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Abstract

This doctoral thesis is focused on the development of the DA®NE lattice to collide in the
second interaction point where the FINUDA detector was installed in 2003. Modelling
of the second interaction region and of the modified wigglers are described in detail.
The constraints to be fulfilled by the lattice and the agreement between the model and
the beam measurements are discussed. A model dependent technique for beam based
alignment has been implemented for the main rings. The developed procedure and its

results are presented.
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Chapter 1

Introduction

The Double Annular ®-factory for Nice Experiments (DA®NE) is an electron-positron
circular collider at high luminosity working at the energy of the ® mass resonance (1.020
GeV) [47, 48]. The design of the collider is based on two high current symmetric rings,
97 metres long, crossing at a horizontal angle in two interaction regions 10 metres long
(the low beta insertions), which alternatively housedifferent experiments. The lattice of
the rings consists of four achromatic arcs, each housing a 2 metres long, 1.8 T normal
conducting wiggler magnet which doubles up the synchrotron radiation emitted in dipoles.

The major physics motivation for the construction of DAPNE is the observation of di-
rect CP-violation in K, decays, i.e. the measurement of the parameter € /e with accuracy
in 107% range by the KLOE detector [21]. The other experiments which have been using
the DA®NE luminosity are FINUDA [20], for hypernuclear spectroscopy, and DEAR [19],
for exotic atoms physics.

The KLOE detector, with its solenoidal field, has been installed on the first interaction
region (IR1) since 1999. The second interaction region (IR2) has been shared between
FINUDA, which has also a solenoidal field, and DEAR, which has external targets around

the vacuum chamber, non interfering with the ring optics.
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Two experiments can be installed contemporaneously in DA®NE, but since the com-
missioning period of the collider (1998) it was clear that optimizing the luminosity in two
interaction points was critical and the collider has always worked for one experiment per
time, keeping the beam trajectories vertically separated at the non-colliding interaction
point.

Many are the effects that can limit the luminosity in a multibunch collider: nonlin-
earities in the magnetic fields, parasitic crossings between the opposite beams, instability
thresholds of the currents etc.

In the original design one key point was the crossing angle at the interaction point.
DA®NE, together with KEK-B, is the first collider originally designed with a horizontal
crossing angle that allows to store up to 120 bunches per ring avoiding parasitic crossings
between the outgoing bunches after collision and the incoming bunches of the opposing
beam in the interaction region. However the crossing angle ¢, must be small enough to
avoid synchro-betatron resonances (this condition is generally expressed by the Piwinski
angle ¢ that must be kept small [35]: ie. ¢ =0, -0’/o, < 1, where ¢} and o, are the
horizontal and longitudinal beam sizes at the collision point). The design value of the
crossing angle chosen to fit this condition was 6 = £12.5 mrad.

During the first years of operation, it has become clear that with respect to the original
design the crossing angle could be increased and the beta functions at the interaction point
squeezed with benefit for the parasitic crossing and the increase of luminosity [11]. In 2003
a modified design of the first interaction region (IR1) has been then realized, changing
the original FDF quadrupole triplet scheme of the low beta insertion in a DF doublet
which is more flexible to vary the crossing angle in a wider range and to decrease the beta
functions.

Another specific feature of DA®PNE from the point of view of the lattice are the

wigglers, which in a low-medium energy collider as a ®-factory are needed to shorten



the damping times of transverse and longitudinal oscillations and to raise the instability
thresholds. The operation of the collider showed that wiggler magnets were sources of
strong nonlinearities (sextupolar, octupolar and higher order field components). The
evidence of those effects was pointed out experimentally observing the betatron tune shifts
when the beam orbit along the wigglers was varied with horizontal closed bumps [33].
Simulations confirmed that such nonlinearities in wigglers were responsible of limitations
both in the dynamic aperture and in the energy acceptance, i.e. in the transverse area
where the particle motion is stable and the energy range within which a particle is not lost
from the beam. Such effects resulted in a reduction of the beam lifetime and luminosity
performances.

In order to correct the non linear components in the wigglers, in 2003 the surface of
the wiggler poles has been modified in a curved shape which generate a flat behaviour of
the magnetic field in a larger range along the horizontal coordinate [37].

The work discussed in this PhD thesis concerns the study and the development of the
DA®NE main ring lattice for two experiments (KLOE and FINUDA) I have carried out
from 2002 to 2004 at DAPNE, with special attention to the linear optics model.

After a presentation of the general design of the collider, a discussion about the pa-
rameters that determine the luminosity performances in DA®NE is introduced (Chap-
ters 2 and 3). My major activity has been the update of the model that describes the
DA®NE main rings with the optics program MAD developed at CERN [26]. In this
framework I have completely modelled the second interaction region, where the FINUDA
experiment was installed in 2003, and the modified wigglers from the magnetic measure-
ments of the field performed on each magnetic element (Chapter 4). With this model I
calculated the new ring optics for FINUDA with the required parameters: lower emit-
tance (from 0.8 to 0.4-107% m-rad), lower vertical beta function at the interaction point

(from 4 to about 2 cm), optimized betatron phase advance between the magnetic elements



4 CHAPTER 1. INTRODUCTION

etc. (Chapter 5).

The new DA®NE model has been validated by comparing its predictions with the
beam measurements both for the linear optics (beta functions, betatron tunes, dispersion
function, closed orbits) and for nonlinear effects (chromaticity, dynamic aperture etc.).
In the framework of this optics study, I have also implemented a beam based alignment
procedure for the quadrupoles magnets (Chapter 7). Thanks to such model dependent
measurements we were able to easily find large misalignments of the quadrupoles and also
to check the correct operation of the other magnets in the first days of running after a

long machine shutdown.



Chapter 2

General design of the d-factory

The layout of the DA®NE complex is shown in Fig. 2.1 and the parameters of the ac-
celerator are listed in Table 2.1. In this chapter the main components of the factory are
presented and the design of the collision rings on which this thesis is focused is described

in more detail.

2.1 DAONE

The luminosity in a circular collider is given by:

NN~
L = Jeco b b N 21
where f.n = freonp is the frequency of collisions with n, the number of bunches, Nl:r

and N, the number of particles of the colliding bunches and A the overlap function.
The transverse area A and the number of particles per bunch are determined by the
characteristics of the collider. Eq. (2.1) shows that to enhance the luminosity, in addition
to shrink A and increase N, as much as possible, the frequency of collisions f.,; can be

raised by increasing the number of bunches n; per beam. In DA®NE it is possible to store

5
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Figure 2.1: Layout of the DA®NE complex.
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Figure 2.2: Layout of the DA®NE main rings.

up to 120 bunches without increasing the number of crossing points, because electrons
and positrons circulate in two separated rings, laying on the same horizontal plane and
sharing two interaction regions where the experimental detectors are installed.

The layout of the DA®NE main rings is shown in Fig. 2.2: two storage rings 97 metres
long, one for electrons and the other for positrons, crossing each other in two interaction
regions 10 metres long, where the opposing beams travel in the same vacuum chamber.
Each ring has an outer section, called Long, and one inner section, Short, both consisting
of two quasi achromatic arcs and a straight section. The four sections (Long and Short)
are connected to the interaction regions through four splitter magnets. A challenging
feature of the DA®NE design is that there is no symmetry in the magnetic structure all
along the rings: this results in a more complicated handling of the optics functions. In

order to have the maximum flexibility in the set up of the ring optics, each of the 43
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quadrupoles per ring is individually powered.
The position of the beam along the rings is measured with 47 beam position monitors
(BPM) and can be steered and controlled with 31 horizontal and vertical corrector dipoles

per ring.

2.1.1 Definition of the coordinate system

Before presenting the design of the main rings of DA®NE in more detail, the coordinate
system used throughout this thesis to describe the particle motion is introduced. The po-
sition of a particle along a ring is located by means of the azimuth coordinate s (Fig. 2.3).
A local 3-dimentional coordinate system (x,y, z) is used to identify the particle position
with respect to the ideal reference. The transverse coordinates x and y measure the hor-
izontal and vertical displacement from the ideal trajectory passing through the center

of perfectly aligned quadrupole magnets, while the longitudinal coordinate z = s — vt,

Parameter Design Present

Beam energy Ey 510.0 MeV

Peak luminosity Lomaz 5-10% 1.3-10%? em™2s7!
Ring length L 97.68 m
Emittance €/ €y 1.0/0.01 0.4/0.002 mm - mrad

Beta function at IP1  3;/03; 4.5/0.045 2.0/0.018 m
Beta function at IP2 3/ 4.5/0.045 2.0/0.025 m
Beam-beam tune-shift &,/¢, 0.040/0.040 0.020/0.016

RF frequency frE 368.263 MH=z
Harmonic number h 120

Revolution frequency frev 3.0688 MHz
Particle per bunch N, 81010 4-10%

Natural energy spread o./FEy 3.96- 1074

Natural bunch length Os 3.0 1.7 cm
Energy loss Uy 9.3 keV [turn
Damping time Te/Ta 17.8/36.0 ms

RF voltage VrE 250 kV

Table 2.1: Parameters of the DA®NE collider
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Figure 2.3: The coordinate system employed to describe the particle motion.

where vy is the velocity of a particle with nominal energy and ¢ is the time, locates the
longitudinal position with respect to an ideal particle with nominal energy FEj, at the
bunch centre. Deviations of particle energy E with respect to Ey are measured with the
coordinate 0 = (E — Ejy)/E, and variations in slope of particle trajectories are denoted
as ¥’ = dz/ds and y' = dy/ds.

The beam transport between two positions in the ring is expressed in matrix notation

as:
z Ryy Rz Riz R Ris Rig T
' Ro1 R Rz Ras Ras Rag '
) _ R31 Rsy Rss Rz Rss Rse ) ’ (2.2)
Y Ry Ry Ruz Ry Rys Ras Y
< Rs1 Rsy Rss Rsu Rss Rse z
0 ot Re1 Rea Res Res Res Res 0 o

where “in” and “out” stand for incoming and outgoing beam through the lattice section

of interest. The values of the R;; matrix elements can be expressed in terms of the lattice
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Twiss functions (the betatron functions (3,(s), 5,(s), the dispersion function D, (s) and

their derivatives) as in every optics textbook (see for example [22, 49]).

2.1.2 Interaction regions

The interaction regions of DA®NE (referred to as IR1 and IR2) are two sections 10 metres
long with a magnetic structure symmetric with respect to the interaction point (IP1 and
IP2) designed to produce low beta-functions at the IPs, for this reason the sections where
experiments are housed are called low-beta insertions. The electron and positron beams
travel off axis in the vacuum chamber of the interaction regions with opposite direction
and they cross each other with a design angle in the horizontal plane of £12.5 mrad
(Fig. 2.5), at the centre of the IR.

The strong focusing is provided by a couple of quadrupole doublets located symmet-
rically with respect to the interaction point. In the free space between the interaction

point and the closest D quadrupole! the vertical beta-function is given by:

8, ~ (2.3)

pe
ﬁ—;§
where () is the vertical beta-function at the interaction point and d = f, is the distance
between the interaction point and the closest quadrupole equal to the quadrupole focal
length. Large beta-functions in the lattice result in large chromatic aberrations that must
be carefully corrected using sextupoles magnets located along the ring. Particles with
different energies are focused differently since the strength of the quadrupoles depends on

the particle momentum. The natural chromaticity (chromaticity only from quadrupoles)

'F and D refer to as focusing and defocusing quadrupoles in the horizontal plane and the converse in
the vertical plane.
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of a magnetic lattice is expressed as:

1
¢ =4 [ K (2.4)

where K(s) is the strength (normalized gradient) of the quadrupoles:

1 0B

= —— 2.

and Bp = p/e is the magnetic rigidity of the particle. The drawback of the correction of
chromaticity is the reduction in the dynamic aperture? of the ring due to the nonlinearities
in the particle motion introduced by the sextupoles.

With typical values for DA®NE of 37 ~ 2 cm (higher than the bunch length o, as
explained in Chapter 3) and a maximum 3, of the order of 50 m compatible with a
reasonable chromaticity, the distance between the IP and the closest D quadrupole comes
out to be 1 m, meaning that the low-beta quadrupole doublets must be housed inside
the experimental detector. The only way to fit quadrupoles inside a detector was to use
permanent quadrupole magnets (otherwise supeconducting technology should be used).

In DA®NE when the beams are colliding in one interaction point, they are separated
with a vertical closed bump of the orbit in the opposite interaction point.

The two interaction regions of the experiments KLOE and FINUDA are presented
below. KLOE has been in operation since 1999, while FINUDA has completed the first
phase of its program in a six month run during 2003.

Studies and tests carried out in 2001 and 2002 [8, 9, 11] lead to the decision to modify
the design of the interaction regions to a new quadrupole configuration that allows a better

flexibility for the collider operation. After a six month stop in 2003, the new interaction

2The 2-dimensional dynamic aperture is defined as the area in the transverse space (z,y) where the
particle motion is stable. Generally it is calculated by tracking codes as the maximum x and y values
that can have a particle without being lost after a “large” number of turns.
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Figure 2.4: Schematic view of the present KLOE interaction region (IR1).

regions were installed and a new beam optics has been designed and tested first for the
FINUDA run with good achievements, then in 2004 for KLOE with further very good

performances.

IR1: the KLOE interaction region

The KLOE interaction region is a low-beta insertion with two permanent quadrupoles
doublets symmetric with respect to the IP housed inside the experimental detector. The
KLOE superconducting solenoid magnet is 0.6 Tesla x 4 metres. Such a magnetic field is
a strong perturbation to the particle motion, because the integrated field of the solenoid
(2.4 Tm) is of the same order of magnitude of the magnetic rigidity Bp = 1.7 Tm of
an electron with an energy of 510 MeV. The effect of the solenoid field is focusing and
coupling the betatron motions tilting the transverse section of the beam by an angle

proportional to the integral of the field along the particle trajectory [4] (0, =~ 40°):

1
O = —— | B.(s)d 2
Tt QBp [Olen : (8) i ( 6)

The correction system of the coupling is realized zeroing the rotation of the transverse

beam section at the interaction point and outside the interaction region by compensating



2.1. DA®PNE 13

the integrated field with two solenoids of 1.2 Tesla x 1 metre (Compensators) whose field
is opposite the KLOE one. The compensating magnets are installed between the detector
and the splitters. Finally each quadrupole is rotated around its longitudinal axis following
the rotation of the beam.

The present KLOE interaction region is based on a DF quadrupole doublet (the former

one being based on a FDF focusing lattice). Its novel features are:

e the inner F quadrupole was removed and the third one strengthened by 50% in-

stalling beside another F permanent quadrupole;

e stepping motors remotely controlled that can vary the quadrupole roll angles in a

+45° range;

Fle Edit Operate Project Windows Hel, =

close

Hel load DIFF close clear  print

save A-B
Afuzides/space/datailes/ORE | B A-B I
Lo [osa] [owF] [cose] [sovercs] [cear] [smnt]

41 || Fizrdcsrepaceriatales/ORE/ I

X Graph
B0.0

[Cursor 0 |[z5.72 |[0.00 | el ®

<30 -do 1o a0 il zo 30 40 S0 g i

T v [

=20 1o op 10 20 41 50 B .

Figure 2.5: Horizontal and vertical trajectories of the electron and positron beams along IR1
as they are shown by the DA®PNE control system, for beams colliding in IP1.
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e two printed circuit (PCB) quadrupoles to measure beta-functions near IP1.

This modified lattice has several advantages concerning the optics that will be discussed
in Chapter 5, the more important being the wider range within which the horizontal
crossing angle at IP can be varied, moreover the new rotation equipment allows to correct
the betatron coupling for different values of the KLOE solenoidal field.

The beam trajectories along IR1 are controlled adjusting the currents of the splitter
magnets and using four dipole correctors outside the interaction region. The position
of the beams is measured with six beam position monitors located symmetrically with
respect to IP1. In Fig. 2.5 the horizontal and vertical position measurements at the
monitors are shown as they are visualized by the DAPNE control system.

When the beams are colliding in FINUDA, the beam trajectories are vertically sepa-
rated at IP1, the KLOE solenoid is turned off, the roll angles of the permanent quadrupoles
are rotated to zero and IR1 is still a low-beta.

The beta functions and the beam trajectories in IR1 are described in Chapter 5.

FINUDA

SOLENOID
COMPENSATING
SOLENOID +6.0° +10.F  +2L1° %ﬂfﬁi&
% |
== I e T T e A [l
|y | | N L™ I B | | Iy
W ppaS
22L1° L10GF° -6.0¢
ROTKTED
QuaDS |

Figure 2.6: Schematic view of the FINUDA interaction region.
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IR2: the FINUDA interaction region

The set up of the second interaction region for FINUDA was realized in 2003. The
FINUDA detector is only 2 metres long, so that two further electromagnetic quadrupole
doublets are positioned outside the detector (see Fig. 2.6). The same correction system
as KLOE (compensating solenoids and rotated quadrupoles) is employed for the coupling
arising from the experimental solenoid that has shorter dimensions but a stronger field
(1.0 T x 2.4 m) than the KLOE one. The quadrupoles (both the permanent and the
electromagnetic ones) are rotated with stepped motors.

During the KLOE run, the FINUDA apparatus with the four permanent quadrupoles
is rolled off and replaced with a simple straight pipe line: in this case the beta functions are
“detuned” by using the other four electromagnetic quadrupoles and the second interaction
region is not a low-beta insertion anymore.

The beta functions and the beam trajectories in IR2 are described in Chapter 5.

The modelling of the FINUDA interaction region for the MAD program [26, 30] is the

subject of Chapter 4.

2.1.3 Arc cells and dispersion function

The structure of each DA®NE collision ring consists of four achromatic arcs®. Each arc is
delimited by two bending magnets and houses a 1.8 T wiggler magnet, three quadrupoles,
two sextupoles to correct the chromaticity of the ring, two dipole correctors and one skew
quadrupole.

The wiggler magnet is aimed at varying the horizontal emittance and increasing the
synchrotron radiation emission; this effect is needed in a low energy ring as DA®NE, where

the betatron transverse damping time is 7, ~ 100000 turns with the wigglers turned on.

3 An achromatic cell is a section where both the dispersion function and its derivative vanish at the ends.
This lattice can be obtained with a proper combination of the bending magnets and the quadrupoles.
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Particles in a bunch with different energy are bent differently by dipoles because the
bend angle of a magnet depends on the particle momentum. The orbit displacement for a
theorical energy deviation § = AE/FEy = 1 is the dispersion function D(s). The arc cells
are the sections of the ring where the dispersion function is different from zero. Many
important parameters of the ring are determined by the dispersion function.

The natural beam emittance® is generated by the emission of synchrotron radiation
in a region with non-zero dispersion. The dependence from the dispersion function is

expressed by the equation [32]:

€p = qu' (2.7)

Ta(1/p?)

where C; = 3.83 - 107! m,  is the particle energy in units of the rest mass, 1/p is the
orbit curvature, (...) stands for the average all over the ring, 7, is the horizontal damping

partition number and the H-function depends on the lattice design as:
H = ~,D? + 2a,D,D., + 3,D.%; (2.8)

with 3, a, and 7, the horizontal T'wiss parameters. In straight sections H is an invariant,
while it is not invariant through dipoles.
Another important parameter depending on the dispersion is the path lengthening of

a particle motion due to the beam energy spread, which is measured by the momentum

1 D, (s)ds
o = L%ip : (2.9)

4The emittance is a beam parameter expressing the average amplitude and divergence of the particle
motion and, together with the energy spread, determines the transverse dimension of the beam:

Or =\ €0z + (Dz0)2.

In flat rings there is no vertical dispersion and the vertical emittance €, is generated by the betatron
coupling.

compaction factor:
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where L is the length of the ring. The natural bunch length is proportional to «, according

2 2 E
o, = 22¢, [ 2rladEy o (2.10)
frev he‘/cav COs ¢s EO

where V., cos ¢ is the RF voltage slope.

to (see for instance [22, 49)):

The technique to modulate or change ¢, and a, is thus varying the lattice functions

in the arc regions in order to obtain the wanted beam parameter values.

2.1.4 Long, Short and “Y” straight sections

The structure of each ring is completed by four so called “Y” sections between the splitters
and the arcs and by two straight sections: the Long one where the beam is injected, and
the Short one where the RF cavity and the feedback system are positioned.

Each “Y” section houses three quadrupoles, one harmonic sextupole employed to en-
large the dynamic aperture, one skew quadrupole and two dipole correctors to adjust the
horizontal and vertical beam trajectory along the interaction region.

The feedback is a system that acts on the single bunches and is aimed at damping the
longitudinal and transverse beam instabilities generated by the interaction of the charged
beam with the walls of the vacuum chamber.

The focusing strength of the 7 quadrupoles positioned in the Short are usually em-
ployed for a fine correction of the betatron tunes of the machine.

The Long sections contain 10 quadrupoles and 3 sextupoles. The two injection kickers

are symmetrically positioned with respect to the injection septum.
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2.1.5 The injection system

DA®NE has an injection system that provide electron and positron beams. Electrons
are generated with a gun. Positrons are extracted from an electromagnetic shower by
electrons impinging on a tungsten target. The injection system includes a LINAC that
accelerates electrons or positrons up to 510 MeV and injects the particles in a damping
ring (Accumulator) at a maximum frequency of 50 Hz (equal to the inverse of the damping
time 7, 40 of the Accumulator). Here the emittance is reduced to the proper value through
the radiation damping of particles bent by dipole fields, and the beam is bunched to a
RF frequency 8 times the revolution frequency in DA®NE. After 5 - 7, ¢ the beam is
extracted and sent to the main rings through two different transfer lines for electrons and
positrons. The production of electrons and positrons is not simultaneous. The injection
of both beams takes about 10 minutes, while a typical beam lifetime in DA®NE is of the
order of 1 hour. In order to have the highest possible integrated luminosity, electrons and
positrons are reinjected when the instantaneus luminosity £ is lower than the average

luminosity (L) (topping up).



Chapter 3

Theory of the DAPNE luminosity

performances

Besides the energy, the luminosity is the primary parameter for a particle factory. The
basic theory of the DA®NE luminosity performance is presented. The effects limiting or
reducing the luminosity are discussed and their implications on the design of the rings

and on the lattice set-up are pointed up.

3.1 Design luminosity of DAPNE

The luminosity is the ratio between the event rate and the cross section of an event
of interest. For a test particle crossing head-on a bunch of charge N, the luminosity
is proportional to the bunch charge and inversely proportional to the effective transverse
beam area. For two beams with n;, bunches each, colliding at the revolution frequency f,...,
the luminosity £ is given by the geometrical convolution given by the particle distribution
overlapping:

‘C:frevnbsz/dxdprr(x7y) p*(g%y)v (31)

19
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where p(z, y) is the normalized particle distribution in the transverse plane and the indexes
+ and — refer to positron and electron beam respectively. It is assumed here that the
colliding bunches have the same spot sizes, charge and zero longitudinal length (short
bunch approximation).

For Gaussian beams with o, and o, transverse RMS beam sizes, the transverse particle

distribution is:

1 l‘2 y2
o) = Ty, 3.2
P, 00, 0y) 271 0,0y eXp < 202 205) (3.2)

If there are no relative transverse tilt between the two distributions, the integral of

Eq. (3.1) gives the well-known expression for the luminosity of circular colliders:

_ frevnb]\]b2 .

* k)
dmosoy

c (3.3)

where o) and o, are the RMS beam sizes at the interaction point. In the more general
case of colliding beams with different transverse dimensions and charge the luminosity

reads:
+ —
_ Jreom Ny N,

4
21 L%y ' (3-4)

%2

7y are the effective beam sizes at the interaction point.

where Zﬁy = cr;iy L to
The assessment of the design luminosity continues in the next section introducing
several advanced effects that affect the actual performances of DA®PNE and put some

constraints on the beam parameters.

3.1.1 Hourglass effect

The expression of Eq. (3.3) overestimates the luminosity because it does not take into

account the effects related to the finite bunch length. In fact the transverse sizes around
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Figure 3.1: Relative vertical beam envelope (hourglass shaped) around the interaction point
calculated for DA®NE with 3 = 18 mm neglecting the beam-beam interaction.

the focusing point depend on s as:

s ,(s) 52
712 =1+ 7; (35)
0-'1:72‘/ ﬁ:["y

thus for bunch lengths o, comparable with the beta function §; or 3, the transverse
beam size growth around the focusing point reduces the luminosity. This effect is called
the hourglass effect because of the longitudinal beam profile around the interaction point
(see Fig. 3.1). The hourglass effect is a strong constraint for the minimum achievable
3, since the bunch cannot be shortened as we want due to the bunch lengthening effect
which occurs at high current [18, 53].

Equation (3.1) can be generalized to the 4-dimentional (z,y, z,t) case [24] and the
luminosity reduction due to the hourglass effect must be calculated taking into account the
longitudinal motion of the two beams. The luminosity reduction factor when ;. = G

1s:
2

L o0 d —u
Ry, = o / \/—li - 1 (3.6)
0 —00 m /1 _'_ 2’;:;2 1 + 2%1142

2
B
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where u is a dummy integration variable proportional to s and X2 = 02, + 02_.

For the DA®NE case 02/3%" ~ (0.02/2)? < 1, the first factor in the denominator of
the integral in Eq. (3.6) can be neglected, while in the vertical plane DA®NE is working
at present at the hourglass limit o2/ ﬁf ~ 1. Numerical integrations [1] give an hourglass
reduction factor R from 0.93 to 0.83 depending on the peak values of the current per
bunch (and thus on the bunch lengthening). At present (; cannot decrease below 1.7 cm

equal to the bunch length.

3.1.2 Beam-beam interaction

When two bunches are in collision the particles of one beam interact with the electromag-
netic field generated by the opposing bunch. A test particle traveling through a Gaussian
flat beam (0, < 0,) undergoes an electric field in the bunch frame system given by the
Bassetti-Erskine formula [3]:

EQC—M/U1 exp [L(t2—1)+y72(1—1)]dt; (3.7)

B 2meg(02 — 05) /s

eNA)y (1L T @ty L
2)2/0 p{ 5 =1+ 5= )(1 tQ)}dt, (3.8)

v dmeg(o2 — o JJou t 2(02 —0?) 2(02 — o

here €y = 8.8542- 1072 F/m is the permittivity of vacuum and Ny\(z) is the linear charge
density along z = s & ct. Figures 3.2 show as an example the force experienced by a test
particle due to the electromagnetic field generated by a bunch. Because of the behavior of
the Coulomb interaction, the beam-beam force for particles at large betatron amplitude
is highly nonlinear. However near the bunch centre (z < 0,, y < 0,) the beam-beam

interaction behaves linearly with respect to the transverse displacement of the test particle

and acts as a quadrupole focusing the beams in both the horizontal and the vertical plane
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Figure 3.2: Beam-beam integrated force experienced by a horizontal (a) and vertically (b)
displaced particle at different vertical and horizontal positions with DA®NE parameters (o, =
2.1 mm,o, = 2.1 pm) (from [17]).

with different focal lengths f, ,:

1 2’/’6Nb

= — . 3.9
For = voni(on o) (3.9)

For flat beams, 0, < o,, the strength is stronger in the vertical plane. The effect of
the mutual focusing in both planes results in a positive shift of the betatron frequencies

given by:
_Te NoBz.y
27 Y0y (00 + 0y)

Eay (3.10)

The beam-beam tune shifts £, and &, measure the linear part of the beam-beam force and
they are of primary interest for a collider because they also specify the strength of the

beam-beam nonlinearity (felt by particles at = > o, or y > o,) that gives a limit to the
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maximum current (or the maximum transverse density of the beam) can be stored in the
rings. In fact when either &, or &, exceeds a certain value, characteristic of the specific
collider, the nonlinear part of the beam-beam interaction is so strong that instability and
beam blow-up occur and the luminosity and the beam lifetime are dramatically reduced.
If the beams collide in more interaction points per turn, the beam-beam effects add up
and the luminosity performances are further limited.

The tune shift limit of a collider can not be theorically predicted, however there is
experimental evidence from previous and existent ete™ machines that for all colliders the
tune shift limit is reached at £ ~ 0.06 — 0.07 [43]. The estimate of the DA®NE tune shift
limit is &, = 0.04 [54].

Since at present DAPNE is not limited by the tune shift (the largest limitations in
multibunch configuration coming from a longitudinal quadrupole instability cured with
the feedback system), the emittance has been gradually decreased from the design value
of 1-107% m rad to 0.45-107% m rad in order to reduce the beam size and increase the
luminosity with several benefits for the beam lifetime, the detector background, and the

parasitic crossings.

3.1.3 Crossing angle

Another geometrical reduction effect comes from the non-zero crossing angle between the
colliding beams. In DA®NE the two opposing beams collide with a horizontal crossing
angle ¢ to avoid parasitic crossings between the outgoing bunches after collision and the
incoming bunches of the opposing beam. Parasitic crossings can reduce the luminosity
if the trajectories of the opposing beams are not properly separated. On the other hand
the crossing angle must be small to avoid both synchro-betatron resonances (the Piwinski
condition [35]: ¢o, /0, < 1) and reduction in luminosity because of the overlapping

reduction with respect to the head-on collision. For 0, < 0, and 0, < 3y (i.e. neglecting
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the hourglass effect) the reduction in luminosity from the crossing angle is related in
first approximation to the widening of the effective horizontal dimension, because the
projected beam size along the interaction region increases, and the reduction factor can

be expressed as [29]:
1/2

1+ (2 tan¢)2] _ : (3.11)

Oy

L
R.o=—+—~
Lo

The crossing angle ¢ must be chosen as a compromise between the parasitic crossing per-
turbation, which profits from large ¢, the synchro-betatron resonances and the geometrical
reduction in luminosity.

The original low-beta regions of DAPNE with two FDF triplets allowed working with
¢ = 12.5 mrad, little enough to fit the Piwinski condition. The new design with two
doublets FD allows increasing the crossing angle until 16.5 mrad (see Chapter 5) improving
the beam separation as the machine operation demonstrated that the collider was still

below the synchro-betatron limit.

3.1.4 Numerical simulations of the DA®NE luminosity: choice

of the working point

The luminosity of a circular collider is strongly dependent on the working point of (i.e.
the betatron tunes values ), and @),) and at DA®NE the luminosity at different work-
ing points has been estimated from numerical simulations that take into account all the
aforementioned effects as well as the nonlinearities of the magnetic lattice of the Main
Rings [54]. During the collider commissioning the working point (0.15, 0.21) was chosen
for collisions as the best trade-off between high luminosity and other requirements (dy-
namic aperture, low second order chromaticity terms, low sensitivity to magnetic element
errors...). At present the positron ring is tuned at this working point in every configura-

tion (collision in IP1 or IP2). However we had to shift the working point of the electron
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Figure 3.3: The single bunch luminosity in the (Q., @) plane. The clearer areas are those with
higher luminosity, the dark regions correspond to the lower luminosity near resonance lines.

ring to (0.10, 0.14) because at high currents a strong vertical instability in the positron
ring is transmitted to the electron ring if the betatron tunes are equal in the two rings.
Separating the tunes the instability is eliminated by the so called Landau damping due
to the nonlinear beam-beam interaction. Studies and tests for the quest of new working

points closer either to the integer or to half the integer are always under investigation.



Chapter 4

Development of the DAPNE optics

model

After a presentation of the general frame of the main ring model, the modelling of the FIN-
UDA interaction region and of the modified wiggles developed in 2002-2003 is discussed
in this chapter.

The optics model has been developed by the DA®NE team for the code MAD [26] and
it has been optimized and updated gradually during the machine operation [10, 34]. MAD
describes the beam optics in accelerators and is able to solve several kinds of problems:
simulation of the optics parameters of a lattice (beta-functions, dispersion, betatron tunes,
emittance, damping parameters...), lattice matching, transfer matrix matching, calcula-
tion of closed orbits... MAD represents a ring as a sequence of physical elements: magnetic
as dipoles, quadrupoles etc. and non magnetic as drift sections, RF cavities, monitors
etc. Each element is defined by proper physical parameters as the element length, the

field strength etc. that determinate the effects on the beam dynamics.

27
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Table 4.1: Nominal parameters of the main ring dipoles used in MAD. L is the magnetic length,
gap the heigh of pole gap, a the bending angle, p the curvature radius of the trajectory through
the magnet, e;/es the angle in the horizontal plane the trajectory enters/exits with respect to
the pole face (Fig. A.1), fint the first integral of the normalized field.

Type Linag (m) gap (em) a (°) p(m) efe; () fint

Sector Short 0.990 7.56 40.50 1.401  0.00/0.00  0.5292
Rectangular Short 0.990 7.56 40.50 1.401 20.25/20.25 0.5756
Sector Long 1.210 7.56 49.50 1.401  0.00/0.00  0.5431
Rectangular Long 1.210 7.56 49.50 1.401 24.75/24.75 0.6208
Splitter 1.450 7.53 8.75 9.495 -0.25/9.00 0.3000

4.1 Lattice model of the main rings for MAD

Bench measurements on every magnetic element of DA®PNE were performed before the

installation using two different systems [31]:

e maps (steps of 1 cm or less) of the magnetic field components B, or B, on the mid-
plane of bending dipoles, splitters and correctors was measured with a Hall effect

Digital Teslameter on a 5-axes movement device;

e integrated multipole field components of quadrupoles, sextupoles and octupoles were

measured with an automatic rotating coil Multipole Measurement System.

The modelling of the magnetic elements has been deduced from these measurements as

is described in the following sections.

4.1.1 Bending dipoles and splitters

The design parameters of the four bending dipole families (two of sector type and two

of rectangular type) and of the splitters [14, 13, 12, 16] are reported in Table 4.1. The
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effective magnetic length of a magnet is defined by:

+o0
Lipag - Bo = / B(s)ds; (4.1)

[e.e]

where By is the field in the middle of the magnet and the fint parameter is defined [30]:

[T By(8)(Bo = By(s))
fint = / B ds; (4.2)

[e.e]

where g is half the pole gap. The fint is a corrective term of the vertical focusing generated
by end-fields.

From the measured map the magnetic field can be interpolated at every point on the
dipole mid-plane of the magnet and the multipolar components have been fitted!. A
detailed discussion on the problems concerning the DAPNE dipole modelling (focusing
effects due to the entrance/exit angles, sextupolar terms in the fringing regions...) was
done in [5].

The DA®NE splitters are special magnets set up by two adjacent dipoles with different
coils, that generate opposite field in the adjacent regions. The two pole gaps are separated
by a septum that divides the electron vacuum chamber from the positron one (Fig.4.1).
A refinement of the splitter model has been done taking into account the focusing effect
due to the sextupole term in the fringing region. In fact the vertical component of the
field B, is strongly dependent on the horizontal position because of the asymmetry of the
magnet. As shown by measurements plotted in Fig. 4.2, towards the interaction region

where the trajectory passes at 6 cm from the splitter axes the beam undergoes a field

'Tf one have n transverse points for every longitudinal position along the design trajectory, the poly-
nomial coefficients of the field expansion to the n — 1 order in = can be calculated. For instance, the
expansion of B, along the longitudinal coordinate z with respect to the transverse coordinate z is:

By(x,0,z) = Bo(z) + Bi(2)r + BQ(z)x2 4.

where By(z) corresponds to B, along the nominal trajectory, Bi(z) to the quadrupole term 0B, /0z,
Bs(z) to the sextupole term $9°B, /022 and so on.
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Figure 4.1: Nominal beam trajectories through the splitter magnet (in this figure y denotes the
longitudinal coordinate which is usually indicated with z.)
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Figure 4.2: B, transverse scan measured near the splitter edge (at y = —4.5 mm in Fig. 4.1).
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Figure 4.3: First order coefficient B;(s) (quadrupolar gradient) of the transverse field expansion
of the splitter around the nominal trajectory.

Figure 4.4: Second order coefficient By(s) (twice the sextupolar gradient) of the transverse field
expansion of the splitter around the nominal trajectory.
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gradient, while in the opposite side towards the “Y” section where the trajectory passes
at about 18 cm the field behaviour is flat. In Fig. 4.3 shows the first order coefficient
Bi(s) = 0B,/0z (quadrupolar gradient) of the transverse field expansion around the
nominal trajectory through the magnet. The peak at the splitter entrance (s = 0), which
in an ideal rectangular magnet with entrance angle -0.25° should be negligible, is generated
by the transverse gradient next to the coil in the end-field region, while the peak at the
exit (s = 1.45 m) is due mainly to the angle of 9° between the pole face and the beam
trajectory (Fig. 4.1) as expected in a rectangular dipole.

The additional focusing strength (not coming from the geometry) from this effect has
been modelled embedding the splitter between two thin lenses with integrated normalized

gradient 0.0123 m~! and 0.0025 m~!.

4.1.2 Quadrupoles, sextupoles and octupoles

The magnetic length and the bore diameter of the quadrupoles, sextupoles and octupoles
of DA®NE are reported in Table 4.2. The radius of the good field region for all multipoles
is 3 cm but for the large aperture quadrupoles it is 6 cm. The field quality is AB/B <
5-107%.

The characteristic magnetic gradients of every family of multipole are modelled with
a hard-edge profile and they are calibrated with respect to the powered current [27]. The
behaviour of the field is linear with respect to the current at the usual operation values.
In the MAD deck file the normalized multipole coefficients are defined in terms of the
power supply currents, so that the ring lattice can be easily simulated as a function of
different current data sets.

In the model the multipole strength:

1

J"B,
ox™

; (4.3)
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Quadrupole type Sextupole type Octupole
Large Small Large ap. Large — Small
Number per ring 14 25 6 12 8 3
Magnetic length (cm) 29.0  30.0 38.0 15.0 10.0 10.0
Bore diameter (cm) 10.8  10.0 20.0 10.8 10.8 10.0
Max current (A) 175 585 585 250 336 120
Max curr. below satur. (A) 123 304 380 150 336 100
C; (MeV A~ m™2) 16.96  9.128 3.979 51.18  19.74
Cy (MeV m™2) 562 453 272 49.34  32.8
Cs (MeV A7 m™3) 8.388

Table 4.2: The characteristic parameters of the DA®NE multipole magnets.

are expressed as a function of powered currents as:

Ky [m™* = (Ci-|I] [A] + Cy)/Ey [MeV];
KLy [m™%] = (Ci-|I] [A] + o)/ By [MeV]; (4.4)
K3Loct [m—S] = 03 ' |I| [A]/EO [M@VL

with the calibration constants C', C5 and (5 tabulated in Table 4.2.

4.2 Modelling of the FINUDA IR from magnetic mea-

surements

The FINUDA interaction region has been modelled similarly to the KLOE one. The IRs
are the sections modelled in the most detailed way of all the rings, the main feature of the
model is the representation of the four permanent quadrupoles immersed in the solenoid

field of the detector. The superposition of a transverse field gradient and a solenoid field
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is simulated as a sequence of thick solenoid slices alternated with thin lenses (zero length)

of varying strength representing the longitudinal dependence of the quadrupole field:

v A J L J L 4 Y v

w.+ SOLENOID SLICE+THIN QUAD LENS+SOLENOID SLICE+THIN QUAD LENS+...

The other four electromagnetic quadrupoles and the two compensators are positioned

outside the detector and they are represented individually.

4.2.1 FINUDA and compensating solenoids

The solenoid field of FINUDA and of the two compensators is known along the longitudinal
axes of the magnets with steps of 1 cm. In the model the solenoid magnets are represented
as a sequence of 3 cm slices with the field averaged on the segment. Figure 4.5 shows the

longitudinal dependence of the field.

4.2.2 Permanent and electromagnetic quadrupoles

The magnetic field of the permanent and electromagnetic quadrupoles with large aperture
for the second interaction region has been measured both with the rotating coil system
and with the Hall probe on the horizontal plane [36, 15]. The field gradient (and the small
higher multipole coefficients) is known all along the magnetic axes with a resolution of 1
cm.

The gradient of the permanent quadrupoles, that are inserted inside the FINUDA
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Figure 4.5: The measured FINUDA solenoid field along the longitudinal axis.

solenoid, has been integrated every 3 cm and the integrated value is inserted in the MAD
definition of a thin lens representing a segment of quadrupole. Each thin lens is also

rotated around the longitudinal axes, the roll angles of the IR quadrupoles are tabulated

in Table 4.3.

Permanent Electromagnetic

QPM001 QPM002 QUAI2001 QUAT2001
Magnetic length (cm) 15.8 30.0 38.0 38.0
Bore diameter (cm) 12.0 12.0 20.0 20.0
Nominal gradient (T/m)  9.433 10.802 2.254 3.383
Roll angle (°) 6.75 12.80 19.80 19.80

Table 4.3: The IR2 quadrupole parameters.
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Figure 4.6: Decomposition of the actual large aperture quadrupole field profile into segments
of hard edge quadrupole.

The large aperture quadrupoles are special electromagnetic magnets designed for the
IR vacuum chamber installed between FINUDA and the compensators. The magnetic
length is 38 cm, less than twice the diameter of the bore aperture equal to 20 cm. In this
case the field profile has long tails outside the quadrupole and the customary parameters
Liyag and kg of the hard-edge model used for the quadrupoles of the ring, where L, =
% [ k(s)ds and kg is the actual quadrupole strength at the middle of the magnet, give
an unsatisfactory approximation of the transfer matrix of the quadrupole magnet [7, 49]
resulting also in a betatron tune shift of about 0.002 with respect to the actual matrix.
In this case it is better to decompose the quadrupole in thin slices of varying strength,
treating these segments as short hard-edge quadrupoles the full transfer matrix is the

product of the matrices for all segments. In Figure 4.6 is plotted the decomposition of
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the actual large aperture quadrupole field profile into segments of hard edge quadrupoles

as it has been done in the MAD model.

4.3 Hard-edge model of the modified wigglers

The DA®PNE wigglers magnets are a row of seven alternately deflecting bending magnets
which do not introduce a net deflection on the beam. Wigglers are in general sources
of non linear fields in the lattice of a ring because of the transverse width of the pole
comparable with the aperture gap, resulting in a fast roll-off of the dipole field in the
transverse direction. In 2003 the pole shape of the DA®NE wiggler have been modified
in order to reduce the high order multipoles and thus increase the dynamic aperture of
the ring.

The modified wiggler magnets of the Main Rings have been modelled as a 2 m long
sequence of hard-edge dipoles alternated with drift sections describing the behaviour of
the magnet for the linear beam optics. Each pole is embedded in two additional thin lenses
per pole which reproduce the non-linear terms of the field. The physical parameters of
the model are based on the measurement of the field By versus the position (x,z) in the
horizontal midplane of the central pole and on the two terminal poles, which has been

taken on the modified wiggler in 2003 [37].

Total length (m) 2.00
Magnetic field (T) 1.73
End pole length (cm)  20.0
Inner pole length (cm) 32.0
Pole gap (cm) 3.70
Pole width (cm) 14.0

Table 4.4: DA®NE wiggler parameters.
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Figure 4.7: The wiggler field along the longitudinal z axis: the dashed line is the measured field
and the full line the hard-edge model.

4.3.1 Linear properties

For the proper linear modelling of wiggler magnets two conditions require to be fulfilled.
The deflection angle and the length of each modelled pole must be the same of the actual
trajectory. Similarly the edge focusing described in the model (the fint parameter used
by MAD) must be the same felt by a particle travelling around the nominal trajectory.
The corrections to the linear optics due to the wiggling trajectory through multipole field

components is considered in a following step and added to the model as thin lenses.

Wiggling trajectory of the nominal particle

The first step is the calculation of the trajectory of the nominal particle along the whole
wiggler. The magnetic field on the horizontal midplane (y = 0), where the trajectory lies,

has only the vertical component By (x,0, z), while B, .(x,0, z) = 0. In the reference system
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Figure 4.8: The global and the local coordinate systems along the trajectory.

in Fig. 4.8 the particle velocity is: I = cuy and the magnetic field: B(z, z) = B,(z, 2)u,.

Thus a charged particle undergoes the Lorentz force according to:

T = _Iisz(xvy);
(4.5)
.Z: = pioi'By(l‘, y)7
which gives:
i = —=cBy(w,y) cos;
(4.6)
Z = piocQBy(:p,y) sin 0;

with tan 6§ = dz/dz. The derivatives in the system above are done with respect to the time
variable t, while the magnetic field B, (z, ) is known from measurement as a function of
the position in the midplane as well as 0(z) is expressed as a function of the longitudinal

position z. Therefore z is the most suitable variable for numerical integration. Considering



40 CHAPTER 4. DEVELOPMENT OF THE DA®NE OPTICS MODEL

cdt = ds = [1 + (dx/dz)2]*/?dz, the second derivative is expressed according to:

. d*z . 1 d 1
xzﬁzcﬁzc de% dz\ 2 -
V1t (%) L+ (%)
(4.7)
1 d*x d*x
_ 2 _ 2 4 )
= C ﬁﬁ = C” COS 9@,
(1+ (%))
and after the variable change the trajectory equation becomes:
cos’ f(z) = —— By (. y); (4.8)
Do
and eventually:
d*x 1 dz\> v
—=—1 — B . 4.9

Eq. 4.9 is the differential equation that has been numerically integrated from the table
of field measurements with a recursive algorithm with start path z(z) = 0. The spacing
between the points in the data table is 1 cm, both longitudinally and horizontally. The
field By(z) is first fitted with a series of cubic polynomials connected together (cubic
spline) and then integrated with 1 mm longitudinal steps. The integration converges
after few iterations (2-3) since within the 12.5 mm horizontal range, where the trajectory
oscillates, B, has little and smooth variations and dz/dz is sufficiently small (AB/B, <

2-107% and dx/dz < 0.12). Once the trajectory is known, the path length is calculated

d 2
Lira; :/ ds :/ 1+ (—‘”) dz. (4.10)
wiggler wiggler dz

The wiggler in Figure 4.9 is the trajectory along the magnet, for the nominal particle

from:

launched at the entrance to the pole A with z = —12.5 mm and 2’ = 0 rad as is calculated

by the model. The length of the wiggling path comes out to be 6.62 mm longer than the
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Figure 4.9: The wiggling trajectory: the particle launched from the terminal pole A.

longitudinal straight line along the axis.

Choise of the modelling parameters

Once the amplitude, the deflection angle and the length of the trajectory are known, the
wiggler can be modelled pole by pole. Each pole is represented by a single parallel-end
hard-edge dipole with length L; (Figure 4.7) embedded in two drift sections with length
Lgy: the total length of the pole L, = Lj + 2 Lg is fixed equal to the nominal particle
path length integrated along the pole. The modelling problem consists in the choice of
the effective L.

Once the wiggling trajectory was known, the transfer matrix of each single pole has

been calculated from the table of the field measurements.
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Figure 4.10: Schematic y-z and z-z projections of a parallel-end dipole showing the fringe field.

Linear Transfer Matrix

On the horizontal midplane of each pole the field is everywhere vertical (Figure 4.10)
therefore in a parallel end dipole (neglecting at the moment the finite horizontal width
of the magnet) there is no focusing effect on the horizontal plane. The scenario changes
for a particle displaced vertically. In this case it undergoes the longitudinal component
Bz of the field in the fringing region, which is responsible of the edge vertical focusing in
a dipole. Launching a particle with (y,y’) = (1,0) and (y,y’) = (0, 1), the values of the
position y and the divergence y’ at the end of the pole are the columns of the vertical
transfer matrix and the physical problem consists in the tracking of the particle around

the trajectory previously calculated. The vertical equation of motion is (see Figure 4.10):

602

i (i x B) ““ B, sinf (4.11)
= —(t = —B,sinb; .
Y Po Y Po
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and by derivating with respect to z as in Eq. 4.8:

2
COS49% = pEOBZ sin 0; (4.12)
and eventually:
d*y 1 dz\” i dx
— g i B : 4.1
dz>  Bp * (dz) ] dz (2, 2); (4.13)

where dx/dz is the derivative of the horizontal wiggling trajectory x(z) already integrated
from Eq. 4.9.

For linear modelling the field components at position y can be estimated expanding
the magnetic field to first order around the midplane (y = 0), where the field is known.

Using also Maxwell’s equations:

0B, 0B
y=0 y=0
_ (@B,\ (0B, 0B.\
By(l‘7y7z) - y ( ay )yo - y ( 837 + 62 )yo — 0 (415)
0B 0B
oy y=0 0z y=0

The behaviour of B, (z, z) has been measured and fitted and the vertical trajectory can
be numerically integrated with the same procedure followed for the wiggling trajectory.
The dipole lengths and the fint parameters are then fixed pole by pole fitting the matrix

elements by using the matching tools of the MAD program as described below.

Inner Poles

In the model the inner poles are assumed to be equal among them and the physical

parameters are obtained from the measurements performed on the central pole. The
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deflection angle of the central pole comes out to be - = 0.2375 rad and the entrance and
exit angles are half the deflection angle: e; = e; = 0/2. Since the dipole has parallel ends,
in the horizontal plane there is no focusing effect and the horizontal transport matrix
does not depend on L; but only on the total pole length L, that is fixed. Therefore the
dipole length and the edge focusing parameter fint have been chosen in order to match
the vertical transfer matrix of the single pole calculated from the measured field map.

The obtained values are L, = 0.2355 m and fint = 0.315.

End Poles

One of the end poles (B type or "right”) has a strong sextupole field index useful to
improve the dynamic aperture: as a consequence the poles A and B, which are powered
by the same supply, have slightly different field integrals and different deflection angles
between them. The supplied current is such that the field integral along the wiggler axis
vanishes ([ Bydz = 0). The deflection angle of the right pole is 85 = —0.1196 rad and
the left one 04 = —0.1167 rad. The entrance and exit angles are: e; = 0, ea = 04 5. The
end dipole length and the fint parameter chosen with the same procedure followed for the

central poles are L, = 0.1368 m and fint = 0.213.

4.3.2 Linear and non-linear field perturbations as thin lenses

Finite horizontal pole width in a wiggler magnet creates a roll-off in B, (z) which generates
linear and non-linear perturbations to particle dynamics [2, 40]. The Figure 4.11 shows
B, (x) at the wiggler centre fitted from measurements: the 14 cm pole width results in the
field rolling off quickly at £ 50 mm. The final step for the complete modelling is to consider
the linear corrections to transfer matrix integrating the complete equation of motion that
takes in account the horizontal roll off of the field, which generates multipole terms. In

the model this is realized adding thin lenses at the dipole edges, whose integrated gradient
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Figure 4.11: Transverse field roll-off at the centre of the wiggler.

values K1 have been found matching again the corrected transfer matrix calculated from

the equation of motion:

2 2
jj =" (i x B), = —(B,sinf — B, cosf); (4.17)
Po Po
which gives:
ey_ 1, N A2 b (o) B, cost (@18)
dz2  Bp dz dz 07 €87 ) '

The final integrated vertical trajectories y(z) through the single poles are shown in Fig-
ures 4.13 and 4.12.

The transverse polynomial expansion of the field [37] shows up a small but not negli-
gible sextupole term and higher multipoles that give linear and non-linear perturbations
to both the horizontal and the vertical motion around the trajectory. All these effects are

taken in account in the model embedding each dipole in two thin lenses with integrated
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Figure 4.12: The vertical trajectory (full line) in the terminal poles starting with (y,y’) = (1,0):
the terminal B has an extra-focusing term due to the sextupole; the dashed line is the magnetic
field.



4.3. HARD-EDGE MODEL OF THE MODIFIED WIGGLERS 47

Central

05 LN 40995

098

15 10,975

0,97

-2 \ 10,965
005 0 005 0,1 015 0,2 025 0,3 0,35

z (m)

Figure 4.13: The vertical trajectory (full line) in the central pole entering in the pole with
(y,y') = (1,0); the dashed line is the magnetic field.

End Pole A Inner Poles End Pole B

Ln (m)  0.1368 0.2355 0.1368
L, (m)  0.2000 0.3200 0.2000
6 (rad)  0.1167 0.2375 0.1196
fint 0.384 0.317 0.384
K1 (m™!) 0.0 —0.0022  0.0260
K2 (m~2) 0.23 +0.78 34.4 (m?)
K3 (m=3) 23.0 —34.4 15.0
K4 (m™) —0.0025  40.0045  —0.0014

Table 4.5: The MAD parameters of the wiggler
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gradients along the trajectory:

Kl = Bip % ds = Bip (aaiy + a;fzyx + a;gyx; + a&i %)dz; (4.19)
K2 = Bip d;gy ds = Bip / (8825;’ + 8;5% + 8;5y%2)dz; (4.20)
K3 = Bip d;ﬂi = —/ <8;§ ;xfx) dz; (4.21)
K4 = Bip d;ﬁy ds = Bip 6;§y dz. (4.22)

The K1 coefficients are chosen fitting the single pole transfer matrices , while K2, K3
and K4 come from the magnetic measurements fit ([37] Table I ). In the model of the
inner poles the average value among the five poles is taken for each Kn coefficient. Only
in the end pole B, where the sextupole term is strong and quite constant (see [37] Fig.

32), the sextupole gradient K2 is spread out along the whole dipole.

4.3.3 Results of the MAD model

The model reproduces with very good accuracy the linear matrix elements calculated from
the measurements (AR;; ~ 107*). After the whole map of the field on the midplane was
measured (October 2003), the fint parameters have been further finely readjusted in order

to match the whole wiggler transfer matrix obtained from the magnetic measurements [37]
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and are reported below. The central pole matrix:

1.0007 0.3189  0.0000 0.0000
0.0044 1.0007  0.0000 0.0000

(4.23)
0.0000 0.0000  0.9647 0.3184
0.0000 0.0000 —0.2174 0.9647
The end pole A matrix (travelling towards the inside of the wiggler):
0.9928 0.2004  0.0000 0.0000
0.0000 1.0072  0.0000 0.0000
(4.24)
0.0000 0.0000  0.9981 0.2000
0.0000 0.0000 —0.0822 0.9853
The end pole B matrix (travelling towards the inside of the wiggler):
0.9989 0.2006  0.0000 0.0000
0.0520 1.0115  0.0000 0.0000
(4.25)
0.0000 0.0000  0.9923 0.1997
0.0000 0.0000 —0.1307 0.9813
The whole wiggler from A to B:
1.1230 2.0465  0.0000  0.0000
0.0745 1.0263  0.0000  0.0000
(4.26)

0.0000 0.0000 —0.0851  1.1980
0.0000 0.0000 —0.8327 —0.0266
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The whole wiggler from B to A:

1.0263 2.0465 0.0000 0.0000
0.0745 1.1230 0.0000 0.0000

(4.27)
0.0000 0.0000 —0.0266 1.1980

0.0000 0.0000 —0.8328 —0.0851

Notice that because of the asymmetry between the pole A and B, exchanging the direc-
tion of motion in the case of the whole matrix, diagonal elements are exchanged in the

horizontal and vertical blocks, while off diagonal ones are unchanged.

4.3.4 Radiation integrals and other remarks

Two important remarks on the accuracy of the model: the first about the dependence
of the wiggler optics on the orbit and the second on the contribution to the radiation
integral.

As seen in Section 2 the terminal pole B has a strong sextupole, which generates
linear focusing depending on the horizontal trajectory. A horizontal displacement of the
trajectory of the order of the r.m.s. orbit value changes the effective K1 coefficient by
about K1 ~ K2-2 =4.7m 2-1.5 mm ~ 0.007 m~!. This variation affects mainly the
horizontal dispersion function of the ring, which has its maximum right near the wigglers.
The model is indeed corrected adding one further thin lens with a strength K1 adjusted
fitting the measured dispersion.

The curvature of the poles should reproduce the wiggler contribution to quantum
excitation, damping of the beam emittance and beam energy spread. The quantum

excitation is in first approximation proportional to the third power of the curvature (the
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Beam property

I=[D/pds a.=1/L

= [1/p*ds Uy = C,E*L/2m

Iy = [ 1/]p]* ds (0p/E)* = Cy*Is/ (212 + 1)
f2DK1/ﬂd5 jE:2+I4/IQ

I, = [H/|pl’ ds €¢x = Ci7°I5/ (I — 1)

Table 4.6: Radiation integrals and their effects on beam properties. The entries for I are for
rings with sector magnets (upper) and rectangular (lower) magnets respectively.

radiation integrals I3 and I5 [28]). The value reproduced by the model for one wiggler is:

L
13, model — Z p—g = 1.381 m_2; (428)

poles

while integrating the data measurements:

1
I3 actual = ——— B3(s)ds = 1.135 m™2; 4.29
st = (s [ B =113 m % (129

with a mismatch between model and actual wiggler of the 17 % that must be considered

correcting the natural energy spread and the emittance calculated by MAD (see Tables

4.6-4.7).

wigglers bends + wigglers
actual model mismatch actual model mismatch
( ) 4.937  5.603 13% 9.691 10.357 6%
Iy (m™2) 4.540 5.524 17% 7.868  8.852 11%
(m™")
(m™)

1.222
7.311  8.297 17% 10.316 11.302 9%

Table 4.7: Contribution to the DA®NE radiation integrals only from wiggler magnets and both
from bending and wiggler magnets. Contribution to I; and I from wigglers is negligible.



Chapter 5

Lattice setting for FINUDA and
KLOE

The model of the DA®NE rings, which describes the new interaction regions and the
modified wigglers discussed in the previous Chapter, has been used to calculate with
the MAD program a new lattice for the FINUDA experiment installed in the second
interaction region (IR2) in 2003. Some detail on the optics used in 2004 for KLOE is also

reported.

5.1 Lattice set-up for collisions in FINUDA

The main optics features of the ring lattice are a lower emittance with respect to the
original one (g = 0.4 - 107% m-rad) and smaller beta functions (3} = 2 m, §; = 2.5 cm)
at the FINUDA interaction point (IP2).

All these parameters contribute to increase the geometrical luminosity and to decrease
the effect of parasitic crossings in IR2 as discussed in Chapter 3. In fact the smaller
transverse bunch sizes improve the beam separation in the transverse plane measured in

units of o, and o, while the reduced horizontal beta further reduce the strength of the

52
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parasitic beam-beam kicks.

The two interaction regions are not identical to each other, hence there is no periodicity
or symmetry in the lattice of the DA®NE rings, which in general helps the operation of
a machine and also the optics calculation. Since the IRs take a large fraction of the ring
circunference (= 20%), it is not trivial at all to calculate betatron and dispersion functions
symmetric as much as possible in the Long and Short sections of the ring and also around
the IRs. In this way the operation and the handling of the machine is as much effective
and simple as possible (calculation and application of closed orbit bumps with steering
magnets, correction of the betatron tunes with quadrupoles...). The beta functions, the

dispersion and the H-invariant all along the ring are showed in Figures 5.1-5.2.

5.1.1 Injection section: betas, phase advance and dispersion

The horizontal beta function at the injection septum must be high enough to perform
an efficient injection (3, > 6 m). Nevertheless experimental observation has showed that
the electromagnetic background in the experimental detectors is enhanced by high beta
function values at the septum: the chosen value is then §, = 8 m. Another constraint in
the horizontal plane is the horizontal beta phase advance ¢, = 7 between the two injection
kickers to produce a horizontal closed orbit bump of the stored beam at the injection.
Two more quadrupoles with large aperture have been installed on the two kickers in order
to improve the flexibility of the straight section set-up.

The section has non-vanishing dispersion, which does not affect the injection efficiency
due to the small energy spread o/ FEy = 0.0004 of the beam coming from the Accumulator.
The value of the dispersion in the adjacent bending determines the momentum compaction
a. (Eq. 2.9), which is chosen as 0.02.

The horizontal optical functions (3,, ¢, and D,) are plotted in Fig. 5.3.
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Figure 5.1: The beta functions along the main rings. The starting point is the at the injection
septum, IP1 (KLOE) is at s = 26 m and IP2 (FINUDA) at s = 72 m.
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Figure 5.2: The dispersion function and the H-invariant in the main rings.



5.1.

LONG STRAIGHT SECTION

Positroni: Modello Zero per Finuda

LATTICE SET-UP FOR COLLISIONS IN FINUDA

[Hp -t

o e B O

20 Windows NT 4.0 version 8.23/06 21/12/04 10.52.07 20
=l o T T T T T T o —
€ Bx Ux  KCKL202KCKL101 g g

18. + — 18
16. - A R -16 g
e £
- ~
14. JEE F14 g3
i =1

12. AT F12

10. H ~ 10

8 - o8

6. - ~ 06

4. I 04

2.4 — 0.2

0.0 . . . . . . . , . , . . . . . . . 0.0

16. 18. 20. 22. 24. 26. 28. 30. 32. 34

s(m) -

Figure 5.3: The horizontal beta function and phase advance in rad /7 along the injection section:
two horizontal markers indicate the phase at kickers locations, the phase is calculated from IP2.

5.1.2 Arc cell: chromatic sextupoles, dispersion and emittance

The arcs are the sections of the ring where the H-invariant (Eq. 2.8) is different from
zero (see Fig. 5.2). The wiggler magnets, positioned where the dispersion is maximum,
increase the beam emittance up to an order of magnitude with respect to the emittance
generated only by bending magnets. The wigglers work always near the maximum field to
obtain strong damping, hence the emittance is modulated by varying the behaviour of the
horizontal beta function and its derivative (3, and a,) in the dipoles in order to change
the H-invariant, whose integral throughout the ring determines the beam emittance as

expressed in Eq. 2.7.
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Figure 5.5: The dispersion function and the H-invariant in the Short arc and half the Sort
straight section where the RF cavity is located.
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In each arc there is also a couple of sextupoles placed where the dispersion is not
null to correct the horizontal and vertical natural chromaticity of the ring. The beta
functions are well separated at sextupoles positions in order to have 3, > 3, (at least 4
times) at the position of the sextupole used to correct the horizontal chromaticity and
the converse at the position of the sextupole correcting the vertical chromaticity. Finally
another constraint is given by the narrow vertical aperture of the vacuum chamber in the
wigglers (35 mm, while the average aperture along the ring is 80 mm) for which a low
vertical beta is needed (8, ~ 1 m in the wiggler). Figures 5.4-5.5 show as an example [3,,

By, Dy and 'H in more detail for one of the Short arcs.

5.1.3 Interaction regions: betas and trajectories

During the FINUDA run the FINUDA detector is installed in IR2 while in IR1 the KLOE
detector cannot rolled off. Therefore the two interaction regions are low-beta insertions.

The vertical beta function at IP2 for collisions in FINUDA is §; = 2.5 cm and the
peak value at the D quadrupole §;"** = 28.5 m.

The other interaction region (IR1) is also a low-beta insertion (the quadrupoles being
permanent magnets), but the vertical beta function at the interaction point (IP1) is
increased as much as possible (#; = 8 cm) in order to limit the vertical chromaticity
generated by the first D permanent quadrupole where the vertical beta is maximum
(B =13 m) .

The crossing angle in IR2 is 13.5 mrad because of the FD doublet, while the crossing
angle in IR1 is increased to 16.5 mrad thanks to the new DF configuration. The horizontal

and vertical betatron functions of the two low-beta regions are summarized in Table 5.1.
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Figure 5.6: The beta functions in IR2 for collision in FINUDA.
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Figure 5.7: The beta functions in IR1 for collision in FINUDA.
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Figure 5.8: The horizontal and vertical trajectory along IR2 for collisions in FINUDA. The
horizontal crossing angle is 13.5 mrad.
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Figure 5.9: The horizontal and vertical trajectory along IR1 for collisions in FINUDA. The
horizontal crossing angle is 16.5 mrad and the vertical separation between the beams at IP1 is
+2 mm.
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5.2 Interaction regions for collisions in KLOE

The lattice that has been used for the KLOE run in 2004 is very similar to the lattice used
for FINUDA in 2003, except for the interaction regions. In the first interaction region the
KLOE solenoid and the compensators are switched on, while in the second interaction
region the FINUDA detector and the low-beta permanent quadrupole doublet are rolled
out and replaced by a drift section.

The vertical beta function at the KLOE interaction point is squeezed up to the hour-
glass limit (ﬁ; ~ 0,) and the horizontal crossing angle (tuneable in a large range between
11.5 and 18.5 mrad) has been tuned at 16.5 mrad in the first weeks of operation as the
best compromise between the luminosity performances (geometrical reduction and low
effect of the parasitic crossings) and the electromagnetic background in the experimental
detector.

The opposite interaction region is not a low-beta insertion, on the contrary the mini-
mum of the beta functions are increased resulting in a lowering (“detuning”) of the phase
advances. This configuration [8, 9] allows a large vertical separation of the opposing beams
in the interaction regions (up to £10 mm at IP2, to be compared with the horizontal size
ot ~ 1 mm) where the beams are not in collision decreasing the effect of parasitic crossing

and chromaticity in TR2.

Collisions in FINUDA Collisions in KLOE

IR1 IR2 IR1 IR2
3 (m) 2.5 2.0 2.0 125
B (m)  0.0080 0.0025 0.0017 2.8
g7 (m) 134 28.5 33.2 9.2

Table 5.1: The beta functions at the interaction points and at the first D quadrupole of the
low-beta insertion for collision in FINUDA (2003) and in KLOE (2004).
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Figure 5.11: The “detuned” beta functions in IR2 for collision in KLOE.
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Figure 5.12: The horizontal and vertical trajectory along IR1 for collisions in KLOE. The

horizontal crossing angle is 16.5 mrad.
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Figure 5.13: The horizontal and vertical trajectory along IR2 for collisions in KLOE. The
horizontal crossing angle is 13.5 mrad and the vertical separation between the beams at IP2 can
be varied easily up to 10 mm.



Chapter 6

Optics measurements and model

results

After a short presentation of the main techniques used at DA®NE for the beam optics
measurements, the dispersion and betatron functions measured both in the electron and
the positron ring are compared with the beta functions calculated with the MAD model

described in the Chapter 5.

6.1 Optics measurements at DAPNE

6.1.1 Beam position monitors

In DA®NE there are 37 beam postion monitors (BPM) of electrostatic pick-up type per
ring and 6 + 4 in the interaction regions, with different designs, that fit the dimensions
and the shape of the vacuum chamber along the rings.

The horizontal and vertical beam positions are calculated from the induced voltages

on the BPM electrodes. For instance for the monitor scheme in Fig. 6.1 the transverse
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Figure 6.1: Schematic view of a BPM rectangular type. From voltages Vi, Vo, V3, V4 on the
electrodes the transverse positions are deduced.

coordinates of the beam are:
U = YatVaVi-Vy
Vo+Vy+Vi+V3
(6.1)

V= Vitla-13-V
Vot+-Va+Vi+V3®

Because of the non-linear response of the monitor with respect to the beam displacement,
the pseudo-positions U and V' are corrected using a non-linear function that reconstructs

accurately the beam position:
xr=g.(U V)
(6.2)
y=gy(U, V)
The g(U, V) functions are polynomials whose coefficients are obtained from a least squares
fit of the calibration measurements of the monitors [44]. The detecting electronics has
been developed by Bergoz Beam Instrumentation System for DA®NE [25]: it is made
by a superheterodyne receiver which converts the 240" harmonic frequency (twice the
accelerating RF frequency) of the induced beam signal in a intermediate frequency of

21.4 MHz before the amplitude measurement. The line output provides two voltages U,
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V' that are processed by the software to obtain the horizontal and vertical positions x and
Y.

The acquisition system is developed in the VME standard. The signals are measured
by a multiplexer FET HP E1352A and a digital multimeter HP 326B, controlled by
dedicated processors. The DA®NE second level control system collects the position data
from these peripheric units and they are used by the third level for the reconstruction of
the orbit and for the analysis programs. The beam orbit (i.e. the horizontal and vertical

positions at every BPM) is acquired with frequency of 5 Hz.

The error on the measurement of the beam position with respect to the centre of the
vacuum chamber depends on several factors: mechanical tolerances of the monitor instal-
lation, electrical offsets due to mismatch between the capacitances of the buttons, error
from the reconstruction function and the electronic noise. In the orbit difference mea-
surements only the error from the electronic noise remains (also from the reconstruction
function if the orbit displacement is beyond +10 mm from the centre) and r.m.s. errors

of 15 pm are obtained averaging over 10-15 orbit measurements [45].

I.M.S error
Mech. tolerances 100 pm
Electrical offsets 10 pm
Recontruct. function (|z| < 10 mm) 2 pm
Recontruct. function (10 mm < |z| < 20 mm) 25 pm
Electronic noise 10 pm

Table 6.1: R.m.s errors on the measured beam position with respect to the centre of the vacuum
chamber (averaged over the different BPM types).
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6.1.2 Dispersion measurements

The dispersion function in a ring is obtained from the orbit change induced by varying
the radio-frequency. A shift of the radio-frequency A frr changes the beam energy by a

quantity?:
AE 1 Afpp

FO_ Qe fRF.

(6.3)

Since x(s) = D,(s) - AE/Ey, the dispersion function at the beam position monitors is

deduced from the measured orbit change z.(s):

n(s) = _O‘CAfi;(ZRF' (6.4)

The radio-frequency frr = 368.268 M H z is generally varied by Afrr = 0.010 M Hz and
is known with an accuracy of 2 Hz. The corresponding orbit displacement z, varies along
the ring from some micron to 1-2 mm with an error of the order of 5 — 10 pm.

The value of the momentum compaction is deduced from the expression [22]:

2 2
; 7TEO
Q. = sin

2 h eV, cos o

Tev

(6.5)

where fg;, is the synchrotron frequency (a typical value is about 30 KHz), which is mea-
sured with a spectrum analyzer with an error of the order of 0.1 K Hz, f,, is the revolution
frequency (known with an accuracy of 1 Hz, h = 120 is the harmonic number, V., cos ¢,
is the RF voltage slope known with an accuracy of 5 %, which thus gives the main contri-

bution to the error on a.. A typical measurement of the momentum compaction for the

IThe betatron oscillations around the reference orbit does not produce at first order in z and y a
change in the trajectory length. On the contrary the trajectory given by the dispersion D, (s), generated
by a displacement of the energy, changes the length of the equilibrium orbit. The momentum compaction

factor is: AL/L 1 D,(s)
+(s
Y= AE/E, 37{ o)

The orbit length is L = ¢ #, then AL/L = —Afgrr/frr.
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DAO®NE rings gives a,. = 0.020 £ 0.001.
The contribution due to fgrr in the error propagation in the dispersion measurement

is negligible, thus the error on D, is:

Le

Afrr/ frr

0%

NI d(z) (6.6)

5(D,) = ‘

5(0) +|

the first term is the 5% of the dispersion (from few millimetres to 5 — 10 ¢m), the second

is about 7 mm.

Betatron tunes Q

The fractionary part of the horizontal and vertical betatron tune @), and @), is measured

giving to the beam a RF transverse excitation with two stripline kickers and measuring

LN

Figure 6.2: An example of the frequency spectrum as it is shown by the spectrum analyzer:
the two peaks correspond to the horizontal and vertical betatron tunes.
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the response of the beam in the excited plane with a electrostatic button monitor similar
to the beam position monitors described above.

The beam is excited at all frequencies with a white noise generator and it responds
only at its own oscillation frequencies. The signal is extracted with wide band button
electrodes and is sent to an spectrum analyzer (HP 70000 system). The output at a
intermediate frequency is processed by a FFT analyzer HP 3587S.

Figure 6.2 represents the beam spectrum as is shown by the DA®NE control system.

The measurement resolution of @ is 1-107%.

6.1.3 Beta measurements

In a storage ring the betatron functions can be measured at the quadrupole positions. The
value of the beta function is obtained from the betatron tune shift when the quadrupole
strength is varied.

In thin lens approximation, a quadrupole gradient change Ak generates a betatron

tune shift AQ, , [23, 41, 52] proportional to the beta function at the quadrupole position:
1
AQqyy = iEAk:L By (6.7)

where L is the magnetic length of the quadrupole.
The main contribution to the measurement error comes from the thin lens approxi-
mation used to estimate the beta. A reliable value of the error on the measured beta

functions is 1 m [5] for all DA®NE quadrupoles.
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6.2 DA®NE model results

Two sets of measurements taken on November 25 2003 (electron ring) and December
4 2003 (positron ring) are reported as an example. The horizontal and vertical beta

functions from the model are in very good agreement with the measured beta functions.



70

D, (m)

CHAPTER 6. OPTICS MEASUREMENTS AND MODEL RESULTS

ELECTRON RING NOV 25

0 20 40 60 80 100

Figure 6.3: Dispersion function in the electron ring: x?/dof = 3.04.
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Figure 6.4: Dispersion function in the positron ring: y?/dof = 2.11.
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Figure 6.6: Vertical beta function in the electron ring: x?/dof = 1.33.
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Figure 6.7: Horizontal beta function in the positron ring: x?/dof = 1.44.
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Figure 6.8: Vertical beta function in the positron ring: x?/dof = 1.19.



Chapter 7

Beam based alignment

A Beam Based Alignment (BBA) procedure has been implemented for the DA®PNE
quadrupoles in 2003.

The motivations for a set of BBA measurements at DA®NE is the optimization of the
orbit correction with the dipole correctors. Large horizontal quadrupole misalignments
need large kicks from the corrector dipoles to steer the orbit distortion, which perturb the
optics of the rings and generate additional spurious dispersion. These model dependent
measurements are aimed at identifying particularly large misalignments of the quadrupole
centres with respect to the adjacent beam position monitors (BPM) so that they may be

mechanically realigned.

The typical data acquisition process takes 12-15 minutes per ring (41 quads and 37
BPMs). The lattice is simulated with the MAD model and the analysis performed with
an algorithm written with Matlab.

The first BBA data were taken in September 2003 at the start of the run for FINUDA.
The analysis revealed a short circuit in the winding of two quadrupoles of the electron ring

just installed in the previous machine shutdown and a 2.5 mm horizontal displacement of

73
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Figure 7.1: Definition of the BPM-to-quadrupole and Beam-to-quadrupole offsets.

the quadrupoles in the Long straight section of the electron ring also rearranged during
the shutdown.

After the adjustment of the alignments further sets of measurements, taken in Decem-
ber 2003 and at the start of the KLOE run in April 2004, confirm that the residual beam
to quadrupole horizontal offsets are smaller than 2 mm and the vertical ones smaller than
1 mm in both rings.

The BBA is a technique of great interest for future linear collider that will have
demanding alignment and stability requirements in order to achieve the low vertical emit-

tance necessary for very high luminosity [39, 51].

7.1 The BBA technique

Beam based alignment technique in storage rings commonly uses the closed orbit change
with respect to variations of the quadrupole strength to determine the beam position
with respect to the magnetic centre of the quadrupole. Typically BPMs are located
near the quadrupole magnets. This configuration allows a direct measure of the BPM to

quadrupole offset by steering the closed orbit at the quadrupole position with the dipole
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correctors until there is no response to the change in quadrupole strength. The reading
recorded at the adjacent BPM is the quadrupole to BPM offset. Figure 7.1 shows a
schematic view of the offset definitions.

In DA®NE the nearest BPM is in general some distance d from the middle of the qua-
drupole (about 12-15 cm apart), thus, even if the beam is passing through the quadrupole
centre, it may be passing through the BPM with an angle 2/ which can produce an error
dz, = ' - d in the offset measurements. Moreover there are 4 quadrupoles in each Long
straight section which do not have any BPM nearby.

Hence in the DAPNE case it is better to determine the beam offsets with respect
to the quadrupole centres for a given reference orbit using the ability to calculate the
change in closed orbit throughout the ring lattice with the optics model. In a second step
an assessment of the BPM to quadrupole offsets is possible under some assumption and

approximation that are discussed below.

7.1.1 Closed orbit response to quadrupole strength variation

The horizontal case is discussed. Similar considerations hold also for the vertical case.
In a linear machine without coupling, a beam passing through a quadrupole with a
horizontal offset 3, with respect to the magnet centre receives a kick Az = —Kuxy,,
where K is the integrated quadrupole strength (Eq. 4.3), correspondig to an effective
dipole error located at the quadrupole position syg. The closed orbit distortion generated
by the quadrupole kick all along the ring is expressed by the well known formula for a

small dipole error [23]:

_ Axyy/B:(5) B (s0)

A
#(s) 2s8in @),

cos (0(8) — ¢z(s0) — TQy). (7.1)

For a beam off-centre with respect to the quadrupole we distinguish three terms coming
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respectively from the offset, from the closed orbit response, from the focusing:
Ax(s) = —xp,Cia(s; 50) K (7.2)

where the closed orbit response Cia(s; sg) is:

ﬁx(s)ﬁm<50)

Clals; s0) = 2s8in 7@

08 (4 (8) — ¢z(80) — TQy). (7.3)

Hence the beam to quadrupole offset x;, can be deduced from the response of the closed

orbit to a change in the quadrupole strength K.

The measurement procedure is carried out in three steps:

1. starting from a given reference orbit in the machine, the strengths of the quadrupoles
are individually varied and the respective difference orbits at each BPM are recorded

in a matrix format;

2. the same orbit changes are simulated in the MAD model simulating an arbitrary

displacement of the regarded quadrupole;

3. the beam to quadrupole offsets z;, are determined scaling the modelled orbit changes

in order to fit the measured orbit changes in a least squares sense.

Fitting the changes in the orbit due to a change in the quadrupole strength must take

into account two contributions: the first is from the change in the field seen by the beam

off-centre with respect to the quadrupole; the second is from the change in the focusing.
The expression for the change in the horizontal orbit is then [50]:

Cf;)(S’ SO)K(l) — 012(8; SO)K' (7 4)
1 — Ch2(80; 80) K 7 .

Axeo(s) = —xp,
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where Az, (s) is the change in the closed orbit at location s in the lattice, x;, the initial
offset of the beam with respect to the quadrupole centre (which we want to measure), K
the initial integrated quadrupole focusing, KV the integrated focusing after the change
in quadrupole strength. The closed orbit response C'5 must be calculated both for the
original quadrupole setting and for the quadrupole strength after variation. A similar

expression holds for the vertical plane:

Céi) (8, SO)K(l) — 034(8; S())K
1— 034(80; SO)K

Ayco(s) = —Ynq (75)

7.2 Experimental equipment and data taking

The BBA data taking is fully integrated in the DA®NE control system and is performed
with the same program adopted for the usual acquisition of the closed orbit response
matrix to dipole correctors changes. The program has been upgraded adding the option
of selecting either the dipole corrector currents or the quadrupole ones to be varied.

The DAPNE beam position monitors used for orbit measurements have been already

presented in Section 6.1.1.

7.2.1 Power supply control

There two types of quadrupole power supplies, one for the Small quadrupoles and another
for the Large quadrupoles. The setting resolution and the readout resolution of the current
for the different types are reported in Table 7.1 [42]. Errors coming from the resolution of
power supplies in the alignment measurement are in general negligible. The power supplies
are controlled through a serial board on VME bus. Dedicated CPUs of the second level

of the control system set and read the currents.
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Quad type Max current Setting resolution Readout resolution
Small 585 A +6 mA +6 mA
Large 175 A +2 mA +2 mA

Table 7.1: The power supply technical specifications for the DA®NE quadrupoles.

7.2.2 Closed-orbit response measurement

Figure 7.2 shows the window of the LabView program of the DA®NE control system that
measures the closed orbit response. The procedure carried out by the program for the

orbit response to quadrupole changes is the following:

e reference (horizontal and vertical positions) orbit acquisition, averaging over a given

number of orbits (10-15);
e reading of the current provided by the power supply to the quadrupole;
e change in quadrupole current is applied;
e new closed orbit is acquired;
e the difference ¢y — ey is written as a row of the response matrix;
e back to the original quadrupole current value.

This sequence is iterated for each one of the 41 quadrupoles and finally all the orbit
changes are saved in a matrix format: one row each quadrupole orbit change and one

column each BPM. The complete data acquisition takes about 10-15 min. per ring.

7.3 Analysis and errors

The BBA procedure has been applied to all electromagnetic quadrupoles in the DA®PNE

rings but the four ones of the second interaction region where the design trajectory passes
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Figure 7.2: The LabView program window of the DA®NE control system that measures the
closed orbit response matrix.

of axis. Closed orbit changes are formed with the MAD optics model of the main rings
by simulating a fictitious displacement of the beam with respect to the quadrupole centre
of 1 mm in the horizontal and vertical direction.

The analysis is performed assuming the local betatron coupling is corrected (that
means the horizontal and vertical orbit changes are generated respectively only by the
horizontal and vertical offset of the quadrupoles), otherwise the sources of coupling should
be modelled and a coupled z-y analysis, that takes into account the simultaneous change
in horizontal and vertical orbit, must be adopted as described in [50]. This condition
is checked directly for the DA®PNE rings from the usual measurements of closed orbit

response to the dipole correctors: orbit changes in one plane due to dipole kicks in the
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other transverse plane must be negligible.

7.3.1 BBA analysis

The analysis algorithm has been written in Matlab and consists of:
1. download the file of the reference orbit x,;
2. download the file of measured closed orbit changes ,,cqs;
3. download the file of modelled closed orbit changes x,,04;
4. for each quadrupole fit z,,cqs VErsus x,,.¢ in a least-squares sense: Teas = K * Timod;
5. xpy = k-1 mm is the beam-to-quad offset;
6. Tmg = Tpg + Tres gives an assessment of the BPM-to-quad offset;

For very small kicks sizes the model converges almost to the electronic noise level
of the measurements, which means the residual error in the fit is dominated by random
noise. As the quadrupole strength changes increase, the optics functions and the betatron
tunes of the ring change too much and the beam can be lost.

The quadrupole strength changes are chosen as a trade-off between the effective signal-
to-noise of the measurements, which profits from large kicks, and the perturbation to the
ring optics due to the focusing change.

Assuming typical values for a DA®NE quadrupole f = 10 m and x5, = 1 mm, a
maximum orbit displacement of the order of 200 pm is obtained with a current variation
in the quadrupole of about 2 A.

Within this range of orbit displacements the effect on the orbit due to the sextupoles
is very small, so that they can be kept on during the measurements with large beam

lifetime and without affecting the orbit changes. Other nonlinearities in the ring lattice
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(the most important are represented by the field of the wiggler magnets) and systematic

errors from the non linear response of the BPMs are completely negligible as well.

The scaling parameter of the fit k (2,05 = k-1 mm) is calculated by the alghoritm of
analysis in order to minimize the deviation y? between the measured orbit response and

the modelled one:
meas __ kx;nod)Z

¢ =y e ke (7.

that gives:

meas ,.mod

mod
i T

The error on xy, is calculated assuming as errors on the fitted orbit changes [51]:

)

1
o7 =Y (@ — ka"h); (7.8)

and propagating them on k:

Zi (x;neas o kx;nod)Z

N W i

The offsets between the beam positions and the quadrupole centres are thus determined

with an average resolution of about 100 pm.

The assessment of the offset z,,, between the BPM and the centre of the adjacent
quadrupole is carried out adding xp, to the reference orbit value at the BPM of interest
(see Fig. 7.1). The error on x,,, is given by the sum of all terms in Table 6.1 and the
aforementioned error generated when the beam passes through the quadrupole with an
angle z’. A direct measurement of the orbit slope is not possible, since two consecutive

monitors would be needed between the quadrupole of interest and the following magnetic
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element. However we can estimate the maximum value the angle can have all along the
reference orbit as the maximum position range between two consecutive BPMs divided
by their distance. Typically the worst value expected for 2’ will be (see for instance the
reference orbits in Figures 7.4-7.7):

2 =3.5mm/2m = 1.7 mrad; (7.10)

max

and multiplying 2/ by the distance d between the quadrupole centre and the BPM, a

pessimistic estimate of the contribution to the error on z,,, comes out to be:

max

0Tmg = Thyow - d = 1.7 mrad - 0.12 m = 200 pm. (7.11)

For the quadrupoles positioned in the Long sections QUAPL103, QUAPL104, QUAPL207,
QUAPL208 and QUAEL103, QUAEL104, QUAEL207, QUAEL208, which have no adja-

cent monitor, the BPM-to-quadrupole offset is not measured.

7.3.2 BBA results

Three sets of measurements have been performed on both rings: two with the optics
for FINUDA and one with the KLOE optics. The agreement between measured orbit
changes and that predicted from the model using Equations 7.4-7.5 is very good for most
quadrupoles. Figure 7.3 shows as an example the agreement between the measured change
in vertical orbit and the fit from the MAD model for QUAPL114. The BPM readings are
averaged over 10 orbits.

There are however some quadrupoles whose orbit responses are fitted with large errors,
such quadrupoles are in general positioned in the “Y” sections. Bad orbit fits are explained
with non-zero local coupling at the interested quadrupole: in the “Y” sections coupling

was not perfectly corrected because of the residual coupling of the adjacent interaction
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average error

Fitted orbit changes 16 pm
Beam-to-quad offsets 100 pm
BPM-to-quad offsets 300 pum

Table 7.2: Average errors obtained on the fitted orbit changes and on the measured offsets.
Error on BPM-to-quad offset includes the statistical error from the fit and the error éx,,, from
the orbit passing through the quadrupole with an angle.

region or because of the coupling generated by the “C” steering correctors used to adjust
the beam trajectories through the interaction regions [6].

The existence of local coupling in the “Y” sections is confirmed also by the usual
measurement of the closed orbit response to dipole correctors.

Plots and Tables in next pages summarize the results of the three sets of measurements

on both rings.
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Figure 7.3: Agreement between the measured and the fitted orbit change for QUAPL114.
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ELECTRON HORIZONTAL ORBIT AND QUAD OFFSETS
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Figure 7.4: Horizontal BBA measurements in the electron ring.
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ELECTRON VERTICAL ORBIT AND QUAD OFFSETS
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Figure 7.5: Vertical BBA measurements in the electron ring.



CHAPTER 7. BEAM BASED ALIGNMENT

86
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Figure 7.6: Horizontal BBA measurements in the positron ring.
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Figure 7.7: Vertical BBA measurements in the positron ring.
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The first measurement was taken in September 2003 at the beginning of the FINUDA
run. The BBA analysis revealed an anomalous beam to quadrupole horizontal offset of
8 mm and a vertical offset of 6 mm for QUAEL204, too large to be real misalignments.
The measurement was repeated for the quadrupole of interest obtaining every time un-
explainable large and different values. Inspecting directly the quadrupole, we discovered
that there was a short circuit in the winding that changed the field calibration in an
unpredictable way.

Generally a short circuit in a quadrupole represents a large change in the magnetic
lattice that make impossible to store the beam in the ring. However this case was much
subtle since the powered current in QUAPL204 was only 20 A (while typical values for
DA®NE quadrupoles are around 60-100 A) and the beam was stored even though the
quadrupole was shorted and the optical functions were mismatched.

The second observation was that all the quadrupoles in the Long straight section of the
electron ring had BPM-to-quadrupole vertical offsets of 2-2.5 mm. Alignment survey was
then performed and confirmed that the vacuum chamber, where the BPMs are installed,
was 2 mm lowered in that section [46]. In fact the Long sections were just been rearranged
during the previous machine stop.

Two more BBA measurements have been taken during the run for FINUDA between
October and December 2003. The comparison between these two sets of measurements
shows that beam to quadrupole offsets have been reduced during the machine set-up and
that the BPM to quadrupole offset measurements are reproducible until the analysis reso-
lution for most quadrupoles. It is apparent (Fig. 7.5) that the BPM-to-quadrupole vertical
offsets for the electron Long section (QUAEL101, QUAEL102, QUAEL114, QUAEL105,
QUAEL106, QUAEL117, QUAEL209, QUAEL210) have been corrected from about 2
mm to less than 0.3 mm after the realignment.

Furthermore it is apparent that the quality of the fit is improved for the measurements
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r.m.s. offsets Positron ring Electron ring
23 oct 11 dec 22 apr 23 oct 25nov 22apr
Horiz Beam-to-quad (mm) 2.33 1.10 2.31 1.51 206  2.57
BPM-to-quad (mm) 1.53 1.88 2.14 1.71 1.93  2.36
Vert. Beam-to-quad (mm) 1.38 1.05 0.92  0.99 1.32  1.06
BPM-to-quad (mm) 1.40 1.00 0.68 0.74 1.59  0.90

Table 7.3: Measured quadrupole offsets of the DA®NE main rings.

taken on December, 11 due to the coupling correction during the commissioning resulting
in a better accuracy of the optics model.

One further BBA measurement has been performed at the beginning of the KLOE run
in april 2004. This measurement is not completely comparable with the previous ones,
since several quadrupoles have been realigned in the winter shutdown.

Table 7.3 summarize the results for the different sets of measurements for both rings.
The horizontal and vertical offsets and the relative error of each quadrupole for both rings

are plotted in the Figures 7.4-7.7 of this Chapter.



Chapter 8

Summary

The model of the DA®NE main rings has been updated describing the second interaction
region, where the FINUDA detector was installed in 2003, and the modified wiggler
magnets.

Wiggler modelling is a one of issues that are studied at presently in the accelerator
community. Our choice (hard-edge model) proved to be very flexible and easy to use and
gives very reliable results for all the parameters determined by the linear dynamics in
differents configurations of the machine. Suitable corrections, which have been estimated,
must be taken in account to calculate the synchrotron radiation integrals that determine
the natural energy spread and the emittance of the main rings.

The calculation of a lattice that completely fit the numerous constraints necessary for
the DA®NE rings was performed with this new model developed for the MAD program.
Once applied the calculated settings, we have verified an excellent agreement between
the model predictions and the measurements of all the optics paramenters: betatron and
dispersion functions, betatron tunes, emittance and closed orbits.

Concerning the beam based alignment, the introduction of a BBA procedure at DA®PNE

demonstrated that this technique is a powerful diagnostic tool to find large quadrupole
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misalignments. Furthermore BBA has been able to easily check the correct operation of
the quadrupoles. More investigation is needed to estimate the reproducibility and the
stability of these measurements.

Until now an orbit correction with the steering dipoles that takes into account the
BBA results in order to determine an orbit passing close to the centres of the quadrupoles
has not yet been implemented, since DAPNE is not so demanding for the correction of
spurious dispersion generated by quadrupole offsets as on the contrary will be next linear
colliders.

A further development that can be implemented is a procedure of orbit correction
to minimize the offsets of the beam with respect to the quadrupoles. From a calibrated
lattice model we are able to calculate the response matrix between the orbit corrector
magnets and the beam position in the quadrupoles. Inverting the matrix and applying
to the measured beam offsets, we could determine steering changes for minimizing the
beam offsets with respect to the quadrupole centres. It will likely be necessary to iter-
ate this procedure, because effects such as coupling, beam offsets in sextupoles, spurius
dispersion etc. will limit the precision with which the beam offsets in the quadrupoles
may be measured. At DA®NE there are a fewer correctors magnets (37) than there are
quadrupoles (41). The matrix inversion will therefore need to be performed using singular
value decomposition [38] and one can expect to minimize the beam offsets rather than
steer the beam exactly to the centres.

Currently DA®NE is running with the KLOE experiment with an optics very similar
to that used for FINUDA and the machine luminosity is going better and better. The

luminosity peak value has just achieved (December 2004) 1.30 - 103 cm~2s7L.
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Appendix A

Transport matrices of the magnetic

elements

When a particle with position vector (zo, z(; Yo, Y0, to, 0o) at a given azimuth sy, goes
through a sequence of magnetic elements up to the azimuthal position s, each element
can be described by means of a matrix 6 x 6, which transform the position vector before

the element in the the vector after it.

The transport matrix from sy to s will be the product of the matrix of the sigle

elements:

M (s, s0) = M(s,8,)M(Sp, Sp—1) -+ M(s1, S0) (A1)

The form of the representative matrices of the different types of magnetic elements are
reported [22, 30]; those matrices are obtained calculating the solution of the Hill equation

which describes betatron oscillations.
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Drift section of length L:

It leaves invaried the slope 2’ and increases the displacement z by 2/'L.

Figure A.1: Reference system fot a bending magnet.

Dipoles: for a dipole the contribution to the dispersion due to the energy deviations
of the particle must be considered. The transport matrix of a bending dipole consists of
three terms: the fringing field at the magnet entrance F}, the body of the dipole B and

the fringing field at the magnet exit Fy:

Mbend - FlBFQ (A?))
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The pole-face roation angles determine the focusing effects of the fringing and are denoted

with e; and ey (Fig. A.1).
In a sector dipole helds e; = e; = 0, while in a rectangular dipole e; = e; = /2.

If the fringing have finite extension the focusing angle in the vertical matrix element

is changed:

€, =e;, — hg[1<1 -+ Sil’l2 €i) (A4)

where h is the orbit curvature through the dipole, g is the magnetic gap, e I the first

integral of the fringing field (called fint):

fint =1, = /_+OO By(s)f?l;;y(s))ds (A.5)

(e 9]

The entrance/exit transport matrix is then:

1 0 0 000

htane; 1 0 0 00
0 0 1 0 00
F = (A.6)
0 —htane; 1 0 O
0 0 010

o o O

0 0 0 01

which corresponds to a thin lens with focal length f = pcote;.

The magnet body with angle and curvature p e o and uniform field has transport
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matrix:
COS (v psina 0 0 0 p(l—cosa)

—sina cos a 0 0 0 sina

0 0 1 pa 0O 0
B = (A.7)

0 0 0 1 0 0

—sina —p(l —cosa) 0 0 1 —p(a—sina)
0 0 0 0 0 1

In the bending plane gives a focusing contribution due to a geometric effect of the magnet:
the trajectories entering closer to the centre of curvature travel a shorter stretch of the
magnet and are thus less bent, the converse occurs entering more distant to the centre of

curvature. In the vertical plane it acts as a drift section of length pa.

uadrupole F (horizontal focusing and vertical defocusing) of strength k2 = << 2B and
Q P g g g

Eo 0z
length L:

cos(kL)  Lsin(kL) 0 0 00

—ksin(kL) cos(kL) 0 0 00

My = 0 0 cosh(kL)  gsinh(kL) 0 0 (A8)

0 0 —ksinh(kL) cosh(kL) 0 0

0 0 0 0 10

0 0 0 0 0 1

while if % is negative, the quadrupole is D (horizontal defocusing and vertical focusing)
and the trigonometric functions and the hiperbolic ones are exchanged in matrix elements.

In the thin lens approximation (i.e. kL < 1 con L — 0 e k*L constant) the matrix come
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out to be:
1 0 0 000 1 0 0 000
FKL 1 0 00 0 %10000
0O 0 1 000 0 0 1 000
Mpp = = (A.9)
0 0 +k2L 1 0 0 OOi%lOO
0O 0 0 010 0 0 0 010
0O 0 0 001 0 0 0 001

where f is the focal length of the lens.
Skew quadrupole: when a quadrupole is tilted by an angle ¢ around the longitudinal
axis:

Mquad<9> = R<9>MQUadR71(9) (A10>

where M,qq is matrix of an upright quadrupole and R(f) represents a rotation in the

transverse plane z, y e 2/, ¥’ by an angle 6:

cos 0 0 sin 0 0 00
0 cos 6 0 sin@ 0 0
—sinf 0 cos@ O 00
R(0) = (A.11)
0 —sinff 0 cosf 0 O

0 0 0 0 10

0 0 0 0 01
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Solenoid of strength &k, = %E—EBS and length L:

cos(ksL)Q  sin(ksL)Q 0 0
—sin(k,L cos(kL 0 0
Msol - ( )Q ( )Q (A12)
0 0 10
0 0 0 1

where () is a 2 X 2 matrix focusing quadrupole-like:

0= cos(ksL) i sin(ksL) (A13)
—kgsin(ksL)  cos(ksL)

Thus a solenoid acts focusing in both planes and rotating the beam by an angle k L.
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