FERMILAB-CONF-25-0228-CSAID

Multi-package development at Fermilab with Spack

Kyle Knoepfel*

'Fermi National Accelerator Laboratory

Abstract. The Spack package manager has been widely adopted in the super-
computing community as a means of providing consistently-built on-demand
software for the platform of interest. Members of the high-energy and nuclear
physics (HENP) community, in turn, have recognized Spack’s strengths, used
it for their own projects, and even become active Spack developers to better
support HENP needs. Code development in a Spack context, however, can be
challenging as the provision of external software via Spack must integrate with
the developed packages’ build systems. Spack’s own development features can
be used for this task, but they tend to be inefficient and cumbersome.

We present a solution pursued at Fermilab called MPD (multi-package develop-
ment). MPD aims to facilitate the development of multiple Spack-based pack-
ages in concert without the overhead of Spack’s own development facilities. In
addition, MPD allows physicists to create multiple development projects with
an interface that insulates users from the many commands required to use Spack
well.

1 Spack adoption at Fermilab

Spack [1, 2] has become a preferred package-management technology used within the high-
performance computing (HPC) community. Its use has become so widespread that Spack is
now included as part of the High-Performance Software Foundation [3]. It has also attracted
the attention of HEP software professionals charged with maintaining software stacks con-
taining hundreds of disparate, yet interoperable, software packages. Spack is designed to
satisfy such needs, albeit originally for HPC contexts.

Fermilab’s experiment-support efforts have selected Spack to manage software for various
reasons:

1. constraints on development effort prevent the continued maintenance of UPS, the
Fermilab-specific package manager [4],

2. Fermilab and its experiments can leverage the portion of Spack’s support base that
exists outside of the HEP community,

3. adopting a well-known technology provides an opportunity to engage with and influ-
ence the broader computing community.

*e-mail: knoepfel @fnal.gov



Figure 1. Dependency graph of
art-using software projects. Each
arrow points from one project to the
software projects upon which it
depends (e.g. ICARUS code
depends on SBN code).

ICARUS code

Since Fermilab’s first Spack report at a CHEP conference [10], adoption has progressed
substantially from proof-of-principle toy projects to full Spack installations of all offline code
for DUNE, Mu2e, and other experiments. Achieving this has required establishing a pro-
cess to create layered releases (in the form of Spack environments) of Fermilab-supported
software. In addition, we have created a solution for developing multiple CMake packages
together in a Spack context; this multi-package development solution is the focus of this
document.

2 Developing multiple packages together

To enable development at scale, experiment code is often factorized into pieces that can
be developed with some degree of isolation. This factorization, however, rarely results in
completely independent bodies of code but in a directed graph of software dependencies.
Figure 1 shows a simplified directed graph of art-using [5, 6] software projects.

It is common for an experiment to develop their own code at the same time as adjusting
a piece of shared software. For example, a developer of SBN software [7] may need to ad-
just some code within LArSoft [8]. To facilitate coordinated development of these packages,
Fermilab has provided the multi-repository build (MRB) system [9], which builds multiple
CMake-based projects together as a single larger CMake project. One notable feature of
MRSB is that it is intended to support efficient incremental builds, where developers test fre-
quent, gentle changes to the software. MRB has been widely used by Fermilab experiments,
but it relies heavily on the Fermilab-specific UPS package management system. A different
approach is thus required to accommodate Fermilab’s migration from UPS to Spack.

3 Code development using Spack

Fermilab developers have explored various options for replacing MRB. One approach was
SpackDev [11], which was presented to experiments that were not yet ready to consider a
Spack-based development approach. Since then, Spack has added a development facility (i.e.
the spack develop subcommand) that supports the development of any Spack package in
a way that integrates cleanly with Spack’s existing installation infrastructure. The natively-



Table 1. Commands supported by the Spack MPD extension. Each subcommand below follows the
prefix spack mpd on the command line. The subcommands shaded brown are demonstrated in

Section 4.1.
Subcommand Description
clear Clear selected MPD project
new-project (n) Create MPD development project
refresh Refresh project Project
rm-project (rm) Remove MPD project
select Select MPD project
build (b) Build repositories
git-clone (g, clone) Clone git repositories
install (i) Install built repositories Development
test (t) Run tests
zap (z) Delete everything in your build and/or
install areas
list (1s) List MPD projects .
status Current MlgDJstatus Usability
init Initialize MPD on this system

provided Spack development facility, however, requires more Spack expertise of its users,
and substantial inefficiencies were encountered early on for incremental builds'.

The approach adopted by Fermilab was to pursue a Spack extension (i.e. a spack mpd
subcommand) for multi-package development. Spack MPD [12] is intended to be an MRB-
like system tailored for iterative algorithm development with Spack providing the dependen-
cies of the software under development.

4 Spack MPD

Table 1 lists the subcommands supported by Spack MPD, grouped according to MPD project
management, development subcommands, helper subcommands to aid in usability, and the
init subcommand, which is invoked only once per Spack installation. Each subcommand
has additional options, which can be printed to the terminal by providing the --help option
(e.g. spack mpd clear --help).

As with MRB, one of the goals of MPD is to support core development activities while
minimizing the user’s required knowledge of the underlying package delivery system. These
core functionalities are shaded brown in Table 1 and are described in Section 4.1 as part of
a typical development workflow”. However, there are additional functionalities that serve as
improvements wrt. MRB:

e After setting up the Spack environment, an MPD project is selected for development by
invoking spack mpd select. (Establishing an MRB development session often involved
invoking more than one setup script.)

e The spack mpd select subcommand also makes it easy to switch to a different devel-
opment project in the same shell. (This was not generally possible with MRB due to its
reliance on environment variables.)

! As of this writing, Spack (by default) installs each package serially, only taking advantage of parallelism within
the building and installation of each package. For Fermilab users, this can be expensive when building software on
shared machines.

2Subcommands not described in this document are documented at the Spack MPD GitHub repository [12].



$ spack mpd new-project --name my-art-devel -T my-art-devel -E gcc-14-1 cxxstd=20 %gcc@l4
Creating project: my-art-devel

Using build area: /scratch/knoepfel/my-art-devel/build
Using local area: /scratch/knoepfel/my-art-devel/local

Using sources area: /scratch/knoepfel/my-art-devel/srcs

You can clone repositories for development by invoking

spack mpd git-clone --suite <suite name>

(or type 'spack mpd git-clone --help' for more options)

Figure 2. Creating a new MPD project that inherits dependencies from an already existing gcc-14-1
environment. Using the -T option creates a top-level directory that contains the build, local, and sources
subdirectories. The cxxstd=20 and %gcc@14 specifications instruct Spack’s concretizer to select de-
pendencies for the developed packages that support C++20 and must be buildable with GCC 14.

e The spack mpd list subcommand prints to the terminal a list of existing projects avail-
able for development, and the spack mpd status subcommand gives details of the cur-
rently selected project. (Such functionality was never possible with MRB.)

These improvements were largely achieved by avoiding the use of environmental variables
within the MPD infrastructure.

4.1 MPD development workflow

After initializing MPD for the installed Spack instance, a development workflow begins by
creating a new project (see Figure 2). Each project must have (a) a name associated with it,
(b) a source code area for hosting repositories to develop, (c) a build area where compiled
libraries are created, and (d) an area of maintaining the Spack artifacts necessary for providing
external software (denoted as the local area in Figure 2). In addition, variants and compiler
specifications may be listed on the same command line to constrain Spack’s concretizer when
determining the required dependencies of the code under development. It is also possible,
using the -E option, to provide one or more environments whose concretized dependencies
will be used by the MPD project.

After creating the new project, MPD allows the user to clone (and optionally fork) repos-
itories that are desired for development (see Figure 3). The cloned repositories (hereafter
developed packages) will be placed in the source code area regardless of the current working
directory when the spack mpd git-clone subcommand is invoked.

$ spack mpd git-clone --fork cetlib cetlib-except hep-concurrency

Cloning and forking:
(cloned, added fork knoepfel/cetlib)
(cloned, created fork knoepfel/cetlib-except)
(cloned, created fork knoepfel/hep-concurrency)

You may now invoke:

spack mpd refresh

Figure 3. Cloning and forking repositories.



$ spack mpd refresh

Refreshing project: my-art-devel

Concretizing project (this may take a few minutes)

Environment my-art-devel has been created

Updating view at /scratch/knoepfel/spack/var/.../my-art-devel/.spack-env/view
Concretization complete

Ready to install MPD project my-art-devel

Would you like to continue with installation? [Y/n]

Specify number of cores to use (default is 12)

Installing my-art-devel

/usr (external glibc-2.34-hjl43avhawltutkgujn2ns3577kjowlq)

/scratch/knoepfel/spack/.../intel-tbb-2021.9.0-gtkaoizm514m6goy7rptg7v3i5q2jrg7

my-art-devel is ready for development (e.g type spack mpd build ...)

Figure 4. Refreshing a MPD project.

To determine which dependencies are required for the developed packages, the project
must be refreshed (see Figure 4), which usually takes a few minutes. The refresh stage
performs multiple steps:

e The recipes of the developed packages are used to create an anonymous development en-
vironment of those packages’ dependencies.

e A list of uninstalled dependencies required to proceed with development is printed to the
terminal. The developer then has the option to directly install the packages.

o Artifacts are generated to create one CMake project that includes the developed packages.

The refresh step must be invoked only when another repository is cloned for development or
whenever there are changes to a recipe of one of the developed packages.

Once the refresh step is complete, the developed packages may be built (see Figure 5).
The spack mpd build step automatically activates the anonymous development environ-
ment that was created as part of the refresh step. With the activated environment, the CMake
configuration step is then invoked, followed by the build command, which uses either GNU
Make or Ninja (depending on the MPD project configuration) [13, 14]. Note that MPD uses
CMake directly and not Spack to build the developed packages.

After a successful build, any CMake-based unit tests [15] can be executed by invoking
the spack mpd test subcommand (see Figure 6). As in the build stage, the development
environment is automatically activated by the test subcommand to ensure that run-time
paths are properly established.

4.2 Guidance in using MPD

To develop a package using MPD, the package must have a Spack recipe and it must be a
CMake package. MPD will ignore any non-CMake packages that have been cloned to the
sources area.

In addition, it is highly encouraged to find alternatives to using environment variables
as crucial ingredients to the building and testing stages of development. Whereas MRB



$ spack mpd build -ji2

Configuring with command:

cmake --preset default /scratch/knoepfel/my-art-devel/srcs ...

Preset CMake variables:

CMAKE_BUILD_TYPE:STRING="RelWithDebInfo"

-- Found TBB: /.../1ib64/cmake/TBB/TBBConfig.cmake (found version "2021.9.0")

-- The C compiler identification is GNU 14.1.0

-- Configuring done (2.2s)

-- Generating done (0.2s)

-- Build files have been written to: /home/knoepfel/scratch/my-art-devel/build
Building with command:

cmake --build /scratch/knoepfel/my-art-devel/build -- -j12

[0/2] Re-checking globbed directories...
[278/278] Linking CXX executable cetlib/bin/ntuple_t

Figure 5. Building a project. The command line includes the parallelism option -j12, which is then
passed directly to the build command (see the second CMake command in cyan).

$ spack mpd test -ji12
Testing with command:
ctest --test-dir /scratch/knoepfel/my-art-devel/build -ji12

Internal ctest changing into directory: /home/knoepfel/scratch/my-art-devel/build
Test project /home/knoepfel/scratch/my-art-devel/build
Start 1: coded_exception_test
Start : demangle_t
Start : exception_collector_test
Start . exception_test
Start . exception_category_matcher_t
Start . exception_message_matcher_t
Start : exception_bad_append_t
Start : runThreadSafeOutputFileStream_t.sh
Start : assert_only_one_thread_test
Start . serial_task_queue_chain_t
Start ¢ serial_task_queue_t
Start ¢ waiting_task_list_t
1/100 Test : coded_exception_test Passed

100/100 Test #55: cpu_timer_test Passed

, 0 tests failed out of 100

Figure 6. Testing a project. The command line includes the -j12 parallelism flag, which is passed to
the ctest shown in cyan.



would automatically set certain environment variables (e.g. LD_LIBRARY_PATH) for the con-
venience of the user, MPD does not do so. Spack itself does support the setting of envi-
ronment variables during its own build and installation phases of software, but reducing the
use of environment variables better insulates packages from each other and from the user
environment.

5 Future work

Shortly after this work was presented in Krakow, it was discovered that MPD implicitly
assumes each developed package uses Fermilab-specific CMake infrastructure [16]. Moving
forward, we hope to generalize MPD so that more than just Fermilab efforts are supported
by it. We also anticipate strengthened engagement with the rest of the Spack committee now
that Fermilab has joined Spack’s technical steering committee.

6 Acknowledgments

This work has been authored by Fermi Forward Discovery Group, LLC under Contract No.
89243024CSC000002 with the U.S. Department of Energy, Office of Science, Office of High
Energy Physics.

References

[1] T. Gamblin, et al, The Spack Package Manager: Bringing Order to HPC Software Chaos,
Supercomputing 2015 (SC’15), https://doi.org/10.1145/2807591.2807623

[2] https://spack.io

[3] https://hpsf.io

[4] M. Votava, et al, UPS UNIX Product Support, in Seventh Conference Real Time '91 on
Computer Applications in Nuclear, Particle and Plasma Physics Conference Record, pp.
156-159 (1991)

[5] C. Green, et al, in Proceedings, 19th International Conference on Computing in High
Energy and Nuclear Physics (CHEP 2012) 396, 022020 (2012)

[6] https://art.fnal.gov

[7] https://sbnsoftware.github.io

[8] E.L. Snider and G. Petrillo, LArSoft: toolkit for simulation, reconstruction and analysis
of liquid argon TPC neutrino detectors, J. Phys. Conf. Ser. 898 042057 (2017)

[9] https://github.com/art-framework-suite/mrb

[10] C. Green, et al, Spack-Based Packaging and Development for HEP, EPJ Web of Con-
ferences 214, 05013 (2019) https://doi.org/10.1051/epjconf/201921405013

[11] C. Green, et al, SpackDev: Multi-Package Development with Spack, EPJ Web of Con-
ferences 245, 05035 (2020) https://doi.org/10.1051/epjconf/202024505035

[12] https://github.com/FNALssi/spack-mpd

[13] https://www.gnu.org/software/make

[14] https://ninja-build.org

[15] https://cmake.org/cmake/help/latest/manual/ctest.1.html

[16] T. Madlener, Problems building dependent packages, https://github.com/FNALssi/
spack-mpd/issues/10 (2024)


https://doi.org/10.1145/2807591.2807623
https://spack.io
https://hpsf.io
https://art.fnal.gov
https://sbnsoftware.github.io
https://github.com/art-framework-suite/mrb
https://doi.org/10.1051/epjconf/201921405013
https://doi.org/10.1051/epjconf/202024505035
https://github.com/FNALssi/spack-mpd
https://www.gnu.org/software/make
https://ninja-build.org
https://cmake.org/cmake/help/latest/manual/ctest.1.html
https://github.com/FNALssi/spack-mpd/issues/10
https://github.com/FNALssi/spack-mpd/issues/10

	Spack adoption at Fermilab
	Developing multiple packages together
	Code development using Spack
	Spack MPD
	MPD development workflow
	Guidance in using MPD

	Future work
	Acknowledgments

