + 5 €isk (V'] g ") +he. (4.4.16)
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while the bosonic sector reads

2

_ ~ = g _ ~ = ~= _ = o~ ~= _
L, = tr(q (O-m?)q+q(d-m?) q) —~ Ztr<qqqq+qqqq—2qqqq+4qqqq>

+ 95 r(q[o', @] q—q[d',a] ¢+ gma’q + Ga'ar)

q
+ { ( az, aslc,, 4 ) — gmtr (e_i’r(”_%)cjalq + ei”(72_73)(ja1§) + h.c.}
(4.4.17)

and the fermionic one
Ly=itr ()va — )Z?):() + {zm tr ()2)() + h.c.} (4.4.18)
Finally the boson—fermion interaction terms become
Lint = igtr (eii{(vz—%))—(j\q _ e—%(vz—%)qj;z
+ ei%(“f?_“f?’)(jwlx + e_i%(”_%))zwlq + )Zalx> + h.c. (4.4.19)

We observe that the fundamental fields ¢ and ¢ experiment the ~;—deformation only through
the modified commutator [52,53]023 in Lp. Moreover, v and 3 are always present in the com-
bination (y2 — 73) so that the corresponding phases disappear when 9 = 73, in particular for
supersymmetric deformations.

4.5 Summary

In this chapter we have studied the embedding of D7-branes in LM-Frolov backgrounds with
the aim of finding the mesonic spectrum of the dual Yang-Mills theory with flavors, according
to the gauge/gravity correspondence. Since these theories have A/ = 1 or no supersymmetry
depending on the choice of the deformation parameters 4;, they provide an interesting playground
in the study of generalizations of the AdS/CFT correspondence to more realistic models with less
supersyminetry.

These geometries are smoothly related to the standard AdSs x S® from which they can be
obtained by operating with T'sT transformations. Therefore, if we consider D7-brane embeddings
which closely mimic the ones of the undeformed case [164] we expect the flavor probes to share some
properties with the probes of the undeformed case. Driven by this observation we have considered
a spacetime filling D7-brane wrapped on a deformed three—sphere in the internal coordinates. We
have found that for both the supersymmetric and the non—supersymmetric deformations a static
configuration exists which is completely independent of the specific values of the deformation
parameters 9;. As a consequence the D7—brane still lies at fixed values of its transverse directions
and exhibits no quark condensate [164]. We remark that this shape is exact and stable in the
supersymmetric as well as in the non—supersymmetric cases.
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Although the shape of the brane does not feel the effects of the deformation, its fluctuations do.
In fact, studying the scalar and vector fluctuations we have found that a non—trivial dependence
on the 43 3 parameters appears both in terms which correct the free dynamics of the modes and
in terms which couple the U(1) worldvolume gauge field to one of the scalars in the mutual
orthogonal directions to the D3-D7 system. All the deformation—dependent contributions arise
from the Dirac-Born-Infeld term in the D7-brane action, whereas the Wess—Zumino term does
not feel the deformation. The 4, parameter, associated to a T'sT transformation along the torus
inside the D7 worldvolume, never enters the equations of motion.

A smooth limit to the undeformed equations of motion exists for 4; — 0. In this limit all
the modes decouple and we are back to the undeformed solutions of [167]. The effect of the
deformations becomes negligible also in the UV limit (p — oo). This is an expected result since
the deformations involve tori in the internal space and in the UV limit the metric of the background
reduces to flat four dimensional Minkowski spacetime.

On the other hand, the situation changes once we consider the general deformed equations.
In fact, solving analytically these equations for elementary excitations of scalars and vectors we
have found that the mass spectrum is still discrete and with a mass gap and the corresponding
eigenstates match the one of the undeformed case. However, the mass eigenvalues acquire a non—
trivial dependence on 47 3. These new terms, being proportional to the U(1) x U(1) quantum
numbers (mse, m3), induce a level spitting according to a Zeeman-like effect.

We have performed a detailed analysis of the level splitting and of the corresponding degen-
eracy. The situation turns out to be very different according to 49 and 43 being equal or not.
In fact, for 49 # 43 the degeneracy is almost completely broken since only a residual degeneracy
associated to the invariance of the mass under (mo, ms) — (—mg, —ms) survives. In particular,
the breaking of SO(4) is manifest. Instead, for 4o = 43 the mass levels split but for each value
of the mass an accidental degeneracy survives which is remnant of the N' = 2 case. While in the
supersymmetric case (47 = 42 = 43) this allows to arrange mesons in massive N' = 1 multiplets
according to the fact that our embedding preserves supersymmetry, this higher degree of degen-
eracy in the bosonic sector of the theory does not have a clear explanation at the moment. In
order to make definite statements about the supersymmetry properties of the mesonic spectrum
and supersymmetry breaking one should study the fermionic sector. A useful strategy could be
the bottom—up approach described in [183]. We leave this interesting open problem for the future.

Our analysis shares some similarities with other cases considered in the literature.

First of all, we have found that a stable embedding of the probe brane can be realized which is
static and independent of the deformation parameters. This feature has been already encountered
for other brane configurations in deformed backgrounds. An example is given by particular dy-
namical probe D3-branes (giant gravitons) which have been first well understood in [192]. In fact,
there it has been shown that giant gravitons exist and are stable even in the absence of supersym-
metry and their dynamics turns out to be completely independent of the deformation parameters,
being then equal to the one of the undeformed theory. Moreover, since the giants wrap the same
cycle inside the internal deformed space as our D7-brane does, their bosonic fluctuations encode
the same dependence on the deformation parameters observed in the mesonic spectrum coming
from the D7.

A second similarity emerges with the case of flavors in non—commutative theories investigated
in [177]. In fact, the non—trivial coupling between scalar and gauge modes that in our case is
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induced by the deformation resembles the one which appears in the case of D7-branes embedded
in AdSs x S® with a B field turned on along spacetime directions. This is not surprising since
both theories can be obtained performing a TsT transformation of AdSs x S°: If the TsT is
performed in AdS one obtains the dual of a non—commutative theory while the LM-Frolov picture
is recovered if this transformation deforms the internal S°.

The field theory dual to the (super)gravity picture we have considered can be obtained by
deforming the standard action for N' = 4 super Yang—Mills coupled to massive N’ = 2 hyper-
multiplets by the s—product prescription [66]. In principle, in the supergravity dual description
this should correspond to performing a T'sT deformation after the embedding of the probe brane.
However, as we have discussed, adding the flavor brane in the deformed background or deforming
the Karch—Katz D3-D7 configuration are commuting operations. Therefore, the prescription we
propose on the field theory side is consistent with what we have done on the string theory side.
It is important to stress that the choice of the embedding we have made is crucial for the above
reasoning.

What we obtain is a deformed gauge field theory with massive fundamental matter parametrized
by four real parameters v; and m. We can play with them in order to break global U(1) sym-
metries, conformality and/or supersymmetry in a very controlled way. In fact, in the quenching
approximation a non—vanishing mass parameter related to the location of the probe in the dual
geometry breaks conformal invariance and one of the U(1) global symmetries of the massless the-
ory. On the other hand, the values of the deformation parameters v; determine the degree of
supersymmetry of the theory, as already discussed. It is interesting to note that as we found on
the gravity side, the three deformation parameters play different roles in the fundamental sector
of the theory. In fact, 723 always appear in the combination (2 — 73), so that if v2 = 3 this
sector gets deformed only by ~;—dependent phases induced by the interaction with the adjoint
matter. In the supersymmetric case this particular behavior is manifest when using superspace
formalism since a non-trivial deformation appears only in the adjoint sector, whereas the flavor
superpotential remains undeformed.

Let us conclude mentioning some directions in which our work could be extended. We have
considered only the non—interacting mesonic sector. Expanding the D7-brane action beyond the
second order in o’ one can get informations on the interactions among the mesons and understand
how the deformation enters the couplings. Moreover, one could extend our analysis to mesons
with large spin in Minkowski, similarly to what has been done in the ordinary, undeformed case
[167].

Finally it could be very interesting to study in detail the other embeddings proposed in [194]
and in particular the one which seems to exhibit chiral symmetry breaking. Moreover, going
beyond the quenching approximation has been representing an interesting subject since the recent
efforts to study back-reacted models [182].
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Appendix A

Color conventions and integrals in
momentum space

In this Appendix we give our conventions and a series of useful identities involving the group
generators. Moreover, we list the results for loop integrals that we have used along the calculations.

Our basic conventions to deal with color structures are the following. For a general simple Lie
algebra we have:

[Tm Tb] = Z-fabcTc (AOl)
where T, are the generators and f,;. the structure constants. The matrices T}, are normalized as

Tr (T,Ty) = Sap (A.0.2)

We specialize to the case of SU(N) Lie algebra whose generators T,, a = 1,---, N? — 1 are taken
in the fundamental representation, i.e. they are N x N traceless matrices. The basic relation
which allows to deal with products of T, is the following

1
T{;Takl = <5z‘15jk — N%%) (AOS)

From this identities, we can easily obtain all the identities used to compute the color structures
associated to the Feynmann diagrams relevant for the two point correlation functions. They are

facdfoed = 2N dqp (A.0.4)

fabm fedm + febm fdam + fabmfaem = 0. (A.0.5)

Tr (T, TyT.Ty) (T, TyT. Ty) = %(NQ —1)(N? 4 3) (A.0.6)
Tr (T, Ty T, Ty) (T, TyTyT,.) = —ﬁu\ﬂ —1)(N?% -3) (A.0.7)
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1
Tr (T, Ty T.Ty)(TyT.TyT,) = m(N2 —1)(N* —3N2 +3) (A.0.8)

and

Tr (TcTaTdTb)fcmefdmf = _(5ea5fb + 5fa56b) (AOQ)
Tr (TchTaTb)fcmefdmf = 5ef5ab + NTr (TeTfTaTb) (AOlO)

Now we focus on the main integrals used in the text. All the calculations are performed in n
dimensions, with n = 4 — 2¢ and in momentum space. We give the results as € expansions.

We begin by considering the momentum integrals associated to the one-loop and two-loop
diagrams in Fig. 2.1 for the perturbative corrections to the superpotential.

At one loop, after performing D—algebra, the diagram 2.1b) gives the standard triangle con-
tribution [116]. Assigning external momenta p; (p1 + p2 + p3 = 0) we have

d"q 1 1
2 _ (1)

— oW (z,4) + O(e A0.11
p3/ (2m)" ¢*(q — p2)?(q +p1)*  (47)? (@) +0() ( )
where

2 2
x = I% and y= p_g (A.0.12)
b3 p3

The pg in front of the integral is produced by D-algebra. The function ®®) (x,y) can be represented
as a parametric integral

1
3 Y
oW (z,y) = —/ (log = +2log §) (A.0.13)
0o ¥+ 1 -—z—y)E+a z

Since we look for a local contribution to the superpotential we are interested in the result of the
integral for external momenta set to zero. A consistent way [117] to take the limit of vanishing
external momenta is to set p? = m? for any 4 so having x,y = 1 and let the IR cut—off m? going
to zero at the end of the calculation. In the limit we obtain a finite local result [117]

b logg(1-¢)
— de————= A.0.14
ety (0.1
At two loops two types of integrals appear. From diagrams 2.1c) and 2.1d) we have integrals of
the form
(p2)2 / d"qd"r 1 _
) @m)2 (r 4 p1)2(a + p1)2(r — p2)?(a — p2)?ri(g — 7)?
1
= @t ) (z,9) + O(e) (A.0.15)
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with z and y as in (A.0.12). The function ® (z,y) is defined by [116]

o (z,y) = 1 /l de log & (log Y + log §) (log L + 2log f) (A.0.16)
0o Y&+l -z —-y)i+a x x -
As in the one-loop case, the limit z,y — 1 gives a finite local contribution to the effective
superpotential.
From diagrams 2.1c)—g) this kind of integral also appears

P / d"qd’r L 1 e+ o (A.0.17)
°)o@mP @?riq—r)2(q—p3)(r—p3)? (4m)! a
where one of the external momenta has been already set to zero (in this case we can safely set
one of the external momenta to zero from the very beginning since we do not introduce fake IR
divergences). This is already the local finite contribution we obtain by setting also p% =0.

When we deal with two-point correlation functions, at tree-level we have (k = Ay is the free
scale dimension of the operators involved and p is the external momentum)

/ d”ql dnqk_l 1
2m)" =D g3 (g2 — q1)%(g3 — ¢2)%- (P — qr—1)?
k=1 [ 1k
- % [(4;)2] [(]f _12)”2 (p*)F e 0(1) (A.0.18)

At two loops we are interested in the four diagrams listed in Fig. 2.3. From the graph 2.3a)
we obtain

d"qs...d"q._ 1
/ q3 qr—1 "

2D (g4 — g3)%..(p — qr—1)?
/ d"kd A rdvs 12 (g3 — 1)2
k2P (k=12 (r — k)*(r — 1)?(s = 1)*(r — 5)*(g3 — r)*(g3 — )?

(A.0.19)

. 1 1 k+1 ( )k( ) - N
e [(4@2} (k- Dk 1) [6¢(3) —20¢(5)](p") +0(1)

The momentum integral for the graph 2.3b) gives

/d"Q3---d"Qk—1 —3
(2m)nk+D) (g — q3)%...(p — qr—1)?
d"kd™l d"r d"s
/ k212 (k — 1)2(r — k)2(s = 1)2(r — 5)*(g3 — 7)*(g3 — 5)?

(A.0.20)

R R R e G VAR 2\k—2— (k+1)e
= :lwr]  wotereceed +0oQ)
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Finally, the graphs 2.3c) and 2.3d) lead to the same contribution

/ d"rd"qs ... d"qy_1 1 "
2m)ntH+D) (g2 —7)%(g3 — q2)%-(p — qr—1)?
d™k d"l
A.0.21
/ R —12(r — k)2 (r — 1) (A.0.21)

1 1 kE+1 (—1)k(k—1) N E
T [(4702] G OPG D @@ o)
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Appendix B

Ladder color and V—algebra

In this Appendix we give some ingredients useful to better understand the computations performed
in Section 2.4.1 and Section 2.4.2. We first report the full expression for the color of the four loop
diagram depicted in Fig. 2.7:

Ki = g[0m+ Py + (f? — )] +
+ %[|h3\8—4!h3\6(\h1|2+!h2\2)+2|h3\4(3]h1\4+4]h1|2|h2|2+3yh2|4)+
— 2/h* (3[R |® + 5l [*hof? + 5l [* ol + 3|2 ) +
(1l 81 T2 + 6l [l + 8lha o l® + [al)| +
- % [5ls[® = 20[hg (1|2 + ha|?) + 12[hs|* (hal* + ha s f? + [h2l*) +

= 8lhg(|ha® — [ha*|h2f* — P [*[ o] + \hzlﬁ)] +

256

4
100+ 320 (2 [hof?) — Sl s 2of2] + 28

G |38 (B.0.1)

From this formula one can easily obtain the explicit value of the f function in (2.4.24):

f o= 8|af+8adbi +6a%6f + Saib? + bl — 2(a1 +b1)(3a} + 2011 + 36F)el +

8
+ 2(3(1% + 4a1b1 + 35%)6% — 4((11 + bl)C? + Czll] + [8(&1 — b1)2(a1 + bl)cl +

N2
8
— 12(a? 4 a1by + b3)cd 4+ 20(ay + by)cs — 56411] + Vi [Salblcf —32(ay +b1)c — 10¢t| +
512
- Wc‘f (B.0.2)
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Here we give a detailed explanation of V-algebra operations used in Section 2.4.2 for the
calculation of the gauge beta function. In what follows we denote

9% d, b =V,=08,—i[, (B.0.3)

@ (b) (0)

Figure B.1: V-algebra operations on four-loop vacuum diagram.

133



In particular, let us consider the contributions depicted in Fig. B.1. Starting from the top
vacuum diagram and performing integration by parts we end up with three different graphs. Each
of them gives rise to a single bosonic diagram: Fig. B.1 (a), (b), (¢). Now we can expand the
covariant propagators to extract tadpole-type contributions. It is easy to see that (a) and (b) dia-
grams in B.1 are equivalent and give rise to the tadpole graphs shown in Fig. B.2. Analogously the
B.1(c) diagram can be expanded to give the relevant tadpole contributions as indicated in Fig. B.3.

Figure B.2: Tadpole contributions from propagator expansions of diagrams B.1(a) and B.1(b).

-0 SE

Figure B.3: Tadpole contributions from relevant propagator expansions of diagram B.1(c).

The integrals associated to diagrams in Fig. B.3 are much harder to compute because of the
presence of four derivatives, indicated by the black arrows. However, after some proper integra-
tions by parts, they can be reduced to simpler scalar integrals, as depicted in Fig. B.4. Notice
that in the whole procedure we have neglected all tadpole graphs with 1/e divergences, which do
not contribute to the four—loop effective action.
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Figure B.4: Scalar reduction of integrals with derivatives.

(B AP

Now we just need to sum up the various contributions generated by B.1(a), (b) and (c) dia-
grams. Actually there is no need to compute all these integrals explicitly thanks to a beautiful
diagrammatic cancellation (see the main text in Section 2.4.2 for the result).
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Appendix C

Worldvolume D—brane action

Within the framework of perturbative string theory, a Dp-brane is a (p+ 1)-dimensional extended
surface in spacetime which supports the endpoints of open strings. The massless modes of this
open string theory form a supersymmetric U(1) gauge theory with a vector A,, 9 — p real scalars
®' and their superpartner fermions, which are ignored throughout the following discussion. At
leading order, the low-energy action corresponds to the dimensional reduction of that for ten-
dimensional U(1) super-Yang-Mills theory. However, as usual in string theory, there are higher
order o/ = [? corrections — I, is the string length scale. For constant field strengths, these stringy
corrections can be resummed to all orders, and the resulting action takes the Born-Infeld form
[15]

Spsr = T, / o e\ [~ det(P G Bl,, + 2712 F,) (C.0.1)
pt1

where T}, is the Dp-brane tension which in our conventions reads [132]

1

T = ——— .0.2
P = L) (C.0.2)

This Born-Infeld action describes the couplings of the Dp-brane to the massless Neveu-Schwarz
fields of the bulk closed string theory, i.e. the (string-frame) metric Gy, dilaton ¢ and Kalb-
Ramond two-form Bjpsy. The symbol P[...] denotes the pull-back of the bulk spacetime tensors
to the D-brane world-volume. In particular, P [G] ; = gap = Grun0.X Mg, XN is the pull-back of
the spacetime metric on the world-volume! and P [B] ab = bap 1s the pull-back to the worldvolume
of the target NSNS two-form potential by, = Byn0, XM, XYN. We can see that the oneform
gauge potential A, enters the action through the field strength F,, = 0, Ay — IpA,. It is useful to
introduce the modified field strength F = 27l2F — B = 2rl2dA — B which is invariant under the
combined gauge transformations

A
Coomi2’

§B =dA, 6A (C.0.3)

Dp-branes are charged under RR potentials and their action should contain a term coupling the
brane to these fields. However, the RR fields are subject to gauge transformations and the coupling

"Here (a,b) are world—volume indices while indices (M, N) are target space indices.
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should be gauge invariant [16]. In order to find a candidate for this coupling let us define C' to be
the formal sum of the background RR fields

c=Y ¢, (C.0.4)

8
=0

=)

where C is a differential form of degree ¢. The fields C; are the RR gauge potentials of IIB (g
even) supergravity. Their gauge transformation is

SrrC =dA — HAA+dAAEP, (C.0.5)

where H = dB is the NSNS 3-form field strength and A is a formal sum of arbitrary forms A,
with degree ¢

7
A=A, (C.0.6)

q=0
The field strengths of the RR fields, given by
F=dC-HANC=Y F,, (C.0.7)
q=0

are invariant under the above transformation. The form expansion of F' yields all the modified
field strengths of the IIB potentials and their duals. To relate the potentials to their duals we
impose

Fg :*Fl 1“:‘7: —*Fg F5 :*F5 (008)

where * is the Hodge dual in ten dimensions. Note that F% is self-dual. The RR field strengths
given by (C.0.7) satisfy the Bianchi identity

dEE =HAF. (C.0.9)

The requirement of target gauge invariance and the fact that D-branes possess electric charge
determines the coupling to be of the form

/ Pl[CAeT], (C.0.10)
Ypt1

where it is to be understood that one select the (p + 1)-form in the expansion. The integral
(C.0.10) over the worlvolume can be written as an integral over a (p + 2)-dimensional manifold
M, whose boundary is the (p+ 1)-dimensional worldvolume X, . Indeed it can be proved that

Fne’ =d[Cne], (C.0.11)

and then it follows that (C.0.10) is equivalent to

/M P [F/\ ef] , (C.0.12)

p+2

137



which is manifestly gauge invariant. Moreover, despite of the fact that C' A e’ is not invariant
under the RR gauge transformations, its variation is a total derivative, thus making (C.0.10) gauge
invariant. Actually,

SrrIC A el =d[AneT]. (C.0.13)

The term (C.0.10) is a topological term of the Wess-Zumino type and it will be denoted by
Sw z. If the Dp-brane has RR charge j,, the WZ action takes the final explicit form [17, 18, 19]

SWZ:NP/ P ZOqG_B
2P‘Fl q

Extremal branes satisfy the BPS bound T}, = |u,| and their action will be given by the compact

23 (C.0.14)

S = —Tp/ dPHloe™? \/—det(g+ F) + Tp/ PlCAeT], (C.0.15)
Dpt1 pt1
where the + sign is for branes an the — for anti-branes.

Eq. (C.0.14) shows that a Dp-brane is naturally charged under the (p+1)-form RR potential
with charge j,. If we consider the special case of the DO-brane (a point particle), the Born-Infeld
action reduces to the familiar world-line action of a point particle, where the action is proportional
to the proper length of the particle trajectory. Actually this string theoretic DO-brane action is not
quite this simple geometric action, rather it is slightly embellished with the additional coupling
to the dilaton which appears as a prefactor to the standard Lagrangian density. (Note, however,
that the tensors B and F' drop out of the action since the determinant is implicitly over a one-
dimensional matrix.) Turning to the Wess-Zumino action, we see that a D0-brane couples to C
(a vector). Then eq. (C.0.14) reduces to the familiar coupling of a Maxwell field to the world-line
of a point particle, i.e.

m
MO/ Pl gq/AuﬁdT. (C.0.16)
1 dT

Higher dimensional Dp-branes can also support a flux of F, which complicates the world-
volume actions above. From eq. (C.0.14), we see that such a flux allows a Dp-brane to act as a
charge source for RR potentials with a lower form degree than p+1 [17].

The Born-Infeld action (C.0.1) has a geometric interpretation, i.e. it is essentially the proper
volume swept out by the Dp-brane, which is indicative of the fact that D-branes are actually
dynamical objects. This dynamics becomes more evident with an explanation of the static gauge
choice implicit in constructing the above action. To begin, we employ spacetime diffeomorphisms
to position the world-volume on a fiducial surface defined as X* =0 with i = p+1,...,9. With
world-volume diffeomorphisms, we then match the world-volume coordinates with the remaining
spacetime coordinates on this surface, ¢ = X® with ¢ = 0,1,...,p. Now the world-volume
scalars ®° play the role of describing the transverse displacements of the D-brane, through the
identification

Xi(o) =2n2®%(c)  withi=p+1,...,09. (C.0.17)

With this identification and by defining Fy;ny = Gy n— By, the general formula for the pull-back
reduces to

PlElyy, = Eyun0.XMopx™N (C.0.18)
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= Eu + 2712 By 0p®" + 2712 By 0,9" + (2712)? E;0,9'0,®7 .

In this way, the expected kinetic terms for the scalars emerge to leading order in an expansion of
the Born-Infeld action (C.0.1). Note that our conventions are such that both the gauge fields and
world-volume scalars have the dimensions of length~' — hence the appearance of the string scale
in eq. (C.0.17).

Although it was mentioned above, we want to stress that these world-volume actions are low
energy effective actions for the massless states of the open and closed strings, which incorporate
interactions from all disk amplitudes (all orders of tree level for the open strings). The Born-Infeld
action was originally derived [15] using standard beta function techniques applied to world-sheets
with a boundary [20]. In principle, they could also be derived from a study of open and closed
string scattering amplitudes and it has been verified that this approach yields the same interactions
to leading order [21, 22, 23]. As a low energy effective action then, egs. (C.0.1) and (C.0.14)
include an infinite number of stringy corrections, which essentially arise through integrating out
the massive modes of the string — see the discussion in [27].

At this point, we should also note that the bulk supergravity fields appearing in egs. (C.0.1)
and (C.0.14) are in general functions of all of the spacetime coordinates, and so they are implicitly
functionals of the world-volume scalars. In static gauge, the bulk fields are evaluated in terms
of a Taylor series expansion around the fiducial surface X* = 0. Hence the world-volume action
implicitly incorporates an infinite class of higher dimension interactions involving derivatives of
the bulk fields as well. However, beyond this class of interactions incorporated in egs. (C.0.1) and
(C.0.14), once again the full effective action includes other higher derivative bulk field corrections
[19, 24, 25, 26]. It is probably fair to say that the precise domain of validity of the D-brane action
from the point of view of the bulk fields is poorly understood.

139



Appendix D

Toroidal coordinates and spherical
harmonics on S°

This appendix is intended to review the construction of a complete set of scalar spherical harmonic
on S3, following [157]. Then we give the main properties of the vector spherical harmonics. For
convenience, we have chosen to visualize the three—sphere with a toroidal coordinate system.

Let z, y, 2z, and w be the usual coordinates in R?*, so the unit 3-sphere S® is defined by
22 + 9% + 22 + w? = 1. The coordinates 6, ¢, and ¢3 parameterize the 3-sphere as

T cos 0 cos s
y = cosf sin ¢
z = sinf cos ¢3 (D.0.1)
w = sinf sin ¢3
for
0 < 6 < /2
0 < ¢2 < 27 (D.0.2)
0 < ¢3 < 2.

For each fixed value of 6 € [0, 7/2], the ¢9 and ¢3 coordinates sweep out a torus. Taken together,
these tori almost fill S3. The exceptions occur at the endpoints § = 0 and § = 7/2, where the stack
of tori collapses to the circles z2 + 4% = 1 and 2% 4+ w? = 1, respectively. This is our framework
expressed in toroidal coordinates.

The coordinates 0, ¢o, and ¢3 are everywhere orthogonal to each other. Thus the metric on
the 3-sphere may be written as

ds? = do* + c; do3 + s3 do3 (D.0.3)

where we have used the notation cg = cos 6 and sy = sin 6 for concision. The Laplacian in toroidal
coordinates takes the explicit form

2 L |0 (0N s DN e (0
\Y = 2 | 50 o505, +09 B6s +89 965 . (D.0.4)
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The wave number [ parameterizes the eigenmodes of the Laplacian on the 3-sphere S®. Each
integer wave number [ > 0 corresponds to an eigenvalue —I(I + 2) with multiplicity (I + 1)
[158, 159]. Hence, a scalar spherical harmonic ) on S? satisfies the Helmholtz equation

VY = —1(1+2)Y (D.0.5)
We will look for solutions that factor as

V(0. g2, ¢3) = X(0) Po(¢2) P3(93)- (D.0.6)

We have no a priori guarantee that all solutions must take this form, but we will see that the
number of independent solutions of this form does indeed equal the dimension (I + 1) of the full
eigenspace.

Substituting the expression (D.0.4) for V2 and the factorization (D.0.6) of ) into the Helmholtz
equation (D.0.5) gives

= —I(l+2) XP,Ps. (D.0.7)

P,P3 0 < 8X> XP30°P, XP0°Ps
cg aqb% 330 aqzbg

cosy 90 \ 7" 00

Multiplying through by c2s2/(X P> Ps) isolates the P, and Pj factors
_ _ _ _ — — 2
X 0 <cese d9> + sp Py + ¢ Py 2 11+ 2) cgsp

The expressions in P, and P3 must each be constant, and to allow a periodic solution the constants
must be negative,

(D.0.8)

1 d?P,
B - —m3 (D.0.9)
1 d?Ps
3
The solutions are the usual '
Py (g) = €292 (D.0.11)
and '
P (¢3) = €M% (D.0.12)

Substituting (D.0.9) and (D.0.10) into the Helmholtz equation (D.0.8) reduces it to a second
order ordinary differential equation for X

d dX
X <0989_> —m3 sj —m3 5 = —I(l +2) cjsj. (D-0.13)

For integers [, mq, and mg satisfying |mo 4+ mg| =1 — 2k with £k = 0,1, -, equation (D.0.13) is a
close relative of the Jacobi equation and admits the solution

X2 (g) = ¢y syl T ml (¢hp) (D.0.14)
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where Ptg‘mﬂ"m?") is the Jacobi polynomial

d
ch 2/,] 3\)(u) _ o § : <‘m3‘i+ > <‘7r;2‘_—|; > (u+1)% (u— 1)d v (D.0.15)
i=0

and

— (Ima| + [m3|)
5 :

Substituting the expressions for X, P5, and P; from (D.0.14), (D.0.11), and (D.0.12) gives the
eigenmode

!
d= (D.0.16)

mz,md( Lo, h3) = |m2\ S\gm:s\ P£|m2‘v‘m3‘)(020) pima2da imsds (D.0.17)

The Jacobi polynomial (D.0.15) may be expanded as a homogeneous polynomial of degree 2d
in x, y, z, and w and this fact proves that the me’mS are smooth even along the circles § = 0
and 6 = /2, where the toroidal coordinate system collapses.

For each [, the set of ylm 2™3 forms a basis for the space of eigenfunctions on S3 with wave
number [. More precisely, define the basis

By={Y"™"™ | |mgtms|=1-2k}. (D.0.18)

m2,m3

To prove that B; is a basis, we must show that the ),
and span the full eigenspace.

it contains are linearly independent

Linear independence. The inner product of two elements ylm 23 and ylm 2™3 of By is

<ym2,m3 m27m3>

= / YTy v (D.0.19)

©/2 p2m by MY M
- /. / g (TS e o o a0
0= 2=0 J 3=

2m , 2m ,
= Xm%de 275 o s df ( / Py Py d¢2> < / Py Py d¢3>.
6=0 $2=0 3=0

If mg # mf (resp. ms3 % mj), then the orthogonality of (Py"?, Pm2> =0 (resp (P32, Pm5> =0)
immediately implies (Y"*"*?, lm 2’m3> 0, proving that ), and ) MM are orthogonal.
Because the me’m?’ in B; are nonzero and pairwise orthogonal, they must be linearly independent.

Span. We have shown that the ylm ™3 in By are linearly independent. To prove that they span
the full eigenspace, it suffices to check that the number of elements of B; equals the dimension of the
full eigenspace, which is known to be (I+1)2. The set By = {yg’o} has (0+1)? = 1 element, and the
set By = {10,y 0 0t Y01 has (141)2 = 4 elements, as required. For the remaining B,
with [ > 2, we proceed by induction, assuming that the set B;_s is already known to contain ((I —

2)+1)? = (I—1)? elements. Each element },"%™* € B;_, corresponds to an element Y"*"™ € By,.
The set B; also contains the additional elements ylo £ ylil £ 1), . ,yli( )ﬂ,ylﬂ 0, Taking

into account the plus-or-minus signs, this gives 2 4+4+ ... +4+2 =2+4(—-1)+2 = 4

m2,m3
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additional elements. Adding these to the (I — 1)? elements corresponding to B;_s, we get a total
of (I —1)? 44l = (I + 1)? elements, as required.

This completes the proof that B is a basis for the space of eigenfunctions on S? with wave
number [.

Vector spherical harmonics come into three classes. Choosing them to be also eigenfunctions of

% we have longitudinal harmonics H; = Vi)/lm M3 1 > 1 which are in the (%, %) representation
of SO(4) with (mse, m3) ranging as before, namely |mo &+ mg| = [ — 2k. Transverse harmonics
/\/l;F = yi(l’mQ’m:‘);Jr with I > 1 in the (l_Tl, HTl) and M; = yi(l’m?’mi‘);‘ with ! > 1 in the (HTl, l_Tl)

Their degeneracy is [(I + 2) and it is counted by |mg +mg| =1+ 1 — 2k, |me —ms| =1F 1 — 2k.
These harmonics satisfy

ViVIMT — REM; = —(1+1)°M;
VI MER = gL+ YMF
VIME = 0
8523/\4;'[ = imgs M (D.0.20)

where /g = cpsg is the square root of the determinant of the metric on S3, whereas R;'- = 25;- is
the Ricci tensor.
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