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Résumé

Dans cette thése, nous proposons une notion d’intégrales non-commutative pour les algébres
libres. L’organisation est la suivante :

e Comme premier exemple d’intégrale non-commutative, nous étudions en détail les inté-
grales de matrices hermitiennes. A partir de leur différentes propriétés, nous proposons des
axiomes pour une premiére version d’intégrales non-commutative. Celle-ci prenne valeurs
dans les nombres complexes et nous les appelons "intégrales a 'infini". Toujours motivé
par I'étude de 'intégration matricielle, nous définissons une deuxiéme version d’intégrales
non-commutative. Cette fois les intégrales prennent leurs valeurs dans ’anneau des séries
formelles & coefficients complexes, c’est pourquoi nous les nommons "intégrales formelles".

e Inspiré par une présentation de Kontsevich, nous définissons une certaine algébre de
Batalin-Vilkovisky C dont la construction est similaire & une construction de Ginzburg.
Pour ce faire, nous généralisons la notion de double crochet de Van den Bergh dans le but
d’obtenir des crochets gradués de degré 1. A proprement parlé, nous construisons deux
algébres, une pour chaque type d’intégrales, mais 'une est obtenue & partir de 'autre
en spécifiant la valeur d’'un parameétre. Le lien avec les intégrales non-commutatives est
donné par les fait que les intégrales correspondent & des morphismes de complexes de
chaines ayant pour source 'algébre C. Si cette description caractérise entiérement les
intégrales a l'infini, la situation est bien moins claire pour les intégrales formelles.

e Le résultat décrit ci-dessus nous informe que les intégrales & 'infini sont classifiées par la
cohomologie en degré 0 d’une certaine algébre. Nous calculons cette cohomologie dans le
cas d’une seule variable. Toujours pour une seule variable, nous trouvons ensuite un nom-
bre fini de paramétres qui déterminent uniquement les intégrales formelles. Les techniques
utilisées pour parvenir a ce résultat sont issues de la récurrence topologique.

e A la lumiére du résultat précédent, nous conjecturons qu’'une intégrale formelle est un
morphisme d’algébre de Batalin-Vilkovisky aprés avoir déformé de maniére adéquate le
produit de C.
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Introduction

Integration is one of the crown jewels of mathematics. Its usefulness, both in theory and in
application, cannot be overstated. It began as a method for computing areas under curves
by approximating it with arbitrary small rectangles, an idea rigorously formalized by Riemann
sums. Over time, this central idea expanded in many directions: from single-variable functions
to multivariable ones, to a broader class of functions using Lebesgue measure, and eventually
to manifolds and beyond.

At its core, integration can be thought of as the process of summing a function over a space
to compute quantities such as areas, volume, or averages. In classical geometry, the space over
which one is integrating is commutative, meaning that the algebra of functions on the said space
is commutative. In non-commutative geometry, the space in question may not necessarily be,
well, commutative anymore. While it is not clear what it would mean for a space to be non-
commutative on the level on the space itself, it is a lot more clear what it should mean for its
algebra of functions. Drawing on a principle from algebraic geometry - the understanding of a
space is equivalent to the understanding of its algebra of functions - non-commutative geometry
studies non-commutative algebras as algebras of functions of non-commutative spaces.

Many concepts from commutative geometry have counterparts in the non-commutative setting.
For example, the role of a Poisson bracket is played by double Poisson brackets introduced by
Van den Bergh [dB04].

In this thesis, we propose a notion of non-commutative integrals for free associative algebras.
One reason for the restriction to free algebras is that the concept of volume element lying at the
heart of integration theory turns out to be surprisingly hard to construct in the non-commutative
setting. However, once a volume form has been fixed, there is a notion of divergence of a vector
field, and it is possible to construct an analogue of divergence for free associative algebras.
Important properties of integrals such as integration by parts, the divergence theorem, or more
generally Stokes theorem can be stated using the concept of divergence. Non-commutative
divergence might be thought of as the shadow of a non-commutative volume form.

As a motivating example of non-commutative integration, we study matrix integration or more
precisely Gaussian matrix integration. In that context, Stokes theorem is known as "Loop
equations" and takes a very peculiar form.

The plan is as follows. Fix A(n) to be the free associative algebra on n generators. We begin
by briefly presenting some elements of non-commutative calculus, necessary to later define non-
commutative integrals. We then study in details Gaussian integration of N x N Hermitian
matrices. Unsurprisingly, the different values of such integrals depends heavily on N. By
considering the limit as N goes to infinity, we derive axioms for a first version of non-commutative

integral as maps
Sym(A(n)/[A(n), A(n)]) — C.

We call those integrals "infinity integrals".

Coming back to the study of Gaussian integration, we see that those integrals can be interpreted
as power series in N2, from which we derive axioms for yet another version of non-commutative
integrals called "power series integrals". As the name suggests, this version of non-commutative
integrals are maps

Sym(A(n)/[A(n), A(n)]) @ C[[A]] — C[[A]]

and the "infinity integrals" described above are the leading order of power series integrals. Both
infinity and power series integrals are actually defined with respect to a potential V. Different
choices of V' correspond to different volume forms.



Aiming towards a classification of integrals, we then reframe both versions of integrals in a
cohomological setting. We motivate this idea by first presenting a reformulation of the de
Rham complex in terms of polyvector fields. We have learned about this point of view in
[Gwil2]. This reformulation indicates that the right algebraic framework for our purposes is the
framework of BV-algebras (Batalin-Vilkovisky algebra). We recall the basic properties of these.
Classical examples of BV algebra can be constructed from (graded) involutive Lie bialgebra.
More generally Perry and Pulmann described in [PP24] sufficient and necessary conditions to
construct a BV operator from a graded bracket and cobracket on a graded vector space. This
is where we present a slightly different version of Van den Bergh double Gerstenhaber bracket
[dB04], more suited to our goal. Usual double brackets are maps A ® A — A ® A where A
is an algebra. They satisfy some axioms devised to make them induce Lie brackets on the
space A/[A, A]. Our graded version of double brackets allows us to define easily graded bracket
satisfying the conditions in [PP24]. In the original article of Van den Bergh, the graded setting
was only mentioned and proofs were given only for non-graded double bracket. We adapt those
proofs to the graded setting using diagram calculus and get the following theorem:

Theorem A. Let A be a graded algebra and II(—,—) : AQ A - A® A a double bracket such
that II(—, —, —) = 0. Then the associate bracket

[= —ln =A@ [A] — |A]
satisfies the following property
e graded symmetry [—,—]n = [—,—]moT
e graded Jacobi identity [—, —]m o ([—, —]n ® Id) o Cyc =0

More details about various notation and definitions can be found in Section 5.3.

Equipped with this toolbox, we define a graded analogue of a Lie bialgebra due to Schedler
[Sch04]. The idea behind this construction is due to Ginzburg [Gin07].

Inspired by a talk of Kontsevich, we show that this BV algebra is closely related to our definitions
of integrals. More precisely, we define two algebras Cr(n) and C(n), the latter being obtained
from the former by formally sending A to 0. While the definition of the algebra does not depend
on the choice of the potential, the BV operator on Cx(n) does. Furthermore, it becomes a
differential when h = 0 (but still depends on V). In that case, we have Theorem 5.50

Theorem B. There is a one-to-one correspondence between infinity integrals with respect to the
potential V' and differential graded algebra morphisms

(C(n),Av) — (C,0).

The situation is less clear for power series integrals. Nevertheless, we still have in Theorem 5.54

Theorem C. FEvery power series integral with respect to the potential V induces a map of chain
complex

(Cn(n), Av) — (C[[R]],0)

Note that this results does not mention the BV structure whatsoever, it is only a result on the
level of chain complexes. We’ll come back to that.

Since the zeroth cohomology of (C(n), Ay ), classifies infinity integrals for the potential V', we
compute it for n = 1 using the Homological Perturbation Lemma.

Theorem D. For any potential V of degree k + 1, the zeroth cohomology of the algebra C(1) is
given by
H°(C(1), Av) = Sym(Clz]/(z")).
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Using methods coming from topological recursion [CEOQ6][EOOQ7], we then classify power series
integrals in one variable. The idea is as follows. Starting with a power series integral, we define
generating functions encoding the data of the power series integral. Using loop equations, we
then promote these generating functions to differentials wy, for g = 0,7 > 1 on a Riemann
surface X. The bridge with topological recursion is given by the following theorem

Theorem E. For every power series integral in one variable ¢p, the differential forms wgp
constructed from the coefficients of ¢y satisfy the topological recursion equations.

The precise statement is given by Theorem 7.20. We stress that the forms wyg.,, are not defined
by the topological recursion formula. However, we show that they satisfy the same equations
as the one used to define the higher differentials in topological recursion. The meaning of this
theorem is that these forms are uniquely determined by wy 1 and w2, which is far from obvious
from their definition. This allows us to find a set of parameters uniquely fixing power series
integrals (in one variable) in Theorem 7.21

Theorem F. A power series integral in one variable py, for the potential

v= kg

Q

1s uniquely determined by the values of

li é
Lim on(z’)

forl1<i<d—2. and

for1<i,j<d-3.

The outline of this strategy was indicated to us by Nicolas Orantin and is an adaptation of
techniques used in random matrix theory and enumerative geometry [EOO0S].

Knowing that a finite set of parameters uniquely determines power series integrals, we then
speculate that it might be fruitful to reinterpret power series integrals as BV maps from certain
deformations of our initial BV algebra.

Conjecture G. Integrals with respect to the potential V are equivalent to BV-algebra maps
(Cﬁ(1)7 *, AV) - (C[[h]], 0)

where * is a deformation of the product with respect to which Ay is a differential operator of
order at most 2.

This speculation is motivated by the fact that this is the case for Gaussian integration, as seen
in Proposition 8.18 which is a reinterpretation of Wick’s Lemma. It also has similitude with
star product in perturbative algebraic quantum field theory [FR15a][FR15b], even though the
language used there is quite different.

Finally, we present different perspectives and how the study of non-commutative integrals fits
with other parts of mathematics:

e Non-commutative integrals can be thought of as some kind of universal integrals for groups
and Lie algebra. This point of view might be useful in getting a better understanding of
Duflo’s isomorphism S(g)? =~ Z(U(g)) for a Lie algebra g [Duf77].

iii



e Similarly, the volume of the moduli space of flat connections on a surface [Wit91] also
involves integrals that have an universal form and thus a universal theory of integration
for groups might be insightful.

e Related to the previous point, Magee and Puder [MP19|[MP22] study integrals of product
of traces over multiple copies of U(N). They compute such quantities with formulae
involving not only surfaces but also map from the boundaries of these surfaces to wedges
of circles. Their construction might be an example of our definition of non-commutative
integrals adapted to free groups.

e In [GGHZ21|, Gwilliam and al. construct in a different manner the BV algebra we call
Cr(n), and relate it to some Ay, algebras. It would be interesting to understand the role
played by integrals in that context. In an other paper [GHZ22], they use ribbon graph to
produce a quasi-isomorphism between their BV-algebra and power series. It seems likely
that one can use those same ribbon graphs to deform the product on the BV-algebra in
such a way that their quasi-isomorphism becomes a morphism of BV-algebra.
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1 Notation

We group here various definitions that will be used throughout the text. Most of them are related

to graded vector spaces. In the whole text, every construction is over a field K of characteristic
0.

Let V = @,., Vi and W = @,_, W; be graded vector spaces. Denote by d(v) the degree of
a homogeneous element v € V. For simplicity purposes, when the degree is in a power of —1,

we will write it with the same symbol as the element itself. That is, for v € V homogeneous of
degree d(v), (1) := (—1)%®),

The tensor product of V and W is the graded tensor space V ® W where

VeW),= @ V.ew,.

i+j=n

The tensor swap map 7: V®W — W ® V is the map define by 7(a ® b) = (—1)“bb ® a for a
and b homogeneous and then extended linearly. The map £ : V@®V QV - VRV ®V is the
map that cyclically permutes tensor factors :

E(a®b®c) = (—1)“(b+c)b®c® a

for a,b and ¢ homogeneous. Let also Cyc := 1+ &+ €2 : VVRV - V®V V. Those
three maps will also be used in the non-graded setting by simply setting all the elements to be
of degree 0.

Routinely, maps [—,—] : V®V — V and § : V — V ® V will respectively be called a bracket
and a cobracket, even though they might not satisfy the Lie (co)algebra axioms. Sometimes we
shall use curly brackets {—, —} for the bracket.

For a map [—, =] : V®V — V of degree 1, we will denote by [—, =] the map V® (VRV) —
V ® V defined on homogeneous a,b,c €V by :
[0,0®¢]? = [a,b] @ ¢ + (-1) PV @ [a, c].

Be aware that the sign for the second term is non-standard for the bracket in of degree 1.

Given a graded algebra A, we will consider two different A-bimodules structures on the tensor
product A ® A. The first one is the outer module structure given by

a(b®c)d = ab® cd
and the second one is the inner bimodule structure given by

ax (b®c)xd= (1) dpd @ qc.



2 Elements of non-commutative calculus

We begin by introducing some basic notions of non-commutative calculus.

2.1 Elements of non-commutative calculus

Commutative calculus on R™ deals with C*(R"), the algebra of functions, and this is a com-
mutative algebra. In non-commutative calculus, one replaces this algebra of functions by a
non-commutative algebra A. In the case of R", let

A:=C{ay, ..., Tn))

be the algebra of non-commutative power series in n generators.

In the study of commutative calculus, one then defines the space of vector fields X(R™). Quite
quickly, one shows that they form a Lie algebra and that they act on C*(R") by derivations.
Furthermore, every vector field V' has the form

0
V:Zflé’ixl

for some f; € C*(R™). All this information can be stated in a somewhat more conceptual
manner:

Proposition 2.1. The collection of partial derivatives 5(7 generate X(R™) as a C*(R™)-module.

Since we know what non-commutative functions are, Proposition 2.1 suggests that to understand
non-commutative vector fields, one should first understand non-commutative partial derivative.

Let f(x1,...,2y) be a commutative function, that is an element of C*(R™). The partial deriva-
tive %f is the coefficient of the linear part in X of f(z1,...,2; + X,...,2,). In the com-
mutative setting, this coefficient is an other function. If one now plays the same game in the
non-commutative setting, one finds that the linear part in X is an expression of the form

a ! a n"
(-1 X ()

where both (52~ f)" and (32 f)” are non-commutative power series. In particular, one needs to
remember what is left of the symbol X and what is right of the symbol X. Thus, naturally, the
partial derivative takes values in A ® A. Let us have a look at a couple of examples.

o Let f(z1,22) = @1, then f(z1+X,22) = 21+ X and f(z1,22+X) = 0. Hence %f =1®1
and Pa:zf = 0.

o Let f(x1,22) = 12027, then f(x1 + X, 25) = z12021 + 122X + X221 + X22X and
flxy, 20 + X) = 12021 + 21 X271 =2129®1+1® zox; and %f =2, 0.

What about the Leibniz rule? An obvious computation shows that for any f,ge A

0 0
2 (fg) faxl_g + ((%if)g-

In other words, the map T is a derivation of A with values in A ® A equipped with the outer
A-bimodule structure. This is the non-commutative analogue of the fact that vector fields act
as derivations. In the non-commutative setting, we are dealing with bimodules for one needs
to remember what was on the left and what was on the right. This motivates the following
definition:



Definition 2.2. The partial derivative a— : A —> A® A is the derivation of A with values in
A® A (equipped with the outer A- bimodule structure) defined on generators by

0
aixil'j = 61]]. & 1.

More explicitly one has the following formula for f = f; ... fr a monomial in A:

%(fl-“fk):2f1---fjfl®fj+1---fk

where the sum is taken over all the j such that f; = ;.

Remark 2.3. We will use Sweedler’s notation and often write % = ”f ® ax .

Is is then natural to interpret the space of all such derivations as the space of all vector fields:

Definition 2.4. Let Der(A) := Der(A, A®Q A) where AQ A is equipped with the outer bimodule
structure.

Remark 2.5. Elements of Der(A) are often called double derivations

Using the inner bimodule structure on A® A, one can, in turn, make Der(A) a A-bimodule. It
is a good exercise to check that one indeed needs to use the inner bimodule structure of A ® A
to preserve the derivation property. It turns out that this space of noncommutative vector fields
is also generated by the partial derivatives:

(A) as a A-bimodule.

Proof. Let d be a double derivations and write d(x;) = d(x;)' ® d(= :)" (remember Remark 2.3,
we are using Sweedler’s notations). Now define d € Der(A) as

~ " " a ’

Since d(z;) = d(x;) for every j and both maps are derivations, we have d = d. O

While we are on the topic of partial derivatives, let us record a useful identity relating derivations
of A and partial derivatives :

Lemma 2.7. Let u € Der(A). For any element f in A we have the following equality :

(N=Y Lyt

u(@:) ox;

Proof. By linearity, it is enough to show the result for f = f; ... fx a monomial in A. One has:

o fn

k
D=2
i JRERTARS
%



Although all of this seems to be a bit ad-hoc at first glance, it follows one guiding principle due
to Kontsevich and Rosenberg [KR99]:

Definition 2.8. Let B be an associative algebra and V' a vector space. The non-commutative
version of a structure on B should induce the commutative version of the said structure on

Rep(B, End(V)).

Let us show how this works for functions. We said that B should be thought of as the space
of non-commutative functions, so let us pick an element b € B. It should somehow induce a
function in O(RepB, End(V)). To that end consider

Try : Rep(B, End(v)) — C
pr—Tr(p(b))

Actually, the map Tr descends to a map |B| — O(Rep(B, End(V)), where |B| is the quotient of
B by the subspace of commutators. Furthermore, this map can be extended as a map of algebra

to
Tr : Sym|B| — O(Rep(B, End(V)).

This indicates that one should not think of the algebra of non-commutative as just the algebra
B, but one should rather think of Sym|B| as the algebra of non-commutative functions.

Remark 2.9. It has been shown (c.f. [Khal2|) that the image of the map T'r is in the subalge-
bra of GL(V) invariant functions O(Rep(B, End(V))¢F(V) | Tt turns out that every invariant
function can be constructed this way (c.f. [Pro87]).

Many more central notions of geometry such as differential forms, De Rham Cohomology, sym-
plectic forms, or Poisson bracket have been developed in the non-commutative setting and they
all satisfy the Kontsevich-Rosenberg principle. One can find a nice short exposition of those
ideas in [Fer17]. However, a core notion for us will be a notion that does not quite fit in the
framework of the Kontsevich-Rosenberg principle, the notion of divergence of a vector field.

Recall that in commutative calculus, the divergence is a map Div : X(R") — C*®(R"™). Its
expression in Cartesian coordinates is

, J afi
Div <Z fi(?:m—) = oz,

In the case of the algebra A = C{{x1,...,2,)y) we have non-commutative analogues of partial
derivatives, so one can mimic this definition.

Definition 2.10. The divergence map is the map Div : Der(A) — |A| ® |A| defined by
Div(w =3 o u(w:)

with the slight abuse of notation |a ® b| = |a| ® |b|.

Note that we decide to project everything onto |A|. An explanation could be that we know from
our earlier discussion that functions should be a product of elements of |A|. Another one is that
without this projection, the following fact proved in [AKKN23] would simply not be true.

Proposition 2.11. The map Div : Der(A) — |A|® |A| is a Lie 1-cocycle. In other words
Div([u,v]) = u(Div(v)) — v(Div(u))

for every u,v € Der(A).



The above result is important for it is the analogue to the classical result stating that the
commutative divergence is a Lie 1-cocycle. In the commutative case, the divergence is the only
degree 0 such cocycle (here by degree we mean the number of z;). This is clearly no longer true
in the non-commutative setting. Indeed 7 o Div : Der(A) — |A| ® |A| where 7 is the tensor
swap map, is an other example of degree 0 Lie 1-cocycle. It was conjectured in [AKKN23| that
Div and 7 o Div span the space of such cocycles if n > 2.

This does not quite adhere to the Kontsevich-Rosenberg principle for non-commutative vector
fields should be double derivations. However, it is not clear what it would mean for the divergence
to be a Lie 1-cocycle as it is already not clear how to make the space of double derivations a Lie
algebra.

Since we saw that functions are products of elements of |A|. We should slightly adapt the notion
of partial derivative to cyclic words:

Definition 2.12. The map % : |A| — A is defined for a cyclic word f = |fi... fi| in the
alphabet made by the s by

ijJrl-“fkfl“-fjfl

where the sum is taken over all the j's such that z; = f;.

Remark 2.13. Let u: A® A — A be the multiplication map and 7: A® /} — A® A be the
tensor swap map that sends a ® b to b ® a. One has for f a cyclic word and f of representative

of f 2
- ()

which relates the cyclic partial derivative to the standard one. In Sweedler’s notation this is
written

0
f—ILLOTOa

(2

of _of of
axi B 6951' 6:132
Definition 2.14. For 1 < i, < n, define % = % o % : |A] > A® A where we first apply
[ J bk J

the cyclic partial derivative and then the standard one.

Lemma 2.15. For every 1 < 4,7 < n we have the equality

02 02

ﬁsciéxj =Te 33335171

Proof. Let f be a cyclic word in |A|. We may assume that f is of the form |Az;Bz;C| with
A, B, C having no z; nor ;.

Then
o%f  9(CAx;B)
6:52»6% B 8:@ =04 ® B
and 0? 0(Bx;CA
f o _0BxCA) poca

89@8907 N &vj



2.2 Minus signs matter

All the constructions of the previous section also make sense in a graded setting, although one
has to be careful with minus signs. The purpose of this section is precisely to be careful now,
in order to be maybe a bit more sloppy later.

For 1 < i < n let a; be of weight d(a;) and denote by A the free graded associative algebra
generated by the os.

Just as in the non-graded case, one considers the quotient of A by the subspace of graded
commutators and denotes it by |.A|.

In the graded setting, the partial derivative % is a derivation of degree —d(«;):

Definition 2.16. The partial derivative % : A — A® A is the derivation of degree —d(«;) of
A with values in A® A defined on generators by

0
Eaj = (5”1 ® 1.

This means that this time there are some minus signs in the explicit formula:

0

6ai

(fro fo) = D (=)Idtlimon gy f @ fia.. o fa

where, just as before, the sum is taken over the j such that f; = «;
Similarly, some minus signs appear in the partial derivative of a cyclic word :

Definition 2.17. The map a% : |A] — A is defined for a cyclic word f = |f1... fi| in the

alphabet made by the ofs by

Z(_l)(fl+"'+fj71)(fj+'“+fn)fj+1 o Ikf fim

where the sum is taken over all the j's such that a; = f;.

Remark 2.18. If one understands the tensor swap map 7 : AQA — A® A in the graded sense,
ie. 7(a®b) = (—1)%*b® a for a and b homogeneous element, one has once more the equality

L f=poroL(f)

6041'
for f a cyclic word and f any representative of f.

Of course, we can still define double partial derivatives :

Definition 2.19. For 1 < 4,7 < n, define _2 . 250, Al > A® A where we first

daO0aj Jda; oo

apply the cyclic partial derivative and then the standard one.
Lemma 2.15 still holds if one understands everything in the graded sense:

Lemma 2.20. For every 1 < 4,7 < n we have the equality

02 02

— (1) 7o

&aiaaj &aiaaj '

Proof. Let f be a cyclic word in |A|. We may assume that f is of the form |Ao; Ba;C| with
A, B, C having no «; nor o;.



Then

*f = (fl)(A+ai+B)(aj+c)M
Oa;0a Ery
_ (71)(A+ai+3)(1:j+C)+(A+C)aiCA ® B

and
an _ _1)A(ai+B+Ij+C) a(BCk]CA)
(9aj6ai a$j
_ (71)A(ai+B+l‘j+C)+BOéjB ® CA.
When you then apply 7 to % you swap tensor factors and pick up the sign (—1)5A+€),
Now the two exponents of (—1) differ by exactly o;a;. O



3 Integrals

Our aim is to construct a non-commutative version of integration. It is well known that for a
n-manifold M, once a volume form w has been chosen, integration defines a linear map

:C*(M) — R.
M

In the case of a n-dimensional vector space, there is a canonical volume form, namely dz =
dxy1 A -+ A dz,. Every other volume form can then be expressed as

e Vdz

for some function V.

We aim to construct a non-commutative version of integration starting with the non-commutative
algebra A = C{z1,...,z,). In that setting, we have seen that it is natural to take Sym/|A| as
the ring of functions. An integral should then be a map

v Sym|A| — C.

Of course integration is not just any old linear map, it has other properties. What should they
be in the non-commutative setting? We will take our cue from matrix integration, more precisely
Gaussian integration.

3.1 Gaussian matrix integration

As advertised, we shall have a look at Gaussian integration of matrices as a guideline.

Let Hn be the space of N x N Hermitian matrices. We are interested in the Gaussian expectation
value (—) : C*(Hn) — C defined by

tr(M?2)
-NZ

feihyimg | arrane

where dM is the Lebesgue measure on Hy (identified with RV 2) and Z is a normalization
constant such that (1) = 1.

We are going to somewhat restrict the class of functions by considering only products of traces,
namely functions f of the form

n

H Mpk

Remark 3.1. This restriction is not a big deal for our purpose. Indeed, functions of this form
are exactly the functions obtained from the Kontsevich-Rosenberg principle.

Using Stokes Theorem we can derive the so called loop equations for those expectations values:

Proposition 3.2. For every ke N

N{tr(M**1)) 2 tr(MFE10) (M)



Proof. Since for matrices whose eigenvalues are sufficiently big, the integrand is arbitrarily small,
Stokes’ theorem tells us that

0 X tr(M2)
dM MFY; e N 72 =0.
%:LN OM;; <( i e )

An easy computation of the derivative gives

k—1 ]
ZJ dM<Z(Mk1l)ii(Ml)jj B N(Mk)ij(M)ji>€N”U2w) —0
ij YHN 1=0

which in turn yields

N{tr(M**1)) 2 tr(MF10) (M)

More generally, by considering the total derivative

Z dM d ((Mk)ij tr(M®*) .. tr(M*) eNtTUzVI)>
iJ

Hn aMZj
one gets the following result :
Proposition 3.3. For every k,neN and ay,...a, € N

n n

N{tr(M*H1) T Ttr(M)) 2 tr(ME (M) | T er(M1))
i=1 =0 i=1
an (tr(MFFei=t) Htr (M)

1#]

From these equations, one can compute the different expectation values recursively. A classical
result also gives a method to compute them directly. Indeed, it is a well-known fact that integrals
of product of traces can be computed by enumerating ribbon graphs, that is graphs that have a
cyclic ordering of the half-edges at each vertex. This is the famous result of ’t Hooft [Hoo74] :

Theorem 3.4.

o <HN o > 2, %

graph G with vertices of valency pg

where X(G) is the Euler characteristic of the ribbon graph G and n; is the number of k such
that pr, = 7.

Remark 3.5. From now on, when we use "graph" we always mean "ribbon graph". Since there
will be no mention of standard graph, there will be no confusion.

We need to explain what we mean by an automorphism of a ribbon graph. To that end, we will
consider a ribbon graph as the following data :

e A finite set even cardinality H = {hq, ..., ho} whose elements are called half edges.



e A partition V = {V1,...,V,,} of H whose element are called vertices
e A cyclic ordering of each V; (the cyclic ordering at each vertex).
e A partition F = {F1,..., E;} into sets of size 2 of H whose elements are called edges.

An automorphism of the ribbon graph is then a permutation ¢ of the set H of half-vertices such
that

e The permutation o descends to a permutation of the set V' (i.e. the image of a vertex is
vertex).

e The permutation o preserves the cycling ordering at each vertex.
e The permutation o descends to permutation of E.

However, for the moment, the important information of this theorem is not so much what are
the precise coeflicients coming from the contribution of a graph, but just that it is proportional
to an even power of N. Now the Euler characteristic of a connected graph is at most 2, thus
the Euler characteristic of a graph G with Cg connected components is at most 2Cq. An easy
consequence is :

Proposition 3.6. Let f be a product of | traces. The leading order in N of %<f> is 0. In

other words, +7(f) is a power series in N2,

Proof. According to Theorem 3.4, the graph contributing to {f) are built on [ vertices, thus
have at most [ components. Their Euler characteristic is then at most 2I. Because each trace
carries a factor %, the quantity we wish to compute is equal to N2 times the one in Theorem
3.4. This means that leading order contribution from a graph is of order at most 2l —2] = 0. O
Corollary 3.7. For everyl =1 and l; = 0, the numbers cp, p,,...p, defined by

l

are well defined.

!

Remark 3.8. The number ¢y is the k-th Catalan number %

Using the loop equations, we get

Corollary 3.9. For every k = 0,n >0 and aq,...,a, = 1 we have the following equality
k-1
Ck+1,a1,....an — Z Ck—1—L,l,ay,...,an
1=0

Proof. This is just a reformulation of Proposition 3.3, after dividing by N"*2 and taking the
limit N — oo. O

Definition 3.10. Let f =[]}, % be a product of traces. Set

Cf = Caq,...a2

We now see that those numbers are multiplicative :

Proposition 3.11. Let f,g be two product of traces, then

Cfg = CfCyq

10



Proof. For the sake of the argument, let us assume for the moment that f = ¢tr(M?)/N for some
a € N* and g = tr(MP®)/N for some b e N*.

For N fixed, let us then have a look at (NZtr(M®)tr(M®)) and (Ntr(M®)) (Ntr(M")). By
't Hooft theorem, the leading order of the expectation value <N 2tr(M*)tr(M b)> is given by
enumerating graphs of highest possible Euler characteristic built on two vertices of valency a
and b. These are the graph with as many connected components as we have vertices, and each
of these components are planar graph. This means that the leading order is N*4.

For each of <N tr(M a)> and <N tr(M b)>, the leading order is N2, corresponding to planar graphs
(necessarily connected for we are only considering graphs built on a single vertex). Thus the
leading order of the product is also N4.

This means that the coefficient of the leading order of
(N?*tr(M*)tr(MP)) — (Ntr(M®)) (Ntr(M")) (1)

is given by :

ab a b
9 ifa b
2, [AutC 2, AuiGh| | AuiGa] "7
(G1,G2)

2a a a
oy if 0= b
= [AutG| G ) |AutG1| |AutGa|
Both for a # b and a = b, the first sum is over the set of all planar disconnected graph built
on two vertices of valency respectively a and b and the second sum is on pairs of planar graph
built on one vertices of valency respectively a and b.

If a # b, there is a bijection between the two sets over which the sums are taken, simply given
by connected components. Furthermore, the automorphism group of a disconnected graph is
given by the product of the automorphism group of its connected component. So in the end we
get that actually the coefficient of N4 is 0.

In the case where a = b, we are in the one of the following two situations. Either the two
connected components of the graphs are the same or they are not. In the first case, the size
of the automorphism group of the disconnected graph on two vertices is twice the product of
the size of the automorphism groups of its connected components. Indeed there is an additional
symmetry coming from exchanging the two vertices. In the other case, the graph appears twice
in the expansion of the product (Ntr(M®)) (Ntr(M®)). In both cases, the cases we get that
the coefficient of N* in equation (1) is 0.

By definition we have :

1
Crg = ]\}gnoo m<N2tr(M“)tr(Mb)>
creg = lim %<Ntr(M“)> %<Ntr(Mb)>

and thus cfg —cp cg = 0.

The general case where both f and g are product of k and [ traces respectively is treated
similarly. The leading order of the corresponding Gaussian expectation values corresponding
to cfq is given by the graph with & + [ planar connected components and all those graphs are
product of graphs built on the vertices coming from f with graphs built on the vertices coming
from g. At the leading order, all the contributions get cancelled, and after dividing by N2(k+0
and taking the limit N — o0 we get that cyy — crcy = 0. The proof in more details follows the
same argument as the proof of Proposition 4.7, which is a stronger result.

11



Let us now reformulate all of this in terms of the algebra A = C{z) and a map

¢ Sym|A| — C.

As we have already seen, an element (z%!) ... (%) € Sym|A| should be thought of as a function
on Hy given by

M — ﬁtr(]\/l‘“).

i=1
We chose, however, to multiply each trace with a factor %

In other words, for any (cyclic) word W (z) we have a function Try on the space of N x N-
Hermitian matrices H defined by

Try :Hy — C
1
M — Ntr(W(M))

This defines a linear map Tr : |A| — Hom(Hy,C), which can then be extended as map of
algebra to Tr : Sym|A| - Hom(Hy,C). The integral ¢ is the map

o(f) = CTr(f)-
It is clear how to interpret Proposition 3.11: it just says that ¢ is a map of algebra.

The next question is how to interpret Corollary 3.9 purely in term of the map ¢ and the algebra

A.

We know that derivations of A should correspond to vector fields on H . Note that derivations of
A can be extended to derivations of Sym|A| by the Leibniz rule. Here we used that |A| = A, but
in general any derivation on an algebra A descends to a map on |A|. The following proposition
is an easy computation.

Proposition 3.12. For k > 0, let u be the unique derivation on A such that uy(z) = z*. The
following diagram is commutative

Sym| A = C* (M)
Uk Zi,j %(Mk)u
Sym|A| Tr COC(HN)

By linearity, we can obtain a loop equation like equality for any choice of product of traces and
any vector field. Is is also clear that the term

k—1
Z Ck—1-ll,a1,....an
=0

in Corollary 3.9 is equal to

o(Div(ug) f).

12



where we projected Div(uy) to Sym?|A| = Sym|A|.

Knowing that, we can reinterpret the loop equations as

e(=u(V)f + Div(u)f) = 0

where u € Der(A), f € Sym|A| and V = 3(2%). We note that the value of V is now part of the
data of our integral. It is called the potential.

Note that with our choice of normalization for a trace, Tryo = 1 which implies that the map
¢ : Sym|A| — C descends to a map ¢ : Sym|A|/((2°) — 1gym) — C.

3.2 More matrix integration

The loop equations (Proposition 3.3) can actually be derived in a broader context, that is for
more general potentials.

Set V(z) = & — 31¢_, %ok and let (—)y : C*(Hy) — C be defined by

. L ~NV(M)
Fo = g | Mg

where Zy, is a normalization factor.

Of course, the meaning of such an expression is not quite clear for there might be some con-
vergence issues. There are two options to fix this. The first one is to consider only potentials
whose degree d is even and a4 negative, for in that case the integral is convergent.

The second option is to interpret these integrals as a perturbation of the Gaussian integral, and
define {f)y as a power series in ag, ...,aq. What we mean by that is define

4 Nayz n
Zvi=2 ) <}£[3(7k )"

and then define

d Naga*
Zv{fv:= >, «f H(T)nk>
k=3

ni,...,nqg=0

In words, we have interpreted Zy{f)y as (feVY(M)) and then formally permute integral and
exponential.

For some potentials, both definitions are valid at once. In those cases, denote momentarily the
two different definitions {—)cony and {—) rormai- In general

<_>CO7W #* <_>formal .

Furthermore, if denote by Zcons and Zsormar the normalizing factors in the two different defi-
nitions, both are functions of the @ = (aq,...,aq) but

Zconv (a:) # Zformal (C_i)

However, both definition satisfy loop equations

13



Proposition 3.13. For every k,ne N and by,...b, €N

n k—1 n
N{tr(M*=V' (M) | [tr(M*)), = > (tr(M* 1 er () T [er (M),
i=1 =0 i=1
+ i bj<tr(Mk+b"_1) Htr(Mbi)%}
j=1 i#j

In the case of convergent integrals, it is the same proof as the one we had for Gaussian integration.
In the formal interpretation, it follows from the Gaussian case, since loop equations are linear.

One can also compute such integral using ribbon graphs. We shall not delve into the full details,
but rather refer to [Pol04] or [Eti24]. Let us still mention that in order the get the coefficient of

az®...ay* in
1 n tr(MPE
;<HN ( )>
[In;! Fallet Di v

one should consider graphs built on ng vertices of valency ag, n4 vertices of valency a4 and so on
together with labelled vertices of valency py for k = 1,...,n. One should, however, not consider
all such graphs, but only those in which connected component contains at least a labelled vertex.
This means that the Euler characteristic of the graphs we are considering is at most N7, and

then every coefficient of
1 <ﬁ tr(MPr) >
H nj! ]\/vp}C )

k=1

is a polynomial in N—2.

The goal of this digression is not so much to give a precise account of formal matrix integrals
but rather to reassure the reader that the phenomenon we described for Gaussian integration of
matrices is not specific to the quadratic potential but a feature of matrix integration in a much
broader sense. We refer the reader to [EKR18] for more details.

3.3 Axioms for integrals

We generalize the properties of ¢ of the previous sections to more variables and any choice of
potential V.

Let A := C{zy,...,x,) be the free associative algebra on n generators and denote by |A| the
quotient of A by the subspace of commutators. Finally consider Sym|A|, the symmetric algebra
on the space |A|.

Let us fix once and for all a potential V' € |A|.

Definition 3.14. An infinity integral (with respect to the potential V') is a homomorphism of
algebra ¢ : Sym|A|/(|1] — 1gym) — C satisfying the loop equation

e(=u(V)f + Div(u)f) =0

for every u € Der(A) and f € Sym|A].

This definition deserves a bit of an explanation. Since w is a derivation of A, it descends to a
well defined map u : |A| — |A]. Now u(V) is an element of |A|, hence of Sym|A| and one can
then multiply it with f € Sym|A|. Similarly Div(u) is by definition an element of |A| ® |A4| and

14



can be projected to Sym?|A| and then multiplied with f. So the expression in the argument of
© is indeed an element of Sym|A|.

We have seen that Gaussian integration gives an example of an integral with respect to the
potential V = %|x2\ We now show that this is actually the only example for this potential.

Proposition 3.15. There exists a unique infinity integral ¢ for the potential V = %|x2|

Proof. Since ¢ is a map of algebra, one has that ¢(1) = 1. We claim that ¢(|2*|) is uniquely
determined by the loop equations.

Indeed, suppose that all values of o(|z¢|) are uniquely determined by the loop equations for
0 < i < k. We then have

A(41) = (V) = 3 o] 11 = oot (1171

where uy, is the unique derivation of A sending z to 2* and we have used the loop equation and
the fact that ¢ is a map of algebra. O

15



4 Power series integrals

By revisiting the motivating example of Gaussian integration of matrices, we define an other
version of integrals, this time with values in power series with coefficient in C.

4.1 Back to Gaussian integration

Let us come back to Gaussian integration of Hermitian matrices introduced in Section 3.1.
Remember that for any word W(x) € A = C{x), we associated a function Try on the space of
N x N Hermitian matrices by

Trwl’HNH(C

1
M — Ntr(W(M))
and we denoted by T'r the linear map Tr : Sym|A| — Hom(Hn,C) the map associating to a
product of (cyclic) words the product of the corresponding functions. We then had a look at

the Gaussian average of such functions. In other words, we were interested in the functional
(=) : Sym|A| — C defined by

1 tr(M2
(Trs) = fJ dM Trp(M) e~ N"2
Z )i

We saw in Section 3.1 that according to 't Hooft Theorem (Theorem 3.4 ) (T'r(f)) is given by
a Laurent series in N2, and in Proposition 3.6 we’ve seen that actually there are only negative
powers of N2. Let us then interpret those Gaussian averages as power series in N ~2:

Definition 4.1. Let ¢, : Sym|A| — C[[N~2]] be the map that to a product of word associates
the power series of the Gaussian average of the corresponding traces. In formula

Ops(f) = (Try) = %J dM Trp(M) e~ N2

N

Let us us now reinterpret Proposition 3.3 in term of ¢,s. It was saying that for every k,n e N
and a1,...an, €N

T
L

N (tr(M*) ﬁtr(M‘“» = > (e (M ﬁtr(M‘“»
i=1 0 1=1
(2)

a; (tr(MFFe=1) T Ter(M™))
i#j

-

Il
—

+
J

We saw that the different terms of Equation (2) could be identified as images of elements of

Sym|A| by the map ¢,s. Indeed, let u be the unique derivation of A sending z to z* and let

V = 1|z?|, we had

o (tr(MFY) [Ty (M) = oy (u<v> I, |w|)

° ZZ:OI <t7“(Mk—1—l) tr(Ml) H;L:l tr(M‘“)> = ©ps (Div(u) H?=1 |mai|>

16



For the last term, an easy computation shows that

> a;(tr(MFra=1) [Tiv; tr(M®)) = @ps (u(l—[?_l L ))

By linearity, we have proved that the power series version of Gaussian integration satisfies an
other version of the loop equation :

Proposition 4.2. For every u € Der(A) and f € Sym|A|, one has
. 1
ps(—u(V)f + Div(u)f + szulf)) =0
Remark 4.3. One can decompose ¢p, as

Pps = Z o N2
k=0

with ¢ : Sym|A[/(|]1] — 1sym) — C. We have ¢y = ¢ the integral constructed in Section 3.1
Of course it is totally unreasonable to expect ¢,s to be a map of algebra. For example,
pps(|z]) =0

1
¢p8(|$‘2) = N2

Nevertheless, it turns out that there are still relations between the different products. Those
relations are best expressed through cumulants:

Definition 4.4. The n-cumulant is the map
e+ Sym"|A| — C[[N7?]]
defined recursively by the formula:
U(r)
ECERE N D
T j= i€ B,

where 7 is a partition of {1,...,n} into [(7) subsets denoted by B, ..., Bj).

Example 4.5. For example, the first two cumulants are given by

pe(|2?]) = wps(|2%])
pella®] [2°]) = wps (2] [2°]) = @ps(127]) @ps(l2°])

Remark 4.6. Alternatively, one could also define the n-cumulant as

()

%(m“w . xw) = Y07 = D o ( [ ] a1)

sy iEB]‘

Since the contribution a disconnected graph is given by the product of the contributions of its
connected components, an argument in the same spirit as the one we used to prove that the
leading order of Gaussian integration is multiplicative can be used to show that cumulants can
be computed using 't Hooft Theorem by considering only connected graphs:

17



Proposition 4.7.

1 | 1 NX(©)
nnﬂ%m ar ) e 2, [Aut(@)]

k=1 connected graph G
with vertices of valency pg

where all the coefficient are the same as in 't Hooft Theorem (Theorem 3.4).

Proof. (Sketch) Since the sum in Definition 4.4 is over all possible partitions, the n-cumulant is
a symmetric linear function in its n argument, it enough to understand the situation when all
the ay are equal to the same number a.

If a1 = as--- = a, = a, we have the following equality of formal power series in ¢:
o eellz™)
CTt" = log (@ps (exp(txﬂ))). (3)
n=1 '
We shall now see that
ain a"n! NX(©)
o) =F B e

connected graph G with
n vertices of valency a

satisfies Equation (3).

This is easier seen by first applying exp to Equation 3. The coefficient of ¢" in the left hand
side is then given by :

Y Y ¥ nlk'(@%'))k

120 k1,...,k; T1sesTu
kin;=n

1 ( am NX(G) )k’i
=2 2 2 frEilae 2, e
1=20kq,....k; M1 HZ kl' N connected graph G with |AUt(G)|
kini=n n; vertices of valency a

If we show that this equal to

a™ NX(G)

N2n Z A
graph G with | Ut(G)|
n vertices of valency a

we are done. Clearly there is no issue with the prefactors given by powers of a and NV; the real
content is the part coming from the graphs.

Given a graph any G build of n vertices of valency a, say it has k¥ connected components with

n§ vertices, kS connected components with nS vertices, ... , kl% connected components with

an vertices.
G

The contribution coming from this graph will be equal to the contribution coming by picking
each connected component in the term of (4) corresponding to | = lg, n; = n{, k; = k¢

Indeed the power of N is the right one for the Euler characteristic of graph is given by the
sum of the Euler characteristic of its connected components. Let us now have a look at the k{

18



connected components of G with n{’ vertices. Say there are g; of those connected components
that are the same graph G1, g2 of those connected components are the same graph Gos,..., g,
of those connected components are the same graph G,. This means that the product of graphs

G] cen G’I"é ' V\/ill appear
91’ st 797

NX(@) \Fi
| Aut(G)| )

times in

<connected graph G with
n; vertices of valency a

But also, since you have connected components of G that are the same, the size of the automor-
phism group of the part of G coming from those connected components composed of n? vertices
is equal to

[ ] o+ Aut(G, )l
j=1

Doing this analysis for all the 1 < < lg we get that the factor
1
e

together with the contribution of all those product coming the connected components of G gives
exactly

NX(G)
| Aut(G)|
O
Corollary 4.8. For every n and ai,...,a, = 1, the leading order in N~2 of the n-cumulant

eellat] .. lan]) is n — 1.

Proof. Since all the graphs G contributing to the cumulant are connected, their Euler charac-
teristic is at most 2. Together with the factor 1/N?" in front, the leading order in N? is indeed
n—1. O

Remark 4.9. Corollary 4.8 implies that the map ¢ of Section 3.1 is a map of algebra. This is
actually a stronger result.

4.2 Power series valued integrals

Just as before, let A = C{x1,...,z,). The example of Gaussian integration motivates the
definition of a power series version of integrals. The parameter A should be thought of as N2,
The definition will make use of the notion of cumulant. For the sake of clarity, we rewrite this
definition here:

Definition 4.10. Let ¢p : Sym|A| ® C[[A]] be a C[[A]]-linear map. The k-cumulant of ¢y is
the map ¢, : Sym¥|A| — C[[h]] defined by
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U(r)

on(fi fi) =D [ [ec( ] £)

™ j=1 iEBj
where 7 is a partition of {1,...,k} into I(7) subsets denoted by Bi,. .., Bj(x)-.

Definition 4.11. A power series integral (with respect to the potential V') is a C[[A]] linear
map o5, : Sym|A|/(|1] — 1sym) ® C[[A]] — C[[R]] satisfying the following conditions:

o (ph(l) =1
e oy, satisfies the loop equation :
on(—u(V) ] + Div(u)f + hu(f)) =0 (5)
for every u € Der(A) and f € Sym|A| ® C[[R]].
e For every k € N, the k-cumulant ¢, : Sym™|A| — C[[h]] of ys factors through R*~1C[[A]]

Because of C[[h]] linearity, a power series integral ¢y is entirely determined by its value on
the subalgebra Sym|A|/(|1| — 1sym). We shall denote by the same symbol ¢y the power series
integral restricted to C linear map from Sym|A|/(|1] — 1sym) to C[[R]].

Thus, a power series integral ¢y can be decomposed as :

on=wotpLh+ o B+

where @; : Sym|A| — C is a C linear map. Unwinding the two defining conditions of a power
series integral and looking at the coefficient of A°, one sees that ¢ is a integral in the sense of
Definition 3.14. In other words, for any power series integral ¢y the diagram

Sym| Al/(|1] = Lsym) ® C[[A]] ——— C[[A]]

h»—»Ol J{hb—)O

Syml|Al/(11] = Lsym) o c

commute and g is an infinity integral when ¢y, is a power series integral.

This begs the following question: given an infinity integral o : Sym|A| — C can it always be
extended to a power series integral? If yes, is the extension unique? How much do the answers
to those questions depend on the potential V'?

We will see that it will be fruitful to actually reinterpret the loop equations as the differential
of a well chosen chain complex.
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5 Cohomological reformulation of integrals

We wish to reinterpret both infinity and power series integrals in a cohomological setting. We
begin by given some motivation coming from commutative integration. We then present the
algebraic tools needed in the non-commutative setting and finally define a BV-algebra related
to integrals.

5.1 Commutative integration cohomologically

As a motivation for what is to come, we explain how integration on manifolds can be understood
in a cohomological setting. We have learned this point of view from [Gwil2].

Let M be a smooth, compact, closed, oriented manifold of dimension n. In this nice setting, we
can integrate any top forms and thus have a linear map

f QM) — R.

M

Stokes’ theorem is then equivalent to saying that the linear map SM descends to a map
s Hjp(M) — R.

M

This suggest that we could view the space H},(M) as the space of integrals on M. Fix now
a volume form g on M. Given a function f € C*(M), we can multiply it with p to obtain an
other top form fu. In other words, we have a map

m,, : C*(M) — Q"(M)
f— fu

We can do a similar thing for polyvector fields
k
my, /\ T]\/] — Qn_k(M)
X —xp

where ¢x p denotes the contraction of the n form p with the k polyvector fields X. This means
that altogether we have a map

my, /\TM — Q*(M)
X —xp

As i is a volume form, it is nowhere vanishing and the map m,, has an inverse m;l which allows

us to transport the de Rham differential d on Q*(M) to A Ths, i.e. we define a map

N
Ay = m, odomy.

It is at least clear what A, does to vector field. Indeed, for a vector field X € T, A, (X) is
the unique function such that

(Au(X))p = douxp,
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which is exactly the definition of Div,, X, the divergence of X with respect to the volume form
p. In short, we have a chain complex (/A Tar, A, ) isomorphic to the de Rham complex in which
A, extends the divergence of vector fields to polyvector fields. Saying that

/\Tm = SymTy[1]

is a mild reformulation that brings the chain complex that we constructed closer to the form
of other construction that will appear in the non-commutative setting. Note that framed like
this, everything is shifted to the left, and the complex is concentrated between degrees —n and
0. The space of integrals should then be zeroth cohomology of that complex.

Finally, let us pay attention to the case M = R". Here there is a preferred volume form, namely
po = dxyi A -+ A dz,. To simplify notations, denote the vector field 57— by 1;. With this
notation, the map m,,, is the map

Nig Ao AN = Xdry Ao Adxg, A Adxi, A Aday,

and A, is given by

Aﬂo(fnilA”'/\n’Lk Z—i—a Thl /\7]1 /\Thk

This can be written in a much more economic manner as

2 ox; 5771

(one should not worry about the signs once everything is understood in a graded setting). If we
have an other arbitrary volume form p, we can express it as

p=e" o
for some function V. Let us compute A,. We have

do mu(f Niy Aot Aliy,) = id(f e_S/'[/O\{dmi17" d‘rik})

of _ oV _
+( a{e V—f 52 e VYdz; A po\{daiy, . .., dz;,}

And thus

of _ ov _ ~
Au(fmlA‘“Amk)ZZi( x_e S—f 6:5»6 S)ml/\"'/\m'/\"'AThk

Written more elegantly, we have

av o
n= AHO _; axl anl

- A#o - {‘/7 _}
where {—, —} is the Poisson bracket on SymTy[1] given by

oF 0G  OF 0G
.G Z ox; on; B on; Ox;

From this study in M = R", or one should say in local coordinates, we see that A, is given
by an universal differential operator of order 2 perturbed by a differential operator of order 1
itself coming from the order 2 operator. It is good to keep that in mind when we delve into the
non-commutative analogue of this construction.
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5.2 General facts about BV-algebra

The algebraic structure on polyvector fields described in the previous section is an example of
a Batalin-Vilkovisky algebra (BV-algebra). Here is the general definition

Definition 5.1. A BV-algebra (B,A) is a graded commutative algebra V' equipped with a
degree 1, square zero map A : B — B satisfying the so called 7 term equation:

A(abe) — A(ab)e — (—1)*C+IA(be)a — (—1)@ T A(ca)b
+ A(a)be + (=1)*CFIA (D) ea + (—1)@TD A(c)ab = 0
for a, b, c homogeneous elements. Note that setting a = b = ¢ = 1 in the above equation yields
A(1) = 0. The map A is called the BV operator.

Remark 5.2. Operator satisfying the 7 term equation are called "differential operator of order
at most 2". For example any derivation satisfies the 7 term equation, and if u; and uy are two
derivation of the algebra B, their composition u; o us is also a differential operator of order at
most 2.

From the BV operator A one can define a bracket on B by the formula
[a,b] = (=1)*A(ab) — (—1)*A(a)b — aA(b).

This bracket has the following good properties. A proof can be found in [Get94]
Proposition 5.3. Let (B,A) be a BV-algebra, the map

a®b— [a,b] = (—1)*A(ab) — (—1)*A(a)b — aA(b)
for a,b homogeneous elements and extended linearly has the following properties :
e The bracket [—.—] is a map of degree 1.
e For a,b homogeneous, [a,b] = —(—1)@+DO+D[p q].

e For a,b,c homogeneous

[a, [b,¢]] = [[b,a], c]] + (=1)“ DD [b, [a, e]]

e For a,b homogeneous Ala,b] = [A(a),b] + (—=1)%F1[a, A(b)]
e For a,b,c homogeneous [a,bc] = [a,blc + (—1)(@+1bp[a, c].

Remark 5.4. The first and last property in the previous proposition says that for every a € B
homogeneous of degree k, the map b +— [a,b] is a derivation of degree k + 1.

Remark 5.5. Note that in general the operator A fails to be a derivation. The bracket associates
to A encodes this failure. In particular, if A is a derivation the bracket is 0.

Proposition 5.6. Let (B, A) be a BV-algebra and let a € B be a homogeneous element of degree
0 such that [a,a] = 0. Then the derivation [a,—] is a degree 1 map that squares to zero, i.e. a
differential.

Proof. The map [a,—] is of degree +1 by remark 5.4. Using the graded Jacobi identity of the
bracket one has for b € B:
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[a, [a,b]] = [la, al, b] — [[a, [a, b]]

hence [a, [a,b]] = 0. That is [a,—]? = 0.
0

Proposition 5.7. Let (B, A) be a BV-algebra and let a € B be a homogeneous element of degree
0 such that [a,a] = 0 and A(a) = 0. Then the degree 1 map A + [a,—] is a BV operator.

Proof. 1t is easy to check that any differential is a BV operator. By the above proposition,
[a,—] is a differential and since A is also a BV operator, their sum A + [a, —] satisfies the 7
term equation.

We now check that A + [a, —] squares to zero. We already know that both A and [a, —] square
to zero so we only have to check that Ao [a,—]+ [a,—] o A = 0 if A(a) = 0. One has for every
beB:

(Aola, =]+ [a, =] o A)(b) = A([a, b]) + [a, A(b)]

O
Remark 5.8. Since A + [a, —] differs from A by a derivation, the associated bracket does not
change.

Example 5.9. Let (g,[—, —],d) be a be an involutive Lie bialgebra. Then the exterior algebra
Ag admits a BV-operator A defined by

A(xl . l’n) = Z(*l)i+j[l’i,l’j]$1 .. sz . ifj P 7%
i<j

+ D S i

One can check that [z,y]py = [z,y]. See Proposition 5.13 for the proof of a more general
statement.

This example can extended to a graded setting:

Example 5.10. Let (g,[—, —],d) be a be an involutive graded Lie bialgebra (in particular both
maps [—,—] and § are of degree 0). Then the graded symmetric algebra on the shifted space
Sym(g[1]) becomes a BV algebra with BV operator

Ay ...@p) = D (=L@t bz @t 8 )0 b0 4 [ gy
i<j

+ (D) e AT S (g
i
If g is concentrated in degree 0, one recovers the previous example.
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For later purposes, we wish to do the same when we have a graded vector space V equipped
with a bracket and a cobracket both of degree 1. That is, build a BV operator on the graded
symmetric algebra SymV out of the (co-)bracket.

Definition 5.11. Let (V,[—, —],4) be a graded vector space together with two degree 1 maps
[—,—]:V®V >Vand 6: V - V®V. We denote by br and ¢ the endomorphisms of SymV
defined on product of homogenous elements by

bT(Ul “es Un) = Z(_1)(U1+"'+'U7‘,_1)'Uq‘,+(’01+"‘+'U_7‘_1)'U_7‘+'U7','Uj [Ui, 'Uj]vl ‘e 131 SPEN ’UA]‘ ... Up

1<j
S(Ul . Un) = Z(—1)(U1+-~-+”i*1)vi5(1}1)1)1 e U Uy
1<j
The following proposition due to Perry and Pulman [PP24] explains what are the Lie bialgebra
like conditions required for A = br + § to be a BV operator:

Proposition 5.12. In the same setting as above, the map A = br + § is a BV operator if and
only if the following conditions are fulfilled:

b [7’7] = [7’7]07-
[—, =]o([-,-]®Id)oCyc =0

e =709
e Cyc(0®Id)od =0
e [—,—]od=0

§of— == (=1)""a,8(y)]? + (=) y, §(2)]?

Proposition 5.13. Let [—, —] and 6 be as above and denote by A the corresponding BV operator.
Let us also denote momentarily by [—, —|py the bracket on SymV obtained from A. Fora,beV
one has

la,b]Bv = (=1)%[a,b].

Proof. This is a straightforward computation:

= (=1)?*A(ab) — (=1)*A(a)b — aA(b)

= (=1)"[a, 8] + (~1)*6(a)b + (~1)****5(b)a — (~1)*d(a)b — ad(b)

= (=19)[a, ]

where we used that d(6(b)) = d(b) + 1. O

5.3 Double bracket

In [dB04], Van den Bergh defines double bracket as map A® A — A ® A for an associative
algebra A satisfying some axioms. From a double bracket, one can obtain a Lie bracket on the
space |A|. Furthermore, a double bracket induce Poisson bracket on the Rep(A, End(V)).

We present here a slight modification of the construction of double Gerstenhaber algebra found
in that same article. This modification is more suited to our purpose for it will produce degree
1 brackets satisfying the properties described in Proposition 5.12

In this section fix once and for all a graded algebra A and we denote by g its multiplication
map.
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Definition 5.14. A double bracket on the graded algebra A is a degree one map
I(—,—-): AQRA—-> AR A
such that
e I(a,b) = (—1)% 7(I1(b,a))
e TI(a,bc) = (—1)(@+ Vb bII(a, c) + TI(a, b)c.

Throughout this section we will use graphical calculus to prove different identities. All diagrams
go from bottom to top. The two properties of the map II(—, —) can then be represented by

| /
e fm «

Note the red line which represents the fact that II(—, —) is a degree 1 map.

As a first exercise in graphical calculus we get :

Proposition 5.15. Let II(—, —) be a double bracket. For a,b,c homogeneous element of A we
have
(ab,c) = (—1)* a* I(b,c) + (—1)* T(a,c) * b

Proof. This is just the following simple graphical computation:

A

_§+n-ﬁ’+n

Putting together the two derivation like property of the double bracket, we get the following
formula to compute the double bracket :

O
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Proposition 5.16. Leta =ay---a, and b= by ---b, be two elements of A. Then

G

II(a,b) =

3

Z tar--aiy# (b bjo1 W(ai, b) bjr1--bm) * aip1---ay
1j=1

where the sign is (71)(al+“'+ai_1)+(ai+1+"'+an)b+(b1+"'+bj_1)(ai+1)

Definition 5.17. Let II(—, —) be a double bracket and define the map
[ —In=poll(—,—) : AR A— A.

This map is the bracket associated to the double bracket II(—, —).

If the context is clear, we will simply write [—, —] instead of [—, —]n

The following two lemmas follows from the definition of a double bracket and are totally straight-
forward:

Lemma 5.18. Let II(—, —) be a double bracket and let a € A be an homogeneous element of
degree d(a). The associated bracket [a,—]: A — A is a derivation of degree d(a) + 1

Lemma 5.19. For a,be A we have the following equality
[a,b] = (1) [b,a] in |A].

We also need a last lemma which requires a little bit of work :

Lemma 5.20. Let II(—, —) be a double bracket and let a,b, c be homogeneous element in A then
we have the following equality for the associated bracket:

[ab, ] = (—1)? [ba, c].

Proof. We compute both side of the equation graphically. On the one hand, for the term [ab, ]
we get:

where the used the associativity of multiplication in the last equality.

On the other hand, for the term (—1)? [ba, c] we get :
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b
f@fﬂ@ i

Proposition 5.21. Let II(—,—) be a double bracket. Then the associated bracket [—,—] de-
scends to maps

o |A/®@A— A
o |A®|A| — |A.

O

Furthermore, if we also denote by [—, —] those two maps, we have the following equality for
a,be A
[lal. [b]] = (=1)** [[ol, |al]-

Proof. The first map is well defined by 5.20. For the second map, Lemma 5.19 and 5.20 together
give us

[[a, be]| = (=1)" [[a, cb]].
The graded symmetry of the second map follows from Lemma 5.19. O
We have seen what are sufficient conditions on the double bracket to get a graded symmetric
bracket. We now have a look at the Jacobi identity.

Definition 5.22. Let II(—, —) be a double bracket. We define II(—,II(—, —)) (respectively
II(—,TI(—, —))r) by the left (respectively right) diagram:

|| I
Tt —TT
9 |
Tt - TT
] (1
Definition 5.23. Given a double bracket II(—, —), define II(—, —, —) : AQA®A > AQA®A
by
H(fa e *) = H(fa H(fa 7))L + g o H(ivn(iv 7))L © 571 + 62 o H(fvn(fv *))L o 572
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We have some kind of prototype of the Jacobi identity:
Proposition 5.24. For a,b,c € A homogeneous we have the following equality in A® A:

(—1)* [a, T1(b, ©)]® + T1([a, b], ) + (=1)*F VP TL(b, [a, c])
= (u® Id) I(a,b,c) + (—1)® (Id® p) TI(b, a, c).

Proof. We first compute (graphically) the right hand side of the equation.

For the term (p® Id) I(a, b, c) we get:

fjﬁ+£ﬁ+£<

For the term (—1)* (Id ® p) I1(b, a, c) we get :

Tt Tt Tt
Sl e (s
T

L %

We now compute the term on the left hand side of the equation.

e For (—1)® [a,TI(D, c)]® we get

=
=

=

>x< 3

T T
S < |
T T

SRR

The first summand corresponds to the first summand of (¢ ® Id) II(a,b,c). The second
summand is equal to the third summand of (—1)%® (Id ® u) (b, a, c). Indeed:
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]

—TT —TT TT
Si %((F
Tt Tt Tt
TR Ny

e For II([a,b], c) we get using the derivation like property :

|

f{(f%(; ﬂ%

The term on the left is equal to the second term of (u®Id) (a, b, ¢), while a bit more work
shows that the term on the right is equal to the second term of (—1)% (Id ® u) I1(b, a, c):

LG
S g

e For (—1)@*+Db TI(b, [a, c]) we get using once more the derivation like property:
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)

—TT

s i

We see that the left term is equal to the first term in (—1)? (Id® u) 11(b, a, c¢). The rigth
term is equal to the third term in (¢ ® Id) II(a, b, ¢):

A

T Tt
Tt Tt Tt
|

All the terms on the left hand side of the equation have their counterpart on the right hand
side, which finishes the proof. O

Corollary 5.25. Let II(—, —) be a double bracket with the property that II(—,—, —) = 0. Then
the associated bracket on |A| satisfies the following version of the Jacobi identity:

[_7 _] © ([_7 _] ®Id) © C’yc =0
Proof. 1t is enough to show that

[[lal, [b]]. [el] + (=) [Tlel, lall, ]] + (=) [[Jol, |e]], [al] = 0

for a,b, c homogeneous elements of A. Using that the associated bracket on |A| is of degree one
and graded symmetric, this is equivalent to

[Mal, [bf], lef] + (1" [l [lal, [e[1] + (=1)* al, [|8], le]] =
This is just the multiplication map applied to Proposition 5.24 together with the hypothesis
that II(—,—, —) = 0. O
A double bracket II(—, —) that satisfies II(—, —, —) = 0 will be said to satisfy the double Jacobi
identity, the name being motivated by the previous proposition.

To summarize, we have shown the following theorem

Theorem 5.26. Let A be a graded algebra and II(—,—) : AQ A > A® A a double bracket such
that II(—, —, —) = 0. Then the associate bracket

[= —ln = [A|® |A] — |4]
satisfies the following property
o graded symmetry [—,—|n =[—,—|noT

o graded Jacobi identity [—, —]n o ([—, —ln ® Id) o Cyc = 0
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The main advantage of working with a double bracket on A instead of directly with the bracket
on |A| is that one can make use of the algebra structure of A. In particular, if A is a free algebra,
one can define a map II(—,—) : A® A - A® A on generators and then extend it uniquely as a
double bracket.

The obvious question is: what are the sufficient conditions for the double bracket to satisfy the
double Jacobi identity? To answer that question we prove some properties of II(—, —, —).

Lemma 5.27. Given a double bracket II(—, —), we have the equality
H(_a ] _) = 5 © H(_7 ] _) © g_l'
Proof. Straightforward from the definiton of II(—, —, —). O

We also show that the map II(a,b,—) : A > A® A® A is a derivation:

Proposition 5.28. Given a double bracket TI(—, —) and homogeneous elements a,b € A, one
has

(a,b, cd) = (=1)°*Y) ¢ (a, b, d) + (a, b, c) d

Proof. We shall just compute (graphically) the three terms in II(a, b, cd)
e For II(a, (b, cd)), we get :

%H&@m

While for the second term we recognize I1(a, I1(b, ¢)), d, the first term requires a bit more
work:

BERELES

So the contribution from this part in total is equal to
(=1)@ ) ¢ TI(a, T(b, ¢))r, + (a,II(b, )z d + (—1)*T2+ 1(a, ¢)I1(b, d)

where we slightly abuse notations and write (z ® y)(z ®t) for z ® yz ® t.
e For £ o II(—,TI(—, =)z, 0 €71 (a, b, cd) we have
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@
g

(=)@t ¢ (EoTI(—,T(—, =)L 0 & (a,b,d)) + (o TI(—,TI(—, =)L 0 £~ (a,b,¢)) d.

%f%%@a

e Finally for £2 o II(—, II(—, —))z 0 ¢~2 (a, b, cd) we have:

=
:IJ

=
:IJ

=

R .

—

=

—
_EJX :IJ

The second term is (—1)°(¢+%) ¢ (€2 o TI(—, TI(—, —))z, 0 €72 (a,b,d)) and for the first term
we keep going :
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The first term is now equal to (£2 o II(—,II(—, —))z 0 €72 (a,b,¢)) d and the second one is
(—1)betarerl (g, c)TI(b, d). Indeed

ﬁ'j(nn

Adding all three contributions we get the desired result.

Putting together Lemma 5.27 and Proposition 5.28 we get :

Proposition 5.29. Given a double bracket 1I(—, —), II(—, —, =) = 0 if and only if 1(a,b,c) =0
for every generators a,b,c € A.
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5.4 Ginzburg’s algebra

In order to reinterpret loop equations in a homological setting, let us remark that for A =
(C<171, s axn>

Der(A) ®agacr A = Der(A)
as A-bimodule (remember that the A bimodule structure on Der(A) is coming from the inner
bimodule structure on A® A). This seems to indicate that one should think of derivations of A

as cyclic words in the symbols z; and %_, motivating the following definition.

Definition 5.30. The Ginzburg algebra G(n) is the free graded algebra
ClTyy ey T, My e ey My

where x; is of degree 0 and 7; is of degree —1.

The goal of this section is to construct an BV algebra structure on the algebra
C(n) := Sym|G(n)|/([1] = Lsym)-

Actually, since we are also interested in power series integrals, we will define a BV algebra
structure on the algebra Cy(n) := C(n) ® C[[k]]. This will give rise to a BV algebra structure
on C(n) by formally sending % to 0. In that case, the differential operator will be of order 1 and
we will be dealing with a differential graded algebra.

We will do this by using all the machinery of the previous sections. First we will define a double
bracket on G(n). As we have seen in Section 5.3, this equips |G(n)| with a bracket {—, —}.
Furthermore, we will also define a cobracket § such that {—, —} and ¢ satisfy all the conditions
of Proposition 5.12. Introducing % in some places we will finally get a BV operator on Cy(n).

The story of this construction begins with Ginzburg in [Gin00] where given a quiver @, he
constructed a Lie bracket of the space of path of the double quiver Q. Later, Schedler [Sch04]
introduced a Lie cobracket on that same space of path, rendering it an involutive Lie bialgebra.
Lately, Perry and Pulmann [PP24] considered a graded version coming with a BV algebra
structure. Their construction of the bracket is slightly different than ours, but yields the same
result. One might remark that all of sudden we are mentioning quivers. Our story corresponds
to the quiver with only one vertex and n arrows.

As promised, let us start with the double bracket:

Definition 5.31. Let II(—,—) : G(n) ® G(n) — G(n) ® G(n) be the map defined by
H(2i,m5) = 01 @1

and extended as a (graded) double bracket.

Proposition 5.32. The double bracket II(—, —) satisfies the double Jacobi identity.

Proof. By Proposition 5.29, it is enough to check that II(a,b,c) = 0 for a,b, ¢ generators, i.e.
elements of {1,...,Zn,M,...,Mn}. This is obviously true for II(b,¢) = 0 or 1 ® 1, but in either
case we then have (a,I1(b,c))p = 0.

O

Definition 5.33. Define {—, —} : |G(n)| ® |G(n)| — |G(n)| to be the bracket associated to
H(_’ _)

By the results of Section 5.3, we have
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Proposition 5.34. The bracket {—, —} satisfies
b {_a_} = {_7_}OT
e {——to({=—}®Id)oCyc=0
At this point, more hands on formula for {—, —} and § are welcomed for concrete computations.

Proposition 5.35. Let f and g be homogeneous element of |G(n)|. We have the following
equalities:

- 0 of 0
(f.9) = DL L5 2

i=1

Proof. By linearity, may be assume that f and g are (equivalence classes of) monomials. Let
=|fi...fxland g = |g1 ... g].

Let us begin with the first equality. Both sides of the equality are of the following form: a sum

over 1 <i<kand 1< j <! and the term indexed by 7 and j is obtained by erasing f; and g;,

getting a coefficient for f; and g; and rearranging the remaining letters in some order to get a
new word that we then consider up to commutators.

We show that on both the sides, the term that we obtain by deleting f; and g; is the same. To
simplify notations, we write f = |af;b| and g = |cg;d| where a,b,c,d € C{x1,...Tn, N1 ... Nn)-

We have different cases to consider, depending on what generators are f; and g;:

e Both f; and g; are one of the  (not necessarily the same). In that case the contribution
on both side of the equation are 0.

e Both f; and g; are one of the n (not necessarily the same). In that case the contribution
on both side of the equation are 0.

o fi = z, and g; = 7,. In that case, the contribution to the left hand side is (using

Proposition 5.16)
(_1)a+gb+c+ac+bd+ab |cbad|

while for the right hand side only the term (—1)/| . 2L ag | contributes and its contribution

is equal to
(_1)f+ab+c(l+d) |badc| _ (_1)f+ab+c(1+d)+c(b+a+d) |cbad|

It is straightforward to check that the two exponent of —1 are equal modulo 2.

o fi = np and g; = x,. In that case, the contribution to the left hand side is (using

Proposition 5.16)
(_ 1)a+bg+ac+bd+ab |cbad\

while for the right hand side only the term |- Of aq \ contributes and its contribution is

equal to
(—1)a(b+1)+0d\badc| _ (_1)ab+a+cd+bc+ac+cd|cbad|

It is straightforward to check that the two exponent of —1 are equal modulo 2.

o fi = x, and g; = 1, where p # ¢. In that case the contribution on both side of the
equation are 0.

o fi = n, and g; = x4, where p # ¢g. In that case the contribution on both side of the
equation are 0.

O
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We have the first half of our BV operator. Inspired by the previous Proposition we define a
cobracket.

Definition 5.36. Let § : |G(n)| — |G(n)| ® |G(n)| defined by

n 02 82

w\»—*

Proposition 5.37. The map § has the two following properties:

e =710/

o Cyc(0®Id)od =
Proof. The first one is a direct consequence of Lemma 2.20. For the second part we refer the
reader to [PP24] O
We also refer the reader to [PP24] for the proof of the cocycle condition:
Proposition 5.38. We have the following equality relating {—,—} and § :

({9} = (DT80} + (1)U g, 5( )}

for f and g homogeneous elements of |G(n)|.

Putting together Proposition 5.34, Proposition 5.37, Proposition 5.38 and Proposition 5.12 we
get a BV structure on the algebra C7"(n) = Sym|G(n)| ® C[[h]] (here the "nr" stands for
"non-reduced"):

Proposition 5.39. The map A := 0 + hibr endows C;"(n) with the structure of a BV-algebra.
Proof. Tt is clear that if § and {—, —} satisfy all the conditions of Proposition 5.12, then § and
h{—, —} also satisfy those conditions.

O
Remark 5.40. If we denotes by {—, —}py the bracket associated to the BV operator A, we
have the following equality: {—, —}pv = h{—, —}.
Lemma 5.41. Let V be degree 0 element of Ci"(n). Then

V.vy=o

and

A(V) =0.
Proof. Since V is of degree 0, it is a (linear sum of) product of degree 0 cyclic words, that is of
cyclic words where every letter is one of the x;. The result is then obvious for both the bracket

and the cobracket pair dual variables z; and 7. O

Proposition 5.42. For any V degree 0 element of CP"(n), the map Ay = —{V,=}+ A is a
BV operator on Cr(n).

Proof. This is just a consequence of Proposition 5.7 and Lemma 5.41. Strictly speaking, this
shows that A{V,—} + A is BV operator, but since everything is C[[A]]- linear we are done. O
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Remark 5.43. By setting i — 0, we obtain a BV-algebra structure on C™". Actually, since the
part of the A which is of second order disappears, (C™", dy + ¢) is in fact a dg-algebra.

We shall see that (a quotient of) the BV algebra (C;"(n), Ay) is of importance to us for its
zeroth cohomology is closely related to integrals. We begin by recasting degree —1 elements of
G(n) as derivations of A = Clxy,...,ZTn).

Indeed, recall from Lemma 5.18 that for any degree —1 element f of G(n), the map {f, —} :
G(n) — G(n) is a degree 0 derivation. Of course this map descends to the degree 0 component
of G(n), namely A. we shall abuse notations and still denote by {f, —} the map from A to A.
Recall also from Lemma 5.21 that this map depends on f only up to commutators. Furthermore
on the subspace |G(n)|-1 of degree —1 elements, the bracket is anti-symmetric and the graded
Jacobi-like identity becomes the usual Jacobi identity. The vector space |G(n)|—1 equipped with
the bracket {—, —} is then a Lie algebra.

Proposition 5.44. The map

X :1G(n)|-1 — Der(4)
f’_)X(f> = {f?_}

s an isomorphism of Lie algebra.

Proof. Let f be an element of degree —1 in |G(n)|. We can write f as

f= Z Inifi(xi,. .., 2n)]
o1

with f; € A. we then have that
{f, 25} =15
From this it follows easily that if {f, —} is the trivial derivation, f = 0 as a cyclic word to start

with.

Furthermore, let u be a derivation of A that sends x; to the associative polynomial u;. Define
the cyclic word

n
o= Z [miwi(z1, ..., 2n)]|-
i=1

Then {u, —} = u as derivations of A for their value on generators are the same.

Consider now two degree —1 cyclic words |n; fi(z1,...,2,)| and g = |n;g;(z1,...,2n)]. We
compute their bracket :

_ (o o0 o

The derivation x({f,g}) is then the derivation
_ar o
(%cj g ﬁxj
o9’

6l‘i

€T —

"

dg
al‘i

f

Zj

and sends all other generators to 0.
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On the other hand, the derivation x(f) maps z; to the polynomial f; and all other generators to
0, while the second derivation x(g) maps z; to g; and all other generators to 0. Using Lemma
2.7, we get

”

X(f) o x(9)(xx) = 65 x(f)(9;) = jfz faii
) o X(ax) =~ x(9)(1) = 2 g 2L

Since the values of x({f,g}) and [x(f), x(¢9)] are equal on generators, this two derivations are
equal. By linearity it follows that the map x is a Lie algebra map. O

Remark 5.45. Note that |G(n)|-1 = Der(A) ®agacr A = Der(A). We have just shown that
bracket {—, —} restricted to the subspace of degree —1 elements is the same as the one coming
for the Lie algebra Der(A).

Definition 5.46. Let L : Der(A) ® Sym|A| — Sym|A| be the linear map defined on pure
tensors by :

Der(A)® Sym|A| 3 u® f — u(V)f + Div(u) f € Sym|A|
Definition 5.47. Note that C""(n)y = Sym|A|. Since
C™(n)—1 = [G(n)| -1 ®C™ (n)o = |G(n)| 1 ® Sym|A|

, by tensoring the map y with the identity map on Sym|A| we obtain a map C(n)_1 — Der(A)®
Sym|A|. We shall also call this map x

Proposition 5.48. The two maps dy + 6 and Loy from C(n)™] to C(n)§" = Sym|A| are equal.

Proof. Both the source and the target of maps are Sym|A| bimodule (with the obvious module
structures).

The maps dy and ¢ are both maps of bimodules for they are derivations and they vanishes on
degree 0 elements. The maps L and x are clearly bimodule maps by construction. By linearity,
it is then enough to check the equality on elements of the form |n; fo(x1, ..., z,)| where fy is an
associative word.

On the one hand,

ofo’ 2f”

v+ 6(lnefo(en, ) = | S fol + 122 1|22
On the other hand, u := x(|n; fo(x1, - .., 2,)|) is the derivation that sends x; to fo and all other
generators to 0. Its divergence is thus equal to | (')m fol = \gi‘) \afo | and u(V) is equal to

O

|62 fol-
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In summary, we have the following commutative diagram :

C""(n)_1 i Der(A) ® Sym|A|
dy+90 L
cr(n) = Sym|A|

Finally, we just have to encode that integrals are normalized, i.e. they vanish on the ideal
(|1‘ - 1Sym)

Definition 5.49. Define the algebra C(n) by

C(n) = C" (n)/(11] = Lsym)
Clearly Ay descends to C(n).

Theorem 5.50. There is a one-to-one correspondence between infinity integrals with respect to
the potential V' and differential graded algebra morphisms

(C(n), Av) — (C,0).

Proof. Let ¢ : Sym|A|/(|1| — 1sym) — C be an integral. It can easily be extended to a degree
0 map ¢ : C(n) — C by @le), =0 for every k # 0. Clearly this is map of algebra for it is only
non trivial in degree 0 and in degree 0 it is the integral with started with. The fact that this is
a map of complexes is equivalent to the loop equations by Proposition 5.48.

Conversely, give a map of differential graded algebras, taking the degree 0 part gives an integral.

O
it follows from the above proposition that computing the zeroth cohomology of C gives a minimal
set of parameters for infinity integrals.

In order to get a similar kind of statement for power series integrals, we now show a result
similar to Proposition 5.48 for the part of Ay coming from the bracket {—,—}

Definition 5.51. Let D : Der(A) ® Sym|A| — Sym|A| be the linear map defined on pure
tensors by :

Der(A)® Sym|A| 2 u® f — u(f).
Proposition 5.52. The two maps br and Dox from C™ (n)_1 to C""(n)o = Sym|A| are equal.

Proof. By linearity, it is enough to show the result for an element

F=nifo(zr,. o)l i@y, )l fel@r, .o mn)| € CP ()1

where for 0 <1 <k, fi(z1,...,2,) € A.

On the one hand we have by definition of br

br(F) = 3 o 20t 20 T
=1

@$i 6:51 mtl
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On the other hand, x(|n; fo(z1,...,z)| is derivation sending z; to fy and all generators to 0.
Thus

k (} ’ a "
Dox(F) = M1 5 S0 TT 1
g m#l

-1 (9.%‘z

Definition 5.53. Let Cx(n) be the algebra defined by
Cn(n) = C(n) ®C[[7]]

It also clear that A descends to Cp(n) for both § and br applied to |1| — 1gym, are equal to 0.

Theorem 5.54. Every power series integral with respect to the potential V' induces a map of
chain complex

Unlike the & = 0 case, we can’t conclude that the space of power series integrals is equivalent to

the zeroth cohomology of Cp(n) because we don’t know what to do of the condition involving
cumulants.
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6 Computations of the zeroth cohomology
for some potentials

We now give an answer to the question of finding a minimal amount of parameters for infinity
integrals (that is when A = 0) for infinity integrals in one variable for any potential V. We do
this by computing the zeroth cohomology of (C(1), Ay).

The idea behind the argument is very close to the one we used to show that there is a unique
infinity integral for the potential V' = f|z?|. The cohomological setting will make it easier to
handle polynomials of higher degree and show that our minimal set of parameters is indeed
minimal.

Most of the heavy lifting is made by the Homological Perturbation Lemma, so let us start with
that.

6.1 The Homological perturbation Lemma

Say one is interested in the study of a chain complex (A, d + §) where the differential is actually
some kind of perturbation of a differential d by §. The natural question is the following: knowing
the cohomology of (A, d) can one compute the cohomology of (A, d + §)?

The Homological Perturbation Lemma gives an answer to that question but only if one has a
lot of control on the unperturbed complex. Just knowing its cohomology is not quite enough.
The following definition makes "having a lot of control" precise :

Definition 6.1. A strong deformation retract is the following data:

k(" (Ada) =—— (B,dp)

1. Two chain complexes (A4,d4) and (B,dp).
2. Two maps of complexes 7: A — B and ¢ : B — A.
3. A map of degree —1 K : A — A.
with the following properties:
1. mv = Idpg, that is B is a retract of A.
2. wm—Idy =daK + Kda, i.e. K is a homotopy between (7w and the identity.
3. The side conditions K2 = K1 = 7K = 0.

The Homological Perturbation Lemma allows you to add a "small" perturbation to the differ-
ential d4 of a strong deformation and get an other strong deformation retract.

Theorem 6.2. (Homological Perturbation Lemma) Let

k(7 (Ada) ———— (B,dp)
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be a strong deformation retract and & : A — A be a degree 1 map such that (ds + §)?> = 0 and
(Id — 6K) is invertible. Then there is a strong deformation retract

L

KC (A,dp + ) ———— (B.dp + 6s)

where

6 =m(1—6K) 5
i=1+K(1—-6K)6
+ (1 —6K) K
+ K(1-6K) 'K

= 3

K =

Typically, (A,d4) is some complex for which we have a strong control over the cohomology and
K is some kind of inverse operation to d4. Then (B, dp) is the said cohomology with differential
0 and the Homological Perturbation Lemma allows to compute the perturbed cohomology d 4 + ¢
in a much smaller -and thus easier- complex. To check that Id — § K is invertible, one can simply
check that the geometric series 220:0(5[( )7 is well defined on A. The proof of this theorem can
be found in the very good exposition article by Crainic [Cra04]

Of course, the example that we have in the back of our mind this whole time is the case of the
Ginzburg algebra C(1). In this case we could see the differential § + dy of C(1) as a perturbation
of dy. So if we find a strong deformation retract for (C(1),dy ) this might go a long way. Of
course the question is now: how can find such a strong deformation retract? The good news is
that now the whole dga structure is just coming from the extension to the symmetric algebra of
a complex, namely (|C{xz,n)|,dy). We will now see that in general a strong deformation retract
can be extended to a strong deformation retract of the corresponding symmetric algebras (with
differentials extended by the Leibniz rule). We’ve learned this from [Gwil2]

Let
k(" (A da) === (B.dp)

be a strong deformation retract. Then the map 7 (respectively ¢) can be extended as a map of
algebra to Sym 7 : SymA — SymB (respectively Sym ¢ : SymB — SymA. Similarly, the map
d 4 (respectively dp) can be extended as a derivation to a map d 4 : SymA — SymA (respectively
dp : SymB — SymB). The only map which does not admit a totally straightforward extension
is the homotopy K.

The equality m¢ = Idp tells us that B can be identified with the subspace ¢(B) of A and that
the map P := 7 is a projection operator. We have an other projection operator Pt = P — Idy4
whose image will be denoted by B+. We thus have the decomposition (as graded vector spaces
for the moment) A = B @ B*. Since 7 and ¢ are map of complexes, B = A is actually a
subcomplex. The side condition implies that the homotopy K also respects the decomposition.

Using the decomposition A = B @ B*, one gets the isomorphism SymA =~ SymB ® SymB= .
Extend the map Pt as a derivation to SymA and denote it also by PL. On an element
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aias . ..a,, the new map Pt acts as the multiplication by the number of a; that are in B. In
other words, the subspace
E, :=SymB® Sym”BJ‘

is the eigenspace of P+ for the eigenvalue n. Note that those are subcomplexes and clearly
SymA =@, Ey.

We are finally ready to define an homotopy SymK : SymA — SymA. First extend K to SymA
as a derivation (and still denote it by K). Then define a new map SymK : SymA — SymA by

SymK

)iIK ifn>1
Fon 0 otherwise.

Proposition 6.3. Let

KC (Aydy) —— 7:7 (B,dg)

be a strong deformation retract. Then

Symm
SymKC (SymA,da) (y:> (SymB,dp)

Syme
as defined above is a strong deformation retract.

6.2 The case of one variables and V = ket 1|

1
Rl
Consider the Ginzburg algebra C(1) and potential V = 15 |z**1[ for k > 1. One can compute
the zeroth cohomology H°(C(1),V) of the algebra (C(1) = Sym |C{z,n)|,6 + dy) somewhat
easily. The argument is in essence the same that the one we used to show that there is an
unique infinity integral for a quadratic potential. However, the technique using the Homological
Perturbation Lemma can then be generalized to more situations.

The idea is to use the fact that C(1) is built from a simple algebra (at least in degree 0 et
—1) whose zeroth cohomology is easy to compute. Hopefully one can use this to get some
idea of what the zeroth cohomology of (C(1) = Sym |C{x,n)|,dy) is. Then we might use the
Homological Perturbation Lemma to compute the cohomology of that same algebra but with
differential now § + dy. This makes our task significantly easier, we now just have to find a
strong deformation retract for the easy complex (|C{z,n)|, dv ).

Since we are working with only one pair of dual variable and we are only interested in the zeroth
cohomology of (C(1),d +dy ), the starting complex |C{z,n)| can be replaced by something much
simpler:

e To compute the zeroth cohomology of (C(1) = Sym |C{z,n)|,d + dy ), one only needs the
degree —1 and degree 0 elements. Since this is a symmetric algebra, such elements are
product of degree —1 and degree 0 cyclic words.

e Since cyclic word and standard word in one generator are the same thing, an element of
degree 0 is just a linear combination of monomials x*.
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e In degree —1, every cyclic word has to have exactly one 7. Since the word is cyclic, one
can place that i at the end of the word. Thus a degree —1 element is a linear combination
of words of the form z'n.

e Since we are only interested in the zeroth cohomology, we don’t need to know the elements
of degree strictly less than —1 and there is no element of positive degree.

In short we are left with the task a finding a strong deformation retract for the complex (A4, d)
given by

where the only non zero spaces are in degree —1 and 0 and the d is the linear map
d:ain — 'tk
It easy now extremely easy to construct a strong deformation of the complex (A,d) onto its

cohomology:

Proposition 6.4. The data of

w7 (A d) m———— (C[a]/(z"),0)

where
o C[z] is concentrated in degree 0.
e T is the projection to the quotient in degree 0.
e . is the linear map that sends the class [2°] to the polynomial x°.
o K defined by

ik op -

0 otherwise.
18 a strong deformation retract.

Proof. All the computations are as straightforward as it gets.

O
Remark 6.5. The number of front of [z¥*!| in V is of no real importance. Indeed, if you
multiply the potential by a € C*, the differential is then also multiplied by « and dividing the

homotopy K by « still yields a strong deformation retract. We choose to put 1/(k+ 1), for then
it disappears from all the expressions.

We now wish to apply Proposition 6.3. The only map whose definition is not totally clear from
the start is the extension SymK of the homotopy K. Let

MR Rrm - ® it

be a product of monomials in Sym C[z] such that i, is strictly smaller than & if and only if a
is smaller or equal to m. Then its image by SymK is
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n
71 ... b Q... Tmti—1 tmt1—k Imti+l ). .. imtn
- 'R R R QR ®x n®x R -Qx .

=1

For the last step, we will abuse notations and still denote by § the degree 1 map on SymA
coming from the BV-operator on C after all the earlier identifications. We wish to perturb the
differential d by §. We first need to check that the perturbation is "small".

Proposition 6.6. The map Z;O=O(5 o SymK)? is well defined on SymA.

Proof. To show that 23020(6 o SymK )’ is well defined it is enough to show that for any product
of monomial ‘ ‘ ‘

T = ZL’“ ® - ® xlm ® - ® xlern’
there is jo > 0 such that (6 o SymK)’*(z;) = 0. Here, as before, i, is strictly smaller than k if
and only if a is smaller or equal to m.

Define the weight of x; to be the total number of z’s in x;, that is
’LU(J)z) = il + -+ i7n+n~
We shall prove the result by induction on the weight.

If the weight is strictly less than k, there is nothing to prove for the map SymK already acts
as 0. For weight k, either x; = 2* and then

5 0 Sym (z;) = (n) = 0
or x; is the product of monomials of degree lower than k& and SymK acts as 0 on it.
Suppose now that the weight of x; is bigger than k. We then have that
1 & 4 4 , , ,
SymK(xZ) — 2 MR- ®imtl ® xlm+l_kn Q T ® -+ ® gimin
n
=1

Now § applied to SymK (x;) only changes the z'm+~*y into

i”m+l7k571

Z 2% ®xim+1,fkflfa

a=0
which is of lower weight of z*»+ and we are done.

O

Proposition 6.7. The cohomology of (SymA, d+0) is concentrated in degree 0 and is isomorphic
to Sym(Clz]/(z*))

Proof. Just apply the Homological Perturbation Lemma to the strong deformation retract

symKC (SymA, d) =2 (Sym(C[x]/ (")), 0)

Syme

with perturbation §. Since the complex on the right is concentrated in degree 0 it stays the
same after the application of the Homological Perturbation Lemma.

O
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Which reformulated in terms in of the algebra C(1) becomes :

Corollary 6.8. For the potential V = k%rl|zk+1|, the zeroth cohomology of the Ginzburg algebra
i one pair of dual variables is given by

H°(C(1),V) = Sym(C[z]/(z")).

This result can be reformulated as follows: an integral with respect to the potential V' =
,%H\x’fﬂ is uniquely determined by its value on the monomials |z¢| for 0 < i < k — 1. Once
those values are specified, loop equations and the multiplicative condition impose the values of
the integral on the whole of Sym(C[x]).

We now tackle potentials of a slightly more complicated form, namely V = 5 |/ ™|+ 2 |27
with 1 <1 < k.

The idea is simply to start by considering the differential dy, as a perturbation of the differential
dy, coming from the higher degree monomial by the differential d; coming from the lower degree
monomial.

So we start by the considering the same strong deformation as before, namely
k(7 (Ady) =——= (C[]/(s"),0)

where
e C[z] is concentrated in degree 0.
e 7 is the projection to the quotient in degree 0.
e ¢ is the linear map that sends the class [2?] to the polynomial .

e K defined by

. —xtk ifi>k
K@h=4 " =
0 otherwise.

with dj defined by

dy : z'n — 2t

If we want to perturb dj by d;, we have to check that the map Z;ozo(dl o K)7 is well defined.
This turns out to be really easy:

Proposition 6.9. The map Z;O:O(dl oK) : A — A is well defined and its value on x® is given
by :

18

(dl OK)j(ma) = z® +Zxa—j(k—l)
=0

where the sum on the right is taken over all j = 1 such that a — (j — 1)(k —1) > k.

Proof. This follows from the easy computation

0ifi <k

dio K(a') = { 2R+ otherwise
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Applying the Homological Perturbation Lemma, we get
Proposition 6.10. The data

where
o C[z] is concentrated in degree 0.

e T is the linear map defined by

(o) :{ [z%] if a < k

[2090®=D] with jo = min{j = 1|a — j(k — 1) < k} otherwise

e [ is the linear map that sends the class [x%] to the polynomial x*.

o K defined by
0ifi<k
K(l’a) = a—k

ijj o= UHDE=Dy otherwise

is a strong deformation retract.

Using the same argument as when the potential was a single monomials, namely by induction
on the total number of z’s, one can show that the map § o SymK is well defined on SymA. In
the end we get :

Proposition 6.11. For the potential V = 7 |a"*| + 25 [a* | with 1 <1 < k, the zeroth
cohomology of the Ginsburg algebra in one pair of dual variables is given by

H°(C(1),V) = Sym(C[z]/(z")).

It is now clear what is the zeroth cohomology of the algebra (SymC(1),dy + ¢) when V' is any
polynomial. One should first consider the complex |C{z,n)| with the differential coming only
from the highest degree term, and step by step perturb this differential with lower and lower
degree terms of V. After a final number of steps we get a strong deformation retract relating
(|CLx, n)|,dy) with (C[z]/(z*),0), k being the degree of V. The maps realizing this strong
deformation retract are now somewhat complicated. The homotopy of this strong deformation
retract applied to a word produces many words. However, all of those words have lower total
number of z’s than the word we started with. One can then perturb (SymC(1),dy) by § and
get finally to :

Theorem 6.12. For any potential V' of degree k + 1, the zeroth cohomology of the algebra C(1)
s given by
HY(C(1),V) = Sym(C[z]/(z")).
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7 'Topological recursion

Unlike infinity integrals, power series integrals are not fully determined by the cohomology
of (Cr(n),A). Using topological recursion, we find a finite set of parameters which uniquely
determine a power series integral, in the one variable case.

For the reminder of this section, let then A = C{x) and fix a potential
4o
V(z) = —gke A
(2) k; -

All integrals will be with respect to this potential. We can assume there is no constant term for
the potential V' appears in the loop equations as the argument of a derivation.

Let us fix once and for all a power series integral ¢y for this potential.

7.1 The strategy

Before diving into formulas, let us take a moment to explain the strategy; or at least where it
is coming from.

Loosely speaking, topological recursion starts with a so-called "spectral curve", which is the
following data:

e A Riemann surface X;
e A covering ¢t : ¥ — CP' of the Riemann sphere;
e A meromorphic 1-form wy; on 3

e A symmetric meromorphic bidifferential form wp o on 3 x 3, with only a double pole on
the diagonal and no residue.

From this initial data, topological recursion produces recursively a whole family of differential
forms wgy, on X". Here g and n are both non-negative integer. The definition of the form
wg,n involves only characteristic of the Riemann surface ¥ and uses only those wy s for which
2¢' +n' < 2g +n. This explains why the recursion is topological: the induction is on the "Euler
characteristic number" 2¢g + n.

To define a power series integral ¢y, one has to specify a lot of information: for every product
of cyclic words, one has to specify the expansion in 7 of the integral of this product. Of course,
the loop equations tell us that we can not just do anything, there are some relations. Upon
rearranging all this information into generating functions Wy ,, we find that the Wy, satisfy
some equations equivalent to the loop equations. After closing one eye, one can recognize
that those equations are somewhat similar to the ones defining the different w, ,, of topological
recursion (here the trick is to not close both eyes, otherwise one does not recognize anything).

The goal is then the following: define a Riemann surface covering the Riemann sphere together
with differentials forms wy,, using the loop equations, and then show that these forms satisfy
the topological recursion formula. This will mean that these are uniquely determined by wo 1
and wo 2.

One can learn more about topological recursion in [EO07], [Eyn14], or [Eyn16|. Different results
about Riemann surfaces, and more particularly algebraic curves will be used. For the reader’s
convenience, they have been gathered in Appendix A. We will often multiply different symmetric
multidifferential n-forms on n copies of a Riemann surface 3. If w; and wy are multidifferential
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forms on ny (respectively ns) copies of X, the product wyws is a multidifferential form on 1y +nq
copies of . We insist that it is not the wedge product of those forms.

We are thankful to Nicolas Orantin for taking the time to present us this strategy.

7.2 The generating functions W,

As we said, the first step is to rearrange all the data of the integral ¢y, into generating functions.
Remember that by definition of (5 being an power series integral, the leading order in A of the
n-cumulant of ¢y is n — 1. With that in mind, let us start with a bit of notation :

Definition 7.1. Let T}, _;, be the power series in & given by shifting the n-cumulant by A"~!

Ty, = ) goc((:rll) . (ml")).

and let Tl(lg’?__’ln be the numbers defined by the expansion in & of Ty, ;.

ﬂlv“ 7l Z z“l(lg,) g

One can then collect all those numbers for g and n fixed into a single generating function:

Definition 7.2. For g and n fixed, let Wy ,(¢1,...,t,) be the function in n formal parameters
given by

Won(ti,-. o ta) = Y. T o] t’ il
leN®

Remark 7.3. As one can expect the notation Wy ,, is not random, those generating functions
will be very closely related to the differentials wy ,,

Integrals being normalize as the following consequence

Proposition 7.4. For any n > 2, if one of thel; =0 then Ty, ;, = 0.

Proof. By symmetry we can suppose that ¢ = 1. For any partition 7 of the set {1,...,n},
set Q(7) to be the partition of the {2,...,n} obtained by forgetting in which block is 1. Any

partition 7 of {2,...,n} has {(7) + 1 preimage by @, for 1 could be added to any block of 7 or
form a block on its own. For simplicity, given a partition 7 of {1,...,n}, define

(1)

=~ 1

1€ B;

Note that if Q(11) = Q(72) then wx(71) = @nr(72) for it does not matter in which integral x°
by the normalization property. Using Remark 4.6, we have

—Z ()7 U(r) — 1lon(r)

T reQ=1(m)

where the sum over 7 is a sum over partition of {1,...,n}, whereas the sum over 7 is a sum
over partition of {2,...,n}.
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The preimages of m by @Q are as follows: there are I(7) preimages with the same number of
blocks as 7, and exactly one preimage with one extra block. From this we get

(=1 D*(U(7) = Dkon(r)
(reQ 7 (m))

= I(m) (1)1 (U(m) = D) on(ro) + (=1)!) U(m)! op(70)
=0

where 7 is any preimage by @ of . O

We know try to express the loop equations (5) in terms of the generating functions W, ,,.

As a warm up, let us look at the easiest instance of the loop equation Using the notation of
Equation (5), the easiest instance of the loop equation is when u = 2 —and f = 0. In that
case the loop equation reads :

-1
3 en((@) @'1)) = gn(VV(a)o!)
=0

which becomes

-1
Dlen(@)en(@ 1) + @e((27) (@71)) = on(V/ (2)0)
§=0

after plugging in the definition of the 2-cumulant.

Rewriting this in terms of the different 7" yields:

-1 d
Z TiTy1—j+ hTj 15 = Z agTyr1-1-
j=0 2
and looking at the power of 79 we have
SN o) (a1 S
1
Z[ETJ ne” ]+T£;1j:|:2akaill (6)
j=0lh=0 k=2

Note that this is true for every I > 0. Thus after multiplying both sides of Equation (6) with
27!~ and summing over all the [ > 0 we finally get (g is still fixed) :

© d
ZWhl ghl()+Wg 12tt ZZ tk 1Tk+l 1t_kl (7)

One should note that the right hand side of Equation (7) is the principal part of the function
V() Wy.1(2).

Finally, we get the following equation :
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Proposition 7.5. For every g =0

Z Wi a(OWyna(t) + Wy1a(t 1) = V()W (1) = Py (t) (8)

where P, 1(t) is the polynomial given by

! k—17(9) —k+1
Z Z aptt 1Tt

Now that the warm up is done, let us do the general case.

While the relation for the general case will involve only the different W, ,,, it is convenient to
define some other generating functions for the intermediate steps.

Definition 7.6. For every n > 1, define the symmetric generating functions in n variables
F,(t1,...,ty) and Cy(t1,...,t,) by

Fo(ty,...tn thﬂ ntl‘l

leN™
Coltr,. . tn) = > o] J(a ntl -1
leNn (

The following lemma is obvious from the definitions of Wy ,, and C,

Lemma 7.7. For everyn > 1,

Cotr,. . tn) = K" P Y WIWy (b, )
g=0
And the next lemma is obvious from the definitions of C),, F;, and cumulants

Lemma 7.8. For everyn > 1

I(m)

E,(t1,...t, 2nC|B|

T j=1

where T is a partition of {t1,...,t,} into I(m) subsets denoted by By, ..., Bz and C|g,|(Bj) is
the functions whose variables are the t; that are in B;. (Since Cy, is symmetric, the order does
not matter.)

Proposition 7.9. The loop equations for ¢y, imply for every n =0

Foii(ty tyta, ...t +h2 0 Fnaltiste. "’t;"t”’tz)7Fn_l(t2’“"tn)
1= U

z>2

= [V’(tl)Fn(tl,tg,...,tn)]

_71

By [—]-,1 we mean the part with only strictly negative powers of t1, the hat denotes omission
and by convention Fy = 0.
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Proof. The case n = 0 follows from the warm up case, which is stronger since it is done degree
by degree (in 7). For n > 1 the loop equation applied to u;, and f = [];_, ' with ; > 0 reads
as

-1 n n
S on(@ta I [at) 4 1Y lign (a1 [T ab)
j=0 =2

i=2 i
j=2 (9)

n d n
_ sDﬁ(xl1+1 Hxh) + ag Z (ph(l,h*lJrk nl,ll)
=2 k=3 =2

Let us multiply the whole equation by H?:l ti_l"_l and summing over all l1,...l, > 0. From

the first term of the left hand side of Equation (9) we get Fj,11(t1,t1,t2,...tn).

The second term on the left hand side of (9) gives

hi iFn—l(tlth?"'7t/\i?"'7tn) 7F7L—1(t27"'7tn)
=2

Indeed, if we integrate the i-th summand with respect to ¢; and then multiply by (¢t; — ¢;) we
have (be aware that the term in I; = 0 is equal to 0)

i Z (ph<xli—1—llnxzj)t;liﬂnt;lrl

1;>1,1;20 j#i G
liflfl l; —ll —1; _lj_l
R CA y
1;21,1;20 J#i #1

By shifting the first sum both in [; and [; this becomes

A Z @h(mli—l—ll nxlj)tl—llti—zi 1—[ tj—lj—l

11=21,1;=0 J#i j#i,1
_ liflfll l; 711 7l1 H _lj_l
h Z on(z HxJ)tl t; t;
1;=1,1;=0 VE J#1le

Most of this cancels out, except the part in I; = 0 form the first sum and the part in l; = 0 from
the second sum. This can be seen to be exactly

hF, 1(ti,to, ... Lo ty) — B, (Lo, ... 1)

after shifting back the sums.
Finally the term on the right hand side of Equation (9) gives

V(1) Fp(ty, ta, .. tn)

_71

Reformulating this in terms of the C,, we obtain
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Proposition 7.10.

Crri(ti,tr,ta, ..o oty) + Z Claj+1(t1, A)C 41 (t1, B)
AuB:{tz,...,t"}

hy @ Cocr(tistos- by tn) = Cua(tos. . t)
ot; t1 —t;

i=2

- [V’(tl)cn(tl’t2""’tn)]

—1
Proof. We shall do the proof by induction on n. The case n = 0 has been done earlier.

The proof is quite simple, one simply needs to use Proposition 7.9 and Lemma 7.8 and group
the terms coming from the different partitions the right way.

From Proposition 7.9 we have

0 Fu_i1(tita, ...\t tn) — Fu_i(ta,... tn)
’t")+h.;267i -
b (11)

- [V’(tl)Fn(tl,tQ,...,tn)]

Fn+1(t1,t1,t2, .

-1

’

and Lemma 7.8 say that each term in this sum is itself a sum over partitions of different Cls.
The right hand side term will be a sum over partitions of the set

{t1,t2,.. . tn}.

Let m a non trivial partition of this set into I(m) > 2 blocks Bi,..., Bjz). Without lose of
generality let us assume that t; € By. The partition 7 induces partitions of the sets

{ti,to, ..., ti.. . ta}
for 2 < i < n. Denote those partitions 7’. Consider also partitions 7 of the multiset

{t1,t1,t2, ... tn}
such that
e 7 has either {(7) or I(7) + 1 block.

e If it has [(m) blocks, all the blocks are the same as the blocks of 7, with the exception that
t1 is doubled.

e If it has I(m) + 1 blocks, it is obtained by splitting the block B; of 7 into two non empty
blocks, and putting a second ¢ into the half of B; which does not have it already.

Denote by P(r) the set of all such partitions 7.

By the induction hypothesis, the term coming from a non trivial m on the right hand side
of Equation (11) will be cancelled by the terms in F, ;i corresponding to partitions in P(7)
together with the terms coming from

Z iFn—l(tlatQa s 7fia s 7tn) B FTL—l(tQa s 7tn)
i>2,ieB; Oti b=t
corresponding to the partitions 7*. Indeed all those term will give Equation (10) for n = |B|
multiplied by [T") C|,(B;).
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We are thus left with exactly what we want.

Proposition 7.11. Loop equations imply

g
Wo—tns1(ts,tr ta, ... ) + Z Z Whap1(t, AWy Bj+1(t1, B)

+Zi Wyn—1(ti,ta, ..oy tjoooitn) = Wy no1(ta, ... tn) (12)
ot t1 —t,

=V'(t1)Wyn(ti, - tn) — Pynl(ts, ... tn)

where the hat denotes omission and Py ., (t1,...,t,) is the part of
V(1) Wyn(ts, ..., tn)
which is polynomial in tq.

Proof. This follows at once from Lemma. 7.7 by looking at the coefficient of 297" ! in Proposition
7.10 O

Note that those equations are recursive in 2g+n. In particular for (g,n) = (0, 1), the equation for
Wo,1 does not involve any other W ,, (but it involves Py 1, we’ll come to this). For everybody’s
comfort let us record once and for all what Equation (12) looks like when isolating W

Corollary 7.12. Loop equations imply

(2W0,1(t1) - V/(tl)) Won(ti, .. tn) = =Wo_1ne1(ti, ti,ta, ... th)

*

o Z ng"A|+1(t17A)Wg2’|B|+1(t1’B)

g1+g92=g
AuB={t2,...,tn}

’Zn:i Wyn—1(tista, .y tjoooitn) = Wy no1(ta, ... tn) P £)
P at] gm sy in

t—t;
*
where > means that we don’t consider the terms corresponding to (g1, A) being equal
g1+9g2=g

AuB={ta,...,tn}

to (0, ) or (g,{ta,...,tn})

7.3 The Riemann surface ¥ and wy;

Looking at Equation (12), it seems that if one would hope to find recursively all the different
Wy.n, one first has to compute all the P, ,. This is where topological recursion comes to the
rescue. Indeed, now that we have our generating functions, we can start defining the different
objects needed to begin topological recursion. Of course the very first thing to construct has to
be the Riemann surface . We shall see below that in general, this can be constructed knowing
only the leading order of o5 (z7) for 1 < j < d — 2. Equation (12) for g = 0,n = 1, only involves
one generating function, namely Wy ;. It is only natural to start with it.
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Equation (8) applied to g = 0 (or Equation (12) for (g,n) = (0, 1)) yields the following equation
ﬁH'W%JZ
Wo1()? = V' (t)Wo(t) — Po(t). (13)

As we said earlier this is a closed form for Wy ; once Py ; is known, and

d k-1
Poa(t) = Y Y agtt )k (14)
k=2 1=1

From the definition of P ; we see that it only involves the values 7} for 0 < j < d — 2. Those
numbers are the leading order of ¢p(27) for 0 < j < d — 2. According to our strategy we need
to keep track what part of the data of ¢p we have used. Let us then make a mental note that
we have used those leading orders.

Remark 7.13. It can actually be showed, for example in [EKR18], that Wy 1 = (V' — M+/o)
where M(t) and o(t) are polynomials such (V')? — 4P, ; = M?0 and o only has simple roots.
Thus Wy 1 is a multivalued function on the complex plane.

Define now the function s(¢) on the Riemann sphere by

V'(#)
B

s(t) == Wo1(t) —

By definition of Wy i, this function is for the moment only defined around infinity. However,
the loop equation (13) implies that s(¢) is solution to

s(t)? = %”2 — Poalt) (15)

which also defines s(t) has a multivalued function on the Riemann sphere (and also Wy ; since
it is s shifted by a polynomial). It is then natural to look at the algebraic curve defined by
Equation (15). So let us consider the Riemann surface

2= {(s,t) € C?|s? = # —Po,l(t)}

The projection onto the ¢ coordiantes realizes 3 as a double cover of the Riemann sphere. Since
V'(t) is a polynomial in ¢ of degree d — 1, the right hand side of Equation (15) is polynomial of
degree 2d — 2. This has two consequences; the first one is that ¥ is generically of genus d — 2,
and the second one is that oo is not a branch point. If we denote by ooy the two points of ¥
above t = o0, we have

s(z) ~ +% as z — o0y

We shall suppose that

1(+)2 2d—2
VO ko =a [Te-e

with o, distinct numbers, i.e. it has only simple roots.

Define the meromorphic 1-form
wo,1 := sdt.
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One can recover the data of the leading orders of o5 (27) for any j > 0 by looking at the principal
part of wg 1 around o0. Indeed, let ¢, be a local parameter around co_. Around this point the
meromorphic 1-form st/dt is given by

3 L, VY —j—2
st/dt = (Wo(t') + 5 Vet

Since V' is a polynomial, we have on the one hand that the powers of ¢y, coming from it are
negative, and become strictly smaller than —1 after multiplying with ¢22. On the other hand,

Woa(ty it dty = TO¢r1=i=2gy

=0

and the residue is then given by Tj(o). In short, we have for every j >0 :

Tj(o) = Res(st?dt; 0_).
In summary, we have shown that the knowledge of the leading order of the integral ¢y (z7) for
0 < j < d— 2 is enough to know the leading orders of ¢y (x*) for any k by the loop equations.
This should not come as a surprise for we have seen that the leading order of a power series
integral is itself an integral in the sense of Definition 3.14 and, in Section 6.2 we have seen that
those are totally determined by their values on (27) for 0 < j < d — 2.

Said somewhat differently, the above discussion informs us that if we want to define to a power
series integrals ¢ = o + p1h + ..., the first thing we do is say what are the values of g (z7)
for 0 < j < d — 2. This defines the polynomial Py ;(t). We can then build the Riemann surface
¥ using Equation (15) and we read what are the values of ¢g(z*) in the principal part of the
meromorphic 1-form sdt around o0. What should we do form there? Well, that’s the content of
the next section.

7.4 The 2-form wy»

The last ingredient we need to start topological recursion is a symmetric meromorphic bidiffer-
ential with only a double pole on the diagonal and no residue. We don’t want just any such,
we want one whose behaviour at oo is given by Wy 2. We now come to the construction of this
form wq ».

The first step is to make use of Corollary 7.12 for g = 0,n = 2. This can be rearranged to give

— Py (t1, 1) — 2 (et lla))

Oty t1—t2

Woa(ti,t2) = 25(t1)

using the definition of the function s(¢). Remember that Py 2(1,t2) is by definition a polynomial
in its first variable and an easy computation shows that, just like Fy 1, its degree in ¢; is d — 2.
More precisely, we have

k—1

d —

0 1,—j—

Poa(tito) = > 3 Y ¥ 6717 (16)
J>0 k=2 1=1

In fact, the coefficient of the term in t9=2¢,7 7" is adTég-) which is equal to 0 by Proposition 7.4.

So Py 2(t1,t2) is actually a polynomial of degree d — 3. This is important.
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We would want to promote Wy 2 to a symmetric (meromorphic) function on ¥ x X, but it is not
well defined away from oo4.

This means that we can’t naively define our two form as

WQ72(t(Zl)7 t(ZQ)) dt(zl)dt(ZQ)

for this is not globally defined. We can’t neither use Equation (7.4) for the term in Py is not
defined globally neither. What we can do however, is already promote the part

1 0 (Woyl(tl)—Wo,l(t2)>

25(t1) Oty ty — to

to a bidifferential form on ¥ x ¥ since the functions Wy 1(z), (z) and s(z) are well defined global
functions on . Set then &(z1,22) to be the form on ¥ x ¥ defined by

1 (I/V(),l(t(zl)) — Wo,1(t(22))
2s(z1) * t(z1) — t(z2)

where d,, is the de Rham differential applied to the second copy of ¥.

(:)(Zl, Zg) =

>dt(zl)

Let us now pay attention to the part coming from Fy>. We know that it should correspond to
a form whose behaviour as ¢(z;) — o0 is given by

Poa(t(21), t(22))
s(z1)

which is a holomorphic around oo since Fp 2 is a polynomial of degree at most d — 3 in its first
variable (c.f. Proposition A.1). To get a globally define form, we could try to find a holomorphic
form on ¥ x ¥ whose behaviour around oo is given by Equation (17). Thankfully, we know a
basis of holomorphic forms on ¥ x ¥, namely

£ (21)t"(22)

s(21)s(z22)

dt(z1)dt(z2) (17)

ds(z1)ds(z2)

for 1 <a,b<d—3.

Around infinity, we wish to get the equality :

_PO’Q(t(Zl),t(ZQ)) . Z ta(Zl)tb(ZQ)

s(z1) -

for some numbers kg 3, or equivalently

Around oo, we know that s(z2) takes the form

2d—2 2d—2

H A H(z2) — oy = t(zg)? 7 H A1 — ap/t(z2).
p=1 p=1

Let us express this product of square roots as

Z Rnt(ZQ ) -n

n=0
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which together with Equation (16) means that the right hand side of Equation (18) is equal to

d k-1
-] Z Z WT ) R t(z0) M (z2) T (2) (19)

n>0]>0 =2

From there, we can read what should be the coefficient x4 for 0 < a,b < d — 3 in Equation
(19), namely

d—3— —
_Z Z kaZJRdzb] (20)
7=0 k=a+

Observe that the only Ti(g) involved in those expressions are those with 0 < ¢,j < d — 3. This
means that once we have fixed those coefficients we can define w(z1, z2) by

a 2 b 29
w(z1,22) == —@(z1,22) + Z Ele)l (=) (21)

K b
0<a,b<d—3 “7 s(21)5(22)
with the x4 defined by Equation (20), and we have

w(zl, 22) = Woyg(t(zl), t(Zg))dt(Zl)dt(Zg)

as t(z;) — o0. Notice that this implies that w is symmetric by the Identity theorem. Indeed it
is symmetric around oo since the generating function Wy 2 is symmetric.

Let us fix 2o € ¥ and consider w(z1, 22) as a 1-form on . What could be its pole?
e Naturally, there is no pole coming from the holomorphic part.

e There might be a pole when s(z;) = 0, that is when 2; is a branch point of the cover
t : ¥ — CP!, but this is compensated by the rest of the expression since Woi(z1) =

s(z1) + W and V'(¢(z))/s(z)dt(z) is holomorphic around branch points.

e The term in Wy ; might introduce a pole when ¢(z1) goes to infinity, but it is compensated
by the pole of s(z1).

e There might be a pole when t(z1) = ¢(z2). If z; and 2z are in the same sheet, i.e. 21 = 29
we have Wy 1(z1) — Wo,2(22) = 0 and of course there is no pole. If z; is not in the same
sheet as 2o, i.e. 21 = 0(23) where o is the hyperelliptic involution, then in that case there
is truly a pole. Let us pick £ to be a parameter around around o(z2) (and & o o is then
a parameter around z2). In those coordinates, the non-constant part in z; of our form is
given by

L_olela) + TR e gy )
s(€(z1))  (€(z1) — &(22))? PV (6(21) — €(22))2

as z1 — o(z2), i.e. this pole is of order 2 and has no residue.

Proposition 7.14.
dt(Zl)dt(ZQ)

(t(z1) = t(22))*

Proof. Since s(o(z1)) = —s(z1) we have that the two holomorphic parts cancel each other and

w(z1,22) + w(o(21),22)) =

_Wo’l(t(ZQ)) 1 —Wo’l(t<22)) 1

Az, t(z1) — t(z2) 2s(z1) =, t(o(z1)) — t(22) 2s(c(21)) =0
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Finally,

Wo.1(21) Wo,1(0(21))
Lo it |, Y2 WG - 12) _2s(z)  dz(z)
2s(z1) 2s(0(z1)) 2s(z1) (t(z1) — t(22))?
o dz(z2)
(t(z1) — t(22))?
where we used that Wy 1(21) = s(21) + W O

This means that the form w(z1, 22) — % is a bidifferential form with only a double pole

on the diagonal and no residue. This is the form want to continue with topological recursion,
i.e. define

Definition 7.15. The 2-form wy 5 is defined by

wo’g(zl,ZQ) = w(zl, 22) — ( dt(zl)dt(zz) = —UJ(O'(Zl), 22).

t(z1) — t(22))?
We will also need a slightly different two form
Definition 7.16. The 2-form &g 2 is defined by

1 dt(Zl)dt(ZQ)
2 (t(z1) — t(22))*

Wo,2(21,22) 1= w(z1, 22) —

While the use of the 2-form is not apparent yet, it will be useful to define higher forms wg .
An other upshot is that it is antisymmetric with respect to the hyperelliptic involution o:

Proposition 7.17.
@o,2(0(21), 22) = —Wo,2(21, 22)
Proof. This follows from Proposition 7.14 and the fact that

dt(o(21))dt(z2)
(t(o(21)) = t(22))?

dt(zl)dt(ZQ)
(t(z1) = t(22))?

NN
DO =

O

Let us summarize what we have done in this section. We have defined a symmetric meromorphic
form wp 2 with only a double pole on the diagonal with no residue using only the knowledge of
the subleading order in A of

pr((@')(@”)) = en((@")pn((a?))

for 0 < 4,5 < d — 3. All the other subleading orders of 2-cumulants can then be read in the
residues of wpg 2.

In the next section, we shall see that all others W , are uniquely determined by the finite
number of choices we have done so far.
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7.5 Topological recursion

So far we have fixed a Riemann surface X together with a 1-form wp; and a symmetric form
wp,2 on 3 x ¥ from which we can read the different coefficients of the functions Wy ; and Wy ».
To construct all of this data, we needed to know only finitely many parameters of ;. We shall
now construct all other differentials wy ,, using the loop equations. From their definition, it will
be obvious that their behaviour around oo will be related to the generating functions Wy ,. We
will show that they satisfy the topological recursion formula, ensuring that they are actually
fixed by wp,1 and wp 2.

Before defining the different w, ,, we fix a basis of cycles (A;, B;)=2 in H'(X, C) such that

Ai()A; = Bi[|B;j = 0and A; (B = 4

Here, (] denotes the intersection number of two cycles and such a basis always exists, c.f.
Appendix A and references therein for more details.

We shall use Corollary 7.12 to define the forms wy ,, recursively on 2¢g + n. Indeed set first

Won(21,. ., 2n) 1=

— k
Wg—1 n+1(21721;227"',2n) - ~ 1
_ ; — E 21, A B) | m——
2(2}071(21) [ wgl,|A\+1( 1y )wgz,lBIJrl(Zl? ) 2@0,1(Z1)

g1tg2=g
A\_IB:{ZQ,...,Zn}

N Zn: } Qgin—1(22y- -y 2n) dt(z1)  Pyn(t(z1),...,t(zn)) [T, dt(zn)

=7 (=) = #(z5))db () 25(21) - 25(z1)
(22)

where Wy, = wyp if (g,n) # (0,2) and &g is given by Definition 7.16 and @,,, = wy,, if
(g,n) # (0,2) and W 2 = w (see Equation 21)

Remark 7.18. The definition of Wy , is just to make the definition of wy ; fit.

Remark 7.19. At first glance, when comparing with Corollary 7.12, it might seem that the

terms of the form
Wg,n—1

d,—ron-l
Tt(z1) = t(2))
are missing. They have actually been absorbed by some terms in the sum over different A LB =
{#z1,..., zn}, more precisely when A or B is equal to {z;} because of the definition of &g .

Just as before, there is a small issue with defining

Py n(t(z1),---,t(zn)) Hdt(zz‘)~

s(z1) i=1

What we mean by that is that, just like in the case of P, 2, we choose a product of holomorphic
1-forms whose development at oo is given by P, ,.

Note that around infinity

Won (21 s 2n) = Won(t(z1),...,t(2zn)) dt(z1) ... dt(2zy)
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and thus wy , is a symmetric meromorphic form by the Identity theorem.

We will see that unlike Py 2, Py, is fixed by our previous choices. To be more precise we have
the following theorem:

Theorem 7.20. The multidifferential forms wg , satisfy the topological recursion formula

1 2d=2 [S;_U(Z) w0,2(20,p)]
Wg,n+1(2'0,3) = 5 Z Res

1 z—b; 2(,00,1(2)

X [—wg_lmﬂ(z,o(z),i) — Z Wg,,|A|+1(2, A) wgz’BH(o(z),B)]

where Z:={z1,...,2n} and by, ..., bag_o are the branch points of the cover t : ¥ — CP*.

Notice that this theorem states that once wp 1 and wg 2 have been fixed, then the other wy ,, are
uniquely determined. In particular, the different P, ,, for 29 +n > 2 do not enter the formulas.
In other words, the parameters of ¢ we have used to construct 3, wp,; and wg 2 together with
the loop equations are enough to uniquely determine the power series integral ;. This can
summarized in the following theorem

Theorem 7.21. A power series integral in one variable @y, for the potential

V= gk
oK

S

s uniquely determined by the values of

li i
Lim on(z’)

forl1<i<d—2. and

forl1<i,5<d-—3.

The rest of this section is dedicated to the proof of Theorem 7.20. The proof relies on several
classical yet powerful results about Riemann surfaces. The reader is invited to have a look at
Appendix A and references therein for more details about those results.

Before we get started we record two easy observations:

Proposition 7.22. For 2g+n—2 > 0, the differential forms wy ., have poles only at the branch
points b; of the cover t : ¥ — CP*

Proof. This follows at once by induction. Indeed by the induction hypothesis, all the numerators
can only have poles at the branch points, and dividing by wg 1(#1) can only introduce poles when
that quantity is equal to 0. But this can happen only at the branch points. O

Proposition 7.23. For every (g,n) and 1 <i<n

Won(21,...0(%),. ., 2n) = —Wgn(21,- -, Zi o+, 2n)
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Proof. 1t is clearly true for wy 1, and it is true for @y » by Proposition 7.17 and symmetry. It also
follows from the same proposition for wp 3. It then follows easily by induction that the result is
true for any wg, , when considering the first variable, and then any variable by symmetry. O

Proof. (of Theorem 7.20)

For z; fixed, consider
z
f wo,2(20, p)
p=o0
where the integration path lies inside the fundamental domain of ¥. In the variable z, it only
has a pole at z = zy. This allows us to write the Cauchy formula

z—20

Wy n+1(20,7) = Res [J w072(z0,p)] Wy nt1(2, 2) (23)

p=o0

Riemann bilinear identity (Proposition A.10) together with Proposition A.4 informs us that

¥4
Res [J w0,2(207p):| Wy n+1(2, 2)

z— all poles p=o
2d—2 (24)

= Z; § wo.2(20, 2) jg Wy ni1(2,Z) — § wo 2(20, 2) 3[) Wyn+1(2, 2)

zEA; zeB; z€B; z€A;

Here by all poles we mean zy (the unique pole of S;:O wo,2(20,p)) and all the branch points b;
(the poles of wg ,,+1). Putting Equations (23) and (24) together, we get

2d—2
wg,n-&-l(ZOag) == Z Res[

zZ
s f wo,2(207p)] wg,n+1(Za5)
i=1 “ Vi lJp=o

2d—2 (25)

+ Z § wo,2(20, 2 ﬂg wgn+1(2, 2) — § wo,2(20, 2) 3€ wg,n+1(2, %)

- zeA1 z€eB; z€B; z€A;

However, we have that the integrals over A cycles of wp 2 in Equation (25) vanishes, leaving us
with

2d—2
wgvn_‘_l(zo, Z) = - Z Res [

4 z—b;
1=1

Z
J WO,Q(Z()»p)] Wg,n+1(275)

p=o0
— 3€ wo,2(20, 2) J; Wy nt1(2, 2)

z€B,; zEA;

Plugging in Equation (22) in the term with the residue, we have to compute the residues of
different contributions. Notice that

5, natao. )| a2 [

S Wgn 29,y 2n) _ ; B i n .
2] 2,4 Par(H2).12), s t(za)) ] Tt n)}

2 YTHz) — t(z) e ()
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is holomorphic around b;. Indeed we are looking at something that has no pole in b; for dt(z)/s(z)
has no pole at the branch point b;. So after taking residue, this term’s contribution is 0.

Performing the change of variable z — o(z) together with Proposition 7.23, we have that

: Wg— 2,2,2 ° Wy— z,0(2), 2
J W0,2(Zo,p)] Wg-1,n+1(2, 2, Z) — Res U wO,z(zo,p)] g—1,n+1(2,0(2), 2)
p=o 2w0’1(z) z=bi| Jp=o(2) 2&)0,1(2)

Res[

z—b;

and by Proposition 7.23 we also have

J w0,2(207p)] —wgfl,nﬂ(z,z,z) = Res[

o 2wo,1(2) 2—>b;

r Wo,2(Zo,p)] e g (28)

p—o 2wo,1(2)

z—b;

— Res[

and thus taking the average of Equations (27) and (28) we get

z Wg—1 7L+1(Za275) 1 B Wg—1 n+1(Z,O'(Z),Z)
—Resf wo.2 (20, ]g’—Res[j wo.2(20, ] 2
z—>b,;[ o 0,2(20,P) 2wo.1(2) pYEv N 0,2(20,P) 2wo.1(2)
(29)
Similarly, we have
[S;o wo,2(20, p)] s
— Res - w z, A)w z, B
okl 2001(2) glézg gl,\AHl( ) gz,lBHl( )
AuB=Z% (30)
SZ:U z w072(Z07p) k
1 R o) " A)a B
—§z_?li 2&;0,1(z) glézgwgl’lAHl(27 )wgz,\BHl(U(Z)a )
AuB=%
In this expression, all the &4, can be replaced by wy . Indeed,
Wg, 1A1+1(2, A) @y, |B1+1(0(2), B) + @y, B141(2, B) @y, 1a1+1(0(2), 4)
:ng,|A\+1(ZaA) wgz,\BHl(O—(Z)’B) + wgz,IBHl(sz) ng,|A\+1(U(Z)’A)
by Proposition 7.23 together with
dt(z1)dt(z2) _ dt(o(z1))dt(z2)
(t(z1) = t(22))?  (t(o(21)) — t(22))*
Thus
*
Z W, jal+1(2; A) D, |B|+1(0(2), B)
N
. (31)
= 2 Wg1,|A\+1(ZvA) wgz,\B\H(U(Z),B)
g1+g92=g
AuB=Z%
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Naturally, w1 = wo 1.

Putting this together with Equation (29) we obtain

wg,n-&-l(ZOa Z) =

2d—2 Sz: w0,2(207p) ®

1 p=0(z) .

9 . B—?bsl QWOI(Z) —w9717n+2(z,0(z),z) - Z_ wgl,lAHl(Z’A) wgz,\BHl(U(z)aB)
i=1 ) gil‘+gBQ:g

- J w0,2(2072)f wg,nJrl(Zv 7).
z€B; zEA;

i

(32)
This is almost the result we wish to get, we just have one extra term that we somehow need to

get rid of, namely the term in product of integrals.

It is a standard result of topological recursion that the integral over zy € A; of the first term in
the right hand side of (32) is equal to 0 (see for example [EO07]). Note also that

(20,21, 2n) = § wo,2(20, 2) jg Wg.n+1(2, 2)

z€B; ZE.A»;

is an + 1 form. Since §ZOeA’_ wo,2(z0,2) = 0 we have

§ az0,21,...2n) =0

Z()EAi

Those two facts put together show that

§ wg,n+1(2’0,5) = 0

ZOEAi

and thus the second term in (32) is equal to 0, which proves the topological recursion formula. [

7.6 Two examples

Using the machinery developed above, we can extend the result of Proposition 3.15 to power
series integrals

Proposition 7.24. There is a unique power series integral for the potential V(z) = %2
Proof. For this potential, there is no choice for what the polynomial Py ;(t) can be. Indeed,

from (14) we have
Po(t) =T,

and
T =1

by the normalization property. We then have that the equation defining the Riemann surface X

1S
2 1 1 1
2
H=——-1==(t—=)(t+ =
S(t) =7 1= (=3 +3)
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from which we get that ¥ is of genus 0, i.e. it is the Riemann sphere. Since there is no
holomorphic 1-form on the Riemann sphere, there is only one bidifferential form with only poles
on the diagonal with no residue, namely

dt(Zl)dt(ZQ)
(t(21) — t(22))?

and we thus have no choice as to what wp 2 could be. O

Proposition 7.25. Let V be a potential of degree 3. An integral ¢y, with respect to V' is uniquely
determined by g .

Proof. Since V is of degree 3, W — Py 1(t) is of degree 4, no matter the choice of Py 1. The

Riemann surface ¥ is then at most of genus 1. From there, the 2-form wy 2 depends only on the
choice of T()(?()), but this number is equal to 0 by Proposition 7.4. O
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8 Deformation

We have seen that both infinity integrals and power series integrals can be understood as maps
from the zeroth cohomology of a certain chain complex. In the case of infinity integrals, this
chain complex is actually a differential graded algebra, and integrals are maps of algebra. This
allowed us to find a finite amount of parameters that would uniquely determine an infinity
integrals.

In the case of power series integrals, it is a priori not clear at all that one can also find a
finite amount of parameters which determine the integral. However, at least in the case of one
variables, power series integrals are uniquely determine by numbers

Lim on(2*) = ¢o(a*)

and

i Pr(@) (7)) — n(')pn(a?)

im

h—0 h

for finitely many 4, j. However, it is not clear how to interpret that in the cohomological setting.
One issue is that the number of parameters is not even fixed: different choices of Py (c.f.
notation of Section 7) might produce spectral curves with different genera.

By examining one last time Gaussian integration, we propose a direction to answer this problem.
It has to be said that this section is much more speculative in nature.

8.1 A new product

We look at Gaussian integration in a slightly broader context than Gaussian integration of
Hermitian matrices. Let V' = R? be a real vector space of dimension d together with a d x d
invertible symmetric matrix B and denote by (—, —) the usual scalar product. Denote also by
O4 = R|z1,...24] the ring of commutative polynomials in d variables. In what follows, for
1 < ¢ < d denote by 0,, the partial derivative with respect to z;. To make notations a bit less
cumbersome, we define
Bij = (Bil)ij
and we use Einstein convention throughout.

Definition 8.1. For any f € Oy define

_ (Bx.x)

=g |, dos@e

where dz is the Lebesgue measure and Z is a number such that (1) = 1.
Those expectations value can be computed using Wick’s theorem.

Theorem 8.2. (Wick) For any f € Oy,

ij
(B~ lz,2) B0y, 0x ;

<f>:f(alv"'aad)e 2 |lze=0 = € 2 f(x)Iw:O

Remark 8.3. Theorem 3.4 introducing ribbon graphs to compute Gaussian expectation values
of Hermitian matrices is actually a consequence of Wick’s theorem in that context.

We shall see that this formula allows us to define a new product * on Oy such that (f = g) =
() <g)-

We may assume that B is a diagonal matrix. Indeed, since B is symmetric, we may perform a
linear change of variables to bring it to a diagonal form.
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Definition 8.4. Let D : O, ® Oy — O3 &® O4 be the operator defined by

which is well defined on tensor products on polynomials for given two polynomials f and g, only
finitely many term of the exponential are non-zero.

Definition 8.5. For two polynomials f and g in O define
frg:=poD(f®yg)
where p is the usual product of Oy.

Proposition 8.6. {f xg) = {(f) {g)

Proof. We notice that

2 2 o A2
gii 2z g 22 ®1+202; 802, 11827,
(A 2 = 2

for every partial derivative in the left hand side is applied to the function coming either from
the first factor of the tensor product or from the second factor.

We then have

i (‘EL i aii@uzawi@ami +1®a§1 i a§i®1+1®a§i
P2 opoD=poe? 2 “oD=poel 2
By Theorem 8.2, evaluating at = 0 for f and g in Oqy gives us (f # g) = {f) {g). O

In section 5, we saw that the commutative analogue of the algebra C(1) was given by polyvector
fields (actually it was even the motivation for the construction of C(1)). We know see how the
product * fits into that framework.

Definition 8.7. Let 7 := R[_a:l, ooy xamt, ..., n?] be the graded commutative algebra of poly-
nomials in variables z; and 7*, the former being of degree 0 and the latter of degree —1.

Note that in the commutative setting there is no need to quotient out by commutators and then
take the symmetric algebra on the resulting vector space.

Remark 8.8. The map (—): Oy — C can be reinterpreted as a degree 0 map 7 — C.

Remark 8.9. The operator D defined earlier extends to the 7 and thus the new multiplication
f+g=poD(f®yg) also extends to T. Note that this new product is still graded commutative
for D is a map of degree 0.

In this commutative setting, the differential operator of order at most two A : T — T is
A= (3115171 - Biixianq‘,
Proposition 8.10. Let f € T be a homogeneous of degree —1. Then (A(f)) = 0.

Proof. This is true if d = 1 where it is just integration by parts. Since B is diagonal and we are
only dealing with polynomials, the general case is follows by Fubini. O

Clearly, A is a differential operator of order at most 2 on 7 (with respect to the usual product

of polynomials). We wish to show that this statement stays true if we consider the new product
* instead.
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To be more precise we wish to show that

Alasbxc)—Alaxb)xc+Aa) #bxc— (=1)%x A(b*c) — (—1) @ D% « A(a = ¢)
+(=1)%a* A(b) x ¢+ (—1)*"Paxbx Ac) = 0.

To prove it, we start by recording the following straightforward facts:

Lemma 8.11. Let A be an algebra. An operator A is a differential operator of order at most 2
if and only if for every homogeneous element a € A the map [a,—]|a : A — A defined by

b [a,b]a := (—1)*A(axb) — (—1)*A(a) *b — a = A(b)

is a deriation of degree |a| + 1

Lemma 8.12. Let A be a graded algebra and let d be a derivation of degree 1. Then d is a
differential operator of order at most 2 and for every homogeneous a € A we have [a,—]q = 0.

Lemma 8.13. Let A be a graded algebra and let di,ds be two derivations. The composition
dy o ds is a differential operator of order at most 2.

Lemma 8.14. Let A be a graded commutative algebra and let di and do be two derivations of
A (not necessarily of the same degree). For every homogenous a € A, the map

b— dy(a)da(b)

is a derivation of degree |a| + |dyi| + |da|
Lemma 8.15. The maps 0y,,0y, : T — T are derivations for the product *.
Proof. The fact that 0, is a derivation for the usual product of polynomials ;i can be rewritten
as
Op, 0t =110 (0p, ®1+1®0y,).
Since partial derivatives commute, both the operators d,, ® 1 and 1 ® 0,, commute with D.

We then have
Op, 00D =10 (0, ®14+1Q0;,) oD =poDo (0, ®1+1® 0y,)

which precisely mean that 0, is a derivation for the product * = po D.

The proof is the same for 0,,, one just needs to understand the tensor products J,, ® 1 and
1 ® 0y, as tensor products of graded maps (that is (¢ ® ) (a ®b) = (—1)"* a(a) ® B(b) for
homogeneous maps «, § and homogeneous elements a, b).

O

Putting all this together one can show

Proposition 8.16. The operator A := 0y, 0pi — Biz;0,, is a degree 1 differential operator of
order at most 2 for the algebra (T, *), i.e. (T,*,A) is a BV-algebra.

Proof. From lemmas 8.13 and 8.15, d,,0,, is a differential operator of order at most 2. We are
thus left to show that x;0,, is a differential operator of order at most 2. We shall use Lemma

8.11 and we just need to compute [f, g]:,, Wwhich is equal to

(_l)fxiam opoD(f®g) — (_l)f,u oDo (xiam R(f®g)— (_1)f,u oDo(l ®xiam)(f®g)
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Note the factor (—1)7 in front of the last term which comes from the tensor product of graded
maps. To compute this, let us record some commutations relations.

As before, we have x;0,, op = po (2,0, ®1+1®x,;0,,). Let us now compute the commutator
of ;0p, ®1 and D.

On the one hand we have

—1)*
(20, ®1) 0 D = 2( k') 0, (B0, ® 0"
— k!

On the other hand we have

1
Do (@, ®1) = ) L k,) (B0, ® 00,)" o (2i0p, 1)
k

1
—Z 1 0, (B0, ©2,)" - Y S BB, @0, o (04, ©01,)
k

= (:z:i&m ®1)oD — B"Do (On ® 0s;)

we then have for f and g homogeneous element of T

(=17 ai0y, oo D(f@g) — (—1)/ po Do (20, @1)(f®g) — (-1)/ po Do (1@ z:0y,)(f ®g)
—1) po (20, ®1+1®@xi0,) 0 D(f®g) — (1)) po Do (20, ®1)(f ®9)
1)f.UODO(1®xz on)(f®9)

71)f,uoDo(x¢(?m®l+1®xiam + B%0,, ® 0, + B"0,, ® 0,)(f ®9)

1)/ o Do (20, @ 1)(f®g) — (~1)/ po Do (1@z:dy,)(f ®9)

(=) po Do (B"0, ® 0y, + B0, ®02,)(f ®9)

Which is the sum of two derivations of degree |f| + 1 by Lemma 8.14.

O
It turns out that the product is a trivial deformation:
Proposition 8.17. The following identity holds as map from Og & Og — Oy
Lo2 o2 02
poD=eP "= opo(eP = @l )
Proof. Using the previously recorded identity
i %%, 45 02, ®1+202, @z, 1007
eB 2 0 /1’ = /'[/ o) eB 2
we get
i ngl i %®1+201 ®a,; +1@02
eBToMoD=MoeB 2 “oD
i (/:E ®1+1®a2
= o eB 2
02 o2
:'uo(eB 2l®eB 21)
L
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In the end, the content of this section can be summarized in the following statement

Proposition 8.18. For every symmetric matriz B, the map {(—) : (T,*,A) — C given by
Gausstan integration is a map of BV algebras.

8.2 Speculations

The results of the previous section might suggest the following point of view for power series
integrals. One should maybe consider integrals as maps of BV algebras

¢ (Ca(1), %, Av) — C[[A]]

where * = ., Rip; is a deformation of the product with respect to which Ay is a still a
differential operator of order at most 2.

If v is a map of BV algebra, the value of

i #19) = en(f)enlg)
h—0 h

has to be equal to —@o(p1(f,g)) and then the whole integral oy, is fully determined by ¢q.

It is not clear that such an approach is possible, though, for a power series integral also has
to satisfy the cumulant condition. The first question is then what kind of constraint does the
cumulant condition for power series integrals impose on the different u;? It is obvious that 2-
cumulants of integrals coming from deformed products are multiples of A. For higher cumulants,
the situation is not quite as clear. Let us have a look at the 3-cumulant :

Proposition 8.19. In the setting described above, let a, b, ¢ be three cyclic words. The coefficient
in h of @.(abe) is equal to

@o(—p(ab, ¢) + apy (b, c) + bui(a,c))

Proof. This is just an explicit computation using the fact that ¢y is a map of algebra for the
product . O

We can go one step further, indeed Cp(1) is a free algebra, all deformations of the product are
trivial. We can then assume that * is of the form

x+ =1y opo (YY)

with ¢ = 1+ 3}, h'tp; an automorphism of Cy(1). We then know that

pa(a,b) = —1(a,b) + ¥1(a)b + aby (b)

Plugging that in Proposition 8.19, we get

Proposition 8.20. If v is a differential operator of order at most 2, then the coefficient in h
of pc(abe) vanishes.

For higher cumulants, the situation becomes quite involved, and a more conceptual approach
would be necessary.

A second question is what are the constraints imposed by requiring the BV operator Ay, to still
be of order at most 2 with respect to the new product. Note that Ay is of order at most 2 with
respect to * if and only if Ay := 1 o Ay o1p~! is of order at most 2 with respect to the initial
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product. From there one can see that, at least infinitesimally, if 1 is a derivation, then Ay is
of order at most 2. Note that requiring ¥ to Ay to be of order 2 implies to that the 3-cumulant
is a multiple of h2.

Assume for the moment that one manages to answer the two previous questions and that it is
indeed possible to define power series integrals by first deforming the product. The next natural
question is whether all integrals can be obtained in this way? Maybe topological recursion could
help fix v; for ¢ > 2 from only the knowledge of ;7

Conjecture 8.21. Integrals with respect to the potential V' are equivalent to BV-algebra maps
(Cr(1), %, Av) — (C[[A]],0)

where * is a deformation of the product with respect to which Ay is a differential operator of
order at most 2.
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9 Outlook

We conclude by presenting a couple of outlooks about how non-commutative integrals fit in the
broader mathematical landscape.

9.1 Duflo Isomorphism

Consider a finite dimensional Lie g. From there, one can construct two different algebras: the
symmetric algebra Sym(g) and the universal enveloping algebras U(g). The so-called PBW
theorem states that the symmetrization map

S Sym(g) — Ul(g)

1
CCliEn}—>ﬁ Z Ia(l)---zo(n)

" oeS,

is an isomorphism of vector spaces. Of course, this map has no chance to be a map of algebras,
for in general the universal enveloping algebra is not a commutative algebra. However, both
spaces are naturally g-modules and the symmetrization map S is equivariant with respect to
both actions. Thus, one can restrict it to the subspace of invariant and get an isomorphism of
vector spaces

Sym(g)® = U(g)? = Z(U(g))

While Z(U(g)) is now a commutative algebra, the map S is still not quite a morphism of algebras
yet.

In [Duf77], Duflo defines an element J(z) belonging to (a completion of) the symmetric algebra
Sym(g*) as
1 — e ada

J(z) :=det(————
(@) i= det (— i )
and proves the following theorem

Theorem 9.1. The map S o Jz defines an isomorphism of algebras
Sym(g)® — Z(U(g))

One downside of Duflo’s proof is that it heavily relies on classification results of Lie algebras,
even though both Sym(g)? and U(g?) are constructed only knowing that g is a Lie algebra, not
which Lie algebra it is.

To make a connection with non-commutative integrals, we have to give a more geometric inter-
pretation of Duflo’s theorem. Suppose that the Lie algebra g is coming from a Lie group G. The
algebra Sym(g) can be understood as the algebra Dy(g) of distribution on g supported at 0,
with multiplication given by the convolution with respect to the addition in g. In other words,
given two such distributions f, h, their product is given by

(f * h)(x) = f F@)alz - v)dy
g

Similarly, the algebra U(g) can be understood as the algebra D, (G) of distributions on the group
G supported at the identity; and this time multiplication is given by convolution with respect
to the group law. That is, for F, H two such distributions,
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(FMM@=LF@H@ﬂMu

In this context, the symmetrization map S corresponds to the map
Do(g) — De(G)
given by precomposing with the exponential map exp : g — G, and Duflo’s theorem states that
Duf : Do(g)“ — De(G)¢
I (g = eap(e) = T2 (2) f(2))
is an isomorphism of algebras.

The hope would be that if one has a universal theory of integration for Lie algebras and groups,
one could give a universal proof of Duflo’s theorem. By a "universal theory", we mean a
theory which relies only on structural maps of Lie algebras or groups. In other words, a theory
of integration for the free Lie algebra (group), from which one could get integration for any
specific Lie algebra g (group G) by interpreting elements of the free Lie algebra (free group) as
formulae.

Integrals on the free associative algebra might be useful for both the "Lie" world and the "group"
world meet in the "associative" world. Let us explain.

On the one hand, consider the free group
mi={(X1,...,Xn)

on n generators. There are multiple isomorphisms of vector spaces between the completion of
the group algebra Cr and the free algebra A := C{{x1,...,2,)). One example is the exponential
map

Cr— A
1 k
XZ’—’;H%

An other one is the so-called Magnus map
Cr— A
X, — 1+ ;.
On the other hand, the free Lie algebra L = Lie(x1,...,x,) can also be found in A. Indeed, A

admits the structure of a Hopf algebra with comultiplication A, counit € and antipode S defined
by

The free Lie algebra L can then be identified with the space of primitive elements of (A, A, ¢, S).

In both cases, there is a suitable concept of divergence related to the divergence of A, making
it possible to define integrals in those two worlds. Hopefully, associative integrals give examples
of such integrals. However, it seems that in order to get involutions, one would need to go at
least one step further and develop a theory of integration with free variables.
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9.2 Volume of moduli spaces of flat connections

Let G be a Lie group with corresponding Lie algebra g and let 3 be an orientable surface. One
can look at the space of of g-valued connections on X, that is elements

Ac ' (D)®g
such that )
dA + §[A’A] = 0.

The Gauge group G of all maps g : ¥ — G acts on the space of flat connections by g- A =
g 1Ag + g 'dg. One can then define the moduli space of flat connections as

M(3,G) = {Ac QL(S,g) | dA + %[A,A] _0}/g".

In [AB82], Atiyah and Bott construct a Poisson structure on M(X,G). When ¥ is a closed
surface, this Poisson structure is actually symplectic. The moduli space can also be described
as

Hom(m (%), G)/G
where the action of G is by conjugation. The isomorphism
M(E,G) = Hom(m(2),G)/G

is given by looking at monodromies of the generators of the fundamental group m(X). With
this description, it also has a Poisson structure due to Goldman [Gol86].

When G is compact, for example G = U(N), the volume of the moduli space
Vol(M(E,Q))
has been computed by Witten [Wit91].

In that case the volume is proportional to an expression of the form

qu Se(] Jlai bil) H da;db

where g is the genus of ¥ and and [—, —] is the group commutator. Notice that this expression
is also "universal", and an universal integration theory might be insightful.

9.3 Words measure on free groups

In [MP19] and [MP22] Magee and Puder study words measures on free groups. Their construc-
tion is as follows.

Consider the free group F;. on r generators. Given a word w of F,., they interpret it as a map
w:U(N)" — U(N)
and consider the pushforward of the Haar measure on U(N)" to U(N), calling it the w-measure.

Given [ words wy, ..., w; € F,, they are interested in computing integrals of the form

l

TT’w1,...,wL(N) = J Htr(wi(Al"“’Al))du
Al,...,A7.€U(N) =1
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as functions of N.

While it was known from Weingarten calculus (c.f. [CMN22| for an introduction) that for N
large enough, Ty, .., (N) € Q(N), they come up with a method to compute it by considering
surfaces with [ boundary components coming from matching of letters. As we have seen, it is
not surprising that one can use combinatorics of surfaces to compute matrix integrals. It is
somewhat more surprising that one also needs to take into account maps from the boundary of
the surface S to \/;_, S' satisfying some condition. Loosely speaking their main result looks
like this

Tru o (N) = > C(f)NX)
(S,f)

where C(f) is a number depending on the map f and x(S) is the Euler characteristic of S.

The situation is similar to Gaussian integration, and thus to non-commutative integrals, but in
a group setting. There is also a striking difference in the appearance of maps from surfaces to
"bouquet" of circles as Magee and Puder call them.

Note that this story is not unrelated to moduli space of flat connection for the integral can
be thought of as an integral over Hom(F,,U(N)) and the fundamental group of surface with
boundary is a free group.

9.4 Other constructions of Cj(n)

The algebra C(n) constructed in Section 5.4 was also constructed in a slightly different context.
In [GGHZ21], Ginot, Gwilliam Hamilton and Zeinalian start with a graded vector space V over
K equipped with a symplectic form (—, —) of odd degree. From there, they define a Lie bracket
0 and a lie cobracket V, both of odd degree on

HV] = [[IV9)%],
k=0

using the dual of the symplectic form on V. Using this bracket and cobracket, they get a BV
operator A =V + 4§ on

0

PWA’SC[V] = K[[7]]® (H[H[V]@] si)

i=1

Their notation puts more emphasis on the trivial cyclic word which they denote by v. The
slightly confusing thing for us is that they use 0 for the bracket (recall that we used ¢ for the
cobracket).

Of course, if we pick a basis X = {z1,...,z,} of V, H(V) is nothing but the space of (graded)
cyclic words in the alphabet X. If V. = W @ W/[1] for a vector space W of dimension n
concentrated in degree 0 then P.'7¢[V] is the same thing as what we called Cy(n). It turns out
that their bracket and cobracket are the same as ours.

While their construction is a bit more general, it also puts more emphasis of the vector space
V. Using the BV-structure, they consider PWA’,’}C[V] as an odd graded differential Lie algebra
and define a filtration

Prre[V] = FoPppe[V] o FLPr e[V o ..
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The solution of the Maurer-Cartan equation in IADWASC[V] /Flﬁvfl’}c[V] are precisely the cyclic
Ag-structures on (a suspension of) V. Cyclic means that it Ag-structure is compatible with
the symplectic form {(—, —). Such solutions are linear combination of cyclic words and a word of
length k corresponds to the operation of arity k—1. Since those solutions are linear combination
of cyclic words, they correspond to potential in our setting. It would be interesting to understand
what is the role played by integrals in this context.

In a subsequent paper [GHZ22], they apply this construction to the following very simple cyclic
Ay, algebra A: the graded space A has generators a and b in degree zero and one respectively,
the symplectic form is given by

(byay =1= —{a,by

and the only non trivial operation is the operation of arity 0, i.e. the differential d and it is
given by da = b. They show that .
(Pro°[AlLd+ A)

is closely related to Gaussian integration of Hermitian matrices. Indeed the differential d corre-
sponds to the cyclic words [(a*)?| and on (P} }°[A],d + A), d = {(a*)?,—}. They also produce
a quasi-isomorphism of complexes

(Ppre[A],d + A) — C[, V]

by means of ribbon graphs. It seems extremely likely that one can deform the product on
P, 7¢[A] using those same ribbon graphs in order to make the above quasi-isomorphism a
morphism of BV-algebra.

7



A Riemann Surfaces
We gather here different results about Riemann surfaces. Good references on the subject are
plenty, but we recommend the book of W. Schlag [Sch14].

Fix once and for all a complex polynomial P(z) of degree 2g + 2 with simple roots and and
consider the Riemann surface

Yi=A{(z,y) e Cly* = P(x)}.

Proposition A.1. As a C-vector space, the space of holomorphic differential of X is generated

by
dfx. x2d:£. _ s

)

y y ”

Proposition A.2. Let w be a meromorphic form and let p be a pole of w. The order of the pole
p ord(w,p) and the residue Res(w,p) are well defined, i.e. do not depend on the coordinates.

Proposition A.3. The meromorphic 1-form on % are of the form

w = (p1(x) + p2(2)y)dx
There is a residue theorem for Riemann surfaces (we are not quite precise with what we mean
by integration region, a more precise description can be found in [Sch14])

Proposition A.4. Let w be a meromorphic form and N < X an integration region such that
there is mo pole of w on ON. Then

1
— | =Yr
57 LN > Res(w,p)

peN

A thorough discussion of what follows can be found in [Eyn18§]

Proposition A.5. Given a symplectic basis (A;, B;)I_; of cycles of Hi(X,Z), there exists a
unique bilinear meromorphic form B(z1,z2) such that as a 1-form in its first argument, it has
only a double pole with no residue when z1 = zo and is normalized such that

dz(z1)dz(z2)
5 + holo.

B(z1,22) ~ (2(21) — 2(22))?

as z1 — zz, and

jg B(z1,22) =0

Z1GA1,

This form is called the fundamental form of the second kind, or sometimes the "Bergman
Kernel". From it one can construct a basis of holomorphic differentials on X:

Proposition A.6. In the same context as the above Proposition, for 1 < i < g, the differential
forms

wi(z) = — jg B(z1,2)

Z1€B;

form a basis of holomorphic form on X satisfying

ffwj(Z) = dij.

A;
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Definition A.7. In the above setting, define numbers 7; ; by

Tij = ffwi

B;

Proposition A.8. Letw be a symmetric meromorphic bidifferential form ¥ x 3 with only double
poles with no residue on the diagonal. Then it has the form

w=DB + Znijwiwj

]
Furthermore, for every 1 <1i < g the elements A and Bf be of H1(X,C) defined by

d—2 d—2
M—&—ZM4@—ZW&)
j=1 =1

and
d—2

Bf = Bz — Z TijAl

Jj=1

are such that

Ar( Ay =0=58r()B;
A ()85 =6y

3[) w(z1,22) =0 and § w(z1, z2) = 2miw;(22)

zleAf z1 EB?

The cycles A and B} are called the modified cycles.

Definition A.9. Given a symplectic basis (A;, B;)7_; of cycles of Hy(X,Z), the fundamental
domain of ¥ is

S0 =3\ JAi v B

Proposition A.10. (Riemann Bilinear Identity) Let (A;, B;)?_, of cycles of Hi(2,Z) and let f
be a meromorphic function on X, holomorphic on a neighbourhood of 0%y and let w be a closed
meromorphic 1-form. Then

Lgo fu= i_iin i JB,; ©o fBi a LL; .

The same result holds when replacing A; and B; by the modified cycles Af and B
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