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ABSTRACT In this paper, the implementation of the global roots and poles finding algorithm for a
complex-valued function of a complex variable on a quantum computer, which allows for solving general
nonlinear algebraic equations, is presented. The considered function is sampled with the use of Delaunay’s
triangulation on the complex plane and a phase quadrant, in which the value of the function is located,
is computed on a classical computer for all of the sampling nodes. Then, if the real and imaginary parts of
the function simultaneously change signs for both ends of the same edge in the mesh, then a zero of the
function is located in the region around this edge. In order to detect such edges, the mesh is transformed
into a one-dimensional array and the required edges, where the sign simultaneously changes for real and
imaginary parts of the function, are found with the use of quantum Grover’s algorithm. If the mesh consists
of P edges, the computational overhead of this operation, in terms of oracle queries, is equal to O(

√
P)

on a quantum computer, instead of O(P) on a classical one. Finally, the existence of function zeros and
poles is proved with the use of Cauchy’s argument principle on a classical computer, and the output results
are computed, based on the mesh refinement, with the assumed numerical precision of computations. Our
method is implemented in Python with the use of the Qiskit software development kit and its applicability
is proved by quantum emulations.

INDEX TERMS Quantum computing, quantum algorithm, quantum simulation, complex roots finding
algorithm.

I. INTRODUCTION
Quantum computing (QC) relies on using quantum mechan-
ics for data and information processing. Although QC is
in its early stages, it is believed that this technology can
enable much faster computations than are now possible on
classical computers. The 1980s are generally recognized as
the beginning of investigations aimed at the implementation
of computations with the use of quantum systems. It was
then that Feynman pointed out the possible advantages of
computing with the use of quantum systems in 1982 [1],
whilst Deutsch presented the idea of a universal quantum
computer in 1985 [2]. Around a decade later, first algorithms
implementable on quantum computers were developed, i.e.,
Shor’s algorithm for finding prime factors of numbers [3],
and Grover’s algorithm for searching databases [4]. In 1996,
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Lloyd developed the quantum algorithm for simulations of
quantum-mechanical systems [5], although, at that time,
quantum computers did not exist yet. Then, Chuang et al.
built the first quantum computer of the two-qubit size in
1998, allowing one to load data and output a solution [6].
This computer turned out to be coherent for only a few
nanoseconds, and its function was trivial as far as the
possibility of solving important computational problems was
concerned. Despite that, it confirmed the existing theoretical
predictions related to QC and stimulated fast progress of the
quantum-computer technology. Currently, top IT companies
(e.g., IBM [7]) focus on the development of QC, and new
quantum computers are released each year. For the review of
the QC development and its historical background, the reader
is referred to [8], [9], and [10].

In general, one ought to distinguish hardware (i.e.,
quantum computers) development from quantum-algorithm
implementation. In this research, we focus on the
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implementation of the global roots and poles finding (GRPF)
algorithm [11] based on phase analysis performed on a
quantum computer. That is, we propose the implementation
of the algorithm for finding zeros and poles of a complex
function of a complex variable. In this way, we can
solve general nonlinear algebraic equations on a quantum
computer, i.e., we can find the roots of an algebraic
equation on the complex plane. In our method, Grover’s
algorithm [4] is employed to detect regions on the complex
plane where zeros and poles are located. Afterwards, classical
computations are executed which return zeros and poles
with the error less than the assumed precision of the
computations. In this area, QC has already been applied to
solve systems of linear equations [12], [13] as well as to solve
ordinary [14] and partial [15], [16] differential equations.
However, the problem of finding zeros and poles of a general
complex-valued function of a complex variable remains
open not only in QC, but this is one of the oldest and still
investigated mathematical problems of all time. We believe
that the proposed application of QC for this purpose can direct
further investigations towards developing new algorithms and
methods in this area. In our investigations, we employ the
Python programming language (version 3.10) and the Qiskit
software development kit for QC (version 0.45.2). We also
use Qiskit Aer library to simulate the circuits (version 0.13.2).
Then, we employ the Triangle library [17] for Delaunay’s
triangulation [18]. Below, we report the results of numerical
emulations on a personal computer which reproduce the
results obtainable on a quantum computer. In order to
facilitate further research, our emulation codes are publicly
available on the Internet.

II. GRPF IMPLEMENTATION ON QUANTUM COMPUTER
The aim of the proposed quantum algorithm is to find zeros
and poles of the function f : C 7→ C, i.e., f (z) ∈ C where
z ∈ C. The zeros zk (k = 1, . . . ,K ) of the complex function
f (z) are understood as the roots of the equation f (zk ) = 0.
Analogously, the poles pl (l = 1, . . . ,L) of the complex
function f (z) are understood as the roots of the equation
(f (pl))−1

= 0.
In the subsequent sections, the GRPF algorithm imple-

mented on a classical computer is presented and, then,
Grover’s algorithm is described briefly. Finally, we present
the implementation of Grover’s algorithm within GRPF in
order to find zeros and poles of the complex function on a
quantum computer.

A. CLASSICAL GRPF ALGORITHM
GRPF is a numerical technique for finding zeros and poles
of a wide class of complex functions. The algorithm is,
in a sense, a generalization of the bisection method [19]
widely applicable to real-valued functions. We consider the
rectangular domain � ⊂ C and search for zeros and poles
of the complex function f (z), where z ∈ �. The accuracy
of zero and pole locations is controlled by the initial mesh

resolution 1r and the final precision of computations ϵ. The
algorithm implemented on a classical computer is executed
in the following steps:

1) The rectangular domain � is triangulated with the
use of a regular mesh. Hence, the set of nodes N =

{n1, n2, . . . , nM } is created. We employ Delaunay’s
triangulation in the proposed algorithm in order to build
a set of triangles. In other words, the set of edges E =

{e1, e2, · · · , eP}where ei = {nb, nc}, being Delaunay’s
mesh, is created. It is required that the length of the
longest edge inE is less than or equal to the initial mesh
resolution 1r .

2) Let us define the phase quadrant of the complex value
of the function f (z) at the point z ∈ �

q[f (z)] =


0 0 ≤ arg[f (z)] < π/2
1 π/2 ≤ arg[f (z)] < π

2 π ≤ arg[f (z)] < 3π/2
3 3π/2 ≤ arg[f (z)] < 2π

(1)

where arg[·] denotes the principal argument of the
complex number in the interval [0, 2π ). One can note
that the quadrant values fit into a two-bit number
representation from the decimal range 0–3. GRPF
computes the phase quadrant at each node nb, hence an
array of phase quadrants is created, i.e.,Q = {q[f (nb)] :

nb ∈ N }. In GRPF, the complex value of the function
f (z) is not required but only the quadrant in which
its phase is located. This makes the algorithm less
sensitive to the numerical precision of floating-point
function computations, and applicable to QC.

3) For each of the edges ei connecting the nodes nb
and nc, the phase change is computed based on the
quadrants obtained in the previous step, i.e., 1q(ei) =

q[f (nb)] − q[f (nc)]. Hence one obtains that 1q(ei) =

−2,−1, 0, 1, 2. Any zero or pole of the function f (z)
is located around the edge ei such as 1q(ei) = ±2.
This condition means that the real and imaginary parts
of the considered function simultaneously change signs
for both ends of the same edge. Hence either a zero or a
pole should be located in the region around ei, which is
called the candidate edge, whereas the corresponding
region is called the candidate region.

4) All the candidate edges are collected in a single set
Ec = {ei ∈ E : 1q(ei) = ±2}. For a sufficiently dense
mesh, a zero/pole has to be located inside a triangle
which includes the edge being the candidate edge.

5) A set of triangles Tc, including at least a single
candidate edge from the set Ec, is created. Afterwards,
all the edges of the triangles belonging to Tc are
collected in a single set denoted by Et . Each boundary
Cr (where r = 1, . . . ,R) of the r-th candidate region
consists of the edges which occur only once in the
set Et . This stems from the fact that internal edges
are attached to two candidate triangles. Hence the
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boundary C =

R⋃
r=1

Cr of the candidate regions is

constructed from the edges ei ∈ Et such as |1q(ei)| <
2.

6) The set C is decomposed into subsets Cr .
7) The potential zeros and poles are within the candidate

regions Cr . In order to increase the accuracy of
localization of these points, the mesh is refined in
candidate regions. Additional points are added in the
centers of the edges within the candidate regions.
Then, Delaunay’s triangulation is executed again, and
a new mesh is obtained in each candidate region. The
algorithm subsequently starts off in each candidate
region from the second point as long as the length of
the smallest edge in the candidate region is greater than
the numerical precision ϵ.

8) The final verification and classification, whether the
candidate region Cr includes either a zero or a
pole, is executed with the use of Cauchy’s argument
principle [20]. It requires the calculation of the integral

wr =
1
2π i

‰
Cr

f ′(z)
f (z)

dz. (2)

The value of wr ∈ N is positive for wr th-order zero
and negative for wr th-order pole. In other cases, the
candidate region Cr does not include any zero/pole.
In the discrete triangulated domain, the integral (2) is
computed as

wr =
1
4

S∑
s=1

1q(es) (3)

where es ∈ Cr and S denotes the number of edges in
the boundary Cr .

FIG. 1 demonstrates the operation principle of GRPF,
where the quadrants of phase are presented for the function
f (z) = (z − 0.5)/(z + 0.5)2. This function includes the
first-order zero in z1 = 0.5 and the second-order pole in
z2 = −0.5. The first-order zero is visible as the change of
phase between all the four quadrants in the counterclockwise
direction around z1 which reaches 2π . Then, the second-order
pole is visible as the change of phase between all the four
quadrants in the clockwise direction around z2 which reaches
4π . These simple changes of quadrants (i.e., colors) are
analyzed by GRPF, allowing one to find zeros and poles of
a function on the complex plane. It is important to employ
a sufficiently dense mesh, which means that the number
of edges P can be large. In FIG. 2, the mesh with visible
edges and its refinement is presented. As one can note, GRPF
correctly reduces the mesh size around the candidate edges.

B. GROVER’S ALGORITHM
We employ Grover’s algorithm [4] in the proposed GRPF
implementation, which is a quantum search algorithm. Let
us define the function F : {0, 1, . . . ,P − 1} 7→ {0, 1} which
points out the element in the database we are searching for.

FIGURE 1. Quadrants of phase (■ (0), ■ (1), ■ (2), ■ (3)) for function
f (z) = (z − 0.5)/(z + 0.5)2. Initial mesh size is set to 0.01.

FIGURE 2. Quadrants of phase (■ (0), ■ (1), ■ (2), ■ (3)) for function
f (z) = (z − 0.5)/(z + 0.5)2. Initial mesh size is set to 0.2.

That is, F(x) = 1 if x is the index of the item which we are
searching for, and F(x) = 0 otherwise. Grover’s algorithm
requires defining the function ZF , called an oracle, which is a
unitary operator taking the quantum-register input |x⟩ of the
size p = ⌈log2 P⌉ and flipping it iff x is the index of the item
which we are searching for. That is, the action of the oracle is
defined as

|x⟩
ZF

7−→(−1)F(x) |x⟩ . (4)

The algorithm starts off by setting the input register to an
equal superposition of all the input states with the use of the
Hadamard operator H⊗p. That is, the following state is set at
the input

|ψ⟩ = H⊗p
|0p⟩ =

1
√
P

P−1∑
x=0

|x⟩ . (5)

Then, Grover’s operator

G = (2 |ψ⟩ ⟨ψ | − 1̂)ZF (6)
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based on the oracle ZF is called O(
√
P) times. The

measurement of a quantum-register state returns the index
of the element which we are searching for. It is possible to
extend the basic operation of Grover’s algorithm when we
search for multiple elements in a database [8].

C. GRPF ON QUANTUM COMPUTER
Quantum implementation of GRPF consists of data prepa-
ration on a classical computer, quantum computations for
candidate-edge detection and, again, classical computations
for the subsequent mesh refinement. It is assumed that the
computational overhead of data preparation on a classical
computer is not significant compared to the overhead of
searching for candidate edges. Otherwise, the use of quantum
computations in GRPF will not provide important advantages
in comparison to classical computations. The domain ana-
lyzed by GRPF can be arbitrarily large, hence the number
of edges after triangulation can be substantial. However, with
the use of QC, one can reduce the computational overhead of
the candidate-edge detection in GRPF from O(P) to O(

√
P).

If the time of calling the function and computing the
function value in a single point is significant, it is crucial to
minimize the number of function calls. Then, one can reduce
the number of function calls compared to the original GRPF
algorithm with the use of a self-adaptive mesh generator [21].
However, we do not investigate this GRPF extension in order
to concentrate on quantum implementation of this algorithm.

We focus further on the first iteration (i.e., executed on a
quantum computer) of the quantum GRPF algorithm, which
is presented in FIG. 3. QC is based on random properties
of the reality, hence this iteration includes tasks which are
executed multiple times in a loop (i.e., the number of these
executions is chosen randomly). In the subsequent sections,
we describe the elements of this quantum iteration of GRPF.

1) INPUT DATA
Based on the input data prepared on a classical computer,
quantum circuits are generated. These data consist of
quadrants of function values for nodes of a triangular mesh.
It is checked, inside the quantum circuits, if the difference
between the quadrants is equal to two for the nodes in a
single edge. Hence the application of Grover’s algorithm to
GRPF requires its implementation which processes the nodes
and edges of the mesh. That is, the edges in the triangulated
domain are the search space, whereas the function F returns
1 when the argument x is the candidate edge. The quantum
circuits based on Grover’s algorithm find the candidate edges
in the first iteration of the GRPF algorithm. In our Python
implementation, there are three such quantum circuits and
each one computes a set of candidate edges in one out of
three directions δ ∈ {α, β, γ } on the regular triangular
mesh (see FIG. 4). As one can note, such a mesh geometry
allows for covering the rectangular domain with edges (i.e.,
E = Eα ∪ Eβ ∪ Eγ ), which can easily be decomposed into
the sets Eα , Eβ , Eγ associated with the search directions.

In general, the three quantum circuits, each processing one
of the directions α, β, γ , are similar and only differ in the
direction of the edges they process. Then, when the candidate
edges are detected, themesh is refined on a classical computer
and the complex values of zeros and poles are computed
with the assumed numerical precision ϵ. Of course, one
can employ other methods of decomposing the mesh into
directions, even without covering the rectangular boundary.

2) QUERY MODEL OF COMPUTATIONS
The quantum circuit for each direction consists of four
quantum registers: a, b, c and d. The registers a, b, and c are
used together as the search space for Grover’s algorithm. The
size of the register a is set to fit the largest index of nodes in
the generated triangular mesh, so its size is m = ⌈log2(M )⌉,
where M is the size of the set of all the nodes. The registers
b and c have a constant size of two qubits to fit four possible
values of a quadrant index (0, 1, 2, 3). The register d of a
single-qubit size is used for the phase kickback in the oracle
(which is explained below), and it is initialized to the minus
state |−⟩ = (|0⟩−|1⟩)/

√
2. In our implementation of Grover’s

algorithm, the query model of computations [22] is used.
This means that the function F is accessed by the query gate
defined as the unitary operation

UF (|y⟩ |x⟩) = |y⊕ F(x)⟩ |x⟩ . (7)

The gate operates on two quantum states, i.e., the
function-argument state |x⟩ and the function-value state |y⟩.
The exclusive-alternation (XOR) operation is realized for
the state |y⟩ and the value of the function F(x), hence the
function-argument state remains the same. One can note that
XOR of two numbers a and b, represented by quantum states,
is equivalent to the operation of negation

X =

[
0 1
1 0

]
(8)

executed a times on the state |b⟩. That is, one can write
|a⊕ b⟩ = Xa

|b⟩ = Xb
|a⟩. This can easily be proved by

checking equalities for the states of the computational basis
|0 ⊕ 0⟩ = X0

|0⟩ = |0⟩
|0 ⊕ 1⟩ = X1

|0⟩ = |1⟩
|1 ⊕ 0⟩ = X0

|1⟩ = |1⟩
|1 ⊕ 1⟩ = X1

|1⟩ = |0⟩
and then taking into account the fact that any state is a linear
combination of the computational-basis states |0⟩ and |1⟩.
Knowing this, we can rewrite the unitary operation of the
query gate as UF (|y⟩ |x⟩) = |y⊕ F(x)⟩ |x⟩ = (XF(x)

|y⟩) |x⟩.
The operator ZF in Grover’s operator G is a query gate

that flips the sign of |x⟩ iff F(x) = 1. To achieve this, the
state |y⟩ is set to the minus state |−⟩. Then, the operation of
our query gate is (XF(x)

|−⟩) |x⟩. However, one can note that
X |−⟩ = − |−⟩, so the operation of the query gate becomes
((−1)F(x) |−⟩) |x⟩. This can be rewritten as |−⟩ ((−1)F(x) |x⟩),
so now, in a sense, the argument state has changed, but the
value state has not. This phenomenon is called the phase
kickback in our implementation of the oracle ZF .
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FIGURE 3. Flowchart of the first (quantum) iteration of proposed GRPF algorithm.

3) ORACLE
Although the oracle is usually represented by a single
quantum gate, here we develop a quantum circuit in its place.
Its operation can be understood by analyzing a classical
version of such a circuit, where the bits store classical states.
Its quantum version concurrently computes all the candidate
edges by the superposition of states. The quantum circuit of
the oracle is presented in FIG. 5. It takes the node index from
one side of the edge which is stored in the register a. The
first gate Ub sets the state of the register b to the quadrant
of the node represented by |a⟩. The second gate Uc sets the
state of the register c to the quadrant of the node on the other
side of the edge connected to the node represented by |a⟩. The
third gate Ud performs the XOR operation on the register d
resulting in the function F . Therefore, if d is 0 and the edge
is the candidate edge, meaning F returned 1, then d will be
0 ⊕ 1 = 1. This output means that the analyzed edge is a
candidate edge.

The gates Ub and Uc are the unitary operators defined as
follows:

Ub |b⟩ |a⟩ = |q[f (nb)]⟩ |a⟩ (9)

Uc |c⟩ |a⟩ = |q[f (nc)]⟩ |a⟩ . (10)

In (9)–(10), nb and nc denote the nodes, i.e., complex values
representing their coordinates on the complex plane. Let us
define the edge x = {nb, nc}. Knowing that |d⟩ is initialized
with |−⟩, we can describe Ud as follows:

Ud |d⟩|c⟩|b⟩ = |−⟩((−1)F(x)|c⟩|b⟩) (11)

where

F(x) =

{
0 if |q[f (nb)] − q[f (nc)]| ̸= 2
1 if |q[f (nb)] − q[f (nc)]| = 2

. (12)

The gate Ub consists of multi-controlled X (MCX) gates,
which are gates with multiple control qubits that determine
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FIGURE 4. Edge directions processed by quantum circuits on a small
mesh.

FIGURE 5. Quantum circuit representing oracle for m = 6.

whether a given gate should be enabled. In our case, the
register a with node indices represents the control for
these MCX gates. That is, we add the X gate before the
control to qubits, which we want to set in the register b,
if the corresponding bit of the node index is 0. Therefore,
the control lines enable the gates which set the quadrants
into the register b. As one can note, the X gates are always
applied in pairs in order to restore the input states of qubits
on control lines. The targets of the MCX gates are one or
both qubits, depending on the quadrant values which should
be written into the register b. Let us consider the following
example of the gateUb, which is presented in FIG. 6. Suppose
that [1, 1, 3, 2] is the array of quadrants for four subsequent
nodes in the mesh. Hence we can assume that the size of the
register a is set at two qubits. The index of the first quadrant

FIGURE 6. Exemplary gate Ub for array of quadrants [1, 1, 3, 2].

(i.e., 1) in the array is 0. Our aim is to activate the least
significant bit b0 when the node index in the register a is equal
to 00 (binary). Therefore, the X gates are initially placed at the
control lines from the register a, which gives the enable signal
activating the line b0. Hence the value 01 (binary) is set at the
register b. Analogously, other binary values of quadrants are
set by the following gates, according to the binary indices of
the array elements.

The gate Uc is constructed similarly to Ub, except that for
each node, instead of its own quadrant value, the quadrant
value of its neighbor is assigned in a given direction (see
again FIG. 4). Using this scheme, the quadrants of neighbors
for each node in an array are assigned, and passed on to the
function constructing Ub.

The gate Ud is represented by a matrix of the size 25 × 25,
because size(b) + size(c) + size(d) = 5. The behavior
of any unitary-matrix transformation can be described by
analyzing the columns of the matrix, each having an index
that is represented in Dirac’s notation. Therefore, for each
column having the index dc1c0b1b0 (binary) representing
the quantum state |d⟩ |c⟩ |b⟩, we insert the output which
indicates if the input state denotes the candidate edge. That
is,Ud is a unitary transformation represented, to some extent,
by a lookup table. For example, having the quantum state
|0⟩|00⟩|11⟩ (the candidate edge) as the input, we expect the
quantum state |1⟩|00⟩|11⟩ at the output. Therefore, we insert
a column vector representing the expected state as the matrix
column with the index represented by the input state. The
output bit d is computed by XOR of the input d and the
expected output d , because it is done in the query model of
computations. This means that the two nodes (having b and c
quadrant values) are a candidate edge. The matrix Ud can be
written as

Ud =





∣∣∣∣ ∣∣∣∣ ∣∣∣∣
|y⟩00000 |y⟩00001 · · · |y⟩11111∣∣∣∣ ∣∣∣∣ ∣∣∣∣

where |y⟩dc1c0b1b0 is a basis state which is the expected value
for the input basis state |dc1c0b1b0⟩, i.e., Ud |dc1c0b1b0⟩ =

|y⟩dc1c0b1b0 .
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Because we are dealing with quantum states, the gate Ud is
not the last one in the circuit of the oracle. There are two
quantum gates afterwards being the inverse of the gate Uc
and the inverse of the gate Ub. This is implemented in order
to retrieve the previous states of the registers a, b and c.
Therefore, the whole quantum circuit can be treated as the
oracle ZF .

It is the fact that some of QC algorithms are still far from
being implementable for meaningful applications on today’s
quantum hardware [23], [24]. Therefore, Grover’s algorithm
is usually not considered in terms of implementability,
but the polynomial reduction in a query complexity (i.e.,
how many times the oracle is queried in a similar way
to a classical database). Although Grover’s algorithm may
not provide a practical quantum advantage in searches in
the near future, it is a fundamentally important quantum
algorithm, as well as a representative model for a more
general technique with many applications in QC. In our
case, the transfer of classical data to the quantum oracle
is a bottleneck for the efficiency of the algorithm (with
respect to classical solutions), because the number of the
gates X and MCX in Ub and Uc depends, as O(P), on the
size of the database (i.e. the size of the mesh consisting of
P edges). However, the gate Ud has a size independent of
the mesh size, which is an advantageous feature. To sum
up, our GRPF implementation should provide advantages in
comparison to classical approaches if an efficient method
of data transfer between classical and quantum computing
systems is developed.

4) QUANTUM COMPUTATIONS
Three quantum circuits implementing the oracle, each for a
single direction α, β, γ in themesh, run sequentially in a loop.
In general, a single run of the quantum algorithm is usually
insufficient to obtain results in QC. Therefore, we simulate
each quantum circuit 1024 times to obtain a histogram of
the outcomes, which is a default number of simulations of
a quantum circuit in Qiskit. Then, we choose the outcomes
which occur more often than the others. Each outcome is the
index of a node, which together with the mesh direction of the
quantum circuit, represents a candidate edge. After running
the quantum circuit for a single direction δ ∈ {α, β, γ }, one
obtains the set of candidate edges

Ec =

{
x ∈ E :

ox
omax

> DT
}

(13)

where x = {nb, nc} is the edge uniquely identified by the pair
(nb, δ), ox is the number of times that this edge occurred as
the outcome of the simulation along the direction δ, and omax
is the maximal number of times that any edge occurred as the
outcome of the same simulation along the direction δ. In (13),
DT denotes the detection threshold of candidate edges which
we set experimentally at the level of 50%.

Based on (5)–(6), the whole quantum circuit of the GRPF
algorithm for a single direction, operating on |a⟩, can finally

TABLE 1. Zeros with multiplicities for fA (theoretically).

be described as follows:

[H⊗m(2 |0m⟩ ⟨0m| − 1̂m)H⊗mZF |a]tH⊗m (14)

where ZF |a denotes the oracle operating on the register a, and
t is the number of iterations of Grover’s algorithm. If we knew
how many solutions (candidate edges) exist along a single
direction, then t could be calculated so that it would yield
the highest probability of finding them all. Unfortunately
we do not know the number of solutions beforehand, so we
need to calculate t in a different way. This can be done by

randomly choosing a number from the set
{
1, . . . ,

⌊
π

√

M̄
4

⌋}
where M̄ = 2m denotes the number of possible outcomes
and m is the size of the register a. This method gives us
a chance of finding a single solution (assuming one exists)
in a single simulation greater than 40% [25]. By repeating
this procedure and checking the outcome in the same way
as described before, the probability of finding a solution
can be made very close to 1. This procedure is proposed in
Qiskit as a default option, but other methods of estimating the
number of solutions can be applied, e.g., based on quantum
counting [26].
If the results of a simulation along a single direction are

ambiguous, then all the solutions along that direction are
discarded. This happens when there are no true candidate
edges in a given direction. The ambiguity A is measured
by the ratio of the number of candidate edges proposed by
the algorithm Mc to the size of the search space of Grover’s
algorithm:

A =
Mc

M̄
. (15)

We discard the edges Ec if the ambiguity is greater than or
equal to the level of 33%, which we found with the trial and
error method.

III. NUMERICAL RESULTS
We employ 7 qubits for the register a in order to run
emulations of the quantum GRPF algorithm in reasonable
time. The exact number of the required qubits depends on
the initial distance between nodes1r . However, if the size of
the register a is greater than 7, then there might be a need to
increase the number of simulations to over 1024 in order to
decrease statistical fluctuations of the results.

The next two subsections present the results of the quantum
GRPF algorithm applied to two complex functions fA and fB.
For each of them, we set the final precision of computations
at ϵ = 10−9. The initial mesh resolution 1r , which defines
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FIGURE 7. Candidate edges ( ) in the first iteration for fA.

TABLE 2. Zeros with multiplicities for fA (numerically).

the distance between the nodes in the first regular meshing,
is set individually for each considered function.

A. FUNCTION FA
This function is defined as follows:

fA(z) = (z− (4 + 3i))2(z+ 3)(z+ i)3(z− 2)2(z− (2 + i)).

Its analytical zeros and their orders are provided in
TABLE 1. The function is analyzed for

z ∈ � = {a+ bi a ∈ [−8, 8] ∧ b ∈ [−8, 8]}.

The initial mesh is generated with 1r = 3. In the first
iteration, the quantum circuits find 30 candidate edges that are
colored purple in FIG. 7. In this simulation, the edges from
the direction β are discarded because of too high ambiguity
of the results. The numbers of occurrences of a given edge as
a candidate for each direction are presented in FIG. 8. As a
result of the algorithm run, one obtains all the zeros of the
function fA computed with some numerical error, as given in
TABLE 2. One can note that obtained values are within the
range defined by the numerical precision of computations ϵ.
Furthermore, quantum GRPF detects all the zeros within the
assumed searching space. One can note that the multiplicities
of function zeros are correctly computed classically. This
confirms the correctness of our implementation of quantum
GRPF in a code.

The final mesh, i.e., after running the algorithm,
is presented in FIG. 9 for reference.

FIGURE 8. Function A: Number of occurrences as candidate edge for
direction α, β, γ . Horizontal axis contains binary indices of edges that
occur more often than detection threshold.

B. FUNCTION FB
This function is defined as follows:

fB(z) = (z− 1)(z− i)2
(z+ 1)3

z+ i
.

Its analytical zeros and poles, with their orders, are provided
in TABLE 3.
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FIGURE 9. Mesh on the last iteration of quantum GRPF algorithm on fA.
Quadrants of phase: ■ (0), ■ (1), ■ (2), ■ (3).

TABLE 3. Zeros and poles with multiplicities for fB (theoretically).

FIGURE 10. Candidate edges ( ) in the first iteration for fB.

The function is analyzed for

z ∈ � = {a+ bi a ∈ [−2, 2] ∧ b ∈ [−2, 2]}.

The initial mesh is generated with 1r = 0.5. In the first
iteration, the quantum circuits find 17 candidate edges that
are colored purple in FIG. 10. The numbers of occurrences of
a given edge as a candidate for each direction are presented
in FIG. 11. As a result of the algorithm run, one obtains all
the zeros and poles of the function fB computed with some
numerical error, as given in TABLE 4. One can note that
obtained values are within the range defined by the numerical

FIGURE 11. Function B: Number of occurrences as candidate edge for
direction α, β, γ . Horizontal axis contains binary indices of edges that
occur more often than detection threshold.

precision of computations ϵ. Again, quantum GRPF detects
all the zeros and poles within the assumed searching space.
Then, the multiplicities of function zeros and poles are
correctly computed. This confirms the correctness of our
implementations of quantum GRPF in a code. The final mesh
is presented in FIG. 12.
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TABLE 4. Zeros and poles with multiplicities for fB (numerically).

FIGURE 12. Mesh on the last iteration of quantum GRPF algorithm on fB.
Quadrants of phase: (■ (0), ■ (1), ■ (2), ■ (3)).

IV. CONCLUSION
The implementation of the GRPF algorithm, which allows for
solving general nonlinear algebraic equations on a quantum
computer, is developed. The considered function is sampled
with the use of Delaunay’s triangulation on the complex
plane, and the phase quadrants, where the function values
are located, are computed on a classical computer. Then,
quantum circuits are employed in the first iteration of the
algorithm to detect the edges (so called candidate edges) in
the mesh for which function values belong to the opposite
quadrants of the complex plane. Zeros and poles of a complex
function are located around such edges, which are afterwards
precisely computed with the use of mesh refinement on a
classical computer. In order to effectively detect candidate
edges on a quantum computer, the mesh is transformed into
a one-dimensional array and the candidate edges are found
with the use of Grover’s algorithm. If the mesh consists of P
edges, the computational overhead of this operation, in terms
of oracle queries, is equal to O(

√
P) on a quantum computer,

instead of O(P) on a classical one. The proposed algorithm
is implemented in Python using the Qiskit library and it is
open sourced. Using the emulation of QC, we are able to
demonstrate the correct operation of the developed algorithm
based on two exemplary complex functions.

SOURCE CODE
The source code for the QC implementation of the
global complex roots and poles finding algorithm based
on phase analysis is released on: https://github.com/

PG-Group-Project-Quantum-Optimization/GRPF-quantum,
and is licensed under the MIT License.
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