

THE UNIVERSITY
of ADELAIDE

Investigation of cryogenic Er:YAG lasers
for Gravitational Wave Interferometry

BY
Sophie Hollitt

A thesis submitted towards the degree of
Master of Philosophy
at
The University of Adelaide
School of Physical Sciences

May, 2015

Contents

Table of Contents	i
Abstract	v
Statement of Originality	vii
Acknowledgements	ix
List of Figures	xi
List of Tables	xiii
List of Symbols	xv
List of Acronyms	xvii
1 Introduction	1
1.1 Lasers for Third Generation Gravitational Wave Detectors	1
1.2 Available Laser Sources	2
1.2.1 Single-Frequency Sources	2
1.2.2 High Power Erbium-Doped Lasers	5
1.3 Minimising Thermal Distortion in High-Power Lasers	7
1.4 Current State of Research of Cryogenic Er:YAG	8
1.5 Thesis Overview	9
2 Energy Levels and Spectroscopy of Er:YAG	11
2.1 Introduction	11
2.2 Energy levels in Er:YAG	11
2.2.1 Choosing a Pump Wavelength	11
2.2.2 Cross Relaxation, Excited State Absorption, and Upconversion	13
2.2.3 Energy Structure at 300K and 77K	14
2.3 Absorption Spectroscopy Techniques	17
2.3.1 Description of Measurement System	17
2.3.2 Characterisation of Measurements	19
2.3.3 Summary of Measurement Techniques	24
2.4 Results	24
2.4.1 Measured Absorption Cross-Section at 300 K and 77 K	24
2.4.2 Temperature Dependence of Measured Spectra	27
2.4.3 Impact of Doping Concentration	29

CONTENTS

2.4.4	Measurements at Wavelengths > 1535 nm	30
2.5	Conclusion	32
3	Laser Diode Cooling	35
3.1	Introduction	35
3.2	Diode Properties at 300 K	35
3.2.1	Original Specifications	36
3.2.2	Measured Output Power	36
3.2.3	Beam Quality and Focusing	38
3.3	Diode Spectral Properties	41
3.3.1	Spectral Width	41
3.3.2	Effect of Diode Temperature on Wavelength	42
3.3.3	Effect of Diode Temperature on Output Power	44
3.3.4	Summary of Room-Temperature Results	45
3.4	Cooling the Pump Diode	46
3.4.1	Cooling Method	46
3.4.2	Cooled Diode Results	48
3.5	Conclusion	52
4	Diode-Pumped Er:YAG laser at 300 K	53
4.1	Introduction	53
4.2	Construction of the Laser Head	53
4.3	Interferometry and Thermal Lensing	55
4.4	Optimising Lasing	58
4.4.1	Pump Focusing and Output Coupling	59
4.4.2	Pump Absorption	60
4.5	Pump Wavelength Tuning	62
4.5.1	Description of Measurement	62
4.5.2	Effect of Diode Wavelength on Laser Power	63
4.5.3	Effect of Diode Wavelength on Laser Efficiency	63
4.6	Conclusion	65
5	Cryogenic Er:YAG lasers	67
5.1	Introduction	67
5.2	Slab Mounting and Interferometry	67
5.2.1	Mounting the Slab	68
5.2.2	Interferometry	70
5.3	Preliminary Cryogenic Laser Pumped at 1470 nm	73
5.3.1	System Configuration	74
5.3.2	Aligning the Slab and Pump Beam	75

5.3.3	Lasing Wavelength	78
5.3.4	Laser Performance	78
5.3.5	Pump Wavelength Tuning	79
5.3.6	Summary of Preliminary Experiments	79
5.4	Characterising a Lower-Powered Diode	81
5.5	Er:YAG Lasing at 77 K	83
5.5.1	System Design	84
5.5.2	Temperature-Tuned Pumping	85
5.5.3	Measuring the Slope Efficiency	86
5.5.4	Effectiveness of Two-Lens Focusing	88
5.6	Conclusion	89
6	Conclusion	91
6.1	Thesis Summary	91
6.1.1	Spectroscopy	91
6.1.2	Er:YAG Lasers	91
6.2	Future Work	92
6.2.1	Characterisation of Optimal Pumping	92
6.2.2	Development of a Higher-Power Cryogenic Er:YAG laser	93
A	Publications	95
A.1	Conference Publications	95
A.1.1	Room temperature and cryogenic operation of an Er:YAG laser using a cooled InGaAsP diode	95
A.1.2	Comparison of diode pumping efficiency of an Er: YAG laser at 300 K and 77 K for Gravitational Wave Interferometry	96
A.1.3	Development of a cryogenic Er:YAG slab laser for Gravitational Wave Interferometry	97
B	Chillers	99
B.1	Chiller Specifications	99
B.2	Diode Hysteresis with Water-Cooled Chiller	99
C	MATLAB code	103
C.1	Normalising Absorption Cross-Sections	103
C.1.1	backgroundRemover.m driver file	103
C.1.2	importTXTfile.m	104
C.1.3	removeBG.m	104
C.1.4	makeAbsorption.m	105
C.2	Measuring Beam Propagation	105

CONTENTS

C.2.1	M2_fit.m	105
C.2.2	M2_fitting.m	110
C.3	Calculating the Thermal Lens	110
C.3.1	makeMaxContrast.m driver file	111
C.3.2	importTIF.m	111
C.3.3	maxcontrast.m	112
C.3.4	fringeFinder.m driver file	112
	Bibliography	115

Abstract

High power, stable single frequency laser sources are required for gravitational wave interferometry. The next generation of interferometers may require laser sources in the 1.3-1.65 μm band for use with Si test masses and InGaAs photodetectors. We propose a high power cryogenic Er:YAG laser operating at 1.618 μm for this purpose, adapting existing knowledge about cryogenic Yb:YAG lasers developed at the University of Adelaide.

To produce such a laser, further information is required about the viability of Er:YAG in high power, single frequency operation. In this thesis, I report this investigation of the spectroscopy of Er:YAG at room temperature and at cryogenic temperatures (≈ 77 K) and investigate a variety of wavelengths for diode pumping of an Er:YAG slab laser.

Spectroscopy indicates that diode pumping for the 77 K laser slab will be most effective in the 1450-1480 nm absorption band, most specifically at the 1453 nm absorption peak. I describe methods for cooling a 1470 nm diode below 0 $^{\circ}\text{C}$ to pump this 1453 nm Er:YAG absorption. The cooled diode exhibits up to 9 % increase in slope efficiency and improved beam divergence compared to room temperature operation.

I then describe the construction and characterisation of CW Er:YAG lasers at both 300 K and 77 K, tuning the pump wavelength in the 1450-1480 nm band. At 300 K, I demonstrate an Er:YAG laser with 4.5 W output power when pumped with 30 W of diode power at 1468 nm, and just under 4 W of output power when pumped with 34 W of diode power at 1456 nm. Both lasers have a threshold of approximately 12 W incident pump power. The laser pumped at 1468 nm also demonstrates a greater slope efficiency relative to incident pump power: 28 % compared to 20 % when pumped at 1456 nm.

The development of a preliminary cryogenic Er:YAG laser is also reported. Despite sub-optimal mounting materials and geometries, we demonstrate a cryogenic laser with 5.5 W output power and approximately 6 W threshold under comparable pumping conditions to the 4.5 W 300 K laser pumped at 1468 nm. Unfortunately subsequent studies of the cryogenic slab laser are not comparable to the 300 K Er:YAG laser due to electrical damage to the diode that significantly reduced diode

ABSTRACT

power and changed pumping conditions. Nevertheless, these results provide valuable information on the sensitivity of end-pumped cryogenic lasers to mounting conditions and pump focusing that are useful for a future high power design.

Statement of Originality

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

SIGNED:

DATE:

Supervisors: Emeritus Prof. Jesper Munch
Associate Prof. Peter Veitch

Acknowledgements

First and foremost, I would like to thank my supervisors Jesper Munch and Peter Veitch. Thank you for the time you've spent helping me find the physics in the midst of the laser engineering work we do, and thank you for your expertise both throughout my project and with editing this thesis. I'd also like to thank Miftar Ganija for all he's contributed to this project: for finding a path when I was lost, and for teaching me to squeeze every last drop from our equipment.

I'd like to thank David Hosken, for his support in helping me build my confidence in the lab, and for all our conversations about the ins and outs of working in research. Life is not a dress rehearsal, so it's been great to have a guide.

I'm grateful for the assistance of so many other University students and staff throughout my studies, for their contributions great and small. Thank you to Blair Middlemiss and Bob Chivell for helping me find (or make!) equipment, and putting up with me driving the BBQ through the workshop. Thank you to Neville Wild, for helping me troubleshoot all sorts of electronics. And thank you to all of the office staff for the administrative tasks that keep everything running smoothly for research students.

Best of luck to all my fellow students undertaking similar studies. Special thanks to Ka, Ori and Elli who've shared office space, lab experiences and stories, and to Fiorina, Sebastian and Ashby who helped me keep it together to make the OSA and KOALA 2014 a huge success.

Finally, thank you to my friends and family who have been supportive of me and tolerant of my long absences from face-to-face contact. Thank you to the Blues Underground (and all of my blues family) for giving me something to look forward to at the end of a long week. Last of all, falling into nearly every category, special thanks to Finn for his tireless support of me through conferences, through intense weeks in the lab, through my long nights editing this thesis, and through anything life could throw at me.

List of Figures

2.1	Simplified diagram of energy levels of erbium	12
2.2	Ground state and first excited state manifolds for Er:YAG	14
2.3	Schematic of measurement apparatus for absorption spectroscopy . .	17
2.4	Schematic of sample mounting method	19
2.5	Measured spectra from samples mounted in the cryostat, showing background	20
2.6	Comparison of measured spectra from the 1 % doped sample, showing background	21
2.7	Cary measurement of the 1 % doped sample	22
2.8	Spectra from Figure 2.6 with background removed	23
2.9	Absorption cross-section of 1 % doped Er:YAG (1440-1500 nm) . .	26
2.10	Absorption cross-section of 1 % doped Er:YAG (1510-1550 nm) . .	26
2.11	Variation of absorption of 1 % doped Er:YAG with temperature (1440-1500 nm)	28
2.12	Variation of absorption of 1 % doped Er:YAG with temperature (1500-1550 nm)	28
2.13	Comparison of measured α for 0.5 % and 1 % samples	29
2.14	Comparison of measured σ for 0.5 % and 1 % samples	30
2.15	Measurement of 1546 nm absorption at 77 K	31
2.16	Measurement of absorption features >1540 nm at 300 K	32
3.1	Output power and spectral shape of DILAS E7B-1470-40W module .	37
3.2	Output power of DILAS diode at 20 °C	37
3.3	Power through 25 mm aperture for DILAS diode at 27 °C	39
3.4	Schematic of beam quality and focusing measurements	39
3.5	Image of DILAS diode near focus alongside M_x^2 plot	40
3.6	Schematic of apparatus for measuring diode spectrum	41
3.7	Spectrum of DILAS diode for different supplied currents	42
3.8	Repeatability of width measurement	43
3.9	Plots of diode tuning behaviour against current and temperature . .	43
3.10	Schematic for measuring diode spectrum and power simultaneously .	44

LIST OF FIGURES

3.11 Plot of diode output power against centre wavelength	45
3.12 Schematic and photograph of diode cooling canister	46
3.13 Schematic and photograph of the freezer manifold	49
3.14 Schematic of apparatus for cooled diode measurements	49
3.15 Output power from cooling canister at room temperature and below 0 °C	50
3.16 Spectrum of room temperature and cooled diode: constant current .	51
3.17 Spectrum of room temperature and cooled diode: constant power .	51
3.18 Plot of cooled diode output power against wavelength	52
4.1 Diagram of slab dimensions	54
4.2 Photograph of the laser head assembly	54
4.3 Schematic of the laser head assembly	54
4.4 Schematic of Mach-Zehnder interferometer	56
4.5 Interferograms of pumped and unpumped slab	56
4.6 Schematic of the Er:YAG laser	58
4.7 Laser performance for different pump diode temperatures	61
4.8 Measured pump absorption against diode current	61
4.9 Diagram of apparatus for temperature-tuned pumping	62
4.10 Laser output power against diode centre wavelength	63
4.11 Laser output power against incident diode power	64
4.12 Laser efficiency when optimally pumped by cooled or room tempera- ture diode	65
5.1 Schematic of cryogenic laser head assembly	69
5.2 Cryogenic laser head assembly in the cryostat	70
5.3 Schematic of Mach-Zehnder interferometer	71
5.4 Process used to increase contrast on interferograms	72
5.5 Interferograms for the mounted slab before and after cryogenic cooling	73
5.6 Schematic of cryogenic Er:YAG laser	74
5.7 Schematic and photograph of angled window mounts for AR windows	74
5.8 Schematic of the laser head alignment system	75
5.9 Schematic for the pump diode alignment procedure	76
5.10 Graph comparing the cryogenic and room temperature lasers	78
5.11 Temperature-tuned pumping of the preliminary laser	80
5.12 Comparison of diode output power before and after damage	81
5.13 Output power of damaged diode against diode centre wavelength . .	82
5.14 Comparison of diode spectral shape before and after damage	82
5.15 Comparison of diode emission spot before and after damage	83

LIST OF FIGURES

5.16 Diagram of the pump configuration used for the temperature-tuned laser	84
5.17 Laser output power against diode centre wavelength for the 77 K laser	85
5.18 Laser output power against incident diode power for various cryogenic Er:YAG lasers	86
5.19 As in Figure 5.18 with two additional laser curves.	87
5.20 Schematic of pinhole experiment	88
5.21 Plot of fraction of pump power transmitted against diode wavelength	89
B.1 Plot of laser output power against diode current	100
B.2 Plot of laser output power against diode centre wavelength (fixed set-point)	100
B.3 Plot of laser output power against diode centre wavelength (changing set-point)	101
B.4 Plots of laser output power and diode centre wavelength against time	102

List of Tables

1.1	Requirements for Advanced LIGO	2
1.2	Selected single-frequency laser sources	4
1.3	Selected high power erbium-doped lasers	6
1.4	Thermal properties of YAG at 300 K and 77 K	7
2.1	Lasing state occupation properties	16
2.2	Peak absorption coefficient α and FWHM from measured spectra of 1 % Er:YAG	25
3.1	Specifications of DILAS E7B-1470-40W module	36
3.2	Measured beam parameters of DILAS diode	40
3.3	Coolant specifications for DILAS diode	47
3.4	Properties of different antifreeze mixtures	47
4.1	Slab properties measured using interferometry	58
4.2	Output coupler transmission at pump and lasing wavelengths	59
5.1	Integrated linear expansion coefficient for various materials	68
5.2	Focused $1/e^2$ spot size before and after diode damage	83
5.3	Focused spot size for one lens and two lens focusing	84

List of Symbols

α	Absorption coefficient (cm^{-1})
α_T	Coefficient of linear thermal expansion
β	Inversion fraction
λ	Wavelength (general)
λ_l	Laser wavelength
λ_p	Pump wavelength
σ or σ_a	Absorption cross-section (cm^2)
σ_e	Emission cross-section (cm^2)
θ	Far-field divergence half-angle
Ω	An arbitrary phase
A	A positive constant
c	The speed of light
$\frac{dn}{dT}$	Change of material refractive index with respect to temperature
$E(x, T)$	The energy of an excited state x , at temperature T
E_1 and E_2	The electric field amplitude of the reference arm and slab arm of the interferometer respectively
f	Used to represent the focal length of a lens
f_L and f_U	Fractional occupation of the lower and upper lasing states respectively
$F(x)$	Boltzmann occupation factor of a state x
G	Laser gain, used in the form $I_{out} = I_{in} \exp(Gz)$
\hbar	The reduced Planck's constant
I	Intensity
I_{in}	Input intensity, before gain or absorption has been applied. Used to represent the background spectrum.
I_{out}	Output intensity, after gain or absorption has been applied. Used to represent the spectrum of a sample.
k	Boltzmann's constant
k_x	The wave number

LIST OF SYMBOLS

K	Thermal conductivity
L	Length
L_1 to L_4	The lowest four energy “bands” in Er:YAG, see Figure 2.2
m	An integer
M^2	Beam quality, “times diffraction limited”
n	Refractive index
N	Number density of ions in the material(in cm^{-3})
N_L and N_U	Number density of ions in the lower and upper lasing states respectively
P_{change}	The change in power from the mean value P_{signal} , used to calculate intensity stability
P_{signal}	The mean value of the laser output power, used to calculate intensity stability
t	Time
T	Temperature
TEM_{00}	The fundamental Transverse ElectroMagnetic mode
w_0	Radial beam width

List of Acronyms

aLIGO	Advanced LIGO
AR	Anti-Reflection
ASE	Amplified Spontaneous Emission
CR	Cross-Relaxation
CW	Continuous Wave
DI	De-Ionised
ESA	Excited State Absorption
FBG	Fibre Bragg Grating
GRIN	GRaded INdex
GWI	Gravitational Wave Interferometers
HR	High Reflectivity
LIDAR	LIght Detection and Ranging
LIGO	Laser Interferometer Gravitational wave Observatory
MOPA	Master Oscillator Power Amplifier
NA	Numerical Aperture
ND	Neutral Density
NPRO	Non Planar Ring Oscillator
OSA	Optical Spectrum Analyser
OPL	Optical Path Length
QD	Quantum Defect
RF	Radio Frequency
SBS	Stimulated Brillouin Scattering