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Abstract

During the process of detecting gravitational waves in space, addressing noise issues

caused by terrestrial vibrations, natural environmental changes, and the factors intrinsic to

the detectors, this paper proposes a multiscale variational mode adaptive denoising algo-

rithm based on momentum gradient descent. This algorithm integrates momentum factors

and multiscale concepts into the variational mode algorithm to resolve the issue of multiple

local optima encountered during operation, reduce oscillations in regions with large or unsta-

ble gradient changes, and improve convergence speed. Additionally, the algorithm com-

bines the least mean squares algorithm to automatically adjust weights, thereby mitigating

the impact of noise, addressing the issue of noise from multiple and random sources, effec-

tively suppressing noise in the gravitational wave signal, and enhancing the quality and reli-

ability of the gravitational wave signal. Experimental results demonstrate that this algorithm

performs better than other algorithms in noise suppression, effectively reducing noise in

gravitational wave signals and meeting the noise suppression requirements for space-

based gravitational wave detection.

Introduction

The discovery of gravitational waves has opened a new era in the field of astronomy [1].

These extremely faint perturbations, predicted by Einstein’s General Theory of Relativity [2],

originate from extreme astrophysical events causing the curvature of spacetime, such as

black hole mergers and neutron star collisions [3]. However, the detection of gravitational

waves faces significant challenges, as these signals are extremely weak and susceptible to dis-

turbances from Earth vibrations, variations in the natural environment, thermal noise and

vibrations within the detectors, as well as interference from optical and electronic equipment

[4]. The detectors require highly precise measurements of the propagation time of light to

detect these subtle gravitational wave signals. Despite advancements, continuous efforts are

needed to enhance the sensitivity of detectors and reduce the interference of noise with grav-

itational wave signals [5].
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There is extensive research on the removal of noise from gravitational wave signals, with

researchers dedicated to improving instrument design and denoising algorithms. Mours

and collaborators studied thermal noise in gravitational wave antennas using higher-order

transmission line modes. By designing specific mode properties of optical devices, they

reduced the noise caused by detector materials and design, thereby decreasing the thermal

noise from optical components and devices. However, this significantly increased the com-

plexity of the interferometer, leading to higher difficulty and cost [6]. Nishizawa A and col-

laborators proposed using neutrons instead of light to address the issue of the displacement

noise-free interferometer’s sensitivity band being too high for astrophysical gravitational

wave sources. This approach aims to eliminate neutron displacement noise, but it demands

high stability and precision of the experimental setup [7]. Tang and collaborators investi-

gated a gravitational wave detection scheme using an atomic interferometer as an inertial

sensor and reevaluated its structure through the concept of sensitivity functions. By adjust-

ing the sensor spacing, they aimed to enhance detection sensitivity and performance while

suppressing noise without affecting the gravitational wave signal. However, the actual

detection environment can impact sensor performance and the effectiveness of the opti-

mized spacing [8]. Rich Ormiston and collaborators used machine learning algorithms to

reduce time series noise in gravitational wave detection caused by instrumental artifacts

and environmental contamination. The signal-to-noise ratio of the injected signals was

enhanced by approximately 21.6%, and the recovered parameters were consistent with the

injected set. However, the model’s generalization ability may be limited when handling

actual data with distributions different from the training data, especially in the presence of

unknown noise [9].

Considering that the current research in the field of gravitational wave signal denoising

mainly focuses on hardware aspects, we have decided to delve into algorithmic issues. The aim

is to discover more effective methods for gravitational wave signal processing, hoping to pro-

vide new theoretical support and practical solutions for the accurate extraction and noise sup-

pression of gravitational wave signals. This research is of significant importance in advancing

the field of gravitational wave astrophysics.

This paper addresses the issue of slow convergence in gravitational wave signal processing

by introducing a momentum gradient descent algorithm and the concept of multiscale

decomposition to optimize the variational mode decomposition algorithm. These improve-

ments accelerate convergence, prevent the search for the optimal solution from getting

trapped in local optima, and enhance the decomposition accuracy and efficiency of the varia-

tional mode decomposition algorithm. In the context of large-scale data processing and real-

time requirements, the incorporation of the least mean squares algorithm allows for auto-

matic parameter adjustment under complex and randomly varying noise conditions, reduc-

ing errors and enhancing stability and robustness. First, based on the characteristics of the

gravitational wave signal, momentum factors are introduced, and the optimal parameters for

decomposition are selected to perform variational mode decomposition on the gravitational

wave signal [10–12]. Then, the least mean squares algorithm is used to denoise each mode

component [13–15]. Finally, the denoised mode components are reconstructed to obtain the

denoised gravitational wave signal. Experiments demonstrate that this denoising algorithm

improves convergence speed, enables real-time adaptive parameter adjustment for denois-

ing, significantly enhances the signal-to-noise ratio of gravitational wave signals, and

improves the accuracy and reliability of signal extraction, showing excellent performance in

noise reduction.
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Materials and methods

Gravitational wave signal analysis

Gravitational waves are spacetime disturbances caused by extreme astrophysical events, origi-

nating from the acceleration changes of massive objects in the universe [16, 17]. Their ampli-

tude is extremely weak, possibly reaching variations at the nanometer or even picometer levels

when arriving at Earth, making them challenging to detect. Highly sensitive scientific instru-

ments such as laser interferometers are required for detection. However, gravitational wave

detectors face various sources of noise interference, including external environmental distur-

bances, internal vibrations, and gravitational gradient noise within the detectors [18]. These

interference factors can mask gravitational wave signals, making them more challenging to be

accurately detected and identified. The noise in gravitational waves is determined by multiple

factors, leading to the representation of gravitational waves as a combination of signal and

noise components.

The gravitational wave signal was calculated by using (1):

f ðtÞ ¼ uðtÞ þ zðtÞ ð1Þ

where, f(t) represents the gravitational wave signal, and z(t) represents complex Gaussian

white noise. z(t) represents the noise of the gravitational wave signal.

The noise encountered during gravitational wave detection is primarily divided into three

categories: front-end optical noise, analog circuit noise, and digital circuit noise.

Front-end optical noise includes photodetector noise, Doppler shift noise, jitter path cou-

pling noise and quantum shot noise. This type of noise directly affects the conversion effi-

ciency of optoelectronic signals, reduces the sensitivity of the detector, and increases the error

in signal detection. Taking quantum shot noise as an example, it is detection noise caused by

statistical fluctuations in the number of photons. This means there is a slight quantum fluctua-

tion limit on the stability of the incident laser intensity. The equation is as follows:

ðdxsÞ
2
¼
hcl4 f

8p2P
þ

8Phv4 f
m2o4c4

ð2Þ

where, δxs represents equivalent displacement noise, h represents planck constant, c represents

speed of light, λ represents wavelength of the laser in vacuum, P represents total optical power

of interference laser,4f represents observation bandwidth, m represents check the inertial

mass of the mass, ω represents signal angular frequency.

Analog circuit noise includes amplifier thermal noise, four-quadrant photodetector noise

and low-frequency thermal drift noise, and others. This type of noise superimposes on the

gravitational wave signal, not only increasing the base noise and reducing the signal-to-noise

ratio, but also affecting signal amplification and transmission. Additionally, it can lead to sig-

nal aliasing and distortion, impacting the accuracy of position and intensity measurements.

Taking four-quadrant photodetector noise as an example, due to the different charge quanti-

ties between quadrants, the photodiodes generate induced capacitance with air and the deple-

tion layer acting as dielectrics. This results in adjacent quadrant signals inducing local

crosstalk noise. The equation is as follows:

dφct ¼ d
a � ASn

AS0

 !

� coshS0; Sni ð3Þ

where, S0 represents local signal, Sn represents crosstalk signal, α represents photodiode
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isolation, dASn
represents crosstalk signal amplitude noise, dAS0

represents local signal ampli-

tude noise.

Digital circuit noise includes sampling time jitter noise, quantization noise, phase-locked

loop noise, and others. This type of noise can cause signal distortion and spectral broadening,

affecting the phase stability and frequency locking accuracy of the signal. As a result, it leads to

inaccurate and unsynchronized phase measurements. Taking sampling time jitter noise as an

example, during the sampling process, noise is introduced due to the offset in sampling time

caused by clock signal jitter or non-idealities in the sampling circuit. The equation is as follows:

s2
j ¼

1

12
4 t2 4 f 2

s ð4Þ

where, σj represents standard deviation of sampling jitter noise,4t represents the offset of sam-

pling time,4fs represents the offset of the sampling rate.

Gravitational wave signals have extremely low amplitudes but a broad frequency range,

spanning from millihertz to kilohertz and even higher. Consequently, the signal-to-noise ratio

requirements for detection equipment are very stringent. It is crucial to effectively suppress

various noise sources, such as thermal noise, environmental noise, and instrumental noise, to

ensure the reliable detection of gravitational wave signals. Therefore, reducing noise interfer-

ence is crucial in the process of gravitational wave detection. By minimizing noise interference,

the signal-to-noise ratio and quality of gravitational wave signals can be improved, leading to

more accurate measurements of various parameters of gravitational wave events. This provides

better data support for the development of gravitational wave astronomy, enabling scientists to

detect and interpret gravitational wave data more precisely, and thus gain a deeper under-

standing of the universe.

Adaptive variational mode decomposition denoising algorithm optimized

by momentum gradient descent

Variational mode decomposition. Gravitational waves propagate at the speed of light,

but their amplitude rapidly decays with increasing distance. When gravitational waves reach

Earth, their amplitude has been significantly attenuated, typically reaching levels on the order

of nanometers or picometers. This extreme weakness makes the detection and capture of grav-

itational waves extremely challenging. Variational mode decomposition (VMD) [19, 20] is a

signal processing technique that decomposes complex signals into multiple local frequency

modes. It can decompose gravitational wave signals at smaller scales, suppressing noise and

reducing interference with gravitational wave signals at smaller local frequency modes, thereby

enhancing the accuracy of detected gravitational wave signals.

Variational mode decomposition decomposes gravitational wave signals into intrinsic

mode function (IMF) with frequency and amplitude modulation characteristics and sparse

properties [21–23]. It assumes that each order mode is compactly centered around the central

frequency and estimates the bandwidth by the L2 norm of the corresponding demodulated sig-

nal. The gravitational wave signal f(t) is decomposed into m IMF components, yielding the

constrained variational model:

min
fumgfomg

(
Xm

i¼1

k @t dðtÞ þ
j
pt

� �

∗ umðtÞe� jomt
� �

k
2

2

)

ð5Þ

s:t:
Xm

i¼1

um ¼ f ð6Þ
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where, um represents the m-th decomposed mode component, and ωm denotes the central fre-

quency of the m-th mode component.

Using the alternating direction method of multipliers for solution, the constrained optimi-

zation problem is transformed into an unconstrained variational problem. Introducing a qua-

dratic penalty factor ρ and Lagrange multiplier λ, we obtain the augmented Lagrangian

function, expressed as:

L um;wm; lð Þ ¼ r
Xm

i¼1

�
�
�
�
�
@t d tð Þ þ

j
pt

� �

∗ um tð Þ
� �

e� jwmt
�
�
�
�
�

2

2

þl
H
ðf ðtÞ �

Xm

i¼1

umðtÞÞ þ

�
�
�
�
�
f ðtÞ �

Xm

i¼1

umðtÞ

�
�
�
�
�

2

2

ð7Þ

Using the following equations to solve and update um, ωm, and λ:

ûkþ1
m oð Þ ¼

φ
h
1þ 2rðo � ok

mÞ
2
i

ð8Þ

okþ1
m oð Þ ¼

R1
0
ojûkþ1

m ðoÞj
2do

R1
0
jûkþ1

m ðoÞj
2do

ð9Þ

l̂kþ1ðoÞ ¼ l̂kðoÞ þ z

 

f̂ ðoÞ �
Xm

i¼1

ûkþ1

m

!

ð10Þ

φ ¼ f oð Þ �
XM

i¼1;izm

ûkþ1

i oð Þ þ
l̂kðoÞ

2

" #

ð11Þ

where, z represents the noise tolerance. When the signal contains strong noise, setting z = 0.

The variational mode decomposition algorithm decomposes each mode into different fre-

quencies based on their central frequency and bandwidth, making the separation between

noise and signal clearer. This reduces the impact of noise and improves the signal-to-noise

ratio. Variational mode decomposition not only enhances the detection capability of gravita-

tional wave signals but also improves the accuracy and reliability of the analysis. This enables

gravitational wave detectors to more precisely capture weak gravitational wave signals, provid-

ing a clearer and more reliable signal foundation for subsequent scientific research and data

analysis.

Improved variational mode adaptive denoising algorithm. The variational mode

decomposition algorithm decomposes weak gravitational wave signals into multiple local fre-

quency modes, involving a non-convex optimization problem that may have multiple local

optima. Given that gravitational wave signals are weak and embedded in substantial noise,

finding the global optimum for the variational mode decomposition is challenging. Therefore,

this paper introduces the gradient descent algorithm, which iteratively optimizes and gradually

approaches the optimal solution. This approach helps avoid getting trapped in local optima to

some extent, achieving better decomposition results and accelerating convergence. As a result,

the optimization process reaches a stable state more quickly, improving the computational effi-

ciency of the algorithm.
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The gradient indicates the direction of the steepest descent. Updating the modes and central

frequencies in the opposite direction of the gradient allows for finding the global optimum

solution,

û 0mðoÞ ¼ ûkmðoÞ � a5 L ð12Þ

o0mðoÞ ¼ o
k
mðoÞ � a5 L ð13Þ

where, α represents learning rate.

However, as the gradient descent method slows down when approaching local minima,

momentum is introduced. This includes assigning larger weights to gradients closer to the cur-

rent iteration and smaller weights to those further away. This weight distribution helps reduce

oscillations in regions with large or unstable gradient changes, allowing for smoother conver-

gence towards the optimal solution. Additionally, it enhances the computational efficiency of

the optimization process by reducing unnecessary parameter updates and direction changes,

thus accelerating convergence speed. The momentum term is given by:

vk ¼ bvk� 1 þ ð1 � bÞ 5 Lk� 1 ð14Þ

where, β represents momentum coefficient. Therefore, the modal and central frequency

updates for the k + 1 iteration are given by:

ûkþ1
m ðoÞ ¼ û 0mðoÞ � avk ð15Þ

okþ1
m ðoÞ ¼ o

0
mðoÞ � avk ð16Þ

In addition, this paper incorporates a multiscale decomposition approach to optimize regu-

larization weights, aiming to strike the optimal balance between preventing overfitting and

maintaining high prediction accuracy. Considering the influence of noise on gravitational

wave signals over time, this approach extracts noise at smaller scales. Therefore, the gravita-

tional wave signal is decomposed at scale ρ � 2−1:

L um;wm; lð Þ ¼ r � 2� 1
Xm

i¼1

�
�
�
�
�
@t d tð Þ þ

j
pt

� �

∗ um tð Þ
� �

e� jwmt
�
�
�
�
�

2

2

þl
H

 

f ðtÞ �
Xm

i¼1

umðtÞ

!

þ

�
�
�
�
�
f ðtÞ �

Xm

i¼1

umðtÞ

�
�
�
�
�

2

2

ð17Þ

The penalty factor directly affects the results of the gravitational wave signal decomposition.

If it is too large, it will restrict the bandwidth of each IMF component, resulting in a narrower

frequency range and the loss of some information, sacrificing the optimization of the objective

function. If it is too small, it will allow a wider frequency range, causing mode mixing and

sacrificing the purity of each IMF component, affecting the accuracy and precision of the

PLOS ONE Improvement of multiscale decomposition for space-based gravitational wave signal processing technology

PLOS ONE | https://doi.org/10.1371/journal.pone.0311213 October 31, 2024 6 / 26

https://doi.org/10.1371/journal.pone.0311213


decomposition. Therefore, decomposing at the scale of ρ � 2−k:

L um;wm; lð Þ ¼ r � 2� k
Xm

i¼1

�
�
�
�
�
@t d tð Þ þ

j
pt

� �

∗ um tð Þ
� �

e� jwmt
�
�
�
�
�

2

2

þl
H

 

f ðtÞ �
Xm

i¼1

umðtÞ

!

þ

�
�
�
�
�
f ðtÞ �

Xm

i¼1

umðtÞ

�
�
�
�
�

2

2

ð18Þ

As the decomposition scale continues to refine, useful detailed information is continually

extracted, simultaneously separating useful information from noise, thus improving the accu-

racy of the gravitational wave signal. This improvement accelerates the algorithm’s speed,

enhances the signal-to-noise ratio, and is of significant importance for the advancement of

gravitational wave astronomy. It enables scientists to better understand gravitational wave phe-

nomena in the universe.

While the variational mode decomposition effectively decomposes gravitational wave sig-

nals into multiple intrinsic mode functions, it does not guarantee that each IMF exclusively

contains clear gravitational wave signals; some IMFs may include noise or other interference

components. This is particularly challenging in complex noise environments where eliminat-

ing all noise completely is difficult. Therefore, introducing the least mean squares (LMS) algo-

rithm can further denoise each IMF, reducing noise levels and enhancing the signal-to-noise

ratio, clarity, and accuracy of the signals.

Gravitational wave noise typically appears in a random manner, and the amplitude and

characteristics of gravitational wave signals may vary over time and in different environments,

making it challenging to predict and capture gravitational wave signals. The least mean squares

algorithm is an adaptive filtering technique capable of automatically adjusting weights based

on the characteristics of gravitational wave signals to reduce the impact of noise. It does not

require prior knowledge of the statistical properties of the noise. Instead, through iterative

learning of the features of gravitational wave signals, the algorithm makes incremental adjust-

ments at each step to minimize the mean square value of prediction errors. Therefore, the least

mean squares algorithm can effectively suppress noise in gravitational wave signals without

prior knowledge of noise characteristics, enhancing the quality and reliability of gravitational

wave signals [24–26]. The structure of an adaptive filter is illustrated in Fig 1.

Utilizing the least mean squares algorithm, adaptive filtering is applied to the gravitational

wave signal uj (t) to further mitigate noise interference. In this process, the gravitational wave

signal is defined as the target signal, while noise is considered as the interfering reference sig-

nal. By continuously monitoring real-time signal inputs, calculating the error between the tar-

get signal and the reference signal, and dynamically updating the filter weights based on the

Fig 1. Structure diagram of the adaptive filter.

https://doi.org/10.1371/journal.pone.0311213.g001
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rules of the least mean squares algorithm, the system adapts to minimize the error [27–29].

This adaptive process enables the filter to effectively suppress noise components, resulting in a

clearer output signal and providing more accurate results for the detection of gravitational

wave signals.

The output of the filter is given by:

~uðtÞ ¼WHðtÞumðtÞ ¼
XN� 1

i¼0

wiðtÞumðt � iÞ ð19Þ

where, um (t) represents the input vector, H represents the transpose, W (t) represents the

weight coefficient vector, and N represents the filter order.

umðtÞ ¼ ½umðtÞ; umðt � 1Þ; . . . ; umðt � N þ 1Þ�
H ð20Þ

WðtÞ ¼ ½w0ðtÞ;w1ðt � 1Þ; . . . ;wN� 1ðtÞ�
H ð21Þ

The estimation error signal is given by:

eðtÞ ¼ dðtÞ � ~uðtÞ ð22Þ

The weight vector updating equation is given by:

Wðt þ 1Þ ¼WðtÞ þ 2mumðtÞeðtÞ ð23Þ

where, μ represents the step size factor. To ensure the convergence of the LMS algorithm, the

step size factor needs to satisfy the condition 0 < m < 1

lmax
, where λmax represents the maxi-

mum eigenvalue of the autocorrelation matrix of the input signal.

Reconstruction of gravitational wave signals. Due to the weak nature of gravitational

wave amplitudes, it is necessary to reconstruct the modes after noise removal, distinguishing

genuine gravitational wave components from noise to enhance signal accuracy. The recon-

struction process involves assembling the small-scale signal components processed through

enhanced variational mode decomposition and least mean square algorithm into the denoised

gravitational wave signal. Summing all processed mode components,

~uðtÞ ¼ ~u0ðtÞ þ � � � þ ~ujðtÞ ¼
Xk

j¼0

~ujðtÞ ð24Þ

where, ~ujðtÞðj ¼ 0; 1; � � � ; kÞ represents the denoised mode components, ~uðtÞ represents the

reconstructed gravitational wave signal.

This process ensures that all frequency components of the gravitational wave signal are

accurately extracted and restored, resulting in a cleaner reconstructed signal, thereby improv-

ing the quality and accuracy of the gravitational wave signal.

Overall algorithm flow. First, acquire the information collected by the detectors as the

raw signal. Next, utilize momentum gradients and multiscale concepts to optimize variational

modes, avoiding multiple local optima during operation and achieving fast-converging opti-

mal decomposition. Then, decompose the raw signal using the variational mode decomposi-

tion to obtain modes of different frequencies. Apply least mean squares suppression to these

noisy frequency modes, adaptively removing noise contained in the gravitational wave signal.

Finally, recombine the denoised modes to obtain a cleaner gravitational wave signal. The over-

all algorithm flow is shown in Table 1.
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Experiments and results

Measuring system

The principle of laser heterodyne interferometry for space-based gravitational wave detection

is illustrated in Fig 2. The spaceborne laser interferometer antenna consists of three satellites,

each separated by 5 million kilometers and connected via three bidirectional laser links. Paired

test masses from different satellites serve as the end mirrors of the interferometer, with the

interferometric measurement system monitoring optical path fluctuations caused by

Table 1. Detailed procedure of the adaptive denoising algorithm for space-based gravitational wave signals based

on multi-scale decomposition.

Algorithm:Adaptive Denoising Algorithm for Space-based Gravitational Wave Signals based on Multi-scale

Decomposition

Input:Original signal with noise f, penalty term coefficient ρ
1.Initialize: λ, {um}, {ωm}, k = 1, n 0

2.while:
PM

m¼1
ðkûkþ1

m � û
k
mk

2

2
Þ=ðkûkmk

2

2
Þ < Z

3.update l̂kþ1; ûkþ1
m ;okþ1

m by using Eqs (10), (12) and (13)

4.initialize:α, β,k = k + 1

5.vk = βvk−1 + (1 − β)5 Lk−1

6.update ûkþ1
m ðoÞ;o

kþ1
m ðoÞ by using Eqs (15) and (16)

7.ρk = ρ � 2−k

8.update L by using Eq (18)

9.end while

10.extracting the signal uj(j = 0, 1, . . ., k)

11.update W(t) by using Eq (23)

12.filtering the uj signal separately by using Eqs (20), (21) and (22)

13.calculate ~uj by using Eq (19)

14.reconstruct each signal components for denoising ~uj

Output:Decomposed gravitational wave signal ~u ¼
Pk

i¼0
~uj

https://doi.org/10.1371/journal.pone.0311213.t001

Fig 2. Schematic of the principle of laser heterodyne interferometry for space-based gravitational wave detection.

https://doi.org/10.1371/journal.pone.0311213.g002
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gravitational waves. The two satellites carry separate laser sources, one is a stable laser and the

other is a biased phase-locked laser. Satellite 2 receives laser light emitted from Satellite 1,

which is reflected off test mass 2 on Satellite 2 and then interferes with laser 2. This interference

signal sequentially passes through a quadrant photodetector (QPD), a transimpedance ampli-

fier (TIA), a variable gain controller (VGC), an anti-aliasing filter (AAF), and an analog-to-

digital converter (ADC), converting it into an electrical signal. The phase meter reads out the

phase difference between laser 2 and the received laser. Using weak light phase-locking, laser 2

and the received laser are locked in differential frequency phase, allowing laser 2 to carry the

phase information of the received laser. The phase-locked laser 2 is then transmitted back to

Satellite 1, where it reflects off test mass 1 and interferes with laser 1. The heterodyne interfer-

ence signal thus contains information on the distance variation between the test masses of the

two satellites. By measuring the phase change of the laser interference signal on Satellite 1 with

a phase meter, the distance variation between the test masses caused by gravitational waves

can be inferred [30].

Measured data processing and analysis

The data used in this study are all sourced from the official website of the Laser Interferometer

Gravitational-Wave Observatory (LIGO). The detectors located in Hanford, Washington

(H1), and Livingston, Louisiana (L1), together form the LIGO observatory. These detectors

are used to measure spacetime strains caused by passing gravitational waves. By reading data

from both the H1 and L1 detectors, gravitational wave signals can be identified when near-

simultaneous signals with consistent waveforms are detected by both detectors. Fig 3 shows

the gravitational wave strain signals recorded by the H1 and L1 detectors and the detected

gravitational wave signal. This signal is used as a reference signal and is compared with the

Fig 3. Schematic of spatial gravitational wave signal detection. (a) Gravitational wave strain signal recorded by the H1 detector. (b)

Gravitational wave strain signal recorded by the L1 detector. (c) Detected gravitational wave signal in actual detection.

https://doi.org/10.1371/journal.pone.0311213.g003
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actual detected signal to help identify and validate the characteristics of gravitational wave

events.

In this study, GW150914 is taken as an example. GW150914 originated from the merger of

two black holes and was detected by the Laser Interferometer Gravitational-Wave Observatory

(LIGO) between September 12 and October 20, 2015. It was the first direct observation of grav-

itational waves, confirming a significant prediction of Einstein’s theory of general relativity.

The multiscale decomposition algorithm for gravitational wave signals involves three process-

ing steps. Firstly, the improved variational mode decomposition algorithm is used to decom-

pose the signal into different local frequency modes. The choice of decomposition scale is

crucial during variational mode decomposition denoising processing. A larger decomposition

scale results in the signal being decomposed into more sub-signals, allowing for finer denois-

ing that preserves more signal characteristics. However, if the decomposition scale is too large,

it may introduce additional noise and aliasing, leading to poor denoising effects and poten-

tially larger errors. On the other hand, too small of a decomposition scale can disrupt or lose

signal characteristics, thereby affecting denoising effectiveness. Therefore, selecting an appro-

priate decomposition scale is crucial. The gravitational wave signal is extremely weak and

heavily disturbed by noise during detection. Therefore, the gravitational wave signal is decom-

posed into 5 layers, as shown in Fig 4. The first component is the raw gravitational wave signal,

which is the initial signal without variational mode decomposition processing. The other com-

ponents represent modal components obtained through variational mode decomposition

decomposition, with each layer representing local modes of different frequencies and band-

widths. These components encapsulate various frequency-domain components of the original

gravitational wave signal. Next, the least mean square adaptive algorithm is applied to suppress

noise in each local mode by continuously adjusting the filter weights, gradually reducing the

Fig 4. VMD decomposition of spatial gravitational wave signal diagram.

https://doi.org/10.1371/journal.pone.0311213.g004
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noise impact on the signal, as shown in Fig 5. Finally, the optimal output of each IMF opti-

mized by the least mean square algorithmm is combined. At this stage, each local mode has

undergone noise suppression and optimization, resulting in a more precise and cleaner gravi-

tational wave signal, as illustrated in Fig 6.

Fig 7 shows the original signal of GW150914. It is randomly segmented into two parts

[5001-9500] and [32501-37000], each part having a length of 4500. Different algorithms are

applied to denoise each segment, and the results are shown in Figs 8 and 9.

From the figures, it can be seen that compared to the original gravitational wave signal, the

quality of the segments [5001-9500] and [32501-37000] has improved to varying degrees after

denoising with the Kalman filter [31]. Although the Kalman filter can significantly recover the

gravitational wave signal, its capability to handle non-Gaussian noise is limited, particularly

for smaller amplitude noise. After denoising with wavelet thresholding [32], the quality of the

signal segments [5001-9500] and [32501-37000] improved significantly. Among them, the

wavelet thresholding method using the hard threshold function had the worst denoising effect.

It only removed most of the noise but almost failed to outline the effective components of

smaller amplitude signals. Most of the effective signal components remained mixed with

noise, resulting in some artifacts. The wavelet thresholding method using the soft threshold

function achieved better denoising results. It not only significantly removed most of the noise

but also effectively filtered out noise from higher amplitude signals, making the waveform

smoother. However, some effective local waveforms still did not show significant denoising

improvement. The multiscale decomposition denoising method proposed in this paper

achieved the best denoising results. It effectively removed most of the noise from the original

gravitational wave signal and successfully delineated almost all the effective signal components,

Fig 5. LMS suppression modal component diagram.

https://doi.org/10.1371/journal.pone.0311213.g005
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Fig 6. Space gravitational wave signal denoising diagram.

https://doi.org/10.1371/journal.pone.0311213.g006

Fig 7. Space gravitational wave signal GW150914 diagram.

https://doi.org/10.1371/journal.pone.0311213.g007
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Fig 8. a. [5001-9500] part of the original signal. b. Multiscale decomposition algorithm for [5001-9500] part denoising processing. c. Kalman filter for

[5001-9500] part denoising processing. d. Wavelet soft threshold for [5001-9500] part denoising processing. e. Wavelet hard threshold for [5001-9500] part

denoising processing.

https://doi.org/10.1371/journal.pone.0311213.g008
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Fig 9. a. [32501-37000] part of the original signal. b. Multiscale decomposition algorithm for [32501-37000] part denoising processing. c. Kalman

filter for [32501-37000] part denoising processing. d. Wavelet soft threshold for [32501-37000] part denoising processing. e. Wavelet hard threshold

for [32501-37000] part denoising processing.

https://doi.org/10.1371/journal.pone.0311213.g009
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resulting in a smoother waveform. This demonstrates the reliability and superiority of the pro-

posed multi-scale decomposition denoising algorithm.

In order to better assess the denoising effectiveness of various algorithms on gravitational

wave signals, we adopt the common criteria of calculating the Signal to Noise Ratio (SNR) and

Peak Signal to Noise Ratio (PSNR). Additionally, for a more objective and accurate evaluation

of the denoising performance, the Mean Squared Error (MSE) algorithm is employed. SNR,

PSNR, and MSE have long been conventional methods for measuring the effectiveness of

noise reduction algorithms. Their definitions are as follows:

SNR ¼ 10 lg

(
XN� 1

n¼0

x2ðnÞ=
XN� 1

n¼0

½x2ðnÞ � y2ðnÞ�

)

ð25Þ

MSE ¼
1

L

Xn

i¼1

x nð Þ � y nð Þ�2
�

ð26Þ

PSNR ¼ 10 lgðMAX2=MSEÞ ð27Þ

where, x(n) represents reference signal for gravitational wave signal, y(n) represents the gravi-

tational wave signal after denoising by different algorithms, L represents the length of the

signal.

It should be noted that in calculating the signal-to-noise ratio, peak signal-to-noise ratio,

and mean squared error of the gravitational wave signals, Eqs25-27 were not directly used.

Instead, the gravitational wave signals recorded by the H1 and L1 detectors were used as the

expected signal and observed noise.

Using different algorithms to calculate the signal-to-noise ratio, peak signal-to-noise ratio,

and mean square error of gravitational wave signals quantifies their denoising effects, further

highlighting the superiority of the proposed multiscale decomposition denoising algorithm.

The results are shown in Tables 2 and 3 respectively.

From the table, it can be seen that the denoising algorithm proposed in this paper achieves

the highest SNR and lowest MSE. Upon calculation, the average SNR obtained is 37.4563 and

the average MSE is 1.8670e−43. Furthermore, denoising using Kalman filtering results in an

Table 2. Comparison of evaluation metrics for different algorithms applied to GW150914 [5001-9500] segment.

Algorithm SNR PSNR MSE

Kalman filtering 26.4404 35.8858 1.4943e-41

Wavelet soft threshold 15.1942 24.0826 1.9909e-40

Wavelet hard threshold 13.5802 22.1766 2.3870e-40

The proposed algorithm 39.7296 47.7625 1.6930e-43

https://doi.org/10.1371/journal.pone.0311213.t002

Table 3. Comparison of evaluation metrics for different algorithms applied to GW150914 [32501-37000]

segment.

Algorithm SNR PSNR MSE

Kalman filtering 24.7340 32.8471 2.2725e-41

Wavelet soft threshold 18.1787 26.2067 2.0281e-40

Wavelet hard threshold 16.7961 24.3422 2.4135e-40

The proposed algorithm 35.1830 47.2390 2.0410e-43

https://doi.org/10.1371/journal.pone.0311213.t003
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average SNR of 25.5872 and an average MSE of 1.8834e−41, with slight fluctuations, indicating

some denoising effectiveness, albeit with limited improvement, consistent with the visual

results in Figs 8 and 9. Denoising with wavelet thresholding shows no significant difference in

average SNR, with values of 16.6865 and 15.1881, respectively; similarly, the obtained average

MSE values are close, at 2.0095e−40 and 2.4403e−40. The algorithm proposed in this paper

increases the average SNR by 36.65% and reduces the average MSE by two orders of magni-

tude. This once again demonstrates the superiority of the multiscale decomposition denoising

algorithm proposed in this study.

Next, the denoising process is applied to GW170817. Fig 10 shows the raw signal of

GW170817. Two segments of the signal, [7751-12250] and [32751-37250], each with a length

of 4500, are randomly selected. Different algorithms are used to denoise each segment, and the

results are shown in Figs 11 and 12.

From the figures, it can be observed that compared to the original GW170817 gravitational

wave signal, the quality of the segments [7751-12250] and [32751-37250] improved to varying

degrees after denoising with Kalman filtering. Although this method can significantly restore

the gravitational wave signal, it performs poorly in areas with high local noise frequencies.

Similarly, the quality of the segments [7751-12250] and [32751-37250] improved after denois-

ing with wavelet thresholding. Among these, the hard thresholding wavelet method achieved

the poorest denoising results, particularly in the noisy segments where effective signal compo-

nents were barely delineated, and most remained mixed with noise, showing some artifacts.

The soft thresholding wavelet method performed better, effectively removing most of the noise

and filtering out high-frequency noise, resulting in a smoother waveform. However, some

effective local waveforms still showed insignificant denoising improvements. The multiscale

decomposition denoising method proposed in this paper achieved the best denoising results. It

effectively removed most of the noise from the original gravitational wave signal and accu-

rately delineated almost all effective signal components, resulting in a much smoother wave-

form. This demonstrates the reliability and superiority of the multiscale decomposition

denoising algorithm proposed in this study.

Fig 10. Space gravitational wave signal GW170817 diagram.

https://doi.org/10.1371/journal.pone.0311213.g010
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Fig 11. a. [7751-12250] part of the original signal. b. Multiscale decomposition algorithm for [7751-12250] part denoising processing. c. Kalman

filter for [7751-12250] part denoising processing. d. Wavelet soft threshold for [7751-12250] part denoising processing. e. Wavelet hard threshold for

[7751-12250] part denoising processing.

https://doi.org/10.1371/journal.pone.0311213.g011
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Fig 12. a. [32751-37250] part of the original signal. b. Multiscale decomposition algorithm for [32751-37250] part denoising processing. c. Kalman

filter for [32751-37250] part denoising processing. d. Wavelet soft threshold for [32751-37250] part denoising processing. e. Wavelet hard threshold for

[32751-37250] part denoising processing.

https://doi.org/10.1371/journal.pone.0311213.g012
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Using different algorithms to calculate the signal-to-noise ratio, peak signal-to-noise ratio,

and mean square error of gravitational wave signals quantifies their denoising effects, further

highlighting the superiority of the proposed multiscale decomposition denoising algorithm.

The results are shown in Tables 4 and 5 respectively.

From the table, it can be seen that the denoising algorithm proposed in this paper achieves

the highest SNR and the lowest MSE. The calculated average SNR is 37.1914, and the average

MSE is 1.5805e−43. Additionally, denoising using Kalman filtering results in an average SNR of

25.1498 and an average MSE of 1.5412e−41, both showing slight variations, indicating some

denoising effectiveness but limited improvement, consistent with the results shown in Figs 11

and 12. The wavelet thresholding method shows no significant difference in average SNR, with

values of 20.0812 and 17.1817, respectively; the obtained average MSE values are also similar,

at 1.2202e−40 and 2.4371e−40. The proposed algorithm increases the average SNR by 33.05%

and reduces the average MSE by two orders of magnitude. This further demonstrates the supe-

riority of the multiscale decomposition denoising algorithm proposed in this paper.

Due to the fact that GW150914 and GW170817 are two well-known gravitational wave

events with strong and distinct signals that can be clearly distinguished in observational data,

we selected the gravitational wave event GW170104, which has a relatively lower signal-to-

noise ratio, for low-SNR experiments.

Next, the denoising process is applied to GW170104. Fig 13 shows the raw signal of

GW170104. Two segments of the signal, [1-4500] and [25501-30000], each with a length of

4500, are randomly selected. Different algorithms are used to denoise each segment, and the

results are shown in Figs 14 and 15.

From the figures, it can be observed that compared to the original GW170104 gravitational

wave signal, the quality of the segments [1-4500] and [25501-30000] improved to varying

degrees after denoising with Kalman filtering. Although this method can significantly restore

the gravitational wave signal, it performs poorly in areas with high local noise frequencies.

Similarly, the quality of the segments [1-4500] and [25501-30000] improved after denoising

with wavelet thresholding. Among these, the hard thresholding wavelet method achieved the

poorest denoising results, particularly in the noisy segments where effective signal components

were barely delineated, and most remained mixed with noise, showing some artifacts. The soft

Table 4. Comparison of evaluation metrics for different algorithms applied to GW170817 [7751-12250] segment.

Algorithm SNR PSNR MSE

Kalman filtering 24.6132 37.2392 1.6895e-41

Wavelet soft threshold 19.7989 28.9391 1.3109e-40

Wavelet hard threshold 16.7658 25.1007 2.6361e-40

The proposed algorithm 35.9748 44.7625 1.5398e-43

https://doi.org/10.1371/journal.pone.0311213.t004

Table 5. Comparison of evaluation metrics for different algorithms applied to GW170817 [32751-37250]

segment.

Algorithm SNR PSNR MSE

Kalman filtering 25.6863 31.8116 1.3929e-41

Wavelet soft threshold 20.3634 29.2019 1.1295e-40

Wavelet hard threshold 17.5975 27.8937 2.2381e-40

The proposed algorithm 38.4079 46.5447 1.6212e-43

https://doi.org/10.1371/journal.pone.0311213.t005
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thresholding wavelet method performed better, effectively removing most of the noise and fil-

tering out high-frequency noise, resulting in a smoother waveform. However, some effective

local waveforms still showed insignificant denoising improvements. The multiscale decompo-

sition denoising method proposed in this paper achieved the best denoising results. It effec-

tively removed most of the noise from the original gravitational wave signal and accurately

delineated almost all effective signal components, resulting in a much smoother waveform.

This demonstrates the reliability and superiority of the multiscale decomposition denoising

algorithm proposed in this study.

Using different algorithms to calculate the signal-to-noise ratio, peak signal-to-noise ratio,

and mean square error of gravitational wave signals quantifies their denoising effects, further

highlighting the superiority of the proposed multiscale decomposition denoising algorithm.

The results are shown in Tables 6 and 7 respectively.

From the table, it can be seen that the denoising algorithm proposed in this paper achieves

the highest SNR and the lowest MSE. The calculated average SNR is 23.8414, and the average

MSE is 7.8085e−42. Additionally, denoising using Kalman filtering results in an average SNR of

19.7466 and an average MSE of 8.6262e−40, both showing slight variations, indicating some

denoising effectiveness but limited improvement, consistent with the results shown in Figs 14

and 15. The wavelet thresholding method shows no significant difference in average SNR, with

values of 16.1589 and 14.4087, respectively; the obtained average MSE values are also similar,

at 7.1435e−39 and 2.6405e−39. The proposed algorithm increases the average SNR by 22.24%

and reduces the average MSE by two orders of magnitude. This further demonstrates the supe-

riority of the multiscale decomposition denoising algorithm proposed in this paper.

The momentum gradient-based variational mode optimization algorithm enhances the

convergence speed. This is demonstrated by processing and comparing two segments of the

GW150914 signal, [5001-9500] and [32501-37000], two segments of the GW170817 signal,

[7751-12250] and [32751-37250], and two segments of the GW170104 signal, [1-4500] and

[25501-30000]. The convergence results are shown in Fig 16.

Fig 13. Space gravitational wave signal GW170104 diagram.

https://doi.org/10.1371/journal.pone.0311213.g013
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Fig 14. a. [1-4500] part of the original signal. b. Multiscale decomposition algorithm for [1-4500] part denoising processing. c. Kalman filter for [1-

4500] part denoising processing. d. Wavelet soft threshold for [1-4500] part denoising processing. e. Wavelet hard threshold for [1-4500] part

denoising processing.

https://doi.org/10.1371/journal.pone.0311213.g014
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Fig 15. a. [25501-30000] part of the original signal. b. Multiscale decomposition algorithm for [25501-30000] part denoising processing. c. Kalman

filter for [25501-30000] part denoising processing. d. Wavelet soft threshold for [25501-30000] part denoising processing. e. Wavelet hard threshold

for [25501-30000] part denoising processing.

https://doi.org/10.1371/journal.pone.0311213.g015
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As clearly shown in the figure, the momentum gradient-based variational mode decompo-

sition optimization algorithm improves the convergence speed compared to the original varia-

tional mode decomposition algorithm, accelerates response time, and enhances the least mean

square algorithm’s adaptability to noise removal, demonstrating the superiority of the

improved variational mode decomposition algorithm.

Conclusion

This paper proposes a denoising method for space-based gravitational wave signals based on

multiscale decomposition with momentum gradient descent, addressing the requirements for

noise reduction in space gravitational wave detection signals. The study conducts an in-depth

Table 6. Comparison of evaluation metrics for different algorithms applied to GW170104 [1-4500] segment.

Algorithm SNR PSNR MSE

Kalman filtering 19.7817 28.8923 9.9899e-40

Wavelet soft threshold 16.1765 24.1015 7.2957e-39

Wavelet hard threshold 14.9407 20.3406 3.7028e-39

The proposed algorithm 24.3479 32.2929 8.0746e-42

https://doi.org/10.1371/journal.pone.0311213.t006

Table 7. Comparison of evaluation metrics for different algorithms applied to GW170104 [25501-30000]

segment.

Algorithm SNR PSNR MSE

Kalman filtering 19.7114 27.2963 7.2625e-40

Wavelet soft threshold 16.1412 24.2661 6.9913e-39

Wavelet hard threshold 13.8767 22.4028 1.5782e-39

The proposed algorithm 23.3348 31.8864 7.5424e-42

https://doi.org/10.1371/journal.pone.0311213.t007

Fig 16. Convergence speed of the improved algorithm.

https://doi.org/10.1371/journal.pone.0311213.g016
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investigation into the denoising of gravitational wave signals. In order to mitigate the challenge

of low signal-to-noise ratio resulting from the faint nature of gravitational wave signals and

their susceptibility to noise, this study employs the variational mode decomposition algorithm

and the least mean squares algorithm in the context of space-based gravitational wave detec-

tion. This approach aims to remove noise from gravitational wave signals at smaller scales. In

order to address the challenges of slow convergence and the existence of multiple local optima

in the variational mode decomposition algorithm, this study incorporates momentum gradient

descent and multiscale concepts to optimize the variational mode decomposition algorithm,

thereby enhancing its convergence speed. Comprehensive experiments and both qualitative

and quantitative results demonstrate that the proposed algorithm significantly outperforms

other algorithms, achieving an average signal-to-noise ratio improvement of 30.65% and an

average mean squared error improvement by two orders of magnitude from e−39 to e−42. These

findings underscore the algorithm’s effectiveness and superiority in noise suppression and

enhanced detection capability, effectively meeting the noise suppression requirements for

space-based gravitational wave detection.

Author Contributions

Conceptualization: Dongpo Xu, Siyuan Wu, Xin Chen.

Project administration: Yunqing Liu.

Supervision: Fei Yan.

Writing – original draft: Qiuping Shen.

Writing – review & editing: Qiuping Shen.

References

1. Schutz B. F. Gravitational wave astronomy. Classical and Quantum Gravity. 1999; 16(12):131–156.

https://doi.org/10.1088/0264-9381/16/12A/307

2. Pitkin M., Reid S., Rowan S., and Hough J. Gravitational wave detection by interferometry (ground and

space). Living Reviews in Relativity. 2011; 14:1–75. https://doi.org/10.12942/lrr-2011-5 PMID:

28163618

3. Spallicci A. D. On the complementarity of pulsar timing and space laser interferometry for the individual

detection of supermassive black hole binaries. The Astrophysical Journal. 2013; 764(2):187. https://doi.

org/10.1088/0004-637X/764/2/187

4. Bailes M., Berger B. K., Brady P., Branchesi M., Danzmann K., Evans M., et al. Gravitational-wave

physics and astronomy in the 2020s and 2030s. Nature Reviews Physics. 2021; 3(5): 344–366. https://

doi.org/10.1038/s42254-021-00303-8

5. Wang Y., Zhu X., Liu J., Ma Y., Zhu Z., Cao J., et al. The laser interferometer gravitational wave detec-

tor. Prog. Astron. 2014;(32):348.

6. Mours B., Tournefier E., and Vinet J.-Y. Thermal noise reduction in interferometric gravitational wave

antennas: using high order tem modes. Classical and Quantum Gravity. 2006; 23(20):5777. https://doi.

org/10.1088/0264-9381/23/20/001

7. Nishizawa A., Iwaguchi S., Chen Y., Morimoto T., Ishikawa T., Wu B., et al. Neutron displacement

noise-free interferometer for gravitational-wave detection. Physical Review D. 2022; 105(12):124017.

https://doi.org/10.1103/PhysRevD.105.124017

8. Tang B., Zhang B., Zhou L., Wang J., and Zhan M. Influence of separating distance between atomic

sensors for gravitational wave detection. The European Physical Journal D. 2015; 69:1–7. https://doi.

org/10.1140/epjd/e2015-60069-8

9. Ormiston R., Nguyen T., Coughlin M., Adhikari R. X., and Katsavounidis E. Noise reduction in gravita-

tional-wave data via deep learning. Physical Review Research. 2020; 2(3):033066. https://doi.org/10.

1103/PhysRevResearch.2.033066

10. Sahu P. K. and Rai R. N. Fault diagnosis of rolling bearing based on an improved denoising technique

using complete ensemble empirical mode decomposition and adaptive thresholding method. Journal of

PLOS ONE Improvement of multiscale decomposition for space-based gravitational wave signal processing technology

PLOS ONE | https://doi.org/10.1371/journal.pone.0311213 October 31, 2024 25 / 26

https://doi.org/10.1088/0264-9381/16/12A/307
https://doi.org/10.12942/lrr-2011-5
http://www.ncbi.nlm.nih.gov/pubmed/28163618
https://doi.org/10.1088/0004-637X/764/2/187
https://doi.org/10.1088/0004-637X/764/2/187
https://doi.org/10.1038/s42254-021-00303-8
https://doi.org/10.1038/s42254-021-00303-8
https://doi.org/10.1088/0264-9381/23/20/001
https://doi.org/10.1088/0264-9381/23/20/001
https://doi.org/10.1103/PhysRevD.105.124017
https://doi.org/10.1140/epjd/e2015-60069-8
https://doi.org/10.1140/epjd/e2015-60069-8
https://doi.org/10.1103/PhysRevResearch.2.033066
https://doi.org/10.1103/PhysRevResearch.2.033066
https://doi.org/10.1371/journal.pone.0311213


Vibration Engineering & Technologies. 2023; 11(2): 513–535. https://doi.org/10.1007/s42417-022-

00591-z

11. Dragomiretskiy K. and Zosso D. Variational mode decomposition. IEEE transactions on signal process-

ing. 2013; 62(3): 531–544. https://doi.org/10.1109/TSP.2013.2288675

12. Ur Rehman N. and Aftab H. Multivariate variational mode decomposition. IEEE Transactions on signal

processing. 2019; 67(23):6039–6052. https://doi.org/10.1109/TSP.2019.2951223

13. Ling Q., Ikbal M. A., and Kumar P. Optimized lms algorithm for system identification and noise cancella-

tion. Journal of Intelligent Systems. 2021; 30(1):487–498. https://doi.org/10.1515/jisys-2020-0081

14. Diniz P. S. and Diniz P. S. The least-mean-square (lms) algorithm. Adaptive Filtering: Algorithms and

Practical Implementation. 2020:61–102.

15. G. Gui, W. Peng, and F. Adachi. Improved adaptive sparse channel estimation based on the least mean

square algorithm. 2013 IEEE Wireless Communications and Networking Conference (WCNC).

2013:3105-3109.

16. Abbott B. P., Abbott R., Abbott T. D., Abernathy M., Ackley K., Adams C., et al. Exploring the sensitivity

of next generation gravitational wave detectors. Classical and Quantum Gravity. 2017; 34(4):044001.

https://doi.org/10.1088/1361-6382/aa51f4

17. Luo J., Chen L.-S., Duan H.-Z., Gong Y.-G., Hu S., Ji J., et al. Tianqin: a space-borne gravitational wave

detector. Classical and Quantum Gravity. 2016; 33(3):035010. https://doi.org/10.1088/0264-9381/33/3/

035010

18. Abbott B. P., Abbott R., Abbott T. D., Abraham S., Acernese F., Ackley K., et al. A guide to ligo–virgo

detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity.

2020; 37(5):055002. https://doi.org/10.1088/1361-6382/ab685e

19. Jiang Z., Xie J., Zhang J., Zhang X. Denoising method of pipeline leakage signal based on vmd and hil-

bert transform. Sensors. 2023; 2023(1): 1939606. https://doi.org/10.1155/2023/1939606

20. Jiang Z., Guo G., Liu B., and Zhang Y. Research on a novel denoising method for negative pressure

wave signal based on vmd. IEEE Access. 2023; 11:35059–35068. https://doi.org/10.1109/ACCESS.

2023.3250380

21. G. Wang, Z. Wang, H. Jiang, L. Cui, C. Ding, X. Qi, et al. Noise reduction method of transient electro-

magnetic signal based on vmd-ica. 2021 40th Chinese control conference (CCC). IEEE. 2021;3132-

3137.

22. Ma X. and Zhang D. Noise reduction of partial discharge signal of high voltage cable based on vmd.

International Journal of Performability Engineering. 2020; 16(8).

23. Yao G., Zhao J., Yao Y., and Ren X. Separation of systematic error based on improved emd method. J

Vibr Shock. 2014; 33:176–180.

24. Dixit S. and Nagaria D. Lms adaptive filters for noise cancellation: A review. International Journal of

Electrical and Computer Engineering (IJECE). 2017; 7(5):2520–2529. https://doi.org/10.11591/ijece.

v7i5.pp2520-2529

25. P. Chittora, A. Singh, and M. Singh. Performance evaluation of a new kalman filter based least mean

square algorithm for power quality improvement. 2016 IEEE 1st International Conference on Power

Electronics, Intelligent Control and Energy Systems (ICPEICES). IEEE. 2016:1-5.

26. Chang L., Xue Q., Ye H. Normalized lms filtering of self-mixing interference signal with varying fre-

quency. Destech Transactions on Computer Science and Engineering. 2019; 27870:457–461.

27. F. Shao. Integrated speech signal processor based on spectrum analysis and lms algorithm. ITM Web

of Conferences. 2022;47:02035.

28. M. Geravanchizadeh and S. G. Osgouei. Dual-channel speech enhancement using normalized frac-

tional least-mean-squares algorithm. 2011 19th Iranian Conference on Electrical Engineering. IEEE.

2011:1-5.

29. Wulandari D. P., Suprapto Y. K. Noise cancellation in gamelan signal by using least mean square

based adaptive filter. International Journal of Simulation-Systems, Science & Technology. 2018; 19.

30. Esteban JJ., Garcı́a AF., Barke S, Peinado AM., Cervantes FG., Bykov I., et al. Experimental demon-

stration of weak-light laser ranging and data communication for LISA. Optics express. 2011; 19

(17):15937–15946. https://doi.org/10.1364/OE.19.015937 PMID: 21934957

31. Salleh SH, Hussain HS, Swee TT, Ting CM, Noor AM, Pipatsart S, et al. Acoustic cardiac signals analy-

sis: a Kalman filter–based approach. International journal of nanomedicine. 2012:2873–2881. https://

doi.org/10.2147/IJN.S32315 PMID: 22745550

32. Brusa E, Delprete C, Gargiuli S, Giorio L. Screening of discrete wavelet transform parameters for the

denoising of rolling bearing signals in presence of localised defect. Sensors. 2022; 23(1):8. https://doi.

org/10.3390/s23010008 PMID: 36616608

PLOS ONE Improvement of multiscale decomposition for space-based gravitational wave signal processing technology

PLOS ONE | https://doi.org/10.1371/journal.pone.0311213 October 31, 2024 26 / 26

https://doi.org/10.1007/s42417-022-00591-z
https://doi.org/10.1007/s42417-022-00591-z
https://doi.org/10.1109/TSP.2013.2288675
https://doi.org/10.1109/TSP.2019.2951223
https://doi.org/10.1515/jisys-2020-0081
https://doi.org/10.1088/1361-6382/aa51f4
https://doi.org/10.1088/0264-9381/33/3/035010
https://doi.org/10.1088/0264-9381/33/3/035010
https://doi.org/10.1088/1361-6382/ab685e
https://doi.org/10.1155/2023/1939606
https://doi.org/10.1109/ACCESS.2023.3250380
https://doi.org/10.1109/ACCESS.2023.3250380
https://doi.org/10.11591/ijece.v7i5.pp2520-2529
https://doi.org/10.11591/ijece.v7i5.pp2520-2529
https://doi.org/10.1364/OE.19.015937
http://www.ncbi.nlm.nih.gov/pubmed/21934957
https://doi.org/10.2147/IJN.S32315
https://doi.org/10.2147/IJN.S32315
http://www.ncbi.nlm.nih.gov/pubmed/22745550
https://doi.org/10.3390/s23010008
https://doi.org/10.3390/s23010008
http://www.ncbi.nlm.nih.gov/pubmed/36616608
https://doi.org/10.1371/journal.pone.0311213

