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Abstract
It is well known that higher-dimensional black objects with translational invariance
are unstable, which is called Gregory-Laflamme instability. There is a question if
this instability is eliminated by adding a scalar hair to the black objects. For the
first step, we investigate a regular topological string solution and its stability in the
5-dimensional Einstein-Higgs system. Linear analysis shows that the string solution
is stable against non-uniform perturbations.

1 Introduction

In higher-dimensional spacetime there is variety of black objects such as a black string, a black ring, and
black branes aside from a black hole. The black string and black branes have translational invariance
along one or some spatial direction(s). It is shown that these objects are unstable against the non-uniform
perturbation, which is known as Gregory-Laflamme instability[l]. What is their final state? This is a
question which attracted much attention in the last decade. Analysis beyond perturbation is necessary
to answer this question. The numerical approach is the only method, and static solutions with nontrivial
horizon geometry were constructed in 6-dimensional spacetime[2]. They are candidates for the final state.
There are, however, other candidates. For instance, the horizon is pinched and continues to shrinks with
infinite time[3].

Dynamical stability is the one of the aspects of the system. Thermodynamical stability is another
aspect. It was proposed that dynamical stability is strongly related to thermodynamical stability, which is
called Gubser-Mitra conjecture[4]. It states that for systems with a translational symmetry and an infinite
extent dynamical Gregory-Laflamme instability arises precisely when the system is thermodynamically
unstable. There are a lot of examples which support Gubser-Mitra conjecture in vacuum and electro-
vacuum systems.

The black object has an event horizon, and we do not know what matters were distributed before the
gravitational collapse. It is natural, however, to assume that the initial object has the same translational
symmetry as the black objects. Topological defects such as a vertex (sting) and a domain wall are regular
objects with the symmetry. Besides, they have the different type of stability, i.e., topological stability.
Although perturbative analysis of dynamical stability shows local stability, topological stability indicates
global stability in flat spacetime. When gravity is taken into account, global stability is not guaranteed.
An event horizon may be formed in the middle of the transition to the “globally stable solution”. Then
all the energy density may be swallowed into the event horizon, and a vacuum black object remains.

In 4-dimensional spacetime, a static black hole solution with a scalar hair was discovered[5]. It is called
a monopole black hole. Although its field configuration of far region is similar to the global monopole,
the monopole black hole has an event horizon around the center. In 5-dimensional spacetime, a black
string solution with the analogous scalar hair exists. Then what happens if a non-uniform perturbation
is added to it? Which win, dynamical instability or topological stability? In this paper we investigate
stability of the regular global string solution in 5-dimensional spacetime as the first step, because the
above question is almost trivial if the global string is unstable against non-uniform perturbation.

The organization of this paper is as follows. In the next section, we construct the global string solution
in 5-dimenion. In Sec. 3, we perform a perturbative analysis and give a result.
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2 Global String

We consider a real triplet scalar field ®* (a = 1,2,3) which has spontaneously broken internal O(3)
symmetry, and minimally couples to gravity. The action is
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where R is the Ricci scalar of 5-dimensional spacetime. A and v are the self-coupling constant and the
vacuum expectation value (VEV) of the scalar field, respectively.

We shall assume that spacetime is static and has translational invariance along one of the spatial
direction. The metric form is

ds? = —f(r)e 2 ae? 4 mdr + r2(d6? + sin? 0dp?) + w(r)dz>. (2)

Basic equations becomes simpler by adopting function z(r) defined by gy = e*("), However, since the
function w(r) is useful when g,, — 0, we use w(r).
The scalar field is assumed to have unit winding number and so-called hedge-hog configuration,
xa
% = h(r)—, (3)
r
where z% (a = 1,2,3) are the Cartesian coordinates for the fixed z.
There are two physical parameters A and v in this system. By scaling the variables as

- d
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the action can be rewritten as
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In this formula, the coupling constant A is scaled out. The VEV appears only in the denominator of
curvature term and affects the system only when self-gravity is taken into account.
The basic equations are
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where a prime denotes a derivative with respect to the radial coordinate. We have omitted the bar of the
variables.

Basic equations are solved with suitable boundary conditions. Putting the regularity condition at the
axis r = 0, we will obtain the self-gravitating global vertex solution. The variables are expanded as

2 2 4 2
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Figure 1: The field configurations of the static global string in 5-dimensional spacetime (left: v = 0.15,
center: v = 0.19, right: v = 0.20). The solid, the dashed, and the dot-dashed lines show the field variables
h, f, and w, respectively.

09 and wq are not determined by the regularity condition. However, we can assume g = 1 and wy = 1
without loss of generality because of scaling of the coordinates ¢ and z. Therefore, the free parameter is
just hq.

At infinity » — oo, the variables are expanded as
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where z := 1/r, and
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Weo and do are determined by solving the basic equations from the axis to infinity. The solution is
characterized by the boundary values f; and w;. fi corresponds to the mass observed at infinity r — oc.
w; has following physical meaning. Since there is the translational invariance along the z axis, the
spacetime can be reduced to a 4-dimensional system by Kaluza-Klein dimensional reduction. Then the
metric function w(r) becomes a dilaton field. w; is related to the scalar charge of this dilaton field.

The first step to obtain the static solution is choosing a value of h; at the axis. And secondary, we
integrate numerically the basic equations from the axis to r — oco. The field variables diverge at finite
r in the most cases, and hence, the value of h; should be tuned to satisfy the boundary condition at
infinity by iterative method. In this sense, h; is a shooting parameter.

Fig. 1 shows the field configurations of the static global string in 5-dimensional spacetime. For the
large VEV (v & 0.20), the metric function w vanishes and the numerical calculation stops at finite r.

3 Stability analysis

In this section, we analyze stability of the global string solution obtained in the previous section. The
metric is perturbed as

g,uv(t, l,a) = guu(l'a) + h,u.l/(t7 l'a)a (10)

where g, (%) is the static solution and hy,, (t, 2*) is perturbation function. Here, we define a new variable
by

1_
wuu = h;w - igm/ha (11)
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Figure 2: The configuration of the perturbation functions (left: v = 0.15, k = 0.5, o = 0, right: v = 0.15,
k = 0.5, 0 = 1.0). The solid, the dotted, the dashed and the dot-dashed lines show the field variables 7,
N, L, and z, respectively.

where h = h,*, and adopt the gauge condition ¢, = 0. The perturbation of the scalar field is

Oo(t,2%) = B(z) + 6D%(t, 2%), (12)

where ¢(2?) is the static solution.
We assume that perturbation does not depend on 6 and ¢ and adopt the metric perturbation as

—fe "N S, 0 0 Sy,
iS4 i 0 iS,.
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where the functions N, L, T, S, Sr», St», S.. are the functions of r. The perturbation of the scalar

field is assumed as "

50 = n(r)”“"? (14)

The perturbation equations are obtained by substituting these ansatze. They are, however, tedious and
we do not show them here explicitly.

The perturbation equations are integrated with the regular boundary condition at the axis. If there are
bound states with 02 < 0, the perturbation grows exponentially with time, and the solution is found out
to be unstable. By our analysis, however, we cannot find such modes. Configurations of the perturbation
functions with o2 = 0 are shown in Fig. 2. In case where unstable modes exist, the perturbation functions
with ¢2 = 0 usually have extremum points and nodes. But we cannot find them in Fig. 2. These facts
imply that the static global solutions are stable against the perturbation assumed above. All the details
will be reported elsewhere[6].
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