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Abstract

We study the nonlinear localized modes in two-component Bose-Einstein condensates
with parity-time-symmetric Scarf-1l potential, which can be described by the coupled
Gross-Pitaevskii equations. Firstly, we investigate the linear stability of the nonlinear
modes in the focusing and defocusing cases, and get the stable and unstable domains of
nonlinear localized modes. Then we validate the results by evolving them with 5% pertur-
bations as an initial condition. Finally, we get stable solitons by considering excitations of
the soliton via adiabatical change of system parameters. These findings of nonlinear
modes can be potentially applied to physical experiments of matter waves in Bose-Ein-
stein condensates.

1 Introduction

Bose-Einstein condensate (BEC) [1, 2], as one of the important physical phenomena, has
attracted the attention of researchers. The successful observation of solitons in BECs has
become one of the research focuses in the fields of condensed matter physics and atom optics
[3-5]. Compared with the single-component ones, the multi-component BECs possess the
inter-component interactions and have complicated quantum phases and properties [6-13].
Many novel phenomena have been discovered in multi-component BECs [14-22], including
symbiotic solitons, soliton trains, soliton pairs, multi-domain walls, and multi-mode collective
excitations. As one kind of multi-component BECs, the two-component BECs trapped in a
quasi-one-dimensional harmonic potential at zero temperature can be described by the follow-
ing coupled Gross-Pitaevskii equations [23, 24]:
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harmonic potentials, gj; is the interactions between atoms, and gj ;_; describes the inter-compo-
nent interactions (j = 1, 2) [25-28].

If the trap frequencies in the radial directions w;, are larger than the axial directions wj,, Eq
(1) becomes a quasi-one-dimensional system along the x direction. Through the normalization

and transformation ¥; — y;, x — \/h/(Mw,, )x, t — (27/w, )t, Eq (1) can be written in the
form [25-28]:

2 2
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where A; = w;,/w; |, bjjand b; 5_; are related to [ [}/ j|2x, trap frequencies in the radial directions
;. and interactions between atoms gj; or inter-component gj3_; (j = 1, 2). For the harmonic
potentials, the soliton states were studied widely [25-28]. In this paper, we consider the two-
component BECs trapped in another potential.

Put forward by Bender and his coworker in 1998 [29-31], parity-time- (P7 -) symmetry
behaviors have attracted much attention in both non-Hermitian Hamiltonian systems and
nonlinear wave systems [32-34], which make systems with complex potentials possibly sup-
port fully-real linear spectra [35] and stable nonlinear modes [36-39]. That is, the potential
function U(x) = V(x) + iW(x) satisfies V(x) = V(-x) and W(—x) = —W(x) [29-31]. Over the
past few years, various P7 -symmetric potentials have been introduced into the nonlinear
Schrédinger equation and the existence of different nonlinear local modes is analytically and
numerically investigated [40-51]. To better investigate physical phenomena, it is meaningful
to introduce new forms of P7 -symmetric potentials in nonlinear systems.

In this paper, we investigate the coupled Gross-Pitaevskii equations with complex
‘PT -symmetric potentials [28]:

i%: < 882 (W | + |'pz| ) — Ul("))‘ku (3a)
aalptz - ( 882 a,([, " + [[) — 2(’0)‘#2» (3b)

where g, represent the intra-component and inter-component interactions while the interac-
tions take equal values when a, = a,, Uj(x) are the complex P7 -symmetric potentials, and the
imaginary parts of Uj(x) stand for the gain or loss term from the thermal clouds (j = 1, 2).

The present paper is built up as follows. In Sect. 2, we consider the analytic bright-soliton
solution in the coupled Gross-Pitaevskii equations with complex P7 -symmetric Scarf-II
potentials; the linear stability analysis and the numerical evolution results corroborating the
analytical solitons are presented in Sect. 3; In Sect. 4, we perform numerical simulations for
the excitation and evolution of nonlinear modes via adiabatical change of system parameters;
Finally, conclusions and discussions are given in Sect. 5.

2 Localized modes in coupled Gross-Pitaevskii equations

We concentrate on stationary solutions of Eq (3) in the form

‘//j(x’ t) = (bj(x)eh’]t? =12, (4)
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where v; are the real propagation constant. The complex solutions ¢;(x) satisfy the following
condition

d’ 2 2

|:?+“1(|¢1| + [0, )+U1(x)]¢1 =, , (5a)
d’ 2 2 _

[dx2+ ay (|, + |@s|”) + Uz(x)} Gy = Vo (5b)

which can be solved for the given potentials Uj(x) and real propagation constant v;.
For the PT -symmetric potentials Uj(x) are all chosen as the well-known Scarf-II potentials
as

Ul(x) =V, sech®(x) + iW; sech(x) tanh(x). (6)

We have the analytic bright-soliton solution as [37]

¢;(x) = A;sech(x) e, j=1,2, (7)
with the phases being
Wi . ,

¢, = 3 arctan[sinh(x)], j=1,2, (8)
under the constraints of

18+ W? -9V,

— g =2 Aw J=12, ©)

7 n=12

and v;=1.
J
For the nonlinear modes given in Eq (7), the power of the solutions is defined as
P= [7 |¢y(x) *dx, P = P, + P,, while the Poynting vector
S =590, — ¢,¢,) =AW, /3 sech®(x). The power flows from left (right) to right (left) at xq
when S(xg) > 0 (S(xg) < 0).

3 Linear stability analysis

In this section, we investigate the linear stability of the nonlinear modes, which is a standard
protocol to show the stability of nonlinear localized modes. We consider the perturbed solu-
tion y;(x, t), in the form

i(x, 1) = o,(x) €' + e [fi(x) € + g (x) e 1] ™' (10)
where € < 1, which is the small perturbation on the solution. fj(x) and gj(x) are the perturba-

tion eigenfunctions of the linearized eigenvalue problem. By substituting Eq (10) into Eq (5)
and linearizing with respect to €, we can drive the following linear eigenvalue problem:

L a1¢? a,0,9, a,0,0, h h

—tWIQ —L] —a,0\¢, —a,¢)0, & &
‘ =9 , (11)

azd{‘ﬁz a, 0,0, L, ag(b; 1> fs

—a,p1¢, —a,p,0, —a, st —L; & &
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where

Lo=—-v,+&+U +2a,¢¢, +a,¢,0, (12a)

Ly=—-v,+ 8§ + U, + a,6,0; + 2a,¢,6, (12b)

The imaginary part of § measures the growth rate of the perturbation instability. If
[Im(8)| > 0, then the perturbation will grow exponentially with ¢, and the solutions are unsta-
ble; otherwise, the solutions are stable. In our numerical simulation, we use the Fourier collo-
cation method to discretize the associated differential operator as a matrix to solve the
eigenvalue problem [52]. To further verify the stability of the solitons, we numerically investi-
gate the stability by evolving them with 5% perturbations as the initial condition to simulate
the random white noise (i.e., ¥(x, 0) = ¢(x)(1 + &) and & represents 5% perturbations). In our
numerical simulations, the second-order spatial differential is carried out by using Fourier
spectral collocation method, and the integration in time is carried out by using the explicit
fourth-order Runge-Kutta method [53].

Firstly, under the constraint of A; = 0.5, V; = V,, W, = W,, we consider the focusing case
a; = a, = 1 and the defocusing case a; = a, = —1, respectively. Then we get the stable (blue) and
unstable (red) domains of nonlinear localized modes in (V;, W) space [see Fig 1]. They are
determined by the maximum absolute value of imaginary parts of the linearized eigenvalue §
in Eq (11). We find that solitons tend to be unstable with the increase of |W/| in the focusing
case. It is worth noting that when |W,| = 3, solitons are stable in the defocusing case.

Since the above situations are obtained in the case of A; = 0.5, and A, is obtained by Eq 9.
Next, we consider the case of A; = A,. The relationships between P, and the parameter W are
shown in Fig 2. We can find that when other parameters are fixed, P, and |W| are positively
correlated in the focusing case, while they are negatively correlated in the defocusing case. In
addition, for both cases A; = 0.5 and A, = A,, the intervals of W, have no difference when the
solutions are stable.

(b)
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Fig 1. Maximal imaginary part of the linearization eigenvalue J in the (V;, W;)-space (common logarithmic scale), under the constraint of A; = 0.5, V, = V,, W,

=W,and (a) a; =1; (b) a, =-1.
https://doi.org/10.1371/journal.pone.0294790.9001
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Fig 2. The relationship between power of nonlinear mode ¢, and W,. The parameters are chosen as: Wy = W,,and (a) V, =V, =1,a4,=1;(b) V=V, =8,a, =
-1.

https://doi.org/10.1371/journal.pone.0294790.9002

In particular, for the fixed parameters a; =a, =1, A; = 0.5, V; = V, = 1, Fig 3(a)-3(c) dis-
play the stable soliton for W, = W, = 0.25 while Fig 3(d)-3(f) display the unstable soliton for
W, = W, = 0.55; for the fixed parameters a; = a, = -1, A; = 0.5, V| = V, = 8, Fig 4(a)-4(c) dis-
play the stable soliton for W, = W, = 3 while Fig 4(d)-4(f) display the unstable soliton for
Wi=W,=2.

Furthermore, in the focusing case, the amplitude of the nonlinear mode is periodically
oscillating when V; and W are sufficiently small, and it experiences more than 5 periods
within 1200 < ¢ < 1500 [see Fig 5].

4 Adiabatic excitation for the nonlinear modes

In this section, we consider excitations of the above-mentioned solitons via adiabatical changes
of system parameters. We change the parameters as the functions of t. To modulate the system
parameters smoothly, we consider the following “switch-on” function:

C(ini), t=0,
ot e m\]
po e = T 0 <t < 500 13
() 5 B TTEY | I )
g(end)7 500 S t S 1500;

where {1, ("D respectively represent the real initial-state and final-state parameters [38, 45,
54]. Adiabatic excitation includes two stages: excitation stage (0 < t < 500) and propagation
stage (500 < t < 1500). We consider two cases of excitations by setting a;, V; and V, to be
functions of ¢, that is a; — a;(t), V; — Vi(f) and V, — V,(1). To facilitate the display of power
changes over time, we set A; = A,, W; = W, = 0.55, v =1, vierd =9 g™ — 0.1,

al™ = 1. Firstly, we set V™ = 1, Vi¥ = 2, a, = 0.1, and the power of nonlinear modes is
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Fig 3. (a, d) The soliton solutions. (b, e) Linear stability eigenvalues. (c, f) Stable or unstable propagations of nonlinear modes. The parameters are chosen
as:a; =1,A;=0.5,V, =V, =1,and (a-c) W, = W, = 0.25; (d-f) W; = W, = 0.55.

https://doi.org/10.1371/journal.pone.0294790.9003
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Fig 4. (a, d) The soliton solutions. (b, ) Linear stability eigenvalues. (c, f) Stable or unstable propagations of nonlinear modes. The parameters are chosen as: a;
=-1,A,=0.5,V,=V,=8,and (a-c) W, = W, =3; (d-f) W, = W, =2.

https://doi.org/10.1371/journal.pone.0294790.9004
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Fig 5. (a) The soliton solutions. (b) Linear stability eigenvalues. (c) Stable propagations of nonlinear modes. The parameters are chosen as: a; =1, A; = 0.5, V;
=V,=0.01, W; = W, =0.06.

https://doi.org/10.1371/journal.pone.0294790.9g005

reduced [see Fig 6a-6¢]. Then, we set vim =2 Vi — 1, g, =0.0033, and the total power of
nonlinear modes is to decrease and then increase [see Fig 6d-6f]. The above results mean that

the power is not conserved during adiabatic excitations, and it has a correlation with the initial
and final state potential parameters.

5 Conclusion

In conclusion, we study the nonlinear modes in two-component Bose-Einstein condensates
with P7 -symmetric Scarf-II potential, which can be described by the coupled Gross-Pitaevskii
equations. We investigate the linear stability of the nonlinear modes and validate the results by
evolving them with 5% perturbations as an initial condition. We find that solitons tend to be
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unstable with the increase of |W1| in the focusing case. It is worth noting that when |W,| = 3,
solitons are stable in the defocusing case. In the focusing case, the amplitude of the nonlinear
mode is periodically oscillating when V; and W are sufficiently small. Finally, we consider
excitations of the solitons via adiabatical changes of system parameters, then we find that the
power is not conserved during this adiabatic excitation. These findings of nonlinear modes
can be potentially applied to physical experiments of matter waves in Bose-Einstein
condensates.

In addition, we can consider other P7 -symmetric potentials in the coupled Gross-Pitaevs-
kii equations. Due to the limitations of the parameters in this model, the amplitudes of the two
solutions are constrained by a certain relationship. Therefore, we can also consider the case of
unequal intra-component and inter-component interactions.
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