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We demonstrate perturbative calculations of supersymmetric gradient flow in four-
dimensional N = 1 supersymmetric quantum chromodynamics (SQCD). A remarkable
property of the gradient flow is to make ultraviolet (UV) divergences of flowed field cor-
relators milder. To illustrate this property, we calculate two-point functions for the flowed
fields in SQCD at the one-loop level and investigate their UV divergence structure. After
renormalizing the SQCD at the boundary, the two-point functions of flowed gauge super-
multiplets are shown to be UV-finite. On the other hand, those for flowed matter super-
multiplets require extra wave function renormalization, which are found to be the common
factor for all the fields in the multiplets.
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1. Introduction
Gradient flow [1,2] has been applied in various studies because of its remarkable renormal-
ization property. In the case of Yang–Mills (YM) theory, after renormalizing the boundary
theory, extra wave function renormalization is not required in the correlation functions of the
flowed field [3–5]. Any composite operators of the flowed field become automatically renor-
malized quantities. Since ultraviolet (UV)-finite quantities are independent of the regulariza-
tion method, it is possible to connect lattice regularization and other regularizations such as
dimensional regularization. Therefore, the gradient flow can be used to represent physical quan-
tities such as the energy-momentum tensor (EMT) in terms of flowed field and is particularly
useful in the context of lattice gauge theory. In lattice quantum chromodynamics (QCD), this
property is used to formulate and simulate numerically the EMT [6–10].

Recently, several novel approaches employing a gradient flow method have been proposed.
One is for investigating the anti-de Sitter (AdS)/conformal field theory (CFT) correspondence,
in which a bulk metric emerges as the AdS geometry from a boundary CFT using a flow equa-
tion [11–19]. The other is to formulate an exact renormalization group (ERG) in gauge theory
with manifest gauge invariance [20–23]. A manifestly gauge-invariant Wilson action is con-
structed using a coarse-graining technique through the gradient flow. Its associated ERG dif-
ferential equation is derived and is extended to the inclusion of matter fields.
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It would be interesting to extend the gradient flow to supersymmetric theories. The YM
flow [2] and a fermion flow [4] have already been applied to supersymmetric theories [24–26]. To
respect supersymmetry (SUSY), it is convenient to use the superfield formalism, which is called
a SUSY flow. For N = 1 supersymmetric YM (SYM) theory, a SUSY flow is defined by the
gradient of the SYM action with respect to a vector superfield [27]. This flow in the component
fields can be written in a gauge-covariant and supersymmetric manner [28].

A similar approach can be considered in the case of N = 1 supersymmetric
QCD (SQCD) [29]. The gradient flow of SQCD is given in terms of the component fields of
the Wess–Zumino gauge. In this paper, we calculate all the two-point functions of the flowed
fields in SQCD at the one-loop level. We find that after renormalizing the parameters in the
boundary theory, the two-point functions of the flowed fields in the gauge supermultiplet are
UV-finite, but the UV divergences remain for those in the matter supermultiplets.

This paper is organized as follows. In the following section, we review the SQCD action and its
renormalization. The gradient flow of SQCD is given in Sect. 3. We show one-loop calculations
of the two-point functions for the flowed fields in Sect. 4. The conclusion is given in Sect. 5.

2. N = 1 SQCD and its renormalization
We begin by reviewing the renormalization of the N = 1 SQCD to fix the notations used in
this paper. See Appendix A for more details.

2.1 SQCD action
We consider N = 1 SQCD which is an N = 1 supersymmetric SU(Nc) gauge theory with Nf

quarks in the fundamental representation of the gauge group. In the off-shell formulation, the
theory consists of a gauge multiplet (Aμ, λ, D) and Nf matter multiplets (ϕm

±, ψm
± , Gm

± ) for m =
1, 2, …, Nf , where Aa

μ(x) is a gauge field, λa
α(x) is a gaugino field, Da(x) is a real auxiliary field,

ϕm
±,i(x) are complex scalar fields, ψm

α,i(x) are quark fields (γ 5ψ± = ±ψ±), and Gm
±,i(x) are com-

plex auxiliary fields for a = 1, 2, . . . , N2
c − 1 and i = 1, 2, …, Nc. The coordinates and spinor

index (α), flavor index (m) are often abbreviated in this paper for notational simplicity. The fields
of gauge multiplet are expressed as matrix-valued fields such as Aμ(x) = ∑N2

c −1
a=1 Aa

μ(x)T a with
group generators Ta.

The Euclidean SQCD action is then given by SE
SQCD = SE

SYM + SE
MAT with

SE
SYM = 1

g2
0

∫
d4x tr

(
1
2

F 2
μν + λ̄ �Dλ + D2

)
, (1)

SE
MAT =

∫
d4x

{
|Dμϕ+|2 + |Dμϕ−|2 + ψ̄ �Dψ + |G+|2 + |G−|2 − i

(
ϕ
†
+Dϕ+ − ϕ

†
−Dϕ−

)
+

√
2i

(
ψ̄+λϕ+ + ψ̄−λϕ− − ϕ

†
+λ̄ψ+ − ϕ

†
−λ̄ψ−

)
+ m0

(
ψ̄ψ − iϕ†

−G+ − iG†
−ϕ+ − iϕ†

+G− − iG†
+ϕ−

)}
, (2)

where �D ≡ γμDμ,

Fμν = ∂μAν − ∂νAμ + i[Aμ, Aν ], (3)

and see Appendix A for the notation of gamma matrices γ μ, the charge conjugation matrix C
and the definition of Majorana fermion. Weyl fermion ψ± are defined by

ψ± = P±ψ, ψ̄∓ = ψ̄P±, (4)
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where P± are chiral projection operators, P± = 1
2 (1 ± γ5).

The covariant derivative Dμ depends on representation of corresponding fields. We define

DμXad j = ∂μXad j + i[Aμ, Xad j ] (Xad j = λ, D, Fρσ , c, c̄),

DμX = ∂μX + iAμX (X = ϕ±, ψ, G±),

DμX̄ = ∂μX̄ − iX̄ Aμ (X̄ = ϕ
†
±, ψ̄, G†

±), (5)

where c, c̄ are ghost fields introduced later. The action is invariant under an infinitesimal gauge
transformation with a gauge transformation function ω(x),

δg
ωAμ = −Dμω,

δg
ωXad j = i[ω, Xad j ],

δg
ωX = iωX,

δg
ωX̄ = X̄ (−iω). (6)

We can also show that the action is invariant under a transformation,

δξ Aμ = ξ̄ γμλ,

δξλ = −1
2
γμγνξFμν − γ5ξD,

δξ D = ξ̄ γ5 �Dμλ,

δξϕ± =
√

2ξ̄∓ψ±,

δξϕ
†
± =

√
2ψ̄±ξ∓,

δξψ± =
√

2( �Dϕ±ξ∓ + iG±ξ±),

δξ ψ̄± =
√

2(−ξ̄∓ �Dϕ
†
± + iξ̄±G†

±),

δξ G± =
√

2ξ̄±(−i �Dψ± +
√

2λϕ±),

δξ G†
± =

√
2(iDμψ̄±γμ −

√
2ϕ

†
±λ̄)ξ±, (7)

where ξα is a global anti-commuting parameter, and ξ± = P±ξ, ξ̄± = ξ̄P∓. Note that δξ is
the modified SUSY transformation for the component field and preserves the Wess–Zumino
gauge [29]. See also Ref. [30].

In the perturbation theory, we introduce the gauge-fixing term and the ghost term into the
action. The total action is given by Stot = SE

SQCD + Sgf + Scc̄, where the gauge-fixing term Sgf

with gauge parameter ξ and the ghost action Scc̄ are

Sgf = 1
g2

0

∫
d4x

{
1

2ξ0
∂μAa

μ(x)∂νAa
ν (x)

}
, Scc̄ = 1

g2
0

∫
d4x

{
c̄a(x)(−∂μDμ)ca(x)

}
, (8)

where c and c̄ are ghost and anti-ghost fields, respectively.

2.2 Renormalization of N = 1 SQCD
In later sections, we will investigate the UV divergence structure of flowed correlation functions
at the one-loop level. To this end, in this section we summarize the one-loop renormalization in
N = 1 SQCD using the dimensional regularization and the minimal subtraction (MS) scheme.
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The renormalization factors are defined as follows

g2
0 = μ2εg2Zg,

ξ0 = ξZA,

Aμ = Z1/2
g Z1/2

A AR,μ,

λ = Z1/2
g Z1/2

λ λR,

D = Z1/2
g Z1/2

D DR,

c = ZcZ1/2
g Z1/2

A cR,

c̄ = Z1/2
g Z−1/2

A c̄R,

ψ = Z1/2
ψ ψR,

ϕ± = Z1/2
ϕ ϕR±,

G± = Z1/2
G GR± (9)

The parameters g and ξ without a subscript 0, and the fields with a subscript R are renormalized
quantities. Zg is a renormalization factor for the vertex correction and ZA, λ, D, ϕ, ψ , G, c are wave
function renormalization factors for the corresponding fields.

These Z factors are calculated at the one-loop level as follows.

Zg = 1 + g2

16π2ε
(−3Nc + Nf ),

ZA = 1 + g2

16π2ε

(
3 − ξ

2
Nc − Nf

)
,

Zλ = 1 + g2

16π2ε
(−ξNc − Nf ),

ZD = 1 + g2

16π2ε
(−Nf ),

Zc = 1 + g2

16π2ε

3 − ξ

4
Nc,

Zϕ = 1 + g2

16π2ε
(1 − ξ )CF ,

Zψ = 1 + g2

16π2ε
(−1 − ξ )CF ,

ZG = 1, (10)

where CF is the quadratic Casimir for fundamental representation. As is well known, the com-
ponent fields in each multiplet do not share a common wave function renormalization factor in
this setup. This situation drastically changes when considering flowed fields obeying the SQCD
flow equations defined in the next section.

3. Gradient flow equation and its iterative expansion
We first review how to derive a supersymmetric gradient flow in N = 1 SQCD in Minkowski
spacetime according to Ref. [29], after which we move on to the Wess–Zumino gauge and per-
form a Wick rotation to Euclidean signature. The flow equations are finally given in terms of
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the component fields of the Wess–Zumino gauge in Euclidean spacetime. To avoid the diffi-
culty of introducing mass terms into the flow equations, we adopt massless flow equations.1 By
expanding the equation iteratively, we obtain the flow vertices which are needed in the pertur-
bative calculation presented in the next section.

3.1 SQCD flow equation
All the fields that appear below depend on a flow time t ≥ 0. For notational simplification, the
flow field corresponding to a boundary field is represented by the same symbol. For instance
the flowed field corresponding to Aμ(x) is represented by Aμ(t, x) with the boundary condition
Aμ(t = 0, x) = Aμ(x). The vector superfield V and chiral superfield Q± are also t-dependent
superfields while the definition of differential operators Qα, Q̄α̇, Dα, D̄α̇ is unchanged, and those
defined at the boundary t = 0 are used for the flow field as they are. See Appendix B for the
notation of the superfield formalism.

The flowed vector superfield is defined by V†(z, t) = V(z, t) where z = (xμ, θα, θ̄α̇ ), and it is
invariant under four-dimensional Lorentz transformations and transforms as δξV = (ξαQα +
ξ̄α̇Q̄α̇ )V under the supersymmetry transformation. For the gauge multiplet, a supersymmetric
gradient flow is defined in the Minkowski space as

∂tV a = −1
2

gab(V )
δSSQCD

δV b
. (11)

Here gab(V) is a metric derived from an invariant norm

‖δV ‖2 = 1
2

∫
d8ztr(e−2V δe2V e−2V δe2V )(z), (12)

where
∫

d8z ≡ ∫
d4xd2

θd2
θ̄ . Note that this norm is invariant under both the supersymme-

try transformation and the extended gauge transformation e2V →e2Λ†
e2V e2Λ with a chiral su-

perfield �. The metric gab can be read from ‖δV ‖2 = ∫
d8zgab(V )δV aδV b and an identity

gacgcb = δa
b.

The chiral superfields Q± which contain spinors are defined by superchiral conditions
D̄α̇Q± = 0, which transform by the same rule as V for supersymmetry transformation. For
the matter multiplet, keeping the superchiral condition for flowed chiral superfields, the SUSY
flow equations are given by

∂tQ+ = −1
4

D̄D̄

(
e−2V δSMAT

δQ†
+

)
, (13)

∂tQ− = −1
4

D̄D̄

(
δSMAT

δQ†
−

e2V

)
. (14)

Note that the gradient of SMAT is the same as SSQCD since SSYM does not contain Q±. These
equations are covariant under t-independent super and extended gauge transformations Q+ →
e−2�Q+, Q− → Q−e2�.

We consider flow equations for the component fields in the Wess–Zumino gauge. The flow
equations above, however, are not consistent with the gauge because the r.h.s. of Eqs. (11), (13)
and (14) provide the breaking terms. In order to keep the Wess–Zumino gauge, the SUSY flow

1In Refs. [31,32] it is pointed out that the inclusion of terms with bare parameters, such as mass terms
in SQCD, is an obstacle to the renormalizability of the flow theory.
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equations should be modified by adding extended gauge transformation as

∂tV a = −1
2

gab
δSSQCD

δV b
+ δΛV a,

∂tQ+ = −1
4

D̄D̄

(
e−2V δSSQCD

δQ†
+

)
+ δΛQ+,

∂tQ− = −1
4

D̄D̄

(
δSSQCD

δQ†
−

e2V

)
+ δΛQ−, (15)

where δΛ is an infinitesimal transformation derived from an extended gauge transformation.
Taking the component fields of � so that ∂ tC = ∂ tχ = ∂ tM = ∂ tN = 0 where C, χ , M, N are
component fields of the vector superfield (see Appendix B), the Wess–Zumino gauge is kept for
any nonzero flow time [28,29].

The action appearing on the r.h.s. of Eqs. (15) is arbitrary. We use SSYM instead of SSQCD for
the first equation and SMAT|m = 0 instead of SSQCD for the second and third equations. These
choices significantly simplify the component field equations. Although we consider the massive
SQCD at t = 0, the flow equation has no mass terms. After the Wick rotation to Euclidean space,
these choices give us the flow equations of the component fields in the Euclidean SQCD;

∂tAμ = DνFνμ + iλ̄γμλ,

∂tλ = �D2λ − i[γ5λ, D],

∂tD = DμDμD + i(λ̄γ5 �Dλ + λ̄
←−�D γ5λ),

∂tϕ± = DμDμϕ± +
√

2iλ̄P±ψ,

∂tϕ
†
± = DμDμϕ

†
± −

√
2iψ̄P∓λ,

∂tψ = �D2ψ + i
√

2P+(γμλDμϕ+ + iλG+) + i
√

2P−(γμλDμϕ− + iλG−) − iDγ5ψ,

∂tψ̄ = ψ̄
←−�D2 + i

√
2(Dμϕ

†
−λ̄γμ − iG†

−λ̄)P+ + i
√

2(Dμϕ
†
+λ̄γμ − iG†

+λ̄)P− + iψ̄γ5D,

∂tG± = DμDμG± ∓ 2iDG± +
√

2λ̄P∓ �Dψ −
√

2λ̄
←−�DP±ψ + 2iλ̄P∓λϕ±,

∂tG
†
± = DμDμG†

± ∓ 2iG†
±D +

√
2ψ̄

←−�DP±λ −
√

2ψ̄P∓ �Dλ + 2iϕ†
±λ̄P±λ. (16)

These flow equations are gauge covariant. In addition, these flows are supersymmetric except
up to gauge transformation;

[δξ , ∂t] = δ
g
ω̃
, ω̃ = ξ̄ �Dλ, (17)

where δ
g
ω̃

is the infinitesimal gauge transformation (6), and δξ is the modified SUSY transfor-
mation (7).

In this paper, we define flow equations only for the gauge and matter fields but not for the
ghost field. In the Yang–Mills flow, the (D + 1)-dimensional action corresponding to the D-
dimensional flow is constructed in Ref. [3]. In the (D + 1)-dimensional theory, a term corre-
sponding to the ghost field flows is added to make the theory BRST invariant. However, the
flowed ghost loop does not exist from theoretical constraints, i.e., there is no physical contribu-
tion from flowed ghosts at nonzero flow time even if we consider the flow equations for ghosts.
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3.2 Iterative expansion of the flow equations
The t-independent gauge covariance of the flow equation for the gauge field in Eq. (16) implies
that the gauge degrees of freedom are not suppressed by the flow as in the case of the YM
flow [2]. To suppress the evolution, we consider the modified equations by adding the corre-
sponding gauge transformation (6) with ω = −α0∂νAν where α0 is a gauge parameter.

For example, the flow equation for the gauge field is modified to the following:

∂tAμ = DνFνμ + iλ̄γμλ + α0Dμ∂νAν, (18)

with the boundary condition Aμ(t = 0, x) = Aμ(x). Solving the linearized equation by the use
of the heat kernel

Kt (z)μν =
∫

p

eipz

p2

{(
δμν p2 − pμpν

)
e−t p2 + pμpνe−α0t p2

}
, (19)

enables the flow equation (18) to be expressed in the integral form

Aa
μ(t, x) =

∫
dDy

{
Kt (x − y)μνAa

ν (y) +
∫ t

0
dsKt−s(x − y)μνRa

ν (s, y)
}

, (20)

where Ra
ν represents the nonlinear terms given by

Ra
μ(t, x) = − f abc {

2Ab
ν (t, x)∂νAc

μ(t, x) − Ab
ν (t, x)∂μAc

ν (t, x) + (α0 − 1)Ab
μ(t, x)∂νAc

ν (t, x)
}

− 1
2

f abcλb(t, x)C−1γμλc(t, x) + f abc f cdeAb
ν (t, x)Ad

ν (t, x)Ae
μ(t, x). (21)

It is useful to make a Fourier transform to the momentum space, and we find the integral
equation

Aa
μ(t, p) = Kt (p)μνAa

ν (p) +
∫ t

0
dsKt−s(p)μνRa

ν (s, p), (22)

where

Kt (p)μν = 1
p2

{
(δμν p2 − pμpν )e−t p2 + pμ pνe−α0t p2

}
, (23)

Ra
μ(t, p) = 1

2

∫
q,r

(2π )Dδ(−p + q + r)

×
{

X (2,0)
A,AA(−p, q, r)abc

μνρAb
ν (t, q)Ac

ρ (t, r) + X (2,0)
A,λλ (−p, q, r)abc

μ λb(t, q)λc(t, r)
}

+ 1
3!

∫
q1,q2,q3

(2π )Dδ(−p + q1 + q2 + q3)

× X (3,0)
A,AAA(−p, q1, q2, q3)ab1b2b3

μν1ν2ν3
Ab1

ν1
(t, q1)Ab2

ν2
(t, q2)Ab3

ν3
(t, q3). (24)

Here, we introduce the flow vertices X (2,0)
A,AA, X (2,0)

A,λλ , and X (3,0)
A,AAA given explicitly in Appendix D.

Solving the equation (22) iteratively, the flowed gauge field is obtained in powers of the
boundary fields at t = 0 as,

Aa
μ(t, p) = Kt (p)μνAa

ν (p) + 1
2

∫ t

0
dsKt−s(p)μν

∫
q,r

(2π )Dδ(−p + q + r)

×
{

X (2,0)
A,AA(−p, q, r)abc

νρσ Ks(q)ρδKs(r)στ Ab
δ (q)Ac

τ (r)

+ X (2,0)
A,λλ (−p, q, r)abc

νi j Ks(q)Ks(r)λb
i (q)λc

j (r)
}

+ · · · , (25)
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where Kt (p) = e−t p2
. The solution is represented diagrammatically as

(26)

where open arrow lines represent the heat kernels K (or flow lines), open circles represent flow
vertices X, and cross circles are boundary fields. The direction of momentum is opposite to
that in Ref. [3], in the direction of the flow time. In perturbation theory, if rescaling the bound-
ary fields of the gauge multiplet to the canonical normalization by the bare coupling such as
(Aμ(x), λ(x), D(x)) → (g0Aμ(x), g0λ(x), g0D(x)), the iterative expansion (25) can be shown to
be equivalent to the coupling expansion. Therefore, we treat the iterative solution as the cou-
pling expansion in the calculation of the flowed field correlators. As a result of the above, the
two-point function of the flowed gauge field is obtained as

〈
Aa

μ(t, p)Ab
ν (s, q)

〉 = (2π )Dδ(p + q)δabg2
0

[
(δμν p2 − pμ pν )e−(t+s)p2 + ξ0 pμpνe−α0(t+s)p2

]

× 1
(p2)2

+ O
(
g4

0

)
(27)

by combining the iterative expansion of the flowed fields and the coupling expansion of the
boundary theory using the Feynman rule summarized in Appendix C. The other flow equa-
tions can be solved iteratively in the same way. These equations in integral form, the correspond-
ing heat kernel, and flow vertices are given explicitly in Appendix D. The two-point functions
are written as

〈
λa (t, p) λb (s, q)

〉 = (2π )D
δ (p + q) δabg2

0
−i � pC

p2
e−(t+s)p2 + O

(
g4

0

)
,

〈
Da (t, p) Db (q)

〉 = (2π )D δ (p + q) δabg2
0e−(t+s)p2 + O

(
g4

0

)
,〈

ϕ+,i (t, p) ϕ
†
+, j (s, q)

〉
=

〈
ϕ−,i (t, p) ϕ

†
−, j (s, q)

〉
= (2π )D δ (p + q) δi j

1
p2 + m2

0

e−(t+s)p2 + O
(
g2

0

)
,

〈
ψi (t, p) ψ̄ j (s, q)

〉 = (2π )D δ (p + q) δi j
−i � p + m0

p2 + m2
0

e−(t+s)p2 + O
(
g2

0

)
,

〈
G+,i (t, p) G†

+, j (s, q)
〉
=

〈
G−,i (t, p) G†

−, j (s, q)
〉
= (2π )D δ (p + q) δi je−(t+s)p2 + O

(
g2

0

)
. (28)

Note that the commutation relation (17) also holds for the modified equations,

[δξ , ∂t] = δ
g
ω̃
, ω̃ = ξ̄ /Dλ − α0ξ̄ /∂λ, (29)

so that the SQCD flow that we use here is supersymmetric in this sense.

4. One-loop renormalization of two-point function
In this section, we calculate two-point functions at the one-loop in SQCD and discuss the struc-
ture of their UV divergences. As in Sect. 2.2, we adopt the dimensional regularization and MS
scheme. Feynman rules necessary for one-loop calculations are summarized in Appendixes C
and D. In what follows, we set α0 = 1 for simplicity.
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Fig. 1. One-loop diagrams contributing to the two-point function of the flowed gauge field. Flow di-
agrams are built from the conventional Feynman diagrams and flow diagrams. The former consist of
boundary vertices (filled circles), gauge field propagators (wavy lines), ghost field propagators (directed
dash-dotted lines), gaugino field propagators (solid lines with wavy lines), real scalar auxiliary field prop-
agators (dotted lines), squark field propagators (dashed lines), quark field propagators (solid lines with
filled arrow), and complex scalar auxiliary field propagators (circles lines). The latter are represented by
flow vertices (open circles) and flow propagators (each field line with an open arrow). An open square
indicates that the external lines are not amputated.

We first consider the divergence term of the flowed gauge multiplet and define its coefficients
A,B, C,D through

〈
Aa

μ(t, p)Ab
ν (s, q)

〉∣∣
pole

= (2π )Dδ(p + q)
δab

(p2)2
e−(t+s)p2 μ2εg4

16π2ε

{(
δμν p2 − pμ pν

)
A + ξ pμpνB

}
,

(30)

〈
λa(t, p)λb(s, q)

〉∣∣
pole = (2π )Dδ(p + q)

−iδab( � pC)
p2

e−(t+s)p2 μ2εg4

16π2ε
C, (31)

〈
Da(t, p)Db(s, q)

〉∣∣
pole = (2π )Dδ(p + q)δabe−(t+s)p2 μ2εg4

16π2ε
D, (32)

where ε = (4 − D)/2 in dimensional regularization (see Appendix E). One-loop diagrams con-
tributing to the two-point functions of the flowed gauge multiplet are shown in Figs. 1, 2 and 3,
respectively, except for diagrams with closed flow-line loops. Closed flow-line loops diagrams
are set to zero [3]. Since the diagrams (1.1)–(1.7), (2.1)–(2.2), and (3.1) include only the bound-
ary vertices, these diagrams are calculated by the ordinary calculation in the SQCD. The con-
tribution to the diagram including the flow vertices, for example diagram (1.8), is explicitly
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Fig. 2. One-loop diagrams contributing to the λλ.

Fig. 3. One-loop diagrams contributing to the DD.

calculated as follows.

(diagram 1.8)|pole =
∫ t

0
dt′

∫
q

e−(t−t′ )p2 [−i f acd {
(2q − p)μδρσ − 2qσ δμρ + 2(p − q)ρδσμ

}]

× e−t′(p−q)2 δdd ′
g2

0

((q − p)2)2

{
δσσ ′ (q − p)2 − (1 − ξ0)(q − p)σ (q − p)σ ′

}
× i

g2
0

f b′c′d ′ {
(2q − p)ν ′δρ ′σ ′ + (−q + 2p)ρ ′δσ ′ν ′ − (q + p)σ ′δν ′ρ ′

}

× e−t′q2 δcc′
g2

0

(q2)2

{
δρρ ′q2 − (1 − ξ0)qρqρ ′

}

×e−sp2 δbb′
g2

0

(p2)2

{
δν ′ν p2 − (1 − ξ0)pν ′ pν

}∣∣
pole

= δab

(p2)2
e−(t+s)p2 g4

0

16π2ε

{(
δμν p2 − pμpν

) + ξ0 pμpν

} × 3 + 3ξ0

2
Nc (33)

The other diagrams are calculated in a similar way and all the divergent factors are summa-
rized in Tables 1, 2 and 3. At all flow times, these singularities are canceled by the parameter
renormalization required at flow time zero (10). This property for the gauge field is similar to
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Table 1. Contribution to AA from each diagram
Diagram

Factor (1.1)–(1.7) (1.8) (1.9) (1.10) (1.11) (1.12) (1.13) (1.14) Total

A 3 − ξ

2
Nc − Nf

3 + 3ξ

2
Nc

−9 − 3ξ

4
Nc 0

9 − ξ

4
Nc Nc −Nc 0 3Nc − Nf

B 0
3 + 3ξ

2
Nc

−9 − 3ξ

4
Nc 0

9 − ξ

4
Nc Nc −Nc 0

3 + ξ

2
Nc

Table 2. Contribution to λλ from each diagram
Diagram

Factor (2.1)–(2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.9) (2.10) Total

C −ξNc − Nf (3 + 2ξ )Nc (−3 − ξ )Nc 0
3
2

Nc
5
2

Nc 0 − 1
2

Nc − 1
2

Nc 3Nc − Nf

Table 3. Contribution to DD from each diagram
Diagram

Factor (3.1) (3.2) (3.3) (3.4) (3.5) (3.6) Total

D −Nf ξNc (−3 − ξ )Nc 0 2Nc 4Nc 3Nc − Nf

Fig. 4. One-loop diagrams contributing to the ϕϕ†.

that shown in the non-SUSY case [3]. On the other hand, gaugino and real auxiliary fields
differ from the case of a fermion flow [4]. The non-SUSY fermion flow needs wave function
renormalization, but our SUSY flow does not require extra renormalization.

Now we consider the matter supermultiplet (ϕ, ψ , G) and define E,F,G as〈
ϕ±,i(t, p)ϕ†

±, j (s, q)
〉∣∣∣

pole
= (2π )Dδ(p + q)δi j

1
p2 + m2

e−(t+s)p2 g2

16π2ε
E, (34)

〈
ψi(t, p)ψ̄ j (s, q)

〉∣∣
pole = (2π )Dδ(p + q)δi j

−i � p + m
p2 + m2

e−(t+s)p2 g2

16π2ε
F, (35)

〈
G±,i(t, p)G†

±, j (s, q)
〉∣∣∣

pole
= (2π )Dδ(p + q)δi je−(t+s)p2 g2

16π2ε
G, (36)

One-loop diagrams contributing to the two-point functions are shown in Figs. 4, 5 and 6, re-
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Fig. 5. One-loop diagrams contributing to the ψψ̄ .

Fig. 6. One-loop diagrams contributing to the GG†.

Table 4. Contribution to ϕϕ† from each diagram

Diagram

Factor (4.1)–(4.4) (4.5) (4.6) (4.7) (4.8) (4.9) (4.10) (4.11) Total

E (1 − ξ )CF 2ξCF (−3 − ξ )CF 0 0 4CF 0 0 2CF

Table 5. Contribution to ψψ̄ from each diagram

Diagram

Factor (5.1)–(5.2) (5.3) (5.4) (5.5) (5.6) (5.7) (5.8) (5.9) (5.10) (5.11) (5.12) (5.13) Total

F (−1 − ξ )CF (3 + 2ξ )CF (−3 − ξ )CF 0
3
2

CF 2CF 0 CF 0 −CF 0 − 1
2

CF 2CF

spectively. The diagrams (4.1)–(4.4) and (5.1)–(5.2) are calculated by the ordinary calculation in
the SQCD. The other diagrams are calculated in the same way as Eq. (33) and all the divergent
parts are summarized in Tables 4, 5 and 6.
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Table 6. Contribution to GG† from each diagram

Diagram

Factor (6.1) (6.2) (6.3) (6.4) (6.5) (6.6) (6.7) Total

G (−3 − ξ )CF ξCF 0 −CF −2CF 4CF 4CF 2CF

As can be seen from the results, the remaining pole terms are all common in each component
and are found to be proportional to 2CF. So, the two-point functions can be renormalized by
renormalizing the fields according to

F = Z1/2
F FR, F̄ = Z1/2

F F̄R, ZF = 1 + g2

16π2ε
× 2CF , (37)

where F = ϕ±, ψ , G± and F̄ = ϕ
†
±, ψ̄, G†

±.
In QCD, correlation functions of flowed gauge fields are UV-finite and the flowed quark re-

ceives an extra wave function renormalization [3,4]. It is interesting to know that our results
can be viewed as simple supersymmetric extensions of Refs. [3,4] at the one-loop level. In fact,
two-point functions of fields in the gauge supermultiplet are UV-finite while matter multiplets
receive an overall wave function renormalization. For Z factors at t = 0 presented in Eq. (10), su-
persymmetry is broken by the ghost and gauge fixing terms. Somewhat surprisingly, the SQCD
flow respects supersymmetry in a sense that the flowed gaugino does not receive extra renor-
malizations as the gauge field does and the common Z factor (37) is obtained for all fields of
matter multiplets at least at the one-loop level.

5. Conclusion
We have investigated the UV-divergence structure of a supersymmetric gradient flow in N = 1
SQCD with SU(Nc) gauge group and Nf flavor fundamental quarks. We found that, at the one-
loop level, two-point functions of fields in a flowed gauge multiplet were UV-finite while wave
function renormalizations, which are common for all the fields, are needed for flowed matter
multiplets.

These results can be viewed as a naive extension from the non-SUSY flows [2–4], in which
correlation functions of the flowed gauge field are UV-finite and the flowed quark receives an
extra wave function renormalization. In SQCD, the renormalization factors of the component
fields in the Wess–Zumino gauge do not retain supersymmetry, but the UV-divergent part of
flowed fields appears in a supersymmetric fashion after renormalizing the boundary theory.
This interesting property would be a manifestation of supersymmetry in the SQCD flow which
is defined in a supersymmetric way up to a gauge transformation.

In this paper, we only investigated the case of two-point functions at the one-loop level. In
the YM flow, it is shown that UV divergences are absent in any flowed correlation function at
all orders of perturbation theory [3,5]. To obtain an all-order proof in the SQCD flow, we need
to construct (D + 1)-dimensional theory as Lüscher and Weisz did in the YM flow [3]. Our
results provide useful information for such studies, and new and interesting results using the
SUSY flow will be obtained in the future.
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Appendix A. Notation
The theory is defined on four-dimensional Euclidean space whose coordinates are expressed as
xμ where the Greek indices μ, ν, ρ, σ run from 0 to 3. We use α, β for the spinor index which
runs from 1 to 4 and m, n for the flavor index which runs from 1 to Nf . The Einstein summation
convention is used throughout this paper.

Gamma matrices γ μ are Hermitian matrices that satisfy

{γμ, γν} = 2δμν, (A1)

and γ 5 is defined as

γ5 ≡ γ0γ1γ2γ3 = γ
†
5 . (A2)

The Majorana fermion λa (SU(Nc) adjoint rep.) is defined as

λa = −C(λ̄a)T , λ̄a = (λa)TC−1, (A3)

where the charge conjugation matrix C satisfies

CT = −C, C−1γμC = −γ T
μ , (A4)

and we have C−1γ5C = γ T
5 .

The group generators Ta are Hermitian and satisfy the standard relation,

[T a, T b] = i f abcT c, (A5)

and

tr(T aT b) = TF δab, (A6)

(T aT a)i j = CF δi j, (A7)

f acd f bcd = CAδab, (A8)

with TF = 1
2 , CF = N2

c −1
2Nc

, and CA = Nc for SU(Nc). The fields of gauge multiplet are expressed

as matrix-valued fields such as Aμ(x) = ∑N2
c −1

a=1 Aa
μ(x)T a.

Fourier transformations in theD = 4 − 2ε dimension are defined by

φ(x) =
∫

p
eipxφ(p), φ(p) =

∫
dDx e−ipxφ(x) (A9)

where the momentum integral is abbreviated as∫
p
≡

∫
dD p

(2π )D
. (A10)

Flow diagrams contain a linear combination of terms as∫ t

0
dt′

∫
q

Q(q, p)
q2(q − p)2

e−t′{uq2+v(q−p)2}, u, v ∈ {1, α0}, (A11)

where Q(q, p) is a homogeneous polynomial in q and p. It must be eventually integrated over t
from 0 to infinity, and then can be written as∫

q

1
u + v

Q(q, 0)
(q2)2(q − p)2

. (A12)
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Appendix B. Superfield formalism in the Minkowski spacetime
We review the superfield formalism according to Ref. [30]. In the superfield formalism, a super-
field F(z) is introduced as a function of z = (xμ, θα, θ̄α̇ ) which transforms under a supersym-
metry transformation as δξ F (z) = (ξαQα + ξ̄α̇Q̄α̇ )F (z), where θα, θ̄α̇, ξα, ξ̄α̇ are two-component
anti-commuting global parameters and Qα, Q̄α̇ are differential operators defined by

Qα = ∂

∂θα
− i(σμ)αα̇θ̄

α∂μ, Q̄ = − ∂

∂θ̄ α̇
+ iθα(σμ)αα̇∂μ, (B1)

where σμ = (−1, σ i) and σ̄ μ = (−1, −σ i). For later convenience, we introduce the supersym-
metric covariant derivatives as

Dα = ∂

∂θα
+ i (σμ)αα̇ θ̄ α∂μ, D̄α̇ = − ∂

∂θ̄ α̇
− iθα(σμ)αα̇∂μ. (B2)

Note that {Qα, Q̄β̇} = −{Dα, D̄β̇} = 2iσμ

αβ̇
∂μ and the other anti-commutation relations are zero.

The SQCD action involves chiral superfields Q± and vector superfields V. The chiral super-
fields Q±(z) are defined by D̄α̇Q± = 0 and are expanded as

Q±(y, θ ) = φ±(y) +
√

2θψ±(y) + θθF±(y) (B3)

where yμ = xμ + iθσμθ̄ . Here φ± are scalar fields, ψ± are two-component spinors, and F± are
auxiliary fields. Similarly, Q̄± satisfy Dα̇Q†

± = 0 and are expanded as

Q†
±(y†, θ̄ ) = φ

†
±(y†) +

√
2θ̄ψ

†
±(y†) + θ̄ θ̄F †

±(y†) (B4)

where y†μ = xμ − iθσμθ̄ . The general form of a vector superfield defined by V† = V is

V (x, θ, θ̄ ) = C(x) + iθχ (x) − iθ̄ χ̄ (x)

+ i
2
θθ (M(x) + iN(x)) − i

2
θ̄ θ̄ (M(x) − iN(x)) − θσμθ̄Aμ(x)

+ iθθ θ̄

(
λ̄(x) + i

2
σ̄ μ∂μχ (x)

)
− iθ̄ θ̄ θ

(
λ(x) + i

2
σ̄ μ∂μχ (x)

)

+ 1
2
θθ θ̄ θ̄

(
D(x) + 1

2
�C(x)

)
, (B5)

where C, M, N, Aμ, D are bosonic fields and χ , λ are fermionic fields. All components are in the

adjoint representation of SU(Nc) as V = ∑N2
c −1

a=1 V aT a. The extended gauge transformation of
chiral and vector superfields generated by a chiral superfield � are

e2V → e2V ′ = e2Λ†
e2V e2Λ, Q+ → Q′

+ = e−2ΛQ+, Q− → Q′
− = Q−e2Λ. (B6)

We can choose a special gauge called the Wess–Zumino gauge where the components C, χ , M,
N are set to zero using an extended gauge transformation.

The SQCD action is given by SSQCD = SSYM + SMAT with

SSYM = 1
2g2

0

∫
d4xtr

(
W αWα|θθ + W̄α̇W̄ α̇|θ̄ θ̄

)
, (B7)

SMAT =
∫

d4x
{(

Q†
+e2V Q+ + Q−e−2V Q†

−
)∣∣∣

θθ θ̄ θ̄
+ m0

(
Q−Q+|θθ + Q†

+Q†
−|θ̄ θ̄

)}
, (B8)

where

Wα = −1
8

D̄D̄e−2V Dαe2V , W̄α̇ = 1
8

DDe2V D̄α̇e−2V . (B9)

These actions (B.7), (B.8) are invariant under both the SUSY and extended gauge transforma-
tions. In the Wess–Zumino gauge, the SQCD action is written in
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SSYM = 1
g2

0

∫
d4xtr

(
−1

2
F 2

μν − iλ̄ �Dλ + D2
)

, (B10)

SMAT =
∫

d4x
{

− |Dμφ+|2 − |Dμφ−|2 − iψ̄ �Dψ + |F+|2 + |F−|2 +
(
φ
†
+Dφ+ − φ−Dφ

†
−
)

+
√

2i
(
−ψ̄+λφ+ − ψ̄−λφ

†
− + φ

†
+λ̄ψ+ + φ−λ̄ψ−

)
+ m0

(
−ψ̄ψ + φ−F+ + F−φ+ + φ

†
+F †

− + F †
+φ

†
−
)}

(B11)

in terms of a gauge multiplet (Aμ, λ, D) and Nf matter multiplets (φ±, ψ±, F±) f for f = 1, 2,
…, Nf . Here we used

λ =
(

λα

λ̄α̇

)
, λ̄ = (λα, λ̄α̇ ), ψ =

(
ψ+α

ψ̄ α̇
−

)
, ψ̄ = (ψα

−, ψ̄+α̇ ), γ (M)
μ =

(
0 σμ

σ̄μ 0

)
(B12)

to move on to the notation with four-component spinors.
The Euclidean theory is obtained by the Wick rotation given by

x0 = t → −ix0 = −it, A0 → iA0, (B13)

and replacements of auxiliary fields

D → iD, F± → iF±, F †
± → iF †

±. (B14)

The Euclidean gamma matrix γ μ is defined from the Minkowski one γ
(M)
μ as γ0 = γ

(M)
0 , γi =

iγ (M)
i . The Euclidean action SE is read from the Minkowski action SM as iSM → −SE after the

Wick rotation. Redefining the component fields:

ϕ+ ≡ φ+, ϕ− ≡ φ
†
−, G+ ≡ F+, G+ ≡ F †

−, (B15)

we obtain the Euclidean action (1), (2).

Appendix C. Feynman rules
The Feynman rule necessary for one-loop calculations is summarized. For simplicity of expla-
nation, we take Nf = 1 and drop the flavor index in the rule.
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Feynman propagators are

(C1)

and the other two-point functions are zero. In the momentum space, the interaction terms are

Sint = −
∫

p,q,r
(2π )Dδ(p + q + r)

1
3!

VAAA(p, q, r)abc
μνρAa

μ(p)Ab
ν (q)Ac

ρ (r)

+
∫

p,q1,q2,q3

(2π )Dδ(p + q1 + q2 + q3)
1
4!

VAAAA(p, q1, q2, q3)abc
μνρAa

μ(p)Ab
ν (q1)Ac

ρ (q2)Ad
σ (q3)

−
∫

p,q,r
(2π )Dδ(p + q + r)

1
2!

VλAλ(p, q, r)abc
μ λa(p)Ab

ν (q)λc(r)

−
∫

p,q,r
(2π )Dδ(p + q + r)Vc̄Ac(p, q, r)abc

μ c̄a(p)Ab
ν (q)cc(r)

+
∫

p,q,r
(2π )Dδ(p + q + r)Vϕ†Aϕ (p, q, r)a

μi jϕ
†
±,i(p)Aa

μ(q)ϕ±, j (r)

+
∫

p,q1,q2,q3

(2π )Dδ(p + q1 + q2 + q3)

× 1
2!

Vϕ†AAϕ (p, q1, q2, q3)ab
μνi jϕ

†
+,i(p)Aa

μ(q1)Ab
ν (q2)ϕ±, j (q3)

−
∫

p,q,r
(2π )Dδ(p + q + r)Vϕ†Dϕ (p, q, r)a

i jϕ
†
±,i(p)Da(q)ϕ±, j (r)

+
∫

p,q,r
(2π )Dδ(p + q + r)Vψ̄Aψ (p, q, r)a

μi jψ̄i(p)Aa
μ(q)ψ j (r)

+
∫

p,q,r
(2π )Dδ(p + q + r)Vψ̄λϕ (p, q, r)a

i jψ̄i(p)λa(q)ϕ±, j (r)

−
∫

p,q,r
(2π )Dδ(p + q + r)Vϕ†λψ (p, q, r)a

i jϕ
†
±,i(p)λa(q)ψ j (r) (C2)
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where vertices are

VAAA(p, q, r)abc
μνρ = i

g2
0

f abc{(r − q)μδνρ + (p − r)νδρμ + (q − p)ρδμν

}
,

VAAAA(p, q1, q2, q3)abcd
μνρσ = − 1

g2
0

{
f abe f ecd (δμρδνσ − δμσ δνρ ) + f ace f edb(δμσ δρν − δμνδρσ )

+ f ade f ebc(δμνδρσ − δμρδνσ )
}
,

VλAλ(p, q, r)abc
μ = 1

g2
0

f abc(C−1γμ),

Vc̄Ac(p, q, r)abc
μ = i

g2
0

f abc pμ,

Vϕ†Aϕ (p, q, r)a
μi j = −(p + r)μT a

i j ,

Vϕ†AAϕ (p, q1, q2, q3)ab
μνi j = −{T a, T b}i jδμν,

Vϕ†Dϕ (p, q, r)a
i j = ±iT a

i j ,

Vψ̄Aψ (p, q, r)a
μi j = −iT a

i jγμ,

Vψ̄λϕ (p, q, r)a
i j = −

√
2iP∓T a

i j ,

Vϕ†λψ (p, q, r)a
i j = +

√
2iC−1P±T a

i j . (C3)

Here we abbreviated ± of ϕ± for V
ϕ
†
±Aϕ±

,Vψ̄λϕ±,V
ϕ
†
±λψ

if the same rule applies to ϕ±.

Appendix D. Flow vertices
The formal solutions of flow equations are summarized below, and flow vertices are straight-
forwardly derived from interaction terms.

The formal solution of gauge field is given by Eqs. (22)–(24). Similarly, the formal solution
for the gaugino field and the auxiliary field D are given in the following form:

V a(t, p) = Kt (p)V a(p) +
∫ t

0
dsKt−s(p)Ra

V (s, p), (D1)

where V = λ, D. Here the flow propagator is defined as Kt (p) = e−t p2
. It is also straightforward

to give the formal solution for matter fields F = ϕ±, ψ , G± and F̄ = ϕ
†
±, ψ̄, G†

± as

Fi(t, p) = Kt (p)i jFj (p) +
∫ t

0
dsKt−s(p)i jRF, j (s, p), (D2)

F̄i(t, p) = F̄j (p)Kt (p) ji +
∫ t

0
dsR̄F̄ , j (s, p)Kt−s(p) ji, (D3)

where the flow propagator Kt (p)i j = δi je−t p2
.
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The concrete forms of RV , RF , R̄F̄ are defined as follows:

Ra
λ(t, p) =

∫
q,r

(2π )Dδ(−p + q + r)

×
{

X (1,1)
λ,λA (−p, q, r)abc

μ λb(t, q)Ac
μ(t, r) + X (1,1)

λ,λD (−p, q, r)abcλb(t, q)Dc(t, r)
}

+
∫

q1,q2,q3

(2π )Dδ(−p + q1 + q2 + q3)

× 1
2

X (2,1)
λ,λAA(−p, q1, q2, q3)abcd

μν λb(t, q1)Ac
μ(t, q2)Ad

ν (t, q3), (D4)

Ra
D(t, p) =

∫
q,r

(2π )Dδ(−p + q + r)

×
{

X (1,1)
D,AD(−p, q, r)abc

μ Ab
μ(t, q)Dc(t, r) + 1

2
X (2,0)

D,λλ (−p, q, r)abcλb(t, q)λc(t, r)
}

+
∫

q1,q2,q3

(2π )Dδ(−p + q1 + q2 + q3)

×
{

1
2

X (2,1)
D,AAD(−p, q1, q2, q3)abcd

μν Ab
μ(t, q1)Ac

ν (t, q2)Dd (t, q3)

+ 1
2

X (2,1)
D,λλA(−p, q1, q2, q3)abcd

μ λb(t, q1)λc(t, q2)Ad
μ(t, q3)

}
, (D5)

Rϕ±,i(t, p) =
∫

q,r
(2π )Dδ(−p + q + r)

× {
X (1,1)

ϕ,Aϕ (−p, q, r)a
μi jA

a
μ(t, q)ϕ±, j (t, r) + X (1,1)

ϕ,λψ (−p, q, r)a
i jλ

a(t, q)ψ j (t, r)
}

+
∫

q1,q2,q3

(2π )Dδ(−p + q1 + q2 + q3)

× 1
2

X (2,1)
ϕ,AAϕ (−p, q1, q2, q3)ab

μνi jA
a
μ(t, q1)Ab

ν (t, q2)ϕ±, j (t, q3), (D6)

R̄
ϕ
†
±,i(t, p) =

∫
q,r

(2π )Dδ(−p + q + r)

×
{

X (1,1)
ϕ†,ϕ†A(−p, q, r)ai j

μ ϕ
†
±, j (t, r)Aa

μ(t, q) + X (1,1)
ϕ†,ψ̄λ

(−p, q, r)a
i jψ̄ j (t, r)λa(t, q)

}
+

∫
q1,q2,q3

(2π )Dδ(−p + q1 + q2 + q3)

× 1
2

X (2,1)
ϕ†,ϕ†AA(−p, q1, q2, q3)ab

μνi jϕ
†
j±(t, q3)Aa

μ(t, q1)Ab
ν (t, q2), (D7)
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Rψ,i(t, p) =
∫

q,r
(2π )Dδ(−p + q + r)

×
{

X (1,1)
ψ,Aψ (−p, q, r)a

μi jA
a
μ(t, q)ψ j (t, r) + X (1,1)

ψ,λϕ (−p, q, r)a
i jλ

a(t, q)ϕ±, j (t, r)

+ X (1,1)
ψ,λG(−p, q, r)a

i jλ
a(t, q)G±, j (t, r) + X (1,1)

ψ,Dψ (−p, q, r)a
i jD

a(t, q)ψ j (t, r)
}

+
∫

q1,q2,q3

(2π )Dδ(−p + q1 + q2 + q3)

×
{

1
2

X (2,1)
ψ,AAψ (−p, q1, q2, q3)ab

μνi jA
a
μ(t, q1)Ab

ν (t, q2)ψ j (t, q3)

+X (1,2)
ψ,λAϕ (−p, q1, q2, q3)ab

μi jλ
a
j (t, q1)Ab

μ(t, q2)ϕ±(t, q3)
}

, (D8)

R̄ψ̄,i(t, p) =
∫

q,r
(2π )Dδ(−p + q + r)

×
{

X (1,1)
ψ̄,Aψ̄

(−p, q, r)a
μi jA

a
μ(t, q)ψ̄ j (t, r) + X (1,1)

ψ̄,ϕ†λ
(−p, q, r)a

i jϕ
†
±, j (t, r)λa(t, q)

+ X (1,1)
ψ̄,G†λ

(−p, q, r)a
i jG

†
±, j (t, r)λa(t, q) + X (1,1)

ψ̄,Dψ̄
(−p, q, r)a

i jψ̄ j (t, r)Da(t, q)
}

+
∫

q1,q2,q3

(2π )Dδ(−p + q1 + q2 + q3)

×
{

1
2

X (2,1)
ψ̄,AAψ̄

(−p, q1, q2, q3)ab
μνi jA

a
μ(t, q1)Ab

ν (t, q2)ψ̄ j (t, q3)

+ X (1,2)
ψ̄,λAϕ

(−p, q1, q2, q3)ab
μi jλ

a(t, q1)Ab
μ(t, q2)ϕ±, j (t, q3)

}
, (D9)

RG±,i(t, p) =
∫

q,r
(2π )Dδ(−p + q + r)

×
{

X (1,1)
G,AG(−p, q, r)a

μi jA
a
μ(t, q)G±, j (t, r) + X (1,1)

G,DG(−p, q, r)a
i jD

a(t, q)G±, j (t, r)

+ X (1,1)
G,λψ

(−p, q, r)a
i jλ

a(t, q)ψ j (t, r)
}

+
∫

q1,q2,q3

(2π )Dδ(−p + q1 + q2 + q3)

×
{

1
2

X (2,1)
G,AAG(−p, q1, q2, q3)ab

μνi jA
a
μ(t, q1)Ab

ν (t, q2)G±, j (t, q3)

+ X (1,2)
G,λAψ

(−p, q1, q2, q3)ab
μi jλ

a(t, q1)Ab
μ(t, q2)ψ j (t, q3)

+ 1
2

X (2,1)
G,λλϕ

(−p, q1, q2, q3)ab
i j λ

a(t, q1)λb(t, q2)ϕ±, j (t, q3)
}

, (D10)
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R̄G†
±,i(t, p) =

∫
q,r

(2π )Dδ(−p + q + r)

×
{

X (1,1)
G†,AG† (−p, q, r)a

μi jG
†
±, j (t, r)Aa

μ(t, q) + X (1,1)
G†,DG† (−p, q, r)a

i jG
†
±, j (t, r)Da(t, q)

+ X (1,1)
G†,ψ̄λ

(−p, q, r)a
i jψ̄ j (t, r)λa(t, q)

}
+

∫
q1,q2,q3

(2π )Dδ(−p + q1 + q2 + q3)

×
{

1
2

X (2,1)
G†,G†AA(−p, q1, q2, q3)ab

μνi jG
†
±, j (t, q3)Aa

μ(t, q1)Ab
ν (t, q2)

+ X (1,2)
G†,ψ̄Aλ

(−p, q1, q2, q3)ab
μi jψ̄ j (t, q3)Ab

μ(t, q2)λa(t, q1)

+ 1
2

X (2,1)
G†,ϕ†λλ

(−p, q1, q2, q3)ab
i j ϕ

†
±, j (t, q3)λb(t, q2)λa(t, q1)

}
, (D11)
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where flow vertices are

X (2,0)
A,AA(p, q, r)abc

μνρ = −i f abc{(q − r)μδνρ − 2qρδμν + 2rνδμρ + (α0 − 1)(rρδμν − qνδμρ )},
X (2,0)

A,λλ (p, q, r)abc
μ = − f abc(C−1γμ),

X (3,0)
A,AAA(p, q1, q2, q3)ab1b2b3

μν1ν2ν3
= f ab1c f b2b3c(δν1ν2δμν3 − δν1ν3δμν2 )

+ f ab2c f b3b1c(δν2ν3δμν1 − δν2ν1δμν3 ) + f ab3c f b1b2c(δν3ν1δμν2 − δν3ν2δμν1 ),

X (1,1)
λ,λA (p, q, r)abc

μ = i f abc
{

2qμ + (1 − α0)rμ + 1
2

( �rγμ − γμ�r)
}

,

X (1,1)
λ,λD (p, q, r)abc = f abcγ5,

X (1,2)
λ,λAA(p, q1, q2, q3)abcd

μν = −2 f ace f bdeδμν − f abe f cdeγμγν,

X (1,1)
D,AD(p, q, r)abc

μ = −i f abc{2rμ + (1 − α0)qμ},
X (2,0)

D,λλ (p, q, r)abc = i f abcC−1γ5( �q −�r),

X (2,1)
D,AAD(p, q1, q2, q3)abcd

μν = ( f abe f cde + f ace f bde)δμν,

X (2,1)
D,λλA(p, q1, q2, q3)abcd

μ = −( f abe f cde + f ace f bde)C−1γ5γμ,

X (1,1)
ϕ,Aϕ (p, q, r)a

μi j = −2rμT a
i j − (1 − α0)qμT a

i j ,

X (1,1)
ϕ,λψ (p, q, r)a

i j = i
√

2T a
i jC

−1P±,

X (2,1)
ϕ,AAϕ (p, q1, q2, q3)ab

μνi j = −δμν{T a, T b}i j,

X (1,1)
ϕ†,ϕ†A(p, q, r)a

μi j = −2rμT a
ji + (1 − α0)qμT a

ji,

X (1,1)
ϕ†,ψ̄λ

(p, q, r)a
i j = −i

√
2T a

jiP∓,

X (1,2)
ϕ†,ϕ†AA(p, q1, q2, q3)ab

μνi j = −δμν{T a, T b} ji,

X (2,0)
ψ,Aψ (p, q, r)ai j

μi j = −
{

2rμ + (1 − α0)qμ + 1
2

( �qγμ − γμ �q)
}

T a
i j ,

X (1,1)
ψ,λϕ (p, q, r)a

i j = −
√

2P± /rT a
i j ,

X (1,1)
ψ,λG(p, q, r)a

i j = −
√

2P±T a
i j ,

X (1,1)
ψ,Dψ (p, q, r)a

i j = −iγ5T a
i j ,

X (2,1)
ψ,AAψ (p, q1, q2, q3)ab

μνi j = −δμν{T a, T b}i j − γμγν [T a, T b]i j,

X (1,2)
ψ,λAϕ (p, q1, q2, q3)ab

μi j = −
√

2P±γμ(T aT b)i j,

(D12)
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X (1,1)
ψ̄,Aψ̄

(p, q, r)a
μi j = −

{
2rμ − (1 − α0)qμ + 1

2
( �qγμ − γμ �q)

}
T a

ji,

X (1,1)
ψ̄,ϕ†λ

(p, q, r)a
i j =

√
2C−1 �rP∓T a

ji,

X (1,1)
ψ̄,G†λ

(p, q, r)a
i j =

√
2C−1P∓T a

ji,

X (1,1)
ψ̄,ψ̄D

(p, q, r)a
i j = iγ5T a

ji,

X (2,1)
ψ̄,AAψ̄

(p, q1, q2, q3)ab
μνi j = −[

δμν{T a, T b} ji − γνγμ[T a, T b] ji
]
,

X (1,2)
ψ̄,λAϕ

(p, q1, q2, q3)ab
μi j =

√
2C−1γμP∓(T bT a) ji,

X (1,1)
G,AG(p, q, r)a

μi j = −{2rμ + (1 − α0)qμ}T a
i j ,

X (1,1)
G,DG(p, q, r)a

i j = ∓2iT a
i j ,

X (1,1)
G,λψ

(p, q, r)a
i j = −i

√
2C−1( �q −�r)P±T a

i j ,

X (2,1)
G,AAG(p, q1, q2, q3)ab

μνi j = −{T a, T b}i jδμν,

X (1,2)
G,λAψ

(p, q1, q2, q3)ab
μi j = i

√
2(T aT b + [T a, T b])i jC−1γμP±,

X (2,1)
G,λλϕ

(p, q1, q2, q3)ab
i j = 2i{T a, T b}i jC−1P∓,

X (1,1)
G†,G†A(p, q, r)a

μi j = −{2rμ − (1 − α0)qμ}T a
ji,

X (1,1)
G†,G†D(p, q, r)ai j = ∓2iT a

ji,

X (1,1)
G†,ψ̄λ

(p, q, r)a
i j = −i

√
2( �q +�r)P±T a

ji,

X (2,0)
G†,G†AA(p, q1, q2, q3)ab

μνi j = −{T a, T b} jiδμν,

X (1,2)
G†,ψ̄Aλ

(p, q1, q2, q3)ab
μi j = −i

√
2(T bT a − [T b, T a]) jiγμP±,

X (2,1)
G†,ϕ†λλ

(p, q1, q2, q3)ab
i j = 2i{T b, T a} jiC−1P±.

Appendix E. Dimensional regularization
We summarize useful formulas of the dimensional regularization. In the perturbative calcula-
tion with the dimensional regularization, we encounter the following integral,

Iβ,n
(
p2, m2

1, m2
2

) ≡
∫ 1

0
dxxngβ (�), (E1)

where

gβ (�) ≡ 1
(4π )D/2

�(2 − D/2 − β )
�2−D/2−β

, �
(
p2, m2

1, m2
2

) = p2x(1 − x) + m2
1(1 − x) + m2

2x. (E2)

The integral Iβ,n satisfies the recurrence relations

nIβ,n−1 − 2aIβ−1,n+1 − bIβ−1,n − gβ (a + b + c) + δn0gβ (c) = 0 (n ≥ 0), (E3)(
2 − D

2
− β

)
Iβ,n−1 − aIβ−1,n+1 − bIβ−1,n − cIβ−1,n−1 = 0 (n ≥ 1), (E4)

where a = −p2, b = p2 − m2
1 + m2

2, c = m2
1.

The formulas of dimensional regularization are summarized as follows: for α, β = 1, 2,
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∫
q

1(
q2 + m2

1

)α (
(q − p)2 + m2

2

)β
= Kαβ

0

(
p2, m2

1, m2
2

)
, (E5)∫

q

qμ(
q2 + m2

1

)α (
(q − p)2 + m2

2

)β
= pμKαβ

1

(
p2, m2

1, m2
2

)
, (E6)∫

q

qμqν(
q2 + m2

1

)α (
(q − p)2 + m2

2

)β
= pμpνKαβ

2

(
p2, m2

1, m2
2

) + 1
2
δμνLαβ

0

(
p2, m2

1, m2
2

)
, (E7)∫

q

qμqνqρ(
q2 + m2

1

)α (
(q − p)2 + m2

2

)β
= pμpν pρKαβ

3

(
p2, m2

1, m2
2

)+1
2
δ(μν pρ )L

αβ

1

(
p2, m2

1, m2
2

)
,(E8)∫

q

qμqνqρqσ(
q2 + m2

1

)α (
(q − p)2 + m2

2

)β
= pμpν pρ pσ Kαβ

4

(
p2, m2

1, m2
2

) + 1
2
δ(μν pρ pσ )L

αβ

2

(
p2, m2

1, m2
2

)

+ 1
4
δ(μνδρσ )Mαβ

(
p2, m2

1, m2
2

)
, (E9)

where

δ(μνkρ ) = δμνkρ + δνρkμ + δρμkν, (E10)

δ(μνkρkσ ) = δμνkρkσ + δνρkμkσ + δρμkνkσ + δνσ kμkρ + δσμkνkρ + δρσ kμkν, (E11)

δ(μνδρσ ) = δμνδρσ + δμρδνσ + δμσ δνρ. (E12)

Here K, L, M are defined by

Kαβ
m =

∫ 1

0
dx(1 − x)α−1xβ−1+mg2−α−β (�), (E13)

Lαβ
n =

∫ 1

0
dx(1 − x)α−1xβ−1+ng3−α−β (�), (E14)

Mαβ =
∫ 1

0
dx(1 − x)α−1xβ−1g4−α−β (�), (E15)

where m = 0, 1, …, 4 and n = 0, 1, 2.
In order to pick up the UV divergences quickly, we denote a divergent part of X as [X]. For

example, since

g0(�) = 1
(4π )2

(
4π

�

)ε

�(ε) = 1
(4π )2

(
1
ε

+ O(1)
)

, (E16)

we have [g0(�)] = 1
(4π )2

1
ε

and

[I0,n] = 1
n + 1

1
(4π )2

1
ε
. (E17)

Using the recurrence relations (E.3), (E.4), and (E.17), we can easily count the divergence of
each graph.
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