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Abstract
The correction to the average multiplicity is calculated in a general Mueller
analysis when a secondary Regge trajectory with intercept 1/2 is also included.
{n) is then approximately given by [A!Zn s+ B+ C s—l/z] , which fits well all
existing multiplicity data from s =25 GeV2 to 2800 GeVz. We Show that I;art of
the coefficient C may be estimated from the 90° production data. We comment

on the sensitivity (or insensitivity) of (n) as a teé@ of production models.
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From general Regge behavior for the six-line connected part Mueller derived1
the (Afns + B) formula for the average multiplicity by keeping only the leading
Regge contribution. Recent multiplicity data2 seem to suggest that the low labora-
tory energy data may not lie on a straight line with the new ISR data when average
multiplicity is plotted against fns. The purpose of this paper is to calculate the
correction to the (Afns+ B) formula when a secondary Regge trajectory with inter-
cept 1/2 is also included in Mueller's analysis. We find that the average multi-

plicity is approximately given by

()=~ Alns+ B+ C s—l/2 , (1)

where C depends on the type of incident particles. We find Eq. (1) fits very well
all existing multiplicity data from s = 25 GeVZ to 2800 GeVz. We also show that
for reactions which show early scaling in the fragmentation region, part of C may
be estimated from the wide-angle production data at 90°.

For simplicity, we consider only the case where the two incident particles
are identical. One can easily generalize in a straightforward manner to the un-
identical case. We start with the formula relating (n) to the single particle

inclusive cross section

a3q 4
< o = éf@% o @)
q

We divide the C. M. q” phase space into three regions: [—p, - ep] U[—ep, ep]

U[E P> p] , Where p =~ Vs .3 As explained later, ¢ is suitably chosen so that
2

regions I and III are the fragmentation regions, and region II is the pionization

region. Following Mueller, 1 this means that we can make a single 0(2,1) ex-

pansion for E—%U— in regions I and III and a double O(2, 1) expansion in region II.
d'q

~
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Denoting fragmentation and pionization by the subscripts of f and p, we have

(q) N
<i3g—> ) Z Vlsg <2pa' pb>a1 ; | 3)
£

d q .
do\ _ Z Vij<qu) ( )“i A % .
< d3£1>p_ i3 ° o) e "

where P, and Dy, are the incident momenta and q is the momentum of the detected
particle. In the following, we denote by m and p the mass of a nucleon and a

pion, respectively. We consider the sum of the contributions from a Pomer-

anchuk trajectory with ozP= 1 and a Regge trajectory with o R™ 1/2. At high
incident energy,
5\
g Ao
2
4p
s 2 T
2ppra = F\ X+ —5+x/ (5Db)
Zpa-pb ~ 8 , (5¢)
24, 72
where x = » Bp o= \/qT + u” , and particle a is defined to be along

Js
the + z-axis.

We first consider the fragmentation contribution. By symmetry, the total
contribution from the two fragmentation regions is equal to twice the contribu-

tion from either fragmentation region. Substituting Eq. (5c) into Eq. (3), we have
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d -1/2
<E ﬁ) ~Yp@Fs T vR(@ (6)
~'f

when e p < q" < p.

Therefore,

b

dq
2 2 il -1/2
e~ — Jd7g o [v @+s """y (g)] : (7)
€p

Following Mueller, 1 when we transform from C.M. to the rest frame of a,

because of the invariance of <E Q_3c_7__> s> Ed. (7) can be rewritten as
d”a/p
2
m_Fr
2 2
dq
2 2 h -1/2
{n).= d"q Y5(Q) + s /v(q)
f T ~T 5 5 P'< R~
2 q, *Hhp
me HT i
2 T 2me
= Be)+s M2 e) | (8)
f f
where
2
m _Fr
2 2m
dq
2 2
B.(e) =—= [ d°q — @ . (92)
f O ~ s 5 P
2 J& THr
me M
2 2me



m_
2
dq
2 2
cple)= — | a°q L (@ (9b)
oT ~ 2 ~ .
2 q” +“T
me M1
2 2me

We now calculate the pionization contribution. First notice that when

q” = ep (i.e., at the boundary of the pionization region and the fragmentation

region of a), Eq. (5a) implies

i
(2pa. q> ~ T (10)
4,7 €P

where we have assumed

2
4u
62 > sT ) v (11a)

a condition that is later needed to show that the leading term in {n™ is Alns.
Equation (10) implies that for the double O(2,1) expansion to be valid near

q“ < €p, € must be chosen to satisfy

m
A
m

It

(11b)

|
Emlﬂtl\"

I .ng ~ 350 MeV/c, then € ~ 0.16. Equations (11a) and (11b) thus define

the region in which ¢ is chosen.

Substituting Eq. (5a) and (5b) into Eq. (4) and (2), we have



DO =

2
| ST I s
/ 4;.1,,1, .

5 5712 Br YRR ()1 . (12)

The first and third terms in Eq. (12) are trivial integrals, a_nd the second term
can be evaluated with the substitution

2

2 2,
y = x+——§——x.

-1/2

Keeping terms up to s and using Eq. (11a), we find

1/2

nd =~ Afns+B +C s , . 13
> 0 * (13
where
1 2 2 2
A’=0T d%T“TVPP@T> ; (14a)
1 2 2 [c2 P 2 2
Bple)= S d ET“T’Z“CTZ‘) VPP<qT> t4vE fdq bpvpy (qT) - (14D)
T

1 4 2
Cle)=——q-— a? A B Y op (A ) + a2 9 B dn
p o ) o2 STHT Iﬂi( T> 2T HT p

2 ) i) %0
€

T

Notice that the Cp s_l/2 term actually contains a term of the form(C;!Zn s) s-l/z.
-1/2

However, since the s terms are negligible for very large s, phenomeno-

logically we may neglect the fn s variation and group the two terms together under



Cp s_l/z. Equation (1)4 then follows from (8) and (13), wi’ch5
B = Bf(€)+Bp(€) s (15a)
C = C(e) +Cp(e) . (15b)

We want to remark that Eq. (1) also follows from any multiperipheral model
when a secondary output pole at 1/2 is also kept.

Equations (9), (14), and (15) seem to imply that B and C may depend on €,
i.e., our choice of the pionization and fragmentation boundary, which should
obviously not be the case. We can explicitly show that B and C are independent
of ¢ by the following method. Near the pionization and fragmentation boundary,

Eq. (4),(5a), and (5b) imply

2
do\ _ 2 2 (2 -1/2lfT 2 2

Eg) =~ ”TVPP<qT>+“T~/§7PR ap)+s yPR(Q'*T/“L“T“YRR(qT> (16)
d°q p X~ Jx

where we have used Eq. (11a). Comparing Eq. (16) with (6), we can conclude

2 2 - < 2)
P9 =k vpp (@2)+ By NEvpgldh) (172)
uz
~ — plor) (dz)
X==€ \/;(-

Substituting Eq. (17) into Eq. (,9) and using (14) and (15), we can then show6 that
%—163— = —%—% = 0 when ¢ is in the region defined by Eq. (11).

We can fit very well with Eq. (1) all existing multiplicity data. 2 The least
X2 fit is shown in Fig. 1, giving A=2.0, B= -4.8, C = 10.0 with X2 = 5.6 for

13 degrees of freedom. However, we also have obtained good fits with (Afns+B), -

giving A=1.4, B= -1.1 with X2 = 14.3 for 14 degrees of freedom, and with



(C 51/4), giving C = 1.7 with X2 = 16 for 15 degrees of freedom. These fits are
also shown in Fig. 1. The conclusion that we can draw is that with present
large error bars at the ISR energies, we cannot differentiate any of these three
forms. However, when these error bars are reduced, we may be able to elim-
inate (Afns + B), but probably still cannot differentiate (A fns+ B + C s—l/z)
1/4

from Cs even at ISR energies.

Since the fragmentation region contributes to B and C, B and C are not
universal constants as in the case of A, i.e., they depend on the type of incident
particles. We now show that within certain approximations, for reactions where
there is early scaling in the fragmentation region'7 (as in proton-proton inter-
actions with a detected pion), we can give a rough estimate of part of C by relating it to
the 90° production data. Equations (11b) and (10) tell us that those x which
satisfy € < x = 1 are definitely in the fragmentation region. Since the approach
to scaling in the fragmentation region is governed by yR(g), early scaling then
suggests yR(g) for this range of x is negligible and thus by Eq. (9b), Cf(e—) is

also negligible. When x =~ €, 'yR(q) is no longer negligible and is given by Eq.

(17b). We now make the approximation of replacing this smooth transition for

YR (g) for x near € by a sharp transition at x = € , so that yR(g) =0fore<x=<1l
and ’yR(g) is given by Eq. (17b) for x < € (the latter means one can make a double
0(2,1) expansion for x < €). If we define ¢’ to be C minus the R-R contribution,

then8

’ 4 2 2 <2>
¢ =- f/d b1 Ypr\dr/ - (18)
UT €

We want to relate C’ to the 90° production data. These data show that
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(%%) approaches its asymptotic value from below. The rate of this ap-
6=900.

proach is governed by YPR (q,zr> appearing in the leading non-scaling term, i.e.,

1/4 9

the s* /% term.” At 90°, x =0 and \g\ = ‘th , we therefore have

o

1 g 1 do gT' 2
—\ g0 = E - dgqp (19)
O (d.Q)Q: 900 2T Op < PR q>X:0 =T

=

T

where we have used azimuthal symmetry. Equations (4) and (5) allow us to

write {(19) as

A (%—5) ~ ag +a, s—l/4 , (20)
or 6 =90°
where
_ 1 2 . 2 )
17 7o d"qp ¥ 97| VPR (qT ’ (21)

and an analogous expression for 2, Because lng of secondaries is distributed in
a small neighborhood about its mean value of (ng( > =~ 350 MeV/c, factofs of

B and l ST‘ may be replaced by their mean values and taken out of the integrals
in Eq. (18) and (21). Comparing (18) and (21), we conclude

3/2
-, 4wy T> /
¢~ —|——— | a, . (22)
Je¢lar)>
Thus, if ay < 0, then C’ > 0. The present 90° production data have very large
error bars. But taking it at its face value, a; = -0.6 GeVl/z. 10 ‘This gives

¢’ ~-12, H By comparing this value of C' with the best fit value of C, we can
estimate the sign and the approximate magnitude of the RR contribution to C,
and therefore obtain some knowledge about YRR (qi) However, with the large

uncertainties in present data, it is inadvisable to make this estimate now.
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In conclusion, we have calculated in a general Mueller analysis the correc-
tion to the (Afns + B) formula by including a secondary trajectory with intercept
1/2. The correction term is approximately C s_l/z, and therefore can explain
why the low energy multiplicity data should lie slightly higher thén the straight
line extrapolated from the high-energy multiplicity data. However, it may be
difficult even at ISR energies to differentiate this formula from the formula C sl/ 4
as predicted by stati:s‘cica.l12 or hydrodyna:mical13 models. This means that meas-
uring {n) may not be a sensitive test of some production models. We also show
how part of C may be roughly estimated from the 90° production data for reactions

where there is early scaling in the fragmentation region.
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Figure Caption

Average charged multiplicity plotted against s. The data is taken from

Berger (Ref. 2). The fits are with Alns+ B+ C s_l/2 (solid curve),

1/

Afns + B (dashed curve), and Cs 4 (dotted-dashed curve).
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