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Abstract The dimension of the proton, the basic building
block of matter, is still object of controversy. The most precise
electron-proton scattering data at low transferred momenta
are re-analyzed and the extraction of the proton radius is
discussed. A recent experiment from the JLAB-CLAS col-
laboration gives a small value for the radius (The symbol Rα

E
stands for the root-mean-square charge radius of the proton√

〈r2
E 〉, obtained by the experimental or theoretical Collab-

oration α.) RCLAS
E = (0.831 ± 0.007stat ± 0.012syst) fm

(Xiong et al. in Nature 575:147, 2019), in contrast with
previous electron scattering experiments, in particular with
the MAINZ experiment (Bernauer et al. (A1 Collaboration),
Phys. Rev. C 90:015206, 2014) that concluded RMAINZ

E =
(0.879±0.005stat ±0.004syst ±0.002model ±0.004group) fm.
The experimental results are re-analyzed in terms of differ-
ent fits of the cross section and of its discrete derivative with
analyticity constraints. The uncertainty on the derivative is
two orders of magnitude larger than the error on the mea-
sured observable, i.e., the cross section. The systematic error
associated with the radius is evaluated taking into account
the uncertainties from different sources, as the extrapolation
to the static point, the choice of the class of fitting functions,
and the range of the data sample.

1 Introduction

The proton, as other fundamental particles, is defined by the
mass, the charge, and quantum numbers as spin, isospin, and
parity. Many questions are still open about its fundamental
properties, as the origin of its mass and spin. The proton,
being a composite particle, has a finite spatial dimension,
quantified by a radius, more precisely by the root-mean-

square charge radius RE ≡
√

〈r2
E 〉.
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Until 2010 there was a consensus about its value from sev-
eral experiments that were officially compiled by the well-
recognized Committee on Data for Science and Technol-
ogy (CODATA). The experiments were of two kinds: the
Lamb shift measurements with hydrogen spectroscopy and
electron-proton elastic scattering. Most of the recent liter-
ature on the subject, as regularly reported in this journal,
arose since Lamb shift measurements could be performed
on muonic atoms. The electric field felt by the electron or
the muon inside the atom is modified by the proton size, and
consequently the level splitting. The proton radius appears
in a correction term to the measured Lamb shift. Since the
muon mass is about 200 times larger than the electron one, the
muonic hydrogen atom is more compact, enhancing the sen-
sitivity to this term. The consequence is a smaller error on the
proton radius, compared to standard hydrogen spectroscopy.
What came as a surprise was that the extracted value of the
radius RHμ

E = 0.84087(39) fm [3] resulted smaller by 7 stan-
dard deviations than the 2010-CODATA number. After sev-
eral experiments and much discussion, in 2014 the CODATA
Group gave the updated result RCO14

E = 0.8414(19) [4],
stressing that the discrepancy among the different exper-
iments is not understood, even within the atomic physics
field. As a matter of fact, experiments with hydrogen atoms
give different conclusions about the radius. A study of the

2S-4P transition [5] gives R
He

2S
E = 0.8335(95) fm, com-

patible with muonic hydrogen, wheres a more recent mea-
surement of the 1S-3S transition [6] concludes in the value

R
He

1S
E = 0.879(25) fm, again compatible with the 2010-

CODATA result.
The present situation with the official proton radius is the

following. The CODATA-2020 web site [7] reports the RCO18
E

values [8] without further analysis since 2014. The PDG
group [9] prefers also a small radius RPDG

E = 0.8409(4) fm,
that is the average of three selected experiments [1,10,11].

Here we reanalyze the most recent data on electron-proton
scattering from the CLAS collaboration, which give a small
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value for the radius RCLAS
E � 0.83 [1]. On the contrary, most

results from electron-proton scattering converge, in general,
towards a large value of the radius (Rel

E � 0.88) with asso-
ciated errors much larger than in atomic physics.

Assuming that the interaction occurs through the exchange
of one photon of four momentum Q2 = −q2, and neglecting
the electron mass, i.e., in the so-called Born approximation,
the expression of the reduced cross section in the proton rest
frame is:

σred(θe, Q
2) =

(
1 + 2

E

M
sin2

(
θe

2

)) 4E2 sin4
(

θe
2

)

α2 cos2
(

θe
2

)

×ε(1 + τ)
dσ

d�
= ε G2

E + τ G2
M , (1)

where M is the proton mass, E and θe are the initial
energy and the scattering angle of the electron, dσ/d� is
the differential cross section and GE and GM are the pro-
ton electric and magnetic Sachs form factors (FFs). The
reduced cross section σred is linear in the variable ε =
[1 + 2(1 + τ) tan2(θe/2)]−1, being τ = Q2/(4M2), with
Q2 = −4EE ′ sin2(θe/2), where E ′ is the scattered elec-
tron energy. The kinematics of the scattering process is fully
defined by two variables only. They can be chosen as the ini-
tial energy and the scattering angle of the electron or, more
often, as ε and Q2.

Since the electromagnetic FFs GE and GM are functions
of one variable only, Q2, the measurement of the reduced
cross section at different scattering angles and fixed Q2

allows to extract their squared values, as the slope and the
intercept multiplied by τ , of a distribution which is linear
in the variable ε. This method is called Rosenbluth separa-
tion [12]). At small (large) Q2 values, the electric (magnetic)
FF dominates because of the presence of the factor τ mul-
tiplying G2

M . Another method may be used to extract the
FFs: it consists in choosing pre-defined functions with FFs
as parameters that are determined by a two-dimensional fit of
the cross section. Such a method unavoidably pre-determines
and constrains the Q2 dependence of the FFs.

The root-mean-square charge radius of the proton is
defined as

R2
E ≡ − 6

GE (0)

dGE

dQ2

∣∣∣∣
Q2→0+

= −6
d ln(GE )

dQ2

∣∣∣∣
Q2→0+

, (2)

being proportional to the limit for Q2 → 0+ of the normal-
ized first derivative of the electric FF, or equivalently, of its
logarithmic derivative. For a recent discussion, see Ref. [13].

From the experimental point of view, recent experiments
on electron-proton elastic scattering focussed to the largest
precision on the cross section at the lowest transferred

Fig. 1 Data of the electric FF GE from: JLab-PRad [1] with Ebeam =
1.1 GeV (red circles) and Ebeam = 2.2 GeV (black squares), and from
Mainz experiment [2] (pink diamonds), in logarithmic (left panel) and
linear scale (right panel). The curves represent the expected behavior
of the FF, linear in Q2, with slopes corresponding to root-mean-square
charge radii Rblack

E = 0.83 fm (solid black line) and Rred
E = 0.87 fm

(red dashed line)

momenta. The most recent results from the CLAS collab-
oration found a small value for the radius, i.e., RCLAS

E =
0.831±0.007stat±0.012syst fm [1]. Such a value was obtained
by extracting the data on GE from the cross section under
the hypothesis GM = 0. The extrapolation for Q2 → 0+
was based on a pre-defined rational function. The electric
FF GE is, indeed, the dominant contribution to the elastic
cross section at such small transferred momenta squared.
A previous experiment at Mainz [2] obtained RMainz

E =
0.879 ± 0.005stat ± 0.004syst fm, based on different anal-
yses. The electric FF GE was extracted by means of two
methods: pre-defined spline or polynomial functions, and the
Rosenbluth separation. Even though it entails higher errors
for the FFs, this second method can be considered as amodel-
independent extraction of FFs from the cross section data
since it is based on the one-photon exchange assumption only.
Further evidence of the difficulty inherent to the extraction of
the radius from the FF data, extracted in their turn from the
cross section data, is represented by the significantly different
values of RMainz

E and RCLAS
E obtained by two sets of FF data

that, especially in the low-Q2 region, are indeed compatible,
as it is shown in Fig. 1.

From the theoretical point of view, much discussion has
been devoted to corrections to the low-Q2 scattering as radia-
tive corrections, Coulomb corrections, or effects due to non-
vanishing electron mass. In some kinematical regions, they
are of the order of the claimed precision on the cross sec-
tion. Such corrections are, in general, model dependent (for
a review see Ref. [14]). More interesting for the content of
this work are the considerations about the validity of Eq. (2),
and the extraction of the radius from the experimental data.

Reducing the transferred momentum squared, i.e., probing
the region where Q2 → 0+, should lead to a smaller error in
the extrapolation. However, if the extrapolation is done with
the help of a predefined fit function, the form of the derivative
is highly constrained.
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Calculating instead the numerical derivative from the
cross section data and fitting directly the derivative, Q2

appears in the denominator: smaller values induce a larger
error in the derivative itself. Precise experiments at smaller
momentum transfer lead to a kind of fractal behavior of the
electric FF derivative, not bringing any new information on
the dimension of the proton. Whereas most of the works
stress the importance of the precision of the data at low Q2,
other works (see e.g. Refs. [15–17]) show that investigating
the intermediate range of Q2 and then focusing on theory-
driven extrapolations would give more severe constraint to
the radius. Note that in Refs. [15–17] the authors reached
different conclusions about the size of the proton. Extending
the method of Ref. [18] to the precise data recently obtained
from JLab-PRad [1] and Mainz [2] experiments, we suggest
to determine the radius directly from the derivative of the
electric FF, which is numerically extracted from the cross
section data. We show that, by construction, the error associ-
ated to the derivative is much larger (two orders of magnitude,
at least) than the experimental error on the cross section. The
choice of these two experiments is obvious as their data are
the most precise and extend to the lowest Q2 values ever
reached.

Before going in the detail of the spreading of the values
of the proton radius extracted from different experiments (as
well as from the same data with different analysis), we would
like to drive the attention of the reader to a physical issue.
The definition given in Eq. (2) implies the limit Q2 → 0+, at
which the elastic cross section diverges, being O[ (

Q2
)−2 ]

.
This limit is reached when, either the scattering angle θe van-
ishes, i.e., the incident particle does not interact and hence is
not deflected, or the scattered electron energy vanishes. In this
case, the Coulomb interaction induces a capture process and
the scattering formalism does not apply anymore. It follows
that the determination of the proton radius requires an extrap-
olation of the scattering process and of the related formalism
in the kinematical region where the electron is captured and
an atom is formed. The description of the trapping process
is highly model dependent, as it involves different types of
corrections, as the Coulomb ones, that cannot be calculated
exactly. Note that, in general, photo and electro-production
reactions are studied separately, i.e., one can not describe
experimental observables measured with a real photon as the
static limit of electro-production models, the number of reac-
tion amplitudes and the spin structure of the matrix elements
being different. The question arises about the extrapolation
of a measured quantity in order to obtain the derivative of
this quantity. In other words, is it reliable to extrapolate data
in regions where the approximation under which those data
are obtained, fails?

2 Data samples

We consider three sets of data on the electric FF, labelled as
P1, P2 and A1

1, obtained by the JLab-PRad experiment [1]
at Ebeam = 1.1 GeV and Ebeam = 2.2 GeV, and by the Mainz
experiment [2] with the Rosenbluth method. The P1 and P2

data are more precise than those of the set A1 extending also
to a minimum Q2 which is lower by an order of magnitude,
as it is shown in the upper panel of Fig. 1.

In the light of their precision and density in Q2, one may
think a priori that P1 and P2 data would constrain better
the proton radius. As it can be seen in the left panel of
Fig. 1, they show that apparently a plateau is reached in the
low-Q2 region, helping for the extrapolation at Q2 = 0.
Indeed, the plateau is a visual effect of the logarithmic scale
in the Q2 axis, as it is easily verified by considering the lin-
ear representation of the same data shown in right panel of
Fig. 1. The black solid and a red dashed curves represent the
expected behavior of the electric FF when assumed linear
in Q2, with slopes corresponding to Rblack

E = 0.83 fm and
Rred
E = 0.87 fm, respectively. As pointed out in Ref. [17], it

appears that data at larger Q2 would better disentangle the
two values of the radius.

3 Data on the discrete derivative

The data set

D′ =
{
Q

2
k,�GE,k, δ�GE,k

}N−1

k=1
(3)

of the N − 1 experimental values of the discrete derivative
of the electric FF GE is obtained from the data set

D =
{
Q2

k,GE,k, δGE,k

}N

k=1
(4)

on the electric FF itself, through the following formulae [19]

Q
2
k = Q2

k+1 + Q2
k

2
,

�GE,k = GE,k+1 − GE,k

Q2
k+1 − Q2

k

,

δ�GE,k =
√(

δGE,k+1
)2 + (

δGE,k
)2

Q2
k+1 − Q2

k

, (5)

with k = 1, 2, . . . , N − 1. Only the first-order central finite
difference has been considered for two reasons:

1 As will be discussed in Sect. 3, a set of N data point is an N -tuple of

triplets of the form
{
Q2

j ,GE, j , δGE, j

}N

j=1
, i.e., the form factor and its

derivative at each Q j value.
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(a) depending only on two measured values of the FF, it
gives the lowest errors on the discrete derivatives;

(b) the non-homogeneous distribution of the experimental
points in Q2 makes the adoption of higher-order estima-
tors unreliable.

The wide spreading and the large errors of the data on the
discrete derivative of GE , shown in the left panels of Fig. 2,
are not surprising. They can be understood by considering
the function G̃E (Q2), which approximates the FF in the
limit Q2 → 0+ up to terms of the order O[

(Q2)2
]
. Such

an approximation is defined as:

G̃E (t) ≡ GE (0) + t G(1)
E (t), t = Q2,

where G(1)
E (t) is the first derivative of the FF and can be

interpreted as a kind of reconstructed FF from the derivative.
In fact, by considering the Taylor series of GE (t) and G(1)

E (t)
centered at t = 0, i.e.,

GE (t) =
∞∑
k=0

G(k)
E (0)

k! tk,

G(1)
E (t) =

∞∑
k=1

G(k)
E (0)

(k − 1)! t
k−1,

with

G(k)
E (0) = dkGE

dtk

∣∣∣∣
t=0

,

which, being the FFs analytic functions at t = 0,2 converge
in the same disk DR = {t : |t | < R} of radius R < 4M2

π , we
obtain the series of G̃E (t) as

G̃E (t) = GE (0) + G(1)
E (0) t +

∞∑
k=2

G(k)
E (0)

(k − 1)! t
k,

so that the difference between the two functions G̃E (t) and
GE (t) is an infinitesimal of order O(t2) as t → 0, indeed,

G̃E (t) − GE (t) =
∞∑
k=2

G(k)(0)

k(k − 2)! t
k = O(t2), t → 0. (6)

In the light of that, we can reconstruct the FF data from those
on its discrete derivative and compare them to the original
ones in order to visualize how much the errors on GE do
influence its derivative, especially in the limit t → 0. Hence,
starting from the data set D of Eq. (4), we compute the dis-
crete derivativeD′ of Eq. (3), through the formulae of Eq. (5),
and then we define the set

D̃ =
{
Q

2
k, G̃E,k, δG̃E,k

}N−1

k=1
, (7)

2 The FFs are analytic in the whole q2 = −Q2 complex plane with a
discontinuity cut (4M2

π ,∞) over the positive real axis.

with

G̃E,k = 1 + �GE,k · Q2
k,

δG̃E,k = δ�GE,k · Q2
k, k = 1, 2, . . . , N − 1. (8)

As it can be inferred from Eq. (6), in the limit Q2 =
t → 0+, the points of the two data sets D and D̃, Eqs. (4)
and (7), should describe the same quantity, i.e., the electric
FF GE (Q2). The crucial difference between the data points
of these two sets is that in the first case the FF is the measured
observable, while in the second, the measured quantity is its
discrete derivative.

The sets of data on GE and G̃E are shown in the right
panels of Fig. 2 for the three considered experiments [1,2].
Two key points have to be highlighted.

• The wide spreading and large errors obtained for the data
on the discrete derivative, �GE,k with k = 1, 2, . . . , N−
1, shown on the left panels of Fig. 2, are drastically
reduced in the observable G̃E , because the quantities
�GE,k appear in the expression for G̃E,k of Eq. (8),
multiplied by the corresponding transferred momenta

squared Q
2
k , whose values are very small.

• The fact that the data on the reconstructed electric FF
G̃E have the same trend as those on GE but with orders
of magnitude larger errors, does confirm that, in the limit
Q2 → 0+, the accuracy of the first derivative extracted
from the data is largely downgraded with respect to that
of the original quantity, i.e., GE .

The latter statement is clearly proven from the results
obtained when the root-mean-square charge radius is extracted
directly from the data on the discrete derivative of the electric
FF.

4 Procedure to extract the root-mean-square charge
radius

We extract the root-mean-square charge radius of the proton,
RE , from the three data sets P1, P2 [1] and A1 [2] on the
discrete derivative of the electric FF GE , i.e., that have been
obtained from the original measurements of GE using the
formulae of Eq. (5).

The procedure consists in fitting the data by exploiting two
power series for the FF that differ by the expansion variable.

Electromagnetic FFs are functions of only one complex
variable, q2, where q is the four-momentum of the virtual
photon, and are analytic in the q2 complex plane with the dis-
continuity cut (4M2

π ,∞) along the positive real axis, namely
the time-like region. The branch point at q2

th = 4M2
π , the so-

called theoretical threshold, corresponds to the squared mass
of the π+π− system that is the lightest hadronic state that
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Fig. 2 Left panels: data on the discrete derivative of the electric FF,
obtained through Eq. (5), multiplied by −6 and in units of fm2 to have
a direct interpretation as in terms of mean-square charge radius. Right
panels: data on the original (solid circles) and reconstructed (empty
circles) electric FF GE and G̃E . Data of the first, second and third rows
are from the data sets P1, P2 and A1, respectively

couples to the photon, having the same quantum numbers. It
follows that the FFs admit Taylor expansions in the variable
q2 centered at the origin q2 = 0 and converging in the disk of
radius Rq2 = q2

th. On the other hand, since the discontinuity,
represented by the branch cut, concerns only the imaginary
part of the FF, the real part is a regular function of q2, that can
be expanded in a Taylor series centered at the origin with a
convergence radius larger than Rq2 . In the space-like region,
q2 < 0, where the FFs are real, such a Taylor expansion is
particularly suitable to describe the data on both the FF and
its first derivative.

We consider the power series

GE (t) =
∞∑
k=0

akt
k, GE (t) =

∞∑
m=0

bmz(s)
m, (9)

with the sequences of coefficients {ak}∞k=0, {bm}∞m=0 ⊂ R and
where t = Q2 = −q2 = −s is the natural expansion vari-
able, i.e., the opposite of the transferred momentum squared,

while z(s) is a function that maps the edge of the disconti-
nuity branch cut, lying on the s-complex plane, into the unit
circle, see Appendix A for a detailed discussion. The defi-
nition of the k-th coefficient ak , with k = 0, 1, . . ., in terms
of the 2k-mean-square radius, as well as its relationship with
the root-mean-square charge radius RE , ruled by Schwarz’s
inequality, are given in Ref. [19]. The most suitable form of
the function z(s) for studying the behavior of the FF in a
neighborhood of the origin s = 0, where its derivative has to
be extracted, follows from Eq. (A.1) and reads

z(s) =
√
q2

th − s −
√
q2

th√
q2

th − s +
√
q2

th

=
√
q2

th + t −
√
q2

th√
q2

th + t +
√
q2

th

, (10)

as a function of s = q2 and t = Q2 = −s. The power series
for the first derivative of the FF with respect to the t variable,
obtained from Eqs. (9) and (A.3), are

G ′
E (t) =

∞∑
k=1

ak k t
k−1,

G ′
E (t) =

∞∑
m=1

bm m
z(s)m−1

q2
th

√
1 + t/q2

th

(√
1 + t/q2

th + 1

)2 .
(11)

Finally, from the definition given in Eq. (2) and the FF power
series of Eq. (9), the coefficients a1 and b1 can be related to
the root-mean-square charge radius as

a1 = −1

6
RE , b1 = 4q2

tha1 = −4q2
th

3! RE .

It is worth noting that the extrapolation to zero of the numeri-
cal derivative, and hence the extraction of the radius, is inde-
pendent of the global normalization that indeed entails the
0-th coefficients, that in this case are not present.

5 Extraction of the root-mean-square charge radius

The root-mean-square charge radius of the proton has been
extracted from the data on the electric FF by considering
various fitting schemes, which differ by the data sets and the
fitting functions. Two data sets have been considered [1,2]:

• the set P1 ∪ P2 ∪ A1 containing the data on the electric
FF GE ;

• the set P ′
1 ∪ P ′

2 ∪ A′
1 containing the data on the discrete

derivative of the electric FF, obtained from those on GE

through Eq. (3).

The fit functions are polynomials either in the variable t =
Q2, the transferred momentum squared, or z(s) = z(−t),
following the expression given in Eq. (10). They are obtained
by truncating the power series of Eqs. (9) and (11) for the
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FF and its first derivative, respectively. The polynomials in
the variable t of degrees n and n − 1, for the FF and its first
derivative are

G(n)
E (t) =

n∑
k=0

akt
k, G ′(n)

E (t) =
n∑

k=1

ak k t
k−1, (12)

and depend on the same sets of parameters apart from the 0th

coefficient a0, that is present only in G(n)
E (t). The polynomi-

als in the variable z(−t), which is explicitly indicated as the
argument, are

G(n)
E (z) =

n∑
m=0

bmz
m,

G ′(n)
E (z) =

n∑
m=1

bm m

× z(−t)m−1

q2
th

√
1 + t/q2

th

(√
1 + t/q2

th + 1

)2 . (13)

Due to the non-linear relation between t and z(−t), see
Eq. (10), the functions G(n)

E (z) and G ′(n)
E (z) are not poly-

nomials in the variable t , as well as G(n)
E (t) and G ′(n)

E (t)
are not so in the variable z. Nevertheless, comparisons of the
results obtained by using fit functions having the same degree
n can be done, since they depend on the same number n of
parameters.

By considering polynomials in both variables t and z of
12 different degrees, from n = 2 up to n = 13, and two sets
of data, for the FF and its discrete derivative, we obtained:
2×12×2 = 48 values for the root-mean-square charge radius
of the proton. The results obtained using polynomials in the t
and z variable are reported in Tables 1 and 2, respectively. We
indicate with Rn,t (z) and R′

n,t (z) the radii extracted by the fit to
the data on the FF and its discrete derivative performed with

the fit functions G(n)
E (t)

(
G(n)

E (z)
)

and G ′(n)
E (t)

(
G ′(n)

E (z)
)

,

respectively.
As an example, Fig. 3 shows the parameterizations

obtained by performing the fit only to the FF data, i.e., by
minimizing the χ2’s

χ2
t

[
{ak}7

k=0

]
=

∑
P1∪P2∪A1

(
G(7)

E (Q2
j ) − GE, j

δGE, j

)2

,

χ2
z

[
{bm}7

m=0

]
=

∑
P1∪P2∪A1

⎛
⎝G(7)

E

(
z(−Q2

j )
)

− GE, j

δGE, j

⎞
⎠

2

,

where the index j runs over all the data points
(
Q2

j ,GE, j ,

δGE, j
) ∈ P1 ∪P2 ∪A1 and the fit functions are polynomials

of the 7th degree in the variable t and z(−t), depending on
the parameter sets {ak}7

k=0 and {bm}7
m=0, respectively.

Table 1 Root-mean-square charge radii of the proton Rn,t and R′
n,t ,

obtained from the fit of GE,n(t) and G ′
E,n(t), respectively, with n-

polynomials in the variable t

Polynomial degree n Rn,t (fm) R′
n,t (fm)

2 0.7853 ± 0.0002 0.6996 ± 0.0045

3 0.8343 ± 0.0005 0.7858 ± 0.0072

4 0.8537 ± 0.0009 0.8021 ± 0.0107

5 0.8633 ± 0.0032 0.8404 ± 0.0151

6 0.8655 ± 0.0024 0.8863 ± 0.0195

7 0.8650 ± 0.0029 0.8854 ± 0.0202

8 0.8625 ± 0.0034 0.8635 ± 0.0181

9 0.8630 ± 0.0028 0.8670 ± 0.0189

10 0.8633 ± 0.0031 0.8614 ± 0.0207

11 0.8630 ± 0.0031 0.8647 ± 0.0192

12 0.8630 ± 0.0030 0.8616 ± 0.0165

13 0.8627 ± 0.0029 0.8644 ± 0.0179

Table 2 Root-mean-square charge radii of the proton Rn,z and R′
n,z ,

obtained from the fit of GE,n(z) and G ′
E,n(z), respectively, with n-

polynomials in the variable z

Polynomial degree n Rn,z (fm) R′
n,z (fm)

2 0.8737 ± 0.0007 0.8680 ± 0.0122

3 0.8636 ± 0.0005 0.8553 ± 0.0081

4 0.8759 ± 0.0057 0.8617 ± 0.0212

5 0.8732 ± 0.0041 0.8622 ± 0.0211

6 0.8643 ± 0.0058 0.8562 ± 0.0204

7 0.8655 ± 0.0047 0.8637 ± 0.0271

8 0.8668 ± 0.0044 0.8671 ± 0.0300

9 0.8663 ± 0.0038 0.8763 ± 0.0223

10 0.8649 ± 0.0040 0.8743 ± 0.0228

11 0.8639 ± 0.0050 0.8693 ± 0.0186

12 0.8660 ± 0.0040 0.8669 ± 0.0192

13 0.8632 ± 0.0040 0.8668 ± 0.0166

Figure 4 shows the parameterizations for the FF (left
panel) and its discrete derivative (right panel) obtained by fit-
ting only the data corresponding to the latter quantity, where
the χ2’s are

χ2
t

[
{ak}7

k=1

]
=

∑

P ′
1∪P ′

2∪A′
1

⎛
⎝G ′(7)

E

(
Q

2
j

)
− �GE, j

δGE, j

⎞
⎠

2

,

χ2
z

[
{bm}7

m=1

]
=

∑

P ′
1∪P ′

2∪A′
1

⎛
⎝q

G ′(7)
E

(
z
(
−Q

2
j

))
−�GE, j

δ�GE, j

⎞
⎠

2

.

In this case, the index j runs over all the data points(
Q

2
j ,�GE, j , δ�GE, j

)
∈ P ′

1 ∪ P ′
2 ∪ A′

1. The fit function

G ′(7)
E (t), defined in the second expression of Eq. (12), is still
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Fig. 3 Left panel: data sets P1 (red circles), P2 (black squares) [1] and
A1 (pink diamonds) [2] on the electric FF, the blue and red bands rep-
resent the parameterizations GE,7(t) and GE,7(z), respectively. Right
panel: data sets P1 (red circles), P2 (black squares) [1] and A1 (pink
diamonds) [2] on the first discrete derivative multiplied by −6 and in
units of fm2, the blue and red dashed bands represent the parameteriza-
tions G ′

E,7(t) and G ′
E,7(z), respectively. The fit has been performed to

the data on the electric FF GE corresponding to all sets P1, P2 and A1

a polynomial, even though it is of the 6th degree, because
of the derivative in t . On the other hands, G ′(7)

E (z), given in
the second expression of Eq. (13), due to the derivative with
respect to the variable t , looses its polynomial structure in z.
Nevertheless, both functions G ′(7)

E (t) and G ′(7)
E (z) depend on

7 parameters, namely those of the sets {ak}7
k=1 and {bm}7

m=1,
respectively.

Figure 5 shows the values of the root-mean-square charge
radius and the normalized χ2 from the fit of FF data only,
with parameterizations in form of t and z(−t) polynomials,
G(n)

E (t) and G(n)
E (z), as defined in the first expressions of

Eqs. (12) and (13), as functions of the polynomial degree n.
Figure 6 shows our main result, i.e., the values of the

root-mean-square charge radius, as well as the normalized
χ2 obtained from the fit of the discrete derivative of the FF,
namely the data of the set P ′

1 ∪ P ′
2 ∪ A′

1, with the functions

G ′(n)
E (t) and G ′(n)

E (z), as defined in the second expressions
of Eqs. (12) and (13).

In both figures the green band shows the root-mean-square
charge radius RCLAS

E = 0.831 ± 0.007 ± 0.012 fm,
extracted by the JLab-PRad experiment [1] from the data
sets P1 and P2.

Four facts have to be noted.

Fact 1. Above the degree n = 5 the fitting polynomial func-
tions in the variables t and z(−t) give compatible
results for the root-mean-square charge radius con-
verging towards the large value.

Fact 2. The values obtained by means of the polynomials in
the variable z(−t), red dashed bands in Figs. 5 and 6,
are more stable with respect to the degree n, showing
slightly larger errors.

Fact 3. Above the degree n = 5, the results stabilize, as also
proven by the convergence of the χ2’s, and the root-

Fig. 4 The graphs are the same of those of Fig. 3, but in this case the fit
has been performed to the data on the discrete derivative of the electric
FF, namely on those of the sets P ′

1, P ′
2 and A′

1

Fig. 5 Upper panel: root-mean-square charge radii Rn,t , blue dashed
band, and Rn,z , red dashed band, obtained by fitting to the FF data
as a function of the polynomial degree n. The corresponding values
are reported in the first columns of Tables 1 and 2, respectively. The
green band represents the result from the JLab-PRad experiment [1].
Lower panel: Normalized χ2 obtained with the fit functions G(n)

E (t),

blue circles, and G(n)
E (z), red triangles

mean-square radii extracted by fitting to the data on
the discrete derivative agree with those obtained by fit-
ting to the data of the the FF, shown in Fig. 7 as dashed
and solid bands, respectively. This is a clear confirma-
tion that extracting the root-mean-square charge radius
from the derivative of the fit function instead of the fit
of the discrete derivative does necessarily entail an
important underestimate of the uncertainty.

Fact 4. The result shown in Fig. 5 gives an unequivocal
demonstration of the pivotal role played by the higher-
Q2 precise data setA1 from the Mainz experiment [2].
This is proved by the disagreement between the value
that we obtained by considering the data set P1 ∪P2 ∪
A1, blue and red dashed bands, and the one from the
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Fig. 6 Upper panel: root-mean-square charge radii R′
n,t (blue dashed

band) and R′
n,z (red dashed band), obtained by fitting the data on the

discrete derivative of the FF as a function of the polynomial degree n.
The corresponding values are reported in the second columns of Tables 1
and 2, respectively. The green band represents the result from the JLab-
PRad experiment [1]. Lower panel: Normalized χ2 obtained with the
fit functions G ′(n)

E (t), blue circles, and G ′(n)
E (z), red triangles

JLab-PRad experiment [1], solid green band, using the
data set P1 ∪ P2 (discarding the higher-Q2 measure-
ment from the Mainz experiment [2]).

6 Conclusions

Recent and precise data on elastic electron scattering on the
proton at very low transferred momentum were collected
for the extraction of the proton radius. The results from the
JLab-CLAS collaboration Ref. [1] are critically discussed
and compared with the Rosenbluth set of data extracted from
the Mainz experiment [2] spanning a large range of low
Q2 values. The choice of the Rosenbluth set among sev-
eral extractions is justified by the work of Ref. [19], show-
ing that FF data extracted by pre-imposed polynomial fits
have a smaller statistic error but the result on the radius is
highly constrained leading to a large systematic error, dif-
ficult to be evaluated. In the case of Ref. [1], the magnetic
FF was neglected. Therefore, the pre-definition of a fitting
function was not necessary, and GE was directly related to
the measured observable, the cross section. The proton radius
is related to the derivative of the cross section. By calculat-
ing and plotting the numerical derivative point by point, one
can observe that measurement at the smallest Q2 give the
largest error on the derivative. The value and the error on the

Fig. 7 Summary of Figs. 5 and 6. Root-mean-square charge radii:
Rn,t (blue band), R′

n,t (blue dashed band), Rn,z (red band) and R′
n,z

(red dashed band). The green band represents the result from the JLab-
PRad experiment [1]

extracted radius depend on the Q2 range and on the fitting
function. The Mainz data [2] lead to the smaller error on the
radius.

The main finding of this work is that all published values of
the proton radius extracted from elastic electron-proton scat-
tering suffer from under-evaluation of the associated error.
This fact has two main sources:

• Numerical: the extrapolation of the electric form factor
based on any pre-defined function, in a definite range,
gives a strong constrain to the derivative and its limit to
the static point;

• Physical: elastic scattering is a dynamical two-body prob-
lem. Its extrapolation to the photon point, i.e., a static
limit corresponding to a compound object, is outside the
range of validity of the formalism. The extrapolation from
the scattering cross section becomes hazardous.

We have shown that a sub-selection of the Q2 range, a
choice of possible functions and of the FF data set may
lead to extract any value in the range 0.7–0.9 fm. Our
method, based on a direct extrapolation of the derivative built
from the data themselves, shows that a large error should
be attributed to any number for the radius. Such error is
sufficiently large to bring consistency among all measure-
ments.

We note that a similar situation has been going on for
several years concerning the determination of the electric
and magnetic form factors of the proton at large trans-
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ferred momenta, where polarized and unpolarized experi-
ments found inconsistent results. In this case, too, the observ-
able i.e., the electric form factor appears as the derivative
of the elastic cross section in the Rosenbluth plot, leading
to an underestimation of its error in unpolarized ep experi-
ments [20]. In the present case, the analysis with numerical
derivatives give larger errors that make all results consistent
among each other and consistent with atomic and electron
scattering experiments.

The contradiction among the extracted values of the pro-
ton radius is due therefore to the attempt of pushing the
information gathered from experiments beyond the limits
imposed by the physical observables. In the present case,
the observable is the cross section, but the physical quan-
tity is proportional to its derivative. Furthermore, the extrap-
olation of this quantity outside the validity domain of the
method (the scattering formalism) should be taken with cau-
tion.

In the light of all these reasons, for all intents and purposes,
this conclusion is general and applies to experiments and
analyses not explicitly considered in this paper. It depends
neither on the functional form of the fitting function (dif-
ferent classes of functions: polynomials in t and z, spline in
Ref. [14] and references therein) nor on normalization issues,
as the radius by definition is proportional to a logarithmic
derivative.

7 Methodology

Our analysis follows these steps:

• We consider only published data on the electric form fac-
tor. We focus on two sets of data: (1) Ref. [1], recently
obtained from the CLAS11 collaboration at JLab (these
are the most precise data, at the smallest values of trans-
ferred momenta); (2) the set of data from Mainz [2], less
precise and extending to larger Q2.

• We calculate the numerical derivative of the measured
electric form factor.

• We apply a number of fits for the extrapolation of the
numerical derivative (that is, indeed, the variable related
to the physical quantity, the radius) to Q2 → 0, with
different functions: namely different order polynomials,
functions of the variables t and z in the complex plane.

• the values of the radius and their errors are derived.
• the results show that the central values span a large inter-

val, statistically compatible taking into account the errors.
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Appendix A: Mapping onto the z-plane

The explicit form of the function z(s) is

z(s) =
√
q2

th − s −
√
q2

th − t0√
q2

th − s +
√
q2

th − t0
, (A.1)

where t0 ∈ (−∞, q2
th) is the space-like value which maps

onto the origin, i.e., z(t0) = 0. The edge of the branch cut is
the curve

E = (∞ + iε, q2
th + iε] ∪

{
s : s = ε eiθ , θ ∈

(
π

2
,

3π

2

)}

∪[q2
th − iε,∞ − iε),

shown in the left panel of Fig. 8, blending from green, above
the cut, at s → ∞ + iε, passing through the red around
s = q2

th, and blending finally in blue at s → ∞ − iε, below
the cut.

On the upper and lower edges of the branch cut, namely
for s ∈ (∞ ± iε, q2

th ± iε], the argument of the first square
roots at numerator and denominator of z(s) has the polar
representation q2

th − s = |q2
th − s|e∓i(π−ε), and hence at

infinity and at the theoretical threshold the argument of z(s)
behaves as follows

arg(z(s)) −→
s→∞±iε

0∓, arg(z(s)) −→
s→q2

th±iε
∓π.

This means that the upper (lower) edge of the branch cut,
from s = q2

th up to infinity, is mapped onto the lower (upper)
half unit circle with the angle ranging from −π (+π ) up to 0−
(0+). The unit circle on the z complex plane is shown in the
right panel of Fig. 8, the shades of colors follow from those
of the curve surrounding the branch cut on the s complex
plane.

The real values of s lying below the theoretical threshold,
i.e., the whole space-like region, s < 0, and the portions
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of the time-like region ranging from the origin up to the
theoretical threshold, are mapped onto those of the segment
(−1, 1) in the z complex plane, as it is shown Fig. 8, where
the correspondence s ↔ z is highlighted with colors. In
particular, by considering as a reference point s = t0, the
mapping through the function z(s) of the subsets −∞ <

s < t0 and t0 < s < q2
th is

s ∈ (−∞, t0] ∪ (t0, q
2
th)

↓
z(s) ∈ [

z(t0) = 0, z(−∞) = 1
) ∪ (

z(q2
th) = −1, z(t0)

)
.

The value of the parameter t0 ∈ (−∞, q2
th) has to be set

equal to the four momentum squared under investigation,
indeed, being mapped onto the origin z(t0) = 0, such a value
guarantees a better convergence rate for the series in the z
variable. In our case, aiming to extract the first derivative of
the FF at Q2 = 0, we set t0 = 0, so that

z(s) =
√
q2

th − s −
√
q2

th√
q2

th − s +
√
q2

th

,

t (z) = −s(z) = 4q2
th

z

(1 − z)2 .

By means of the second expression, the power series for
GE (t) in the variable t of Eq. (9) can be written in terms
of the variable z as

GE (t) =
∞∑
k=1

akt
k = a0 +

∞∑
k=1

ak
(
q2

th

)k zk

(1 − z)2k .

Each k-th term of the series, with k ≥ 1, has a pole of order
2k at z = 1, that can be expanded in a further power series
corresponding to the (2k − 1)-th derivative of a geometric
series, i.e.,

1

(1 − z)2k = 1

(2k − 1)!
d2k−1

dz2k−1

1

1 − z

Fig. 8 Left panel: s complex plane, the red dashed line indicate the
branch cut. Right panel: z complex plane. The green-red-blue unit circle
(right panel) is the map of the curve surrounding the cut. Red–yellow–
black points lying along the z real axis represent the maps of the points
belonging to s real axis. The chromatic convention is that the color of
s is equal to the color of z(s)

= 1

(2k − 1)!
d2k−1

dz2k−1

∞∑
j=0

z j

= 1

(2k − 1)!
∞∑

j=2k−1

(
j

2k − 1

)
z j−2k+1.

In the light of that, the original series becomes

GE (t) = a0 +
∞∑
k=1

∞∑
j=2k−1

ak(4q
2
th)

k
(

j

2k − 1

)
z j−k+1

=
∞∑

m=0

bmz
m,

where the last member is the formal expression of the power
series in the variable z. The m-th coefficient bm , with m ∈ N,
is then obtained as

bm =
∞∑
k=1

∞∑
j=2k−1

ak(4q
2
th)

k
(

j

2k − 1

)
δ j+1,k+m

=
n∑

k=1

ak(4q
2
th)

k
(
k + m − 1

2k − 1

)
.

It is a combination of the m coefficients a j , with j =
1, 2, . . . ,m, as an example the first four coefficients are

b0 = a0,

b1 = 4q2
tha1,

b2 = 8q2
th

(
a1 + 2q2

tha2
)
,

b3 = 4q2
th

(
3a1 + 16q2

tha2 + 16(q2
th)

2a3
)
.

(A.2)

The first derivative of the FF with respect to the t variable is
still analytic in a neighbourhood of the origin and hence it is
expansible in power series. The series can be obtained from
those of Eq. (9) and are

G ′
E (t) =

∞∑
k=1

ak k t
k−1,

G ′
E (t) =

∞∑
m=1

bm m z(s)m−1 d

dt
z(s),

where the first derivative of z(s) with respect to the variable
t = −s is

d

dt
z(s) = −dz

ds

=
√
q2

th
√
q2

th − s

(√
q2

th − s +
√
q2

th

)2

= 1

q2
th

√
1 + t/q2

th

(√
1 + t/q2

th + 1

)2 . (A.3)
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