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Abstract 

The correction to the average multiplicity is calculated in a general Mueller 

analysis when a secondary Regge trajectory with intercept l/2 is also included. 

<n> is then approximately given by [ APn s + B + C s -l/2 
3 , which fits well all 

existing multiplicity data from s = 25 GeV2 to 2800 GeV’. We show that part of 

the coefficient C may be estimated from the 90’ production data. We comment 

on the sensitivity (or insensitivity) of <n> as a test of production models. 
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From general Regge behavior for the six-line connected part Mueller derived’ 

the (Aln s + B) formula for the average multiplicity by keeping only the leading 

Regge contribution. Recent multiplicity data2 seem to suggest that the low labora- 

tory energy data may not lie on a straight line with the new ISR data when average 

multiplicity is plotted against Qn s. The purpose of this paper is to calculate the 

correction to the (AQns+ B) formula when a secondary Regge trajectory with inter- 

cept l/2 is also included in Mueller’s analysis. We find that the average multi- 

plicity is approximately given by 

<n>zAQns+B+Cs -l/2 
, (1) 

where C depends on the type of incident particles. We find Eq. (1) fits very well 

all existing multiplicity data from s = 25 Ge v2 to 2800 Ge ? . We also show that 

for reactions which show early scaling in the fragmentation region, part of C may 

be estimated from the wide-angle production data at 90’. 

For simplicity, we consider only the case where the two incident particles 

are identical. One can easily generalize in a straightforward manner to the un- 

identical case. We start with the formula relating (n) to the single particle 

inclusive cross section 

<n>crT= (2) 

We divide the C.M. q,, phase space into three regions: [-p, - ep) U[-ep, ep] 

u[cp, p] , wk.-e p = & . 
3 

-- As explained later, E is suitably chosen so that 
2 

regions I and III are the fragmentation regions, and region II is the pionization 

region. Following Mueller, 1 this means that we can make a single O(2,l) ex- 

do pansion for E- 
d3q 

in regions I and III and a double O(2,l) expansion in region II. 
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Denoting fragmentation and pionization by the subscripts of f and p, we have 

@$f= cq(2pa.pbi”it , 
i 

f%)p= 5 .$!2 (2p,.q~i(2pb.q~j , 
, 

where pa and pb are the incident momenta and q is the momentum of the detected 

particle. In the following, we denote by m and /J the mass of a nucleon and a 

pion, respectively. We consider the sum of the contributions from a Pomer- 

anchuk trajectory with Q! D = 1 and a Regge trajectory with oR = l/2. At high 

incident energy, 
I 

2pa*pb = s , (5c) 

\ 

-x , I 

) +x , 

(3) 

(4) 

W 

t5b) 

2q,l where x = - ~ ,I-LT”- q;+p2, J 
and particle a is defined to be along 

the + z-axis. 

We first consider the fragmentation contribution. By symmetry, the total 

contribution from the two fragmentation regions is equal to twice the contribu- 

tion from either fragmentation region. Substituting Eq. (5~) into Eq. (3)) we have 
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I 

= Yp (c$ + s 
-l/2 

YR@) 9 

whenep sq,, gp. 

Therefore, 

Following Mueller, 1 when we transform from C. M. to the rest frame of a, 

because of the invariance of Eq. (7) can be rewritten as 

2 
111 E.LT --- 
2 2m a 

dq I, 
jm [‘P(g) + s-1’2yI&j 

--2rnc 2 

where 

= Bf(e) $- s -l/2 
Cfk) , 

2 
m pT 
---3-z 2 

Bf(4 2 s- 
OT 

J / 

d2F!T 

2 
me E.lT --- 

2 2m6 

(7) 
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, 

Cf(E) 5 
2 

-I I 
oT 

d2t?T 

2 
me l.lT 
--2me 2 

d%, 
YR (2) tgb) 

We now calculate the pionization contribution. First notice that when 

ql, = l p (i.e., at the boundary of the pionization region and the fragmentation 

region of a), Eq. (5a) implies 

where we have assumed 

2 4P; 
E 77 - 

s ’ 

a condition that is later needed to show that the leading term in <n\ is AQn s. 

Equation (10) implies that for the double O(2,l) expansion to be valid near 

ql, 5 ep, E must be chosen to satisfy 

2 
I-lT E <<T=-- 
m2 ’ 

If (?Tl = 350 MeV/c, then E z 0.16. Equations (lla) and (llb) thus define 

the region in which E is chosen. 

(10) 

Ula) 

W) 

Substituting Eq. (5a) and (5b) into Eq. (4) and (Z), we have 
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I 

+ s-m 2 
'TYRR '1, ' ( )I 

The first and third terms in Eq. (12) are trivial integrals, and the second term 

can be evaluated with the substitution 

I------ 

4P2 
y2 = x2 + + -x0 

Keeping terms up to s -l/2 and using Eq. (llaJ, we find 

09, = Alns+Bp+Cps -l/2 , 

where 

(12) 

(13) 

WW 

t 14b) 

Notice that the Cp s -l/2 term actually contains a term of the form CpPn s 
( ) 

s -l/2 . 

However, since the s -l/2 terms are negligible for very large s, phenomeno- 

logically we may neglect the In s variation and group the two terms together under 
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c s-1’2. 
P 

Equation (1)4 then follows from (8) and (13), with5 

B = Bf(e)+Bp(e) , WW 

c = Cf(E) +Cp(E) . (15b) 

We want to remark that Eq. (1) also follows from any multiperipheral model 

when a secondary output pole at l/2 is also kept. 

Equations (9)) (14)) and (15) seem to imply that B and C may depend on E , 

i.e., our choice of the pionization and fragmentation boundary, which should 

obviously not be the case. We can explicitly show that B and C are independent 

of E by the following method. Near the pionization and fragmentation boundary, 

Eq. (4),(5a), and (5b) imply 

ypR(&)+ pTYRR (16) 

where we have used Eq. (lla). Comparing Eq. (16) with (6)) we can conclude 

+ 

2 

+ ‘T ‘RRcq;) ’ 

Wa) 

tl7b) 

Substituting Eq. (1’7) into Eq. (9) and using (14) and (15), we can then show6 that 

dB dC -= 
de - = 0 when E is in the region defined by Eq. (11). de 

We can fit very well with Eq. (1) all existing multiplicity data. 2 The least 

X2 fit is shown in Fig. 1, giving A = 2.0, B = -4.8, C = 10.0 with X2 = 5.6 for 

13 degrees of freedom. However, we also have obtained good fits with (AQns+B), 

giving A = 1.4, B = - 1.1 with X2 = 14.3 for 14 degrees of freedom, and with 
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(C s l/4 ), giving C = 1.7 with X2 = 16 for 15 degrees of freedom. These fits are 

also shown in Fig. 1. The conclusion that we can draw is that with present 

large error bars at the ISR energies, we cannot differentiate any of these three 

forms. However, when these error bars are reduced, we may be able to elim- 

inate (AQn s + B), but probably still cannot differentiate (A Qn s + B + C s -l/2 ) 

from C s~‘~ even at ISR energies. 

Since the fragmentation region contributes to B and C, B and C are not 

universal constants as in the case of A, i.e., they depend on the type of incident 

particles. We now show that within certain approximations, for reactions where 

there is early scaling in the fragmentation region” (as in proton-proton inter- 

actions with a detected pion), we can give a rough estimate of part of C by relating it to 

the 90’ production data. Equations (lib) and (10) tell us that those x which 

satisfy E 5 x < 1 are definitely in the fragmentation region. Since the approach 

to scaling in the fragmentation region is governed by yR(q), early scaling then N 

suggests yR(cJ for this range of x is negligible and thus by Eq. (9b), Cf(eT is 

also negligible. When x 2: E , yR(cJ is no longer negligible and is given by Eq. 

(17b). We now make the approximation of replacing this smooth transition for 

yR(c$ for x near E by a sharp transition at x = E , so that yR(cj = 0 for EL x 2; 1 

and yR(q) is given by Eq. (17b) for x < r (the latter means one can make a double N 

O(2,l) expansion for x < r). If we define C’ to be C minus the R-R contribution, 

then8 

C’ 4 z;:- (18) 

We want to relate C’ to the 90’ production data. These data show that 
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da i ) dR 
approaches its asymptotic value from below. The rate of this ap- 

e=900. 
preach is governed by ypR appearing in the leading non-scaling term, i.e. , 

the s-l’4 term. ’ At 90°, x = 0 and 1~1 = jzT( , we therefore have 

1 do 
i > 

1 -- 
UT dRg=gOO= 2noT 

where we have used azimuthal symmetry. Equations (4) and (5) allow us to 

write (19) as 

1 da -- 
i ) 

-l/4 
uT d9 

=a+as , 
(Jzg()o 0 1 

where 

1 a s- 
1 TU T 

’ 

(20) 

(21) 

and an analogous expression for a o. Because 1~~1 of secondaries is distributed in 

a small neighborhood about its mean value of < /sT I> N 350 MeV/c, factors of 

pT and ~~1 may be replaced by their mean values and taken out of the integrals 

in Eq. (18) and (21). Comparing (18) and (21), we conclude 

C’ ZS- (22) 

Thus, if a1 < 0, then C’ > 0. The present 90’ production data have very large 

error bars. But taking it at its face value, al = -0.6 GeV 
l/2 10 . ,This gives 

C’ ,.l2.11 By comparing this value of C’ with the best fit value of C, we can 

estimate the sign and the approximate magnitude of the RR contribution to C, 

and therefore obtain some bowledge about yRR qt ( ) . 
However, with the large 

uncertainties in present data, it is inadvisable to make this estimate now. 

-9- 



In conclusion, we have calculated in a general Mueller analysis the correc- 

tion to the (AQn s + B) formula by including a secondary trajectory with intercept 

l/2. The correction term is approximately C s -l/2 , and therefore can explain 

why the low energy multiplicity data should lie slightly higher than the straight 

line extrapolated from the high-energy multiplicity data. However, it may be 

difficult even at ISR energies to differentiate this formula from the formula C s l/4 

as predicted by statistical 12 or hydrodynamical 13 models. This means that meas- 

uring <n> may not be a sensitive test of some production models. We also show 

how part of C may be roughly estimated from the 90’ production data for reactions 

where there is early scaling in the fragmentation region. 
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Figure Caption 

1. Average charged multiplicity plotted against s. The data is taken from 

Berger (Ref. 2). The fits are with AQn s + B + C s -l/2 (solid curve), 

AQn s + B (dashed curve), and C s l/4 (dotted -dashed curve). 
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