

Contrasting behavior of B(E3) transition rates from even-A to odd-A N=82 isotones

Bhoomika Maheshwari^{1,*}, Deepika Choudhury², Ashok Kumar Jain³, R. Palit⁴

¹Department of Physics, Faculty of Science, University of Zagreb, HR- 10000, CROATIA.

²Department of Physics, Indian Institute of Technology Ropar, Rupnagar- 140001, INDIA.

³Amity Institute of Nuclear Science and Technology, Amity University UP, Noida- 201313, INDIA.

⁴Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai- 400005, INDIA.

* email: bhoomika.physics@gmail.com

Introduction

The octupole correlations in nuclei are of great importance in nuclear structure, particularly for the low-lying excitations [1]. Strong octupole coupling exists for particle numbers associated with a large $\Delta N_p = 1$ (N_p being the principal quantum number) interaction between the unique-parity intruder orbital ($l; j$) and the normal-parity orbital ($l-3; j-3$), particularly in normally deformed nuclei not far from the beta-stability line. Here, l and j denote the orbital angular momentum and the total angular momentum, respectively. Such regions of nuclei with strong octupole correlations correspond to nucleon numbers near 34 (coupling between the $1g_{9/2}$ and $2p_{3/2}$ orbitals), 56 (coupling between the $1h_{11/2}$ and $2d_{5/2}$ orbitals), 88 (coupling between the $1i_{13/2}$ and $2f_{7/2}$ orbitals) and 134 (coupling between the $1j_{15/2}$ and $2g_{9/2}$ orbitals), just above the Fermi surface of the interacting pair of nucleons. These regions are not very far from the closed-shells resulting in complex interplay of single-particle and octupole motion. Such interplay remains a topic of great interest due to its influence on the underlying nuclear structure [2]. The B(E3) transition rates are a good measure of the octupole collectivity in nuclei. Therefore, the systematic studies of B(E3) rates are quite useful to identify the N and Z values at which maximum octupole collectivity may occur and to explain the evolution of octupole collectivity along an isotopic/isotonic chain.

Our recent works [3-5] based on the generalized seniority have been quite successful in explaining and predicting the various spectroscopic properties for the isomers and other excited states in and around semi-magic nuclei. In the present work, we apply the

generalized seniority (GS) approach to understand the experimental systematics of B(E3; $3^- \rightarrow 0^+$) rates [6, 7] for the even-even N=82 isotones for the first time and to contrast them with the B(E3; $11/2^- \rightarrow 5/2^+$) rates for odd-A N=82 isotones.

Brief formalism

The B(E3) transition rates for n particles in multi- j $\tilde{j} = j \otimes j' \dots$ configuration can be obtained as [5]:

$$B(E3) = \frac{1}{2J_f + 1} \left\langle \tilde{j}^n v l J_f \left| \sum_i r_i^3 Y^{(3)}(\theta_i, \phi_i) \right| \tilde{j}^n v' l' J_i \right\rangle^2 \quad (1)$$

where the reduced matrix elements connect the J_i (with GS v') to J_f (with GS v) by electric octupole (E3) operator. One can deduce the corresponding reduced matrix elements by using the reduction formula for GS conserving $\Delta v = 0$ and GS changing $\Delta v = 2$ transitions, respectively, as [4, 5],

$$\left\langle \tilde{j}^n v l J_f \left| \sum_i r_i^3 Y^{(3)}(\theta_i, \phi_i) \right| \tilde{j}^n v' l' J_i \right\rangle = \left[\frac{\Omega - n}{\Omega - v} \right] \quad \dots \dots (2)$$

$$\left\langle \tilde{j}^n v l J_f \left| \sum_i r_i^3 Y^{(3)}(\theta_i, \phi_i) \right| \tilde{j}^n v' l' J_i \right\rangle$$

$$\left\langle \tilde{j}^n v l J_f \left| \sum_i r_i^3 Y^{(3)}(\theta_i, \phi_i) \right| \tilde{j}^n, v \mp 2, l' J_i \right\rangle = \left[\sqrt{\frac{(n - v + 2)(2\Omega + 2 - n - v)}{2(2\Omega + 2 - 2v)}} \right]$$

$$\left\langle \tilde{j}^n v l J_f \left| \sum_i r_i^3 Y^{(3)}(\theta_i, \phi_i) \right| \tilde{j}^n, v \mp 2, l' J_i \right\rangle \quad \dots \dots (3)$$

where the coefficients in the square brackets depend on the particle number $n = \sum_j n_j$, the

GS $v = \sum_j v_j$, and the total pair-

degeneracy, $\Omega = \frac{2\tilde{j} + 1}{2} = \sum_j \frac{2j + 1}{2}$.

Results and discussion

Fig. 1 (lower panel) exhibits the $B(E3; 3^- \rightarrow 0^+)$ variation with respect to proton number for the first-excited 3^- states in the $N=82$ isotonic chain. The 3^- states are assumed to be $v=2$ (arising from protons) states which decay by $E3$ transition to the 0^+ pair-correlated $v=0$ ground-states. The GS, therefore, predicts an inverted parabolic $B(E3)$ trend for this transition by using Eqs. (1) and (3). Indeed, we find that the $N=82$ semi-magic isotones satisfy this trend quite well, as GS works reasonably well in semi-magic chains. Most of the experimental data have been taken from Kibedi and Spear [6] unless otherwise adopted from the ENSDF and XUNDL database [7]. The first 3^- states can be deciphered as the good $v=2$ states due to which these states follow nearly particle number independent energy variation in various semi-magic chains.

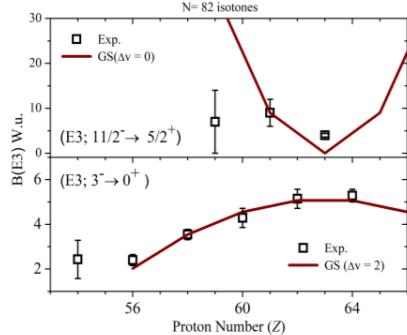


Fig. 1: Experimental $B(E3)$ rates [6,7] in Weisskopf Units (W.u.) for the first 3^- states and $11/2^-$ states in even-A and odd-A $N=82$ isotones, respectively. GS stands for generalized seniority predicted trend.

Fig. 1 (upper panel) presents the $B(E3; 11/2^- \rightarrow 5/2^+)$ variation for the first-excited $11/2^-$ states decaying via $E3$ transition to the lower lying $5/2^+$ states in odd-A, $N=82$ isotones. Both the $11/2^-$ and $5/2^+$ states are taken to be same seniority ($v=1$) states for GS calculations. The GS scheme, hence, predicts a normal parabolic trend for these $B(E3)$ rates. The predicted trend explains the measured values at $Z=61, 63$ in $N=82$ isotones, though the measurement at $Z=59$ is out of prediction range.

As one moves away from $N=82$, GS may persist for a couple of valence particles/ holes. Similar results have been found for the $B(E3)$ rates in even-A and odd-A $N=80, 84$ isotones

having two-neutron holes/particles with respect to the $N=82$ closed shell (and will be discussed in the full paper). Hence, the octupole evolution from even-even to odd-A nuclei has been understood for the first time in terms of generalized seniority symmetries. The GS results are of generic nature in nearly spherical nuclei. Recent measurement on ^{137}La reported the $B(E3)$ enhancement [8], which also fit into the GS selection rules and explanation. A few important predictions from this work would suggest the measurement of $B(E3; 11/2^- \rightarrow 5/2^+)$ rates in odd-A ^{139}La ($N=82$) and re-measurement of $B(E3)$ for ^{141}Pr ($N=82$) which has a large error bar. New measurements for these lower-lying levels may be very useful to study the competition of octupole collectivity with the GS (single-particle) estimates.

Acknowledgements

BM acknowledges the financial support from the Croatian Science Foundation and the \'Ecole Polytechnique F\'ed\'erale de Lausanne, under the project TTP-2018-07-3554 ``Exotic Nuclear Structure and Dynamics'', with funds of the Croatian-Swiss Research Programme. DC acknowledges the support from ISIRD grant, IIT Ropar. AKJ acknowledges the financial support the research grant (CRG/2020/770), DST (Govt of India). RP acknowledges the support from DAE (Govt of India), Project Identification No. RTI 4002.

References

- [1] S. C. Pancholi, Pear Shaped Nuclei, World-Scientific (2020).
- [2] P. A. Butler and W. Nazarewicz, Rev. Mod. Phys. **68**, 349 (1996).
- [3] A. K. Jain, B. Maheshwari, A. Goel, Nuclear Isomers- A Primer, Springer Nature (2021).
- [4] B. Maheshwari, A. K. Jain, Phys. Lett. B **753**, 122 (2016).
- [5] B. Maheshwari, S. Garg, A. K. Jain, Pramana-Jour. of Phys. (Rapid) **89**, 75 (2017).
- [6] T. Kibedi, and R. H. Spear, Atomic Data and Nuclear Data Tables **80**, 35 (2002)
- [7] ENSDF and XUNDL data bases: <https://www.nndc.bnl.gov/>
- [8] Md. S. R. Laskar et al., Phys. Rev. C **104**, L011301 (2021).