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Abstract

We study the nonlinear localized modes in two-component Bose-Einstein condensates

with parity-time-symmetric Scarf-II potential, which can be described by the coupled

Gross-Pitaevskii equations. Firstly, we investigate the linear stability of the nonlinear

modes in the focusing and defocusing cases, and get the stable and unstable domains of

nonlinear localized modes. Then we validate the results by evolving them with 5% pertur-

bations as an initial condition. Finally, we get stable solitons by considering excitations of

the soliton via adiabatical change of system parameters. These findings of nonlinear

modes can be potentially applied to physical experiments of matter waves in Bose-Ein-

stein condensates.

1 Introduction

Bose-Einstein condensate (BEC) [1, 2], as one of the important physical phenomena, has

attracted the attention of researchers. The successful observation of solitons in BECs has

become one of the research focuses in the fields of condensed matter physics and atom optics

[3–5]. Compared with the single-component ones, the multi-component BECs possess the

inter-component interactions and have complicated quantum phases and properties [6–13].

Many novel phenomena have been discovered in multi-component BECs [14–22], including

symbiotic solitons, soliton trains, soliton pairs, multi-domain walls, and multi-mode collective

excitations. As one kind of multi-component BECs, the two-component BECs trapped in a

quasi-one-dimensional harmonic potential at zero temperature can be described by the follow-

ing coupled Gross-Pitaevskii equations [23, 24]:
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whereCj is the two-component parameter, r = (x, y, z), ℏ is the Planck constant, M is the

atomic mass,r2 is the Laplacian, VjðrÞ ¼ ½o2
jxx

2=2þ o2
j?ðy

2 þ z2Þ�M=2 stands for the
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harmonic potentials, gjj is the interactions between atoms, and gj,3−j describes the inter-compo-

nent interactions (j = 1, 2) [25–28].

If the trap frequencies in the radial directions ωj? are larger than the axial directions ωjx, Eq

(1) becomes a quasi-one-dimensional system along the x direction. Through the normalization

and transformation Cj! ψj, x!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðMo1?Þ

p
x, t! (2π/ω1?)t, Eq (1) can be written in the

form [25–28]:
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where λj = ωjx/ωj?, bjj and bj,3−j are related to
R
jcjj

2x, trap frequencies in the radial directions

ωj?, and interactions between atoms gjj or inter-component gj,3−j (j = 1, 2). For the harmonic

potentials, the soliton states were studied widely [25–28]. In this paper, we consider the two-

component BECs trapped in another potential.

Put forward by Bender and his coworker in 1998 [29–31], parity-time- (PT -) symmetry

behaviors have attracted much attention in both non-Hermitian Hamiltonian systems and

nonlinear wave systems [32–34], which make systems with complex potentials possibly sup-

port fully-real linear spectra [35] and stable nonlinear modes [36–39]. That is, the potential

function U(x) = V(x) + iW(x) satisfies V(x) = V(−x) and W(−x) = −W(x) [29–31]. Over the

past few years, various PT -symmetric potentials have been introduced into the nonlinear

Schrödinger equation and the existence of different nonlinear local modes is analytically and

numerically investigated [40–51]. To better investigate physical phenomena, it is meaningful

to introduce new forms of PT -symmetric potentials in nonlinear systems.

In this paper, we investigate the coupled Gross-Pitaevskii equations with complex

PT -symmetric potentials [28]:
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where aj represent the intra-component and inter-component interactions while the interac-

tions take equal values when a1 = a2, Uj(x) are the complex PT -symmetric potentials, and the

imaginary parts of Uj(x) stand for the gain or loss term from the thermal clouds (j = 1, 2).

The present paper is built up as follows. In Sect. 2, we consider the analytic bright-soliton

solution in the coupled Gross-Pitaevskii equations with complex PT -symmetric Scarf-II

potentials; the linear stability analysis and the numerical evolution results corroborating the

analytical solitons are presented in Sect. 3; In Sect. 4, we perform numerical simulations for

the excitation and evolution of nonlinear modes via adiabatical change of system parameters;

Finally, conclusions and discussions are given in Sect. 5.

2 Localized modes in coupled Gross-Pitaevskii equations

We concentrate on stationary solutions of Eq (3) in the form

cjðx; tÞ ¼ �jðxÞeinj t; j ¼ 1; 2 ; ð4Þ
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where νj are the real propagation constant. The complex solutions ϕj(x) satisfy the following

condition

d2
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which can be solved for the given potentials Uj(x) and real propagation constant νj.
For the PT -symmetric potentials Uj(x) are all chosen as the well-known Scarf-II potentials

as

UjðxÞ ¼ Vj sech
2
ðxÞ þ iWj sechðxÞ tanhðxÞ: ð6Þ

We have the analytic bright-soliton solution as [37]

�jðxÞ ¼ Aj sechðxÞ e
iφj ; j ¼ 1; 2 ; ð7Þ

with the phases being

�j ¼
Wj

3
arctan½sinhðxÞ�; j ¼ 1; 2 ; ð8Þ

under the constraints of

18þW2
j � 9Vj

9aj
¼
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n; j ¼ 1; 2 ; ð9Þ

and νj = 1.

For the nonlinear modes given in Eq (7), the power of the solutions is defined as

Pj ¼
R1
� 1
j�jðxÞj

2dx, P = P1 + P2, while the Poynting vector

Sj ¼ i
2
ð�j�

∗
jx � �

∗
j�jxÞ ¼ A2

j Wj=3 sech3
ðxÞ. The power flows from left (right) to right (left) at x0

when S(x0)> 0 (S(x0)< 0).

3 Linear stability analysis

In this section, we investigate the linear stability of the nonlinear modes, which is a standard

protocol to show the stability of nonlinear localized modes. We consider the perturbed solu-

tion ψj(x, t), in the form

cjðx; tÞ ¼ �jðxÞ einj t þ � ½fjðxÞ eidt þ g∗j ðxÞ e
� id∗t� einj t ð10Þ

where �� 1, which is the small perturbation on the solution. fj(x) and gj(x) are the perturba-

tion eigenfunctions of the linearized eigenvalue problem. By substituting Eq (10) into Eq (5)

and linearizing with respect to �, we can drive the following linear eigenvalue problem:
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where
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The imaginary part of δ measures the growth rate of the perturbation instability. If

|Im(δ)| > 0, then the perturbation will grow exponentially with t, and the solutions are unsta-

ble; otherwise, the solutions are stable. In our numerical simulation, we use the Fourier collo-

cation method to discretize the associated differential operator as a matrix to solve the

eigenvalue problem [52]. To further verify the stability of the solitons, we numerically investi-

gate the stability by evolving them with 5% perturbations as the initial condition to simulate

the random white noise (i.e., ψ(x, 0) = ϕ(x)(1 + ξ) and ξ represents 5% perturbations). In our

numerical simulations, the second-order spatial differential is carried out by using Fourier

spectral collocation method, and the integration in time is carried out by using the explicit

fourth-order Runge-Kutta method [53].

Firstly, under the constraint of A1 = 0.5, V1 = V2, W1 = W2, we consider the focusing case

a1 = a2 = 1 and the defocusing case a1 = a2 = −1, respectively. Then we get the stable (blue) and

unstable (red) domains of nonlinear localized modes in (V1, W1) space [see Fig 1]. They are

determined by the maximum absolute value of imaginary parts of the linearized eigenvalue δ
in Eq (11). We find that solitons tend to be unstable with the increase of |W1| in the focusing

case. It is worth noting that when |W1| = 3, solitons are stable in the defocusing case.

Since the above situations are obtained in the case of A1 = 0.5, and A2 is obtained by Eq 9.

Next, we consider the case of A1 = A2. The relationships between P2 and the parameter W1 are

shown in Fig 2. We can find that when other parameters are fixed, P2 and |W1| are positively

correlated in the focusing case, while they are negatively correlated in the defocusing case. In

addition, for both cases A1 = 0.5 and A1 = A2, the intervals of W1 have no difference when the

solutions are stable.

Fig 1. Maximal imaginary part of the linearization eigenvalue δ in the (V1, W1)-space (common logarithmic scale), under the constraint of A1 = 0.5, V1 = V2, W1

= W2 and (a) a1 = 1; (b) a1 = −1.

https://doi.org/10.1371/journal.pone.0294790.g001
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In particular, for the fixed parameters a1 = a2 = 1, A1 = 0.5, V1 = V2 = 1, Fig 3(a)–3(c) dis-

play the stable soliton for W1 = W2 = 0.25 while Fig 3(d)–3(f) display the unstable soliton for

W1 = W2 = 0.55; for the fixed parameters a1 = a2 = −1, A1 = 0.5, V1 = V2 = 8, Fig 4(a)–4(c) dis-

play the stable soliton for W1 = W2 = 3 while Fig 4(d)–4(f) display the unstable soliton for

W1 = W2 = 2.

Furthermore, in the focusing case, the amplitude of the nonlinear mode is periodically

oscillating when V1 and W1 are sufficiently small, and it experiences more than 5 periods

within 1200� t� 1500 [see Fig 5].

4 Adiabatic excitation for the nonlinear modes

In this section, we consider excitations of the above-mentioned solitons via adiabatical changes

of system parameters. We change the parameters as the functions of t. To modulate the system

parameters smoothly, we consider the following “switch-on” function:

zðtÞ ¼

z
ðiniÞ
; t ¼ 0;

z
ðendÞ
� z

ðiniÞ

2
1þ sin

pt
500
�
p

2

� �� �

þ z
ðiniÞ
; 0 < t < 500;

z
ðendÞ

; 500 � t � 1500;

8
>>>>>><

>>>>>>:

ð13Þ

where z(ini), z(end) respectively represent the real initial-state and final-state parameters [38, 45,

54]. Adiabatic excitation includes two stages: excitation stage (0< t< 500) and propagation

stage (500� t� 1500). We consider two cases of excitations by setting a1, V1 and V2 to be

functions of t, that is a1! a1(t), V1! V1(t) and V2! V2(t). To facilitate the display of power

changes over time, we set A1 = A2, W1 = W2 = 0.55, VðiniÞ1 ¼ 1, VðendÞ1 ¼ 2, aðiniÞ1 ¼ 0:1,

aðendÞ1 ¼ 1. Firstly, we set VðiniÞ2 ¼ 1, VðendÞ2 ¼ 2, a2 = 0.1, and the power of nonlinear modes is

Fig 2. The relationship between power of nonlinear mode ϕ2 and W1. The parameters are chosen as: W1 = W2, and (a) V1 = V2 = 1, a1 = 1; (b) V1 = V2 = 8, a1 =

−1.

https://doi.org/10.1371/journal.pone.0294790.g002
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Fig 3. (a, d) The soliton solutions. (b, e) Linear stability eigenvalues. (c, f) Stable or unstable propagations of nonlinear modes. The parameters are chosen

as: a1 = 1, A1 = 0.5, V1 = V2 = 1, and (a-c) W1 = W2 = 0.25; (d-f) W1 = W2 = 0.55.

https://doi.org/10.1371/journal.pone.0294790.g003
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Fig 4. (a, d) The soliton solutions. (b, e) Linear stability eigenvalues. (c, f) Stable or unstable propagations of nonlinear modes. The parameters are chosen as: a1

= −1, A1 = 0.5, V1 = V2 = 8, and (a-c) W1 = W2 = 3; (d-f) W1 = W2 = 2.

https://doi.org/10.1371/journal.pone.0294790.g004
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reduced [see Fig 6a–6c]. Then, we set VðiniÞ2 ¼ 2, VðendÞ2 ¼ 1, a2 = 0.0033, and the total power of

nonlinear modes is to decrease and then increase [see Fig 6d–6f]. The above results mean that

the power is not conserved during adiabatic excitations, and it has a correlation with the initial

and final state potential parameters.

5 Conclusion

In conclusion, we study the nonlinear modes in two-component Bose-Einstein condensates

with PT -symmetric Scarf-II potential, which can be described by the coupled Gross-Pitaevskii

equations. We investigate the linear stability of the nonlinear modes and validate the results by

evolving them with 5% perturbations as an initial condition. We find that solitons tend to be

Fig 5. (a) The soliton solutions. (b) Linear stability eigenvalues. (c) Stable propagations of nonlinear modes. The parameters are chosen as: a1 = 1, A1 = 0.5, V1

= V2 = 0.01, W1 = W2 = 0.06.

https://doi.org/10.1371/journal.pone.0294790.g005
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Fig 6. Adiabatic excitation of nonlinear mode and its evolution. The parameters are chosen as: A1 = A2 = 2.2733, W1 = W2 = 0.55, VðiniÞ1 ¼ 1, VðendÞ1 ¼ 2,

aðiniÞ1 ¼ 0:1, aðendÞ1 ¼ 1 and (a-c) VðiniÞ2 ¼ 1, VðendÞ2 ¼ 2, a2 = 0.1; (d-f) VðiniÞ2 ¼ 2, VðendÞ2 ¼ 1, a2 = 0.0033.

https://doi.org/10.1371/journal.pone.0294790.g006
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unstable with the increase of |W1| in the focusing case. It is worth noting that when |W1| = 3,

solitons are stable in the defocusing case. In the focusing case, the amplitude of the nonlinear

mode is periodically oscillating when V1 and W1 are sufficiently small. Finally, we consider

excitations of the solitons via adiabatical changes of system parameters, then we find that the

power is not conserved during this adiabatic excitation. These findings of nonlinear modes

can be potentially applied to physical experiments of matter waves in Bose-Einstein

condensates.

In addition, we can consider other PT -symmetric potentials in the coupled Gross-Pitaevs-

kii equations. Due to the limitations of the parameters in this model, the amplitudes of the two

solutions are constrained by a certain relationship. Therefore, we can also consider the case of

unequal intra-component and inter-component interactions.
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