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Résumé
Dans cette thèse, nous proposons une notion d’intégrales non-commutative pour les algèbres
libres. L’organisation est la suivante :

• Comme premier exemple d’intégrale non-commutative, nous étudions en détail les inté-
grales de matrices hermitiennes. À partir de leur différentes propriétés, nous proposons des
axiomes pour une première version d’intégrales non-commutative. Celle-ci prenne valeurs
dans les nombres complexes et nous les appelons "intégrales à l’infini". Toujours motivé
par l’étude de l’intégration matricielle, nous définissons une deuxième version d’intégrales
non-commutative. Cette fois les intégrales prennent leurs valeurs dans l’anneau des séries
formelles à coefficients complexes, c’est pourquoi nous les nommons "intégrales formelles".

• Inspiré par une présentation de Kontsevich, nous définissons une certaine algèbre de
Batalin-Vilkovisky C dont la construction est similaire à une construction de Ginzburg.
Pour ce faire, nous généralisons la notion de double crochet de Van den Bergh dans le but
d’obtenir des crochets gradués de degré 1. À proprement parlé, nous construisons deux
algèbres, une pour chaque type d’intégrales, mais l’une est obtenue à partir de l’autre
en spécifiant la valeur d’un paramètre. Le lien avec les intégrales non-commutatives est
donné par les fait que les intégrales correspondent à des morphismes de complexes de
chaînes ayant pour source l’algèbre C. Si cette description caractérise entièrement les
intégrales à l’infini, la situation est bien moins claire pour les intégrales formelles.

• Le résultat décrit ci-dessus nous informe que les intégrales à l’infini sont classifiées par la
cohomologie en degré 0 d’une certaine algèbre. Nous calculons cette cohomologie dans le
cas d’une seule variable. Toujours pour une seule variable, nous trouvons ensuite un nom-
bre fini de paramètres qui déterminent uniquement les intégrales formelles. Les techniques
utilisées pour parvenir à ce résultat sont issues de la récurrence topologique.

• A la lumière du résultat précédent, nous conjecturons qu’une intégrale formelle est un
morphisme d’algèbre de Batalin-Vilkovisky après avoir déformé de manière adéquate le
produit de C.
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Introduction
Integration is one of the crown jewels of mathematics. Its usefulness, both in theory and in
application, cannot be overstated. It began as a method for computing areas under curves
by approximating it with arbitrary small rectangles, an idea rigorously formalized by Riemann
sums. Over time, this central idea expanded in many directions: from single-variable functions
to multivariable ones, to a broader class of functions using Lebesgue measure, and eventually
to manifolds and beyond.

At its core, integration can be thought of as the process of summing a function over a space
to compute quantities such as areas, volume, or averages. In classical geometry, the space over
which one is integrating is commutative, meaning that the algebra of functions on the said space
is commutative. In non-commutative geometry, the space in question may not necessarily be,
well, commutative anymore. While it is not clear what it would mean for a space to be non-
commutative on the level on the space itself, it is a lot more clear what it should mean for its
algebra of functions. Drawing on a principle from algebraic geometry - the understanding of a
space is equivalent to the understanding of its algebra of functions - non-commutative geometry
studies non-commutative algebras as algebras of functions of non-commutative spaces.

Many concepts from commutative geometry have counterparts in the non-commutative setting.
For example, the role of a Poisson bracket is played by double Poisson brackets introduced by
Van den Bergh [dB04].

In this thesis, we propose a notion of non-commutative integrals for free associative algebras.
One reason for the restriction to free algebras is that the concept of volume element lying at the
heart of integration theory turns out to be surprisingly hard to construct in the non-commutative
setting. However, once a volume form has been fixed, there is a notion of divergence of a vector
field, and it is possible to construct an analogue of divergence for free associative algebras.
Important properties of integrals such as integration by parts, the divergence theorem, or more
generally Stokes theorem can be stated using the concept of divergence. Non-commutative
divergence might be thought of as the shadow of a non-commutative volume form.

As a motivating example of non-commutative integration, we study matrix integration or more
precisely Gaussian matrix integration. In that context, Stokes theorem is known as "Loop
equations" and takes a very peculiar form.

The plan is as follows. Fix Apnq to be the free associative algebra on n generators. We begin
by briefly presenting some elements of non-commutative calculus, necessary to later define non-
commutative integrals. We then study in details Gaussian integration of N ˆ N Hermitian
matrices. Unsurprisingly, the different values of such integrals depends heavily on N . By
considering the limit asN goes to infinity, we derive axioms for a first version of non-commutative
integral as maps

Sym
`

Apnq{rApnq, Apnqs
˘

Ñ C.

We call those integrals "infinity integrals".

Coming back to the study of Gaussian integration, we see that those integrals can be interpreted
as power series in N´2, from which we derive axioms for yet another version of non-commutative
integrals called "power series integrals". As the name suggests, this version of non-commutative
integrals are maps

Sym
`

Apnq{rApnq, Apnqs
˘

b Crrℏss Ñ Crrℏss

and the "infinity integrals" described above are the leading order of power series integrals. Both
infinity and power series integrals are actually defined with respect to a potential V . Different
choices of V correspond to different volume forms.
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Aiming towards a classification of integrals, we then reframe both versions of integrals in a
cohomological setting. We motivate this idea by first presenting a reformulation of the de
Rham complex in terms of polyvector fields. We have learned about this point of view in
[Gwi12]. This reformulation indicates that the right algebraic framework for our purposes is the
framework of BV-algebras (Batalin-Vilkovisky algebra). We recall the basic properties of these.
Classical examples of BV algebra can be constructed from (graded) involutive Lie bialgebra.
More generally Perry and Pulmann described in [PP24] sufficient and necessary conditions to
construct a BV operator from a graded bracket and cobracket on a graded vector space. This
is where we present a slightly different version of Van den Bergh double Gerstenhaber bracket
[dB04], more suited to our goal. Usual double brackets are maps A b A Ñ A b A where A
is an algebra. They satisfy some axioms devised to make them induce Lie brackets on the
space A{rA,As. Our graded version of double brackets allows us to define easily graded bracket
satisfying the conditions in [PP24]. In the original article of Van den Bergh, the graded setting
was only mentioned and proofs were given only for non-graded double bracket. We adapt those
proofs to the graded setting using diagram calculus and get the following theorem:

Theorem A. Let A be a graded algebra and Πp´,´q : A b A Ñ A b A a double bracket such
that Πp´,´,´q “ 0. Then the associate bracket

r´,´sΠ :“ |A| b |A| Ñ |A|

satisfies the following property

• graded symmetry r´,´sΠ “ r´,´sΠ ˝ τ

• graded Jacobi identity r´,´sΠ ˝ pr´,´sΠ b Idq ˝ Cyc “ 0

More details about various notation and definitions can be found in Section 5.3.

Equipped with this toolbox, we define a graded analogue of a Lie bialgebra due to Schedler
[Sch04]. The idea behind this construction is due to Ginzburg [Gin07].

Inspired by a talk of Kontsevich, we show that this BV algebra is closely related to our definitions
of integrals. More precisely, we define two algebras Cℏpnq and Cpnq, the latter being obtained
from the former by formally sending ℏ to 0. While the definition of the algebra does not depend
on the choice of the potential, the BV operator on Cℏpnq does. Furthermore, it becomes a
differential when ℏ “ 0 (but still depends on V ). In that case, we have Theorem 5.50

Theorem B. There is a one-to-one correspondence between infinity integrals with respect to the
potential V and differential graded algebra morphisms

pCpnq,∆V q Ñ pC, 0q.

The situation is less clear for power series integrals. Nevertheless, we still have in Theorem 5.54

Theorem C. Every power series integral with respect to the potential V induces a map of chain
complex

pCℏpnq,∆V q Ñ pCrrℏss, 0q

Note that this results does not mention the BV structure whatsoever, it is only a result on the
level of chain complexes. We’ll come back to that.

Since the zeroth cohomology of pCpnq,∆V q, classifies infinity integrals for the potential V , we
compute it for n “ 1 using the Homological Perturbation Lemma.

Theorem D. For any potential V of degree k ` 1, the zeroth cohomology of the algebra Cp1q is
given by

H0pCp1q,∆V q – SympCrxs{pxkqq.
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Using methods coming from topological recursion [CEO06][EO07], we then classify power series
integrals in one variable. The idea is as follows. Starting with a power series integral, we define
generating functions encoding the data of the power series integral. Using loop equations, we
then promote these generating functions to differentials ωg.n for g ě 0, n ě 1 on a Riemann
surface Σ. The bridge with topological recursion is given by the following theorem

Theorem E. For every power series integral in one variable φℏ, the differential forms ωg,n

constructed from the coefficients of φℏ satisfy the topological recursion equations.

The precise statement is given by Theorem 7.20. We stress that the forms ωg.n are not defined
by the topological recursion formula. However, we show that they satisfy the same equations
as the one used to define the higher differentials in topological recursion. The meaning of this
theorem is that these forms are uniquely determined by ω0,1 and ω0,2, which is far from obvious
from their definition. This allows us to find a set of parameters uniquely fixing power series
integrals (in one variable) in Theorem 7.21

Theorem F. A power series integral in one variable φℏ for the potential

V “

d
ÿ

k“2

ak
k
xk

is uniquely determined by the values of

lim
ℏÑ0

φℏpxiq

for 1 ď i ď d´ 2. and

lim
ℏÑ0

φℏ
`

pxiqpxjq
˘

´ φℏpxiqφℏpxjq

ℏ

for 1 ď i, j ď d´ 3.

The outline of this strategy was indicated to us by Nicolas Orantin and is an adaptation of
techniques used in random matrix theory and enumerative geometry [EO08].

Knowing that a finite set of parameters uniquely determines power series integrals, we then
speculate that it might be fruitful to reinterpret power series integrals as BV maps from certain
deformations of our initial BV algebra.

Conjecture G. Integrals with respect to the potential V are equivalent to BV-algebra maps

pCℏp1q, ˚,∆V q Ñ pCrrℏss, 0q

where ˚ is a deformation of the product with respect to which ∆V is a differential operator of
order at most 2.

This speculation is motivated by the fact that this is the case for Gaussian integration, as seen
in Proposition 8.18 which is a reinterpretation of Wick’s Lemma. It also has similitude with
star product in perturbative algebraic quantum field theory [FR15a][FR15b], even though the
language used there is quite different.

Finally, we present different perspectives and how the study of non-commutative integrals fits
with other parts of mathematics:

• Non-commutative integrals can be thought of as some kind of universal integrals for groups
and Lie algebra. This point of view might be useful in getting a better understanding of
Duflo’s isomorphism Spgqg – ZpUpgqq for a Lie algebra g [Duf77].
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• Similarly, the volume of the moduli space of flat connections on a surface [Wit91] also
involves integrals that have an universal form and thus a universal theory of integration
for groups might be insightful.

• Related to the previous point, Magee and Puder [MP19][MP22] study integrals of product
of traces over multiple copies of UpNq. They compute such quantities with formulae
involving not only surfaces but also map from the boundaries of these surfaces to wedges
of circles. Their construction might be an example of our definition of non-commutative
integrals adapted to free groups.

• In [GGHZ21], Gwilliam and al. construct in a different manner the BV algebra we call
Cℏpnq, and relate it to some A8 algebras. It would be interesting to understand the role
played by integrals in that context. In an other paper [GHZ22], they use ribbon graph to
produce a quasi-isomorphism between their BV-algebra and power series. It seems likely
that one can use those same ribbon graphs to deform the product on the BV-algebra in
such a way that their quasi-isomorphism becomes a morphism of BV-algebra.

iv
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1 Notation
We group here various definitions that will be used throughout the text. Most of them are related
to graded vector spaces. In the whole text, every construction is over a field K of characteristic
0.

Let V “
À

iPZ Vi and W “
À

iPZWi be graded vector spaces. Denote by dpvq the degree of
a homogeneous element v P V . For simplicity purposes, when the degree is in a power of ´1,
we will write it with the same symbol as the element itself. That is, for v P V homogeneous of
degree dpvq, p´1qv :“ p´1qdpvq.

The tensor product of V and W is the graded tensor space V bW where

pV bW qn “
à

i`j“n

Vi bWj .

The tensor swap map τ : V b W Ñ W b V is the map define by τpa b bq “ p´1qabb b a for a
and b homogeneous and then extended linearly. The map ξ : V b V b V Ñ V b V b V is the
map that cyclically permutes tensor factors :

ξpab bb cq “ p´1qapb`cqbb cb a

for a, b and c homogeneous. Let also Cyc :“ 1 ` ξ ` ξ2 : V b V b V Ñ V b V b V. Those
three maps will also be used in the non-graded setting by simply setting all the elements to be
of degree 0.

Routinely, maps r´,´s : V b V Ñ V and δ : V Ñ V b V will respectively be called a bracket
and a cobracket, even though they might not satisfy the Lie (co)algebra axioms. Sometimes we
shall use curly brackets t´,´u for the bracket.

For a map r´,´s : V bV Ñ V of degree 1, we will denote by r´,´sp2q the map V b pV bV q Ñ

V b V defined on homogeneous a, b, c P V by :

ra, bb csp2q “ ra, bs b c` p´1qpa`1qbbb ra, cs.

Be aware that the sign for the second term is non-standard for the bracket in of degree 1.

Given a graded algebra A, we will consider two different A-bimodules structures on the tensor
product AbA. The first one is the outer module structure given by

apbb cqd “ abb cd

and the second one is the inner bimodule structure given by

a ˚ pbb cq ˚ d “ p´1qab`cd`adbdb ac.

1



2 Elements of non-commutative calculus
We begin by introducing some basic notions of non-commutative calculus.

2.1 Elements of non-commutative calculus
Commutative calculus on Rn deals with C8pRnq, the algebra of functions, and this is a com-
mutative algebra. In non-commutative calculus, one replaces this algebra of functions by a
non-commutative algebra A. In the case of Rn, let

A :“ Cxxx1, . . . , xnyy

be the algebra of non-commutative power series in n generators.

In the study of commutative calculus, one then defines the space of vector fields XpRnq. Quite
quickly, one shows that they form a Lie algebra and that they act on C8pRnq by derivations.
Furthermore, every vector field V has the form

V “
ÿ

i

fi
B

Bxi

for some fi P C8pRnq. All this information can be stated in a somewhat more conceptual
manner:

Proposition 2.1. The collection of partial derivatives B
Bxi

generate XpRnq as a C8pRnq-module.

Since we know what non-commutative functions are, Proposition 2.1 suggests that to understand
non-commutative vector fields, one should first understand non-commutative partial derivative.

Let fpx1, . . . , xnq be a commutative function, that is an element of C8pRnq. The partial deriva-
tive B

Bxi
f is the coefficient of the linear part in X of fpx1, . . . , xi ` X, . . . , xnq. In the com-

mutative setting, this coefficient is an other function. If one now plays the same game in the
non-commutative setting, one finds that the linear part in X is an expression of the form

p
B

Bxi
fq1Xp

B

Bxi
fq2

where both p B
Bxi
fq1 and p B

Bxi
fq2 are non-commutative power series. In particular, one needs to

remember what is left of the symbol X and what is right of the symbol X. Thus, naturally, the
partial derivative takes values in AbA. Let us have a look at a couple of examples.

• Let fpx1, x2q “ x1, then fpx1`X,x2q “ x1`X and fpx1, x2`Xq “ 0. Hence B
Bx1

f “ 1b1

and B
Bx2

f “ 0.

• Let fpx1, x2q “ x1x2x1, then fpx1 ` X,x2q “ x1x2x1 ` x1x2X ` Xx2x1 ` Xx2X and
fpx1, x2 `Xq “ x1x2x1 ` x1Xx1. Hence B

Bx1
f “ x1x2 b 1` 1b x2x1 and B

Bx2
f “ x1 b x1.

What about the Leibniz rule? An obvious computation shows that for any f, g P A

B

Bxi
pfgq “ f

B

Bxi
g ` p

B

Bxi
fqg.

In other words, the map B
Bxi

is a derivation of A with values in AbA equipped with the outer
A-bimodule structure. This is the non-commutative analogue of the fact that vector fields act
as derivations. In the non-commutative setting, we are dealing with bimodules for one needs
to remember what was on the left and what was on the right. This motivates the following
definition:

2



Definition 2.2. The partial derivative B
Bxi

: A Ñ A b A is the derivation of A with values in
AbA (equipped with the outer A-bimodule structure) defined on generators by

B

Bxi
xj “ δij1 b 1.

More explicitly one has the following formula for f “ f1 . . . fk a monomial in A:

B

Bxi
pf1 . . . fkq “

ÿ

f1 . . . fj´1 b fj`1 . . . fk

where the sum is taken over all the j such that fj “ xi.

Remark 2.3. We will use Sweedler’s notation and often write Bf
Bxi

“
Bf
Bxi

1

b
Bf
Bxi

2

.

Is is then natural to interpret the space of all such derivations as the space of all vector fields:

Definition 2.4. Let DerpAq :“ DerpA,AbAq where AbA is equipped with the outer bimodule
structure.

Remark 2.5. Elements of DerpAq are often called double derivations

Using the inner bimodule structure on AbA, one can, in turn, make DerpAq a A-bimodule. It
is a good exercise to check that one indeed needs to use the inner bimodule structure of AbA
to preserve the derivation property. It turns out that this space of noncommutative vector fields
is also generated by the partial derivatives:

Proposition 2.6. The collection of partial derivatives B
Bxi

generate DerpAq as a A-bimodule.

Proof. Let d be a double derivations and write dpxiq “ dpxiq
1 b dpxiq

2

(remember Remark 2.3,
we are using Sweedler’s notations). Now define d̃ P DerpAq as

d̃ “

n
ÿ

i“1

dpxiq
2 B

Bxi
dpxiq

1

.

Since dpxiq “ d̃pxiq for every j and both maps are derivations, we have d “ d̃.

While we are on the topic of partial derivatives, let us record a useful identity relating derivations
of A and partial derivatives :

Lemma 2.7. Let u P DerpAq. For any element f in A we have the following equality :

upfq “

n
ÿ

i“1

Bf

Bxi

1

upxiq
Bf

Bxi

2

Proof. By linearity, it is enough to show the result for f “ f1 . . . fk a monomial in A. One has:

upfq “

k
ÿ

a“1

f1 . . . upfaq . . . fn

“

n
ÿ

i“1

ÿ

ta|fa“xiu

f1 . . . upfaq . . . fn

“

n
ÿ

i“1

Bf

Bxi

1

upxiq
Bf

Bxi

2

3



Although all of this seems to be a bit ad-hoc at first glance, it follows one guiding principle due
to Kontsevich and Rosenberg [KR99]:

Definition 2.8. Let B be an associative algebra and V a vector space. The non-commutative
version of a structure on B should induce the commutative version of the said structure on

ReppB,EndpV qq.

Let us show how this works for functions. We said that B should be thought of as the space
of non-commutative functions, so let us pick an element b P B. It should somehow induce a
function in OpRepB,EndpV qq. To that end consider

Trb : ReppB,Endpvqq Ñ C
ρ ÞÝÑ Trpρpbqq

Actually, the map Tr descends to a map |B| Ñ OpReppB,EndpV qq, where |B| is the quotient of
B by the subspace of commutators. Furthermore, this map can be extended as a map of algebra
to

Tr : Sym|B| Ñ OpReppB,EndpV qq.

This indicates that one should not think of the algebra of non-commutative as just the algebra
B, but one should rather think of Sym|B| as the algebra of non-commutative functions.

Remark 2.9. It has been shown (c.f. [Kha12]) that the image of the map Tr is in the subalge-
bra of GLpV q invariant functions OpReppB,EndpV qqGLpV q . It turns out that every invariant
function can be constructed this way (c.f. [Pro87]).

Many more central notions of geometry such as differential forms, De Rham Cohomology, sym-
plectic forms, or Poisson bracket have been developed in the non-commutative setting and they
all satisfy the Kontsevich-Rosenberg principle. One can find a nice short exposition of those
ideas in [Fer17]. However, a core notion for us will be a notion that does not quite fit in the
framework of the Kontsevich-Rosenberg principle, the notion of divergence of a vector field.

Recall that in commutative calculus, the divergence is a map Div : XpRnq Ñ C8pRnq. Its
expression in Cartesian coordinates is

Div

ˆ

ÿ

fi
B

Bxi

˙

“
ÿ Bfi

Bxi

In the case of the algebra A “ Cxxx1, . . . , xnyy we have non-commutative analogues of partial
derivatives, so one can mimic this definition.

Definition 2.10. The divergence map is the map Div : DerpAq Ñ |A| b |A| defined by

Divpuq “
ÿ

i

|
B

Bxi
upxiq|

with the slight abuse of notation |ab b| “ |a| b |b|.

Note that we decide to project everything onto |A|. An explanation could be that we know from
our earlier discussion that functions should be a product of elements of |A|. Another one is that
without this projection, the following fact proved in [AKKN23] would simply not be true.

Proposition 2.11. The map Div : DerpAq Ñ |A| b |A| is a Lie 1-cocycle. In other words

Divpru, vsq “ upDivpvqq ´ vpDivpuqq

for every u, v P DerpAq.

4



The above result is important for it is the analogue to the classical result stating that the
commutative divergence is a Lie 1-cocycle. In the commutative case, the divergence is the only
degree 0 such cocycle (here by degree we mean the number of xi). This is clearly no longer true
in the non-commutative setting. Indeed τ ˝ Div : DerpAq Ñ |A| b |A| where τ is the tensor
swap map, is an other example of degree 0 Lie 1-cocycle. It was conjectured in [AKKN23] that
Div and τ ˝Div span the space of such cocycles if n ě 2.

This does not quite adhere to the Kontsevich-Rosenberg principle for non-commutative vector
fields should be double derivations. However, it is not clear what it would mean for the divergence
to be a Lie 1-cocycle as it is already not clear how to make the space of double derivations a Lie
algebra.

Since we saw that functions are products of elements of |A|. We should slightly adapt the notion
of partial derivative to cyclic words:

Definition 2.12. The map B
Bxi

: |A| Ñ A is defined for a cyclic word f “ |f1 . . . fk| in the
alphabet made by the x1

is by
ÿ

fj`1 . . . fkf1 . . . fj´1

where the sum is taken over all the j1s such that xi “ fj .

Remark 2.13. Let µ : A b A Ñ A be the multiplication map and τ : A b A Ñ A b A be the
tensor swap map that sends ab b to bb a. One has for f a cyclic word and f̄ of representative
of f

B

Bxi
f “ µ ˝ τ ˝

B

Bxi
pf̃q

which relates the cyclic partial derivative to the standard one. In Sweedler’s notation this is
written

Bf

Bxi
“

Bf̃

Bxi

2

Bf̃

Bxi

1

Definition 2.14. For 1 ď i, j ď n, define B
2

BxiBxj
:“ B

Bxi
˝ B

Bxj
: |A| Ñ AbA where we first apply

the cyclic partial derivative and then the standard one.

Lemma 2.15. For every 1 ď i, j ď n we have the equality

B2

BxiBxj
“ τ ˝

B2

BxjBxi
.

Proof. Let f be a cyclic word in |A|. We may assume that f is of the form |AxiBxjC| with
A,B,C having no xi nor xj .

Then

B2f

BxiBxj
“

BpCAxiBq

Bxi
“ CAbB

and
B2f

BxjBxi
“

BpBxjCAq

Bxj
“ B b CA

5



2.2 Minus signs matter
All the constructions of the previous section also make sense in a graded setting, although one
has to be careful with minus signs. The purpose of this section is precisely to be careful now,
in order to be maybe a bit more sloppy later.

For 1 ď i ď n let αi be of weight dpαiq and denote by A the free graded associative algebra
generated by the α1

is.

Just as in the non-graded case, one considers the quotient of A by the subspace of graded
commutators and denotes it by |A|.

In the graded setting, the partial derivative B
Bαi

is a derivation of degree ´dpαiq:

Definition 2.16. The partial derivative B
Bαi

: A Ñ A b A is the derivation of degree ´dpαiq of
A with values in A b A defined on generators by

B

Bαi
αj “ δij1 b 1.

This means that this time there are some minus signs in the explicit formula:

B

Bαi
pf1 . . . fkq “

ÿ

p´1qpf1`¨¨¨`fj´1qαif1 . . . fj´1 b fj`1 . . . fk

where, just as before, the sum is taken over the j such that fj “ αi

Similarly, some minus signs appear in the partial derivative of a cyclic word :

Definition 2.17. The map B
Bxi

: |A| Ñ A is defined for a cyclic word f “ |f1 . . . fk| in the
alphabet made by the α1

is by
ÿ

p´1qpf1`¨¨¨`fj´1qpfj`¨¨¨`fnqfj`1 . . . fkf1 . . . fj´1

where the sum is taken over all the j1s such that αi “ fj .

Remark 2.18. If one understands the tensor swap map τ : AbA Ñ AbA in the graded sense,
i.e. τpab bq “ p´1qabbb a for a and b homogeneous element, one has once more the equality

B

Bαi
f “ µ ˝ τ ˝

B

Bαi
pf̄q

for f a cyclic word and f̄ any representative of f .

Of course, we can still define double partial derivatives :

Definition 2.19. For 1 ď i, j ď n, define B
2

BαiBαj
:“ B

Bαi
˝ B

Bαj
: |A| Ñ A b A where we first

apply the cyclic partial derivative and then the standard one.

Lemma 2.15 still holds if one understands everything in the graded sense:

Lemma 2.20. For every 1 ď i, j ď n we have the equality

B2

BαiBαj
“ p´1qαiαj τ ˝

B2

BαiBαj
.

Proof. Let f be a cyclic word in |A|. We may assume that f is of the form |AαiBαjC| with
A,B,C having no αi nor αj .
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Then

B2f

BαiBαj
“ p´1qpA`αi`Bqpαj`Cq BpCAαiBq

Bαi

“ p´1qpA`αi`Bqpxj`Cq`pA`CqαiCAbB

and

B2f

BαjBαi
“ p´1qApαi`B`xj`Cq BpBαjCAq

Bxj

“ p´1qApαi`B`xj`Cq`BαjB b CA.

When you then apply τ to B
2f

BαjBαi
you swap tensor factors and pick up the sign p´1qBpA`Cq.

Now the two exponents of p´1q differ by exactly αiαj .

7



3 Integrals
Our aim is to construct a non-commutative version of integration. It is well known that for a
n-manifold M , once a volume form ω has been chosen, integration defines a linear map

ż

M

: C8pMq Ñ R.

In the case of a n-dimensional vector space, there is a canonical volume form, namely dx “

dx1 ^ ¨ ¨ ¨ ^ dxn. Every other volume form can then be expressed as

e´V dx

for some function V .

We aim to construct a non-commutative version of integration starting with the non-commutative
algebra A “ Cxx1, . . . , xny. In that setting, we have seen that it is natural to take Sym|A| as
the ring of functions. An integral should then be a map

φ : Sym|A| Ñ C.

Of course integration is not just any old linear map, it has other properties. What should they
be in the non-commutative setting? We will take our cue from matrix integration, more precisely
Gaussian integration.

3.1 Gaussian matrix integration
As advertised, we shall have a look at Gaussian integration of matrices as a guideline.

Let HN be the space ofNˆN Hermitian matrices. We are interested in the Gaussian expectation
value x´y : C8pHN q Ñ C defined by

f ÞÑ xfy :“
1

Z

ż

HN

dMfpMqe´N
trpM2q

2

where dM is the Lebesgue measure on HN (identified with RN2

) and Z is a normalization
constant such that x1y “ 1.

We are going to somewhat restrict the class of functions by considering only products of traces,
namely functions f of the form

fpMq “

n
ź

k“1

trpMpkq.

Remark 3.1. This restriction is not a big deal for our purpose. Indeed, functions of this form
are exactly the functions obtained from the Kontsevich-Rosenberg principle.

Using Stokes Theorem we can derive the so called loop equations for those expectations values:

Proposition 3.2. For every k P N

N
〈
trpMk`1q

〉
“

k´1
ÿ

l“0

〈
trpMk´1´lq trpM lq

〉

8



Proof. Since for matrices whose eigenvalues are sufficiently big, the integrand is arbitrarily small,
Stokes’ theorem tells us that

ÿ

ij

ż

HN

dM
B

BMij

ˆ

pMkqij e
´N

trpM2q

2

˙

“ 0.

An easy computation of the derivative gives

ÿ

ij

ż

HN

dM

ˆk´1
ÿ

l“0

pMk´1´lqiipM
lqjj ´NpMkqijpMqji

˙

e´N
trpM2q

2 “ 0

which in turn yields

N
〈
trpMk`1q

〉
“

k´1
ÿ

l“0

〈
trpMk´1´lq trpM lq

〉

More generally, by considering the total derivative

ÿ

ij

ż

HN

dM
B

BMij

ˆ

pMkqij trpMa1q . . . trpManq e´N
trpM2q

2

˙

one gets the following result :

Proposition 3.3. For every k, n P N and a1, . . . an P N

N
〈
trpMk`1q

n
ź

i“1

trpMaiq
〉

“

k´1
ÿ

l“0

〈
trpMk´1´lq trpM lq

n
ź

i“1

trpMaiq
〉

`

n
ÿ

j“1

aj
〈
trpMk`aj´1q

ź

i‰j

trpMaiq
〉

From these equations, one can compute the different expectation values recursively. A classical
result also gives a method to compute them directly. Indeed, it is a well-known fact that integrals
of product of traces can be computed by enumerating ribbon graphs, that is graphs that have a
cyclic ordering of the half-edges at each vertex. This is the famous result of ’t Hooft [Hoo74] :

Theorem 3.4.

1
ś

nj !

〈 n
ź

k“1

N
trpMpkq

pk

〉
“

ÿ

graph G with vertices of valency pk

NχpGq

|AutpGq|

where χpGq is the Euler characteristic of the ribbon graph G and nj is the number of k such
that pk “ j.

Remark 3.5. From now on, when we use "graph" we always mean "ribbon graph". Since there
will be no mention of standard graph, there will be no confusion.

We need to explain what we mean by an automorphism of a ribbon graph. To that end, we will
consider a ribbon graph as the following data :

• A finite set even cardinality H “ th1, . . . , h2lu whose elements are called half edges.
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• A partition V “ tV1, ..., Vnu of H whose element are called vertices

• A cyclic ordering of each Vi (the cyclic ordering at each vertex).

• A partition E “ tE1, . . . , Elu into sets of size 2 of H whose elements are called edges.

An automorphism of the ribbon graph is then a permutation σ of the set H of half-vertices such
that

• The permutation σ descends to a permutation of the set V (i.e. the image of a vertex is
vertex).

• The permutation σ preserves the cycling ordering at each vertex.

• The permutation σ descends to permutation of E.

However, for the moment, the important information of this theorem is not so much what are
the precise coefficients coming from the contribution of a graph, but just that it is proportional
to an even power of N . Now the Euler characteristic of a connected graph is at most 2, thus
the Euler characteristic of a graph G with CG connected components is at most 2CG. An easy
consequence is :

Proposition 3.6. Let f be a product of l traces. The leading order in N of 1
N l xfy is 0. In

other words, 1
N l xfy is a power series in N´2.

Proof. According to Theorem 3.4, the graph contributing to xfy are built on l vertices, thus
have at most l components. Their Euler characteristic is then at most 2l. Because each trace
carries a factor 1

N , the quantity we wish to compute is equal to N´2l times the one in Theorem
3.4. This means that leading order contribution from a graph is of order at most 2l´2l “ 0.

Corollary 3.7. For every l ě 1 and li ě 0, the numbers cp1,p2,...,pl
defined by

cp1,p2,...,pl
:“ lim

NÑ8
x

l
ź

i“1

1

N
trpxpiqy

are well defined.

Remark 3.8. The number c2k is the k-th Catalan number p2kq!
pk`1q!k! .

Using the loop equations, we get

Corollary 3.9. For every k ě 0, n ě 0 and a1, . . . , an ě 1 we have the following equality

ck`1,a1,...,an “

k´1
ÿ

l“0

ck´1´l,l,a1,...,an

Proof. This is just a reformulation of Proposition 3.3, after dividing by Nn`2 and taking the
limit N Ñ 8.

Definition 3.10. Let f “
śn

i“1
trpMai q

N be a product of traces. Set

cf “ ca1,...a2 .

We now see that those numbers are multiplicative :

Proposition 3.11. Let f, g be two product of traces, then

cfg “ cfcg
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Proof. For the sake of the argument, let us assume for the moment that f “ trpMaq{N for some
a P N˚ and g “ trpM bq{N for some b P N˚.

For N fixed, let us then have a look at
〈
N2trpMaqtrpM bq

〉
and

〈
NtrpMaq

〉 〈
NtrpM bq

〉
. By

’t Hooft theorem, the leading order of the expectation value
〈
N2trpMaqtrpM bq

〉
is given by

enumerating graphs of highest possible Euler characteristic built on two vertices of valency a
and b. These are the graph with as many connected components as we have vertices, and each
of these components are planar graph. This means that the leading order is N4.

For each of
〈
NtrpMaq

〉
and

〈
NtrpM bq

〉
, the leading order is N2, corresponding to planar graphs

(necessarily connected for we are only considering graphs built on a single vertex). Thus the
leading order of the product is also N4.

This means that the coefficient of the leading order of〈
N2trpMaqtrpM bq

〉
´
〈
NtrpMaq

〉 〈
NtrpM bq

〉
(1)

is given by :
$

’

’

’

’

&

’

’

’

’

%

ÿ

G

ab

|AutG|
´

ÿ

pG1,G2q

a

|AutG1|

b

|AutG2|
if a ‰ b

ÿ

G

2a2

|AutG|
´

ÿ

pG1,G2q

a

|AutG1|

a

|AutG2|
if a “ b

Both for a ‰ b and a “ b, the first sum is over the set of all planar disconnected graph built
on two vertices of valency respectively a and b and the second sum is on pairs of planar graph
built on one vertices of valency respectively a and b.

If a ‰ b, there is a bijection between the two sets over which the sums are taken, simply given
by connected components. Furthermore, the automorphism group of a disconnected graph is
given by the product of the automorphism group of its connected component. So in the end we
get that actually the coefficient of N4 is 0.

In the case where a “ b, we are in the one of the following two situations. Either the two
connected components of the graphs are the same or they are not. In the first case, the size
of the automorphism group of the disconnected graph on two vertices is twice the product of
the size of the automorphism groups of its connected components. Indeed there is an additional
symmetry coming from exchanging the two vertices. In the other case, the graph appears twice
in the expansion of the product

〈
NtrpMaq

〉 〈
NtrpMaq

〉
. In both cases, the cases we get that

the coefficient of N4 in equation (1) is 0.

By definition we have :

cfg “ lim
NÑ8

1

N4

〈
N2trpMaqtrpM bq

〉
cfcg “ lim

NÑ8

1

N2

〈
NtrpMaq

〉 1

N2

〈
NtrpM bq

〉
and thus cfg ´ cf cg “ 0.

The general case where both f and g are product of k and l traces respectively is treated
similarly. The leading order of the corresponding Gaussian expectation values corresponding
to cfg is given by the graph with k ` l planar connected components and all those graphs are
product of graphs built on the vertices coming from f with graphs built on the vertices coming
from g. At the leading order, all the contributions get cancelled, and after dividing by N2pk`lq

and taking the limit N Ñ 8 we get that cfg ´ cfcg “ 0. The proof in more details follows the
same argument as the proof of Proposition 4.7, which is a stronger result.
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Let us now reformulate all of this in terms of the algebra A “ Cxxy and a map

φ : Sym|A| Ñ C.

As we have already seen, an element pxa1q . . . pxanq P Sym|A| should be thought of as a function
on HN given by

M ÞÑ

n
ź

i“1

trpMaiq.

We chose, however, to multiply each trace with a factor 1
N .

In other words, for any (cyclic) word W pxq we have a function TrW on the space of N ˆ N -
Hermitian matrices HN defined by

TrW : HN Ñ C

M ÞÑ
1

N
trpW pMqq.

This defines a linear map Tr : |A| Ñ HompHN ,Cq, which can then be extended as map of
algebra to Tr : Sym|A| Ñ HompHN ,Cq. The integral φ is the map

φpfq “ cTrpfq.

It is clear how to interpret Proposition 3.11: it just says that φ is a map of algebra.

The next question is how to interpret Corollary 3.9 purely in term of the map φ and the algebra
A.

We know that derivations of A should correspond to vector fields on HN . Note that derivations of
A can be extended to derivations of Sym|A| by the Leibniz rule. Here we used that |A| “ A, but
in general any derivation on an algebra A descends to a map on |A|. The following proposition
is an easy computation.

Proposition 3.12. For k ě 0, let u be the unique derivation on A such that ukpxq “ xk. The
following diagram is commutative

Sym|A| C8pHN q

Sym|A| C8pHN q

Tr

uk

ř

i,j
B

BMij
pMk

qij

Tr

By linearity, we can obtain a loop equation like equality for any choice of product of traces and
any vector field. Is is also clear that the term

k´1
ÿ

l“0

ck´1´l,l,a1,...,an

in Corollary 3.9 is equal to

φpDivpukqfq.
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where we projected Divpukq to Sym2|A| Ă Sym|A|.

Knowing that, we can reinterpret the loop equations as

φp´upV qf `Divpuqfq “ 0

where u P DerpAq, f P Sym|A| and V “ 1
2 px2q. We note that the value of V is now part of the

data of our integral. It is called the potential.

Note that with our choice of normalization for a trace, Trx0 “ 1 which implies that the map
φ : Sym|A| Ñ C descends to a map φ : Sym|A|{ppx0q ´ 1Symq Ñ C.

3.2 More matrix integration
The loop equations (Proposition 3.3) can actually be derived in a broader context, that is for
more general potentials.

Set Vpxq “ x2

2 ´
řd

k“3
ak

k x
k and let x´yV : C8pHN q Ñ C be defined by

f ÞÑ xfyV :“
1

ZV

ż

HN

dMfpMqe´NVpMq

where ZV is a normalization factor.

Of course, the meaning of such an expression is not quite clear for there might be some con-
vergence issues. There are two options to fix this. The first one is to consider only potentials
whose degree d is even and ad negative, for in that case the integral is convergent.

The second option is to interpret these integrals as a perturbation of the Gaussian integral, and
define xfyV as a power series in a3, . . . , ad. What we mean by that is define

ZV :“ Z
ÿ

n1,...,ndě0

x

d
ź

k“3

p
Nakx

k

k
qnky

and then define

ZV xfyV :“
ÿ

n1,...,ndě0

xf
d

ź

k“3

p
Nakx

k

k
qnky

In words, we have interpreted ZVxfyV as xfeNVpMqy and then formally permute integral and
exponential.

For some potentials, both definitions are valid at once. In those cases, denote momentarily the
two different definitions x´yconv and x´yformal. In general

x´yconv ‰ x´yformal.

Furthermore, if denote by Zconf and Zformal the normalizing factors in the two different defi-
nitions, both are functions of the a⃗ “ pa2, . . . , adq but

Zconv p⃗aq ‰ Zformalp⃗aq.

However, both definition satisfy loop equations
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Proposition 3.13. For every k, n P N and b1, . . . bn P N

N
〈
trpMk´1V 1pMqq

n
ź

i“1

trpM biq
〉
V “

k´1
ÿ

l“0

〈
trpMk´1´lq trpM lq

n
ź

i“1

trpM biq
〉
V

`

n
ÿ

j“1

bj
〈
trpMk`bj´1q

ź

i‰j

trpM biq
〉
V

In the case of convergent integrals, it is the same proof as the one we had for Gaussian integration.
In the formal interpretation, it follows from the Gaussian case, since loop equations are linear.

One can also compute such integral using ribbon graphs. We shall not delve into the full details,
but rather refer to [Pol04] or [Eti24]. Let us still mention that in order the get the coefficient of
an3
3 . . . and

d in
1

ś

nj !

〈 n
ź

k“1

N
trpMpkq

pk

〉
V

one should consider graphs built on n3 vertices of valency a3, n4 vertices of valency a4 and so on
together with labelled vertices of valency pk for k “ 1, . . . , n. One should, however, not consider
all such graphs, but only those in which connected component contains at least a labelled vertex.
This means that the Euler characteristic of the graphs we are considering is at most N2n, and
then every coefficient of

1
ś

nj !

〈 n
ź

k“1

trpMpkq

Npk

〉
V

is a polynomial in N´2.

The goal of this digression is not so much to give a precise account of formal matrix integrals
but rather to reassure the reader that the phenomenon we described for Gaussian integration of
matrices is not specific to the quadratic potential but a feature of matrix integration in a much
broader sense. We refer the reader to [EKR18] for more details.

3.3 Axioms for integrals
We generalize the properties of φ of the previous sections to more variables and any choice of
potential V .

Let A :“ Cxx1, . . . , xny be the free associative algebra on n generators and denote by |A| the
quotient of A by the subspace of commutators. Finally consider Sym|A|, the symmetric algebra
on the space |A|.

Let us fix once and for all a potential V P |A|.

Definition 3.14. An infinity integral (with respect to the potential V ) is a homomorphism of
algebra φ : Sym|A|{p|1| ´ 1Symq Ñ C satisfying the loop equation

φp´upV qf `Divpuqfq “ 0

for every u P DerpAq and f P Sym|A|.

This definition deserves a bit of an explanation. Since u is a derivation of A, it descends to a
well defined map u : |A| Ñ |A|. Now upV q is an element of |A|, hence of Sym|A| and one can
then multiply it with f P Sym|A|. Similarly Divpuq is by definition an element of |A| b |A| and
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can be projected to Sym2|A| and then multiplied with f . So the expression in the argument of
φ is indeed an element of Sym|A|.

We have seen that Gaussian integration gives an example of an integral with respect to the
potential V “ 1

2 |x2|. We now show that this is actually the only example for this potential.

Proposition 3.15. There exists a unique infinity integral φ for the potential V “ 1
2 |x2|.

Proof. Since φ is a map of algebra, one has that φp1q “ 1. We claim that φp|xk|q is uniquely
determined by the loop equations.

Indeed, suppose that all values of φp|xi|q are uniquely determined by the loop equations for
0 ď i ď k. We then have

φ
`

|xk`1|
˘

“ φ
`

ukpV q
˘

“

k´1
ÿ

l“0

φ
`

|xl| |xk´1´l|
˘

“ φ
`

|xl|
˘

φ
`

|xk´1´l|
˘

where uk is the unique derivation of A sending x to xk and we have used the loop equation and
the fact that φ is a map of algebra.
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4 Power series integrals
By revisiting the motivating example of Gaussian integration of matrices, we define an other
version of integrals, this time with values in power series with coefficient in C.

4.1 Back to Gaussian integration
Let us come back to Gaussian integration of Hermitian matrices introduced in Section 3.1.
Remember that for any word W pxq P A “ Cxxy, we associated a function TrW on the space of
N ˆN Hermitian matrices by

TrW : HN Ñ C

M ÞÑ
1

N
trpW pMqq.

and we denoted by Tr the linear map Tr : Sym|A| Ñ HompHN ,Cq the map associating to a
product of (cyclic) words the product of the corresponding functions. We then had a look at
the Gaussian average of such functions. In other words, we were interested in the functional
x´y : Sym|A| Ñ C defined by

xTrf y “
1

Z

ż

HN

dM Trf pMq e´N
trpM2q

2

We saw in Section 3.1 that according to ’t Hooft Theorem (Theorem 3.4 ) xTrpfqy is given by
a Laurent series in N2, and in Proposition 3.6 we’ve seen that actually there are only negative
powers of N2. Let us then interpret those Gaussian averages as power series in N´2:

Definition 4.1. Let φps : Sym|A| Ñ CrrN´2ss be the map that to a product of word associates
the power series of the Gaussian average of the corresponding traces. In formula

φpspfq :“ xTrf y “
1

Z

ż

HN

dM Trf pMq e´N
trpM2q

2

Let us us now reinterpret Proposition 3.3 in term of φps. It was saying that for every k, n P N
and a1, . . . an P N

N
〈
trpMk`1q

n
ź

i“1

trpMaiq
〉

“

k´1
ÿ

l“0

〈
trpMk´1´lq trpM lq

n
ź

i“1

trpMaiq
〉

`

n
ÿ

j“1

aj
〈
trpMk`aj´1q

ź

i‰j

trpMaiq
〉 (2)

We saw that the different terms of Equation (2) could be identified as images of elements of
Sym|A| by the map φps. Indeed, let u be the unique derivation of A sending x to xk and let
V “ 1

2 |x2|, we had

•
〈
trpMk`1q

śn
i“1 trpMaiq

〉
“ φps

ˆ

upvq
śn

i“1 |xai |

˙

•
řk´1

l“0

〈
trpMk´1´lq trpM lq

śn
i“1 trpMaiq

〉
“ φps

ˆ

Divpuq
śn

i“1 |xai |

˙
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For the last term, an easy computation shows that

•
řn

j“1 aj
〈
trpMk`aj´1q

ś

i‰j trpMaiq
〉

“ φps

ˆ

u
`

śn
i“1 |xai |

˘

˙

By linearity, we have proved that the power series version of Gaussian integration satisfies an
other version of the loop equation :

Proposition 4.2. For every u P DerpAq and f P Sym|A|, one has

φpsp´upV qf `Divpuqf `
1

N2
upfqq “ 0

Remark 4.3. One can decompose φps as

φps “
ÿ

k“0

φkN
´2k

with φk : Sym|A|{p|1| ´ 1Symq Ñ C. We have φ0 “ φ the integral constructed in Section 3.1

Of course it is totally unreasonable to expect φps to be a map of algebra. For example,

φpsp|x|q “ 0

φpsp|x|2q “
1

N2

Nevertheless, it turns out that there are still relations between the different products. Those
relations are best expressed through cumulants:

Definition 4.4. The n-cumulant is the map

φc : Sym
n|A| Ñ CrrN´2ss

defined recursively by the formula:

φps

ˆ

|xa1 | . . . |xan |

˙

“
ÿ

π

lpπq
ź

j“1

φc

`

ź

iPBj

|xai |
˘

where π is a partition of t1, . . . , nu into lpπq subsets denoted by B1, . . . , Blpπq.

Example 4.5. For example, the first two cumulants are given by

φcp|xa|q “ φpsp|xa|q

φcp|xa| |xb|q “ φpsp|xa| |xb|q ´ φpsp|xa|q φpsp|xb|q

Remark 4.6. Alternatively, one could also define the n-cumulant as

φc

ˆ

|xa1 | . . . |xan |

˙

“
ÿ

π

p´1qlpπq´1plpπq ´ 1q!

lpπq
ź

j“1

φps

`

ź

iPBj

|xai |
˘

Since the contribution a disconnected graph is given by the product of the contributions of its
connected components, an argument in the same spirit as the one we used to prove that the
leading order of Gaussian integration is multiplicative can be used to show that cumulants can
be computed using ’t Hooft Theorem by considering only connected graphs:
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Proposition 4.7.

1
ś

nj !
φc

ˆ n
ź

k“1

|xak |

ak

˙

“
1

N2n

ÿ

connected graph G
with vertices of valency pk

NχpGq

|AutpGq|

where all the coefficient are the same as in ’t Hooft Theorem (Theorem 3.4).

Proof. (Sketch) Since the sum in Definition 4.4 is over all possible partitions, the n-cumulant is
a symmetric linear function in its n argument, it enough to understand the situation when all
the ak are equal to the same number a.

If a1 “ a2 ¨ ¨ ¨ “ an “ a, we have the following equality of formal power series in t:

8
ÿ

n“1

φcp|xa|nq

n!
tn “ log

ˆ

φps

`

exppt|xa|q
˘

˙

. (3)

We shall now see that

φc

ˆ

p|xa|n
˙

“
ann!

N2n

ÿ

connected graph G with
n vertices of valency a

NχpGq

|AutpGq|

satisfies Equation (3).

This is easier seen by first applying exp to Equation 3. The coefficient of tn in the left hand
side is then given by :

ÿ

lě0

ÿ

k1,...,kl

ÿ

n1,...,nl
ř

kini“n

1
ś

i ki!

ˆ

φcp|xa|niq

ni!

˙ki

“
ÿ

lě0

ÿ

k1,...,kl

ÿ

n1,...,nl
ř

kini“n

1
ś

i ki!

ˆ

ani

N2ni

ÿ

connected graph G with
ni vertices of valency a

NχpGq

|AutpGq|

˙ki
(4)

If we show that this equal to

an

N2n

ÿ

graph G with
n vertices of valency a

NχpGq

|AutpGq|

we are done. Clearly there is no issue with the prefactors given by powers of a and N ; the real
content is the part coming from the graphs.

Given a graph any G build of n vertices of valency a, say it has kG1 connected components with
nG1 vertices, kG2 connected components with nG2 vertices, ... , kGlG connected components with
nGlG vertices.

The contribution coming from this graph will be equal to the contribution coming by picking
each connected component in the term of (4) corresponding to l “ lG, ni “ nGi , ki “ kGi

Indeed the power of N is the right one for the Euler characteristic of graph is given by the
sum of the Euler characteristic of its connected components. Let us now have a look at the kGi
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connected components of G with nGi vertices. Say there are g1 of those connected components
that are the same graph G1, g2 of those connected components are the same graph G2,..., gr
of those connected components are the same graph Gr. This means that the product of graphs
Gg1

1 . . . Ggr
r will appear

ˆ

ki
g1, . . . , gr

˙

times in

ˆ

ÿ

connected graph G with
ni vertices of valency a

NχpGq

|AutpGq|

˙ki

.

But also, since you have connected components of G that are the same, the size of the automor-
phism group of the part of G coming from those connected components composed of nGi vertices
is equal to

r
ź

j“1

gr!|AutpGrq|gr

Doing this analysis for all the 1 ď i ď lG we get that the factor

ź

i

1

kGi !

together with the contribution of all those product coming the connected components of G gives
exactly

NχpGq

|AutpGq|

Corollary 4.8. For every n and a1, . . . , an ě 1, the leading order in N´2 of the n-cumulant
φcp|a1| . . . |an|q is n´ 1.

Proof. Since all the graphs G contributing to the cumulant are connected, their Euler charac-
teristic is at most 2. Together with the factor 1{N2n in front, the leading order in N2 is indeed
n´ 1.

Remark 4.9. Corollary 4.8 implies that the map φ of Section 3.1 is a map of algebra. This is
actually a stronger result.

4.2 Power series valued integrals
Just as before, let A “ Cxx1, . . . , xny. The example of Gaussian integration motivates the
definition of a power series version of integrals. The parameter ℏ should be thought of as N´2.
The definition will make use of the notion of cumulant. For the sake of clarity, we rewrite this
definition here:

Definition 4.10. Let φℏ : Sym|A| b Crrℏss be a Crrℏss-linear map. The k-cumulant of φℏ is
the map φc : Sym

k|A| Ñ Crrℏss defined by
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φℏ
`

f1 . . . fk
˘

“
ÿ

π

lpπq
ź

j“1

φc

`

ź

iPBj

fi
˘

where π is a partition of t1, . . . , ku into lpπq subsets denoted by B1, . . . , Blpπq.

Definition 4.11. A power series integral (with respect to the potential V ) is a Crrℏss linear
map φℏ : Sym|A|{p|1| ´ 1Symq b Crrℏss Ñ Crrℏss satisfying the following conditions:

• φℏp1q “ 1

• φℏ satisfies the loop equation :

φℏp´upV qf `Divpuqf ` ℏ upfqq “ 0 (5)

for every u P DerpAq and f P Sym|A| b Crrℏss.

• For every k P N, the k-cumulant φc : Sym
n|A| Ñ Crrℏss of φℏ factors through ℏk´1Crrℏss

Because of Crrℏss linearity, a power series integral φℏ is entirely determined by its value on
the subalgebra Sym|A|{p|1| ´ 1Symq. We shall denote by the same symbol φℏ the power series
integral restricted to C linear map from Sym|A|{p|1| ´ 1Symq to Crrℏss.

Thus, a power series integral φℏ can be decomposed as :

φℏ “ φ0 ` φ1 ℏ ` φ2 ℏ2 ` ¨ ¨ ¨

where φi : Sym|A| Ñ C is a C linear map. Unwinding the two defining conditions of a power
series integral and looking at the coefficient of ℏ0, one sees that φ0 is a integral in the sense of
Definition 3.14. In other words, for any power series integral φℏ the diagram

Sym|A|{p|1| ´ 1Symq b Crrℏss Crrℏss

Sym|A|{p|1| ´ 1Symq C

φℏ

ℏ ÞÑ0 ℏ ÞÑ0

φ0

commute and φ0 is an infinity integral when φℏ is a power series integral.

This begs the following question: given an infinity integral φ0 : Sym|A| Ñ C can it always be
extended to a power series integral? If yes, is the extension unique? How much do the answers
to those questions depend on the potential V ?

We will see that it will be fruitful to actually reinterpret the loop equations as the differential
of a well chosen chain complex.
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5 Cohomological reformulation of integrals
We wish to reinterpret both infinity and power series integrals in a cohomological setting. We
begin by given some motivation coming from commutative integration. We then present the
algebraic tools needed in the non-commutative setting and finally define a BV-algebra related
to integrals.

5.1 Commutative integration cohomologically
As a motivation for what is to come, we explain how integration on manifolds can be understood
in a cohomological setting. We have learned this point of view from [Gwi12].

Let M be a smooth, compact, closed, oriented manifold of dimension n. In this nice setting, we
can integrate any top forms and thus have a linear map

ż

M

: ΩnpMq ÝÑ R.

Stokes’ theorem is then equivalent to saying that the linear map
ş

M
descends to a map

ż

M

: Hn
dRpMq ÝÑ R.

This suggest that we could view the space Hn
dRpMq as the space of integrals on M . Fix now

a volume form µ on M . Given a function f P C8pMq, we can multiply it with µ to obtain an
other top form fµ. In other words, we have a map

mµ : C8pMq ÝÑ ΩnpMq

f ÞÝÑ fµ

We can do a similar thing for polyvector fields

mµ :
ľk

TM ÝÑ Ωn´kpMq

X ÞÝÑ ιXµ

where ιXµ denotes the contraction of the n form µ with the k polyvector fields X. This means
that altogether we have a map

mµ :
ľ

TM ÝÑ Ω‚pMq

X ÞÝÑ ιXµ

As µ is a volume form, it is nowhere vanishing and the map mµ has an inverse m´1
µ which allows

us to transport the de Rham differential d on Ω‚pMq to
Ź

TM , i.e. we define a map

∆µ :“ m´1
µ ˝ d ˝mµ.

It is at least clear what ∆µ does to vector field. Indeed, for a vector field X P TM , ∆µpXq is
the unique function such that

p∆µpXqqµ “ d ˝ ιXµ,
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which is exactly the definition of DivµX, the divergence of X with respect to the volume form
µ. In short, we have a chain complex p

Ź

TM ,∆µq isomorphic to the de Rham complex in which
∆µ extends the divergence of vector fields to polyvector fields. Saying that

ľ

Tm “ SymTM r1s

is a mild reformulation that brings the chain complex that we constructed closer to the form
of other construction that will appear in the non-commutative setting. Note that framed like
this, everything is shifted to the left, and the complex is concentrated between degrees ´n and
0. The space of integrals should then be zeroth cohomology of that complex.

Finally, let us pay attention to the case M “ Rn. Here there is a preferred volume form, namely
µ0 :“ dx1 ^ ¨ ¨ ¨ ^ dxn. To simplify notations, denote the vector field B

Bxi
by ηi. With this

notation, the map mµ0 is the map

ηi1 ^ ¨ ¨ ¨ ^ ηik ÞÑ ˘dx1 ^ ¨ ¨ ¨ ^ xdxi1 ^ ¨ ¨ ¨ ^ xdxik ^ ¨ ¨ ¨ ^ dxn

and ∆µ0 is given by

∆µ0
pf ηi1 ^ ¨ ¨ ¨ ^ ηikq “

ÿ

i

˘
Bf

Bxi
ηi1 ^ ¨ ¨ ¨ ^ pηi ^ ¨ ¨ ¨ ^ ηik

This can be written in a much more economic manner as

∆µ0
“

ÿ

i

B

Bxi

B

Bηi

(one should not worry about the signs once everything is understood in a graded setting). If we
have an other arbitrary volume form µ, we can express it as

µ “ e´V µ0

for some function V . Let us compute ∆µ. We have

d ˝mµpf ηi1 ^ ¨ ¨ ¨ ^ ηikq “ ˘d
`

f e´Sµ0ztdxi1 , . . . , dxiku
˘

“
ÿ

i

˘
` Bf

Bxi
e´V ´ f

BV

Bxi
e´V

˘

dxi ^ µ0ztdxi1 , . . . , dxiku

And thus

∆µpf ηi1 ^ ¨ ¨ ¨ ^ ηikq “
ÿ

i

˘
` Bf

Bxi
e´S ´ f

BV

Bxi
e´S

˘

ηi1 ^ ¨ ¨ ¨ ^ pηi ^ ¨ ¨ ¨ ^ ηik

Written more elegantly, we have

∆µ “ ∆µ0 ´
ÿ

i

BV

Bxi

B

Bηi

“ ∆µ0
´ tV,´u

where t´,´u is the Poisson bracket on SymTM r1s given by

tF,Gu :“
ÿ

i

BF

Bxi

BG

Bηi
´

BF

Bηi

BG

Bxi

From this study in M “ Rn, or one should say in local coordinates, we see that ∆µ is given
by an universal differential operator of order 2 perturbed by a differential operator of order 1
itself coming from the order 2 operator. It is good to keep that in mind when we delve into the
non-commutative analogue of this construction.
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5.2 General facts about BV-algebra
The algebraic structure on polyvector fields described in the previous section is an example of
a Batalin-Vilkovisky algebra (BV-algebra). Here is the general definition

Definition 5.1. A BV-algebra pB,∆q is a graded commutative algebra V equipped with a
degree 1, square zero map ∆ : B Ñ B satisfying the so called 7 term equation:

∆pabcq ´ ∆pabqc´ p´1qapb`cq∆pbcqa´ p´1qcpa`bq∆pcaqb

` ∆paqbc` p´1qapb`cq∆pbqca` p´1qcpa`bq∆pcqab “ 0

for a, b, c homogeneous elements. Note that setting a “ b “ c “ 1 in the above equation yields
∆p1q “ 0. The map ∆ is called the BV operator.

Remark 5.2. Operator satisfying the 7 term equation are called "differential operator of order
at most 2". For example any derivation satisfies the 7 term equation, and if u1 and u2 are two
derivation of the algebra B, their composition u1 ˝ u2 is also a differential operator of order at
most 2.

From the BV operator ∆ one can define a bracket on B by the formula

ra, bs “ p´1qa∆pabq ´ p´1qa∆paqb´ a∆pbq.

This bracket has the following good properties. A proof can be found in [Get94]

Proposition 5.3. Let pB,∆q be a BV-algebra, the map

ab b ÞÑ ra, bs “ p´1qa∆pabq ´ p´1qa∆paqb´ a∆pbq

for a, b homogeneous elements and extended linearly has the following properties :

• The bracket r´.´s is a map of degree 1.

• For a, b homogeneous, ra, bs “ ´p´1qpa`1qpb`1qrb, as.

• For a, b, c homogeneous

ra, rb, css “ rrb, as, css ` p´1qpa`1qpb`1qrb, ra, css

• For a, b homogeneous ∆ra, bs “ r∆paq, bs ` p´1qa`1ra,∆pbqs

• For a, b, c homogeneous ra, bcs “ ra, bsc` p´1qpa`1qbbra, cs.

Remark 5.4. The first and last property in the previous proposition says that for every a P B
homogeneous of degree k, the map b ÞÑ ra, bs is a derivation of degree k ` 1.

Remark 5.5. Note that in general the operator ∆ fails to be a derivation. The bracket associates
to ∆ encodes this failure. In particular, if ∆ is a derivation the bracket is 0.

Proposition 5.6. Let pB,∆q be a BV-algebra and let a P B be a homogeneous element of degree
0 such that ra, as “ 0. Then the derivation ra,´s is a degree 1 map that squares to zero, i.e. a
differential.

Proof. The map ra,´s is of degree `1 by remark 5.4. Using the graded Jacobi identity of the
bracket one has for b P B:
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ra, ra, bss “ rra, as, bs ´ rra, ra, bss

“ ´ra, ra, bss

hence ra, ra, bss “ 0. That is ra,´s2 “ 0.

Proposition 5.7. Let pB,∆q be a BV-algebra and let a P B be a homogeneous element of degree
0 such that ra, as “ 0 and ∆paq “ 0. Then the degree 1 map ∆ ` ra,´s is a BV operator.

Proof. It is easy to check that any differential is a BV operator. By the above proposition,
ra,´s is a differential and since ∆ is also a BV operator, their sum ∆ ` ra,´s satisfies the 7
term equation.

We now check that ∆ ` ra,´s squares to zero. We already know that both ∆ and ra,´s square
to zero so we only have to check that ∆ ˝ ra,´s ` ra,´s ˝ ∆ “ 0 if ∆paq “ 0. One has for every
b P B :

p∆ ˝ ra,´s ` ra,´s ˝ ∆qpbq “ ∆pra, bsq ` ra,∆pbqs

“ r∆paq, bs ´ ra,∆pbqs ` ra,∆pbqs

“ 0.

Remark 5.8. Since ∆ ` ra,´s differs from ∆ by a derivation, the associated bracket does not
change.

Example 5.9. Let pg, r´,´s, δq be a be an involutive Lie bialgebra. Then the exterior algebra
Λg admits a BV-operator ∆ defined by

∆px1 . . . xnq “
ÿ

iăj

p´1qi`jrxi, xjsx1 . . . x̂i . . . x̂j . . . xn

`
ÿ

i

p´1qiδpxiqx1 . . . x̂i . . . xn.

One can check that rx, ysBV “ rx, ys. See Proposition 5.13 for the proof of a more general
statement.

This example can extended to a graded setting:

Example 5.10. Let pg, r´,´s, δq be a be an involutive graded Lie bialgebra (in particular both
maps r´,´s and δ are of degree 0). Then the graded symmetric algebra on the shifted space
Sympgr1sq becomes a BV algebra with BV operator

∆px1 . . . xnq “
ÿ

iăj

p´1qpx1`¨¨¨`xi´1qxi`px1`¨¨¨`xj´1qxj`xixj`xirxi, xjsx1 . . . x̂i . . . x̂j . . . xn

`
ÿ

i

p´1qpx1`¨¨¨`xi´1qxi`xiδpxiqx1 . . . x̂i . . . xn.

If g is concentrated in degree 0, one recovers the previous example.
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For later purposes, we wish to do the same when we have a graded vector space V equipped
with a bracket and a cobracket both of degree 1. That is, build a BV operator on the graded
symmetric algebra SymV out of the (co-)bracket.

Definition 5.11. Let pV, r´,´s, δq be a graded vector space together with two degree 1 maps
r´,´s : V b V Ñ V and δ : V Ñ V b V . We denote by br and δ̃ the endomorphisms of SymV
defined on product of homogenous elements by

brpv1 . . . vnq “
ÿ

iăj

p´1qpv1`¨¨¨`vi´1qvi`pv1`¨¨¨`vj´1qvj`vivj rvi, vjsv1 . . . v̂i . . . v̂j . . . vn

δ̃pv1 . . . vnq “
ÿ

iăj

p´1qpv1`¨¨¨`vi´1qviδpviqv1 . . . v̂i . . . vn

The following proposition due to Perry and Pulman [PP24] explains what are the Lie bialgebra
like conditions required for ∆ “ br ` δ̃ to be a BV operator:

Proposition 5.12. In the same setting as above, the map ∆ “ br ` δ̃ is a BV operator if and
only if the following conditions are fulfilled:

• r´,´s “ r´,´s ˝ τ

• r´,´s ˝ pr´,´s b Idq ˝ Cyc “ 0

• δ “ τ ˝ δ

• Cycpδ b Idq ˝ δ “ 0

• r´,´s ˝ δ “ 0

• δ ˝ r´,´s “ p´1qx`1rx, δpyqsp2q ` p´1qpx`1qy`1ry, δpxqsp2q

Proposition 5.13. Let r´,´s and δ be as above and denote by ∆ the corresponding BV operator.
Let us also denote momentarily by r´,´sBV the bracket on SymV obtained from ∆. For a, b P V
one has

ra, bsBV “ p´1qara, bs.

Proof. This is a straightforward computation:

ra, bsBV “ p´1qa∆pabq ´ p´1qa∆paqb´ a∆pbq

“ p´1qara, bs ` p´1qaδpaqb` p´1qa`abδpbqa´ p´1qaδpaqb´ aδpbq

“ p´1aqra, bs

where we used that dpδpbqq “ dpbq ` 1.

5.3 Double bracket
In [dB04], Van den Bergh defines double bracket as map A b A Ñ A b A for an associative
algebra A satisfying some axioms. From a double bracket, one can obtain a Lie bracket on the
space |A|. Furthermore, a double bracket induce Poisson bracket on the ReppA,EndpV qq.

We present here a slight modification of the construction of double Gerstenhaber algebra found
in that same article. This modification is more suited to our purpose for it will produce degree
1 brackets satisfying the properties described in Proposition 5.12

In this section fix once and for all a graded algebra A and we denote by µ its multiplication
map.
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Definition 5.14. A double bracket on the graded algebra A is a degree one map

Πp´,´q : AbA Ñ AbA

such that

• Πpa, bq “ p´1qab τpΠpb, aqq

• Πpa, bcq “ p´1qpa`1qb bΠpa, cq ` Πpa, bqc.

Throughout this section we will use graphical calculus to prove different identities. All diagrams
go from bottom to top. The two properties of the map Πp´,´q can then be represented by

= = +π π π π π

Note the red line which represents the fact that Πp´,´q is a degree 1 map.

As a first exercise in graphical calculus we get :

Proposition 5.15. Let Πp´,´q be a double bracket. For a, b, c homogeneous element of A we
have

Πpab, cq “ p´1qa a ˚ Πpb, cq ` p´1qbc Πpa, cq ˚ b

Proof. This is just the following simple graphical computation:

π = π π= + π

π= + π π= + π

Putting together the two derivation like property of the double bracket, we get the following
formula to compute the double bracket :
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Proposition 5.16. Let a “ a1 ¨ ¨ ¨ an and b “ b1 ¨ ¨ ¨ bn be two elements of A. Then

Πpa, bq “

n
ÿ

i“1

m
ÿ

j“1

˘ a1 ¨ ¨ ¨ ai´1 ˚ pb1 ¨ ¨ ¨ bj´1 Πpai, bjq bj`1 ¨ ¨ ¨ bmq ˚ ai`1 ¨ ¨ ¨ an

where the sign is p´1qpa1`¨¨¨`ai´1q`pai`1`¨¨¨`anqb`pb1`¨¨¨`bj´1qpai`1q.

Definition 5.17. Let Πp´,´q be a double bracket and define the map

r´,´sΠ :“ µ ˝ Πp´,´q : AbA Ñ A.

This map is the bracket associated to the double bracket Πp´,´q.

If the context is clear, we will simply write r´,´s instead of r´,´sΠ

The following two lemmas follows from the definition of a double bracket and are totally straight-
forward:

Lemma 5.18. Let Πp´,´q be a double bracket and let a P A be an homogeneous element of
degree dpaq. The associated bracket ra,´s : A Ñ A is a derivation of degree dpaq ` 1

Lemma 5.19. For a, b P A we have the following equality

ra, bs “ p´1qab rb, as in |A|.

We also need a last lemma which requires a little bit of work :

Lemma 5.20. Let Πp´,´q be a double bracket and let a, b, c be homogeneous element in A then
we have the following equality for the associated bracket:

rab, cs “ p´1qab rba, cs.

Proof. We compute both side of the equation graphically. On the one hand, for the term rab, cs
we get:

π = π π= + π π= + π

π= + π π+π=

where the used the associativity of multiplication in the last equality.

On the other hand, for the term p´1qab rba, cs we get :
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π = π = π + π = π + π

= π + π = π + π

Proposition 5.21. Let Πp´,´q be a double bracket. Then the associated bracket r´,´s de-
scends to maps

• |A| bA Ñ A

• |A| b |A| Ñ |A|.

Furthermore, if we also denote by r´,´s those two maps, we have the following equality for
a, b P A

r|a|, |b|s “ p´1qab r|b|, |a|s.

Proof. The first map is well defined by 5.20. For the second map, Lemma 5.19 and 5.20 together
give us

|ra, bcs| “ p´1qbc |ra, cbs|.

The graded symmetry of the second map follows from Lemma 5.19.

We have seen what are sufficient conditions on the double bracket to get a graded symmetric
bracket. We now have a look at the Jacobi identity.

Definition 5.22. Let Πp´,´q be a double bracket. We define Πp´,Πp´,´qqL (respectively
Πp´,Πp´,´qqR) by the left (respectively right) diagram:

π

π

π

π

Definition 5.23. Given a double bracket Πp´,´q, define Πp´,´,´q : AbAbA Ñ AbAbA
by

Πp´,´,´q :“ Πp´,Πp´,´qqL ` ξ ˝ Πp´,Πp´,´qqL ˝ ξ´1 ` ξ2 ˝ Πp´,Πp´,´qqL ˝ ξ´2
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We have some kind of prototype of the Jacobi identity:

Proposition 5.24. For a, b, c P A homogeneous we have the following equality in AbA:

p´1qa ra,Πpb, cqsp2q ` Πpra, bs, cq ` p´1qpa`1qb Πpb, ra, csq

“ pµb Idq Πpa, b, cq ` p´1qab pIdb µq Πpb, a, cq.

Proof. We first compute (graphically) the right hand side of the equation.

For the term pµb Idq Πpa, b, cq we get:

π

π
+

π

π
+

π

π

For the term p´1qab pIdb µq Πpb, a, cq we get :

π

π
+

π

π
+

π

π

We now compute the term on the left hand side of the equation.

• For p´1qa ra,Πpb, cqsp2q we get

π

π
+

π

π

The first summand corresponds to the first summand of pµ b Idq Πpa, b, cq. The second
summand is equal to the third summand of p´1qab pIdb µq Πpb, a, cq. Indeed:
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π

π
=

π

π
=

π

π

• For Πpra, bs, cq we get using the derivation like property :

π

π

=

π

π

=

π

π

+

π

π

=

π

π

+

π

π

=

π

π

+

π

π

The term on the left is equal to the second term of pµbIdq Πpa, b, cq, while a bit more work
shows that the term on the right is equal to the second term of p´1qab pIdb µq Πpb, a, cq:

π

π
=

π

π

=

π

π

• For p´1qpa`1qb Πpb, ra, csq we get using once more the derivation like property:

30



π

π

=

π

π

+

π

π

We see that the left term is equal to the first term in p´1qab pIdb µq Πpb, a, cq. The rigth
term is equal to the third term in pµb Idq Πpa, b, cq:

π

π
=

π

π
=

π

π

All the terms on the left hand side of the equation have their counterpart on the right hand
side, which finishes the proof.

Corollary 5.25. Let Πp´,´q be a double bracket with the property that Πp´,´,´q “ 0. Then
the associated bracket on |A| satisfies the following version of the Jacobi identity:

r´,´s ˝ pr´,´s b Idq ˝ Cyc “ 0.

Proof. It is enough to show that

rr|a|, |b|s, |c|s ` p´1qcpa`bq rr|c|, |a|s, |b|s ` p´1qapb`cq rr|b|, |c|s, |a|s “ 0

for a, b, c homogeneous elements of A. Using that the associated bracket on |A| is of degree one
and graded symmetric, this is equivalent to

rr|a|, |b|s, |c|s ` p´1qbpa`1q r|b|r|a|, |c|ss ` p´1qa r|a|, r|b|, |c|ss “ 0.

This is just the multiplication map applied to Proposition 5.24 together with the hypothesis
that Πp´,´,´q “ 0.

A double bracket Πp´,´q that satisfies Πp´,´,´q “ 0 will be said to satisfy the double Jacobi
identity, the name being motivated by the previous proposition.

To summarize, we have shown the following theorem

Theorem 5.26. Let A be a graded algebra and Πp´,´q : AbA Ñ AbA a double bracket such
that Πp´,´,´q “ 0. Then the associate bracket

r´,´sΠ :“ |A| b |A| Ñ |A|

satisfies the following property

• graded symmetry r´,´sΠ “ r´,´sΠ ˝ τ

• graded Jacobi identity r´,´sΠ ˝ pr´,´sΠ b Idq ˝ Cyc “ 0
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The main advantage of working with a double bracket on A instead of directly with the bracket
on |A| is that one can make use of the algebra structure of A. In particular, if A is a free algebra,
one can define a map Πp´,´q : AbA Ñ AbA on generators and then extend it uniquely as a
double bracket.

The obvious question is: what are the sufficient conditions for the double bracket to satisfy the
double Jacobi identity? To answer that question we prove some properties of Πp´,´,´q.

Lemma 5.27. Given a double bracket Πp´,´q, we have the equality

Πp´,´,´q “ ξ ˝ Πp´,´,´q ˝ ξ´1.

Proof. Straightforward from the definiton of Πp´,´,´q.

We also show that the map Πpa, b,´q : A Ñ AbAbA is a derivation:

Proposition 5.28. Given a double bracket Πp´,´q and homogeneous elements a, b P A, one
has

Πpa, b, cdq “ p´1qcpa`bq c Πpa, b, dq ` Πpa, b, cq d

Proof. We shall just compute (graphically) the three terms in Πpa, b, cdq

• For Πpa,Πpb, cdqqL we get :

π

π

=

π

π

+

π

π

While for the second term we recognize Πpa,Πpb, cqqL d, the first term requires a bit more
work:

π

π

=

π

π

+

π

π

So the contribution from this part in total is equal to

p´1qcpa`bq c Πpa,Πpb, cqqL ` Πpa,Πpb, cqqL d` p´1qbc`a`c Πpa, cqΠpb, dq

where we slightly abuse notations and write pxb yqpz b tq for xb yz b t.

• For ξ ˝ Πp´,Πp´,´qqL ˝ ξ´1 pa, b, cdq we have
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π

π

=

π

π

+

π

π

π

π

=

π

π

+

π

π

=

which is equal to

p´1qcpa`bq c pξ ˝ Πp´,Πp´,´qqL ˝ ξ´1 pa, b, dqq ` pξ ˝ Πp´,Πp´,´qqL ˝ ξ´1 pa, b, cqq d.

• Finally for ξ2 ˝ Πp´,Πp´,´qqL ˝ ξ´2 pa, b, cdq we have:

π

π

=

π

π

π

π

=

π

π

+

π

π

=

π

π

+

The second term is p´1qcpa`bq c pξ2 ˝ Πp´,Πp´,´qqL ˝ ξ´2 pa, b, dqq and for the first term
we keep going :
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π

π

=

π

π

+

π

π

=

π

π

+

π

π

The first term is now equal to pξ2 ˝ Πp´,Πp´,´qqL ˝ ξ´2 pa, b, cqq d and the second one is
p´1qbc`a`c`1 Πpa, cqΠpb, dq. Indeed

π

π

=

π

π

=

π

π

=

π

π

Adding all three contributions we get the desired result.

Putting together Lemma 5.27 and Proposition 5.28 we get :

Proposition 5.29. Given a double bracket Πp´,´q, Πp´,´,´q “ 0 if and only if Πpa, b, cq “ 0
for every generators a, b, c P A.
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5.4 Ginzburg’s algebra
In order to reinterpret loop equations in a homological setting, let us remark that for A “

Cxx1, . . . , xny

DerpAq bAbAop A – DerpAq

as A-bimodule (remember that the A bimodule structure on DerpAq is coming from the inner
bimodule structure on AbA). This seems to indicate that one should think of derivations of A
as cyclic words in the symbols xi and B

Bxi
, motivating the following definition.

Definition 5.30. The Ginzburg algebra Gpnq is the free graded algebra

Cxx1, . . . , xn, η1, . . . , ηn, y

where xi is of degree 0 and ηi is of degree ´1.

The goal of this section is to construct an BV algebra structure on the algebra

Cpnq :“ Sym|Gpnq|{p|1| ´ 1Symq.

Actually, since we are also interested in power series integrals, we will define a BV algebra
structure on the algebra Cℏpnq :“ Cpnq b Crrℏss. This will give rise to a BV algebra structure
on Cpnq by formally sending ℏ to 0. In that case, the differential operator will be of order 1 and
we will be dealing with a differential graded algebra.

We will do this by using all the machinery of the previous sections. First we will define a double
bracket on Gpnq. As we have seen in Section 5.3, this equips |Gpnq| with a bracket t´,´u.
Furthermore, we will also define a cobracket δ such that t´,´u and δ satisfy all the conditions
of Proposition 5.12. Introducing ℏ in some places we will finally get a BV operator on Cℏpnq.

The story of this construction begins with Ginzburg in [Gin00] where given a quiver Q, he
constructed a Lie bracket of the space of path of the double quiver Q̄. Later, Schedler [Sch04]
introduced a Lie cobracket on that same space of path, rendering it an involutive Lie bialgebra.
Lately, Perry and Pulmann [PP24] considered a graded version coming with a BV algebra
structure. Their construction of the bracket is slightly different than ours, but yields the same
result. One might remark that all of sudden we are mentioning quivers. Our story corresponds
to the quiver with only one vertex and n arrows.

As promised, let us start with the double bracket:

Definition 5.31. Let Πp´,´q : Gpnq b Gpnq Ñ Gpnq b Gpnq be the map defined by

Πpxi, ηjq “ δij1 b 1

and extended as a (graded) double bracket.

Proposition 5.32. The double bracket Πp´,´q satisfies the double Jacobi identity.

Proof. By Proposition 5.29, it is enough to check that Πpa, b, cq “ 0 for a, b, c generators, i.e.
elements of tx1, . . . , xn, η1, . . . , ηnu. This is obviously true for Πpb, cq “ 0 or 1 b 1, but in either
case we then have Πpa,Πpb, cqqL “ 0.

Definition 5.33. Define t´,´u : |Gpnq| b |Gpnq| Ñ |Gpnq| to be the bracket associated to
Πp´,´q

By the results of Section 5.3, we have
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Proposition 5.34. The bracket t´,´u satisfies

• t´,´u “ t´,´u ˝ τ

• t´,´u ˝ pt´,´u b Idq ˝ Cyc “ 0

At this point, more hands on formula for t´,´u and δ are welcomed for concrete computations.

Proposition 5.35. Let f and g be homogeneous element of |Gpnq|. We have the following
equalities:

tf, gu “

n
ÿ

i“1

p´1qf |
Bf

Bxi

Bg

Bηi
| ` |

Bf

Bηi

Bg

Bxi
|

Proof. By linearity, may be assume that f and g are (equivalence classes of) monomials. Let
f “ |f1 . . . fk| and g “ |g1 . . . gl|.

Let us begin with the first equality. Both sides of the equality are of the following form: a sum
over 1 ď i ď k and 1 ď j ď l and the term indexed by i and j is obtained by erasing fi and gi,
getting a coefficient for fi and gj and rearranging the remaining letters in some order to get a
new word that we then consider up to commutators.

We show that on both the sides, the term that we obtain by deleting fi and gj is the same. To
simplify notations, we write f “ |afib| and g “ |cgjd| where a, b, c, d P Cxx1, . . . xn, η1 . . . , ηny.

We have different cases to consider, depending on what generators are fi and gj :

• Both fi and gj are one of the x (not necessarily the same). In that case the contribution
on both side of the equation are 0.

• Both fi and gj are one of the η (not necessarily the same). In that case the contribution
on both side of the equation are 0.

• fi “ xp and gj “ ηp. In that case, the contribution to the left hand side is (using
Proposition 5.16)

p´1qa`gb`c`ac`bd`ab|cbad|

while for the right hand side only the term p´1qf |
Bf

Bxp

Bg
Bηp

| contributes and its contribution
is equal to

p´1qf`ab`cp1`dq|badc| “ p´1qf`ab`cp1`dq`cpb`a`dq|cbad|

It is straightforward to check that the two exponent of ´1 are equal modulo 2.

• fi “ ηp and gj “ xp. In that case, the contribution to the left hand side is (using
Proposition 5.16)

p´1qa`bg`ac`bd`ab|cbad|

while for the right hand side only the term |
Bf

Bηp

Bg
Bxp

| contributes and its contribution is
equal to

p´1qapb`1q`cd|badc| “ p´1qab`a`cd`bc`ac`cd|cbad|

It is straightforward to check that the two exponent of ´1 are equal modulo 2.

• fi “ xp and gj “ ηp where p ‰ q. In that case the contribution on both side of the
equation are 0.

• fi “ ηp and gj “ xq where p ‰ q. In that case the contribution on both side of the
equation are 0.
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We have the first half of our BV operator. Inspired by the previous Proposition we define a
cobracket.

Definition 5.36. Let δ : |Gpnq| Ñ |Gpnq| b |Gpnq| defined by

δ :“
1

2

n
ÿ

i“1

p| ´ | b | ´ |q ˝ p
B2

BxiBηi
`

B2

BηiBxi
q

Proposition 5.37. The map δ has the two following properties:

• δ “ τ ˝ δ

• Cycpδ b Idq ˝ δ “ 0

Proof. The first one is a direct consequence of Lemma 2.20. For the second part we refer the
reader to [PP24]

We also refer the reader to [PP24] for the proof of the cocycle condition:

Proposition 5.38. We have the following equality relating t´,´u and δ :

δptf, guq “ p´1qf`1tf, δpgqup2q ` p´1qpf`1qg`1tg, δpfqup2q

for f and g homogeneous elements of |Gpnq|.

Putting together Proposition 5.34, Proposition 5.37, Proposition 5.38 and Proposition 5.12 we
get a BV structure on the algebra Cnr

ℏ pnq “ Sym|Gpnq| b Crrℏss (here the "nr" stands for
"non-reduced"):

Proposition 5.39. The map ∆ :“ δ ` ℏbr endows Cnr
ℏ pnq with the structure of a BV-algebra.

Proof. It is clear that if δ and t´,´u satisfy all the conditions of Proposition 5.12, then δ and
ℏt´,´u also satisfy those conditions.

Remark 5.40. If we denotes by t´,´uBV the bracket associated to the BV operator ∆, we
have the following equality: t´,´uBV “ ℏt´,´u.

Lemma 5.41. Let V be degree 0 element of Cnr
ℏ pnq. Then

tV, V u “ 0

and
∆pV q “ 0.

Proof. Since V is of degree 0, it is a (linear sum of) product of degree 0 cyclic words, that is of
cyclic words where every letter is one of the xi. The result is then obvious for both the bracket
and the cobracket pair dual variables xi and ηi.

Proposition 5.42. For any V degree 0 element of Cnr
ℏ pnq, the map ∆V “ ´tV,´u ` ∆ is a

BV operator on Cℏpnq.

Proof. This is just a consequence of Proposition 5.7 and Lemma 5.41. Strictly speaking, this
shows that ℏtV,´u ` ∆ is BV operator, but since everything is Crrℏss- linear we are done.
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Remark 5.43. By setting ℏ Ñ 0, we obtain a BV-algebra structure on Cnr. Actually, since the
part of the ∆ which is of second order disappears, pCnr, dV ` δ) is in fact a dg-algebra.

We shall see that (a quotient of) the BV algebra pCnr
ℏ pnq,∆V q is of importance to us for its

zeroth cohomology is closely related to integrals. We begin by recasting degree ´1 elements of
Gpnq as derivations of A “ Cxx1, . . . , xny.

Indeed, recall from Lemma 5.18 that for any degree ´1 element f of Gpnq, the map tf,´u :
Gpnq Ñ Gpnq is a degree 0 derivation. Of course this map descends to the degree 0 component
of Gpnq, namely A. we shall abuse notations and still denote by tf,´u the map from A to A.
Recall also from Lemma 5.21 that this map depends on f only up to commutators. Furthermore
on the subspace |Gpnq|´1 of degree ´1 elements, the bracket is anti-symmetric and the graded
Jacobi-like identity becomes the usual Jacobi identity. The vector space |Gpnq|´1 equipped with
the bracket t´,´u is then a Lie algebra.

Proposition 5.44. The map

χ : |Gpnq|´1 Ñ DerpAq

f ÞÑ χpfq :“ tf,´u

is an isomorphism of Lie algebra.

Proof. Let f be an element of degree ´1 in |Gpnq|. We can write f as

f “

n
ÿ

i“1

|ηifipx1, . . . , xnq|

with fi P A. we then have that
tf, xju “ fj .

From this it follows easily that if tf,´u is the trivial derivation, f “ 0 as a cyclic word to start
with.

Furthermore, let u be a derivation of A that sends xi to the associative polynomial ui. Define
the cyclic word

ũ “

n
ÿ

i“1

|ηiuipx1, . . . , xnq|.

Then tũ,´u “ u as derivations of A for their value on generators are the same.

Consider now two degree ´1 cyclic words |ηifipx1, . . . , xnq| and g “ |ηjgjpx1, . . . , xnq|. We
compute their bracket :

tf, gu “ ´|
Bf

Bxj

2

ηi
Bf

Bxj

1

g| ` |f
Bg

Bxi

2

ηj
Bg

Bxi

1

|

The derivation χptf, guq is then the derivation

xi ÞÑ ´
Bf

Bxj

1

g
Bf

Bxj

2

xj ÞÑ
Bg

Bxi

1

f
Bg

Bxi

2

and sends all other generators to 0.
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On the other hand, the derivation χpfq maps xi to the polynomial fi and all other generators to
0, while the second derivation χpgq maps xj to gj and all other generators to 0. Using Lemma
2.7, we get

χpfq ˝ χpgqpxkq “ δjk χpfqpgjq “
Bg

Bxi

1

f
Bg

Bxi

2

χpgq ˝ χpfqpxkq “ ´δik χpgqpfiq “
Bf

Bxj

1

g
Bf

Bxj

2

Since the values of χptf, guq and rχpfq, χpgqs are equal on generators, this two derivations are
equal. By linearity it follows that the map χ is a Lie algebra map.

Remark 5.45. Note that |Gpnq|´1 – DerpAq bAbAop A – DerpAq. We have just shown that
bracket t´,´u restricted to the subspace of degree ´1 elements is the same as the one coming
for the Lie algebra DerpAq.

Definition 5.46. Let L : DerpAq b Sym|A| Ñ Sym|A| be the linear map defined on pure
tensors by :

DerpAq b Sym|A| Q ub f ÞÑ upV qf `Divpuqf P Sym|A|

Definition 5.47. Note that Cnrpnq0 “ Sym|A|. Since

Cnrpnq´1 – |Gpnq|´1 b Cnrpnq0 “ |Gpnq|´1 b Sym|A|

, by tensoring the map χ with the identity map on Sym|A| we obtain a map Cpnq´1 Ñ DerpAqb

Sym|A|. We shall also call this map χ

Proposition 5.48. The two maps dV `δ and L˝χ from Cpnqnr´1 to Cpnqnr0 “ Sym|A| are equal.

Proof. Both the source and the target of maps are Sym|A| bimodule (with the obvious module
structures).

The maps dV and δ are both maps of bimodules for they are derivations and they vanishes on
degree 0 elements. The maps L and χ are clearly bimodule maps by construction. By linearity,
it is then enough to check the equality on elements of the form |ηif0px1, . . . , xnq| where f0 is an
associative word.

On the one hand,

dV ` δp|ηif0px1, . . . , xnq|q “ |
BV

Bxi
f0| ` |

Bf0
Bxi

1

| |
Bf0
Bxi

2

|

On the other hand, u :“ χp|ηif0px1, . . . , xnq|q is the derivation that sends xi to f0 and all other

generators to 0. Its divergence is thus equal to | B
Bxi
f0 | “ |

Bf0
Bxi

1

| |
Bf0
Bxi

2

| and upV q is equal to
| BV

Bxi
f0|.
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In summary, we have the following commutative diagram :

Cnrpnq´1 DerpAq b Sym|A|

Cnrpnq Sym|A|

L

χ

“

dV `δ

Finally, we just have to encode that integrals are normalized, i.e. they vanish on the ideal
p|1| ´ 1Symq

Definition 5.49. Define the algebra Cpnq by

Cpnq “ Cnrpnq{p|1| ´ 1Symq

Clearly ∆V descends to Cpnq.

Theorem 5.50. There is a one-to-one correspondence between infinity integrals with respect to
the potential V and differential graded algebra morphisms

pCpnq,∆V q Ñ pC, 0q.

Proof. Let φ : Sym|A|{p|1| ´ 1Symq Ñ C be an integral. It can easily be extended to a degree
0 map φ : Cpnq Ñ C by φ|Cpnqk “ 0 for every k ‰ 0. Clearly this is map of algebra for it is only
non trivial in degree 0 and in degree 0 it is the integral with started with. The fact that this is
a map of complexes is equivalent to the loop equations by Proposition 5.48.

Conversely, give a map of differential graded algebras, taking the degree 0 part gives an integral.

it follows from the above proposition that computing the zeroth cohomology of C gives a minimal
set of parameters for infinity integrals.

In order to get a similar kind of statement for power series integrals, we now show a result
similar to Proposition 5.48 for the part of ∆V coming from the bracket t´,´u

Definition 5.51. Let D : DerpAq b Sym|A| Ñ Sym|A| be the linear map defined on pure
tensors by :

DerpAq b Sym|A| Q ub f ÞÑ upfq.

Proposition 5.52. The two maps br and D˝χ from Cnrpnq´1 to Cnrpnq0 “ Sym|A| are equal.

Proof. By linearity, it is enough to show the result for an element

F “ |ηif0px1, . . . , xnq||f1px1, . . . , xnq| . . . |fkpx1, . . . , xnq| P Cnrpnq´1

where for 0 ď l ď k, flpx1, . . . , xnq P A.

On the one hand we have by definition of br

brpF q “

k
ÿ

l“1

|f0
Bfl
Bxi

2

Bfl
Bxi

1

|
ź

m‰l

|fm|
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On the other hand, χp|ηif0px1, . . . , xnq| is derivation sending xi to f0 and all generators to 0.
Thus

D ˝ χpF q “

k
ÿ

l“1

|
Bfl
Bxi

1

f0
Bfl
Bxi

2

|
ź

m‰l

|fm|

Definition 5.53. Let Cℏpnq be the algebra defined by

Cℏpnq “ Cpnq b Crrℏss

It also clear that ∆ descends to Cℏpnq for both δ and br applied to |1| ´ 1Sym are equal to 0.

Theorem 5.54. Every power series integral with respect to the potential V induces a map of
chain complex

pCℏpnq,∆V q Ñ pCrrℏss, 0q

Unlike the ℏ “ 0 case, we can’t conclude that the space of power series integrals is equivalent to
the zeroth cohomology of Cℏpnq because we don’t know what to do of the condition involving
cumulants.
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6 Computations of the zeroth cohomology
for some potentials

We now give an answer to the question of finding a minimal amount of parameters for infinity
integrals (that is when ℏ “ 0) for infinity integrals in one variable for any potential V . We do
this by computing the zeroth cohomology of pCp1q,∆V q.

The idea behind the argument is very close to the one we used to show that there is a unique
infinity integral for the potential V “ 1

2 |x2|. The cohomological setting will make it easier to
handle polynomials of higher degree and show that our minimal set of parameters is indeed
minimal.

Most of the heavy lifting is made by the Homological Perturbation Lemma, so let us start with
that.

6.1 The Homological perturbation Lemma
Say one is interested in the study of a chain complex pA, d` δq where the differential is actually
some kind of perturbation of a differential d by δ. The natural question is the following: knowing
the cohomology of pA, dq can one compute the cohomology of pA, d` δq?

The Homological Perturbation Lemma gives an answer to that question but only if one has a
lot of control on the unperturbed complex. Just knowing its cohomology is not quite enough.
The following definition makes "having a lot of control" precise :

Definition 6.1. A strong deformation retract is the following data:

pA, dAq pB, dBqK
π

ι

1. Two chain complexes pA, dAq and pB, dBq.

2. Two maps of complexes π : A Ñ B and ι : B Ñ A.

3. A map of degree ´1 K : A Ñ A.

with the following properties:

1. πι “ IdB , that is B is a retract of A.

2. ιπ ´ IdA “ dAK `KdA, i.e. K is a homotopy between ιπ and the identity.

3. The side conditions K2 “ Kι “ πK “ 0.

The Homological Perturbation Lemma allows you to add a "small" perturbation to the differ-
ential dA of a strong deformation and get an other strong deformation retract.

Theorem 6.2. (Homological Perturbation Lemma) Let

pA, dAq pB, dBqK
π

ι
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be a strong deformation retract and δ : A Ñ A be a degree 1 map such that pdA ` δq2 “ 0 and
pId´ δKq is invertible. Then there is a strong deformation retract

pA, dA ` δq pB, dB ` δBqK̃
π̃

ι̃

where

δB “ πp1 ´ δKq´1δι

ι̃ “ ι`Kp1 ´ δKq´1δι

π̃ “ π ` πp1 ´ δKq´1δK

K̃ “ K `Kp1 ´ δKq´1δK

Typically, pA, dAq is some complex for which we have a strong control over the cohomology and
K is some kind of inverse operation to dA. Then pB, dBq is the said cohomology with differential
0 and the Homological Perturbation Lemma allows to compute the perturbed cohomology dA`δ
in a much smaller -and thus easier- complex. To check that Id´δK is invertible, one can simply
check that the geometric series

ř8

j“0pδKqj is well defined on A. The proof of this theorem can
be found in the very good exposition article by Crainic [Cra04]

Of course, the example that we have in the back of our mind this whole time is the case of the
Ginzburg algebra Cp1q. In this case we could see the differential δ`dV of Cp1q as a perturbation
of dV . So if we find a strong deformation retract for pCp1q, dV q this might go a long way. Of
course the question is now: how can find such a strong deformation retract? The good news is
that now the whole dga structure is just coming from the extension to the symmetric algebra of
a complex, namely p|Cxx, ηy|, dV q. We will now see that in general a strong deformation retract
can be extended to a strong deformation retract of the corresponding symmetric algebras (with
differentials extended by the Leibniz rule). We’ve learned this from [Gwi12]

Let

pA, dAq pB, dBqK
π

ι

be a strong deformation retract. Then the map π (respectively ι) can be extended as a map of
algebra to Sym π : SymA Ñ SymB (respectively Sym ι : SymB Ñ SymA. Similarly, the map
dA (respectively dB) can be extended as a derivation to a map dA : SymA Ñ SymA (respectively
dB : SymB Ñ SymB). The only map which does not admit a totally straightforward extension
is the homotopy K.

The equality πι “ IdB tells us that B can be identified with the subspace ιpBq of A and that
the map P :“ ιπ is a projection operator. We have an other projection operator PK “ P ´ IdA
whose image will be denoted by BK. We thus have the decomposition (as graded vector spaces
for the moment) A “ B ‘ BK. Since π and ι are map of complexes, B Ă A is actually a
subcomplex. The side condition implies that the homotopy K also respects the decomposition.

Using the decomposition A “ B ‘ BK, one gets the isomorphism SymA – SymB b SymBK.
Extend the map PK as a derivation to SymA and denote it also by PK. On an element
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a1a2 . . . an, the new map PK acts as the multiplication by the number of ai that are in B. In
other words, the subspace

En :“ SymB b SymnBK

is the eigenspace of PK for the eigenvalue n. Note that those are subcomplexes and clearly
SymA “

À8

n“0En.

We are finally ready to define an homotopy SymK : SymA Ñ SymA. First extend K to SymA
as a derivation (and still denote it by K). Then define a new map SymK : SymA Ñ SymA by

SymK|En
“

#

1
nK if n ě 1

0 otherwise.

Proposition 6.3. Let

pA, dAq pB, dBqK
π

ι

be a strong deformation retract. Then

pSymA, dAq pSymB, dBqSymK
Symπ

Symι

as defined above is a strong deformation retract.

6.2 The case of one variables and V “ 1
k`1 |xk`1|

Consider the Ginzburg algebra Cp1q and potential V “ 1
k`1 |xk`1| for k ě 1. One can compute

the zeroth cohomology H0pCp1q, V q of the algebra pCp1q “ Sym |Cxx, ηy|, δ ` dV q somewhat
easily. The argument is in essence the same that the one we used to show that there is an
unique infinity integral for a quadratic potential. However, the technique using the Homological
Perturbation Lemma can then be generalized to more situations.

The idea is to use the fact that Cp1q is built from a simple algebra (at least in degree 0 et
´1) whose zeroth cohomology is easy to compute. Hopefully one can use this to get some
idea of what the zeroth cohomology of pCp1q “ Sym |Cxx, ηy|, dV q is. Then we might use the
Homological Perturbation Lemma to compute the cohomology of that same algebra but with
differential now δ ` dV . This makes our task significantly easier, we now just have to find a
strong deformation retract for the easy complex p|Cxx, ηy|, dV q.

Since we are working with only one pair of dual variable and we are only interested in the zeroth
cohomology of pCp1q, δ`dV q, the starting complex |Cxx, ηy| can be replaced by something much
simpler:

• To compute the zeroth cohomology of pCp1q “ Sym |Cxx, ηy|, δ ` dV q, one only needs the
degree ´1 and degree 0 elements. Since this is a symmetric algebra, such elements are
product of degree ´1 and degree 0 cyclic words.

• Since cyclic word and standard word in one generator are the same thing, an element of
degree 0 is just a linear combination of monomials xi.
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• In degree ´1, every cyclic word has to have exactly one η. Since the word is cyclic, one
can place that η at the end of the word. Thus a degree ´1 element is a linear combination
of words of the form xiη.

• Since we are only interested in the zeroth cohomology, we don’t need to know the elements
of degree strictly less than ´1 and there is no element of positive degree.

In short we are left with the task a finding a strong deformation retract for the complex pA, dq

given by

¨ ¨ ¨ 0 Crxsη Crxs 0 ¨ ¨ ¨
d

where the only non zero spaces are in degree ´1 and 0 and the d is the linear map

d : xiη ÞÑ xi`k.

It easy now extremely easy to construct a strong deformation of the complex pA, dq onto its
cohomology:

Proposition 6.4. The data of

pA, dq pCrxs{pxkq, 0qK
π

ι

where

• Crxs is concentrated in degree 0.

• π is the projection to the quotient in degree 0.

• ι is the linear map that sends the class rxis to the polynomial xi.

• K defined by

Kpxiq “

#

´xi´kη if i ě k

0 otherwise.

is a strong deformation retract.

Proof. All the computations are as straightforward as it gets.

Remark 6.5. The number of front of |xk`1| in V is of no real importance. Indeed, if you
multiply the potential by α P C˚, the differential is then also multiplied by α and dividing the
homotopy K by α still yields a strong deformation retract. We choose to put 1{pk`1q, for then
it disappears from all the expressions.

We now wish to apply Proposition 6.3. The only map whose definition is not totally clear from
the start is the extension SymK of the homotopy K. Let

xi1 b ¨ ¨ ¨ b xim b ¨ ¨ ¨ b xim`n

be a product of monomials in Sym Crxs such that ia is strictly smaller than k if and only if a
is smaller or equal to m. Then its image by SymK is
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´
1

n

n
ÿ

l“1

xi1 b ¨ ¨ ¨ b xim b ¨ ¨ ¨ b xim`l´1 b xim`l´kη b xim`l`1 b ¨ ¨ ¨ b xim`n .

For the last step, we will abuse notations and still denote by δ the degree 1 map on SymA
coming from the BV-operator on C after all the earlier identifications. We wish to perturb the
differential d by δ. We first need to check that the perturbation is "small".

Proposition 6.6. The map
ř8

j“0pδ ˝ SymKqj is well defined on SymA.

Proof. To show that
ř8

j“0pδ ˝SymKqj is well defined it is enough to show that for any product
of monomial

xi :“ xi1 b ¨ ¨ ¨ b xim b ¨ ¨ ¨ b xim`n ,

there is j0 ě 0 such that pδ ˝ SymKqj0pxiq “ 0. Here, as before, ia is strictly smaller than k if
and only if a is smaller or equal to m.

Define the weight of xi to be the total number of x1s in xi, that is

wpxiq “ i1 ` ¨ ¨ ¨ ` im`n.

We shall prove the result by induction on the weight.

If the weight is strictly less than k, there is nothing to prove for the map SymK already acts
as 0. For weight k, either xi “ xk and then

δ ˝ SymKpxiq “ δpηq “ 0

or xi is the product of monomials of degree lower than k and SymK acts as 0 on it.

Suppose now that the weight of xi is bigger than k. We then have that

SymKpxiq “ ´
1

n

n
ÿ

l“1

xi1 b ¨ ¨ ¨ b xim b ¨ ¨ ¨ b xim`l´1 b xim`l´kη b xim`l`1 b ¨ ¨ ¨ b xim`n .

Now δ applied to SymKpxiq only changes the xim`l´kη into

im`l´k´1
ÿ

a“0

xa b xim`l´k´1´a

which is of lower weight of xim`l and we are done.

Proposition 6.7. The cohomology of pSymA, d`δq is concentrated in degree 0 and is isomorphic
to SympCrxs{pxkqq

Proof. Just apply the Homological Perturbation Lemma to the strong deformation retract

pSymA, dq pSympCrxs{pxkqq, 0qSymK
Symπ

Symι

with perturbation δ. Since the complex on the right is concentrated in degree 0 it stays the
same after the application of the Homological Perturbation Lemma.
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Which reformulated in terms in of the algebra Cp1q becomes :

Corollary 6.8. For the potential V “ 1
k`1 |xk`1|, the zeroth cohomology of the Ginzburg algebra

in one pair of dual variables is given by

H0pCp1q, V q – SympCrxs{pxkqq.

This result can be reformulated as follows: an integral with respect to the potential V “
1

k`1 |xk`1| is uniquely determined by its value on the monomials |xi| for 0 ď i ď k ´ 1. Once
those values are specified, loop equations and the multiplicative condition impose the values of
the integral on the whole of SympCrxsq.

We now tackle potentials of a slightly more complicated form, namely V “ 1
l`1 |xl`1|` 1

k`1 |xk`1|

with 1 ď l ă k.

The idea is simply to start by considering the differential dV as a perturbation of the differential
dk coming from the higher degree monomial by the differential dl coming from the lower degree
monomial.

So we start by the considering the same strong deformation as before, namely

pA, dkq pCrxs{pxkq, 0qK
π

ι

where

• Crxs is concentrated in degree 0.

• π is the projection to the quotient in degree 0.

• ι is the linear map that sends the class rxis to the polynomial xi.

• K defined by

Kpxiq “

#

´xi´k if i ě k

0 otherwise.

with dk defined by
dk : xiη ÞÑ xi`k.

If we want to perturb dk by dl, we have to check that the map
ř8

j“0pdl ˝ Kqj is well defined.
This turns out to be really easy:

Proposition 6.9. The map
ř8

j“0pdl ˝Kqj : A Ñ A is well defined and its value on xa is given
by :

8
ÿ

j“0

pdl ˝Kqjpxaq “ xa `
ÿ

xa´jpk´lq

where the sum on the right is taken over all j ě 1 such that a´ pj ´ 1qpk ´ lq ě k.

Proof. This follows from the easy computation

dl ˝Kpxiq “

#

0 if i ă k

xi´k`l otherwise
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Applying the Homological Perturbation Lemma, we get

Proposition 6.10. The data

pA, dl ` dkq pCrxs{pxkq, 0qK̃
π̃

ι̃

where

• Crxs is concentrated in degree 0.

• π̃ is the linear map defined by

π̃pxaq “

#

rxas if a ă k

rxa´j0pk´lqs with j0 “ mintj ě 1|a´ jpk ´ lq ă ku otherwise

• ι̃ is the linear map that sends the class rxis to the polynomial xi.

• K̃ defined by

Kpxaq “

#

0 if i ă k
řt

a´k
k´l u

j“0 xa´pj`1qpk´lqη otherwise

is a strong deformation retract.

Using the same argument as when the potential was a single monomials, namely by induction
on the total number of x’s, one can show that the map δ ˝ SymK̃ is well defined on SymA. In
the end we get :

Proposition 6.11. For the potential V “ 1
l`1 |xl`1| ` 1

k`1 |xk`1| with 1 ď l ă k, the zeroth
cohomology of the Ginsburg algebra in one pair of dual variables is given by

H0pCp1q, V q – SympCrxs{pxkqq.

It is now clear what is the zeroth cohomology of the algebra pSymCp1q, dV ` δq when V is any
polynomial. One should first consider the complex |Cxx, ηy| with the differential coming only
from the highest degree term, and step by step perturb this differential with lower and lower
degree terms of V . After a final number of steps we get a strong deformation retract relating
p|Cxx, ηy|, dvq with pCrxs{pxkq, 0q, k being the degree of V . The maps realizing this strong
deformation retract are now somewhat complicated. The homotopy of this strong deformation
retract applied to a word produces many words. However, all of those words have lower total
number of x’s than the word we started with. One can then perturb pSymCp1q, dV q by δ and
get finally to :

Theorem 6.12. For any potential V of degree k` 1, the zeroth cohomology of the algebra Cp1q

is given by
H0pCp1q, V q – SympCrxs{pxkqq.
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7 Topological recursion
Unlike infinity integrals, power series integrals are not fully determined by the cohomology
of pCℏpnq,∆q. Using topological recursion, we find a finite set of parameters which uniquely
determine a power series integral, in the one variable case.

For the reminder of this section, let then A “ Cxxy and fix a potential

V pxq “

d
ÿ

k“2

ak
k
xk P A.

All integrals will be with respect to this potential. We can assume there is no constant term for
the potential V appears in the loop equations as the argument of a derivation.

Let us fix once and for all a power series integral φℏ for this potential.

7.1 The strategy
Before diving into formulas, let us take a moment to explain the strategy; or at least where it
is coming from.

Loosely speaking, topological recursion starts with a so-called "spectral curve", which is the
following data:

• A Riemann surface Σ;

• A covering t : Σ Ñ CP1 of the Riemann sphere;

• A meromorphic 1-form ω0,1 on Σ;

• A symmetric meromorphic bidifferential form ω0,2 on Σ ˆ Σ, with only a double pole on
the diagonal and no residue.

From this initial data, topological recursion produces recursively a whole family of differential
forms ωg,n on Σn. Here g and n are both non-negative integer. The definition of the form
ωg,n involves only characteristic of the Riemann surface Σ and uses only those ωg1,n1 for which
2g1 `n1 ă 2g`n. This explains why the recursion is topological: the induction is on the "Euler
characteristic number" 2g ` n.

To define a power series integral φℏ, one has to specify a lot of information: for every product
of cyclic words, one has to specify the expansion in ℏ of the integral of this product. Of course,
the loop equations tell us that we can not just do anything, there are some relations. Upon
rearranging all this information into generating functions Wg,n, we find that the Wg,n satisfy
some equations equivalent to the loop equations. After closing one eye, one can recognize
that those equations are somewhat similar to the ones defining the different ωg,n of topological
recursion (here the trick is to not close both eyes, otherwise one does not recognize anything).

The goal is then the following: define a Riemann surface covering the Riemann sphere together
with differentials forms ωg,n using the loop equations, and then show that these forms satisfy
the topological recursion formula. This will mean that these are uniquely determined by ω0,1

and ω0,2.

One can learn more about topological recursion in [EO07], [Eyn14], or [Eyn16]. Different results
about Riemann surfaces, and more particularly algebraic curves will be used. For the reader’s
convenience, they have been gathered in Appendix A. We will often multiply different symmetric
multidifferential n-forms on n copies of a Riemann surface Σ. If ω1 and ω2 are multidifferential
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forms on n1 (respectively n2) copies of Σ, the product ω1ω2 is a multidifferential form on n1`n2
copies of Σ. We insist that it is not the wedge product of those forms.

We are thankful to Nicolas Orantin for taking the time to present us this strategy.

7.2 The generating functions Wg,n

As we said, the first step is to rearrange all the data of the integral φℏ into generating functions.
Remember that by definition of φℏ being an power series integral, the leading order in ℏ of the
n-cumulant of φℏ is n´ 1. With that in mind, let us start with a bit of notation :

Definition 7.1. Let Tl1,...,ln be the power series in ℏ given by shifting the n-cumulant by ℏn´1

Tl1,...,ln “ ℏ´pn´1q φc

`

pxl1q . . . pxlnq
˘

.

and let T pgq

l1,...,ln
be the numbers defined by the expansion in ℏ of Tl1,...,ln

Tl1,...,ln “

8
ÿ

g“0

T
pgq

l1,...,ln
ℏg

One can then collect all those numbers for g and n fixed into a single generating function:

Definition 7.2. For g and n fixed, let Wg,npt1, . . . , tnq be the function in n formal parameters
given by

Wg,npt1, . . . , tnq :“
ÿ

l⃗PNn

T
pgq

l1...,ln

n
ź

i“1

t´li´1
i

Remark 7.3. As one can expect the notation Wg,n is not random, those generating functions
will be very closely related to the differentials ωg,n

Integrals being normalize as the following consequence

Proposition 7.4. For any n ě 2, if one of the li “ 0 then Tl1,...,ln “ 0.

Proof. By symmetry we can suppose that i “ 1. For any partition τ of the set t1, . . . , nu,
set Qpτq to be the partition of the t2, . . . , nu obtained by forgetting in which block is 1. Any
partition π of t2, . . . , nu has lpπq ` 1 preimage by Q, for 1 could be added to any block of π or
form a block on its own. For simplicity, given a partition τ of t1, . . . , nu, define

φℏpτq “

lpτq
ź

j“1

φℏp
ź

iPBj

pxliqq

Note that if Qpτ1q “ Qpτ2q then φℏpτ1q “ φℏpτ2q for it does not matter in which integral x0 is
by the normalization property. Using Remark 4.6, we have

Tl1,...,ln “
ÿ

τ

p´1qlpτq´1plpτq ´ 1q!φℏpτq

“
ÿ

π

ÿ

τPQ´1pπq

p´1qlpτq´1plpτq ´ 1q!φℏpτq

where the sum over τ is a sum over partition of t1, . . . , nu, whereas the sum over π is a sum
over partition of t2, . . . , nu.
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The preimages of π by Q are as follows: there are lpπq preimages with the same number of
blocks as π, and exactly one preimage with one extra block. From this we get

ÿ

tτPQ´1pπqu

p´1qlpτq`1plpτq ´ 1q!φℏpτq

“ lpπq p´1qlpπq´1 plpπq ´ 1q! φℏpτ0q ` p´1qlpπq lpπq! φℏpτ0q

“ 0

where τ0 is any preimage by Q of π.

We know try to express the loop equations (5) in terms of the generating functions Wg,n.

As a warm up, let us look at the easiest instance of the loop equation. Using the notation of
Equation (5), the easiest instance of the loop equation is when u “ xl B

Bx and f “ 0. In that
case the loop equation reads :

l´1
ÿ

j“0

φℏ
`

pxjq pxl´1´jq
˘

“ φℏ
`

V 1pxqvl
˘

which becomes

l´1
ÿ

j“0

φℏpxjqφℏpxl´1´jq ` φc

`

pxjq pxl´1´jq
˘

“ φℏ
`

V 1pxqvl
˘

after plugging in the definition of the 2-cumulant.

Rewriting this in terms of the different T yields:

l´1
ÿ

j“0

TjTl´1´j ` ℏTj,l´1´j “

d
ÿ

k“2

akTk`l´1.

and looking at the power of ℏg we have

l´1
ÿ

j“0

„ g
ÿ

h“0

T
phq

j T
pg´hq

l´1´j ` T
pg´1q

j,l´1´j

ȷ

“

d
ÿ

k“2

akT
pgq

k`l´1. (6)

Note that this is true for every l ě 0. Thus after multiplying both sides of Equation (6) with
x´l´1 and summing over all the l ě 0 we finally get (g is still fixed) :

g
ÿ

h“0

Wh,1ptqWg´h,1ptq `Wg´1,2pt, tq “

8
ÿ

l“0

d
ÿ

k“2

akt
k´1T

pgq

k`l´1t
´k´l (7)

One should note that the right hand side of Equation (7) is the principal part of the function
V 1ptqWg,1ptq.

Finally, we get the following equation :
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Proposition 7.5. For every g ě 0

g
ÿ

h“0

Wh,1ptqWg´h,1ptq `Wg´1,2pt, tq “ V 1ptqWg,1ptq ´ Pg,1ptq (8)

where Pg,1ptq is the polynomial given by

Pg,1ptq :“
d

ÿ

k“2

k´1
ÿ

l“1

akt
k´1T

pgq

k´l´1t
´k`l

Now that the warm up is done, let us do the general case.

While the relation for the general case will involve only the different Wg,n, it is convenient to
define some other generating functions for the intermediate steps.

Definition 7.6. For every n ě 1, define the symmetric generating functions in n variables
Fnpt1, . . . , tnq and Cnpt1, . . . , tnq by

Fnpt1, . . . tnq “
ÿ

l⃗PNn

φℏp
ź

i

pxliqq
ź

i

tli´1
i

Cnpt1, . . . tnq “
ÿ

l⃗PNn

φcp
ź

i

pxliqq
ź

i

tli´1
i

The following lemma is obvious from the definitions of Wg,n and Cn

Lemma 7.7. For every n ě 1,

Cnpt1, . . . tnq “ ℏn´1
ÿ

gě0

ℏgWg,npt1, . . . , tnq

And the next lemma is obvious from the definitions of Cn, Fn and cumulants

Lemma 7.8. For every n ě 1

Fnpt1, . . . tnq “
ÿ

π

lpπq
ź

j“1

C|Bj |pBjq

where π is a partition of tt1, . . . , tnu into lpπq subsets denoted by B1, . . . , Blpπq and C|Bj |pBjq is
the functions whose variables are the ti that are in Bj. (Since Cn is symmetric, the order does
not matter.)

Proposition 7.9. The loop equations for φℏ imply for every n ě 0

Fn`1pt1, t1, t2, . . . , tnq ` ℏ
ÿ

iě2

B

Bti

Fn´1pt1, t2, . . . , t̂i, . . . , tnq ´ Fn´1pt2, . . . , tnq

t1 ´ ti

“

„

V 1pt1qFnpt1, t2, . . . , tnq

ȷ

´,1

.

By r´s´,1 we mean the part with only strictly negative powers of t1, the hat denotes omission
and by convention F0 “ 0.
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Proof. The case n “ 0 follows from the warm up case, which is stronger since it is done degree
by degree (in ℏq. For n ě 1 the loop equation applied to ul1 and f “

śn
i“2 x

li with li ě 0 reads
as

l1´1
ÿ

j“0

φℏ
`

xjxl1´1´j
n

ź

i“2

xli
˘

` ℏ
n

ÿ

i“2

liφℏ
`

xli´1´l1
ź

j‰i
jě2

xlj
˘

“ φℏ
`

xl1`1
n

ź

i“2

xli
˘

` ak

d
ÿ

k“3

φℏ
`

xl1´1`k
n

ź

i“2

xli
˘

(9)

Let us multiply the whole equation by
śn

i“1 t
´li´1
i and summing over all l1, . . . ln ě 0. From

the first term of the left hand side of Equation (9) we get Fn`1pt1, t1, t2, . . . tnq.

The second term on the left hand side of (9) gives

ℏ
n

ÿ

i“2

B

Bti

Fn´1pt1, t2, . . . , t̂i, . . . , tnq ´ Fn´1pt2, . . . , tnq

t1 ´ ti
.

Indeed, if we integrate the i-th summand with respect to ti and then multiply by pt1 ´ tiq we
have (be aware that the term in li “ 0 is equal to 0)

ℏ
ÿ

liě1,ljě0

φℏ
`

xli´1´l1
ź

j‰i

xlj
˘

t´li`1
i

ź

j‰i

t
´lj´1
j

´ ℏ
ÿ

liě1,ljě0

φℏ
`

xli´1´l1
ź

j‰i

xlj
˘

t´l1
1 t´li

i

ź

j‰1,i

t
´lj´1
j

By shifting the first sum both in l1 and li this becomes

ℏ
ÿ

l1ě1,ljě0

φℏ
`

xli´1´l1
ź

j‰i

xlj
˘

t´l1
1 t´li

i

ź

j‰i,1

t
´lj´1
j

´ ℏ
ÿ

liě1,ljě0

φℏ
`

xli´1´l1
ź

j‰i

xlj
˘

t´l1
1 t´li

i

ź

j‰1,i

t
´lj´1
j

Most of this cancels out, except the part in li “ 0 form the first sum and the part in l1 “ 0 from
the second sum. This can be seen to be exactly

ℏFn´1pt1, t2, . . . , t̂i, . . . , tnq ´ ℏFn´1pt2, . . . , tnq

after shifting back the sums.

Finally the term on the right hand side of Equation (9) gives

„

V 1pt1qFnpt1, t2, . . . , tnq

ȷ

´,1

Reformulating this in terms of the Cn we obtain
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Proposition 7.10.

Cn`1pt1, t1, t2, . . . , tnq `
ÿ

A\B“tt2,...,tnu

C|A|`1pt1, AqC|B|`1pt1, Bq

` ℏ
ÿ

iě2

B

Bti

Cn´1pt1, t2, . . . , t̂i, . . . , tnq ´ Cn´1pt2, . . . , tnq

t1 ´ ti

“

„

V 1pt1qCnpt1, t2, . . . , tnq

ȷ

´,1

(10)

Proof. We shall do the proof by induction on n. The case n “ 0 has been done earlier.

The proof is quite simple, one simply needs to use Proposition 7.9 and Lemma 7.8 and group
the terms coming from the different partitions the right way.

From Proposition 7.9 we have

Fn`1pt1, t1, t2, . . . , tnq ` ℏ
ÿ

iě12

B

Bti

Fn´1pt1, t2, . . . , t̂i, . . . , tnq ´ Fn´1pt2, . . . , tnq

t1 ´ ti

“

„

V 1pt1qFnpt1, t2, . . . , tnq

ȷ

´,1

.

(11)

and Lemma 7.8 say that each term in this sum is itself a sum over partitions of different Cks.
The right hand side term will be a sum over partitions of the set

tt1, t2, . . . tnu.

Let π a non trivial partition of this set into lpπq ě 2 blocks B1, . . . , Blpπq. Without lose of
generality let us assume that t1 P B1. The partition π induces partitions of the sets

tt1, t2, . . . , t̂i . . . tnu

for 2 ď i ď n. Denote those partitions πi. Consider also partitions τ of the multiset

tt1, t1, t2, . . . tnu

such that

• τ has either lpπq or lpπq ` 1 block.

• If it has lpπq blocks, all the blocks are the same as the blocks of π, with the exception that
t1 is doubled.

• If it has lpπq ` 1 blocks, it is obtained by splitting the block B1 of π into two non empty
blocks, and putting a second t1 into the half of B1 which does not have it already.

Denote by P pπq the set of all such partitions τ .

By the induction hypothesis, the term coming from a non trivial π on the right hand side
of Equation (11) will be cancelled by the terms in Fn`1 corresponding to partitions in P pπq

together with the terms coming from

ÿ

iě2,iPB1

B

Bti

Fn´1pt1, t2, . . . , t̂i, . . . , tnq ´ Fn´1pt2, . . . , tnq

t1 ´ ti

corresponding to the partitions πi. Indeed all those term will give Equation (10) for n “ |B1|

multiplied by
ślpπq

j“2 C|Bj |pBjq.
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We are thus left with exactly what we want.

Proposition 7.11. Loop equations imply

Wg´1,n`1pt1, t1, t2, . . . , tnq `

g
ÿ

h“0

ÿ

A\B“tt2,...,tnu

Wh,|A|`1pt1, AqWg´h,|B|`1pt1, Bq

`

n
ÿ

j“2

B

Btj

ˆ

Wg,n´1pt1, t2, . . . , t̂j . . . , tnq ´Wg,n´1pt2, . . . , tnq

t1 ´ tj

˙

“ V 1pt1qWg,npt1, . . . , tnq ´ Pg,npt1, . . . , tnq

(12)

where the hat denotes omission and Pg,npt1, . . . , tnq is the part of

V 1pt1qWg,npt1, . . . , tnq

which is polynomial in t1.

Proof. This follows at once from Lemma 7.7 by looking at the coefficient of ℏg`n´1 in Proposition
7.10

Note that those equations are recursive in 2g`n. In particular for pg, nq “ p0, 1q, the equation for
W0,1 does not involve any other Wg,n (but it involves P0,1, we’ll come to this). For everybody’s
comfort let us record once and for all what Equation (12) looks like when isolating Wg,n:

Corollary 7.12. Loop equations imply

ˆ

2W0,1pt1q ´ V 1pt1q

˙

Wg,npt1, . . . , tnq “ ´Wg´1,n`1pt1, t1, t2, . . . , tnq

´
ÿ̊

g1`g2“g
A\B“tt2,...,tnu

Wg1,|A|`1pt1, AqWg2,|B|`1pt1, Bq

´

n
ÿ

j“2

B

Btj

ˆ

Wg,n´1pt1, t2, . . . , t̂j . . . , tnq ´Wg,n´1pt2, . . . , tnq

t1 ´ tj

˙

´ Pg,npt1, . . . , tnq

where
ř̊

g1`g2“g
A\B“tt2,...,tnu

means that we don’t consider the terms corresponding to pg1, Aq being equal

to p0,Hq or pg, tt2, . . . , tnuq

7.3 The Riemann surface Σ and ω0,1

Looking at Equation (12), it seems that if one would hope to find recursively all the different
Wg,n, one first has to compute all the Pg,n. This is where topological recursion comes to the
rescue. Indeed, now that we have our generating functions, we can start defining the different
objects needed to begin topological recursion. Of course the very first thing to construct has to
be the Riemann surface Σ. We shall see below that in general, this can be constructed knowing
only the leading order of φℏpxjq for 1 ď j ď d´ 2. Equation (12) for g “ 0, n “ 1, only involves
one generating function, namely W0,1. It is only natural to start with it.
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Equation (8) applied to g “ 0 (or Equation (12) for pg, nq “ p0, 1q) yields the following equation
for W0,1:

W0,1ptq2 “ V 1ptqW0,1ptq ´ P0,1ptq. (13)

As we said earlier this is a closed form for W0,1 once P0,1 is known, and

P0,1ptq “

d
ÿ

k“2

k´1
ÿ

l“1

akt
k´1T

p0q

k´l´1t
´k`l (14)

From the definition of P0,1 we see that it only involves the values Tj for 0 ď j ď d ´ 2. Those
numbers are the leading order of φℏpxjq for 0 ď j ď d ´ 2. According to our strategy we need
to keep track what part of the data of φℏ we have used. Let us then make a mental note that
we have used those leading orders.

Remark 7.13. It can actually be showed, for example in [EKR18], that W0,1 “ 1
2 pV 1 ´M

?
σq

where Mptq and σptq are polynomials such pV 1q2 ´ 4P0,1 “ M2σ and σ only has simple roots.
Thus W0,1 is a multivalued function on the complex plane.

Define now the function sptq on the Riemann sphere by

sptq :“ W0,1ptq ´
V 1ptq

2
.

By definition of W0,1, this function is for the moment only defined around infinity. However,
the loop equation (13) implies that sptq is solution to

sptq2 “
V 1ptq2

4
´ P0,1ptq (15)

which also defines sptq has a multivalued function on the Riemann sphere (and also W0,1 since
it is s shifted by a polynomial). It is then natural to look at the algebraic curve defined by
Equation (15). So let us consider the Riemann surface

Σ “

"

ps, tq P C2| s2 “
V 1ptq2

4
´ P0,1ptq

*

The projection onto the t coordiantes realizes Σ as a double cover of the Riemann sphere. Since
V 1ptq is a polynomial in t of degree d´ 1, the right hand side of Equation (15) is polynomial of
degree 2d ´ 2. This has two consequences; the first one is that Σ is generically of genus d ´ 2,
and the second one is that 8 is not a branch point. If we denote by 8˘ the two points of Σ
above t “ 8, we have

spzq « ˘
V 1ptpzqq

2
as z Ñ 8˘

We shall suppose that
V 1ptq2

4
´ P0,1ptq “ α

2d´2
ź

p“0

pt´ αpq

with αp distinct numbers, i.e. it has only simple roots.

Define the meromorphic 1-form
ω0,1 :“ sdt.
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One can recover the data of the leading orders of φℏpxjq for any j ě 0 by looking at the principal
part of ω0,1 around 8. Indeed, let t8 be a local parameter around 8´. Around this point the
meromorphic 1-form stjdt is given by

stjdt “
`

W0,1pt´1
8 q `

V 1pt´1
8 q

2

˘

t´j
8 t´2

8 dt8

Since V 1 is a polynomial, we have on the one hand that the powers of t8 coming from it are
negative, and become strictly smaller than ´1 after multiplying with t´2

8 . On the other hand,

W0,1pt´1
8 qt´j

8 t´2
8 dt8 “

ÿ

lě0

T
p0q

l tl`1´j´2
8 dt8

and the residue is then given by T p0q

j . In short, we have for every j ě 0 :

T
p0q

j “ Respstjdt;8´q.

In summary, we have shown that the knowledge of the leading order of the integral φℏpxjq for
0 ď j ď d ´ 2 is enough to know the leading orders of φℏpxkq for any k by the loop equations.
This should not come as a surprise for we have seen that the leading order of a power series
integral is itself an integral in the sense of Definition 3.14 and, in Section 6.2 we have seen that
those are totally determined by their values on pxjq for 0 ď j ď d´ 2.

Said somewhat differently, the above discussion informs us that if we want to define to a power
series integrals φℏ “ φ0 ` φ1ℏ ` . . . , the first thing we do is say what are the values of φ0pxjq

for 0 ď j ď d´ 2. This defines the polynomial P0,1ptq. We can then build the Riemann surface
Σ using Equation (15) and we read what are the values of φ0pxkq in the principal part of the
meromorphic 1-form sdt around 8. What should we do form there? Well, that’s the content of
the next section.

7.4 The 2-form ω0,2

The last ingredient we need to start topological recursion is a symmetric meromorphic bidiffer-
ential with only a double pole on the diagonal and no residue. We don’t want just any such,
we want one whose behaviour at 8 is given by W0,2. We now come to the construction of this
form ω0,2.

The first step is to make use of Corollary 7.12 for g “ 0, n “ 2. This can be rearranged to give

W0,2pt1, t2q “
´P0,2pt1, t2q ´ B

Bt2

`W0,1pt1q´W0,1pt2q

t1´t2

˘

2spt1q

using the definition of the function sptq. Remember that P0,2pt1, t2q is by definition a polynomial
in its first variable and an easy computation shows that, just like P0,1, its degree in t1 is d´ 2.
More precisely, we have

P0,2pt1, t2q “
ÿ

jě0

d
ÿ

k“2

k´1
ÿ

l“1

akT
p0q

k´l´1,j t
l´1
1 t´j´1

2 . (16)

In fact, the coefficient of the term in td´2
1 t´j´1

2 is adT
p0q

0,j which is equal to 0 by Proposition 7.4.
So P0,2pt1, t2q is actually a polynomial of degree d´ 3. This is important.
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We would want to promote W0,2 to a symmetric (meromorphic) function on ΣˆΣ, but it is not
well defined away from 8˘.

This means that we can’t naively define our two form as

W0,2ptpz1q, tpz2qq dtpz1qdtpz2q

for this is not globally defined. We can’t neither use Equation (7.4) for the term in P0,2 is not
defined globally neither. What we can do however, is already promote the part

1

2spt1q

B

Bt2

ˆ

W0,1pt1q ´W0,1pt2q

t1 ´ t2

˙

to a bidifferential form on ΣˆΣ since the functions W0,1pzq, tpzq and spzq are well defined global
functions on Σ. Set then ω̃pz1, z2q to be the form on Σ ˆ Σ defined by

ω̃pz1, z2q “
1

2spz1q
dz2

ˆ

W0,1ptpz1qq ´W0,1ptpz2qq

tpz1q ´ tpz2q

˙

dtpz1q

where dz2 is the de Rham differential applied to the second copy of Σ.

Let us now pay attention to the part coming from P0,2. We know that it should correspond to
a form whose behaviour as tpziq Ñ 8 is given by

P0,2ptpz1q, tpz2qq

spz1q
dtpz1qdtpz2q (17)

which is a holomorphic around 8 since P0,2 is a polynomial of degree at most d ´ 3 in its first
variable (c.f. Proposition A.1). To get a globally define form, we could try to find a holomorphic
form on Σ ˆ Σ whose behaviour around 8 is given by Equation (17). Thankfully, we know a
basis of holomorphic forms on Σ ˆ Σ, namely

tapz1qtbpz2q

spz1qspz2q
dspz1qdspz2q

for 1 ď a, b ď d´ 3.

Around infinity, we wish to get the equality :

´P0,2ptpz1q, tpz2qq

spz1q
“

ÿ

0ďa,bďd´3

κa,b
tapz1qtbpz2q

spz1qspz2q

for some numbers κa,b, or equivalently

´P0,2ptpz1q, tpz2qqspz2q “
ÿ

0ďa,bďd´3

κa,b t
apz1qtbpz2q (18)

Around 8, we know that spz2q takes the form

2d´2
ź

p“1

b

tpz2q ´ αp “ tpz2qd´1
2d´2
ź

p“1

b

1 ´ αp{tpz2q.

Let us express this product of square roots as
ÿ

ně0

Rntpz2q´n

58



which together with Equation (16) means that the right hand side of Equation (18) is equal to

´
ÿ

ně0

ÿ

jě0

d
ÿ

k“2

k´1
ÿ

l“1

akT
p0q

k´l´1,jRn tpz1ql´1tpz2q´j´1tpz2qd´1´n (19)

From there, we can read what should be the coefficient κa,b for 0 ď a, b ď d ´ 3 in Equation
(19), namely

κa,b :“ ´

d´3´b
ÿ

j“0

d´1
ÿ

k“a`2

akT
p0q

k´a´2,jRd´2´b´j . (20)

Observe that the only T p0q

i,j involved in those expressions are those with 0 ď i, j ď d ´ 3. This
means that once we have fixed those coefficients we can define ωpz1, z2q by

ωpz1, z2q :“ ´ω̃pz1, z2q `
ÿ

0ďa,bďd´3

κa,b
tapz1qtbpz2q

spz1qspz2q
(21)

with the κa,b defined by Equation (20), and we have

ωpz1, z2q “ W0,2ptpz1q, tpz2qqdtpz1qdtpz2q

as tpziq Ñ 8. Notice that this implies that ω is symmetric by the Identity theorem. Indeed it
is symmetric around 8 since the generating function W0,2 is symmetric.

Let us fix z2 P Σ and consider ωpz1, z2q as a 1-form on Σ. What could be its pole?

• Naturally, there is no pole coming from the holomorphic part.

• There might be a pole when spz1q “ 0, that is when z1 is a branch point of the cover
t : Σ Ñ CP1, but this is compensated by the rest of the expression since W0,1pz1q “

spz1q `
V 1

ptpz1qq

2 and V 1ptpzqq{spzqdtpzq is holomorphic around branch points.

• The term in W0,1 might introduce a pole when tpz1q goes to infinity, but it is compensated
by the pole of spz1q.

• There might be a pole when tpz1q “ tpz2q. If z1 and z2 are in the same sheet, i.e. z1 “ z2
we have W0,1pz1q ´ W0,2pz2q “ 0 and of course there is no pole. If z1 is not in the same
sheet as z2, i.e. z1 “ σpz2q where σ is the hyperelliptic involution, then in that case there
is truly a pole. Let us pick ξ to be a parameter around around σpz2q (and ξ ˝ σ is then
a parameter around z2). In those coordinates, the non-constant part in z1 of our form is
given by

1

spξpz1qq

spξpz1qq `
V 1

pξpz1qq

2

pξpz1q ´ ξpz2qq2
dξpz1qdξpz2q «

dξpz1qdξpz2q

pξpz1q ´ ξpz2qq2

as z1 Ñ σpz2q, i.e. this pole is of order 2 and has no residue.

Proposition 7.14.

ωpz1, z2q ` ωpσpz1q, z2qq “
dtpz1qdtpz2q

ptpz1q ´ tpz2qq2
.

Proof. Since spσpz1qq “ ´spz1q we have that the two holomorphic parts cancel each other and

dz2
´W0,1ptpz2qq

tpz1q ´ tpz2q

1

2spz1q
` dz2

´W0,1ptpz2qq

tpσpz1qq ´ tpz2q

1

2spσpz1qq
“ 0

59



Finally,

dz2
W0,1pz1q

tpz1q´tpz2q

2spz1q
`
dz2

W0,1pσpz1qq

tpσpz1qq´tpz2q

2spσpz1qq
“ ´

2spz1q

2spz1q

dzpz2q

ptpz1q ´ tpz2qq2

“ ´
dzpz2q

ptpz1q ´ tpz2qq2

where we used that W0,1pz1q “ spz1q `
V 1

ptpz1qq

2

This means that the form ωpz1, z2q´
dtpz1qdtpz2q

ptpz1q´tpz2qq2
is a bidifferential form with only a double pole

on the diagonal and no residue. This is the form want to continue with topological recursion,
i.e. define

Definition 7.15. The 2-form ω0,2 is defined by

ω0,2pz1, z2q :“ ωpz1, z2q ´
dtpz1qdtpz2q

ptpz1q ´ tpz2qq2
“ ´ωpσpz1q, z2q.

We will also need a slightly different two form

Definition 7.16. The 2-form ω̂0,2 is defined by

ω̂0,2pz1, z2q :“ ωpz1, z2q ´
1

2

dtpz1qdtpz2q

ptpz1q ´ tpz2qq2
.

While the use of the 2-form is not apparent yet, it will be useful to define higher forms ωg,n.
An other upshot is that it is antisymmetric with respect to the hyperelliptic involution σ:

Proposition 7.17.
ω̂0,2pσpz1q, z2q “ ´ω̂0,2pz1, z2q

Proof. This follows from Proposition 7.14 and the fact that

1

2

dtpz1qdtpz2q

ptpz1q ´ tpz2qq2
“

1

2

dtpσpz1qqdtpz2q

ptpσpz1qq ´ tpz2qq2

Let us summarize what we have done in this section. We have defined a symmetric meromorphic
form ω0,2 with only a double pole on the diagonal with no residue using only the knowledge of
the subleading order in ℏ of

φℏppxiqpxjqq ´ φℏppxiqqφℏppxjqq

for 0 ď i, j ď d ´ 3. All the other subleading orders of 2-cumulants can then be read in the
residues of ω0,2.

In the next section, we shall see that all others Wg,n are uniquely determined by the finite
number of choices we have done so far.
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7.5 Topological recursion
So far we have fixed a Riemann surface Σ together with a 1-form ω0,1 and a symmetric form
ω0,2 on Σ ˆ Σ from which we can read the different coefficients of the functions W0,1 and W0,2.
To construct all of this data, we needed to know only finitely many parameters of φℏ. We shall
now construct all other differentials ωg,n using the loop equations. From their definition, it will
be obvious that their behaviour around 8 will be related to the generating functions Wg,n. We
will show that they satisfy the topological recursion formula, ensuring that they are actually
fixed by ω0,1 and ω0,2.

Before defining the different ωg,n we fix a basis of cycles pAi,Biq
d´2
i“1 in H1pΣ,Cq such that

Ai

č

Aj “ Bi

č

Bj “ 0 and Ai

č

Bj “ δij

Here,
Ş

denotes the intersection number of two cycles and such a basis always exists, c.f.
Appendix A and references therein for more details.

We shall use Corollary 7.12 to define the forms ωg,n recursively on 2g ` n. Indeed set first

ωg,npz1, . . . , znq :“

´
ωg´1,n`1pz1, z1, z2, . . . , znq

2ω̂0,1pz1q
´

„

ÿ̊

g1`g2“g
A\B“tz2,...,znu

ω̂g1,|A|`1pz1, Aqω̂g2,|B|`1pz1, Bq

ȷ

1

2ω̂0,1pz1q

`

n
ÿ

j“2

dj
ω̂g,n´1pz2, . . . , znq

ptpz1q ´ tpzjqqdtpzjq

dtpz1q

2spz1q
´
Pg,nptpz1q, . . . , tpznqq

śn
i“1 dtpznq

2spz1q

(22)

where ω̂g,n “ ωg,n if pg, nq ‰ p0, 2q and ω̂0,2 is given by Definition 7.16 and ωg,n “ ωg,n if
pg, nq ‰ p0, 2q and ω0,2 “ ω (see Equation 21)

Remark 7.18. The definition of ωg,n is just to make the definition of ω1,1 fit.

Remark 7.19. At first glance, when comparing with Corollary 7.12, it might seem that the
terms of the form

dj
ωg,n´1

tpz1q ´ tpzjq

are missing. They have actually been absorbed by some terms in the sum over different A\B “

tz1, . . . , znu, more precisely when A or B is equal to tzju because of the definition of ω̂0,2.

Just as before, there is a small issue with defining

Pg,nptpz1q, . . . , tpznqq

spz1q

ź

i“1

dtpziq.

What we mean by that is that, just like in the case of P0,2, we choose a product of holomorphic
1-forms whose development at 8 is given by Pg,n.

Note that around infinity

ωg,npz1, . . . , znq “ Wg,nptpz1q, . . . , tpznqq dtpz1q . . . dtpznq
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and thus ωg,n is a symmetric meromorphic form by the Identity theorem.

We will see that unlike P0,2, Pg,n is fixed by our previous choices. To be more precise we have
the following theorem:

Theorem 7.20. The multidifferential forms ωg,n satisfy the topological recursion formula

ωg,n`1pz0, z⃗q “
1

2

2d´2
ÿ

i“1

Res
zÑbi

„

şz

p“σpzq
ω0,2pz0, pq

ȷ

2ω0,1pzq

ˆ

„

´ωg´1,n`2pz, σpzq, z⃗q ´
ÿ̊

g1`g2“g
A\B“z⃗

ωg1,|A|`1pz,Aq ωg2,|B|`1pσpzq, Bq

ȷ

where z⃗ :“ tz1, . . . , znu and b1, . . . , b2d´2 are the branch points of the cover t : Σ Ñ CP1.

Notice that this theorem states that once ω0,1 and ω0,2 have been fixed, then the other ωg,n are
uniquely determined. In particular, the different Pg,n for 2g ` n ą 2 do not enter the formulas.
In other words, the parameters of φℏ we have used to construct Σ, ω0,1 and ω0,2 together with
the loop equations are enough to uniquely determine the power series integral φℏ. This can
summarized in the following theorem

Theorem 7.21. A power series integral in one variable φℏ for the potential

V “

d
ÿ

k“2

ak
k
xk

is uniquely determined by the values of

lim
ℏÑ0

φℏpxiq

for 1 ď i ď d´ 2. and

lim
ℏÑ0

φℏ
`

pxiqpxjq
˘

´ φℏpxiqφℏpxjq

ℏ

for 1 ď i, j ď d´ 3.

The rest of this section is dedicated to the proof of Theorem 7.20. The proof relies on several
classical yet powerful results about Riemann surfaces. The reader is invited to have a look at
Appendix A and references therein for more details about those results.

Before we get started we record two easy observations:

Proposition 7.22. For 2g`n´2 ą 0, the differential forms ωg,n have poles only at the branch
points bi of the cover t : Σ Ñ CP1

Proof. This follows at once by induction. Indeed by the induction hypothesis, all the numerators
can only have poles at the branch points, and dividing by ω0,1pz1q can only introduce poles when
that quantity is equal to 0. But this can happen only at the branch points.

Proposition 7.23. For every pg, nq and 1 ď i ď n

ωg,npz1, . . . σpziq, . . . , znq “ ´ωg,npz1, . . . , zi . . . , znq
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Proof. It is clearly true for ω0,1, and it is true for ω̂0,2 by Proposition 7.17 and symmetry. It also
follows from the same proposition for ω0,3. It then follows easily by induction that the result is
true for any wg,n when considering the first variable, and then any variable by symmetry.

Proof. (of Theorem 7.20)

For z0 fixed, consider
ż z

p“o

ω0,2pz0, pq

where the integration path lies inside the fundamental domain of Σ. In the variable z, it only
has a pole at z “ z0. This allows us to write the Cauchy formula

ωg,n`1pz0, z⃗q “ Res
zÑz0

„
ż z

p“o

ω0,2pz0, pq

ȷ

ωg,n`1pz, z⃗q (23)

Riemann bilinear identity (Proposition A.10) together with Proposition A.4 informs us that

Res
zÑ all poles

„
ż z

p“o

ω0,2pz0, pq

ȷ

ωg,n`1pz, z⃗q

“

2d´2
ÿ

i“1

¿

zPAi

ω0,2pz0, zq

¿

zPBi

ωg,n`1pz, z⃗q ´

¿

zPBi

ω0,2pz0, zq

¿

zPAi

ωg,n`1pz, z⃗q

(24)

Here by all poles we mean z0 (the unique pole of
şz

p“o
ω0,2pz0, pq) and all the branch points bi

(the poles of ωg,n`1). Putting Equations (23) and (24) together, we get

ωg,n`1pz0, z⃗q “ ´

2d´2
ÿ

i“1

Res
zÑbi

„
ż z

p“o

ω0,2pz0, pq

ȷ

ωg,n`1pz, z⃗q

`

2d´2
ÿ

i“1

¿

zPAi

ω0,2pz0, zq

¿

zPBi

ωg,n`1pz, z⃗q ´

¿

zPBi

ω0,2pz0, zq

¿

zPAi

ωg,n`1pz, z⃗q

(25)

However, we have that the integrals over A cycles of ω0,2 in Equation (25) vanishes, leaving us
with

ωg,n`1pz0, z⃗q “ ´

2d´2
ÿ

i“1

Res
zÑbi

„
ż z

p“o

ω0,2pz0, pq

ȷ

ωg,n`1pz, z⃗q

´

¿

zPBi

ω0,2pz0, zq

¿

zPAi

ωg,n`1pz, z⃗q

(26)

Plugging in Equation (22) in the term with the residue, we have to compute the residues of
different contributions. Notice that

„

şz

p“o
ω0,2pz0, pq

ȷ

dtpzq

2spzq

„ n
ÿ

j“2

dj
ω̂g,npz2, . . . , znq

ptpzq ´ tpzjqqdtpzjq
´ Pg,n`1ptpzq, tpz1q, . . . , tpznqq

n
ź

i“1

dtpznq

ȷ
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is holomorphic around bi. Indeed we are looking at something that has no pole in bi for dtpzq{spzq

has no pole at the branch point bi. So after taking residue, this term’s contribution is 0.

Performing the change of variable z Ñ σpzq together with Proposition 7.23, we have that

´ Res
zÑbi

„
ż z

p“o

ω0,2pz0, pq

ȷ

ωg´1,n`1pz, z, z⃗q

2ω0,1pzq
“ Res

zÑbi

„
ż o

p“σpzq

ω0,2pz0, pq

ȷ

ωg´1,n`1pz, σpzq, z⃗q

2ω0,1pzq

(27)

and by Proposition 7.23 we also have

´ Res
zÑbi

„
ż z

p“o

ω0,2pz0, pq

ȷ

ωg´1,n`1pz, z, z⃗q

2ω0,1pzq
“ Res

zÑbi

„
ż z

p“o

ω0,2pz0, pq

ȷ

ωg´1,n`1pz, σpzq, z⃗q

2ω0,1pzq
(28)

and thus taking the average of Equations (27) and (28) we get

´ Res
zÑbi

„
ż z

p“o

ω0,2pz0, pq

ȷ

ωg´1,n`1pz, z, z⃗q

2ω0,1pzq
“

1

2
Res
zÑbi

„
ż z

p“σpzq

ω0,2pz0, pq

ȷ

ωg´1,n`1pz, σpzq, z⃗q

2ω0,1pzq

(29)

Similarly, we have

´ Res
zÑbi

„

şz

p“0
ω0,2pz0, pq

ȷ

2ω̂0,1pzq

ÿ̊

g1`g2“g
A\B“z⃗

ω̂g1,|A|`1pz,Aq ω̂g2,|B|`1pz,Bq

“
1

2
Res
zÑbi

„

şz

p“σpzq
ω0,2pz0, pq

ȷ

2ω̂0,1pzq

ÿ̊

g1`g2“g
A\B“z⃗

ω̂g1,|A|`1pz,Aq ω̂g2,|B|`1pσpzq, Bq

(30)

In this expression, all the ω̂g,n can be replaced by ωg,n. Indeed,

ω̂g1,|A|`1pz,Aq ω̂g2,|B|`1pσpzq, Bq ` ω̂g2,|B|`1pz,Bq ω̂g1,|A|`1pσpzq, Aq

“ωg1,|A|`1pz,Aq ωg2,|B|`1pσpzq, Bq ` ωg2,|B|`1pz,Bq ωg1,|A|`1pσpzq, Aq

by Proposition 7.23 together with

dtpz1qdtpz2q

ptpz1q ´ tpz2qq2
“

dtpσpz1qqdtpz2q

ptpσpz1qq ´ tpz2qq2
.

Thus

ÿ̊

g1`g2“g
A\B“z⃗

ω̂g1,|A|`1pz,Aq ω̂g2,|B|`1pσpzq, Bq

“
ÿ̊

g1`g2“g
A\B“z⃗

ωg1,|A|`1pz,Aq ωg2,|B|`1pσpzq, Bq

(31)
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Naturally, ω̂0,1 “ ω0,1.

Putting this together with Equation (29) we obtain

ωg,n`1pz0, z⃗q “

1

2

2d´2
ÿ

i“1

Res
zÑbi

„

şz

p“σpzq
ω0,2pz0, pq

ȷ

2ω0,1pzq

„

´ωg´1,n`2pz, σpzq, z⃗q ´
ÿ̊

g1`g2“g
A\B“z⃗

ωg1,|A|`1pz,Aq ωg2,|B|`1pσpzq, Bq

ȷ

´

ż

zPBi

ω0,2pz0, zq

ż

zPAi

ωg,n`1pz, z⃗q.

(32)

This is almost the result we wish to get, we just have one extra term that we somehow need to
get rid of, namely the term in product of integrals.

It is a standard result of topological recursion that the integral over z0 P Ai of the first term in
the right hand side of (32) is equal to 0 (see for example [EO07]). Note also that

αpz0, z1, . . . znq :“

¿

zPBi

ω0,2pz0, zq

¿

zPAi

ωg,n`1pz, z⃗q

is a n` 1 form. Since
ű

z0PAi
ω0,2pz0, zq “ 0 we have

¿

z0PAi

αpz0, z1, . . . znq “ 0

Those two facts put together show that
¿

z0PAi

ωg,n`1pz0, z⃗q “ 0

and thus the second term in (32) is equal to 0, which proves the topological recursion formula.

7.6 Two examples
Using the machinery developed above, we can extend the result of Proposition 3.15 to power
series integrals

Proposition 7.24. There is a unique power series integral for the potential V pxq “ x2

2 .

Proof. For this potential, there is no choice for what the polynomial P0,1ptq can be. Indeed,
from (14) we have

P0,1ptq “ T
p0q

0

and
T

p0q

0 “ 1

by the normalization property. We then have that the equation defining the Riemann surface Σ
is

s2ptq “
t2

4
´ 1 “

1

4
pt´

1

2
qpt`

1

2
q
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from which we get that Σ is of genus 0, i.e. it is the Riemann sphere. Since there is no
holomorphic 1-form on the Riemann sphere, there is only one bidifferential form with only poles
on the diagonal with no residue, namely

dtpz1qdtpz2q

ptpz1q ´ tpz2qq2

and we thus have no choice as to what ω0,2 could be.

Proposition 7.25. Let V be a potential of degree 3. An integral φℏ with respect to V is uniquely
determined by φ0.

Proof. Since V is of degree 3, pV 1
ptqq

2

4 ´ P0,1ptq is of degree 4, no matter the choice of P0,1. The
Riemann surface Σ is then at most of genus 1. From there, the 2-form ω0,2 depends only on the
choice of T p0q

0,0 , but this number is equal to 0 by Proposition 7.4.
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8 Deformation
We have seen that both infinity integrals and power series integrals can be understood as maps
from the zeroth cohomology of a certain chain complex. In the case of infinity integrals, this
chain complex is actually a differential graded algebra, and integrals are maps of algebra. This
allowed us to find a finite amount of parameters that would uniquely determine an infinity
integrals.

In the case of power series integrals, it is a priori not clear at all that one can also find a
finite amount of parameters which determine the integral. However, at least in the case of one
variables, power series integrals are uniquely determine by numbers

lim
ℏÑ0

φℏpxiq “ φ0pxiq

and

lim
ℏÑ0

φℏppxiqpxjqq ´ φℏpxiqφℏpxjq

ℏ
for finitely many i, j. However, it is not clear how to interpret that in the cohomological setting.
One issue is that the number of parameters is not even fixed: different choices of P0,1 (c.f.
notation of Section 7) might produce spectral curves with different genera.

By examining one last time Gaussian integration, we propose a direction to answer this problem.
It has to be said that this section is much more speculative in nature.

8.1 A new product
We look at Gaussian integration in a slightly broader context than Gaussian integration of
Hermitian matrices. Let V “ Rd be a real vector space of dimension d together with a d ˆ d
invertible symmetric matrix B and denote by p´,´q the usual scalar product. Denote also by
Od “ Rrx1, . . . xds the ring of commutative polynomials in d variables. In what follows, for
1 ď i ď d denote by Bxi the partial derivative with respect to xi. To make notations a bit less
cumbersome, we define

Bij :“ pB´1qij

and we use Einstein convention throughout.

Definition 8.1. For any f P Od define

xfy :“
1

Z

ż

Rd

dxfpxqe´
pBx,xq

2

where dx is the Lebesgue measure and Z is a number such that x1y “ 1.

Those expectations value can be computed using Wick’s theorem.

Theorem 8.2. (Wick) For any f P Od,

xfy “ fpB1, . . . , Bdq e
pB´1x,xq

2
|x“0 “ e

BijBxi
Bxj

2 fpxq|x“0

Remark 8.3. Theorem 3.4 introducing ribbon graphs to compute Gaussian expectation values
of Hermitian matrices is actually a consequence of Wick’s theorem in that context.

We shall see that this formula allows us to define a new product ˚ on Od such that xf ˚ gy “

xfy xgy.

We may assume that B is a diagonal matrix. Indeed, since B is symmetric, we may perform a
linear change of variables to bring it to a diagonal form.
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Definition 8.4. Let D : Od b Od Ñ Od b Od be the operator defined by

e´Bii
Bxi

bBxi

which is well defined on tensor products on polynomials for given two polynomials f and g, only
finitely many term of the exponential are non-zero.

Definition 8.5. For two polynomials f and g in Od define

f ˚ g :“ µ ˝Dpf b gq

where µ is the usual product of Od.

Proposition 8.6. xf ˚ gy “ xfy xgy

Proof. We notice that

eB
ii

B2xi
2 ˝ µ “ µ ˝ eB

ii
B2xi

b1`2Bxi
bBxi

`1bB2xi
2

for every partial derivative in the left hand side is applied to the function coming either from
the first factor of the tensor product or from the second factor.

We then have

eB
ii

B2xi
2 ˝ µ ˝D “ µ ˝ eB

ii
B2xi

b1`2Bxi
bBxi

`1bB2xi
2 ˝D “ µ ˝ eB

ii
B2xi

b1`1bB2xi
2

By Theorem 8.2, evaluating at x “ 0 for f and g in Od gives us xf ˚ gy “ xfy xgy.

In section 5, we saw that the commutative analogue of the algebra Cp1q was given by polyvector
fields (actually it was even the motivation for the construction of Cp1q). We know see how the
product ˚ fits into that framework.

Definition 8.7. Let T :“ Rrx1, . . . , xd, η
1, . . . , ηds be the graded commutative algebra of poly-

nomials in variables xi and ηi, the former being of degree 0 and the latter of degree ´1.

Note that in the commutative setting there is no need to quotient out by commutators and then
take the symmetric algebra on the resulting vector space.

Remark 8.8. The map x´y : Od Ñ C can be reinterpreted as a degree 0 map T Ñ C.

Remark 8.9. The operator D defined earlier extends to the T and thus the new multiplication
f ˚ g “ µ ˝Dpf b gq also extends to T . Note that this new product is still graded commutative
for D is a map of degree 0.

In this commutative setting, the differential operator of order at most two ∆ : T Ñ T is

∆ :“ Bxi
Bηi ´BiixiBηi

Proposition 8.10. Let f P T be a homogeneous of degree ´1. Then x∆pfqy “ 0.

Proof. This is true if d “ 1 where it is just integration by parts. Since B is diagonal and we are
only dealing with polynomials, the general case is follows by Fubini.

Clearly, ∆ is a differential operator of order at most 2 on T (with respect to the usual product
of polynomials). We wish to show that this statement stays true if we consider the new product
˚ instead.
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To be more precise we wish to show that

∆pa ˚ b ˚ cq ´ ∆pa ˚ bq ˚ c` ∆paq ˚ b ˚ c´ p´1qaa ˚ ∆pb ˚ cq ´ p´1qpa`1qbb ˚ ∆pa ˚ cq

` p´1qaa ˚ ∆pbq ˚ c` p´1qa`ba ˚ b ˚ ∆pcq “ 0.

To prove it, we start by recording the following straightforward facts:

Lemma 8.11. Let A be an algebra. An operator ∆ is a differential operator of order at most 2
if and only if for every homogeneous element a P A the map ra,´s∆ : A Ñ A defined by

b ÞÑ ra, bs∆ :“ p´1qa∆pa ˚ bq ´ p´1qa∆paq ˚ b´ a ˚ ∆pbq

is a derivation of degree |a| ` 1

Lemma 8.12. Let A be a graded algebra and let d be a derivation of degree 1. Then d is a
differential operator of order at most 2 and for every homogeneous a P A we have ra,´sd “ 0.

Lemma 8.13. Let A be a graded algebra and let d1, d2 be two derivations. The composition
d1 ˝ d2 is a differential operator of order at most 2.

Lemma 8.14. Let A be a graded commutative algebra and let d1 and d2 be two derivations of
A (not necessarily of the same degree). For every homogenous a P A, the map

b ÞÑ d1paqd2pbq

is a derivation of degree |a| ` |d1| ` |d2|

Lemma 8.15. The maps Bxi
, Bηi

: T Ñ T are derivations for the product ˚.

Proof. The fact that Bxi is a derivation for the usual product of polynomials µ can be rewritten
as

Bxi
˝ µ “ µ ˝ pBxi

b 1 ` 1 b Bxi
q.

Since partial derivatives commute, both the operators Bxi
b 1 and 1 b Bxi

commute with D.

We then have

Bxi
˝ µ ˝D “ µ ˝ pBxi

b 1 ` 1 b Bxi
q ˝D “ µ ˝D ˝ pBxi

b 1 ` 1 b Bxi
q

which precisely mean that Bxi is a derivation for the product ˚ “ µ ˝D.

The proof is the same for Bηi , one just needs to understand the tensor products Bηi b 1 and
1 b Bηi as tensor products of graded maps (that is (α b βq pa b bq “ p´1qβa αpaq b βpbq for
homogeneous maps α, β and homogeneous elements a, b).

Putting all this together one can show

Proposition 8.16. The operator ∆ :“ Bxi
Bηi ´ BiixiBηi

is a degree 1 differential operator of
order at most 2 for the algebra pT , ˚q, i.e. pT , ˚,∆q is a BV-algebra.

Proof. From lemmas 8.13 and 8.15, Bxi
Bηi

is a differential operator of order at most 2. We are
thus left to show that xiBηi

is a differential operator of order at most 2. We shall use Lemma
8.11 and we just need to compute rf, gsxiBηi

which is equal to

p´1qfxiBηi
˝ µ ˝Dpf b gq ´ p´1qfµ ˝D ˝ pxiBηi

b 1qpf b gq ´ p´1qfµ ˝D ˝ p1 b xiBηi
qpf b gq
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Note the factor p´1qf in front of the last term which comes from the tensor product of graded
maps. To compute this, let us record some commutations relations.

As before, we have xiBηi
˝ µ “ µ ˝ pxiBηi

b 1 ` 1 b xiBηi
q. Let us now compute the commutator

of xiBηi
b 1 and D.

On the one hand we have

pxiBηi b 1q ˝D “
ÿ

k

p´1qk

k!
xiBηipB

llBxl
b Bxl

qk

On the other hand we have

D ˝ pxiBηi b 1q “
ÿ

k

p´1qk

k!
pBllBxl

b Bxl
qk ˝ pxiBηi b 1q

“
ÿ

k

p´1qk

k!
xiBηipB

llBxl
b Bxl

qk ´
ÿ

k

p´1qk

k!
BiipBllBxl

b Bxl
qk ˝ pBηi b Bxiq

“ pxiBηi
b 1q ˝D ´BiiD ˝ pBn b Bxi

q

we then have for f and g homogeneous element of T

p´1qfxiBηi
˝ µ ˝Dpf b gq ´ p´1qfµ ˝D ˝ pxiBηi

b 1qpf b gq ´ p´1qfµ ˝D ˝ p1 b xiBηi
qpf b gq

“ p´1qfµ ˝ pxiBηi
b 1 ` 1 b xiBηi

q ˝Dpf b gq ´ p´1qfµ ˝D ˝ pxiBηi
b 1qpf b gq

´ p´1qfµ ˝D ˝ p1 b xiBηi
qpf b gq

“ p´1qfµ ˝D ˝ pxiBηi
b 1 ` 1 b xiBηi

`BiiBxi
b Bηi

`BiiBηi
b Bxi

qpf b gq

´ p´1qfµ ˝D ˝ pxiBηi
b 1qpf b gq ´ p´1qfµ ˝D ˝ p1 b xiBηi

qpf b gq

“ p´1qfµ ˝D ˝ pBiiBxi
b Bηi

`BiiBηi
b Bxi

qpf b gq

Which is the sum of two derivations of degree |f | ` 1 by Lemma 8.14.

It turns out that the product is a trivial deformation:

Proposition 8.17. The following identity holds as map from Od b Od Ñ Od

µ ˝D “ e´Bii
B2xi
2 ˝ µ ˝ peB

ii
B2xi
2 b eB

ii
B2xi
2 q

Proof. Using the previously recorded identity

eB
ii

B2xi
2 ˝ µ “ µ ˝ eB

ii
B2xi

b1`2Bxi
bBxi

`1bB2xi
2

we get

eB
ii

B2xi
2 ˝ µ ˝D “ µ ˝ eB

ii
B2xi

b1`2Bxi
bBxi

`1bB2xi
2 ˝D

“ µ ˝ eB
ii

B2xi
b1`1bB2xi

2

“ µ ˝ peB
ii

B2xi
2 b eB

ii
B2xi
2 q
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In the end, the content of this section can be summarized in the following statement

Proposition 8.18. For every symmetric matrix B, the map x´y : pT , ˚,∆q Ñ C given by
Gaussian integration is a map of BV algebras.

8.2 Speculations
The results of the previous section might suggest the following point of view for power series
integrals. One should maybe consider integrals as maps of BV algebras

φℏ : pCℏp1q, ˚,∆V q ÝÑ Crrℏss

where ˚ “
ř

iď0 ℏiµi is a deformation of the product with respect to which ∆V is a still a
differential operator of order at most 2.

If φℏ is a map of BV algebra, the value of

lim
ℏÑ0

φℏpfgq ´ φℏpfqφℏpgq

ℏ

has to be equal to ´φ0pµ1pf, gqq and then the whole integral φℏ is fully determined by φ0.

It is not clear that such an approach is possible, though, for a power series integral also has
to satisfy the cumulant condition. The first question is then what kind of constraint does the
cumulant condition for power series integrals impose on the different µi? It is obvious that 2-
cumulants of integrals coming from deformed products are multiples of ℏ. For higher cumulants,
the situation is not quite as clear. Let us have a look at the 3-cumulant :

Proposition 8.19. In the setting described above, let a, b, c be three cyclic words. The coefficient
in ℏ of φcpabcq is equal to

φ0

`

´µ1pab, cq ` aµ1pb, cq ` bµ1pa, cq
˘

Proof. This is just an explicit computation using the fact that φℏ is a map of algebra for the
product ˚.

We can go one step further, indeed Cℏp1q is a free algebra, all deformations of the product are
trivial. We can then assume that ˚ is of the form

˚ “ ψ´1 ˝ µ ˝ pψ b ψq

with ψ “ 1 `
ř

iě1 ℏiψi an automorphism of Cℏp1q. We then know that

µ1pa, bq “ ´ψ1pa, bq ` ψ1paqb` aψ1pbq

Plugging that in Proposition 8.19, we get

Proposition 8.20. If ψ1 is a differential operator of order at most 2, then the coefficient in ℏ
of φcpabcq vanishes.

For higher cumulants, the situation becomes quite involved, and a more conceptual approach
would be necessary.

A second question is what are the constraints imposed by requiring the BV operator ∆V to still
be of order at most 2 with respect to the new product. Note that ∆V is of order at most 2 with
respect to ˚ if and only if ∆̃V :“ ψ ˝ ∆V ˝ ψ´1 is of order at most 2 with respect to the initial
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product. From there one can see that, at least infinitesimally, if ψ1 is a derivation, then ∆̃V is
of order at most 2. Note that requiring ψ to ∆̃V to be of order 2 implies to that the 3-cumulant
is a multiple of ℏ2.

Assume for the moment that one manages to answer the two previous questions and that it is
indeed possible to define power series integrals by first deforming the product. The next natural
question is whether all integrals can be obtained in this way? Maybe topological recursion could
help fix ψi for i ě 2 from only the knowledge of ψ1?

Conjecture 8.21. Integrals with respect to the potential V are equivalent to BV-algebra maps

pCℏp1q, ˚,∆V q Ñ pCrrℏss, 0q

where ˚ is a deformation of the product with respect to which ∆V is a differential operator of
order at most 2.
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9 Outlook
We conclude by presenting a couple of outlooks about how non-commutative integrals fit in the
broader mathematical landscape.

9.1 Duflo Isomorphism
Consider a finite dimensional Lie g. From there, one can construct two different algebras: the
symmetric algebra Sympgq and the universal enveloping algebras Upgq. The so-called PBW
theorem states that the symmetrization map

S : Sympgq ÝÑ Upgq

x1 . . . xn ÞÝÑ
1

n!

ÿ

σPSn

xσp1q . . . xσpnq

is an isomorphism of vector spaces. Of course, this map has no chance to be a map of algebras,
for in general the universal enveloping algebra is not a commutative algebra. However, both
spaces are naturally g-modules and the symmetrization map S is equivariant with respect to
both actions. Thus, one can restrict it to the subspace of invariant and get an isomorphism of
vector spaces

Sympgqg – Upgqg “ ZpUpgqq

While ZpUpgqq is now a commutative algebra, the map S is still not quite a morphism of algebras
yet.

In [Duf77], Duflo defines an element Jpxq belonging to (a completion of) the symmetric algebra
zSympg˚q as

Jpxq :“ det
`1 ´ e´adx

adx

˘

and proves the following theorem

Theorem 9.1. The map S ˝ J
1
2 defines an isomorphism of algebras

Sympgqg Ñ ZpUpgqq

One downside of Duflo’s proof is that it heavily relies on classification results of Lie algebras,
even though both Sympgqg and Upggq are constructed only knowing that g is a Lie algebra, not
which Lie algebra it is.

To make a connection with non-commutative integrals, we have to give a more geometric inter-
pretation of Duflo’s theorem. Suppose that the Lie algebra g is coming from a Lie group G. The
algebra Sympgq can be understood as the algebra D0pgq of distribution on g supported at 0,
with multiplication given by the convolution with respect to the addition in g. In other words,
given two such distributions f, h, their product is given by

pf ˚ hqpxq “

ż

g

fpyqgpx´ yqdy

Similarly, the algebra Upgq can be understood as the algebra DepGq of distributions on the group
G supported at the identity; and this time multiplication is given by convolution with respect
to the group law. That is, for F,H two such distributions,
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pF ˚Hqpgq “

ż

G

F puqHpgu´1qdu

In this context, the symmetrization map S corresponds to the map

D0pgq Ñ DepGq

given by precomposing with the exponential map exp : g Ñ G, and Duflo’s theorem states that

Duf : D0pgqG ÝÑ DepGqG

f ÞÝÑ
`

g “ exppxq ÞÑ J
1
2 pxqfpxq

˘

is an isomorphism of algebras.

The hope would be that if one has a universal theory of integration for Lie algebras and groups,
one could give a universal proof of Duflo’s theorem. By a "universal theory", we mean a
theory which relies only on structural maps of Lie algebras or groups. In other words, a theory
of integration for the free Lie algebra (group), from which one could get integration for any
specific Lie algebra g (group G) by interpreting elements of the free Lie algebra (free group) as
formulae.

Integrals on the free associative algebra might be useful for both the "Lie" world and the "group"
world meet in the "associative" world. Let us explain.

On the one hand, consider the free group

π :“ xX1, . . . , Xny

on n generators. There are multiple isomorphisms of vector spaces between the completion of
the group algebra xCπ and the free algebra A :“ Cxxx1, . . . , xnyy. One example is the exponential
map

xCπ ÝÑ A

Xi ÞÝÑ
ÿ

k

1

k!
xki .

An other one is the so-called Magnus map

xCπ ÝÑ A

Xi ÞÝÑ 1 ` xi.

On the other hand, the free Lie algebra L “ Liepx1, . . . , xnq can also be found in A. Indeed, A
admits the structure of a Hopf algebra with comultiplication ∆, counit ϵ and antipode S defined
by

∆pxiq :“ xi b 1 ` 1 b xi

Spxiq :“ ´xi

ϵpxiq :“ 0

The free Lie algebra L can then be identified with the space of primitive elements of pA,∆, ϵ, Sq.

In both cases, there is a suitable concept of divergence related to the divergence of A, making
it possible to define integrals in those two worlds. Hopefully, associative integrals give examples
of such integrals. However, it seems that in order to get involutions, one would need to go at
least one step further and develop a theory of integration with free variables.
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9.2 Volume of moduli spaces of flat connections
Let G be a Lie group with corresponding Lie algebra g and let Σ be an orientable surface. One
can look at the space of of g-valued connections on Σ, that is elements

A P Ω1pΣq b g

such that
dA`

1

2
rA,As “ 0.

The Gauge group GΣ of all maps g : Σ Ñ G acts on the space of flat connections by g ¨ A “

g´1Ag ` g´1dg. One can then define the moduli space of flat connections as

MpΣ, Gq :“ tA P Ω1pΣ, gq | dA`
1

2
rA,As “ 0u{GΣ.

In [AB82], Atiyah and Bott construct a Poisson structure on MpΣ, Gq. When Σ is a closed
surface, this Poisson structure is actually symplectic. The moduli space can also be described
as

Hompπ1pΣq, Gq{G

where the action of G is by conjugation. The isomorphism

MpΣ, Gq – Hompπ1pΣq, Gq{G

is given by looking at monodromies of the generators of the fundamental group π1pΣq. With
this description, it also has a Poisson structure due to Goldman [Gol86].

When G is compact, for example G “ UpNq, the volume of the moduli space

V olpMpΣ, Gqq

has been computed by Witten [Wit91].

In that case the volume is proportional to an expression of the form
ż

G2g

δep
ź

rai, bisq
ź

i

daidbi

where g is the genus of Σ and and r´,´s is the group commutator. Notice that this expression
is also "universal", and an universal integration theory might be insightful.

9.3 Words measure on free groups
In [MP19] and [MP22] Magee and Puder study words measures on free groups. Their construc-
tion is as follows.

Consider the free group Fr on r generators. Given a word w of Fr, they interpret it as a map

w : UpNqr Ñ UpNq

and consider the pushforward of the Haar measure on UpNqr to UpNq, calling it the w-measure.

Given l words w1, . . . , wl P Fr, they are interested in computing integrals of the form

Trw1,...,wl
pNq :“

ż

A1,...,ArPUpNq

l
ź

i“1

trpwipA1, . . . , Alqqdµ
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as functions of N .

While it was known from Weingarten calculus (c.f. [CMN22] for an introduction) that for N
large enough, Trw1,...,wl

pNq P QpNq, they come up with a method to compute it by considering
surfaces with l boundary components coming from matching of letters. As we have seen, it is
not surprising that one can use combinatorics of surfaces to compute matrix integrals. It is
somewhat more surprising that one also needs to take into account maps from the boundary of
the surface S to

Žr
i“1 S

1 satisfying some condition. Loosely speaking their main result looks
like this

Trw1,...,wl
pNq “

ÿ

pS,fq

CpfqNχpSq

where Cpfq is a number depending on the map f and χpSq is the Euler characteristic of S.

The situation is similar to Gaussian integration, and thus to non-commutative integrals, but in
a group setting. There is also a striking difference in the appearance of maps from surfaces to
"bouquet" of circles as Magee and Puder call them.

Note that this story is not unrelated to moduli space of flat connection for the integral can
be thought of as an integral over HompFr, UpNqq and the fundamental group of surface with
boundary is a free group.

9.4 Other constructions of Cℏpnq

The algebra Cℏpnq constructed in Section 5.4 was also constructed in a slightly different context.
In [GGHZ21], Ginot, Gwilliam Hamilton and Zeinalian start with a graded vector space V over
K equipped with a symplectic form x´,´y of odd degree. From there, they define a Lie bracket
δ and a lie cobracket ∇, both of odd degree on

HrV s :“
8

ź

k“0

“

pV ˚qbk
‰

Z{kZ

using the dual of the symplectic form on V . Using this bracket and cobracket, they get a BV
operator ∆ “ ∇ ` γδ on

P̂^nc
γ,ν rV s :“ Krrγssb̂

ˆ 8
ź

i“1

“

HrV sbi
‰

Si

˙

Their notation puts more emphasis on the trivial cyclic word which they denote by ν. The
slightly confusing thing for us is that they use δ for the bracket (recall that we used δ for the
cobracket).

Of course, if we pick a basis X “ tx1, . . . , xnu of V , HpV q is nothing but the space of (graded)
cyclic words in the alphabet X . If V “ W ‘ W r1s for a vector space W of dimension n
concentrated in degree 0 then P^nc

γ,ν rV s is the same thing as what we called Cℏpnq. It turns out
that their bracket and cobracket are the same as ours.

While their construction is a bit more general, it also puts more emphasis of the vector space
V . Using the BV-structure, they consider P̂^nc

γ,ν rV s as an odd graded differential Lie algebra
and define a filtration

P̂^nc
γ,ν rV s “ F0P̂

^nc
γ,ν rV s Ą F1P̂

^nc
γ,ν rV s Ą . . .

76



The solution of the Maurer-Cartan equation in P̂^nc
γ,ν rV s{F1P̂

^nc
γ,ν rV s are precisely the cyclic

A8-structures on (a suspension of) V . Cyclic means that it A8-structure is compatible with
the symplectic form x´,´y. Such solutions are linear combination of cyclic words and a word of
length k corresponds to the operation of arity k´1. Since those solutions are linear combination
of cyclic words, they correspond to potential in our setting. It would be interesting to understand
what is the role played by integrals in this context.

In a subsequent paper [GHZ22], they apply this construction to the following very simple cyclic
A8 algebra A: the graded space A has generators a and b in degree zero and one respectively,
the symplectic form is given by

xb, ay “ 1 “ ´xa, by

and the only non trivial operation is the operation of arity 0, i.e. the differential d and it is
given by da “ b. They show that

pP̂^nc
γ,ν rAs, d` ∆q

is closely related to Gaussian integration of Hermitian matrices. Indeed the differential d corre-
sponds to the cyclic words |pa˚q2| and on pP̂^nc

γ,ν rAs, d` ∆q, d “ tpa˚q2,´u. They also produce
a quasi-isomorphism of complexes

pP̂^nc
γ,ν rAs, d` ∆q ÝÑ Crγ, νs

by means of ribbon graphs. It seems extremely likely that one can deform the product on
P̂^nc
γ,ν rAs using those same ribbon graphs in order to make the above quasi-isomorphism a

morphism of BV-algebra.
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A Riemann Surfaces
We gather here different results about Riemann surfaces. Good references on the subject are
plenty, but we recommend the book of W. Schlag [Sch14].

Fix once and for all a complex polynomial P pzq of degree 2g ` 2 with simple roots and and
consider the Riemann surface

Σ :“ tpx, yq P C | y2 “ P pxqu.

Proposition A.1. As a C-vector space, the space of holomorphic differential of Σ is generated
by

dx

y
;
x2dx

y
; . . . ;

xg´1dx

y

Proposition A.2. Let ω be a meromorphic form and let p be a pole of ω. The order of the pole
p ordpω, pq and the residue Respω, pq are well defined, i.e. do not depend on the coordinates.

Proposition A.3. The meromorphic 1-form on Σ are of the form

ω “ pρ1pxq ` ρ2pxqyqdx

There is a residue theorem for Riemann surfaces (we are not quite precise with what we mean
by integration region, a more precise description can be found in [Sch14])

Proposition A.4. Let ω be a meromorphic form and N Ă Σ an integration region such that
there is no pole of ω on BN . Then

1

2πi

ż

BN

“
ÿ

pPN

Respω, pq

A thorough discussion of what follows can be found in [Eyn18]

Proposition A.5. Given a symplectic basis pAi,Biq
g
i“1 of cycles of H1pΣ,Zq, there exists a

unique bilinear meromorphic form Bpz1, z2q such that as a 1-form in its first argument, it has
only a double pole with no residue when z1 “ z2 and is normalized such that

Bpz1, z2q «
dxpz1qdxpz2q

pxpz1q ´ xpz2qq2
` holo.

as z1 Ñ z2, and
¿

z1PAi

Bpz1, z2q “ 0

This form is called the fundamental form of the second kind, or sometimes the "Bergman
Kernel". From it one can construct a basis of holomorphic differentials on Σ:

Proposition A.6. In the same context as the above Proposition, for 1 ď i ď g, the differential
forms

ωipzq :“
1

2πi

¿

z1PBi

Bpz1, zq

form a basis of holomorphic form on Σ satisfying
¿

Ai

ωjpzq “ δij .
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Definition A.7. In the above setting, define numbers τi,j by

τi,j :“

¿

Bj

ωi

Proposition A.8. Let ω be a symmetric meromorphic bidifferential form ΣˆΣ with only double
poles with no residue on the diagonal. Then it has the form

ω “ B `
ÿ

ij

κijωiωj

.

Furthermore, for every 1 ď i ď g the elements Aκ
i and Bκ

i be of H1pΣ,Cq defined by

Aκ
i “ Ai ´

d´2
ÿ

j“1

κij

ˆ

Bj ´

d´2
ÿ

l“1

τjlAl

˙

and

Bκ
i “ Bi ´

d´2
ÿ

j“1

τijAl

are such that
Aκ

i

č

Aκ
j “ 0 “ Bκ

i

č

Bκ
j

Aκ
i

č

Bκ
j “ δij

¿

z1PAκ
i

ωpz1, z2q “ 0 and
¿

z1PBκ
i

ωpz1, z2q “ 2πiωipz2q

The cycles Aκ
i and Bκ

i are called the modified cycles.

Definition A.9. Given a symplectic basis pAi,Biq
g
i“1 of cycles of H1pΣ,Zq, the fundamental

domain of Σ is
Σ0 :“ Σz

ď

i

Ai Y Bi

Proposition A.10. (Riemann Bilinear Identity) Let pAi,Biq
g
i“1 of cycles of H1pΣ,Zq and let f

be a meromorphic function on Σ, holomorphic on a neighbourhood of BΣ0 and let ω be a closed
meromorphic 1-form. Then

ż

BΣ0

fω “

g
ÿ

i“1

ż

Ai

df

ż

Bi

ω ´

ż

Bi

df

ż

Ai

ω

The same result holds when replacing Ai and Bi by the modified cycles Aκ
i and Bκ

i
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