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Abstract

During the process of detecting gravitational waves in space, addressing noise issues
caused by terrestrial vibrations, natural environmental changes, and the factors intrinsic to
the detectors, this paper proposes a multiscale variational mode adaptive denoising algo-
rithm based on momentum gradient descent. This algorithm integrates momentum factors
and multiscale concepts into the variational mode algorithm to resolve the issue of multiple
local optima encountered during operation, reduce oscillations in regions with large or unsta-
ble gradient changes, and improve convergence speed. Additionally, the algorithm com-
bines the least mean squares algorithm to automatically adjust weights, thereby mitigating
the impact of noise, addressing the issue of noise from multiple and random sources, effec-
tively suppressing noise in the gravitational wave signal, and enhancing the quality and reli-
ability of the gravitational wave signal. Experimental results demonstrate that this algorithm
performs better than other algorithms in noise suppression, effectively reducing noise in
gravitational wave signals and meeting the noise suppression requirements for space-
based gravitational wave detection.

Introduction

The discovery of gravitational waves has opened a new era in the field of astronomy [1].
These extremely faint perturbations, predicted by Einstein’s General Theory of Relativity [2],
originate from extreme astrophysical events causing the curvature of spacetime, such as
black hole mergers and neutron star collisions [3]. However, the detection of gravitational
waves faces significant challenges, as these signals are extremely weak and susceptible to dis-
turbances from Earth vibrations, variations in the natural environment, thermal noise and
vibrations within the detectors, as well as interference from optical and electronic equipment
[4]. The detectors require highly precise measurements of the propagation time of light to
detect these subtle gravitational wave signals. Despite advancements, continuous efforts are
needed to enhance the sensitivity of detectors and reduce the interference of noise with grav-
itational wave signals [5].
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There is extensive research on the removal of noise from gravitational wave signals, with
researchers dedicated to improving instrument design and denoising algorithms. Mours
and collaborators studied thermal noise in gravitational wave antennas using higher-order
transmission line modes. By designing specific mode properties of optical devices, they
reduced the noise caused by detector materials and design, thereby decreasing the thermal
noise from optical components and devices. However, this significantly increased the com-
plexity of the interferometer, leading to higher difficulty and cost [6]. Nishizawa A and col-
laborators proposed using neutrons instead of light to address the issue of the displacement
noise-free interferometer’s sensitivity band being too high for astrophysical gravitational
wave sources. This approach aims to eliminate neutron displacement noise, but it demands
high stability and precision of the experimental setup [7]. Tang and collaborators investi-
gated a gravitational wave detection scheme using an atomic interferometer as an inertial
sensor and reevaluated its structure through the concept of sensitivity functions. By adjust-
ing the sensor spacing, they aimed to enhance detection sensitivity and performance while
suppressing noise without affecting the gravitational wave signal. However, the actual
detection environment can impact sensor performance and the effectiveness of the opti-
mized spacing [8]. Rich Ormiston and collaborators used machine learning algorithms to
reduce time series noise in gravitational wave detection caused by instrumental artifacts
and environmental contamination. The signal-to-noise ratio of the injected signals was
enhanced by approximately 21.6%, and the recovered parameters were consistent with the
injected set. However, the model’s generalization ability may be limited when handling
actual data with distributions different from the training data, especially in the presence of
unknown noise [9].

Considering that the current research in the field of gravitational wave signal denoising
mainly focuses on hardware aspects, we have decided to delve into algorithmic issues. The aim
is to discover more effective methods for gravitational wave signal processing, hoping to pro-
vide new theoretical support and practical solutions for the accurate extraction and noise sup-
pression of gravitational wave signals. This research is of significant importance in advancing
the field of gravitational wave astrophysics.

This paper addresses the issue of slow convergence in gravitational wave signal processing
by introducing a momentum gradient descent algorithm and the concept of multiscale
decomposition to optimize the variational mode decomposition algorithm. These improve-
ments accelerate convergence, prevent the search for the optimal solution from getting
trapped in local optima, and enhance the decomposition accuracy and efficiency of the varia-
tional mode decomposition algorithm. In the context of large-scale data processing and real-
time requirements, the incorporation of the least mean squares algorithm allows for auto-
matic parameter adjustment under complex and randomly varying noise conditions, reduc-
ing errors and enhancing stability and robustness. First, based on the characteristics of the
gravitational wave signal, momentum factors are introduced, and the optimal parameters for
decomposition are selected to perform variational mode decomposition on the gravitational
wave signal [10-12]. Then, the least mean squares algorithm is used to denoise each mode
component [13-15]. Finally, the denoised mode components are reconstructed to obtain the
denoised gravitational wave signal. Experiments demonstrate that this denoising algorithm
improves convergence speed, enables real-time adaptive parameter adjustment for denois-
ing, significantly enhances the signal-to-noise ratio of gravitational wave signals, and
improves the accuracy and reliability of signal extraction, showing excellent performance in
noise reduction.
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Materials and methods
Gravitational wave signal analysis

Gravitational waves are spacetime disturbances caused by extreme astrophysical events, origi-
nating from the acceleration changes of massive objects in the universe [16, 17]. Their ampli-
tude is extremely weak, possibly reaching variations at the nanometer or even picometer levels
when arriving at Earth, making them challenging to detect. Highly sensitive scientific instru-
ments such as laser interferometers are required for detection. However, gravitational wave
detectors face various sources of noise interference, including external environmental distur-
bances, internal vibrations, and gravitational gradient noise within the detectors [18]. These
interference factors can mask gravitational wave signals, making them more challenging to be
accurately detected and identified. The noise in gravitational waves is determined by multiple
factors, leading to the representation of gravitational waves as a combination of signal and
noise components.

The gravitational wave signal was calculated by using (1):

f#) = u(t) +2(1) (1)

where, f(t) represents the gravitational wave signal, and z(¢) represents complex Gaussian
white noise. z(t) represents the noise of the gravitational wave signal.

The noise encountered during gravitational wave detection is primarily divided into three
categories: front-end optical noise, analog circuit noise, and digital circuit noise.

Front-end optical noise includes photodetector noise, Doppler shift noise, jitter path cou-
pling noise and quantum shot noise. This type of noise directly affects the conversion effi-
ciency of optoelectronic signals, reduces the sensitivity of the detector, and increases the error
in signal detection. Taking quantum shot noise as an example, it is detection noise caused by
statistical fluctuations in the number of photons. This means there is a slight quantum fluctua-
tion limit on the stability of the incident laser intensity. The equation is as follows:

heAAf 8PhvAf

ox) =
(0x) 8n2P m2wtct

(2)

where, dx;, represents equivalent displacement noise, h represents planck constant, ¢ represents
speed of light, A represents wavelength of the laser in vacuum, P represents total optical power
of interference laser, Af represents observation bandwidth, m represents check the inertial
mass of the mass, w represents signal angular frequency.

Analog circuit noise includes amplifier thermal noise, four-quadrant photodetector noise
and low-frequency thermal drift noise, and others. This type of noise superimposes on the
gravitational wave signal, not only increasing the base noise and reducing the signal-to-noise
ratio, but also affecting signal amplification and transmission. Additionally, it can lead to sig-
nal aliasing and distortion, impacting the accuracy of position and intensity measurements.
Taking four-quadrant photodetector noise as an example, due to the different charge quanti-
ties between quadrants, the photodiodes generate induced capacitance with air and the deple-
tion layer acting as dielectrics. This results in adjacent quadrant signals inducing local
crosstalk noise. The equation is as follows:

o Ag
5(Pct = 5 A . ! COS<SO’ Sn> (3)

So

where, So represents local signal, S,, represents crosstalk signal, ¢ represents photodiode
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isolation, 0A; represents crosstalk signal amplitude noise, dAg represents local signal ampli-
tude noise.

Digital circuit noise includes sampling time jitter noise, quantization noise, phase-locked
loop noise, and others. This type of noise can cause signal distortion and spectral broadening,
affecting the phase stability and frequency locking accuracy of the signal. As a result, it leads to
inaccurate and unsynchronized phase measurements. Taking sampling time jitter noise as an
example, during the sampling process, noise is introduced due to the offset in sampling time
caused by clock signal jitter or non-idealities in the sampling circuit. The equation is as follows:

N B
0= ACAL (4)

where, 0; represents standard deviation of sampling jitter noise, /At represents the offset of sam-
pling time, Af, represents the offset of the sampling rate.

Gravitational wave signals have extremely low amplitudes but a broad frequency range,
spanning from millihertz to kilohertz and even higher. Consequently, the signal-to-noise ratio
requirements for detection equipment are very stringent. It is crucial to effectively suppress
various noise sources, such as thermal noise, environmental noise, and instrumental noise, to
ensure the reliable detection of gravitational wave signals. Therefore, reducing noise interfer-
ence is crucial in the process of gravitational wave detection. By minimizing noise interference,
the signal-to-noise ratio and quality of gravitational wave signals can be improved, leading to
more accurate measurements of various parameters of gravitational wave events. This provides
better data support for the development of gravitational wave astronomy, enabling scientists to
detect and interpret gravitational wave data more precisely, and thus gain a deeper under-
standing of the universe.

Adaptive variational mode decomposition denoising algorithm optimized
by momentum gradient descent

Variational mode decomposition. Gravitational waves propagate at the speed of light,
but their amplitude rapidly decays with increasing distance. When gravitational waves reach
Earth, their amplitude has been significantly attenuated, typically reaching levels on the order
of nanometers or picometers. This extreme weakness makes the detection and capture of grav-
itational waves extremely challenging. Variational mode decomposition (VMD) [19, 20] is a
signal processing technique that decomposes complex signals into multiple local frequency
modes. It can decompose gravitational wave signals at smaller scales, suppressing noise and
reducing interference with gravitational wave signals at smaller local frequency modes, thereby
enhancing the accuracy of detected gravitational wave signals.

Variational mode decomposition decomposes gravitational wave signals into intrinsic
mode function (IMF) with frequency and amplitude modulation characteristics and sparse
properties [21-23]. It assumes that each order mode is compactly centered around the central
frequency and estimates the bandwidth by the L* norm of the corresponding demodulated sig-
nal. The gravitational wave signal f(t) is decomposed into 1 IMF components, yielding the
constrained variational model:

j Y L —j,t 2
Jmin 337010, (30 + ) e ] 1 5

i=1

s.t.Zn: u, =f (6)
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where, u,, represents the m-th decomposed mode component, and w,,, denotes the central fre-
quency of the m-th mode component.

Using the alternating direction method of multipliers for solution, the constrained optimi-
zation problem is transformed into an unconstrained variational problem. Introducing a qua-
dratic penalty factor p and Lagrange multiplier A, we obtain the augmented Lagrangian
function, expressed as:

2

L(t, W, M) = pi; 515[(5(15) + é) x um(t)] ot

A0 = Y, (0) +

2

2
2

76 =Y (0

Using the following equations to solve and update u,,, w,,, and A:

I P
1+ 20— )] ®)
A )

Jo~ Nk (@) deo

i=1

M () = W) + C(f (@) = i%“) (10)

0= [f(w) - Y o) Jk;“’)] (1)

i=1itm

where, { represents the noise tolerance. When the signal contains strong noise, setting { = 0.

The variational mode decomposition algorithm decomposes each mode into different fre-
quencies based on their central frequency and bandwidth, making the separation between
noise and signal clearer. This reduces the impact of noise and improves the signal-to-noise
ratio. Variational mode decomposition not only enhances the detection capability of gravita-
tional wave signals but also improves the accuracy and reliability of the analysis. This enables
gravitational wave detectors to more precisely capture weak gravitational wave signals, provid-
ing a clearer and more reliable signal foundation for subsequent scientific research and data
analysis.

Improved variational mode adaptive denoising algorithm. The variational mode
decomposition algorithm decomposes weak gravitational wave signals into multiple local fre-
quency modes, involving a non-convex optimization problem that may have multiple local
optima. Given that gravitational wave signals are weak and embedded in substantial noise,
finding the global optimum for the variational mode decomposition is challenging. Therefore,
this paper introduces the gradient descent algorithm, which iteratively optimizes and gradually
approaches the optimal solution. This approach helps avoid getting trapped in local optima to
some extent, achieving better decomposition results and accelerating convergence. As a result,
the optimization process reaches a stable state more quickly, improving the computational effi-
ciency of the algorithm.
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The gradient indicates the direction of the steepest descent. Updating the modes and central
frequencies in the opposite direction of the gradient allows for finding the global optimum
solution,

ik () —ay L (12)

bpy
—

S
~

|

o, (0) =0 (w) —ay L (13)

where, o represents learning rate.

However, as the gradient descent method slows down when approaching local minima,
momentum is introduced. This includes assigning larger weights to gradients closer to the cur-
rent iteration and smaller weights to those further away. This weight distribution helps reduce
oscillations in regions with large or unstable gradient changes, allowing for smoother conver-
gence towards the optimal solution. Additionally, it enhances the computational efficiency of
the optimization process by reducing unnecessary parameter updates and direction changes,
thus accelerating convergence speed. The momentum term is given by:

=By +(1-p) v, (14)

where, ff represents momentum coefficient. Therefore, the modal and central frequency
updates for the k + 1 iteration are given by:

() = il () — o, (15)

051 () = o) () - v, (16)

In addition, this paper incorporates a multiscale decomposition approach to optimize regu-
larization weights, aiming to strike the optimal balance between preventing overfitting and
maintaining high prediction accuracy. Considering the influence of noise on gravitational
wave signals over time, this approach extracts noise at smaller scales. Therefore, the gravita-
tional wave signal is decomposed at scale p - 27"

2

ot K&(t) + i) * “m(t)} gt

13

L(u,,w,,A) =p- 2712
-1

2

2
2

T (f(t) 3 umu)) =00

The penalty factor directly affects the results of the gravitational wave signal decomposition.
If it is too large, it will restrict the bandwidth of each IMF component, resulting in a narrower
frequency range and the loss of some information, sacrificing the optimization of the objective
function. If it is too small, it will allow a wider frequency range, causing mode mixing and
sacrificing the purity of each IMF component, affecting the accuracy and precision of the
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decomposition. Therefore, decomposing at the scale of p - 27

2

L(u,,,w,, ) =p- 2"2 8t[(5(t) +7it) # “m(f)] ot

2

2

(0 =D, 0) )+ 0 =D (0

As the decomposition scale continues to refine, useful detailed information is continually
extracted, simultaneously separating useful information from noise, thus improving the accu-
racy of the gravitational wave signal. This improvement accelerates the algorithm’s speed,
enhances the signal-to-noise ratio, and is of significant importance for the advancement of
gravitational wave astronomy. It enables scientists to better understand gravitational wave phe-
nomena in the universe.

While the variational mode decomposition effectively decomposes gravitational wave sig-
nals into multiple intrinsic mode functions, it does not guarantee that each IMF exclusively
contains clear gravitational wave signals; some IMFs may include noise or other interference
components. This is particularly challenging in complex noise environments where eliminat-
ing all noise completely is difficult. Therefore, introducing the least mean squares (LMS) algo-
rithm can further denoise each IMF, reducing noise levels and enhancing the signal-to-noise
ratio, clarity, and accuracy of the signals.

Gravitational wave noise typically appears in a random manner, and the amplitude and
characteristics of gravitational wave signals may vary over time and in different environments,
making it challenging to predict and capture gravitational wave signals. The least mean squares
algorithm is an adaptive filtering technique capable of automatically adjusting weights based
on the characteristics of gravitational wave signals to reduce the impact of noise. It does not
require prior knowledge of the statistical properties of the noise. Instead, through iterative
learning of the features of gravitational wave signals, the algorithm makes incremental adjust-
ments at each step to minimize the mean square value of prediction errors. Therefore, the least
mean squares algorithm can effectively suppress noise in gravitational wave signals without
prior knowledge of noise characteristics, enhancing the quality and reliability of gravitational
wave signals [24-26]. The structure of an adaptive filter is illustrated in Fig 1.

Utilizing the least mean squares algorithm, adaptive filtering is applied to the gravitational
wave signal u; (t) to further mitigate noise interference. In this process, the gravitational wave
signal is defined as the target signal, while noise is considered as the interfering reference sig-
nal. By continuously monitoring real-time signal inputs, calculating the error between the tar-
get signal and the reference signal, and dynamically updating the filter weights based on the

T Output signal

() Expected signal
Input signal d(t)
Un (t) Adaptive
filter \_I_
Error signal
e(t)
Adaptive

algorithm

Fig 1. Structure diagram of the adaptive filter.
https://doi.org/10.1371/journal.pone.0311213.9001
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rules of the least mean squares algorithm, the system adapts to minimize the error [27-29].
This adaptive process enables the filter to effectively suppress noise components, resulting in a
clearer output signal and providing more accurate results for the detection of gravitational
wave signals.

The output of the filter is given by:

N-1

u(t) = Wi (t)u,,(¢) = Z w,(H)u, (t — i) (19)

i=0

where, u,, (f) represents the input vector, H represents the transpose, W (t) represents the
weight coefficient vector, and N represents the filter order.

u, (t) = [u,(t),u,(t—1),...,u,(t—N+1)]" (20)

W(t) = [wy (), wi (= 1), wyy (1)]" (21)

The estimation error signal is given by:

The weight vector updating equation is given by:
W(t+1) = W(t) + 2uu,,(t)e(t) (23)

where, u represents the step size factor. To ensure the convergence of the LMS algorithm, the
step size factor needs to satisfy the condition 0 < p < -1, where A,,,,, represents the maxi-

>
)‘mux

mum eigenvalue of the autocorrelation matrix of the input signal.

Reconstruction of gravitational wave signals. Due to the weak nature of gravitational
wave amplitudes, it is necessary to reconstruct the modes after noise removal, distinguishing
genuine gravitational wave components from noise to enhance signal accuracy. The recon-
struction process involves assembling the small-scale signal components processed through
enhanced variational mode decomposition and least mean square algorithm into the denoised
gravitational wave signal. Summing all processed mode components,

a(t) = iy (1) + -+ (8) = Y1) (24)

j=0

where, #;(t)(j = 0,1, - - -, k) represents the denoised mode components, #(t) represents the
reconstructed gravitational wave signal.

This process ensures that all frequency components of the gravitational wave signal are
accurately extracted and restored, resulting in a cleaner reconstructed signal, thereby improv-
ing the quality and accuracy of the gravitational wave signal.

Overall algorithm flow. First, acquire the information collected by the detectors as the
raw signal. Next, utilize momentum gradients and multiscale concepts to optimize variational
modes, avoiding multiple local optima during operation and achieving fast-converging opti-
mal decomposition. Then, decompose the raw signal using the variational mode decomposi-
tion to obtain modes of different frequencies. Apply least mean squares suppression to these
noisy frequency modes, adaptively removing noise contained in the gravitational wave signal.
Finally, recombine the denoised modes to obtain a cleaner gravitational wave signal. The over-
all algorithm flow is shown in Table 1.
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Table 1. Detailed procedure of the adaptive denoising algorithm for space-based gravitational wave signals based

on multi-scale decomposition.

Algorithm:Adaptive Denoising Algorithm for Space-based Gravitational Wave Signals based on Multi-scale

Decomposition

Input:Original signal with noise f, penalty term coefficient p

1.Initialize: A, {,,,}, {0}, k=1, n<—0

2.while: 37,0 (™ — g [15)/ Il [13) < n

3.update A1, ik ¥k by using Eqs (10), (12) and (13)

4.initialize:a, Bk =k + 1

S5y =P+ (1-B) vV Ly

6.update 5" (w), w5 (w) by using Eqs (15) and (16)

Tp=p- 2"

8.update L by using Eq (18)

9.end while

10.extracting the signal u;(j =0, 1, .. ., k)

11.update W(t) by using Eq (23)

12 filtering the u; signal separately by using Egs (20), (21) and (22)

13.calculate #; by using Eq (19)

14.reconstruct each signal components for denoising i;

Output:Decomposed gravitational wave signal u = Z;;O i

https://doi.org/10.1371/journal.pone.0311213.t001

Experiments and results

Measuring system

The principle of laser heterodyne interferometry for space-based gravitational wave detection
is illustrated in Fig 2. The spaceborne laser interferometer antenna consists of three satellites,
each separated by 5 million kilometers and connected via three bidirectional laser links. Paired

test masses from different satellites serve as the end mirrors of the interferometer, with the
interferometric measurement system monitoring optical path fluctuations caused by

‘offset phase locked laser

Proof Mass2

Local Interferometer

Stabilized laser

b————————————— 1 —5miil kn+ AL(5X10 4km)

Satellite 1 Satellite 2
Maste S/C Slave s/C I I
EOM I
Optical
Proof Massl u Telescope,
[| Local Interferometer
Lo« A
Foemier

Fig 2. Schematic of the principle of laser heterodyne interferometry for space-based gravitational wave detection.

https://doi.org/10.1371/journal.pone.0311213.g002
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gravitational waves. The two satellites carry separate laser sources, one is a stable laser and the
other is a biased phase-locked laser. Satellite 2 receives laser light emitted from Satellite 1,
which is reflected off test mass 2 on Satellite 2 and then interferes with laser 2. This interference
signal sequentially passes through a quadrant photodetector (QPD), a transimpedance ampli-
fier (TTA), a variable gain controller (VGC), an anti-aliasing filter (AAF), and an analog-to-
digital converter (ADC), converting it into an electrical signal. The phase meter reads out the
phase difference between laser 2 and the received laser. Using weak light phase-locking, laser 2
and the received laser are locked in differential frequency phase, allowing laser 2 to carry the
phase information of the received laser. The phase-locked laser 2 is then transmitted back to
Satellite 1, where it reflects off test mass 1 and interferes with laser 1. The heterodyne interfer-
ence signal thus contains information on the distance variation between the test masses of the
two satellites. By measuring the phase change of the laser interference signal on Satellite 1 with
a phase meter, the distance variation between the test masses caused by gravitational waves
can be inferred [30].

Measured data processing and analysis

The data used in this study are all sourced from the official website of the Laser Interferometer
Gravitational-Wave Observatory (LIGO). The detectors located in Hanford, Washington
(H1), and Livingston, Louisiana (L1), together form the LIGO observatory. These detectors
are used to measure spacetime strains caused by passing gravitational waves. By reading data
from both the H1 and L1 detectors, gravitational wave signals can be identified when near-
simultaneous signals with consistent waveforms are detected by both detectors. Fig 3 shows
the gravitational wave strain signals recorded by the H1 and L1 detectors and the detected
gravitational wave signal. This signal is used as a reference signal and is compared with the

b
1 -0.2 T T T (,) T T T
95 F 1 0.4
c =
I ©
» 0 1 & 061
I i
-05Ff b 0.8
20 -15 -10 -5 0 5 10 15 20 -20 -15 -10 -5 0 5 10 15 20
Time (seconds) Time (seconds)
-21 c
15x10 (I)
il |
05 —
©
5 ofF o
(7]
05— =
-1 —
15 | | | | | | |
0.7 0.6 0.5 0.4 0.3 0.2 -0.1 0 0.1

Time (seconds)

Fig 3. Schematic of spatial gravitational wave signal detection. (a) Gravitational wave strain signal recorded by the H1 detector. (b)
Gravitational wave strain signal recorded by the L1 detector. (c) Detected gravitational wave signal in actual detection.

https://doi.org/10.1371/journal.pone.0311213.g003
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actual detected signal to help identify and validate the characteristics of gravitational wave
events.

In this study, GW150914 is taken as an example. GW150914 originated from the merger of
two black holes and was detected by the Laser Interferometer Gravitational-Wave Observatory
(LIGO) between September 12 and October 20, 2015. It was the first direct observation of grav-
itational waves, confirming a significant prediction of Einstein’s theory of general relativity.
The multiscale decomposition algorithm for gravitational wave signals involves three process-
ing steps. Firstly, the improved variational mode decomposition algorithm is used to decom-
pose the signal into different local frequency modes. The choice of decomposition scale is
crucial during variational mode decomposition denoising processing. A larger decomposition
scale results in the signal being decomposed into more sub-signals, allowing for finer denois-
ing that preserves more signal characteristics. However, if the decomposition scale is too large,
it may introduce additional noise and aliasing, leading to poor denoising effects and poten-
tially larger errors. On the other hand, too small of a decomposition scale can disrupt or lose
signal characteristics, thereby affecting denoising effectiveness. Therefore, selecting an appro-
priate decomposition scale is crucial. The gravitational wave signal is extremely weak and
heavily disturbed by noise during detection. Therefore, the gravitational wave signal is decom-
posed into 5 layers, as shown in Fig 4. The first component is the raw gravitational wave signal,
which is the initial signal without variational mode decomposition processing. The other com-
ponents represent modal components obtained through variational mode decomposition
decomposition, with each layer representing local modes of different frequencies and band-
widths. These components encapsulate various frequency-domain components of the original
gravitational wave signal. Next, the least mean square adaptive algorithm is applied to suppress
noise in each local mode by continuously adjusting the filter weights, gradually reducing the
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Fig 4. VMD decomposition of spatial gravitational wave signal diagram.
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noise impact on the signal, as shown in Fig 5. Finally, the optimal output of each IMF opti-
mized by the least mean square algorithmm is combined. At this stage, each local mode has
undergone noise suppression and optimization, resulting in a more precise and cleaner gravi-
tational wave signal, as illustrated in Fig 6.

Fig 7 shows the original signal of GW150914. It is randomly segmented into two parts
[5001-9500] and [32501-37000], each part having a length of 4500. Different algorithms are
applied to denoise each segment, and the results are shown in Figs 8 and 9.

From the figures, it can be seen that compared to the original gravitational wave signal, the
quality of the segments [5001-9500] and [32501-37000] has improved to varying degrees after
denoising with the Kalman filter [31]. Although the Kalman filter can significantly recover the
gravitational wave signal, its capability to handle non-Gaussian noise is limited, particularly
for smaller amplitude noise. After denoising with wavelet thresholding [32], the quality of the
signal segments [5001-9500] and [32501-37000] improved significantly. Among them, the
wavelet thresholding method using the hard threshold function had the worst denoising effect.
It only removed most of the noise but almost failed to outline the effective components of
smaller amplitude signals. Most of the effective signal components remained mixed with
noise, resulting in some artifacts. The wavelet thresholding method using the soft threshold
function achieved better denoising results. It not only significantly removed most of the noise
but also effectively filtered out noise from higher amplitude signals, making the waveform
smoother. However, some effective local waveforms still did not show significant denoising
improvement. The multiscale decomposition denoising method proposed in this paper
achieved the best denoising results. It effectively removed most of the noise from the original
gravitational wave signal and successfully delineated almost all the effective signal components,
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resulting in a smoother waveform. This demonstrates the reliability and superiority of the pro-
posed multi-scale decomposition denoising algorithm.

In order to better assess the denoising effectiveness of various algorithms on gravitational
wave signals, we adopt the common criteria of calculating the Signal to Noise Ratio (SNR) and
Peak Signal to Noise Ratio (PSNR). Additionally, for a more objective and accurate evaluation
of the denoising performance, the Mean Squared Error (MSE) algorithm is employed. SNR,
PSNR, and MSE have long been conventional methods for measuring the effectiveness of
noise reduction algorithms. Their definitions are as follows:

SNR = 101gd S x2(m)/ > [¥(n) — y2 () (25)

MSE = - > [x(n) =y (26)

PSNR = 101g(MAX?/MSE) (27)

where, x(n) represents reference signal for gravitational wave signal, y(n) represents the gravi-
tational wave signal after denoising by different algorithms, L represents the length of the
signal.

It should be noted that in calculating the signal-to-noise ratio, peak signal-to-noise ratio,
and mean squared error of the gravitational wave signals, Eqs25-27 were not directly used.
Instead, the gravitational wave signals recorded by the H1 and L1 detectors were used as the
expected signal and observed noise.

Using different algorithms to calculate the signal-to-noise ratio, peak signal-to-noise ratio,
and mean square error of gravitational wave signals quantifies their denoising effects, further
highlighting the superiority of the proposed multiscale decomposition denoising algorithm.
The results are shown in Tables 2 and 3 respectively.

From the table, it can be seen that the denoising algorithm proposed in this paper achieves
the highest SNR and lowest MSE. Upon calculation, the average SNR obtained is 37.4563 and
the average MSE is 1.8670¢™*. Furthermore, denoising using Kalman filtering results in an

Table 2. Comparison of evaluation metrics for different algorithms applied to GW150914 [5001-9500] segment.

Algorithm SNR PSNR MSE

Kalman filtering 26.4404 35.8858 1.4943e-41
Wavelet soft threshold 15.1942 24.0826 1.9909e-40
Wavelet hard threshold 13.5802 22.1766 2.3870e-40
The proposed algorithm 39.7296 47.7625 1.6930e-43

https://doi.org/10.1371/journal.pone.0311213.t002

Table 3. Comparison of evaluation metrics for different algorithms applied to GW150914 [32501-37000]
segment.

Algorithm SNR PSNR MSE

Kalman filtering 24.7340 32.8471 2.2725e-41
Wavelet soft threshold 18.1787 26.2067 2.0281e-40
Wavelet hard threshold 16.7961 24.3422 2.4135e-40
The proposed algorithm 35.1830 47.2390 2.0410e-43

https://doi.org/10.1371/journal.pone.0311213.t003
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x1071°

average SNR of 25.5872 and an average MSE of 1.8834¢™*', with slight fluctuations, indicating
some denoising effectiveness, albeit with limited improvement, consistent with the visual
results in Figs 8 and 9. Denoising with wavelet thresholding shows no significant difference in
average SNR, with values of 16.6865 and 15.1881, respectively; similarly, the obtained average
MSE values are close, at 2.0095¢ *° and 2.4403¢~*°. The algorithm proposed in this paper
increases the average SNR by 36.65% and reduces the average MSE by two orders of magni-
tude. This once again demonstrates the superiority of the multiscale decomposition denoising
algorithm proposed in this study.

Next, the denoising process is applied to GW170817. Fig 10 shows the raw signal of
GW170817. Two segments of the signal, [7751-12250] and [32751-37250], each with a length
of 4500, are randomly selected. Different algorithms are used to denoise each segment, and the
results are shown in Figs 11 and 12.

From the figures, it can be observed that compared to the original GW170817 gravitational
wave signal, the quality of the segments [7751-12250] and [32751-37250] improved to varying
degrees after denoising with Kalman filtering. Although this method can significantly restore
the gravitational wave signal, it performs poorly in areas with high local noise frequencies.
Similarly, the quality of the segments [7751-12250] and [32751-37250] improved after denois-
ing with wavelet thresholding. Among these, the hard thresholding wavelet method achieved
the poorest denoising results, particularly in the noisy segments where effective signal compo-
nents were barely delineated, and most remained mixed with noise, showing some artifacts.
The soft thresholding wavelet method performed better, effectively removing most of the noise
and filtering out high-frequency noise, resulting in a smoother waveform. However, some
effective local waveforms still showed insignificant denoising improvements. The multiscale
decomposition denoising method proposed in this paper achieved the best denoising results. It
effectively removed most of the noise from the original gravitational wave signal and accu-
rately delineated almost all effective signal components, resulting in a much smoother wave-
form. This demonstrates the reliability and superiority of the multiscale decomposition
denoising algorithm proposed in this study.
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Fig 10. Space gravitational wave signal GW170817 diagram.
https://doi.org/10.1371/journal.pone.0311213.9010
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Table 4. Comparison of evaluation metrics for different algorithms applied to GW170817 [7751-12250] segment.

Algorithm SNR PSNR MSE

Kalman filtering 24.6132 37.2392 1.6895e-41
Wavelet soft threshold 19.7989 28.9391 1.3109e-40
Wavelet hard threshold 16.7658 25.1007 2.6361e-40
The proposed algorithm 35.9748 44.7625 1.5398e-43

https://doi.org/10.1371/journal.pone.0311213.t1004

Table 5. Comparison of evaluation metrics for different algorithms applied to GW170817 [32751-37250]
segment.

Algorithm SNR PSNR MSE

Kalman filtering 25.6863 31.8116 1.3929¢-41
Wavelet soft threshold 20.3634 29.2019 1.1295e-40
Wavelet hard threshold 17.5975 27.8937 2.2381e-40
The proposed algorithm 38.4079 46.5447 1.6212e-43

https://doi.org/10.1371/journal.pone.0311213.t005

Using different algorithms to calculate the signal-to-noise ratio, peak signal-to-noise ratio,
and mean square error of gravitational wave signals quantifies their denoising effects, further
highlighting the superiority of the proposed multiscale decomposition denoising algorithm.
The results are shown in Tables 4 and 5 respectively.

From the table, it can be seen that the denoising algorithm proposed in this paper achieves
the highest SNR and the lowest MSE. The calculated average SNR is 37.1914, and the average
MSE is 1.5805¢™*. Additionally, denoising using Kalman filtering results in an average SNR of
25.1498 and an average MSE of 1.5412¢™*', both showing slight variations, indicating some
denoising effectiveness but limited improvement, consistent with the results shown in Figs 11
and 12. The wavelet thresholding method shows no significant difference in average SNR, with
values of 20.0812 and 17.1817, respectively; the obtained average MSE values are also similar,
at 1.2202¢™*" and 2.4371¢™*. The proposed algorithm increases the average SNR by 33.05%
and reduces the average MSE by two orders of magnitude. This further demonstrates the supe-
riority of the multiscale decomposition denoising algorithm proposed in this paper.

Due to the fact that GW150914 and GW170817 are two well-known gravitational wave
events with strong and distinct signals that can be clearly distinguished in observational data,
we selected the gravitational wave event GW170104, which has a relatively lower signal-to-
noise ratio, for low-SNR experiments.

Next, the denoising process is applied to GW170104. Fig 13 shows the raw signal of
GW170104. Two segments of the signal, [1-4500] and [25501-30000], each with a length of
4500, are randomly selected. Different algorithms are used to denoise each segment, and the
results are shown in Figs 14 and 15.

From the figures, it can be observed that compared to the original GW170104 gravitational
wave signal, the quality of the segments [1-4500] and [25501-30000] improved to varying
degrees after denoising with Kalman filtering. Although this method can significantly restore
the gravitational wave signal, it performs poorly in areas with high local noise frequencies.
Similarly, the quality of the segments [1-4500] and [25501-30000] improved after denoising
with wavelet thresholding. Among these, the hard thresholding wavelet method achieved the
poorest denoising results, particularly in the noisy segments where effective signal components
were barely delineated, and most remained mixed with noise, showing some artifacts. The soft
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Fig 13. Space gravitational wave signal GW170104 diagram.
https://doi.org/10.1371/journal.pone.0311213.9013

thresholding wavelet method performed better, effectively removing most of the noise and fil-
tering out high-frequency noise, resulting in a smoother waveform. However, some effective
local waveforms still showed insignificant denoising improvements. The multiscale decompo-
sition denoising method proposed in this paper achieved the best denoising results. It effec-
tively removed most of the noise from the original gravitational wave signal and accurately
delineated almost all effective signal components, resulting in a much smoother waveform.
This demonstrates the reliability and superiority of the multiscale decomposition denoising
algorithm proposed in this study.

Using different algorithms to calculate the signal-to-noise ratio, peak signal-to-noise ratio,
and mean square error of gravitational wave signals quantifies their denoising effects, further
highlighting the superiority of the proposed multiscale decomposition denoising algorithm.
The results are shown in Tables 6 and 7 respectively.

From the table, it can be seen that the denoising algorithm proposed in this paper achieves
the highest SNR and the lowest MSE. The calculated average SNR is 23.8414, and the average
MSE is 7.8085¢ **. Additionally, denoising using Kalman filtering results in an average SNR of
19.7466 and an average MSE of 8.6262¢ *, both showing slight variations, indicating some
denoising effectiveness but limited improvement, consistent with the results shown in Figs 14
and 15. The wavelet thresholding method shows no significant difference in average SNR, with
values of 16.1589 and 14.4087, respectively; the obtained average MSE values are also similar,
at 7.1435¢ >° and 2.6405¢ . The proposed algorithm increases the average SNR by 22.24%
and reduces the average MSE by two orders of magnitude. This further demonstrates the supe-
riority of the multiscale decomposition denoising algorithm proposed in this paper.

The momentum gradient-based variational mode optimization algorithm enhances the
convergence speed. This is demonstrated by processing and comparing two segments of the
GW 150914 signal, [5001-9500] and [32501-37000], two segments of the GW170817 signal,
[7751-12250] and [32751-37250], and two segments of the GW170104 signal, [1-4500] and
[25501-30000]. The convergence results are shown in Fig 16.
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Table 6. Comparison of evaluation metrics for different algorithms applied to GW170104 [1-4500] segment.

Algorithm SNR PSNR MSE

Kalman filtering 19.7817 28.8923 9.9899¢-40
Wavelet soft threshold 16.1765 24.1015 7.2957e-39
Wavelet hard threshold 14.9407 20.3406 3.7028e-39
The proposed algorithm 24.3479 32.2929 8.0746e-42

https://doi.org/10.1371/journal.pone.0311213.t006

Table 7. Comparison of evaluation metrics for different algorithms applied to GW170104 [25501-30000]

segment.

Algorithm SNR PSNR MSE
Kalman filtering 19.7114 27.2963 7.2625e-40
Wavelet soft threshold 16.1412 24.2661 6.9913e-39
Wavelet hard threshold 13.8767 22.4028 1.5782e-39
The proposed algorithm 23.3348 31.8864 7.5424e-42

https://doi.org/10.1371/journal.pone.0311213.t007

As clearly shown in the figure, the momentum gradient-based variational mode decompo-

sition optimization algorithm improves the convergence speed compared to the original varia-
tional mode decomposition algorithm, accelerates response time, and enhances the least mean
square algorithm’s adaptability to noise removal, demonstrating the superiority of the
improved variational mode decomposition algorithm.

Conclusion

This paper proposes a denoising method for space-based gravitational wave signals based on
multiscale decomposition with momentum gradient descent, addressing the requirements for
noise reduction in space gravitational wave detection signals. The study conducts an in-depth

0.06

0.05 [—

0.04 —

Time(s)
)
8
T

0.01 —

—%— VMD
—6— Improving VMD

AA’————’_’G\é

1 |

0
GW150914[5001-9500] GW150914[32501-37000]

Fig 16. Convergence speed of the improved algorithm.
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investigation into the denoising of gravitational wave signals. In order to mitigate the challenge
of low signal-to-noise ratio resulting from the faint nature of gravitational wave signals and
their susceptibility to noise, this study employs the variational mode decomposition algorithm
and the least mean squares algorithm in the context of space-based gravitational wave detec-
tion. This approach aims to remove noise from gravitational wave signals at smaller scales. In
order to address the challenges of slow convergence and the existence of multiple local optima
in the variational mode decomposition algorithm, this study incorporates momentum gradient
descent and multiscale concepts to optimize the variational mode decomposition algorithm,
thereby enhancing its convergence speed. Comprehensive experiments and both qualitative
and quantitative results demonstrate that the proposed algorithm significantly outperforms
other algorithms, achieving an average signal-to-noise ratio improvement of 30.65% and an
average mean squared error improvement by two orders of magnitude from e™>° to e "*. These
findings underscore the algorithm’s effectiveness and superiority in noise suppression and
enhanced detection capability, effectively meeting the noise suppression requirements for
space-based gravitational wave detection.
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