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Abstract 

Terahertz-driven (THz) accelerators and manipulators 
promise to yield short femtosecond electron bunches of 
high brightness with intrinsic synchronization to the driv-
ing laser at a compact and economic footprint. However, 
development of practical devices requires THz sources that 
reliably provide pulse energies in the sub-mJ to mJ regime, 
which in turn require state-of-the-art pump laser systems 
and carefully designed optical transport lines. Here, we in-
vestigate both by experiments and simulations on how spa-
tio-temporal coupling of pump pulse parameters in tilted-
pulse-front based terahertz setups can be used to control 
the position of the “temporal focus”, which is where mini-
mum pump pulse duration is reached. This concept opens 
a pathway to pump tilted-pulse-front setups with arbitrarily 
stretched pulses which significantly simplifies transport 
lines for lasers with high peak intensity. This concept is ex-
perimentally demonstrated by efficiently pumping a tilted-
pulse-front THz source with pulses stretched to 10 ps and 
extraction of a THz energy of 0.4 mJ while operating well-
below damage threshold. Our findings are not just relevant 
for THz based particle acceleration and strong-field phys-
ics but any application that requires control over the tem-
poral focus of beams with a tilted-pulse-front such as other 
novel laser-based particle accelerator schemes. 

INTRODUCTION 
Terahertz-driven (“THz”) accelerators [1-5] and manip-

ulators [5-8] promise to yield short femtosecond electron 
bunches of high brightness with intrinsic synchronization 
to the driving laser at a compact and economic footprint. 
However, no THz-driven accelerator has reached the per-
formance required for practical applications yet. Besides 
challenges associated with the physical miniaturization, the 
lack of efficient, high-energy single-cycle THz sources is 
one of the key challenges to overcome for the realization 
of practical THz accelerators. Single-cycle THz pulses in 
the required frequency band between 0.1 - 0.5 THz are 
commonly generated by optical rectification of ultrafast la-
ser pulses in lithium niobate using pump pulses with a tilted 
intensity-front [9]. However, there remains a deficit of ex-
perimental studies comprehensively mapping out the de-
pendence of the performance on key setup and pump pulse 
parameters. As a result, certain questions about the physics 
of the non-collinear interaction remain unanswered. This 
prevents rigorous development of the setups beyond the 
state of proof-of-principle experiments [10, 11] to where 

setups reliably provide the high pulse energies required for 
practical accelerators and beam manipulators on a day-to-
day basis. 

Following up on our recent experimental study on the 
parameter sensitivities in tilted-pulse-front setups [12], 
here we investigate both by experiments and simulations 
how spatio-temporal coupling of the pump pulse parame-
ters affects the setup performance. In particular, we inves-
tigate the effect of pump pulse group-delay dispersion 
(GDD0) on the THz conversion since stretched pump 
pulses circumvent self-focusing and can conveniently be 
propagated over long distances. This requires considering 
the interdependence of pump pulse chirp and the propaga-
tion coordinate z arising for pulses with spatio-temporal 
distortions such as pulse-front tilt. This spatio-temporal 
coupling is a key factor because it leads to a minimum in 
the pump pulse duration ("temporal focus"), unaffected in 
magnitude but shifting along z if GDD0 is altered. This 
phenomenon is investigated both experimentally and nu-
merically and, based on the findings, control of the tem-
poral focus is experimentally demonstrated. Finally, this 
concept is applied to demonstrate efficient operation of a 
tilted-pulse-front THz setups with highly chirped (1.44 ps2, 
corresponding to a stretching factor of 25) pump pulses, 
yielding 0.4 mJ of usable THz pulse energy. 

Conclusively, this concept opens a novel pathway to op-
erate tilted-pulse-front setups with arbitrarily stretched 
pump pulses, which significantly simplifies the beam 
transport line of lasers with high peak intensity, but also 
allows to fine-tune the spatio-temporal pump pulse param-
eters at a given target point. Therefore, our findings are not 
only relevant for THz based particle acceleration but for 
any tilted-pulse-front based application, where either con-
trol of the temporal focus is required or where pump pulses 
with high peak intensities are used, such as dielectric or la-
ser-plasma accelerators [13, 14]. 

 

 
Figure 1: Schematic drawing of the setup including crucial 
tuning parameters. 
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RESULTS 
Experimental Setup 

The tilted-pulse-front setup schematically shown in 
Fig. 1 was pumped by a commercially available Yb-based 
amplifier system providing 410 fs pump pulses up to 
200 mJ energy centered at λ = 1030 nm and repetition rate 
of 52 Hz [15]. The THz setup was designed and optimized 
based on the considerations and procedures laid out in Ref. 
[12]. The congruent 5 % MgO:LiNbO3 prism (“cLN”, 
α = 62°, 35 mm tall) was cryogenically cooled to 82 K us-
ing liquid nitrogen. A reflective diffraction grating 
(ρ = 1500 l/mm, diffraction order m = 1) paired with a cy-
lindrical telescope (M = 0.654 ± 0.002) was used to tilt the 
intensity front of the pump pulse and image the grating. 

The initial GDD on the pump pulse (GDD0) was con-
trolled by tuning of the optical path between the diffraction 
gratings in the optical compressor of the laser system, 
while the crystal was positioned along the z-axis by use of 
a motorized translation stage. All THz pulse energies re-
ported in this work refer to the usable energy measured out-
side of the dewar, corrected by the measured average trans-
mission (≈ 54 %) through the black polyethylene cover 
(1.9 mm thickness) in front of the calibrated THz detector 
(THz 20, SLT Sensor- und Lasertechnik GmbH). 

Numerical Simulations 
Numerical calculations based on the 4x4 matrix formal-

ism developed by Kostenbauder [16] were performed to 
study the evolution of crucial pump pulse parameters such 
as pulse-front tilt γ and pulse duration τ (FWHM intensity) 
as a function of z, grating angle θd, and initial pump pulse 
chirp (GDD0). Figure 2 shows the simulated evolution of 
pulse duration τ and pulse-front-tilt γ vs. the relative longi-
tudinal crystal coordinate Δz. Computations were per-
formed for GDD0 = 0 and θd

opt as well as for pulses 
stretched by a factor of x25 and detuned θd by ±1°. Note, 
Δz = z – z0 = 0 marks the position at which τ = τmin (“tem-
poral focus”) for GDD0 = 0.  

Figure 2a shows that for GDD0 = 0 the position of the 
temporal focus is independent of θd. However, the temporal 
focus is shifted along z if chirp (GDD0) is applied to the 
pump pulse before it enters the tilted-pulse-front setup ac-
cording to: 

𝛥𝑧 ൌ ଶగ௖మெమఒయ ቀ ௠ఘ௖௢௦ ఏ೏ቁିଶ 𝐺𝐷𝐷଴.   (1) 

The pulse-front tilt γ also alters as a function of z 
(Fig. 2b). At the grating image plane (Δz = 0), γ0 is inde-
pendent of GDD0 and obtained using: 

|𝛾଴| ൌ  tanିଵ ൬ ௠ఒఘெ௡೒ ௖௢௦ ఏ೏൰,    (2) 

where ng is the group index of the nonlinear crystal. For 
non-zero Δz, the GDD acting on the spatially chirped pump 
pulse leads to a reduction of the pulse front tilt with in-
creasing distance from the angular disperser, or its image 

respectively. Adding GDD0 to the pulse therefore distorts 
this dependence. 

 
Figure 2: (a) Pulse duration vs Δz for initially compressed 
(yellow) and stretched (blue, red) pump pulses. Dashed 
(θd

opt + 1°) and dotted lines (θd
opt - 1°) show the effect of 

θd.(b) The corresponding pulse-front tilt γ vs. Δz. 

Experimental Results 
Experimental scans of both GDD0 and the longitudinal 

crystal position revealed a linear shift of the optimum crys-
tal position with GDD0 (see Fig. 3a) in excellent agreement 
with theory. Since at the temporal focus the same temporal 
properties of the pump pulse as for GDD0 = 0, Δz = 0 are 
replicated, the pulse-front tilt γ matches γ0 if the spatial 
pump properties do not vary significantly within Δz. This 
holds for tilted-pulse-front THz setups using a telescope for 
imaging and a large, collimated pump beam. 

 
Figure 3: (a)The relative position of the crystal for maxi-
mum efficiency vs. GDD0 on the pulse match the position 
computed for the temporal focus. (b) THz energy extracted 
from a setup pumped with stretched pump pulses 
(GDD0 = 1.44 ps2). 

This result implies that one can find a longitudinal posi-
tion z in the setup, at which the GDD0 imposed on the pump 
pulse is annihilated while maintaining the pulse-front tilt 
γ0. In other words, one can tune the laser system compres-
sor such that transport of the pump beam to the setup is no 
longer an issue and - without the need for any additional 
compressor – recover the setup performance by shifting the 
crystal up/downstream by the appropriate distance Δz. To 
demonstrate this concept, our THz setup was moved 
≈ 15 m further downstream in the pump beam and operated 
with pulses stretched to a duration of 10 ps (stretching fac-
tor of ≈ 25). To allow pumping with pulse energies 
> 100 mJ, the beam was spatially expanded with a tele-
scope placed right before the THz setup. 

Figure 3b shows the performance of this setup for 
GDD0 = 1.44 ps2 and Δz ≈ +44 mm with θd = 56.49°. 
Pulses with energies up to (400 ± 20) µJ were extracted for 
a moderate pump fluence (for cLN) of up to 160 mJ/cm2. 
Despite a not yet fully optimized grating angle of the setup 
in this first proof-of-principle experiment, the measured 
energy ranks among the highest obtained from table-top 
tilted-pulse-front THz sources [10, 11]. 
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CONCLUSION 
To conclude, we have studied both experimentally and 

numerically how the longitudinal crystal position in tilted-
pulse-front setups is entangled with spatio-temporal pump 
pulse parameters such as pulse duration and pulse-front tilt. 
Maximum optical-to-terahertz conversion efficiency was 
found to coincide with the temporal focus of the pump la-
ser. The position of this temporal focus can be controlled 
by the amount of pump pulse GDD0. This is specifically 
relevant for fine-tuning the pulse parameters at a given in-
teraction point and for scaling tilted-pulse-front setups to-
wards higher pump energies, which both is demonstrated 
in this work for the first time. Single-cycle THz sources 
powered with such spatio-temporal manipulated pump 
pulses are promising to provide new levels of peak electric 
and magnetic fields to power novel THz based electron ac-
celerators and manipulators. Moreover, the underlying 
techniques introduced in this work are foreseen to also 
profit other novel laser-based accelerator schemes such as 
dielectric and laser-plasma-based approaches. 
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