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Introduction

In this thesis we present the motivations to study supersymmetric dark mat-
ter through indirect detection with y-rays. This is a part of a very interesting
research area common to astrophysics, cosmology and fundamental particle
physics. There are many experimental evidences and extremely compelling
theoretical motivations for the existence of dark matter in the Universe. Our
knowledge of the matter and energy content of the Universe has been greatly
improving over the latest years. The picture emerging from recent data col-
lected with a number of complementary techniques seems to be remarkably
self-consistent, pointing at a flat Universe with about 70% of its present
average energy density in a cosmological constant term and about 30% in
non-relativistic matter. Recent measurements of the cosmic microwave back-
ground radiation indicate that the greater part of the non-relativistic matter
is of a non luminous form. One of the major challenges in physics, today, is
to understand the actual nature of this non luminous matter.

The plan of the thesis is the following: in chapter 1 we introduce the dark
matter problem as it arises from the observational point of view and we setup
the cosmological theoretical framework in which dark matter can be studied.
We also review the possible dark matter candidates, and we try to single
out the best motivated candidate. We see that weakly interacting massive
particles are among the leading dark matter candidates: they would naturally
appear as another of the thermal leftovers from the early Universe, and, at
the same time, their existence is predicted in several classes of extensions of
the Standard Model of particle physics.

In chapter 2 we just approach the fundamental particle physics side of
the problem. We start describing supersymmetric theories as possible exten-
sions of Standard Model. At the end we define the minimal supersymmetric
extension of the Standard Model.

In chapter 3 we introduce the powerful tool of the renormalization group
to show it is possible to obtain low energy predictions from a fundamental
high energy theory. We also describe a particular underlying theory, called
minimal supergravity, that allows to reduce the number of free parameters



and so to simplify the phenomenological analysis. At the end we describe
the numerical procedure we have used to evolve, with renormalization group,
these high energy parameters to the low energy scale.

In chapter 4 we describe in details the best motivated candidates in the
context of R-parity conserving supersymmetric theories: the lightest neu-
tralino. We show the possible relevant neutralino interactions that allows for
an indirect detection.

Finally in the last chapter we analyze in details what can be learned of
the dark matter properties from the already available data coming from -
ray experiments and what we can expect from the upcoming experiments.
In particular we concentrate our attention on the y-rays coming from the
Galactic Center that gives good chances to probe for supersymmetric dark
matter.



Chapter 1
Dark Matter

1.1 Introduction

The dark matter problem is one of the most fascinating and intriguing issue
of a research area that resides in the intersection of both astrophysics and
fundamental particle physics.

Naively speaking, dark matter is a kind of a non luminous matter that
is present in the Universe, whose actual nature has to be yet determined.
The origin of the dark matter problem goes back to the early observations
of the mass to light ratios of galaxies [1]. The argument used there can be
formalized as follows. Given the numerical distribution of galaxies n(L) with
total luminosity L, one can compute the mean luminosity density of galaxies:

L— /n(L) LdL (1.1)
which is experimental determined to be [2]:
L£L=2402-10°h Ly Mpc™® (1.2)

where L, = 3.8-10% erg s™! is the solar luminosity and h is the present value

of the Hubble constant H, parametrized in unit of 100 Km Mpc ts™':

Hy

h = 1.3
100 Km Mpc™" s-1 (13)

One can define a critical density p. = 3H?/87Gy, in terms of which it is
possible to define a critical mass-to-light ratio:

M Pe M@
— | =—=~1 h— 1.4
<L> L+~ 1390 I (1.4)



which, in turn, can be used to determine the cosmological matter density
parameter (see for details the following section):

@) w

The mass-to-light ratios are strongly dependent on the distance scale on
which they are determined [3]. In the following table, we summarize the re-
sults on different distance scale, ranging from that of the solar neighborhood
to the largest scale of clusters of galaxies:

Distance scale M/L Q
Solar system 2 £1 (in solar unit) | 0.001
Galaxies ~ 10h 0.01
Small group of galaxies ~ 100h 0.1
Clusters of galaxies ~ 500h 0.3

Thus, when one considers the scale of galaxies and larger, the presence
of dark matter is required. There are other observational evidence and the-
oretical motivations for considering the existence of the dark matter. From
the observational point of view the most striking evidence comes from the
rotation curves of the spiral galaxy. In fact, it is possible to measure the
rotational velocity v of the neutral hydrogen clouds inside a spiral galaxy
using the 21-cm emission lines. The result, when expressed as a function
of the distance r from the center of the galaxy, is that the velocity remains
constant well beyond the point that corresponds to the fall-off to zero of the
luminosity, as can be seen in figure 1.1. It can be shown that the Newton
laws, assuming that the galaxy is in virial equilibrium, imply that if the bulk
of the mass is luminous, then beyond that point the mass M would be con-
stant and v? oc 1/r. But this not the experimental result, as the rotation
curves appears to be flat well outside the core of the galaxy.

Another compelling evidence comes from larger scales than the galactic
one, that is that of clusters of galaxies. In this case, the experimental data
are available from strong gravitational lensing of a single background galaxy,
of known red-shift, beyond a cluster of galaxies [7]. Using the cluster grav-
itational lensing, the existence of multiple images given by the same source
at a known red-shift z allows to calibrate in an absolute way the total cluster
mass deduced from the lens model. Hence having a physically motivated
lens model, it is possible to relate the total cluster mass to the cosmological
parameters that enter in a crucial way in the model definition. In this way it
is possible to test the overall geometry of the Universe and hence to constrain
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Figure 1.1: Rotation curve for the NGC 6503 spiral galaxy. The points
are the measured circular rotation velocities as a function of distance from
the galactic center. The dashed and dotted curves are the contribution due
to the observed disk and gas, respectively, while the dot-dash curve is the
contribution from the dark halo [6].

the values of €2, and €25, that are, respectively, the matter and cosmolog-
ical constant contribution to the total density of the Universe, and will be
described in detail in the following section. A different determination of €2,,
and 2, can be obtained by the study of the relation between the luminosity
distance dr(z) and the red-shift z for a supernova sample at z < 1 and from
measurements of the cosmic microwave background (CMB) [8].

The last resort to get an estimation of €2, on even larger scale is to study
the distribution of peculiar velocities of galaxies and clusters. On these scales,
there are measurements [9] that indicate a lower value for the overall matter
density in the range:

Qn>~02+05 (1.6)

Again, this result is in good agreement with the other evidences coming from
smaller scales.



1.2 Theoretical motivations

From the point of view of the theory there are as many compelling reasons
as from the experimental point of view, to consider the existence of the dark
matter. Let us start by defining the theoretical framework: the cosmological
standard model. We assume that the Universe can be described in terms of
a Friedmann-Robertson-Walker (FRW) solution of the Einstein equations of
General Relativity with a perfect fluid energy-momentum tensor. The metric
of a FRW solution is a maximum spatially symmetric solution, that formally
embodies the observed isotropy and homogeneity of the Universe, whose line
element can be written as:

ds® = —dt? + a(t)? + 12 (d6? + sin0 dg?) (1.7)

-
1—Fkr?
where a(t) is the cosmological scale factor, k is the curvature constant of
the 3-dimensional subspace. The values that k£ can assume, choosing the
appropriate normalization, are £ = —1,0, 1, that correspond, respectively,
to an open, spatially flat and closed Universe. The coordinates r, # and
¢ constitute the so called comoving reference frame, in which a particle at
rest remains at rest, with r, § and ¢ constant. What is changing is the
metric that is not time independent due to the overall scale factor a(t).
Motion with respect to this privileged reference frame is usually addressed
as peculiar motion. Because the momentum p of a freely moving particle
scale like the inverse of the scale factor a~', a measurement of the peculiar
velocities require a difficult independent determination of both distance and
velocity of the object, and so can be used to probe the mass distribution in
the Universe. The equation (1.7) is a solution of the Einstein equations of
General Relativity (in unit with ¢ = 1):

1
G =Ry — §R9W +Agu = —87Gn T, (1.8)

where I, is the Riemann tensor, R is the Ricci scalar and 7),, is the energy
momentum tensor. In equation (1.8) we have introduced the A term, that is
the (in)famous cosmological constant, whose nature is still controversial. Un-
der the previously mentioned hypothesis of isotropy and homogeneity, that
are consequences of the so called cosmological principle, the energy momen-
tum tensor assume a particularly simple solution:

T;w - dlag (papapap) (19)

where p and p are respectively the density and the pressure associated to
the matter content of the Universe, assuming that it can be described as a
perfect fluid.



The expansion rate of the Universe can thus be determined once the
Friedmann equation is written down:

> 8rGy kA

_ 4z 1.10
Pty (1.10)

where we have introduced the Hubble parameter, that describes the evolution
rate of the Universe:

= (1.11)

a

where the dot indicates a time derivative, i.e. @ = da/dt.

The Friedmann equation can be solved for a(t) once p is assigned, so the
evolution of the Universe is completely determined by the scale factor a(t).
This can be done using a local energy conservation law, that in the standard
cosmological scenario is given by:

d d
Ta (pa®) = —3p%a3 (1.12)
where p = p(p) is the pressure. Hence we have to supply an equation of state,
too.

In the case of a perfect fluid composed only by radiation and matter, the

equations of state are, respectively, given by:

1
p=3p
p=0 (1.13)
Defining the critical density of the Universe p. as:
d2 87TGN
H?> =— = . 1.14
" 7P (1.14)

we are able to introduce an useful dimensionless parameter, the total density
Q:

p
= — (1.15)
Pe
in terms of which we can rewrite the Friedmann equation (1.10) as:
(Q—l)H2—£ (1.16)
== .
where now the values of £ = —1,0,1 correspond respectively to 2 < 1,

2 =1 and © > 1. Recalling that we have considered, in the Friedmann
equation, the presence of a cosmological constant A, then the total density



parameter would be the sum of two pieces ;; = Q2 = Q,,, + Qa. The first
contribution €2, is due to the matter density, associated to baryonic (from
now on indicated by Q) and non baryonic (more or less exotic) matter, while
the second one Q) = A/3H? is the contribution coming from the cosmological
constant, whose presence is a long standing problem in cosmology [15].

A very interesting indication coming from the recent CMB measurements
is the determination of the total density €2;,; as well as the matter den-

sity €2,,. Current experimental CMB anisotropy measurements coming from
BOOMERanG gives the following values [21]:

Qtot - 103 Zl: 006
Q,,h% = 0.12+0.05
Qph® = 0.0217395 (1.17)

where h = 0.72 £ 0.08 is the present Hubble constant [20], expressed in
units of 100 Km s~ Mpc=t. Analogous measurements are available from the
MAXIMA and DASI experiments. Their data are in substantial agreement
with that of BOOMERanG [22][23]. More recently there has been an im-
pressive improvement in the precision of the €2 determination coming from

the WMAP satellite data [24]:

Quor = 1.02 4 0.02
Q,,h? = 0.135+3:9%8
Qph? = 0.0224 + 0.0009 (1.18)

These data seems to give a very strong evidence in favor of a flat Universe,
and the discrepancy between the value of €2,,, and 25 suggest that a kind of
non baryonic dark matter is necessary in order to explain the observations.
From the theoretical point of view, the fact the Universe is flat is naturally
explained in the framework of the inflationary theories, whose predictions
require €;,; = 1. This assertion does not mean, as sometimes erroneously
stated, that inflation change the overall geometry of the Universe, but that
locally the Universe is flat with a great precision [25].

A simple description of the typical inflationary mechanism can be ob-
tained including an additional scalar field! ¢, the so called inflaton field, in
the standard cosmological scenario of equation (1.10), whose dynamics is
specified by a suitable scalar potential V'(¢). The inflaton field couples with
gravity through a very peculiar stress-energy tensor 7),, with an “exotic”
equation of state:

p o< —p

!whose origin has to be yet explained in terms of some fundamental theory.
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where p and p are the pressure and density associated to the scalar field ¢.
~ Assuming the so called slow roll condition, with the first derivative term
¢ = 0¢/0t negligible, we obtain that the potential V' must be essentially flat,
in a wide region of ¢ values (see for details [25]). Under these constraints
the equations (1.10) and (1.12) gives, for the cosmological scale factor, an
exponential expansion law:

a(t) oc et (1.19)

that is very different form the typical power law solution of the standard
model cosmology. The inflationary paradigm simply suppose the existence
of a period in the very early Universe in which the dynamics was dominated
by the exponential expansion due to the presence of the scalar field. The
standard FRW expansion is recovered when the scalar field ¢ enters in the
region of the minimum of the potential V'(¢). This phase is usually addressed
as re-heating.

The inflation mechanism is able to solve a bunch of problems, starting
from the so called flatness, or curvature problem. This problem arise be-
cause {2 = 1 in standard cosmology is an unstable point in the evolution of
the Universe, due to the fact that the curvature term % in the Friedmann
equation (1.10) tends to dominate over the p term. During the inflation pe-
riod, instead, we have exactly the opposite situation and the k term is thus
negligible implying that the point {2 = 1 is now an attractor for the Universe
evolution. Moreover inflation solves the horizon problem, because, naively
speaking, our Universe is the result of the exponential expansion of a sin-
gle causally connected region, and can, after some tuning, produce a proper
spectrum for the inhomogeneities. Finally it solves the magnetic monopole
problem, that originate from the enormous production of this kind of parti-
cles in the Grand Unified Theory (GUT) phase of the Universe (referring to
an underlying unifying theory at energy of about 10'® GeV).

During inflation the overall matter density, included that associated to the
monopoles that could be present at that time, is diluted by the exponential
expansion to a negligible value. Thus the overall density is completely domi-
nated by the inflaton potential V'(¢). The ordinary matter is created during
the process of re-heating. Hence you have to suppose that the re-heating
occur not involving temperatures high enough to produce again monopoles.

We can try to summarize the scenario suggested by the CMB measure-
ments and the inflationary theoretical framework that as been described.
Firstly the prediction {2;,; = 1 is in a very good agreement with CMB
anisotropy measurements. Moreover there are strong evidences that dark
matter, at the end, must exist, since we cannot explain 2;,; = 1 only consid-
ering luminous objects. The most important indication, is that about 90%

11



of this dark matter must be of a non baryonic nature.
So, from the previous discussion, we could consider the total matter den-
sity as a sum of terms due to several contributions:

Q= Qp + Q, (1.20)

where (15 is the baryonic component and €2, is the component associated to
the dark matter.

1.3 Dark matter candidates

We have reviewed the present status of the dark matter problem, both from
the theoretical and experimental point of view. The conclusion that arise is
that there are strong indications of the presence of dark matter. So there are
clues, now we have to find out the guilty.

The first one to consider is something we already know to exist, that is
a kind of baryonic matter that for some reason does not emit light. Because
there is a stringent limit Qgh? ~ 0.021 (from the experimental values in
(1.17)), the baryonic matter cannot be the only dark matter component.
This limit is in very good agreement with the constraints coming from the
primordial cosmological nucleosynthesis. In fact the measured abundance of
light elements (D, *He, *He and "Li) is in the range

0.011 < Qph? <0.025

These values are very well explained in the context of the standard cosmo-
logical model. The main candidates of the baryonic type are the so called
massive compact halo objects, known as MACHOs. An example of these ob-
jects are the brown dwarfs, of typical mass of 0.08 M, that have not reached
the nuclear fusion threshold. Although there are several arguments against
a unique MACHOs composition of the dark matter (see for example [4]),
big-bang nucleosynthesis constraints cannot exclude an halo who is entirely
composed by MACHOs. Measurements of the galactic abundance of MA-
CHOs, using gravitational microlensing, come from the MACHO end EROS
experiments. The more recent results [27] shows that compact objects with
a mass between 2 - 10~ "My and 1M, cannot account for more than 25% of
the mass of a standard spherical, isothermal and isotropic galactic halo of
4-10"MM,,.

Another interesting possibility is that the galactic halo could be composed
mainly by neutral hydrogen. It is usually assumed that this hydrogen is
present in a gas form or even condensed in a kind of snow ball like state [4].
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Aside from the question of how this object get made, their existence requires
that their dimensions has to be sufficient in order to be gravitational bounded.
Under the simple assumption that this objects are electrostatically bounded,
the average density of the condensated hydrogen is p.h = 0.07 g cm~3 and
the binding energy per molecule is about 1 eV. In order to survive, these
kind of objects must be collisionless. This implies that the snow ball like
states must have formed when the CMB temperature was about 9.5 K. At
this temperature there is no equilibrium between the gaseous and condensed
state, and the snow ball would sublimate.

One can also consider the possibility of an halo composed of hot hydrogen
gas. It is possible to show, assuming that the gas is in thermal equilibrium,
that the temperature is:

Ty, ~1.3-10°K (1.21)

The typical hot gas detection is by observations of X-ray emission. It can
be seen that, in this case, the actual observations came in conflict with the
theoretical expectation of an hot gas with temperature given by (1.21). At
the end, there must be some cooling process of the gas in the halo, but this
process necessarily imply star formation, ¢.e. luminous objects.

Other candidates, that can be considered in the baryonic matter category,
are, for examples, black holes of mass near 1000, white dwarfs and neutron
stars. The black holes are by far the most intriguing candidates as sources
of dark matter. One possibility is that there exist primordial black holes,
which we can assume to be formed in the early history of the Universe,
before nucleosynthesis took place. In this case they cannot be considered as
baryonic dark matter and the crucial property in order to have a significant
portion of dark matter in the form of primordial black holes, is that the
primordial fluctuations spectrum is not a simple scale-free power law. It
can be estimated [17] the present contribution to the total density due to a
primordial black hole of mass M:

1

2
Qpprr (M) h* = 4.50 - 10" 3 (M) (%) (1.22)
where the probability 3 (M) represents the fraction of energy density that
is going to form a primordial black hole of mass M, computed at the time
of formation of that black hole. The other possibility is that they formed
at the end of the massive star gravitational collapse, and in this case there
is no reason against a large population of massive black holes as the main

baryonic dark matter component.

The previous listing exhausts the baryonic dark matter candidates. So
we are led to consider non baryonic component. At this stage there are two

13



different possibilities, corresponding to two different cosmological scenarios,
from the point of view of the structure formation: particles that can be
classified as hot dark matter (HDM) and particles that can be classified
as cold dark matter (CDM). The two terms, refer to the velocity of these
kind of particles at the moment of the structure formation, in particular of
the galaxy formation. Hot particles were highly relativistic, while the cold
particles were non relativistic at that moment. These two scenarios lead to
a very different primordial spectrum fluctuations [5]. The main implication
of a scenario with hot dark matter is that it cannot cluster on galaxy scales,
until it is cooled down to reach non relativistic speeds [28].

If we assume an hot dark matter scenario, we can consider essentially one
candidate, that is a light neutrino. Recent analysis [10], assuming different
theoretical framework, put an hard constraint on the lightest neutrino mass,
that has to be of the order of 1072 eV at 99% confidence level. This, in turn,
put an even harder constraint on the cosmological relic density of a Dirac
neutrino. In fact the relic density is approximately Q, ~ (m,/93 eV) and
that of a Majorana neutrino is 1/2 of this quantity. Moreover, a free stream-
ing relativistic neutrino suppress the growth of the primordial fluctuations
on scales below the horizon (Hubble scale ¢/H (t)), until they become non
relativistic (see, for a recent review, [11]).

From the point of view of the relic abundance the observational evidences
imply that the cosmological energy density of all the light weak interacting
neutrinos is constrained in the range:

5-10° <Q,h*<9-10 2 (1.23)

All these consideration, strongly imply that a light neutrino cannot be the
dominant component of the dark matter. There is an important exception
to this scenario when one introduce the possibility, absent in the Standard
Model (unless one consider non renormalizable lepton number violating in-
teractions), to consider a right handed neutrino. In this way one is able to
generate, through the Higgs mechanism, in a way analogous to the other
leptons, Dirac or Majorana mass term. In fact, if we add a right handed
state vg it is possible to generate a Dirac mass term for the neutrino:

myVRV],

The corresponding mass parameter is given by:
Y
V2

where Y, is the neutrino Yukawa coupling and v is the vacuum expectation
value of the Higgs field. It is also possible to consider a Majorana mass term

(1.24)

my
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given by:
MVRI/R

In the case M > m,, the seesaw mechanism [18] produces two mass eigen-
states given by:

My, ﬁ” my, ~ M (1.25)

where m,,, is a very light mass while m,, is heavy. The neutrino state 14 could
constitute an excellent dark matter candidate, but the viable mass range in
order to obtain a consistent structure formation scenario, is quite restricted
(see [19]).

Now we turn to the more interesting scenario of the cold dark matter. In
this scenario we have to consider more or less exotic particles that are not
yet discovered. The main candidates could be divided into two categories:
the axions and the weak interacting massive particles (WIMP). The axion
boson (technically a pseudo Nambu-Goldstone boson [13]), let us indicate?
as a, arise as consequence of the Peccei-Quinn (PQ) solution of the strong
CP problem in QCD (see [12] and references therein). Recent experimental
constraints put for the axion mass the following limit:

m, < 1KeV

and this imply that the early PQ proposal is not at all correct. Astrophysical
limits are more stringent and rule out, for the axion mass, the interval:

0.4 eV <m, <200 KeV

while an axion with mass m, > 200 KeV is too heavy to be produced. If
this type of particles have been produced in the QCD phase transition in
the early Universe, then they could have the right cosmological density (of
order of Q, ~ 1). The experimental techniques that could probe a large
portion of the axion parameter space rely on the interaction between axions
and photons. The possible form of the interaction lagrangian is:

—

Lo = —gayE-Ba (1.26)

where ¢, is the interaction coupling constant, that, in general, is weakly
model dependent, E and B are the electric and magnetic fields, while a is the
previously mentioned axion field. The coupling constant, in the interesting
mass range, is very small, and so the expected lifetime is greater of the age

2not to be confused with the scale factor a(t)
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of the Universe. The axions could be detected via resonant conversion of
photons in a strong magnetic field [14].

We exhaust the list of cold dark matter candidates with the, by far, largest
class of particles, the WIMP class. These are stable particles that usually
appear in some extension of the Standard Model and that interact with the
ordinary matter mainly trough weak interactions. One can consider different
type of these candidates, like an heavy fourth generation Dirac or Majorana
neutrinos or the neutralino and sneutrino in supersymmetric models. The
most promising candidate is the neutralino, that will be described extensively
in chapter 4, but many considerations that can be done are equally valid
independently by the exact WIMP nature.

1.4 WIMP Relic Density

We now focus only on WIMP candidates and the first task to perform is
to get an estimate of the relic cosmological abundance of these particles. It
has been shown (][29] and reference therein) that if a stable particle, let us
indicate it with y, exist, it could have the right cosmological abundance to
be a good dark matter candidate. Here, we do not need to specify in details
the nature of this particle. Such a particle exists in thermal equilibrium and
in a great quantity in the early phase of the Universe expansion, when the
temperature is:
T>m,

where T' = T'(t) is the temperature of the Universe at a given time ¢ and m,,
is the WIMP mass. The equilibrium abundance is maintained trough the
annihilation of the particle with its own antiparticle y into a lighter couple
of particle-antiparticle .

The direct and indirect processes are:

X)Z—>ll_
Il — X

In many case of interest y is a Majorana particle, so it coincide with its own
antiparticle y = x. As the Universe cools down to a temperature:

T < m,

the equilibrium abundance drops exponentially until the rate of the direct
annihilation reaction, that is xy — [[, falls below the expansion rate of the
Universe H. At that point the interactions which maintains thermal equilib-
rium are not able to work anymore and so the relic cosmological abundance

16



freeze-in. It is rather clear that the result of the cosmological abundance
calculation for a thermal relic is crucial to the arguments for WIMP dark
matter.

Let us analyze a simple case where in addition to the known particles of
the Standard Model there exists a new, yet undiscovered, stable WIMP of
mass x. In thermal equilibrium the number density of the x particle is given
by:

e g 3
nél = f(p)d’p 1.27
= [0 (127
where ¢ is the number of degrees of freedom of the particle and f(p) is the
Fermi-Dirac or Einstein-Bose distribution function. There are two limiting
cases corresponding to the two regimes of high and low temperatures we have
seen before:

ny! o T3 for T > m,
T 3/2 .
ny ~g <rr;>; ) exp < ;?X> for T'< m, (1.28)

where in the last case we can see the their density is Boltzmann suppressed. If
the expansion of the Universe were so slow to maintain thermal equilibrium,
the number of WIMPs today would be exponentially suppressed. In this case
we would not have WIMPs at all. However we remind that the Universe is not
static (recall the FRW solution (1.7)) and so the thermodynamic equilibrium
cannot be ensured during the whole evolution. In fact, at high temperatures,
i.e. T > m,, the x particles are present with a great abundance and the
annihilation process into lighter particles, as well the inverse process, goes
on quickly. But when 7" < m, the number density n}? drops exponentially.
The annihilation rate of the x particles, is given by:

['=ny (0ann v) (1.29)

where (04, v) is the thermally averaged total annihilation cross section of
xX into lighter particles times the relative velocity v. When I' drops below
the expansion rate:

I'<H

there is a freeze-out condition for the WIMPs. In fact, the annihilation time
scale given by I is less than the Hubble constant H, i.e. the time scale for
the Universe expansion.

The simple scenario we have presented, can be quantitatively encoded into
the Boltzmann equation, which describes the time evolution of the number
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density n,(t) of a generic WIMP:

% +3Hny, = — (Cann V) [(nx)2 - (n;q)Q] (1.30)
where H and a = a(t) are, respectively, the Hubble constant and the scale
factor defined in section 1.2. The second term on the left-hand side (LHS) of
this equation accounts for the expansion of the Universe, being proportional
to H. Without number changing interactions, the right-hand side (RHS)
would be zero, and we recover the previous results where n, oc ¢ (in this
regime there are roughly as many x particles as photons and a oc T~ in the
radiation dominated era). The two terms in brackets on the RHS of equation
account for annihilation and creation of WIMPs in the direct and indirect
channel. At the equilibrium we clearly have that this term is zero. The
equation (1.30) describes both Dirac particles as well as Majorana particles
which are self annihilating, because, in this case, x = Y. However the two
cases are distinct, because for Majorana particles, the annihilation rate is:

2
% (Tann v)
and in each annihilation two particles are involved, and so this cancels the
factor 2 in the annihilation rate. For Dirac particles which have no particle-
antiparticle asymmetry, n, = ng, the Boltzmann equation (1.30) still holds.
In this case the total number of particles plus antiparticle is now 2n,. In
the case of particle-antiparticle asymmetry, the relic abundance is generally
given by this asymmetry [26]. A typical example is given by the relic proton
density that is essentially fixed by the proton-antiproton asymmetry, i.e. the
baryon number of the Universe.

There is no known closed form solution for the Boltzmann equation, but
it is possible to write down an approximate solution for the case in which
(Oann v) is weakly energy dependent. In this case the WIMP relic abundance
is given by [29]:

QO h? = myNx (3 107" ¢m? sl> (1.31)

Pe <0ann U>

There is no dependence from the WIMP mass, modulo logarithmic correc-
tions, and it is inversely proportional to the annihilation cross section.

We can show some examples in figure 1.2 of numerical solution, per co-
moving volume, of the Boltzmann equation, denoted with dashed lines. They
are functions of x = m, /T, that increase with cosmic time. For compari-
son there is also the equilibrium solution, denoted with a solid line. The
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Figure 1.2: Comoving number density of a WIMP as a function of x =
m, /T. The dashed curve are the actual abundances for different thermal
averaged annihilation cross sections while the solid curve is the equilibrium
abundance [28].

relation (1.31) shows that, if a stable new particle exist with a weak scale
interaction, i.e. with an annihilation cross section of the order of:

(Cann V) ~ 107%° cm?® 57! (1.32)

then it will account for the right order of magnitude for the relic abundance.
This is a quite interesting result because there is no a priori reason for a weak
scale interaction to have something in common with the relic abundance, that
is a cosmological parameter. Hence the most motivated candidate for the
dark matter is a stable particle associated with new physics at the electroweak
scale.
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Chapter 2

Supersymmetric theories

2.1 Introduction

We have seen in the previous chapter that the most motivated candidate for
the cold dark matter, that seems to be the only scenario compatible with
our current understanding of the structure formation, is a kind of WIMP
particle. These candidates have to be found in some new theoretical ex-
tension of the Standard Model (SM) of the fundamental interactions based
on the gauge group SU(3) ® SU(2) ® U(1). The SM describes in an accu-
rately way, up to the energy currently reached in the experiments £ ~ 1TeV/,
the electroweak interactions of the Glashow-Weinberg-Salam model and even
the QCD section of the strong hadron interactions. However the SM pos-
sess some undesirable features, at least from an “aesthetic” point of view.
In fact, it is quite disappointing that the SM depends on an high number
of free parameters, like the three coupling constants, the two Higgs poten-
tial parameters, the fermion masses, the angles and phases associated to
the Cabibbo-Kobayashi-Maskawa (CKW) matrix. Moreover, the SM does
not include the gravitational interactions and does not lead to the coupling
unification at high energies. Moreover it is overly sensitive to radiative cor-
rections. This problem is common to all gauge theories with a spontaneous
broken symmetry. In fact the radiative corrections to the mass of the scalar
particle, like the Higgs one, quadratically diverge due to fermion loops. The
classical Higgs scalar potential is:

V=m%|H?+\H (2.1)

where m?; is the Higgs boson mass squared parameter and « is the coupling
constant. The SM requires a non-vanishing vacuum expectation value (VEV)
for H at the minimum of the potential. This can be achieved if m% < 0,
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resulting in < H >= y/—m?%/2)\. Since we know experimentally that <
H >=174GeV, it follows that m% ~ — (100 GeV)>.

Figure 2.1: Quantum corrections to the Higgs mass due to: (a) fermion loop,
(b) scalar loop

The Higgs boson mass squared receive quantum corrections and so can
be written as:
2 _ 9 2
My = Mige +0M (2.2)

where the correction dm, coming from the loop (a) in figure 2.1 is:

2 . [* d'k
om Na/o (f—myg) (4 p—my)

where « is the coupling constant, my is the fermion mass, p is the scalar par-
ticle momentum and A is the cutoff energy scale of our theory, beyond which
the theory is not valid anymore. For the SM, A = Mgy, the unification
scale. From equation (2.3) we can see that the scalar particle masses are of
the order A, so it is necessary that my.. in the relation (2.2) be of the same
order of aA. This requires an extremely precise fine tuning, that seems very
unnatural. In fact this kind of problem is known as the naturalness problem.
At the same time the SM does not explain why my < aA, and this is known
as the hierarchy problem. All these facts seems to indicate that the SM is a
low energy theory approximation of a more fundamental theory.
Supersymmetry seems to be able to solve in a simple and natural way
(from a theoretical point of view) both problems. This enhanced symme-
try establishes a perfect balance between bosonic and fermionic degrees of
freedom. So supersymmetric partners of the ordinary SM particle possess
the same quantum numbers and the same mass, but have different spins.
In this way the naturalness problem is immediately solved, because to ev-
ery fermionic loop is associated a bosonic loop, in which the particle that
flows in the loop has the same mass and couplings of the fermionic one. Due

~ O () A? (2.3)
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to the different statistic of fermions and bosons, the two contributions have
opposite signs and so the quadratic divergences is cancelled:

dmy = émj — dm; =0 (2.4)

A supersymmetric theory has the very important property of being free
from quadratic divergences. But, supersymmetry can only be an approximate
symmetry of the underlying theory of fundamental interactions since it must
be broken at the energy scales that are currently probed by our experiments.
In fact, to agree with experiments, the superparticles belonging to the same
supersymmetry multiplet must have higher mass. In this case (2.4) is not
exact and the Higgs boson receives a radiative contribution of the order of
the supersymmetric mass scale Agpysy:

5qu ~ A%USY (2.5)

In order to solve the hierarchy problem dmpy must be of the same order
of the mass my and this, in turn, implies that the supersymmetry scale is of
the order:

ASUSY ~ 0(1 TQV) (26)

To summarize, we can say that supersymmetry is able to solve, at the
same time, the naturalness and the hierarchy problem, and that this solution
essentially sets the scale to which supersymmetry appear. Moreover it is
possible to find inside the supersymmetric theories massive stable particle
that are the natural candidates as WIMP constituents of the dark matter.

In the following sections we will introduce supersymmetry and his impor-
tant properties. We will introduce the necessary mathematical ingredients,
and define the minimal supersymmetric extension of the SM, indicated as
MSSM, that constitutes our theoretical framework in which to describe the
neutralino as a natural supersymmetric candidate for the dark matter.

2.2 Supersymmetry

In this section we define formally the concept of supersymmetry, a trans-
formation that turns a bosonic state into a fermionic state. Let us recall
that, in ordinary gauge theories, like the SM, fermions and bosons belong
to different representations of the gauge group, and only the gauge vector
boson interactions are completely determined by the local gauge invariance
of the theory. So we could introduce a symmetry that links in some way the
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different representations of the gauge group. Formally [31] we can define the
action of an operator () as the generator of this symmetry:

Q |Boson) = |Fermion) Q |Fermion) = |Boson) (2.7)

and this operator must be an anticommuting spinor, due to the different
statistic. Let us sketch a simple argument that demonstrate this statement.
Because fermions and bosons behave differently under rotations, the operator
(2 cannot be invariant under such rotations. We can, for example, apply the
unitary operator U which, in the Hilbert space, represents a rotation in the
configuration space of 27 around some axis. Then from the formal definition
of equation (2.7) we get that:

UQ |Boson) = UQU™'U |Boson) = U |Fermion)
UQ |Fermion) = UQU U |Fermion) = U |Boson) (2.8)

since the fermionic states pick up a minus sign when rotated trough 27, while
the bosonic state do not, we have:

U |Fermion) = — |Fermion) U |Boson) = |Boson)  (2.9)

and since fermionic and bosonic states form a basis in the Hilbert space, we
get:
UQU ' =-Q (2.10)

which implies that the rotated supersymmetry generator picks up a minus
sign, just as a fermionic state does. Extending this analysis to an arbitrary
Lorentz transformation shows precisely that () is a spinor (anticommuting)
operator. The result of a Lorentz transformation followed by a supersym-
metry transformation is different from that when the order of the transfor-
mations is reversed. Let us see how to derive the algebra of these symmetry
transformation. Firstly we require the theory' to be invariant with respect
to Poincare transformations, whose generators are the translation generator,
the momentum P,, and the Lorentz generators M,,. Moreover the theory
can possess a group of internal symmetry GG, whose generators can be indi-
cated with ¢;. The Poincare group and internal group generators satisfy the
following algebra:

[Pl“ P,,] =0
[Pus Mys] = i (9upPo — GuoFp)
(M, Myo| = i (Guo Mup + guoMyuo — 9upMoo — GupMuo)
ti, ti] = ifi;"th (2.11)

!we consider only theories in D = 4 space-time dimensions
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Coleman and Mandula [30] have shown, that under some general assumption,
like the existence of an non trivial S-matrix and the existence of a unique
vacuum state with a finite energy gap between it and the lowest particle state,
any group of bosonic symmetries of the S-matrix in a relativistic field theory
is the direct product of the Poincare group with an internal symmetry group.
This symmetry group, moreover, must be the direct product of a compact
semi-simple group with U(1) factors.

This important result imply that the Poincare group and internal sym-
metry group operators must commute with each other:

[Pw ti] =0
(M, ti] =0 (2.12)
and as a consequence we have the two following relations:
(W2 t;] =0 (2.13)
[P?,t;] =0 (2.14)

where P? = P,P* is the mass square operator and W? = W, W* is general-
ized spin operator, with W#* the Pauli-Lubanski vector, defined as:

1
W = —2 e P, M,

Equation (2.17) implies that every particle belonging to an irreducible
representation of the internal gauge symmetry group must have the same
spin, while equation (2.18) implies that they must have the same mass. This
is what usually happens in gauge theories, where the fact that particles in
the same multiplet have different masses is due to a symmetry breaking
mechanism. The Coleman and Mandula theorem prohibits the existence, in
an invariant Poincare theory, of bosonic operators that transforms fields of
different statistic into each other. As we have previously seen, this is possible
if we introduce fermionic operators. In this case the concept of Lie group
must be enlarged in order to taking into account fermionic generators[32].
The results is the so called superalgebras or graded Lie Algebras. If next to
the bosonic operators, let us indicate by B;, we introduce fermionic operators
F, (with the right spinor index «), we can write the commutation relations
for a superalgebra, that involves both commutator and anticommutator:

{Fa, Fs} = rag'B;
[Bi; B]] == iCijkBk
[Faa Bz] = SazﬂFB (215)
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where ro5, ¢;;F and s,;® are the structure constants of the algebra. The
simplest realization of this algebra is N = 1 supersymmetry, obtained im-
plementing the Poincare invariance and transformations generated by two
spinorial operators (), and QB (see the appendix A for the two component
Van Der Warden notation). The index N counts the number of fermionic
charges. The commutation relations are given by the equations (2.11) and
by the following relations:

{QaaQﬁ} = {Qda@ﬁ'} =0
{Qaa@ﬁ'} = QUZBP;L
[Qa, Pu] = [Qéwpu] =0
1

[@as Mu] = 5 () Qs

_ 1 -
[Qa, M) = —5Qs ()’ (2.16)

where the spinorial operators (), and QB belong, respectively, to the rep-
resentations (1/2,0) and (0,1/2) of the Lorentz group. They transform as
left-handed spinor for (),, and a right-handed spinor for QB- When they are
applied onto a field of spin j, they transform it in a field of spin j + 1/2.

Two important consequences of the supersymmetry algebra (2.16) are
the following relations that substitute the previously derived relations (2.17)
and (2.18):

[(W?,Qa] #0 (2.17)
[P?,Qa] =0 (2.18)

that shows that the elements of the same multiplet have different spins.
They belong to what is called supermultiplet. However particles in the same
supermultiplet must have the same mass. Because there are no experimental
evidence of this kind of supermultiplet, supersymmetry must be broken at
some energy scale.

It is possible to construct supersymmetric theories with a higher number
of generators N. Consistent renormalizable extended supersymmetric theo-
ries can be built for N < 4 [34]. If we consider also supergravity, consistent
theories can be built for N < 8 [55]. In the following discussion we will
concentrate on N = 1 theories.

2.3 Superfield formalism

We have defined an N = 1 supersymmetric theory as the theory that is
invariant under the transformations (2.16). In order to describe in a simple
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way this invariance, it is useful to introduce a mathematical tool that enlarges
the usual D = 4 space-time introducing fermionic coordinates: this is called
the superspace [33]. In the N = 1 case, superspace is built by introducing two
anticommuting coordinates, let us call §% and 6%, that satisfy the following
relations:

{6%,6°} = {0%,Qs} =[P, 0% =0 (2.19)
These coordinates commute with ordinary space-time translations. The two
coordinates % and 6% are Weyl spinor that corresponds to two inequivalent
representations of the group SL (2, C). Superspace is defined by the following
set of coordinates:

(a*, 6%, 6%)

where the x#’s are the ordinary space-time, bosonic, coordinates. More tech-
nically, ordinary space-time can be defined as the coset space of the Poincare
group (whose transformations has been defined in the equation (2.11)) over
the Lorentz group, and so in similar way we can define global flat superspace
as the coset space of the super-Poincare group (defined in the equation (2.16)
plus the ordinary Poincare transformations (2.11)) over the Lorentz group.

A generic supersymmetry transformation is defined in superspace as fol-
lows:

h (29, 0%, 0%) = (=7 Fut07Qut0%Qs) (2.20)
that is a convenient parameterization of the coset space, relative to some ori-
gin [33]. The application of two successive transformations h (x, 0, 9) h (y, ¢, f)
on superspace has the net effect of a translation:

(z#,0,0) — (2" + y" + i00"C — iCo"0,0 + C,0 + () (2.21)

where we have not written the spinorial indices. From this finite transfor-
mation it is possible to obtain the differential form of the generators ), and

Qs

_ 9 o pe
Qa = % — ZO'aBG 8u
Qs = _a% +i0°0%,0, (2.22)

recalling that P, = —i0,. It is possible to shown that the differential opera-
tors (2.22) are associated to the left multiplications acting on the superspace
coordinates. We could consider, as well, the differential operators acting from
the right:

0 - u Ad
Dy = —% — i0°0%,0, (2.23)



that satisfies the following anticommutation relations:

{D,,Ds} = —2iok 0,
{Do, Dg} = {Da, D3} =0 (2.24)

while D, and @), anticommute.

At this stage we are able to introduce the superfield concept, that is a
function of the superspace coordinates (x, 0, @) that realizes a representation
of the supersymmetry algebra. The superfield components can be retrieved
as a power series in # and f. This series has a finite number of terms,
because all the powers higher than 6% and 62 are identically zero, due to the
anticommutation relations. The more general form in which a superfield can
be written is:

F(2,0,0) = f(x) + 0¢(x) + Ox(x) +

+00m(x) + 00n(x) + 0ot 0v,(z) +
+000X(x) + 000 (x) + 0000d(x) (2.25)

From the algebra (2.16) it is possible to derive the mass dimensions of
the operator @, that is [@Q] = 1/2, and so [f] = —1/2. The field components
of the superfield have then increasing dimension from [f] to [d] — 2, while
the mass dimension of the superfield coincides with the dimension of lowest
component f. The fields ¢, x, A and ¢ have a spinorial index and so they
are fermionic fields, while the remaining fields f, m, n, v, and d are bosonic
fields. We know that the physical fields have dimensions 1 if they are bosonic
and 3/2 if they are fermionic. So it is possible to build two different kinds
of supermultiplets: the chiral and the vector supermultiplets. In the former
the fermionic component has the right mass dimension while in the latter the
vector component v, has the right bosonic mass dimension. All the other
fields in the supermultiplet are auxiliary fields that can be eliminated using
the equations of motion.

The superfield representation given by (2.25) is the more general possible
and it is reducible. So in order to reduce the representation we can impose
some constraints on the superfield. From these constraints we will be able to
build the chiral and the vector superfields.

2.4 Chiral superfields

The constraint that has to be imposed in order to define a chiral superfield
is:
Dy® =0 (2.26)
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To deduce the form of the chiral superfield ® it is convenient to introduce
a new variable:

y" = 2" + ifo"f (2.27)
and it is quite straightforward to show that the variable y satisfies:
D¢ (y*) = Dy (2" + i60"6) = 0 (2.28)

Every functions of the variable y and @ satisfies (2.26), too. The most general
solution of this type can be written as:

d = A(y) + V204 (y) + 00F (y) (2.29)

where the lowest component A(y) is a bosonic scalar field, ¢)(y) is a fermionic
field and F(y) is the auxiliary field component. The superfield @ is called
left-handed chiral superfield, because in model building it is used to contain
fermions of left-handed chirality. It is obviously possible to consider right-
handed chiral superfields, defined by the equation:

D,®' =0 (2.30)

where ® can be naturally expressed as a function of (y*)" = 2# —iflo#0 and
f. The expansion series in # power is, in this case, given by:

o = A" (y*) + V200 (y") + 00F" (y) (2.31)

2.5 Vector superfields

In order to define the vector superfield we must recall that, in every gauge
theory, the vector boson fields are real fields. To define a vector superfield V'
we then impose the reality condition:

Vi=v (2.32)

and this condition reduces the number of components to seven, five bosonic
and 2 fermionic [33]. To further reduce the number of components in the
vector field, we can use the so called Wess-Zumino (WZ) gauge. A vector
superfield in this gauge is given by:

_ __ __ 1 __
V = ~00"Gv,(x) + 099X (x) — iB00A(x) + 50000 D(x) (2.33)

and it describes a bosonic vector field v, and a fermionic spinorial field A,.
There are two interesting relations satisfied by a vector superfield:

1
V2= —599990#0”
V=0 (2.34)

due to the anticommutativity properties of # and 6.
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2.6 Supersymmetric lagrangians

A convenient way to obtain an invariant supersymmetric action is based on
the property that the highest component of a supermultiplet transforms as a
total space-time derivative [33][34][35]. The integral over the whole volume
vanish identically, if we impose that the fields are zero along the boundary
of the integration region. The common way to build an invariant action is
thus to consider only the highest components of superfields and product of
superfields. For chiral superfields the highest components is that proportional
to 06, called F-term, while for the vector superfields the highest components
is that proportional to #909, called D-term. Now we have to introduce the
Berezin integration [33] for anticommuting variables as:

do = 0, 0do = 1 (2.35)
/ /

and all the properties of this peculiar type of integration can be summarized
saying that the Berezin integration is equivalent to the differentiation:

/ 00, f (0) = % 0 (2.36)

and so: 5
/dga = % (237)

The invariant action can be explicitly written as:

S = / d*z ( / d*0Lp + / d29d2§£D>
= /d4$ (LF|90 + £D|969‘0‘) (2-38)

where we have introduced the symbol | to denote the projection over the
corresponding 6 and @ terms, and where £p and L, are respectively the
lagrangian density associated to chiral superfields and to vector superfields.
The chiral superfield lagrangian density is made out of chiral superfields.
The product of chiral superfields is again a superfield, while the product of
a right-handed chiral superfield ®' with a left-handed superfield ®, behaves
like a vector superfield. If we want to obtain a renormalizable theory we
have to use in the lagrangian operators with mass dimension d < 4 [59]. This
implies to have products of no more three chiral superfields, because the mass
dimension of a chiral superfield is equal to that of his lowest component, ¢.e.
d=1.
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The most general renormalizable lagrangian that contains only chiral su-
perfields ®;, with the index ¢ = 1,..., N running on the number of super-
fields, is thus [33]:

L= Dl

1 1
v0dd + [ (Ai@i + §mijq)z'q)j + ggijkq)i(qu)k)

Lt h.c.] (2.39)

where m;; and g;;; are the coupling constants, totally symmetric under the

exchange of their indices. The term ®®;

~_is the kinetic term, while
0600
the remaining terms describe the couplings and the interactions between the

fields. This can be observed more clearly if we write the lagrangian in terms
of component fields [36]:

Lo = 000" + A{OA; + FIF; + (2.40)
1
+ |:mz'j <AZFJ - 5%‘%‘) + giji (AiAjFy, — it Ar) + NiFj + hec.
From (2.41) we see that the auxiliary fields F; do not have a kinetic term.
Their equations of motion are purely algebraic and so can be used to elimi-

nate the fields F; from the lagrangian. This generates the cubic and quartic
interaction terms for the scalar fields A;:

Lo = i0,;0"; + AIOA; — %mz‘jwi%‘ (2.41)
—%mfjl/)z‘% — Giiithj Ak — g Ay — V (Ai, A)
where we have introduced the scalar potential V (Ai, A;‘) that is equal to:
V (Ai, A3) = FYF; = |\ + maA; + gipAi 4y (2.42)

where F* and F; are given in terms of the solutions of their equations of
motion:

Fy = =\, —mj Al — g;'kjkAzA;

The scalar potential V' is automatically bounded from below as a con-
sequence of the supersymmetry. The points for which F; = 0 are absolute
minima of the potentials.

Once we have written the lagrangian for the chiral superfields we can build
the lagrangian part involving vector superfields. The most straightforward
method is to write down the right kinetic terms for a vector field v, starting
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from a superfield V', defining a superfield that contains, as a component, a
field strength for the vector field f,, = 0,v, — 0,v,. This can be achieved
introducing two spinorial quantities:

W, = —iDDDaV
_ 1 _
Wi = —DDD:V (2.44)

where the superfield V' can be thought as the supersymmetric generalization
of the Yang-Mills potential. The superfields W, and W, are, respective, left-
handed and right-handed chiral superfields. Chirality follows immediately:

DWo =0
DsW; =0 (2.45)

The lagrangian that describes the kinetic term for a vector superfield is

given by:

1 - .
that, using the Wess-Zumino gauge can be written, in terms of field compo-
nents, as:

|95 (2.46)

Ly = —iv‘“’vw — iAo I\ + %DZ (2.47)
where we can recognize the two kinetic terms for the vector field v, (involving
the field-strength v, ) and for the fermionic field A. Again the auxiliary field
D has no dynamics and so it is possible to eliminate it trough the equations
of motion. In the case of the free theory, we simply have D = 0. In the
next section we will see how, in the more general case of an interacting gauge

theory, one is able to generate the quartic interaction terms for the scalar
fields.

2.7 Gauge invariance and supersymmetry

We have seen in the previous section how to build a theory, involving scalar,
fermionic and vector fields, invariant under supersymmetry transformations.
We have also seen that the superfield formalism allows us to write the theory
in a compact and very elegant way. The next step consists in requiring also
gauge invariance. In order to perform this task, it is necessary to extend the
notion of gauge transformations to superfields. This can be realized as in
the analogous non supersymmetric case: once the gauge transformations for
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the scalar and fermionic fields are defined, we introduce a vector field, that
belongs to a vector supermultiplet, which has the right transformation prop-
erties under gauge transformations and the right couplings with matter fields
in order to guarantee the invariance of the total lagrangian [37][38][39][40].

To see how the gauge invariance works let us start with a simple abelian
case in which the gauge group is U(1). The transformation changes a chiral
superfield by a phase:

O — = WD
of — o' = A 3! (2.48)

where g is the U(1) charge associated to the superfield ® and A is the trans-
formation parameter. Requiring ®' to be still a chiral superfield, it is easy
to see [33] that A must be a left-handed chiral superfield (so DzA = 0). In
the case of global invariance under U(1) transformations the superfield A
does not depend on space-time coordinates and so the chiral part of the la-
grangian (2.39) contains only a term that is not invariant under global U(1)
transformations:
Ai®;

We will not consider this term anymore. When we employ a local version of
the transformations (2.48) with A = A(z), we can see that even the kinetic
term @Z ®;| __is not invariant. The way to restore gauge invariance is by

0000
introducing a vector superfield V' that transforms as follows:

VoV =V4i(A-AT) (2.49)

and to redefine the kinetic term of the chiral superfields, with a minimal
coupling prescription, as:
ld; — dletV @, (2.50)

Analyzing the vector superfield transformations (2.49) in terms of com-
ponent fields, we see that they encode the correct gauge transformation for
the vector field v,,:

Uy = v, = v, — 10, (a — a”)
A=A =)
D—D =D (2.51)

where a is the scalar component of the gauge supermultiplet A. The fields A
and D are gauge invariant.
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The new transformation (2.50) is able to generate the usual minimal
coupling between matter and gauge fields. The lagrangian invariant under
both supersymmetry and gauge transformations can thus be written as:

1 o
L= W Walgy+ WalV*| 55+ Dl etV ®,

4+ Lsp
0000

+ h.c. (2.52)

1 1
ACSP = <—mz-j<I>i<I>j + ggijkq)i@jd)k)
06

2

where the term Lgp is the so called superpotential term and must contain
only gauge invariant combinations of chiral superfields. At first sight the
lagrangian (2.52) looks badly non renormalizable, due to the presence of the
kinetic term for the chiral superfields. But we have the gauge freedom to
evaluate it in the WZ gauge, where V3 = 0. Thus, the kinetic term for the
chiral superfields, written in terms of field components, assume the form:

dledV®| = FF* + ADA* +i0,05") + (2.53)

0000
N . .

vt <§¢)auz/) + %A*auA = %OMA*A) +

b

V2

where we have neglected the flavor indices. We see that in the WZ gauge the
lagrangian contains no terms with mass dimension higher than four.

The generalization to non abelian compact groups is only a little more
complex, but we can use the same formalism that we have developed before.
We define the same transformation rule for the chiral superfield as in the
equation (2.50), but now the parameter A is a matrix:

g (Ajwf) — A*)w,/)) + % <gD — %g%uv”) A*A

Ay = Tz’(;'Aa (2.54)

where the matrices T* are the hermitian generators of the gauge group in
the representation defined by the chiral superfield ®. In the adjoint repre-
sentation of the gauge group the matrices T satisty the usual commutation
relation:

[T, T"] = it**T" (2.55)
where t%¢ are the completely antisymmetric structure constants and we have
chosen an appropriate normalization for our hermitian generators. We must
introduce as many vector superfields V, as generators in the gauge group.
The generalization of equation (2.49) to the non abelian case leads to:

1 s -i. .
eV — eIV = e 19N o9V gioh (2.56)
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with A and V' given by:
Ay = TA,
Vij =TV, (2.57)

and where the minimal coupling is always defined as in (2.50). The super-
symmetric field-strength W* may be readily generalized to the non abelian
case:

|
W, = —ZDDe_gVDaegV (2.58)

where the vector superfields are matrices as in (2.57), but with the generators
in the adjoint representation of the gauge group. It is quite easy to verify
that:

Wy — W, = e A W,e™ (2.59)
under non abelian gauge transformations. The most general renormalizable
lagrangian invariant under both supersymmetry and gauge transformations
is still given by equation (2.52).

It is important to observe that every chiral superfield ® that appears in
the lagrangian (2.52) and that contains the matter fields of the theory, besides
belonging to a chiral representation of the supersymmetry transformations,
belongs to a representation of the gauge group. Usually this representation
is the fundamental one. In the same way, the vector superfield belongs to a
real representation of the supersymmetry transformations and to the adjoint
representation of the gauge group.

The superpotential defined in the equation (2.52) can contain, in general,
an arbitrary gauge invariant product of two or three chiral superfields. In
such a way it is possible to introduce, in the superpotential, terms that vi-
olate the conservation of some global quantum number, as the baryonic or
leptonic number. To avoid the appearance of such terms, we can constraint
the form of the superpotential introducing some new global symmetries in the
lagrangian. The supersymmetry transformations, in particular, allow to in-
troduce a general class of global continuous symmetries, called R-symmetries
[41][42].

The most simple situation is when we consider a discrete subgroup of these
symmetries, the so called R-parity transformations [43]. This transformation
introduce a new quantum number defined as follows:

R=+1 for ordinary particles

R=-1 for supersymmetric particles (2.60)

Sometimes it can be useful to recast R-parity in terms of the baryonic
number B and the leptonic number L:

R — (_1)3(371/)‘}'25 (261)
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where S is the particle spin. The introduction of this new quantum num-
ber R, besides preventing the violation of B and L, has an important phe-
nomenological consequence, especially from the point of view of the search of
a candidate for the dark matter: supersymmetric particles can be produced
only in couple from ordinary particles and they cannot decay in a state con-
taining only ordinary particles. This last property implies that the lightest
supersymmetric particle (LSP) is stable and thus can be a good candidate
for the dark matter.

2.8 Supersymmetry breaking

Any supersymmetric theory, in order to have phenomenological consequences,
must necessarily exhibit a supersymmetry breaking at some energy scale to
take into account the observational evidence that none of the superpartners
of the ordinary particles has been yet discovered. Yet we want the theory
free of quadratic divergences. There are two main mechanisms to realize
supersymmetry breaking: spontaneous supersymmetry breaking and soft su-
persymmetry breaking.

The spontaneous breaking of ordinary gauge symmetry is well under-
stood, but supersymmetry imposes additional conditions which need a more
careful analysis. These constraints rest on the property that the hamiltonian
of the supersymmetry generators Q, and Qg is [33]:

H= % (@1Q1 + Q1Q1 + Q2Q2 + Q2Q2) (2.62)

that is a direct consequence of the supersymmetry algebra (2.16). The equa-
tion (2.62) tells us that:
(V[H[¥) >0

for every state |¥). Moreover, it tells us that state with vanishing energy
density are supersymmetric ground states of the theory. Such states are
ground states because the expectation value of H positive semidefinite. They
are supersymmetric states because Fy,. = (0| H |0) = 0 implying that that
the vacuum state is invariant:

Qal0) = Qs =0 (2.63)

Ground states with E,,. = 0 preserve supersymmetry, while those with

FEyac > 0 break it spontaneously. The situation is sketched in figure (2.2).
Let us see briefly two examples of models that exhibit spontaneous su-

persymmetry breaking. The first one is a model that has been proposed
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Figure 2.2: Ground state of a theory that: (a) preserves supersymmetry
Eyee = 0, (b) breaks supersymmetry spontaneously Ey,. > 0

by O’Raifeartaigh [44], constructed from chiral superfields and in which the
ground state breaks supersymmetry. We know that the scalar potential is
given by the equation (2.42) with the auxiliary field F}' that satisfies the
equation of motion (2.43):

Fi = =X — mi A — gijrAiAj (2.64)

Every vacuum expectation value of (A;) = a; for which Fj, = 0 defines the
supersymmetric minima of the scalar potential. To break supersymmetry we
must choose special values for the parameters \,, m;, and g;;, that appear
in the equation of motion for F}, in such a way that the equation:

)\k + m;ea; + gijkaiaj = 0 (265)

has no solutions in the VEVs ¢;. In order to have no solutions and so to break
supersymmetry [33][44], it is necessary to introduce three chiral superfields,
with the simplest model given by the following superpotential term:

ESP = )\q)l + m(I)Q(I)g + gq)l(I)Q(I)g + h.c. (266)

The second model has been proposed by Fayet and Iliopoulos [45]. They
have shown how to break supersymmetry spontaneously in gauge theories
with abelian gauge groups. The key point is that the #00f component of
a vector superfield is both supersymmetric and gauge invariant. If a term
2kV is added to an abelian theory, it leads to spontaneously supersymmetry

breaking.
Let us write the lagrangian:
1 .
L= (WoWo + W) + etV ®) + dle™? @, +
+m (<1>1<1>2 + <1>{<1>;) 42KV (2.67)
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where k is a constant parameter with mass dimension d = 2 and ¢ is the
charge associated to the abelian group. In this model the scalar potential is
then given by:

1
V= 5D2 + F\F} + By Fy (2.68)

where D,F; and F5 are solutions of the equations of motion:

D+n+%(A’{A1 — AAy) =0
Fy+mA; =0 (2.69)

It can be shown that there is no solutions, in terms of the scalar fields A; and
Ay, that makes the scalar potential vanish V = 0. In this way supersymmetry
is spontaneously broken.

However, in the general case, it is very difficult to build models with
spontaneously broken supersymmetry in which the superpartners of the or-
dinary particles acquire sufficiently high masses. One possible solution may
be given by theories with dynamical supersymmetry breaking (for a review
see for example [46] and [47]), but we will not discuss these kind of theo-
ries here. Instead, we will see that supersymmetry breaking can be realized
simply adding to the supersymmetric lagrangian (2.52) suitable terms the
explicitly break supersymmetry, yet leaving the theory linearly divergent.
These terms are called soft supersymmetry breaking terms and their general
classification can be found in [48].

It can be shown that the only possible soft terms are general combination
of mass dimension d = 2 built by the scalar fields components, A; and F;, of
a chiral superfield:

Lbreak = /LQ (A2 + F2) (270)

We have omitted the internal symmetry labels and use the symbolic notation
A% = cijA;A;, and so on. This term accounts for a common mass term for
the spin-0 fields of a scalar multiplet. It is possible to write another term of
the same type:

Lbreak == ,U,2 (A2 - F2) (271)

which gives opposite contribution to the masses of A and F fields. Moreover
it is possible to introduce two other terms involving operators with mass
dimension d = 3. The first one is an F-term:

'Cbreak - ,U/;\)\ (272)

that gives a mass term for the gaugino A\ that appears in the vector mul-
tiplet. The second and last term that can be considered is an explicit non
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supersymmetric interaction term:
Lirear =7 (A* — 3AB?) (2.73)

that describes a trilinear coupling, with v as coupling constant, between
scalar fields. This list essentially exhausts all cases of soft supersymmetry
breaking. The important result is that mass terms for the matter fermions
of the type:

Loreak = ,U/JH/) (274)

can not be generated because they induce quadratic divergences for all mem-
bers of a scalar multiplet.

2.9 The Minimal Supersymmetric Standard
Model

We have discussed the general formulation of a theory both invariant under
N =1 supersymmetry and arbitrary gauge transformations. The lagrangian
that describes such a theory has been written in the equation (2.52) plus the
soft supersymmetry breaking terms described in the previous section. We
know that the physics below 17TeV is well described by the SM of the elec-
troweak and strong interactions, based on the gauge group SU(3) ® SU(2) ®
U(1). Therefore now we want to formulate the minimal supersymmetric
extension of the SM, the MSSM [34][35][49].

In the SM the matter fields are described by fermions with given chirality
and by the Higgs boson field (responsible for the mass generation mecha-
nism). The interactions between fields are mediated by the gauge vector
bosons. It is possible to insert these fields inside a supersymmetric formal-
ism in accordance with the following scheme:

SM field MSSM supermultiplet
fermion chiral
gauge vector boson vector
Higgs boson chiral

The fermions belong to the fundamental representation of the gauge
group, while the gauge vector bosons belong to the adjoint representation.
So it is not possible to put together fermions and vectors, inside the same
supermultiplet. Moreover, it is not even possible to insert the Higgs bosons
in the same chiral multiplet of the standard fermions because this does not
allow to obtain the right fermionic mass spectrum [43]. The crucial observa-
tion here is that in the SM left-handed fermions transform differently under
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the gauge group than the right-handed fermions. So they must be accommo-
date in different chiral supermultiplet. To every standard particle we must
associate a supersymmetric partner.

The names for the scalar partners of the quarks and leptons are con-
structed adding the prefix “s”, which is short for scalar. Thus generically
they are called squarks and sleptons (short for “scalar quark” and “scalar
lepton”). The left-handed and right-handed pieces of the quarks and leptons
are separate two-component Weyl fermions with different gauge transforma-
tion properties in the SM, so each must have its own complex scalar partner.
The symbols for the squarks and sleptons® are the same as for the corre-
sponding fermion, but with a tilde used to denote the superpartner of a SM
particle. For example, the superpartners of the left-handed and right-handed
parts of the electron Dirac field are called left- and right-handed selectrons,
and are denoted €;, and €. It is important to keep in mind that left-handed
or right-handed here does not refer to the helicity of the selectrons (they are
scalar particles) but to that of their superpartners. A similar nomenclature
applies for smuons and staus: iz, ftr, 77, Tr. In the SM the neutrinos are
always left-handed, so the sneutrinos are denoted generically by v, with a
possible subscript indicating which lepton flavor they carry: v, v,, v;. Fi-
nally, a complete list of the squarks is qr, ¢r with ¢ = u,d, s,c,b,t. The
gauge interactions of each of these squark and slepton fields are the same as
those of the corresponding SM fermion; for instance, a left-handed squark
like u;, will couple to the W boson while up will not. It seems clear that the
Higgs scalar boson must reside in a chiral supermultiplet, since it has spin 0.
Actually, it turns out that one chiral supermultiplet is not enough. One way
to see this is to note that if there were only one Higgs chiral supermultiplet,
the electroweak gauge symmetry would suffer a triangle gauge anomaly, and
would be inconsistent as a quantum theory. This is because the conditions
for cancellation of gauge anomalies include

Tr[Y?] = Tr[T2Y] =0,

where T3 and Y are the third component of weak isospin and the weak hy-
percharge, respectively, in a normalization where the ordinary electric charge
is Qe = T5 + Y. The traces run over all of the left-handed Weyl fermionic
degrees of freedom in the theory. In the SM, these conditions are already
satisfied, somewhat miraculously, by the known quarks and leptons. Now, a
fermionic partner of a Higgs chiral supermultiplet must be a weak isodoublet
with weak hypercharge Y = 1/2 or Y = —1/2. In either case alone, such a
fermion will make a non-zero contribution to the traces and spoil the anomaly

*from now on we will essentially use the notation of [36]
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cancellation. This can be avoided if there are two Higgs supermultiplets, one
with each of Y = 4+1/2. In that case the total contribution to the anomaly
traces from the two fermionic members of the Higgs chiral supermultiplets
will vanish.

We will call the SU(2) doublet complex scalar fields corresponding to
these two cases H, and H, respectively. The weak isospin components of
H, with T3 = (+1/2, —1/2) have electric charges 1, 0 respectively, and
are denoted (H,, H). Similarly, the SU(2) doublet complex scalar Hy
has T3 = (+1/2, —1/2) components (H}, H;). The neutral scalar that
corresponds to the physical SM Higgs boson is in a linear combination of H?
and H?. The generic nomenclature for a spin-1/2 superpartner is to add the
suffix “-ino” to the name of the SM particle, so the fermionic partners of
the Higgs scalars are called higgsinos. They are denoted by H,, H, for the
SU(2) doublet left-handed Weyl spinor fields, with weak isospin components
H}, HY and HY, H, .

This exhausts the classification of the chiral supermultiplets of the MSSM.
The matter content of the theory can be summarized in table 2.1, which gives
the transformation properties of the SM fields with respect to the gauge

group.

Supermultiplet | spin 0 spin 1/2 | SU(3) @ SU(2) @ U(1)

Q; (e de) | (urd) (3,2,1/6)
Ui Uk ul (3,1,-2/3)
d; d, di, (3,1,1/3)
Li (’lj/é/L) (l/ GL) (1,2,—1/2)
é; & el (1,1,1)

H, (# 1Y) | () ) (1,2,1/2)
H, (HO H;) (ffg f[;) (1,2, -1/2)

Table 2.1: MSSM chiral supermultiplets

In the first row of table 2.1 we have put the chiral superfields that contain
the component fields indicated in the other rows, 7 = 1, 2, 3 is a family index.
We have followed the standard convention that all chiral supermultiplets are
defined in terms of left handed Weyl spinors, so that in the table there are
the conjugates of the right handed quarks and leptons.

The chiral superfield @, neglecting now the family indices and the gauge
indices, stands for an SU(2) doublet chiral supermultiplet, whose component
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can be written as:

Q=qr +V20q, +0°F (2.75)
where ¢ = u for the weak isospin component T3 = +1/2, ¢ = d for the weak
isospin component T35 = —1/2 and F(@ is the associated auxiliary field. The

superfield @, instead, stands for the SU(2) singlet supermultiplet:
0= Wy +V20ul, + 02 F® (2.76)

where the bar we have used to denote fields, is a part of the field name and
does not denote any type of conjugation.

The vector bosons of the SM clearly must reside in gauge supermultiplets.
The fermionic superpartners are referred as gauginos. The SU(3) color gauge
interactions of QCD are mediated by the gluon ¢, denoted as g. The elec-
troweak gauge symmetry SU(2)®U (1) possess as gauge bosons W, W, W~
and B°. The corresponding spin 1/2 superpartners W+, WO W~ and B are
called, respectively, winos and bino. After electroweak symmetry breaking,
the WU and B° gauge eigenstates mix to give mass eigenstates Z° and 7.
The corresponding gaugino mixtures of W° and B, denoted by Z° and ¥,
are called, respectively, zino and photino: if supersymmetry were unbroken,
they would be mass eigenstates with masses my and 0. In the table 2.2, we
have summarized the gauge supermultiplets of the MSSM.

Fields spin 1/2 | spin1 | SU(3)® SU(2) @ U(1)

)
)
)
)

gluino, gluon g g (8,1,0
winos, W bosons | W* W0 | W+ o (1,3,0

bino, B boson BY B° (1,1,0

Table 2.2: MSSM gauge supermultiplets

The chiral and gauge supermultiplets appearing in tables 2.1 and 2.2
completely describe the particle content of the MSSM. We have already seen
that in a renormalizable supersymmetric theory, the interactions and masses
of all particles are determined just by their gauge transformation properties,
that in the case of the MSSM are given by the SU(3) ® SU(2) ® U(1) gauge
group, and by the superpotential W, that appear in the most general N =1
supersymmetric lagrangian that we have written in the equation (2.52).

The superpotential W is a function of chiral superfields only, and so it
determines every non gauge interactions of the theory:

1 1
W = Smiy®i®; + 5yijudi® P (2.77)
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Here we have slightly changed the notation to stress that the superpoten-
tial determines not only the scalar interactions but the fermion masses and
Yukawa couplings as well. Thus, once the supermultiplet content of theory
is given, the form of the superpotential is constrained by gauge invariance,
and so only a subset of the couplings m;; and y;;, are allowed to be non
zero. For example the entries of the mass matrix m;; can only be non zero
for 7 and j such that the superfields ®; and ®; transform under the gauge
group in representations that are conjugate of each other®. Likewise, the
Yukawa couplings y;;; can only be non zero when ®;, ®; and ®; transform
in representations which can combine to form a singlet.
The superpotential for the MSSM is given by:

Wirssm = pHyHy + (y,0QH, — ygdQHy — y.eLH,) (2.78)

where the fields that appear in this equation are the chiral superfields defined
in table 2.1 and where we have suppressed all the gauge and family indices.
The dimensionless Yukawa couplings y,, y4 and ¥, are 3 x 3 matrices in family
space. The first term in equation (2.78) is the so called “u term”, and it is
the only allowed mass term. It is the supersymmetric analogue of the Higgs
mass term, and it essentially unique because term like H'H, or H;H,; are
forbidden in the superpotential (2.78), which is an analytic function of chiral
superfields. It can be written in terms of an SU(2) doublet as:

pH,Hy = pe®” (H,),, (Hq) s (2.79)

where €’ is the SU(2) metric. In an analogous way, the second term, that
is a Yukawa type term can be written as:

yutQH, = * i, (y,)] Q% (H.), (2.80)

where now we have explicitly written the family indices ¢+ = 1,2,3 and the
SU(3) gauge indices a = 1,2, 3 of the fundamental representation 3.

The Yukawa matrices determine the masses and CKM mixing angles of
the ordinary quarks and leptons, after the neutral scalar components of H,
and H; get VEVs. Since the top quark ¢, the bottom quark b and the 7
lepton are the heaviest fermions in the SM, it is often useful to make an
approximation that only the (3,3) family components of y,, y4 and y, are
important:

000 000 000
Yu~ 1000 ya~ | 000 Ye~ |1 00 0 (2.81)
00w 00y 00y,

3in fact we will see that in the MSSM there is only one possible term of this type
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In this limit, only the third family and Higgs fields contribute to the MSSM
superpotential. However, it is useful to remember that the dimensionless
interactions determined by the superpotential (2.78) are often not the most
important ones from the phenomenological point of view. In fact the Yukawa
couplings are very small, except for those of the third family. Instead, the
decay and production processes of superpartners in the MSSM are typically
dominated by the supersymmetric interactions of gauge coupling strength.
The couplings of the SM gauge bosons to the MSSM particles are completely
determined by the gauge invariance of the kinetic terms in the lagrangian
(35].

There are also various scalar quartic interactions in the MSSM which are
uniquely determined by gauge invariance and supersymmetry. They are dic-
tated by the scalar potential defined in the equation (2.42). The dimensionful
terms in the supersymmetric part of the MSSM lagrangian are all dependent
on i, that appears in the generalization of the Higgs mass term of the MSSM
superpotential (2.78). We find that p gives the higgsino mass terms in the
MSSM lagrangian:

LS —p (ﬁl,jfl; - ﬁgﬁg) + e (2.82)
as well as Higgs mass square terms in the scalar potential
—LOV D |l (1) + [Hy [+ [Hg* + |H|*) (2.83)

where V is the scalar potential of equation (2.42). Since the Higgs part
of the scalar potential is positive definite, we cannot understand electroweak
symmetry breaking without including soft supersymmetry breaking terms for
the Higgs scalars, which can be negative. So to complete the description of
the MSSM, we need to specify the soft supersymmetry breaking, of the type
allowed that we have found in section (2.8). The soft breaking lagrangian
can thus be written as [36]:

1 . — ~~
LUFM = — (Mggg MWW+ MlBB) tec
— (5 y, @Hu — Ead @Hd —ea, sz) + c.c.
~ ~ ~ ~ - ~ ~t ~
—QTméQ— LTmiL—am?LuJr —dm?3d —émgéJr
—mj, HyH, —m3 HyHy — (bH, Hq + c.c.) (2.84)

where My, M, and M3 are the bino, wino and gluino mass terms and we have
suppressed all the gauge indices. The second line of equation (2.84) contains
the trilinear scalar couplings. Each of a,, a4y and a. is a complex 3 x 3
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matrix in family space, with mass dimension d = 1. These matrices are in
one-to-one correspondence with the Yukawa coupling matrices that appear in
the superpotential (2.78). The third line of the equation (2.84) contains the
squark an slepton squared mass terms. Each of mg, m7, mz, m2 and m; is a
3 x 3 matrix in family space® which in general can have complex entries.Since
the lagrangian must be real, these matrices are hermitian. Finally the last
line of equation (2.84) contains the supersymmetry breaking contributions
to the Higgs potential: m3 , m%ld and b (usually indicated in the literature
as Bpu) are the only squared mass terms that can occur in the MSSM.

To summarize this discussion about the soft supersymmetry breaking, we
must show the order of magnitude of all these terms:

Ml; Mg, Mg, Aoy Qg, Qe ™~ msoft (285)
2 2 2 2 2 2 2 2
meg, My, My, Mg, Mg, My, My, b~ Mgort (2'86)

where my,; is the characteristic mass scale of supersymmetry breaking which
is of the order ~ 17TeV, in order to continue to solve the hierarchy problem
[35]. The soft breaking lagrangian (2.84) has the most general form which
is compatible with gauge invariance and with R-parity, defined in (2.61),
conservation.

In contrast to the supersymmetry preserving part of the lagrangian (2.52),
the soft lagrangian (2.84) introduces many new parameters which were not
present in the ordinary SM. A careful count (see [50]) reveals that in the
MSSM lagrangian there are 105 new parameters, respect to the ordinary
SM, that cannot be rotated away by redefining the phases and flavor basis
for the quark and lepton supermultiplets. Thus, in principle, supersymmetry
breaking introduces a huge arbitrariness in the lagrangian.

But we can reduce some of this arbitrariness because most of the new
parameters can be constrained by the request that there is no flavor mixing
or CP violation of the type which is already restricted by experiments [51].
All these dangerous effects can be evaded assuming the the supersymmetry
breaking is “universal”. This means that the squark and slepton masses are
flavor blind, so they should be each proportional to the the 3 x 3 identity
matrix in family space:

(ma); =malaxs  (ma); =milss  (mg); =milsc

(m%)z = m% ]_3><3 (mg)z = mg ]_3><3 (287)
where 7,7 = 1,2, 3 are the family indices. In this way all squark and slepton
mixing angles are rendered trivial, because squarks and sleptons with the

“to avoid an heavy notation we have neglected the tilde over the name of the scalar
fields, like, for example Q.
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same electroweak quantum numbers will be degenerate in mass and can be
rotated into each other. In such limit, supersymmetric contributions to flavor
changing processes will therefore be very small.

Moreover, one can make the further assumption that the trilinear scalar
couplings are each proportional to the corresponding Yukawa couplings:

Ay = Auo Yu ag = Ado Ya e = Aeo Ye (2-88)

This ensures that only the squarks and sleptons of the third family can
have large trilinear couplings. Finally, one can avoid disastrously large CP
violating effects assuming that the soft parameters do not introduce new
complex phases, i.e.:

arg (My), arg (Ms), arg (Ms), arg (Aw) , arg (Aaw) , arg (Ae) = 0,7
(2.89)
The only CP violating phase in the theory will be the ordinary CKM phase
found in the ordinary Yukawa couplings. The relations (2.87), (2.88) and (2.89)
make up the so called assumption of soft breaking universality.

The origin of the supersymmetry breaking terms and the soft breaking
universality relations seems to require an underlying theory that must ex-
plain, at the end, the peculiar scale my,p; ~ 1Te€V. Moreover it remains to
explain the origin of the p-term in the Higgs sector of the scalar potential
that appears in the equation (2.83). In fact, we expect that p should be
roughly of the order of 10? or 103 GeV, in order to allow an Higgs VEV of
order of 174 GeV without a fine tuning between | u|2 and the negative mass
squared terms in the last line of the soft lagrangian (2.84). The MSSM scalar
potential seems to depend on two types of dimensionful parameters which
are conceptually quite distinct, namely the supersymmetry respecting mass
i and the supersymmetry breaking soft mass term mg o, The so called p
problem refers to the fact that this two unrelated parameters are of the same
order of magnitude. Several different solutions of the p problem has been
proposed [52][53][54]. However, from the phenomenological point of view we
will treat p as an independent parameter without asking his origin.
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Chapter 3

Supersymmetry and RG

3.1 Introduction

In the previous chapter we have shown how to build a supersymmetric theory
and, in particular a minimal supersymmetric extension of the SM, with the
same ordinary particle content. We have seen that the crucial feature that
allows the MSSM to have a phenomenological predictive power is the presence
of the soft supersymmetry breaking terms £]}2°". We have put these terms
by hand into the full lagrangian. This is quite an ad hoc procedure and it
determines an huge increase of the number of free parameters that define
the theory. In order to understand the origin of the soft breaking terms
we must consider an underlying theory, for which the MSSM is only a low
energy limit. This underlying theory is usually defined at some very high
energy scale, such as the unification scale Mgy ~ 10° GeV. The number
of parameters that define this theory, given at the input high energy scale,
are much less of that of the MSSM. This allows for a great simplification of
all the analysis that we can perform in this theoretical framework.

If we use the high energy lagrangian to compute masses and cross sec-
tions for experiments at the common electroweak energy scale, the results
will involve large logarithms corrections coming from the loop diagrams. To
avoid this problem we can use a very powerful tool in quantum field theory:
the renormalization group (RG). Using the RG we can conveniently resum
the large logarithms, by treating the couplings and masses that appear in the
lagrangian as running parameters, i.e. functions of the energy scale. There-
fore the universality relations (2.87), (2.88) and (2.89) have to be treated
as boundary conditions on the running soft parameters defined at the high
energy scale, which is very far removed from direct experimental probes. The
RG allows to evolve all of the soft parameters, the superpotential parameters
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and the gauge couplings down to the electroweak scale or comparable scales
when the experiments can be performed.

In this chapter we review the RG concepts, starting from the ordinary
non supersymmetric field theories and ending with the supersymmetric case.
In particular we will study the evolution of the soft breaking parameters and
we will choose a particular model for the origin of these terms.

3.2 RGE from Callan-Symanzik equations

In this first section we want to describe how to derive the renormalization
group equations (RGE) starting from the so called Callan-Symanzik equa-
tions. This is a very interesting and useful approach in order to obtain, for
example, the S-functions of an arbitrary theory. We start with applying this
method to a simple gauge theory: the abelian case U(1).

It is well known that in any model of particle physics, if radiative correc-
tions, that is corrections beyond the leading, tree level, order, are to be taken
into account, some renormalization procedure must be implemented. Let us
start with a lagrangian written in terms of bare parameters (bare masses and
couplings) and bare fields. The bare mass m; and coupling e, are replaced
by the renormalized parameters m and e, and the associated counterterms,
0, and 6, with:

my = m +om ey = e+ de
while the bare fields are equal to the renormalized fields multiplied by a wave
function renormalization factor:

by = 7
The value of the counterterms has to be specified at some energy scale,
that is usually called renormalization scale. In general, it is convenient to
evaluate the renormalization conditions at p?> = —M?, in term of an arbitrary
renormalization mass scale M. Let’s consider the renormalized n-point Green
function expressed as a function of the mass scale M and of the coupling
constant ¢ !:
G =G (zy,..., 2, M, g)
The Callan-Symanzik equation (from now on CS) for a massless theory with
a dimensionless coupling can be written as:

0 0
M— + 33— + () Ty M g) = 1

'to simplify the analysis we consider a theory with only one coupling constant. The
generalization to the case of more than one coupling is straightforward: there is a v term
for each field and a 8 term for each coupling
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where the parameters § and v are the same for every n and must be inde-
pendent from the space-time coordinates x;. We refer to them, respectively,
as the S-function and the so called anomalous dimension. Moreover, because
the G is a renormalized Green function, § and v cannot depend from the
cut-off, and from dimensional analysis they cannot depend from the mass
scale M. Hence, the only possible dependence is from the coupling constant
g. A consequence of the CS equation is that § and « are two universal func-
tions of the theory, related to the shift in the coupling constant and field
strength, that compensate the shift in the renormalization scale M:

B=73(g)
v =7(9) (3.2)

The CS equation (3.1) generalizes without difficulty to other massless
theories with dimensionless couplings. In theories with multiple fields and
couplings, there is a v term for each field and a f term for each coupling. Let
us see what is the result of applying the CS equation in the case of QED de-
fined in the zero electron mass limit by using the same renormalization scale
p?> = —M?. Then the renormalized Green’s functions satisfy the following
CS equation:

Ma% + 5(6)% + nys(e) + mys(e)| G™™ (2, ... 2 M,e) =0 (3.3)
where e is the usual QED coupling constant, n and m are, respectively, the
number of electron and photon fields in the Green’s function G™™ and ~,
and 3 are the anomalous dimensions associated to the electron and photon
fields. It is a well known result that the photon propagator can be written,
in the t’'Hooft-Feynman gauge, as:

y . q'q” —igtq”
D" (q) = D(q) <g” T ) ta o (3.4)

where the last term does not contribute to gauge invariant observables.
Hence, we can concentrate on the first term, projected onto the transverse
component. In this way, it is easy to check that (3.4) indeed satisfy the CS
equation (3.1). At leading order, we have to compute the v, and 73 functions
associated, respectively, to the two counterterms dy and ds:

1 0 1 0

V2 2, V3 5 9

27 OM %

where d, and 03 are associated to the diagrams shown in figure 3.1.
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a) \/vvv\,@/vvw
b) X

Figure 3.1: Counterterms for: a) photon propagator —i (¢"“¢*> — ¢q”) 3, b)
fermionic propagator i (pdy — 0,)-

In an analogous way, we can consider the 3-points connected Green func-
tion <1/) (p1) ¥ (p2) A, (q)> projected onto the transverse component, that at
leading order is:

7 _ —ie U R o
(5 00 02) 4y 1)) = - (ier) == (g = L)

By applying the CS equations (3.3), we find that the S-function for the QED
coupling constant can be written, as a function of the lagrangian countert-
erms, as:

8
Ble) = Marr ( 8y + gZéz> (3.5)
In QED we have the following relations for the counterterms:

Oz, =01 =21 —1=4,
Oz, =09 = Zy—1
0z, =03 = 43— 1

so that the S-function for the QED coupling become:

5le) = Mo [, + & (26 + 6]
0
- Mo (—51 +edy + 553) (3.6)

The counterterms can be evaluated with dimensional regularization and
using the renormalization conditions for massless fermions (we are interested
only to the gauge coupling constant), for the euclidean momentum p*> =
—M?. We have:

2 _
e o =0y =— (46;)2 I;](\jZ)Zdé/i) + (finite terms)
4 e? T(2—-d/2
03 = -3 (4;)2 (](\42)22/2) + (finite terms) (3.7)
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while for the anomalous dimensions, we obtain:

e? e

=162 B =1o

72 (e) (3:8)
where d = 4 — € and I' is the Euler function.

Putting the counterterms relations (3.7) into the expression for the /-
function (3.6), we obtain the well known result for the g-function of the

QED coupling constant:

63

6(6) - 127T2
We want to recall that this result is obtained using the Feynman gauge
and this is crucial in the computation of d,, because it is the counterterm
associated to the fermion propagator. On the other hand, the QED vacuum
polarization, and therefore 3 and 8 are gauge invariant.

Starting form the CS equations we can obtain the differential equation
that describes the flow of a modified coupling constant, that is function of
the renormalization scale p? = —M? at which is evaluated. We can formally
refer to it as the so called running coupling constant:

(3.9)

g=79(p;9)

The rate of changing of this function as a function of M is dictated ex-
actly by the S-function, that solves the following equation, together with the
boundary condition:

W‘;/Mﬁ(ﬁ; 9) = B(9), 99 =y (3.10)

This equation is called the renormalization group equation (RGE).

3.3 Thresholds in RGE

We have seen in the previous section that the dependence of the g-function
from the explicit renormalization scale M is through the counterterms. The
analysis has been done restricting to quantum field theories in the massless
limit. It is not difficult to generalize this formalism to theories with mass
terms and other operators, whose coefficients have positive mass dimension.
But in this case the renormalization scheme has to be carefully taken into
account, because of the presence of new mass scales. In fact, using a mass
independent subtraction scheme, there is no decoupling of the massive par-
ticles, and the Appelquist-Carazzone theorem cannot be applied [56]. This
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is quite obvious because the particle contribution to the S-function does not
depend from the particle mass. So if we wish to use a mass independent renor-
malization scheme, such as the M'S (Minimal Subtraction) or M S (Modified
Minimal Subtraction), in order to obtain, at every energy scale, the effective
theory, me must put by hand in our equations the particle content of the
theory at that energy, removing the heaviest particles. At the end we want
to replace the full theory with a succession of effective theories.

Let us see the meaning of the last quite fuzzy assertion in a simple case.
We concentrate on the one loop contribution of a fermion of mass m to the
QED coupling constant S-function. We have already obtained the result (3.9)
using the CS equation.

If we evaluate the amplitude using dimensional regularization (so that
the Ward identities are satisfied), we have:

e? 1 ! m? — ¢?z(1 — o

i5—5 (9 = 49 {@ - % - /0 dxx(1 — x)log < ZM(Q )>]
(3.11)

where ¢ is the external momentum, m is the fermion mass, v is the Euler-

Mascheroni constant and u is the scale parameter that appears in the dimen-

sional regularization. We can see that the amplitude is of the form:

(0000 — ¢ 9p) 1™ (¢%)

Now we have to renormalize the amplitude. Let us choose firstly a mass
dependent renormalization scheme, imposing an arbitrary cut-off M. In order
to cancel the divergent part we must subtract the amplitude computed for
an external euclidean momentum ¢? = —M?2, obtaining:

2

Z;—WQ (0ua0 — € 9y) UOI drz(1 — x)log (ngtgg(ll__?))} (3.12)

We can obtain the fermionic contribution to the S-function applying the
operator (e/2)Md/OM on the coefficient of (¢,q, — ¢*g,,). The result shows
an actual dependence from the renormalization scale M:

3 1 M?2z(1 —
Blesm?/M?) = e—/ R i ) (3.13)
272 J,o
We can consider two different regimes: in the case m < M, i.e. the
fermion mass flowing in the loop is much smaller than the renormalization
scale, the S-function simplifies to:

B(e;m?/M?) ~ 6—3/1 dex(l —x) = ¢
0

272 1272
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that is the result already obtained in (3.9). In the other case, M < m,
the renormalization scale becomes lower than the fermionic mass m, and the
fermionic contribution to the S-function goes to zero as:

B(e;m?/M?) ~ ¢ /1 drx(l — x) Mez(l—z) _ e M
0

o2 m2 ~ 6072 m2

The effect of the presence of a threshold, as can be seen in figure 3.2, is
thus to “smooth” the g-function that interpolates the two limiting cases. So
a mass dependent renormalization prescription has the property of a manifest
decoupling of the heavy particles.

0.008
0.006
p(e)

0.004

0.002

Figure 3.2: S-function (arbitrary rescaled) for the QED coupling, in a pres-
ence of a fermion of mass m, as a function of the renormalization scale M

Now we try to evaluate the fermionic contribution to the S-function in a
mass independent renormalization scheme, such as the MS. In this scheme
the recipe is simply to subtract the 1/e pole and to redefine 47 p?exp(—v) —
1%, having:

2

—¢2€—7T2 (000 — 29 {/01 drz(1 — x)log <m2 i U x)>] (3.14)

112

We can obtain the S-function in the same way we have previously seen, by
applying the operator (e/2)ud/du on the coefficient of (¢,q, — ¢*gu). The

result is:
3 3

Ble) = £ /dex(l—x)— ¢ (3.15)

T om? T 1272
that is, as we expected, independent from the fermion mass m and from

the renormalization scale p. In this case the fermionic contribution to the
p-function doesn’t vanish when m > 1, and so there is no decoupling of the
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heavy particle. There is another difficulty with the M .S scheme. The finite
part of the loop diagram for ¢ — 0 is:

2 1 2

e 9 m

il gty — gw) | | dra(1 = 2)log [ 22
I35 (quq a9, ) {/0 zz(l — x)log <M2>]

and we can see explicitly that when p << m there is a logarithmic divergence
and so the perturbation theory breaks down. This behavior is a consequence
of the fact that the coupling constant used in the low energy limit is not the
“correct” one, because it was obtained with the “wrong” S-function. The
two problems, namely the logarithmic corrections and the inconsistency of
the perturbation theory, can be simultaneously resolved integrating out the
heavy particle: there is one effective theory that includes the fermion for
m < p and one that doesn’t include the fermion for m > p. The effects of
the heavy particle in the low energy theory are reproduced considering, in
the lagrangian, operators with higher dimension, which are suppressed by
inverse powers of the heavy particle mass. The matching condition for the
two theories at the scale m is determined by the equality of the elements
of the S matrix for the light particle scattering, computed both in the low
energy theory without the heavy particle and in the high energy theory with
the heavy particle. In other words the heavy particle decoupling, in any mass
independent regularization scheme such as the MS, must be implemented by
hand integrating out the heavy particle for < m. One possible choice is to
use a step # function that can mimic in a rough way the behavior of figure 3.2.
The p-function, in this case, can be simply written as:

e/ 12n? for p>m
6(6)_{0 for u <m

3.4 [-functions in non abelian gauge theories

In this section we extend the results previously obtained for an abelian gauge
theory, such as QED, to a non abelian gauge theory. This result is important
because it can be immediately applied to the SM, with the gauge group
SU3) ® SU(2) ® U(1), and to every supersymmetric extension of the SM
with the same gauge group, such as the minimal one, ¢.e. the Minimal
Supersymmetric SM (MSSM). The method we used is straightforward, but
there is another, more abstract, approach: the Wilson method, based on the
idea of integrating out the massive degrees of freedom,. The results are the
same and the two approach are completely equivalent (see for example any
standard textbook [59]).
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Let us consider a theory with only one gauge coupling constant g and with
ny fermion species, that transforms in a representation r of a gauge group
GG. As usual in gauge theory r coincide with the fundamental representation.
The generators of the group, or more properly the generators of the associated
Lie algebra, t,, satisfies the identity:

[ta, tb] — Z'fabctc

where fq. is the structure constant of the group. There are two other useful
relations that will be used later:

tr [tt] = C(r)6"
facdfbcd — 02(G)5ab (316)

where C(r) is the index of the representation r and Cy(G) is the second
casimir operator in the adjoint representation.

At leading order, that is at 1-loop order, we have for the S-function a
generalization of the equation (3.6):

B(g) = gMaiM <—<51 + 02 + %&,) (3.17)

where we have used the conventions of figure 3.3 for the counterterms 4y, do
and 03.

Figure 3.3: QED counterterms

From left to right, the first diagram is equal to —i (k2g"” — k*k) 62043,
the second one is equal to 7 0, and the last one is equal to igt®y*d;. In QED,
using the Ward identity ¢~ 8, = d5, we find that the 3-function depends only
from 3. In the non abelian case, instead, there is a contribution from every
terms. So, in order to cancel the divergences that appear in the 1-loop pure
gauge amplitude, 03 must be of the form:

g*> T(2-4d/2) [5 4

5y = O ~Gy(G) = 3, C(r) (3.18)

54



where M is the renormalization scale. Depending on the renormalization
scheme used, there can be finite contributions to d3, d» and d;, but the
[B-function contribution is scheme independent, because only the divergent
parts have an explicit dependence from M. If we use dimensional regulariza-
tion, the logarithmic divergences take the form:

T(2 - d/2)
(A)Zfd/2

where A is an arbitrary combination of momentum invariants. We have seen
that one possible choice is A = M?2.

The next step consists in computing the d, and d; counterterms, that are
necessary in order to cancel the divergences coming from the diagrams that
involve fermions. At 1-loop order in a non abelian gauge theory, we have to
consider three such diagrams, as can be seen in figure 3.4.

I

Figure 3.4: Fermionic counterterms

The 05 counterterm cancels the divergence in the first diagram, that is
the fermionic self energy contribution. At the renormalization scale M we

have: > P2 df2)
___9 — ,
0y = (47)’ (M2)2_d/2 Co(r) (3.19)
where Cy(r) is the quadratic casimir operator of the representation 7. The
01 counterterm cancels the divergence associated to the second and to the

third diagrams of figure 3.4. The result can be written as:

T (497r2)2 F(](\jz_ydé/i) - [Ca(r) + Co(G)] (3.20)

and we can see that, unlike the abelian case, §; # d,, because ; has an extra
term proportional to Cy(G) (the gauge bosons are “colored”). The S-function
is obtained summing the three contributions coming from the counterterms,
remembering that the only dependence from M is in the logarithmic term,
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that in dimensional regularization assumes the form:

r@2—dp2) 2 ,
WNE—ZOQ(M)—V

At the end we obtain:

I 0 (F(Q—d/2)> NMi <§—log (M?) —’Y) :Milog (M?) =2

OM \ (pr2)*? oM oM
and so:
B0) = (=2) 2 |(Culr) + Cul)) = Catr) + 3 (5046~ 5|
— (497:’ » [1—3102(6?) - gnfc*(r)] (3.21)

The previous calculation, that is a well known result, has been performed
starting from the divergences of the fermion vertices (associated to the d3
counterterm) and from the divergences of the field strength (associated to
the counterterms d; and ). The same result for the S-function could be
obtained starting from the divergences of the gauge bosons vertex. This is a
common feature in every gauge theory.

The equation (3.21) refers only to a single coupling constant associated
with the gauge group G. We can immediately extend this result, as was
noted in section 3.2, in the case of the direct product of gauge groups G =
G1®...0G, with n coupling constants g ... g,. We simply obtain, for every
g; associated to the corresponding subgroup G;, a [-function of the same
form of (3.21) with G — G; and considering the appropriate representation
for the ny fermions coming from the transformation properties under the
gauge group G;.

In the SM case we must consider the representation of SU(3) ® SU(2) ®
U(1). So, let us consider the general case of SU(N). It is possible to shown
that for the fundamental representation, that could be labelled by N, we
have:

1 N2 -1
C(N)=5,  Cao(N) ===

while for the quadratic casimir of the adjoint representation, we obtain:

(3.22)

05(G) = C(G) = N (3.23)
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and so the [-function, for a theory with ny fermions in the fundamental
representation and n, real scalars?, that transforms in a representation 1,
can be written as:

511 2 1
—N — —ng — =nC (1) (3.24)

g
Blg) = — c

(4r)* | 3 3

We are now able to write down the 1-loop S-functions for the SM gauge
couplings:

1
i) = ——=b; 23 3.25
B(9:) e (3.25)
and the corresponding 1-loop RG equations:
d 1
—g; = ——b; f 3.26

with t = log(M/M,) (M is some convenient renormalization scale where the
boundary conditions are defined) and where we have introduced the constant
coefficients b; that are determined only by the particle content of the theory.
The index 2 = 1,2,3 runs over the gauge couplings g1, g2, 93. The ¢g; and
g2 couplings can be written, in terms of the conventional electroweak gauge
couplings ¢g and ¢’ (with e = gsin Oy = ¢'cos by ), as:

_\/5, _
g1 = 397 g2 =g

Introducing the number of generations of matter multiplets N¢,,, = 2n; and
the number of Higgs doublets Ny;gq, = ns, it’s quite easy to see that the SM

coefficients are: " 19
pM == = 7 3.27
! <10’ 6 ( )
where we have used Ny, = 3 and Npjggs = 1.

One important consequence of this result is that the SM cannot ensure
the unification of the coupling constant at some very high energy scale.

3.5 Renormalization group and supersymme-
try

Many calculations beyond the three level involves mass independent regular-
ization scheme such as the dimensional regularization, usually called DREG

2In the SM there is at least a scalar: the Higgs boson
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or known as 'naive dimensional reduction’, that is an elegant and conve-
nient way to deal with the infinities that arise in quantum field theory [72],
in which the number of space-time dimensions is analytically continued to
d = 4—e. It is very well adapted to gauge theories because it preserves gauge
invariance, but it is not so well suited for supersymmetric theories, because
the supersymmetric transformations holds in general only for fixed values of
the space-time dimensions d. In fact it introduces a mismatch between the
off shell numbers of gauge boson degrees of freedom and the gaugino degrees
of freedom. This mismatch is of order ¢, but if we consider an n-loop calcula-
tion, it introduce an error of order 1/€". So it becomes clear the importance
to choose a regularization and renormalization scheme that do not explicitly
violate supersymmetry.

The solution consist in modifying the procedure of dimensional regu-
larization, in which the continuation from 4 to d space-time dimensions is
performed with compactification, or stated otherwise via dimensional reduc-
tion. In this method, that is called DRED, the momentum integrals are d
dimensional, while the number of field components remain unchanged and
so supersymmetry still holds. There exist a set of transformations that are
able to relate S-functions of a particular theory calculated with the DRED
scheme to the [-functions of the same theory computed using the DREG
scheme.

The notation usually employed makes use of greek indices u,v... to de-
note the d = 4 space-time, while latin indices 7, j ... denote the d = 4 — ¢
space-time, with corresponding metric tensors g,, and g;;. It’s useful to in-
troduce the hatted quantities like g,, and 4*, that are equal respectively to
gi; and 7" in the subspace d = 4 — € while the other components are zero.
The momentum p,, is defined only in the subspace d = 4 — ¢, so there is no
need to use the hat notation.

There are interesting relations between the dimensional reduced quanti-
ties and the four dimensional one:

¥ =pu," = puyt

guugwj =4

G0 = d
g, =

P, = 5 (3.25)

Having introduced this notation we are able to see how DRED works in
the case of a non supersymmetric (so without elementary scalars) Yang-Mills
theory with a set of fields W(z) transforming in the adjoint representation of
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a gauge group G, and with a multiplet of spin 1/2 fields ¢)*(z) transforming
in a representation r of the same semi-simple gauge group G. If in particular
v is Majorana, then r has to be a real representation, since the Majorana
condition is not preserved by a unitary transformation. The gauge fixed bare
lagrangian can be written as:

1 ‘o a —
Lp=— 4G3,, =) (0"W,,)* + C™ 0" D CP + iy DRy (3.29)

where:

Gy, = W, = O, Wi + gf "W, Wy
Dzb — 5abau o gfabCWﬁ
D = 579, — ig (TP W (3.30)

where f%¢ are the totally antisymmetric structure constants of the semi-
simple gauge group G, T are the group generators that acts on the fermionic
representation r and where we have introduced the standard landau gauge
fixing and ghost terms. We have explicitly written the two covariant deriva-
tives that act on different representations of the gauge group G.
Following the dimensional reduced notation we can perform the following
decomposition, in order to see the consequences of the DRED procedure:

W (@) = {We (29) W2 (+9)) (331

where:

Si=0l=d by, =c

and it can be shown that we can separate the lagrangian as follows:
Lp=L%+ LS
with:

1 : : —a_
L = —5G% = 5 (W) + C™ ' DIC! + i)y Dy (3:32)

1

2
— 1

Ly = (D“”W”) — Uy RS — 20" P TWIW WIS, (3.33)

In the conventional dimensional regularization DREG we keep only the
equation (3.32), while in the DRED procedure we keep both the equa-
tions (3.32) and (3.33), that together are able to satisfy the supersymmetric
Ward identities, at least at 1-loop level. The lagrangian (3.33) is precisely
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what is required to restore the supersymmetric Ward identities at 1-loop in
supersymmetric theories. If we consider only the previous non supersym-
metric case we see that the DRED method gives rise to some ambiguity
with gauge transformations. In fact, it can be seen that each term in (3.33),
satisfies the dimensional reduced form of the gauge transformations:

(SVVia — aiAa + gfachVibAC
W = gf WA
Sy = ig (T*)P I (3.34)

where the W, have the same transformation properties of the scalar fields,
and so they are called e-scalars. The gauge invariance alone is not able,
because of the existence of the set of transformations (3.34), to guarantee
that, for example, the vertex ¢)W, has the same renormalization properties
of the vertex 1)WV;.

However in the case that interests to us of the supersymmetric theories,
these difficulties do not arise: if ¢ is in the adjoint representation, then Lg is
supersymmetric. In this case, there is a relation between W, and W;, that is
not broken by the dimensional reduction. Thus the vertices 1¢yW,, and )W,
that are both equal to g at tree level, remain equal under renormalization.

In complete analogy with the non supersymmetric case, analyzed in sec-
tion 3.4, all the running couplings of a supersymmetric theory must be renor-
malized using DRED with modified minimal subtraction, that we denote as
DR, rather than the usual DREG with modified minimal subtraction, i.e.
MS. However, it is possible to work consistently in the A/S scheme, as long
as one is going to use a “dictionary” that permits to translate all the DR
couplings and masses into the M.S counterparts [57]. The two schemes differs

only by a small offset:

1 1 G
DR oMS 127 (3:35)

where o; = ¢g2?/4m and the C; = Cy(G) is the quadratic Casimir operator of
the group G. For example, for a non abelian group like SU(N) we have C; =
N, while for an abelian one, like U(1) we have C; = 0, so the electromagnetic
coupling o remains the same.

The complete set of renormalization group equations for the MSSM, at
2-loop level, in the DR scheme, are given in [58].

Some of the main properties of the RG equations for a theory like the
MSSM, that is a theory with softly broken supersymmetry, can be studied
even at one loop level.

One of the most important additional feature that comes with supersym-
metry, is, by far, the unification of the coupling constants, that took place in

60



the MSSM. In fact, in the minimal extension of the SM, there are fermions
that live in the adjoint representation of the gauge group, as well scalars
that live in the fundamental representation, as can be seen by the tables 2.1
and 2.2 of the previous chapter, that together modify the coefficients (3.27)
as: 23

pMSSM — <€, 1, —3) (3.36)
where we have used the general S-function (3.24), valid for the gauge cou-
plings, with nf = N4 /2 = 3 and nsy = Nyiges = 2.

These new set of coefficients ensure that there is an effective unification
at energy scale of about My ~ 10'® GeV. This could be a strong hint for the
existence of supersymmetry, but this is not an exclusive prediction, because
is shared with, for example, the grand unified theories (GUT) based on larger
gauge groups than the SM (like SU(5)).

The complete one loop RG equations for the MSSM couplings, including
the Yukawa, could be written as:

d 1 yssw s
d 16 13
Yy = v (2 =~ 6Yy — Y
v L<393+392+1591 6Yy D)
d 16 7
EYD =-Yp (gga + 392 + 59~ Yy —6Yp — YL)
d 9
%YL = —YL 392 + ggl - SYD — 4YL (337)

In the MSSM the supersymmetry is softly broken, so we are led to consider
the RGE for the soft terms, in particular for the gaugino masses. A very nice
feature of the renormalization of the softly broken supersymmetric theories
is that it is completely defined by the unbroken theory [60][61]. This means,
in particular, that the non-renormalization theorems and the cancellation of
quadratic divergences still holds.

From this point of view, it is very convenient to use the supergraph tech-
nique, that can be extended immediately to softly broken theories by using
the so called “spurion” external superfields [48][73][74]. The introduction of
this superfield allows us to rewrite soft breaking terms inside of the super-
fields formalism. The key point, in this approach, is that a softly broken
supersymmetric gauge theory can be considered as a rigid supersymmetric
theory embedded into an external space-time independent superfield, so that
all couplings and masses become external superfields.
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Let us see how this procedure works in the case of a softly broken N =1
supersymmetric pure Yang-Mills theory with a simple gauge group. The
lagrangian of the rigid theory is given by:

Loa = [ 0T (VW) + [ E0TE () (3.38)

with the field strength chiral superfield W given by (recalling the equa-
tion (2.58)) given by:

1.
W, = —ZDDe’gvDaegv (3.39)

where Vj; = TV, and T are the group generators. To perform the soft
supersymmetry breaking we can introduce a gaugino mass term. We write
the only term that is allowed by the gauge invariance (see section 2.8 of
chapter 2 for details):

Lot = %M + %M (3.40)

where ) is the gaugino field. Now in order to rewrite this terms in the
superfields language we introduce an external spurion superfield:

n=0> q5=20 (3.41)
In terms of which the total lagrangian of the theory can be written as:
Liot = Lrigia + Lsoft (3.42)
= /d29 (1 —2un) Tr (WW,) +/d29_ (1 —2un) Tr (WWy)
- / P9 (1 — 200%) Tr (W) + / P9 (1 — 200%) Tr (WOIT)
In terms of field components, the interaction with the superfield n produces

a gaugino mass m, = i, while the other gauge fields remain massless. In
fact, looking carefully to the soft breaking piece of the lagrangian:

—/d29 (2u6?) Tr (WeW,)

we see that now, due to the presence of the extra 62, we must select the lowest
component of the product WW,, that is precisely the component A%),,.
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The next step, in order to obtain the complete N = 1 supersymmetric
lagrangian with soft breaking terms, is to add a set of chiral matter superfields
®; to the pure supersymmetric Yang-Mills theory (3.38):

L= /d29d2§ o (V) @ +/d29W+/d2§W (3.43)
where the superpotential is of the form:
L ik Lo i

while the soft breaking terms are of the type:

Loot = =0 (m2); i (), ®; — AT &,0; 0 — %Bij n®®;  (3.45)
written in terms of the previously introduced spurion superfield 7.

Having introduced this formalism, we can perform the renormalization
procedure of a softly broken theory following a simple recipe: one starts
with the renormalization constants of a rigid theory, computed using some
massless scheme, such as the DR, substitutes instead of the couplings of the
rigid theory (gauge and Yukawa) their modified expressions, which depend by
the spurion field n, and finally expand over this variable. This procedure gives
the renormalization constants for the soft terms, that, upon differentiating
with respect the renormalization scale, gives at the end the corresponding
renormalization group equations.

In the case of the MSSM, considering the couplings:

(3.46)

o; =

(47)

instead of the g; couplings, we can write down the modified couplings, in-
cluding the Yukawa, as:

a = q; (1 + M;n + M;7 + (Mzﬁz + Eai) 7777)
Vi = Y5 (1= Agn — A + (AAy + ) i) (3.47)

where M, are the gaugino masses, Ay are the trilinear scalar couplings, ¥
are a particular combination of soft squark and slepton masses entering in
the expression of the Yukawa vertex and the ¥, are related to the mass of
the soft supersymmetric ghost terms 7m7,,.,. At one loop order m2, ., = 0
and X,, = 0.
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Performing the procedure previously described, we are able to obtain the
RGE for the soft terms. The following equations are for the gaugino masses,
the trilinear scalar couplings A, and the sfermion masses mg:

d

EMZ = (47T) bZ]-MSSMOéZ'MZ' = bl]-\/[SSM gZZMl

d 16 13

EAU = gagMg + 30(2M2 + BalMl + 6YUAU + YDAD

d 16 7
@AD = 3043]\/[3 + 3ag My + EOlel +6YpAp + Yy Ay + YLAL,

d 9

@AL = 3a2M2 + gOZlMl + SYDAD + 4YLAL,

d _, 16 2 2, 1 2 ~2 ~2 2 2
@mQ = — (§a3M3 + 3ap My + 1—5a1M1) — YU(mQ + my + my, + Af)

—Yp(mg +m7, + my, + A})] (3.48)

The complete RGE for all the MSSM soft terms, up to three loop level,
can be found in [62].

3.6 Minimal SUGRA models

We have previously seen (in chapter 2) that the MSSM soft terms can be
put by hand in the full lagrangian of the theory. We have also seen that a
possible explanation for the origin of these terms is through an underlying
more fundamental theory, in which the supersymmetry breaking is realized
spontaneously (in a dynamical way or not). The models described in the
section 2.8 of the previous chapter do not give rise to an acceptable solution.
So supersymmetry breaking cannot be generated by any of the fields that
belong to the supermultiplets of the MSSM [34].

There are several difficulties in realizing the supersymmetry breaking,
at tree level, in a phenomenologically viable way, working only with renor-
malizable terms in the lagrangian. The first problem is to give masses to
the MSSM gauginos, because supersymmetry does not allow scalar-gaugino-
gaugino couplings which could turn into gaugino mass terms when the scalar
gets a VEV. The second problem comes in for the sum rule which governs
the tree level® squared masses of scalars and chiral fermions in theories with
spontaneous supersymmetry breaking [34]:

Tr (M, ) =2Tr (M ) (3.49)

real scalars chiral fermions

3in general the sum rule is not valid if we consider radiative corrections
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where M, e scatars @a0d Mehiral fermions are the mass matrices for fields in the
same supermultiplet. Because we already know that the masses of all of the
MSSM chiral fermions are small (except for the ¢t quark and the higgsinos),
it is difficult to explain why we have no observational evidences for light
squarks or sleptons.

For the reasons we have listed, we can expect that the MSSM soft terms
arise indirectly via radiative processes rather than from tree level renormaliz-
able couplings. We can construct models in which supersymmetry breaking
occurs in an “hidden sector” (whose nature is not at all well defined) of parti-
cles which have no (or only very small) direct couplings to the “visible sector”
of chiral supermultiplets of the MSSM. However the two sectors must inter-
act in some way and this interaction must communicate the supersymmetry
breaking. In this scenario, the sum rule (3.49) need not hold for the visible
sector fields, so that we can obtain a supersymmetric viable mass spectrum.
Moreover, if the interactions are flavor blind, then the MSSM soft terms may
automatically satisfy the universality conditions (2.87), (2.88) and (2.89).

We concentrate on models for which the flavor blind interaction are grav-
itational. The situation is sketched in figure 3.5.

Hidden Sector Visible Sector

Supersymmetry gravitational
Breaking interaction

MSSM

Figure 3.5: Model with hidden sector that communicate the supersymmetry

breaking, through gravitational interaction, to the visible sector where the
MSSM lives.

The key property of these kind of models is that the hidden sector of the
theory communicates with the MSSM in the visible sector only (or domi-
nantly) through gravitational interactions, and so the underlying theory is
supergravity (SUGRA) [55]. From the point of view of the low energy field
theory, this means that the supergravity lagrangian contains non renormaliz-
able pieces which communicate with the two sectors and which are suppressed
by inverse powers of the Planck mass Mp;. In the following description we
want only give a setup of the model and we suggest, for a more in depth
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discussion, the references [34][68][69][70].
The non renormalizable lagrangian will include the terms:

———F aya
Lyr M XZ faA® A +c.c.

1 .
——F lz]k) No¥
My X <y ¢ d)jd)k +

%m'ij qsiqu) (3.50)

where F'y is the auxiliary field for a chiral supermultiplet X in the hidden
sector, and ¢; and A® are the scalar and gaugino fields of the MSSM. The
dimensionless parameters (f,, k%, 4% and m'¥) that appear in £y are to be
determined by the underlying supergravity theory. The non renormalizable
terms (3.50) are not supersymmetric but it can be shown [34] that they are
part of a supersymmetric lagrangian that contains other terms that can be
safely ignored. Now if we assume that the auxiliary field Fy gets, due to
some not specified mechanism, a VEV of order:

(Fx) ~ 10" GeV

then the non renormalizable lagrangian (3.50) will give exactly the soft break-
ing lagrangian £}/55", that we have formally written in the equation (2.84)
with:

Msope ~ 1 TeV

In general computing the parameters f,, k%, /% and m'7 is a very diffi-
cult task to perform, but a dramatic simplification occurs if one assumes a
minimal form for the normalization of kinetic terms and gauge interactions
in the full, non renormalizable, lagrangian [34]. In this case we find that
fo = [ is common to all the gauginos, k) = kd} is common to all scalars,
while the other couplings are all proportional to the corresponding part in

the superpotential:
1ijk

y = ¢ yz]k mlzg = ¢y my

with universal dimensionless constants ¢; and cy. The result is that the soft
breaking lagrangian £1)7" can be written in terms of only four parameters,
that have to be specified at the high energy scale of the SUGRA theory

(typically the unification scale Mgpr or even the Planck scale Mp;):

< X> 2 |< X>F < X> < X>

_ Y _ Y A=) g U

= M2, A V7 RV
(3.51)
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The soft breaking parameters can thus be written in terms of these high scale
input parameters, as follows:

My, = My = M3 = Myy2

2 _ 2 _ .2 _ 2 _ 2_ 2
mg = mg =mg=mj = m; = Mmylsxs

where we have assumed the third family approximation for the Yukawa cou-
plings. These relations are stronger realization of the universality conditions
and they have to be thought as boundary conditions at the high energy scale,
when we RG evolve the parameters down to the electroweak scale. The en-
tire MSSM spectrum is given in terms of only these five parameters*: my,
my /2, Ao, By and the Higgs mass parameter p. The framework that we have
described is referred to as the minimal supergravity (mSUGRA) or super-
gravity inspired scenario for the soft terms. In these type of models the
electroweak symmetry breaking (EWSB) is actually driven purely by quan-
tum corrections. This mechanism is therefore known as radiative electroweak
symmetry breaking [71]. Let us see what are the physical Higgs degrees of
freedom after the electroweak symmetry breaking. We already know that in
the MSSM there are two complex Higgs scalar fields and each one is an SU(2)
doublet. Thus, there are eight real degrees of freedom. When the electroweak
symmetry is broken, three of them are the Nambu-Goldstone bosons G° and
G*, which become the longitudinal modes of the Z° and W= massive vector
bosons. The remaining five Higgs scalar mass eigenstates consist of one CP
odd neutral scalar A°, and two charged scalar H* and its charged conjugate
H~, together with two CP neutral scalars h® and H°. Tt is possible to write
down the conditions that allow a right electroweak symmetry breaking:

> +m3, = btan B — (m/2) cos 23
lul” +m%, = beot B+ (m%/2) cos 283 (3.53)

with the § parameter defined as:

tan B = Ju (3.54)

Vg
where (H?) = v, and (HJ) = v, are the Higgs bosons VEVs at the minimum
of the potential. Moreover, these quantities can be related to the known mass

4The Yukawa couplings are the same already measured in the SM
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of the Z° boson and the electroweak gauge couplings:

m2
v vli=02= QgZTZg,Z ~ (174 GeV)? (3.55)
The value of tan 3 is not fixed by present experiments, but it can be computed
starting from the parameters of the MSSM. It is possible to eliminate [36]
two lagrangian parameters, b and ||, in favor of tan § and the phase of p.
Let us concentrate now on the one loop RG equation for the soft gaug-
ino masses that appear in the first line of (3.37). From that equation it is
simple to derive that the three ratios M;/g? are RG invariant up to two loop
corrections. In fact:

d Mz _9 dMl _3 dgz
—\ =] =9 - i9i o
i \ g at dt
=2¢;°Cig} —2M,; g;7° Cig; =0 (3.56)
where C; = bM55M [ (47?) and we have used the first lines of the equa-

tions (3.37) and (3.48).
Thus we can see that in mSUGRA models the following relations holds:

A

97 (Qo)
at any RG energy scale ) < @y, where @)y is the high energy input scale
which is presumably of the same order of Mp; or of order of the unification

scale Mayr ~ 10 GeV. Since in the MSSM we observe the unification of
couplings, we put Qg = Mgyr and so:

9% (Qo) ~ 9% (Qo) ~ 9§ (Qo) (3.58)

substituting in equation (3.57) allows us to obtain the following RG invariant
relation:

M;(Q)

myy  i=1,2,3 (3.57)

My My, M
g B 4
modulo some small two loop effects and possibly larger threshold effects near

the scale Mgy and Mp;. The common value of the previous equation can
be put equal to:

(3.59)

my/2

9euT
where ggyr is the unified gauge coupling at the input scale where m, /5 is the
common gaugino mass. If gaugino masses have, as in this case in which they
satisfy the universality conditions, a common phase and are the dominant
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source of supersymmetry breaking, then g can be taken real without loss of
generality [80]. Moreover, if p is not real, then there can be very bad CP
violating effects in the low energy physics, including electric dipole moments
for both the electron and the neutron. Using the EWSB conditions (3.53)
only the sign of u, the function sgn (1), remains as a free parameter. Thus to
study the low energy phenomenology we can take as fundamental parameters:

mo, Mija, Ao, tan B, sgn (p) (3.60)

that encode our ignorance about the mechanism of supersymmetry breaking
and completely define the couplings and the mass spectrum of the MSSM,
once they are RG evolved down to the weak scale.

3.7 Numerical RGE solutions for the MSSM

In section 3.5, we have seen that, not considering the gauge couplings and
gaugino masses, even at one loop level, the RGE for the MSSM form a set of
coupled differential equations. The situation is obviously more complicated
when one consider the two loops equations. In the latter case it is not a
simple task to find a closed form solution for these equations, but it is quite
easy to solve them numerically using an appropriate algorithm.

In the following discussion we describe the ISASUGRA algorithm [63],
that we have extensively used in order to compute the weak scale values
of the MSSM parameters space. The theoretical framework is the minimal
supergravity (mSUGRA), that is also called constrained MSSM (cMSSM),
without right handed neutrinos, that as been described in the previous sec-
tion.

The input parameters specified at GUT scale are just those previously
defined for a mSUGRA model (see equation (3.60) and that we rewrite here:

Mo, My 2, Ao, tan(), sgn (i) (3.61)

There is a fundamental distinction between free and constrained parame-
ters. The former are identified with the input parameters, while the latter are
constrained either by experiment, for example the quark masses and gauge
couplings, or by relations among themselves such as Y, = Y, calculated at
Mgyt and minimization conditions at m.

The are two types of boundary conditions, one at the weak scale and one
at the GUT scale:

e At weak scale mz one imposes ¢1, g2, g3 and Y;, Y}, to be equal to their
experimental values.
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e At GUT scale one imposes

My = My = M3 = Myy2

2
scalar

Ay = Ay = A, = Ay

2
m =m

The first part of the algorithm is used in order to determine the right
GUT scale, so it runs from the experimental value m, to the Mgy scale.
Exact unification of all the gauge couplings is a theoretical simplification even
in GUT theories, since one does not expect the gauge couplings to be exactly
equal due to threshold effects at the GUT scale [64]. The threshold correc-
tions are computed using the so called match-and-run technique [67], which
is based on the successive decoupling of particles at the scale of their masses,
following the description outlined in section 3.3. Let us consider a running
mass 7 in the DR renormalization scheme, whose -function depends on all
the particles in the MSSM. Defining ¢ by:

t=tog (=) (362)

Meaur

where () is the energy scale at which the equations are evaluated, the mass
m evolves according to its complete supersymmetric RGE. If we now start
running m towards the weak scale mz, along the way, we eventually encounter
the scale of the squark masses. According to the match-and-run procedure,
we must stop the evolution and construct a new effective theory in which the
squarks are integrated out. We must then continue the evolution, using the
new [-function, without the squark ¢ contribution, subject to the matching
condition:

m (mg ) = m (m}) (3.63)
where the superscript + and — refers to the two theories, respectively, with
and without the squark ¢. This procedure must be repeated at each new
threshold finally stopping at the scale:

t = m(t) (3.64)

The quantity m (1) is the approximation of the physical pole mass.

Let us compute the threshold correction to a particle of mass m from a
particle of mass M, with M > m. According to the match-and-run proce-
dure, the decoupling of the heavy particle gives the correction:

Am Aﬁlq;<hﬂ> (3.65)

m 1672 m?
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Figure 3.6: The running mass 1 with and without the decoupling of a particle
of running mass M with u =t = log(Q/Maur) [67]

where in this expression, Af is the difference of the S-functions, before and
after decoupling (see figure 3.6). The exact one loop result can be found
computing the diagram shown in figure 3.7:

Figure 3.7: One loop diagram used to compute the threshold correction, due
to an heavy particle of mass M, for a generic particle of mass m

The result is given by:
Am AB 1

|M? — z(1 — z)m?|
= dz | 3.66
m 167r20x09( Iz (3.66)
that for ¢ = m reduces to:
A A M?
T;n = 167?2 {log <W> + (finite terms)] (3.67)
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where, as usual, the finite terms does not contain any logarithms. These re-
sults indicate that the match-and-run procedure gives a good approximation
to the pole mass when M > m. In this case the large logarithm, propor-

tional to log (MQ/mZ), dominates the threshold correction. But in the case

1 ~ M, the finite term is typically of the same order of the logarithm and so
the finite corrections are completely missed by the match-and-run procedure.

From myz to MGUT

The algorithm, RG evolves the 3 gauge couplings ¢, g2, 93 and the 3
Yukawa couplings Y;, Y}, Y; from the measured values at m, scale (Y; starts
from 0). It uses the Runge-Kutta method to integrate the two loop renormal-
ization group equations (except for p and B that are computed at one loop)
with a common mass scale mgygy for all the sparticle. This scale is set equal

1/2
to mspsy = (m% + 4mf/2> . The RGE equations implemented are at the
two loops level [58]. The equations at the one loop level are those written

in (3.37). At this stage there is only one threshold correction implemented,
following the procedure outlined in section 3.3:

Q < mgsgsy SM RGE
Q > mgspsy MSSM RGE

This means that the contribution of the superparticles to the g function
is different from 0 only above the common scale mgysy. The running from
my to higher energy scales is taken on until it is reached a () such that the
condition

a1 (Q) = x2(Q) (3.68)

is satisfied. This is the condition that defines the gauge coupling unification,
and hence the GUT scale and the agpyr are determined as

Maur = Q, agur = a1(Q) = a2(Q).

The value of the strong coupling constant az(Mepr) = a3(Q) does not in
general coincide with agyr; so in order to get the unification of the strong
and weak couplings, it is imposed that

agur = Oél(Q) = CYZ(Q) = 043(Q)- (3-69)

During the running from m to Mgy, there is a check on the absolute values
of the Yukawa couplings: if any of these absolute values becomes greater than
10, the RG procedure is terminated, because the perturbation theory breaks
down [65]. If the algorithm is not able to find such @, then the model is not
a unified one.
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From MGUT to myz
We start with the following set of parameters defined at the GUT scale:

e the initial inputs defined in (3.61), that imply
M, = My = M3 = mi2

2

_ 2
Mscalar — Mo

Ay = Ay = A, = Ay

e the 3 gauge couplings g1, g2, g3 and the 3 Yukawa couplings Y,, Y, Y,
that we have evolved in the previous step.

Now it is to time to define the supersymmetric thresholds. In general each
superparticle mass has associated with it a boundary between two effective
theories. Above a particular mass threshold the associated particle is present,
in the effective theory, and contributes to the 3 functions, below the thresh-
old the particle is absent. In the mSUGRA model that we are considering
the superparticle spectrum is no longer degenerate as in a simple global su-
persymmetry model in which all the superparticles are given a common mass
msysy. The particular choice in the algorithm is:

mg =My = ng = m)zli = MmMg0 = MsUySy
= Msusy

Now we are ready to perform a second RG evolution, from the Mgy scale
to the weak scale m,, for all the parameters. The equations are computed at
the two loop level [58], except for 1 and B parameters that are still evaluated
at one loop level. When the weak scale is reached the right constraints for
the electroweak symmetry breaking are imposed [35]. The two conditions are
obtained minimizing the tree level Higgs effective potential. It can be shown
that the b and p parameters must satisfy the following conditions [58]:

mi, —mi tan®f 1 1) sin2p
21

2 2 2 1/2
my, — my, tan g1 N
= = — = . 3.70
o [P D S| sl (3.10)
The next step is a refinement of the EWSB conditions, and consists in de-
termining the parameters appearing in the Higgs scalar potential at 1-loop

level. If the quantity :
my, —my, tan®f
tan?p — 1

1
—§m§>o (3.71)
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is not satisfied, the electroweak symmetry breaking cannot be obtained, be-
cause the second equation in (3.70) is not well defined, and the procedure is
stopped. If the condition (3.71) is satisfied the algorithm re-evaluate (3.70)
with the mpy, and mpy, parameters evaluated at one loop level. At this stage
are also introduced other one loop corrections to masses and couplings [66],
and the entire particle spectrum is computed.

Iteration of the running from m, to Mgy and back

The next step consists of an iteration of the evolution procedure, running
backward and forward from m, to Mqyr.

e The initial conditions, at weak scale, are chosen so that:

- the three coupling constants ¢, g2, g3 and two Yukawa couplings Y;, Y}
are equal to the experimental values.

-the b and p parameters are those that realize the radiative EWSB at
one loop level, in equation (3.70).

- all the other parameters are those computed in the previous RG run-
ning (in particular the Y;). Yukawa coupling.

During these iterations, the particle spectrum is no more degenerate. This
implies that the theory has many different thresholds, which can be identified
with the particle masses. We now show how the threshold corrections are
implemented in the RG flow. Let us suppose to have a particle with mass
M,,, which contributes ] to the / function of the gauge coupling «;, which

we denote as [3;, at a given loop order. If Bi(o) is the 3 function of the model
for renormalization scale () < M,, then the algorithm is built in such a way
that for ) > M,, the same 3 function becomes

Bi=5"+ 5.
In the code, the following threshold scales are implemented:
1. my, for every squark
2. mg, for every slepton
3. p for the the two higgsino doublets
4. m, for charginos
5. my for gluinos

6. m o for the two Higgs doublets
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7. M, for bino
8. M, for winos
9. my for third generation top quark

The RG running proceeds from the weak scale my to higher values of
the renormalization scale (). The RG equations used in the process are at

1/2
one-loop order, for @ lower than mgysy = (m% + 4m?/2) , while are at

two loop order for higher (s, except for those of the parameters p and b,
that are always at one loop order. As before, the unification scale Mgy is
determined by the condition®

Oél(Q) = 042(Q) Maur = @Q,

and the unification of a3 at Mgyr is imposed. Once the GUT scale is reached,
the mSUGRA boundary conditions (3.52) are imposed:

My = My = M3 = Mmyy2

2

2 _
Mgeglar = Mo

Ar = Ay = Ay = Ay,

and the RG running is performed back to m, with the same prescriptions de-
scribed above. Once the running reaches the weak scale, if a correct EWSB
symmetry breaking can be achieved®, the entire physical spectrum is cal-
culated. The whole procedure of running from my; to Mgyr and back is
repeated, until the values that the running parameters take at the m scale
after each iteration, are stabilized at the level of 2%.

5Tf the condition cannot be satisfied for any Q < 10'® GeV the algorithm stops.
6See the discussion above.
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Chapter 4

Supersymmetric Dark Matter

4.1 Introduction

We have seen in the previous chapters how to build a suitable supersymmetric
extension of the SM of fundamental interactions and how to connect an
underlying high energy theory, that is able to explain the origin of the soft
supersymmetry breaking terms, with the low energy physics, through the
renormalization group equations. From chapter 1 we already know that we
have to find a cold dark matter candidate in the particle spectrum of such
supersymmetric theories. We will use the framework of the MSSM.

If we want to find a cold dark matter candidate, the key ingredient is
the conservation of the peculiar R-parity that we have defined in the equa-
tion (2.61) in chapter 2. We recall that R = +1 for ordinary particles while
R = —1 for supersymmetric particles (superpartners of the ordinary parti-
cles). If R-parity were broken there would be no special selection rules in
order to prevent the decay of supersymmetric particles into lighter ordinary
particles. This means also that there would be no stable supersymmetric
particle, and so no natural candidate for cold dark matter. Therefore, we
are led to consider only the MSSM with strict R-parity conservation. In this
way the lightest supersymmetric particle (LSP) with R = —1 will be stable.

The LSP must be a superpartner of an ordinary particle. In the MSSM
the possible choices are the gauge fermions (gluino, photino, wino, etc.),
Higgs fermions (higgsinos), scalar quarks and leptons (squarks and sleptons)
and the gravitino. In the early Universe, all these particles would be present
in thermal equilibrium. As the temperature falls, the heavier supersymmetric
particles decay into the lighter one, and so only the LSP will be left. In this
case the dominant process becomes the pair annihilation. We must require
that this process if efficient enough to reduce the present LSP number density
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to an acceptable value from the cosmological point of view.

From the previous list of candidates it is possible to eliminate [75] the
charged uncolored particles, such as a chargino or a slepton, due the failures in
the search of anomalously heavy protons [76]. For the same reason and from
consideration coming from GUT [75], it is possible to eliminate the colored
particles such as squarks and gluinos. Finally the sneutrino is ruled out in
most, but not all, regions of sneutrino parameter space from cosmological
and WIMP direct detection experiments [77] and from indirect searches [78].

So the only remaining candidates, which are not colored and electrically
neutral, are the gravitino, the spin 3/2 particles superpartner of the graviton,
and the lightest neutralino, a linear combination of the gauge boson super-
partners W° and B and of the Higgs boson superpartners H? and H). We
will concentrate on the neutralino. We will argue that, because it is stable
and weak interacting, the neutralino is a good dark matter candidate.

4.2 Neutralino

As we have seen before the formal definition of the neutralino is a linear
combination of the higgsinos and electroweak gauginos [35] The neutral
higgsinos, H? and H?, and the neutral gauginos WO and B combine to form
four neutral mass eigenstates called neutralinos. We denote the neutralino
mass eigenstates by

Xi
with 7 = 1,2, 3,4. By convention the masses are labelled in ascending order:

Mg < My, < Mgy < My,

so the lightest neutralino is the LSP (unless there is a lighter gravitino or if
R-parity is not conserved). Introducing a gauge eigenstate basis it is possible
to write the neutralino mass terms in the MSSM lagrangian as:

1
£5 3 (v°)" My y® +c.c. (4.1)
where: o
WO = (B,WO,Hg,Hg) (4.2)
and with the neutralino mass matrix given by:
My 0 —CgSwmyz SgSwmy
M, = 0 My cgewmy  —SgCyMmy (4.3)
—CgSwmyz Cglymy 0 —u
SgSwMmy —SgCwiy — 0
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where the 6y parameter is the Weinberg angle and where we have introduced
the following notation: sz = sinf, cg = cosf3, sy = sinby and cy =
cos By,. We remind that (3 is related to the Higgs bosons VEVs through the
equation (3.54).

In the neutralino mass matrix (4.3) appear the two soft breaking param-
eters M; and M, that, recalling the expression for the soft terms MSSM
lagrangian (2.84), are associated, respectively, to the bino and wino mass
terms. The p parameter, instead, is the supersymmetric higgsino parameter
that appear in the lagrangian term (2.82).

The neutralino mass matrix (4.3) can be diagonalized by a unitary matrix
N, in order to obtain the neutralino mass eigenstates:

In this way the matrix:

MY = N* My N7 (4.5)
possesses on the diagonal the eigenvalues, real and positive, mg,, mg,, mg,
and mg,. These are the absolute values of the eigenvalues of the matrix Mg,
or equivalently the square roots of the eigenvalues of M;Mg The indices
(4,7) on the diagonalizing matrix IV;; are mass and gauge eigenstate labels.
The mass eigenvalues and the matrix V;; can be given in closed form in
terms of the parameters M, My, p and tan 3, although the results are not
particularly illuminating [79].

In general M;, M, and p can have arbitrary complex phase that depends
on the form of the RGE used to evolve down the parameters of the high energy
theory that must describe the origin of the soft supersymmetry breaking
terms. If we assume an mSUGRA model for the origin of these terms, the
relations (3.52) hold. Thus, we are able to redefine the phases of B and W in
such a way that M; and M, are real and positive. It is possible to show that
a redefinition of the phase of the fields B and W?° allows us to make M; and
M, real and positive, and, as we have previously seen, the other parameter
is simply sgn (u), that is still undetermined by the EWSB constraints.

In the mSUGRA models we have the amazing RG invariant relation (3.59).
In particular the following relation holds for M; and M,, modulo two loops
corrections:

gt
My = = M, (4.6)

5

and recalling the conventions for the MSSM coupling constants (see sec-
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tion 3.4):
g1 = \/gg’ g = e/cos Oy

(4.7)
g2=9 g=e/sinby
where e is the usual electroweak coupling, we find the nice property:
ST
M1 = gtan 9W Mg (48)

that holds at the electroweak scale. This implies that the neutralino masses
and mixing angles depend on only three unknown parameters, that are re-
lated, through the RGE, to the parameters of the underlying high energy
theory. In particular, we can study the neutralino mass dependence from
the mg and m;, mSUGRA parameters, and we find the results shown in
figure 4.1, whose plots are obtained fixing the other three parameters A,
tan(p) and sgn(p). We can observe that for my < 1 TeV the neutralino
mass heavily depends on my /s, as one could expect by taking into account
that, for such values of my, the lightest neutralino is nearly a pure gaugino
[82]. In particular it is possible to show [83] that in the limit:

| My| + || > myg

the diagonalization of the neutralino mass matrix (4.3) can be carried out
perturbatively and the result is that the LSP is an almost pure bino. Thus
the eigenvalue of the lightest neutralino is, keeping terms up to O (my):

mgl = M1
while for the second lightest neutralino Y, we have:
my, = M2

The phenomenology and the cosmological relic abundance of the lightest
neutralino are determined essentially by its mass and its composition. Let
us indicate, from now on, the mass of the lightest neutralino with:

and we can express X in terms of the mixing diagonalizing matrix V;; (re-
calling the equation (4.4)) as:

%: N11§+N12W0+N13ﬁ2+N14ﬁg (410)
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Figure 4.1: Neutralino mass contour plots in the (mg, mi/2) mSUGRA plane.

The neutralino composition can be described in terms of an other useful
parameter, called gaugino fraction [81], that is defined in the following way:

Zg — |N11|2 —|— |N12|2 (4].].)

If Z, > 0.5 then the neutralino is primarily a gaugino, while if Z; < 0.5 then
the neutralino is primarily an higgsino.

4.3 Chargino

There is another kind of supersymmetric particle that arise in the mass spec-
trum of the MSSM and that is important in order to study the possible
neutralino interactions. If we consider the two charged higgsinos, H; and
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fNId_, and the two charged winos, W+ and va*, we see that they generate a
two mass eigenstates with charge C' = £1 called charginos. We denote these
two states as: _
Cir

where ¢ = 1,2. As in the neutralino case, the mass are labelled in ascending
order:

mal < m52
and the mass eigenstates can be analyzed in an analogous way. Let us fix
the gauge eigenstates basis:

Wt = (’VVtﬁI;,’W—,fI;) (4.12)

in terms of which it is possible to write the chargino mass terms present in
the MSSM lagrangian:

£5 -1 (") Mpu (113

where we have introduced the chargino mass matrix Mz that can be written
in a 2 x 2 block form, in the following way:

0 XT My 2sgmw
M~ = X =
¢ <X 0 ) (\/505mw 1

where myy is the weak gauge boson mass. To find the corresponding mass
eigenstates, we must introduce a 2 x 2 matrices U and V', that act on the
gauge basis in the following way:

cHy\ w+ cr\ w-
) () (8)o(z)

We see that there are two different mixing matrices for the positively charged
states and for the negative ones. The mixing matrices satisfy:

(4.14)

UrXV! = (mﬁ 0 ) (4.16)

0 m@

and because these are 2 x 2 matrices, it is not hard to find an analytic solution:

ma, = = [(IMaf” + |u” +2m3y) — Ag]

mg, = 5 [(IMa]” + [l +2miy) + Ag] (4.17)

N — DN —
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where we have introduced:
2 2 2 \2 2 . 2]1/2
Ag = [(|M2| + |ul* + 2myy)” — 4 |uMy — miy, sin 26| ] (4.18)

It is interesting to note that the chargino mass eigenvalues of equation (4.17)
are the doubly degenerate eigenvalues of the 4 x 4 matrix MTéMé or equiva-

lently the eigenvalues of XX, but they are not the squares of the eigenvalues
of X. It is possible to show that in the same limit that we have seen in the
neutralino discussion:

|My| + [p] > mz

the lightest chargino mass is, up to terms O (my):
mél = M2

and so it is nearly degenerate in mass with the second lightest neutralino xs.

4.4 Neutralino annihilations

We have derived in the section 1.4 of chapter 1 the cosmological abundance of
a generic WIMP, without any particular assumption about the nature of this
particle. The result, that we have obtained, is that the WIMP cosmological
density is essentially determined, through the Boltzmann equation (1.30),
by the thermal average of the annihilation cross section times the relative
velocity of the WIMP pair, that is denoted as:

(Cann V)

Moreover the calculation of the annihilation cross section is required in order
to compute the expected flux of cosmic rays (in particular gamma rays) as
we will see in the next chapter. There are some recent results [87] for a
complete calculation of the annihilation cross section, but here we want to
describe another approach, based on the expansion in helicity amplitudes,
that allows us to obtain a more physical insight.

It is generally possible to expand the annihilation cross section into the
non relativistic limit, because the relative velocity of the neutralino pair,
being a CDM candidate (see chapter 1), is v/c ~ 1072 in the galactic halo.
So, to the order O (v?) we have:

Cann VU = @ + bv? (4.19)

where the constants a and b are to be computed in the helicity amplitude
formalism.
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The annihilation process can be formally described as':
xx — XY (4.20)

There are various final states XY into which the neutralino can annihilate.
The most important are those states that appear at tree level. Specifically,
they are fermion-antifermion pairs (ff where f is a SM neutrino, lepton
or quark) or state that involves gauge bosons and/or Higgs bosons, such as
Wrw-, Z°2°, WtH-, W-H*, Z°A° Z°H° H*H~-, and all six combi-
nations of the Higgs bosons A% h® and H®. We have performed a detailed
numerical simulation, over the entire MSSM parameter space, of the branch-
ing ratio of different annihilation channels, defined as usual:
Ai

(BR), S 4, (4.21)
where A; is the annihilation probability in the channel . The result is that
approximately 44% of the models annihilate in a quark-antiquark channel (we
will see below which states are favored) and 36% of the models annihilate in
a gauge boson final state.

In the expansion of the cross section in powers of v we have used the
partial wave formalism, with the a and b associated to different partial waves
contributions: a is the s-wave contribution at zero relative velocity, while b
contains contribution coming from both the s and p-wave. In this formalism
the helicity amplitude for the process (4.20), with h, h, Ay and Ay as the
helicities of the corresponding particles, is written as:

L+S

(&%) 1
T = Z Z Z ACSTLy) P (5T L) d], 5, (4.22)

L=0 S=0 J=|L—S|

where the reduced partial wave amplitude A describes annihilation from an
initial state with definite spin S and orbital angular momentum L, and thus
also with definite C' and P quantum numbers. The spin projector P depend
only on h and h (the helicities of the xx pair) while the angular dependence
is contained in the functions di-,Aj where:

Ni=h—nh

are the differences of the helicities of the initial and final particles, respec-
tively. Because our initial state involves two neutralinos, that are identical

from now on we will neglect the tilde over x
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Majorana fermions, we only need to consider initial states with C' = 1. More-
over, since we want to expand the total annihilation only up to O (v?), we
find again that only annihilation from s and p-wave has to be included. At
the end, we thus find that we need to include only the contributions from
1Sy, 2Py, 3P, and 3P, initial states. Explicit expressions for the relevant spin
projector can be found in [84].

In the following discussion we will derive the non relativistic limit v —
0 for the annihilation cross section. In this limit only the a term of the
expansion (4.19) is important. Thus we have to compute this term for the
dominant annihilation channels.

Let us consider weak gauge bosons in the final state. The weak gauge
bosons annihilation channels are opened if they are kinematically allowed:

my > My

There is no s-wave suppression mechanism for these annihilations, and thus
they can become very important for a neutralino heavy enough to make the
final state available. These channels are usually important when 7, < 0.1
and so when the neutralino is primarily an higgsino.

W+
%
X rr‘fW+ h, H®
% -
oM
% we
ZO
% w-
% _
w

Figure 4.2: Diagrams that contribute to the amplitude of the neutralino
annihilation into W~ gauge bosons

The Feynman diagrams that contribute to the annihilation into W*+tW~
gauge bosons are shown in the figure 4.2. The limit v — 0 for the annihilation
amplitude to a pair of W bosons is completely determined by a chargino
exchange in the t and u-channel and is given by:

1

5 2

2
Al = WHWo) L =2v36w gy [(08)" + (O8)’]
n=1
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where the kinematic factor (y is given by:

B = (/1 - =X (4.25)

mes \ 2 —_——
P,=1+ ) — | — (4.26)

My My
and the sum is extended over the two chargino states which can couple to

the neutralino and the T boson. The functions Of and Of [29][83] can be
expressed as:

and:

1
OL = ——— Ny Vi + Noy Vit
\/§ 4 2 2 1
1 * TR * Tk
Orljm = —NSnUZm + NZnUIm (427)

V2

where N is the neutralino diagonalizing matrix defined in the equation (4.4)
and U and V are the chargino diagonalizing matrices defined in the equa-
tion (4.15). The indices are consistent with the basis, ¥/° and ¢*, definition.

0
X Z
ZO

X 70
Figure 4.3: Diagrams that contribute to the amplitude of the neutralino
annihilation into Z°Z° gauge bosons

The Feynman diagrams that contribute to the neutralino annihilation
into Z°Z° gauge bosons are shown in figure 4.3. The v — 0 amplitude for
the neutralino annihilation into a Z bosons pair is completely determined by
the t and u-channel exchange of a neutralino y,, and is given by:

4
0 70 _ 92 nL 2 i
A(ox = 2°2°), = V27 ; (05) b (4.28)

2 2
Po=1+ <m><"> - <@) (4.29)
My My
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where now:




and the kinematic factor is now given by:

Bz=\|1—— (4.30)

The sum is now extended over the four neutralino states yx,. In terms of
the amplitude that we have computed, we can obtain the annihilation cross
sections (times the relative velocity v) in the non relativistic limit as:

L _bw S [A (= VV)P (4.31)

20 T Sy 128mm?

o(xx = VV)

where V = W#*, Z% and the coefficient Sy is a symmetry factor Sy = 14 and
S; = 2, that take into account the fact that the Z boson final state contains
two identical particles.

The annihilation channel of the neutralino into a fermion-antifermion pair
is usually dominant because, given a neutralino mass m, 2 50 GeV/, this is an
always open channel. However for the interesting range of neutralino masses,
in particular from the cosmological point of view, i.e. m, ~ 100 GeV, the
fermionic final states are not the only open channels. In this case the contri-
bution of the gauge boson final states, that is no more closed or suppressed,
becomes important.

When we study the non relativistic limit, we must consider that there
are some helicity constraints for the fermionic final state [85]. In fact we
know that the neutralino is a Majorana particle and so it coincides with its
own antiparticle. This implies that two neutralinos that are in a relative
s-wave, must have their spins oppositely directed, as a consequence of the
Fermi-Dirac statistics. So also the final state, constituted by the fermion-
antifermion pair, must have a total spin equal to zero, and so with opposite
directed spins. The amplitude must have a factor of the fermion mass my
in order to take into account the helicity flip. This result can be seen also
by an other point of view: the initial state has CP = —1 and so the final
state must have also CP = —1, because we are considering C'P conserving
interactions. The net resulting suppression factor for the s-wave amplitude
is of order: )

my

ms
This suppression factor is important for the light fermionic final states. But,
of course, there is no suppression factor for the ¢ quark final state, unless
the neutralino is much heavier than the ¢ quark. For b and ¢ quarks final
states, the suppression factor is of the order of 10~ for a neutralino with
mass m, =~ 100 GeV'.
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Figure 4.4: Diagrams that contribute to the amplitude of the neutralino
annihilation into a ff pair

The Feynman diagrams for the neutralino annihilation into a ff pair
are shown in figure 4.4. Let us compute the annihilation cross section, for
the fermion-antifermion production, in the non relativistic limit. The s-
wave amplitude has contributions coming from u and t-channel exchange of
a sfermion state f, from an s-channel Z° boson and from an s-channel A°
Higgs boson [75][86][83]. The amplitude can be written as:

A(xx = fifi), o =Aj+ Az + Ao (4.32)

Let us evaluate the different contributions. The sfermion f exchange is given
by:

6
1 my,
Aj=v2) = { [(X} q0) + (W} ijO)Z] 12X W z‘jO} (4.33)
=1 "7 *

where the sum is extended over the six sfermion states and the ¢ and j are
family indices. The functions X} ;. and W} ;. are the couplings that appear
in the lagrangian terms that describe the interaction vertices of sfermions
(included the sleptons 7;), fermions and neutralinos:

_ r 0 f
£ffx = Z fi (PRX} ijn T Py, W} ijn) XnJj
f=u,d,e
+7; PR X, i X5 + hec. (4.34)

where P, and Py are the usual chiral projection operators:

Pp=-(1-7)

N — DN —

Prp =5 (1+7s)
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The couplings can be expressed as:

X} iin = Xpn (UeOy),; + Zpitn (LROy),,;
Wi ijn = Yrn MrOy);; + Zpiwn (MOf),,; (4.35)

where we have introduced the sfermion mixing matrix ©, that can be defined
in the diagonalization procedure for the sfermion mass matrix:

diag 2 tas2
(Mf ) = o} M20, (4.36)

and where we have introduced the sfermion projection operators II; and
I1z, which have the effect of projecting mass eigenstate sfermion fields onto
subspaces corresponding to a particular handedness:

g = (I1L);, Ok,
iri = (IIg);; Ok;t; (4.37)
with analogous relations for the down type squarks and the charged sleptons.

The other functions that appear in the definition of the couplings (4.35) are
given by:

Y. = gV2tan by e; N7,
g

Zijn = = oy sin B (Ma),; Ny
Zaijn = —m (Md)ij N3,
Zuiin = = g (M), NG, (4.38)
where the neutralino mixing matrix N;; is referred to the basis ¢° = B,W°, leg, flg) ,

and where T3 is the T3 quantum number of the fermion f and ey is the charge
of f in units of e [35].
The Z° exchange contribution to the total amplitude is given by:

2
g n L My, My
=2V2——— O “Ts;. 4.39
Azo \/_0032 Oy 0 3 m? ( )

where the coupling O{]'OL is derived by the general formula:

» 1
OgmL = _Ong = 5 (_N3TLN?):m + N4nNIm) (440)
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We can immediately see that the Z-boson exchange amplitude (4.39) is pro-
portional to the mass my; of the final fermion state. Adding the amplitude
A° that is proportional to the mass my, through the corresponding Yukawa
coupling [29], we are able to obtain the total annihilation cross section in a
fermion-antifermion pair in the non relativistic limit:

700 T v = gtz MG PP

where ¢y is a color factor (¢; = 3 when the fermion in the final state is a
quark), and the kinetic factor 5y is equal to:

In the limit v — 0, the annihilation cross section in a fermion-antifermion pair
is proportional to the mass my. Thus, the annihilation into lighter quarks
and leptons is negligible respect to the annihilation into the heavy quarks
c,b and t and into the heavier lepton 7. Moreover, when the neutralino mass
is m, > m, then the dominant annihilation channel is tt.
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Chapter 5

Indirect neutralino detection
with cosmic v-rays

5.1 Introduction

We have identified the neutralino as one of the best motivated WIMP cold
dark matter candidate. We have seen that in the neutralino annihilation
processes, ordinary SM particles are produced. Thus the study of neutralino
properties is possible through indirect detection of these particles. In fact,
if a dark halo, such as the Milky Way halo, is made of WIMPs, there is a
small but finite probability for dark matter particles to annihilate in pairs
into lighter SM particles (the annihilation strength is the quantity which
fixes as well the WIMP relic abundance), giving rise to cosmic rays, as, for
example, exotic y-rays and antimatter fluxes. In particular, the distortion of
the spectrum of the diffuse y-ray flux in the Galaxy due to a WIMP induced
component, extending up to an energy equal to the WIMP mass, is a possible
signature to identify dark matter; In the following analysis we will focus on
such a signal.

We might ask how it is possible to have a y-ray flux coming from neu-
tralino annihilations. We have seen in the previous chapter the possible tree
level final state for neutralino annihilations. There are no final states that
contains 7’s. This can be regarded as a consequence of the dark matter
definition, 7.e. matter the does not emit light. But, once SM particles are
produced from annihilations, they can decay and/or interact to produce, at
the end, a measurable y-ray flux.

Our starting point will be the already available experimental data coming
from EGRET ~-ray detector. We will concentrate ourselves on the data com-
ing from our Galactic Center. In order to study the expected v-rays flux and
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to try a fit of the experimental data, we will built a simplified phenomeno-
logical toy model that describes the WIMP annihilations. This allows us to
obtain some general results without worrying about the details of a more
complex underlying theory. Then we will argue how the upcoming experi-
ments, as the GLAST detector, will be able to constrain the parameter space
of our WIMP theoretical models. In particular we specialize to mSUGRA
models (introduced in section 3.6). Then we will see how this kind of anal-

ysis can tell us something about the detection possibilities of the upcoming
GLAST experiment.

5.2 The EGRET data

The EGRET telescope on board of the Compton Gamma-Ray Observatory
has been mapped the y-ray sky up to an energy of about 20 GeV. Moreover,
EGRET has observed the Galactic center (GC) region, over a total period of
5 years. The collected data show high statistical evidence for a gamma-ray
source, possibly diffuse rather than point-like, located within 1.5° of the GC
(I =b=0°) [88]. The detected flux largely exceeds the diffuse y-ray compo-
nent expected in the GC direction with a standard modeling of the interaction
of primary cosmic rays with the interstellar medium (see, e.g., [89]); the lat-
ter fails also to reproduce the spectral shape of the GC source. Assuming
the GC excess is indeed due to some form of diffuse gamma-ray emission, one
might regard this issue as a particular aspect of a general problem concerning
the diffuse Galactic y-ray emission as measured by EGRET [93].

The generic feature emerging at all latitudes is that the measured diffuse
flux shows a spectrum which is much harder than expected. As can be seen in
figure 5.1, taken from [89], below 1 GeV the spectrum observed by EGRET
can be modeled with fair accuracy as due to primary cosmic-ray protons
and electrons propagating in the Galaxy, with spectra and normalizations
as measured locally. On the other hand, under the same assumptions, one
severely underestimates the flux above 1 GeV: the standard emission model
predicts the flux in this energy range to be dominated by photons from the
decay of s, but this component is sensibly softer than the measured flux,
if the proton cosmic ray flux in the Galaxy is assumed to have the same
spectral index as measured locally. Several solutions to this problem have
been proposed: one option is, for example, to assume that the local cosmic
ray electron spectrum is not representative for the entire Galaxy and it is on
average harder than that measured locally. Another possibility is that there
is some variability in the spectral indices of standard cosmic ray sources (for
a discussion see, e.g., [94]).

91



10= L galproﬂ model 19‘ 004508 ‘ \\ EGRET
0.5<l< 30.0 , 330.0<<359.0 ,\\\\\ \
L OSSEL:()% -5.0<b< 5.0 &‘ \
—_ | COMPTEL s*'
© N
n L \ %
L > TOTAL
-2
107% 1 *%%F%%% 1
i . ]
g | OSSE =25 i
) L 04
% o
= /
B
=
& 107 3L muverse |
) F Compton ]
=
X
a
[e5
bremss
1074 | | | | | |
107% 107! 109 10! 10 103 10t 10°
Energy, MeV

Figure 5.1: v-ray energy spectrum of the inner galaxy (300° > [ < 30°)
compared with what is expected for standard propagation models [93].

The other interesting solution, is that the excess can be explained by the
diffuse y-ray flux expected from a WIMP induced component [90]. In fact,
we will see that this component has just the right spectral feature to generate
the kind of distortion in the diffuse y-ray flux.

In Table 5.1 we report the flux per energy bin for the GC gamma-ray
source as measured by EGRET, together with the expected flux from cosmic
ray interactions in a standard scenario [88].

5.3 The diffuse y-ray background

To start with our analysis we must give a model that describes the produc-
tion of y-rays in the Galaxy. This is called the background diffuse com-
ponent. There are three mechanisms which give rise to this diffuse v-ray
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Energy Bin | Expected Diffuse y—Ray Flux | Total y—Ray Flux
(GeV) (cm 25 'GeV st !) (em 25 'GeV~'sr!)
0.03 —0.05 3.7-1073 (5.0 +0.8) - 102
0.05—0.07 1.8-1073 (1.34+0.2) - 1072
0.07 - 0.1 1.1-1073 (6.1 4+0.5)-1073
0.1 -0.15 6.2-107* (4.44+0.2)-1073
0.15—-0.3 2.6-1071 (2.03 £0.06) - 107*
0.3—0.5 1.0-10°* (9.5+0.2)-10°*
0.5—-1 3.5-107° (3.9+0.1)-10°*
1-2 9.1-107° (1.52 4+0.03) - 10~
2—-4 2.0-107° (3.240.1)-107°
4—-10 2.3-1077 (3.14+0.2)-10°°

Table 5.1: Estimated values for the Galactic diffuse y—ray component com-
ponent (second column) and EGRET data from a region of 1.5° around the
GC (third column), extracted from [88].

radiation: production and decay of 7's, inverse Compton scattering and
bremsstrahlung (see for example [89]). According to standard scenarios, in
the energy range E, > 1 GeV we will mainly focus on, the dominant back-
ground source is through 7° decays. The production of pions (and then of
photons) mainly due to primary cosmic-ray protons, with a small corrections
from the primary helium component, through the interactions:

p+X = . =710 =2y

He+ X — .. =71 — 2y,

where X is an interstellar atom, mainly H and He.

The simulation of the induced y—ray yield has been performed according
to standard treatments implemented in the Galprop software package [89].
We assume that the p and He cosmic ray fluxes in the Galaxy have the
same energy spectra and relative normalization as those measured in the
local neighborhood, and that the He component in the interstellar medium
is 24% in mass with respect to H. Then we write the background flux,

splitting it into two factors:
1

and

_ 1 l”H(l) ¢ (D)

No= FomoaT /l A (5.2)

93



Here £(E,) [GeV ™! s71] is the local emissivity per hydrogen atom, i.e. the
number of secondary photons with energy in the range (E.,,, E,+dE,) emitted
per unit time by one target hydrogen atom, for an incident flux of protons
and helium nuclei equal to the locally measured primary proton and helium
fluxes. The factor N, is instead associated to the interstellar hydrogen column
density ny (1), integrated along the line of sight and weighted over the proton
primary flux at the location [, ¢¢"""(l), normalized to the local value ¢£™" (I =
0).

Above an energy of about 1 GeV the background spectrum (and therefore
the function ¢,) recovers the same spectral index as the dominant primary
component, i.e. the proton spectral index av = 2.7. The relative normal-
ization of the primary components in different places in the Galaxy can be
estimated once a radial distribution of primary sources is chosen (following,
for instance, the radial distribution of supernova) and then by propagating
the injected fluxes with an appropriate transport equation (this is what is
done in the Galprop code [89]). On the other hand, the hydrogen column
density toward the Galactic center is very uncertain; we chose therefore to
define the spectral shape of the background through the function &, and to
keep N, as a free normalization parameter.

5.4 ~-ray flux from WIMP annihilations

In order to explain the EGRET excess in the GC data, we assume that the
bulk of the high energy v-ray flux is due to WIMP annihilations. Let us
introduce a generic framework in which the dark matter in the Galactic dark
halo consists of non relativistic WIMPs of mass m,, and total pair annihilation
rate into lighter Standard Model particles o,4,,v (in the non relativistic limit
of vanishing relative velocity). The total y-ray flux coming from the GC can
be described as the superposition of two contributions:

e the background contribution due to interaction of primary cosmic rays
with the interstellar medium, with spectral shape defined by the func-
tion (5.1)

e the signal contribution due to WIMP annihilations in the dark matter
halo, whose energy spectrum is defined by S, (E,)

Hence we can write the flux as:

Oy = Op + Oy = NpSp + Ny Sy, (5.3)
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where N, and N, are dimensionless normalization parameters. The N, pa-
rameter is the normalization of the standard background contribution (5.2)
while N, is the unknown normalization of the WIMP annihilation flux.

As we have seen in section 4.4, for a neutralino, among the kinematically
allowed tree level final states, the leading channels are often:

bb, cé, tt, T, WtW—, Z2°Z°

More generically this result holds for any Majorana fermion WIMP, as for
such particles the s-wave annihilation rate into the light fermion species is
suppressed by the factor m7/m?, where m; is mass of the fermion in the
final state.

Once the SM particles are produced, there are two processes that give
rise to 7’s in the final state: the fragmentation and the decay process. The
dominant intermediate step in these processes is the 7% production. In this
way we are able to compute the photon yield in the framework of the SM.
The yield simulation has been performed with the Lund Monte Carlo program
Pythia [116] implemented in the DarkSUSY package [92].

In order to compute the y-ray flux we must determine the dark matter
distribution in the halo. Suppose that the dark matter halo is roughly spher-
ical and consider the induced ~v-ray flux in the direction that forms an angle
v with the direction of the Galactic center. In this case the WIMP induced
photon flux is the sum of the contributions along the line of sight (lL.o.s):

¢ ( o O'annv Z de [O.S dl(iﬁ)%p?g;j (54)

where By is the branching ratio into the tree-level annihilation final state f,
while dNy/dFE is the relative differential photon yield. The WIMP mass den-
sity along the line of sight p(l) enters critically in the prediction for the flux,
as the number of WIMP pairs scales with p(1)?. It is then useful to factorize
the flux in equation (5.4) into two pieces, one depending only by the under-
lying particle physics setup, ¢.e. on the cross section, the branching ratios
and the WIMP mass, and the other depending on the WIMP distribution in
the galactic halo. We rewrite equation (5.4) as:

b (1) = 3.74.10°1 ( TannV ) (50 Ge\/> Z de ) (5.5)

1026 cm3s—!

in units cm 25 'GeV !'sr! and where we have defined the dimensionless
function J, containing the dependence on the halo density profile, as

TW) = 8.51kpc (0.3 Gel\/cm?’) /pQ(l)dl(z/)) (5.6)
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More precisely, given a detector with angular acceptance Af2, we have to
consider the average of J(1) over the solid angle AQ around the direction :

(W) a0 = g [ JW)Q (7)

To compare with the GC gamma-ray source, we will consider AQ ~ 103 sr,
i.e. the same magnitude as the angular region probed by the EGRET exper-
iment.

In an analogous way as for the background component, we have then
splitted the signal into a term which fixes the spectral shape of the flux, plus
a normalization factor. In the notation introduced in Equation (5.3), we
have denoted N, = (J(¢))aq and defined S, = ¢, /N,. The WIMP density
p(l) is very poorly constrained towards the GC, we will treat N, as a free
parameter. Although there is a large span in the predictions for ¢, when
coming to specific WIMP models, the term S, shows some generic trends.
As most s are produced in the hadronization and decay of 7s, the shape
of the photon spectrum is always peaked, for kinematic reasons, at

mwo/2 ~ 70 MeV

where m,, is the pion mass, and it is symmetric around it on a logarithmic
scale. This feature is often called the “7° bump”.

The same is true for the background, but still it may be possible to
discriminate signal from background: the signal arises in processes which
have all the same energy scale, i.e. 2m,, therefore the WIMP induced flux,
contrary to the background, is spectral index free and shows a sharp cutoff
when FE, approaches the WIMP mass. This is shown in the right panel of
Fig. 5.2, where we plot the differential photon yield per annihilation times
the inverse of WIMP mass squared, for a few values of the WIMP mass,
and assuming WIMPs have a single dominant decay channel (bb in the case
displayed). In the same figure, for comparison, the spectral shape of the
background is shown: as it can be clearly seen, one may hope to identify the
WIMP induced component as a distortion of the background spectrum at
relatively high energies.

For a given WIMP mass, the photon yields in the different annihilation
channels are analogous, as shown in the left panel of Fig. 5.2: solid curves
indicate the total photon yield, while dashed curves indicate the photon yield
in radiative processes, i.e. in all processes rather than 7° decays. The spec-
trum for the £ and W*W ~ channels are very close to one for bb (differences
are mainly given by prompt decays before hadronization); only in the 77~
case, that we will not taken into account in this analysis, radiative photon
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Figure 5.2: In the left panel: differential yield per annihilation for a few
sample annihilation channels and a fixed WIMP mass (200 GeV'). The solid
lines are the total yields, while the dashed lines are components not due
to m* decays. For comparison the emissivity, with normalization arbitrarily
rescaled, from the interaction of primaries with the interstellar medium is
shown. In the right panel: differential yields per annihilations for a fixed
annihilation channel (bb) and for a few sample values of WIMP mass, rescaled
with the inverse of the WIMP mass squared.

emission is dominant, still with a large bump due to the hadronic decay
modes of 7 leptons.

5.5 Fit of EGRET data

We have seen that data in the EGRET measurement extend up to 10 GeV
only, with few bins in the high energy region. Then, it is not likely that one
can pin down many details on an eventual WIMP induced component. In
particular, it is not possible to discriminate among the WIMP model by sep-
arating the photon components from single tree-level annihilation channels.
It is convenient to keep the discussion as general as possible and consider a
simplified scenario (which we refer, from now on, to as a toy model [91]), in
which only one intermediate annihilation channel is open (By = 1 in that
channel), and we set the value of the total annihilation cross section according
to the following general argument.

To start with, let us suppose that WIMPs in the halo are thermal relic
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particles: in the simplest scenario (i.e. when no resonances or thresholds
appear near the kinematically released energy in the annihilation 2), we can
fix the WIMP total annihilation rate through the approximate relation (see
discussion in section 1.4 of chapter 1):
3-10"%"ecm?s ™!
Oann¥ ~ (Tann¥) ~ ~3-10 %cem’s!, (5.8)

Q2

where (ov) is the thermally averaged annihilation cross section and €, the
WIMP thermal relic abundance. We keep as the only free parameter the
WIMP mass, as we have shown that the photon spectrum is rather sensitive
to it.

The results shown below just depend on a mass scale and on a normaliza-
tion parameter; they can be easily rescaled for any explicit model for which
m, and og,,v are defined. Note, in particular, that the scaling we have
implemented between annihilation rate today, (ov) and €2, is only a rough
approximation and that large deviations from it can appear, mainly due to
resonances and thresholds, or, sometimes, coannihilation effects.

In section 5.7 below we will consider an explicit WIMP model, in the
framework of mSUGRA models, and we will not use this approximate rela-
tion, but instead calculate the relic density including properly both coanni-
hilations, resonances and thresholds.

For each WIMP mass m, and for each intermediate channel, we try to
reproduce the EGRET data (third column of Table 5.1), with a flux of the
form in equation (5.3) and varying the parameters N, and N,. As in the
fit we do not want to include cases in which the flux is underestimated, we
implement the additional constraint on the normalization constants:

(NS + NySy); > (brareT); (5.9)

where the index ¢ runs over the energy bins for which we have experimental
data; ¢pgrer is the diffuse y-ray flux measured by EGRET in each bin,
i.e. the third column in table 5.1 We do not use the first two energy bins
in table 5.1, because they are in a region (E < 1 GeV) in which the back-
ground should be dominated by the inverse Compton and bremsstrahlung
components instead of 7° production as we are assuming.

We choose as allowed range of variation for the background normalization,
N, between 3.2-10%° to 1.8-10%!, corresponding, respectively, to the case when
the background is at the level estimated in a standard scenario (column 2
in Table 5.1) and to the best fit case with N, = 0. In figure 5.3 we have
plotted the value of the reduced x? of such fits in two cases: one in which
there is only the background contribution (N, = 0), and the other in which
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Figure 5.3: Reduced x? for EGRET data fit vs m, for the two annihilation
channels bb and W~

we allow a WIMP contribution to the flux (N, > 0). The number of degrees
of freedom, for the reduced x?2, is 6, i.e. the number of EGRET experimental
points above 100 MeV (which is 8) minus the number of varying parameters,
Ny and N,. Even in the case of small WIMP masses, which seems to be the
favored ones, we have obtained that the reduced x? values are of the order
of 5.

In figure 5.4 we show two fits of the EGRET data, obtained for the
intermediate channels bb and W*W~, for values of the WIMP mass close to
the respective thresholds. This two plots are shown just to give a qualitative
idea of the 'goodness’ of the fits of EGRET data, in relation to the reduced x?
value. As it can be seen from the figure, the fit to the data greatly improves
when a neutralino component is added.

Next we have studied the reduced y? in fitting EGRET data with our
signal plus background theoretical curve, in function of the parameters m,,
and N,, for the intermediate annihilation channel bb. Figure 5.5 contains
lines of constant values of such reduced x? in the (N,, m,) plane. We find
again the same result that we have inferred from figure 5.3, namely that the
EGRET data are best fitted for low neutralino masses.
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Figure 5.4: Fits of EGRET data for two different models with x? ~ 5, with
the corresponding values for NV, and N,,.

5.6 WIMP signal detection with GLAST

The Gamma-ray Large Area Space Telescope (GLAST) (see [105] for an
exhaustive description of the experiment and of the scientific organizations
involved) is a new generation satellite with greatly improved features with re-
spect to EGRET. Besides studying dark matter, the main scientific objectives
are the study of all «-ray sources such as blazars, v-ray bursts, supernova
remnants, pulsars, diffuse radiation, and unidentified high-energy sources. It
is worth noting that the experimental techniques for the detection of ~-rays
in the energy range in which there is pair production are very different from
the techniques used for X-ray detection. In fact, in the detection of X-rays
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Figure 5.5: Lines of constant reduced y? for the fit of Galactic center EGRET
data with ¢, = Ny¢y, + Ny, in the (N,, m,) plane.

it is possible to optically focus the incoming beam: this allows for a large
effective area, excellent energy resolution, very low background. For ~-rays
no such focusing is possible and this means limited effective area, moder-
ate energy resolution and an high background. With respect to EGRET,
GLAST allows for a better space resolution. This could be revealed as a
very important feature in order to study WIMP annihilations.

In the following analysis we will use in a crucial way GLAST technical
features. The most important features, form the point of view of WIMP
detection, shown in figure 5.6, are:

e an energy range between 20 MeV and 300 GeV
e a field of view of ~ 3 sr
e an energy resolution of ~ 5% at 1 GeV

e a point source sensitivity of 2x10~” (ph em 2 s7!) at 0.1 GeV

an event deadtime of 20 us
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Figure 5.6: Ezpected GLAST performances

e a peak effective area of 10000 cm?

A more detailed description of the apparatus can be found in [106] and
of its main physics items in [107].

In the context of a simplified toy model, in section 5.5 we have explored
the possibility of fitting the EGRET data from the GC with a neutralino
induced continuum y—ray component. This exercise was performed for a
given intermediate WIMP annihilation channel. The satisfactory outcome
of this trial urges a more detailed analysis. We thus examine the possibility
to detect the continuum -~ signal from yy annihilations in the GC, with the
upcoming experiment GLAST. For each intermediate channel and WIMP
mass, we look for the minimum ratio between the two normalization factors
N, /Ny, that is needed in order to detect with GLAST the WIMP annihilation
signal among the background one. As we have seen in section 5.5, the factor
N, is exactly J(¢), while NN, is related to the density of the interstellar
medium. The best fits in section 5.5 give a typical value of N, of the order of
10%? = 10?*. Given also a typical halo profile (see table 5.2) we expect N, /N,
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Profile (J(0))pq AQ =107 sr
Modified isothermal 3.03 - 10*
Navarro, Frenk, White 1.26 - 104
Moore et al. 9.46 - 107

Table 5.2: Halo profiles.

to be of the order of

N, 10 + 107 _a0 _ Ny 13

N, ~ 1020 = 102 = 10" < N, < 10 (5.10)
In figure 5.8 we plot, for one intermediate channel (the other channels look
very similar) and for each WIMP mass, the minimum ratio of N, /N, to
be able to discriminate the WIMP signal with GLAST at a 30 confidence
level. For such an analysis, we have considered a region around the GC of an
angular extension of the order of the GLAST angular resolution at 10 GeV,
that, as can be seen from figure 5.6, is ~ 107 sr. We have made this choice
in order to exploit the GLAST capability to sharply focus on the GC, that is
very advantageous to consider in an indirect dark matter search, since around
it the dark matter density could very likely be strongly enhanced. We will
return on this point below.

The discrimination criterion we have used is based on the usual x? test
statistic. Our choice can be easily understood referring to figure 5.7, that
shows an example of a supersymmetric continuum ~ ray flux, together with
the background only component and the sum of the two. The points repre-
sent the expected flux measurements of the GLAST detector, with the asso-
ciated statistical error for the chosen energy binning. We have computed the
reduced y? between the number of counts expected in each energy bin for
the two hypothesis: supersymmetric signal plus background and background
only. Taking into account the number of degrees of freedom, which in our
case is equal to the number of energy bins, the signal plus background curve
is distinguishable from the background only curve, for a reduced y? > cost..
This constant in uniquely determined by the number of degrees of freedom
and by the confidence level we want to reach. We have also checked our
results against those obtained with the likelihood ratio method [108, 109],
obtaining no discrepancies’. This latter method is especially suited for the
case we have at hand: deciding if a certain event belongs to the background
only hypothesis (Hy) or to signal plus background hypothesis (H;), one starts

T thank G.Ganis for the computer code that allows to perform this analysis.
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Figure 5.7: The figure shows an example of a supersymmetric continuum -y
ray flux, together with the background only component and the sum of the
two. The points represents the expected GLAST flux measurements with
the associated statistical error for the chosen energy binning.

by constructing two probability distributions, P, and P;, for an estimator
F = L(H,)/L(Hy), which is the ratio between the likelihoods £ of the two
hypotheses. In our case, since we are interested in counting, we can choose
the Poisson distribution to obtain the likelihood. Comparing the two dis-
tributions one can decide, at a certain confidence level, if they will result
distinguishable or not, once it is fixed the accuracy of the experimental data
that will be used for the discrimination. The likelihood ratio method is
in general more powerful than the x? one, since, in addition to giving the
probability of a certain set of data to belong to the signal plus background
probability distribution, it allows to compute the probability to be wrong
when accepting such hypothesis, the so called power of the test, considering
the background only hypothesis as the true one.

From figure 5.8 we can see that, given an annihilation channel, the min-
imum value of N, /N, to distinguish the WIMP signal raise as a quadratic
power law with the WIMP mass m,. Such a behavior could be expected
because in equation (5.5) for the flux ¢,, there is a suppression factor m;Q
(it is useful to see also figure 5.8). Let us further observe, again from figure
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5.8, that the minimum values of N, /N, needed to discriminate a signal with
GLAST, ranges inside the interval of equation (5.10) that has been computed
from the values of N, = (J(0)) of table 5.2 and from the typical values of N,
needed to best fit the GC EGRET data.

5.7 mMmSUGRA Neutralino detection with GLAST

All the results that we have obtained in previous sections hold for a generic
WIMP in the framework of our toy model. At the end we want to identify
this WIMP with a neutralino. We know that in the MSSM there is a huge
number of independent parameters, so to perform phenomenological analysis
we must reduce this number. Let us consider the mSUGRA theories (de-
scribed in section 3.6) as the underlying high energy theory. The theory is
then completely defined in terms of five input parameters, that we rewrite
here for convenience:

mo, My/2, AO; tanﬁ, sgn (/,L)
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Ann. Channel | (0v),;. | (0V),,..
[em3s7 | [em3s™!]
bb 10736 102
cc 10~% 1070
tt 107% 10=%
WHWw- 1073° 10728
AVAS 1073° 1072

Table 5.3: mSUGRA cross sections for the relevant annihilation channels.

These parameters are defined at the GUT scale. In this way the MSSM can be
regarded as an effective low energy theory and so the weak scale parameters
can be obtained, from the high energy theory, solving the appropriate RG
equations described in section 3.5 and 3.6. The numerical procedure that
we have followed is described in section 3.7. Moreover we have performed a
phenomenological study of the neutralino, obtaining the neutralino isomass
curve of figure 4.1 in section 4.2.

Let us concentrate on the annihilation cross sections of a neutralino pair.
In our toy model we have assumed that the neutralino annihilation cross
section was essentially fixed, for a given annihilation channel, by the inverse
of the relic density. Now, in the context of mSUGRA models, we can relax
this assumption. We have computed in table 5.7, the range of variation,
among the entire mSUGRA parameter space, of the cross sections of the 5
processes:

xx — {bb, ce, tt, WTW—,2°Z°}.

Calling 04; the total annihilation cross section, the partial ones and the
corresponding branching ratios are defined by the following equations:

g;

Otot = Zai; I = (5-11)

)
Otot

where the index ¢ runs over every annihilation channel. We remind that the
neutralino pair could decay through a lot of other intermediate states but
the five considered above are just the dominant ones (see section 4.4).
After this phenomenological study of the properties of a mSUGRA neu-
tralino, we have tried to determine the region of the mSUGRA parameter
space that, for a given dark matter halo normalization factor, could give a
detectable continuum y—ray neutralino induced flux, using GLAST. Fixing
tanf, Ay and sgn(u), we have performed an accurate scan in the (mg, my/2)
plane , searching for the minimum (.J(¢)) \, needed to be able to distinguish
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the neutralino annihilation signal with GLAST, using the same discrimina-
tion criteria described in section 5.6. In figure 5.9 we show the iso-contour

tg(p) = 10, sign( 1) = +1 tg(p) = 10, sign(w) = -1

600

500

400

12
[GeV]

300

200

100

0 1000 2000 3000 4000 0 1000 2000 3000 4000
M, [GeV] M, [GeV]
tg(p) =5, sign(w) = +1 tg(p) =50, sign(w) = +1

600

6107

500

400 400

12
[GeV]

12
[GeV]

300 300

200 200

100
500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 3000

M, [GeV] M, [GeV]

100

o

Figure 5.9: Contour plots in the mSUGRA (myg, m,2) plane, for the value of
the normalization factor N,, that allows the detection of the neutralino vy ray
signal, with GLAST. The light shaded region corresponds to 0.1 < Q,h? <1,
while the dark shaded one corresponds to models that are excluded either
by incorrect EWSB, LEP bounds violations or because the neutralino is not
the LSP.

regions for the minimum allowed value of (J()) ,, for the signal detection,
in the (my, m%) plane, where we have taken into account the latest bounds

coming from the current accelerator limits [112]. Among these we have con-
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sidered lower bounds for the chargino, the gluino and squarks masses besides
the bounds for b — sy process. We have also implemented a lower bound

for the neutralino mass:
my 2 50 GeV (5.12)

For this analysis, we have used for A2 the GLAST angular resolution,for
the same reason explained in section 5.6, where we have also seen that it
is ~ 107° sr. We can observe that the regions where the neutralino signal
can be detected by GLAST cover almost the entire allowed portion of the
(mo, m1) plane, for values of the halo normalization factor (J(¢)).q, that
are of the same order of magnitude of the “typical” ones, reported in table
5.2.

As an aside, we compare our results with those of [113], which assume a
certain rough estimation for the GLAST sensitivity for the integrated con-
tinuum y—ray flux from a region around the GC, of an extension equal to
the GLAST angular resolution, and consider the neutralino signal detectable
if its integrated flux is not lower than such sensitivity. Their figures 18 and
19 for the visible regions in the (mg, m1) plane for a value of (J(1))) o, equal
to 500 are in qualitative agreement with our corresponding predictions: first
and fourth panels of figure 5.9.

In addition to this study of the GLAST sensitivity, we have tried to
single out the regions of the mSUGRA parameter space ((my, m%) for fixed
tan(p), Ao and sign(u)), which are already experimentally excluded, due to
a supersymmetric component of the y-ray flux exceeding the GC EGRET
data of table 5.1. The excluded regions, at 50 level, are shown using (.J(0))
contour plots in figure 5.10. This result implies that no significant constraints
on the mSUGRA parameter space can actually be imposed, on the basis of
the GC y—ray data taken by EGRET. In figures 5.9 and 5.10, we have shaded
the regions of the (my, m%) plane, for which the neutralino relic abundance

lies inside the cosmologically preferred interval [97]:
0.1<Qh <1

We can observe that this last request strongly constraints the acceptable
portion of the mSUGRA parameter space. As a consequence, fixing a value
for (J(1))) oq, gives extremely small regions of parameter space in which the
neutralino signal is detectable using GLAST.

5.8 GC Angular Extension as seen by GLAST

Given that a y-ray signal coming from WIMP annihilations could be detected
by the experiment GLAST, we want to study if the apparatus is able to
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Figure 5.10: Contour plots in the mSUGRA (mg, my/2) plane, for values of
N, that are already excluded by EGRET data at 50 confidence level. The
light shaded region corresponds to 0.1 < Q,h% < 1, while the dark shaded
one corresponds to models that are excluded either by incorrect EWSB, LEP
bounds violations or because the neutralino is not the LSP.

resolve its spatial position. This is an interesting problem related to the
hypothesis that the GC be a point-like or an extended source.

In order to discriminate between the two assumptions we assume a simple
dark matter halo profile whose overall normalization we get by constraining
the flux ¢, to fit the GC EGRET data. Then we estimate the minimum
value of the normalization of the WIMP flux, (V,) needed to detect the
signal with GLAST.

min’
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Next, with the normalized dark matter halo profile, we compute the angle
Ymaz beyond which the value of (J (1)) o, becomes lower than (NV,), . , and
consequently the neutralino signal gets undetectable by GLAST. Finally we
compare the value of 1., with the GLAST angular resolution w (see fig
5.6). If Yymee > w we say that GLAST sees the GC as an extended source of
~v-rays generated by neutralino annihilations.

Let us now explain in detail each step of the above strategy. The esti-
mated angular resolution at £ = 10 GeV of the GLAST telescope is ap-
proximately 1075 sr (corresponding to w ~ 0.1° as in fig 5.6). Focusing on
a region of such angular extent around the GC, we can find a typical value
of the normalization of the neutralino flux, (N,), averaging among those
values that give the best fit of the EGRET data. From figure 5.3 we see that
for a given annihilation channel the EGRET data are best fitted by models
that have a WIMP mass near the energy threshold of the channel.

We hence find (N, = 1.2 - 10° averaging over all the dominant WIMP
annihilations channels: bb, cé, tt, WTW =, Z°Z° and for all the WIMP masses
between threshold and twice threshold. For these same annihilation channels
and masses, we can also easily compute the average value of the normalization
needed to detect the WIMP signal with GLAST (see the discussion in section
5.6). Let us call this other average (N, )min = 4.5-10%. The dark matter halo
profile that we have considered is a simple isothermal profile:

Y
Po (TL) s T > Tmin
p(r) = TO S\
Po (M) ) r S T'min

70

(5.13)

with po = 0.3 GeV/em? the local halo density, ro = 8.5 Kpc the distance of
the sun from the GC. To avoid the singularity in r = 0 we have introduced
a lower cut-off 7,,;, = 107° Kpc, corresponding to a distance from the GC
below which one cannot trust a smooth dark matter halo distribution [114].

We can now identify (J(0)),, (see equation 5.7 with AQ of order ~
107 sr) with (N, ). From equation (5.13) we infer the value of the param-
eter v compatible with the above identification: v = 1.54.

We now compute the function (J(¢)) . for every angle 1, according to
its definition equation (5.7), obtaining the shape shown in figure 5.11. The
function (J (1)) Ao decreases with increasing ¢, and hence we can find a value
(Ymag) such that (J(1)) A is lower than (N ), for every ¥ > Yoz Vmas
could then be interpreted as the angular extension of the GC as seen by the
GLAST telescope; in fact the WIMP signal will be detectable only if the
GLAST telescope is focused in a region within a t,,,,, angular distance from
the GC. Comparing ., ~ 1.5° with the estimated angular resolution of
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Figure 5.11: (J(¢)) o With AQ = 1075 sr computed using the halo profile
in equation 5.13

the GLAST detector (w ~ 0.1° at E = 10 GeV as in figure 5.6) we can
argue that the GC can be considered as an extended source if observed with
the GLAST telescope. We have to stress that this result must be considered
only as a qualitative indication, because it has been obtained averaging over
the WIMP annihilation channels and masses. A more detailed analysis must
keep into account the details of both the supersymmetric model and of the
neutralino dark matter halo.

5.9 Optimal AS) for WIMP Signal Detection

We have shown in the previous section that the GC can be considered as
an extended source, from the GLAST detection point of view. Now we
want to try to determine the optimal value of the angular acceptance AS2 in
equation (5.7) to maximize the chance to detect the y-ray signal from WIMP
annihilations with GLAST. For various values of A2 we have computed the
average minimum WIMP normalization factor needed to discriminate the
WIMP signal from the background. As in the previous section, the average
has been calculated over the five annihilation channels and for every WIMP
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mass between the threshold and twice the threshold.

For each value of AQ we have compared (N,) . with the value of the
function (J(0)),, obtained using the halo profile of equation (5.13) with
v = 1.54. Given A2, the WIMP signal is detectable if the following condition
is satisfied:

(0D aa > (Ni)uin

In figure 5.12 we show the plot of the ratio of these two quantities, with
respect to AQ, starting from a value of A2 equal to the angular resolution
of the GLAST detector. It can be seen that for lower values of A{2 one
has higher ratios between (.J(0)),, and (Ny), . and hence a more favorable
situation for the WIMP signal detection. Our conclusion is that the optimal
AS) to use in a search for continuum v-ray signals from WIMP annihilations
with the GLAST detector is its minimum value ¢.e. the GLAST angular
resolution.
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Figure 5.12: Ratio between (J(0)),q and (Ny), . vs AQ.

We stress that such result depends on the particular choice of the halo
profile function (see equation (5.13)): it is valid only if the actual halo density
profile could be approximated by the power law of equation (5.13) within an
angular extent around the GC of at least w ~ 0.1° which is the value of the
GLAST angular resolution.
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5.10 Results

The result of our analysis on the EGRET data from the Galactic Center
(GC) suggests there is room for a supersymmetric dark matter component
that is suitable to explain the excess with respect to standard continuum
~v-ray production expectation.

A general feature, independent on the particular nature of the WIMP,
that has emerged, is that the best fit of the EGRET data is obtained for
small WIMP masses without the need to assume highly singular dark matter
halo profiles.

We have also found that a convincing signal, in a statistical sense, of the
continuum v-ray flux from WIMP annihilation in the GC will be possible
with the upcoming experiment GLAST, without the need to assume highly
singular dark matter halo profiles. This result has also been obtained in the
particular case in which the WIMP is the lightest neutralino of the minimal
supergravity model. In such case, we have also argued that the EGRET data
already impose some weak constraints on the particle physics model, and we
have determined, for certain halo profile choices, some regions of the minimal
supergravity parameter space that could already be ruled out.

Another result that we have obtained is that, from the point of view of
the GLAST detector, the GC region is an extended source for ~-rays coming
from WIMP annihilation. Furthermore, we have found that the optimal
angular extension of the region around the GC center to consider, in order to
maximize the chance to detect the WIMP signal with GLAST, is the lowest
possible, i.e. the GLAST angular resolution.
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Chapter 6

Conclusions

In this work we have performed a detailed analysis of the possibilities to dis-
cover supersymmetric dark matter through continuum ~-ray flux from the
GC. In particular, we have presented what can be already learned from satel-
lite experiments like EGRET and what we can expect from GLAST upcoming
experiment. This task has been achieved using a toy model to obtain results
for a generic WIMP without worrying about the particle physics model. Then
we have specialized to a particular underlying theory, mSUGRA, that gives
rise to supersymmetry breaking terms in the MSSM. We have shown, in chap-
ter 2, what are the important ingredients in building such supersymmetric
extension of the SM and in chapter 3 we have seen how to obtain low energy
predictions, through RGE, starting from a high energy theory. There are
interesting issues in the numerical procedure to solve RGE. They must be
carefully taken into account in order to compare our analysis of the expected
y-ray flux with other similar studies (for example [82]).

The problem of the excess of EGRET data coming from the GC has been
analyzed with explicit calculation of the expected neutralino component in-
duced flux. We have left the two normalization, associated to the continuum
background and to the WIMP components, as free parameters, because of
the high uncertainty in their determination. The result is that there is indeed
room for a WIMP induced component. We expect for the WIMP mass:

m, S 100 GeV

in reasons of the best fit of EGRET data. The analysis can be improved
when further data in the region £ > 10 GeV will be available with GLAST.
Moreover we have to wait for a more precise determination of the interstellar
hydrogen column density associated to the N, parameter, and of the actual
dark matter density profile, which is very poorly known towards the GC.
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We have shown that, in order to obtain a statistical evidence for a WIMP
induced components in the continuum v-ray flux, we have to assume (J (¥))
of the order of 10*. This is a higher value than the prediction of a more naive
analysis. The statistical evidence relies on our discrimination method, based
on the equivalent procedure, i.e. x? statistics and likelihood ratio. Thus our
method put more constraints on the discover of a WIMP induced component.

One important result is that an improved WIMP signal detection will
indeed be possible with the GLAST experiment, that has a better angular
resolution with respect to EGRET.

This work can be extended in several ways. One of these, from the pure
phenomenological side, is to implement a more precise description of GLAST
features coming from improved simulations of the apparatus. Another possi-
bility is to consider constraints on the parameter space of the theory coming
from other cosmic rays measurements, like that of cosmic antiproton flux. In
fact, we have seen that these are allowed final states for neutralino annihila-
tions. It also possible to study the one loop annihilation processes with 7’s
in the final state. These would be a very convincing signal for the existence
of supersymmetric dark matter.

To complete the analysis is then possible to consider other mechanism
of supersymmetry breaking, that give rise to different underlying theory for
the MSSM. One example is given by the so called anomaly mediated models
that implies a different phenomenology for the neutralino.

115



Appendix A

Spinorial notation

In defining supersymmetric theories it is very useful to work with two compo-
nents Weyl spinors. In this appendix we will define the opportune formalism.
Let us start by defining the usual Minkowski space-time metric tensor in

D = 4 dimensions:
N = diag (—1,4+1,+1,4+1) (A1)

where we use the latin indices m, n, ... to denote the space-time coordinates,
to better distinguish them from the spinorial indices. Then we introduce
the Van der Waerden notation to work with the Weyl spinors. The Lorentz
group in D =4 is:

SO(1,3) ~ SL(2,C) (A.2)

Let us consider a 2 x 2 matrix with unit determinant M € SL (2,C). This
matrix allows us to build representations of the Lorentz group that acts over
two components Weyl spinors, and we obtain the following transformation
properties:

U = M, i U = (M)
. (A.3)
e = (M_l)ﬂa 1/),8 T/)Id _ [(M*)_l]ﬁ'a wﬁ

where we have used the dotted-undotted notation to distinguish between
different representations of SL (2,C). The greek indices «, 5 = 1,2 are used
to denote the spinorial indices. In particular the undotted indices «, 3, ...
transform as the right handed representation (1/2,0) while the dotted indices
&, 3, ... transform as the left handed representation (0,1/2) of the Lorentz
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group. We can assume the Pauli matrices as a basis for SL (2, C):

~10 01
(U 1 _

0 —i 10
2 __ 3
U_<z'0> U_<0—1>

so that an arbitrary SL (2,C) matrix can be written in terms of this basis
as:

(A.4)

P = P,o™ = Pyo’ + Pio' + Py0” + Pyo®

_(-Py+P; P—iP,
= (o ) (a5)

Every hermitian matrix P = P! can thus be written in terms of real P,,.
This property can be seen, recalling the hermiticity of the Pauli matrices:

(oN)'=0  i=0,1,2,3

so that:

T
pP=pt= (Z Piai>
=Y Prof (A.6)
obtaining at the end the reality condition:

Y Po'=) Po'=>P=P=PcR (A7)

)

From every hermitian matrix P, it is possible to obtain another hermitian
matrix by applying the following transformation:

P'= MPM' (A.8)
where both P and P’ admit an expansion in terms of the ¢™ basis:
P'=Pl o™ =MP,o"M' (A.9)

Since M is unimodular,i.e. detM = 1, we can show that the coefficients P,
and P/ are connected by a Lorentz transformation:

det (P,,0™) = det (P,o™) = P’y — P'-P'= P2~ P-P (A.10)
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The Pauli matrices have the following index structure:

o (A.11)

(876
that allows us to write some Lorentz scalar quantities:
¢awa zljdﬂ_}d waagndam,&d

It is possible to define the SL (2,C) metric tensor €,4, that is a totally anti-
symmetric tensor defined with the following conventions:

21

€ — € — 1
€12 = 621 =—1
€11 — €99 — 611 = 622 =0 (A12)

It is obviously invariant under Lorentz transformations:

€af = Ma’yMﬂéE,ﬂ;

e’ = e”‘staMf (A.13)
Using the metric tensor €,3 we can raise and lower spinorial indices:

U = ey
Yo = ﬁawﬁ (A-14)
where it is important to note that we have defined €,5 and ¢*’ in such a way

to satisfy:
€ape’l = 07 (A.15)

Analogous relations hold for the undotted indices.
The €,5 can also be used to raise and lower indices of the Pauli matrices:

gmad — caf dfGm (A.16)

ac

that can be explicitly written in matrix form, as:

_ ~1 0 (01
== 1) =77 10

(A.17)
_ - (0= _ - _ (10
2= o R |
Moreover the following relations hold:
(O.ma.n + O.na.m)aﬂ — _2nmn5a6
(8™ +5"0™); = =26 (A.18)
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with the following completeness relations:
Tr(o™a") = —2n™"
ool = —20,06% (A.19)

aa~"m

where the trace is over the spinorial indices. These relations can be used to
relate a spinor product representations to a vector representation:

(39)2(03) = (33)

and so we can use the o matrices to write:

. m
UOéd — Uaa?)m

1 .
" = —§6maavad (A.20)

It is also possible to give the Lorentz generators in the spinorial representa-
tion:
1

5 = L (om0 o)
—nmd& —nao __m —maoa __n
" =1 (0’ Oy =0 O’aB) (A.21)

It is possible to relate two component Weyl spinors to the usual four com-
ponent Dirac spinor, using the relations (A.18). Thus in the Weyl basis the
4 x 4 Dirac matrices are written as:

I ) B

where the matrices are in 2 x 2 blocks form. In this basis a Dirac spinor
contains two Weyl spinors:

Yp = <§)§) (A.23)

while a Majorana spinor contains only one Weyl spinor (the other component
is simply the complex conjugate):

s = (;g ) (A.24)

To finish we write down the conventions for the sum of spinorial indices, with
the so called “upper left” notation. We can derive the following relations for
a product of two spinors:

VX =¥ Xa = ~YaX" = X"Wa = x¥
UX = PaX” = =" Xa = Xa¥" = XV (A.25)
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where we have used the anticommuting property of the spinors. The defini-
tion of the product vy is chosen in a such a way that:

()" = (x*a)" = Pax® = ¥x = XV (A.26)

where we can see that the conjugation change the order of the spinors.
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