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We demonstrate perturbative calculations of supersymmetric gradient flow in four-
dimensional A/ = 1 supersymmetric quantum chromodynamics (SQCD). A remarkable
property of the gradient flow is to make ultraviolet (UV) divergences of flowed field cor-
relators milder. To illustrate this property, we calculate two-point functions for the flowed
fields in SQCD at the one-loop level and investigate their UV divergence structure. After
renormalizing the SQCD at the boundary, the two-point functions of flowed gauge super-
multiplets are shown to be UV-finite. On the other hand, those for flowed matter super-
multiplets require extra wave function renormalization, which are found to be the common
factor for all the fields in the multiplets.

Subject Index B14, B16, B32

1. Introduction

Gradient flow [1,2] has been applied in various studies because of its remarkable renormal-
ization property. In the case of Yang—Mills (YM) theory, after renormalizing the boundary
theory, extra wave function renormalization is not required in the correlation functions of the
flowed field [3-5]. Any composite operators of the flowed field become automatically renor-
malized quantities. Since ultraviolet (UV)-finite quantities are independent of the regulariza-
tion method, it is possible to connect lattice regularization and other regularizations such as
dimensional regularization. Therefore, the gradient flow can be used to represent physical quan-
tities such as the energy-momentum tensor (EMT) in terms of flowed field and is particularly
useful in the context of lattice gauge theory. In lattice quantum chromodynamics (QCD), this
property is used to formulate and simulate numerically the EMT [6-10].

Recently, several novel approaches employing a gradient flow method have been proposed.
One is for investigating the anti-de Sitter (AdS)/conformal field theory (CFT) correspondence,
in which a bulk metric emerges as the AdS geometry from a boundary CFT using a flow equa-
tion [11-19]. The other is to formulate an exact renormalization group (ERG) in gauge theory
with manifest gauge invariance [20-23]. A manifestly gauge-invariant Wilson action is con-
structed using a coarse-graining technique through the gradient flow. Its associated ERG dif-
ferential equation is derived and is extended to the inclusion of matter fields.
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It would be interesting to extend the gradient flow to supersymmetric theories. The YM
flow [2] and a fermion flow [4] have already been applied to supersymmetric theories [24-26]. To
respect supersymmetry (SUSY), it is convenient to use the superfield formalism, which is called
a SUSY flow. For A/ = 1 supersymmetric YM (SYM) theory, a SUSY flow is defined by the
gradient of the SYM action with respect to a vector superfield [27]. This flow in the component
fields can be written in a gauge-covariant and supersymmetric manner [28].

A similar approach can be considered in the case of A =1 supersymmetric
QCD (SQCD) [29]. The gradient flow of SQCD is given in terms of the component fields of
the Wess—Zumino gauge. In this paper, we calculate all the two-point functions of the flowed
fields in SQCD at the one-loop level. We find that after renormalizing the parameters in the
boundary theory, the two-point functions of the flowed fields in the gauge supermultiplet are
U V-finite, but the UV divergences remain for those in the matter supermultiplets.

This paper is organized as follows. In the following section, we review the SQCD action and its
renormalization. The gradient flow of SQCD is given in Sect. 3. We show one-loop calculations
of the two-point functions for the flowed fields in Sect. 4. The conclusion is given in Sect. 5.

2. N =1SQCD and its renormalization
We begin by reviewing the renormalization of the A/ = 1 SQCD to fix the notations used in
this paper. See Appendix A for more details.

2.1 SQCD action

We consider N' =1 SQCD which is an A/ = | supersymmetric SU(N,) gauge theory with Ny
quarks in the fundamental representation of the gauge group. In the off-shell formulation, the
theory consists of a gauge multiplet (4,, A, D) and Ny matter multiplets (¢7', ', G7') for m =
1,2, ..., Ny, where 4 (x) is a gauge field, A7 (x) is a gaugino field, D“(x) is a real auxiliary field,
@ /(x) are complex scalar fields, ¥,",(x) are quark fields (y sy + = +¢1), and G ;(x) are com-
plex auxiliary fields fora=1,2, ..., Nf —landi=1,2, ..., N.. The coordinates and spinor
index («), flavor index (m) are often abbreviated in this paper for notational simplicity. The fields
of gauge multiplet are expressed as matrix-valued fields such as 4,,(x) = Ziﬁ;l A (x)T* with
group generators 7%.

The Euclidean SQCD action is then given by Sgocp, = Sgyy + Syyar With

SEy = gi%/d“x tr (%Fj + 3 Dr+ Dz) : (1)
SEiar = / dx{1Dups P+ Do P+ 0 DY +1G: P +1G-F —i (¢} Doy — ¢l Dy )
+ V2i (l/7+/\<p+ + U hp- —@liyy — wiiw-)
+mo (F0 — i¢l G, —iGl g, —igl G —iGle )], 2)
where P =y, D,

F.,=0,4,— 0,4, +1A,, A,], (3)

and see Appendix A for the notation of gamma matrices y,, the charge conjugation matrix C
and the definition of Majorana fermion. Weyl fermion .. are defined by

¢i=PiW, &ZFZ&P:IH (4)
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where P are chiral projection operators, Py = %(1 =+ ys).
The covariant derivative D, depends on representation of corresponding fields. We define

D;LXadj = auXudj + i[Auv Xadj] (Xadj =D, Fpas ¢, C),
D[LX == BI'LX “I‘ lApLX (X == (pzl:7 "//7 Gi)’
DX =9,X —iX4, (X =¢l,¥,G) ©)

where ¢, ¢ are ghost fields introduced later. The action is invariant under an infinitesimal gauge
transformation with a gauge transformation function w(x),

854, =—-D,o,
88 Xaaj = i, Xuajl,
BX =iwX,
52X = X (—iw). (6)

We can also show that the action is invariant under a transformation,

8 Ay = Eyuh,
1
65)‘ = _EVMVU%_F/W — ¥5€D,
8D = Eys DA,

Sepr = 262,

Sel = 20k,

8eVs = V2A(Dpity +iGLEL),

Sevre = V2(—Ex Pyl + iELGL),

0:Gy = V2E (=i PYs + V2hpy),

8: Gl = V2(iD ey, — V2010w, %

where £, is a global anti-commuting parameter, and £, = P.£, & = §P¢. Note that 8¢ is
the modified SUSY transformation for the component field and preserves the Wess—Zumino
gauge [29]. See also Ref. [30].

In the perturbation theory, we introduce the gauge-fixing term and the ghost term into the
action. The total action is given by Sy, = SSEQCD + Sor + Scz, where the gauge-fixing term Sr
with gauge parameter £ and the ghost action S,z are

1 1 1
Sy = —/d“x{—a A% (x)3,4%(x } Sez = —/d“x F(x) (=, D)), @8
= 72 ) 2 | dx{ewecanpiwl ®
where ¢ and ¢ are ghost and anti-ghost fields, respectively.

2.2 Renormalization of N =1SQCD

In later sections, we will investigate the UV divergence structure of flowed correlation functions
at the one-loop level. To this end, in this section we summarize the one-loop renormalization in
N = 1SQCD using the dimensional regularization and the minimal subtraction (MS) scheme.
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The renormalization factors are defined as follows
& =17,
§o=§6Z4,
A, = Z;/ZZL/ZAR,W
a=Z2Z," ap,
D =ZY?Z,Dp,
c=Z.ZYZcp,

¢=2727" e,

v =27, s,
9+ =2,/ ke,
12
Gy =7/, Gps ©))

The parameters g and & without a subscript 0, and the fields with a subscript R are renormalized
quantities. Z, is a renormalization factor for the vertex correction and Z4 ;. p, ¢, y, G, c are wave
function renormalization factors for the corresponding fields.

These Z factors are calculated at the one-loop level as follows.

g

Zg =14 o (=3N+ Np).
ZA=1+152?(3%5N6—M),
Z, =1+ f?(—él\% — Ny),
Zp=1+ %(—Nf),
3 -
Ze=1+ 16§2€T€ ©
Z,=1+ 1682?(1 —&)Cr,
Zy =1+ 1682?(—1 —&)Cr,
Zg=1, (10)

where Cr is the quadratic Casimir for fundamental representation. As is well known, the com-
ponent fields in each multiplet do not share a common wave function renormalization factor in
this setup. This situation drastically changes when considering flowed fields obeying the SQCD
flow equations defined in the next section.

3. Gradient flow equation and its iterative expansion

We first review how to derive a supersymmetric gradient flow in ' = 1 SQCD in Minkowski
spacetime according to Ref. [29], after which we move on to the Wess—Zumino gauge and per-
form a Wick rotation to Euclidean signature. The flow equations are finally given in terms of
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the component fields of the Wess—Zumino gauge in Euclidean spacetime. To avoid the diffi-
culty of introducing mass terms into the flow equations, we adopt massless flow equations.! By
expanding the equation iteratively, we obtain the flow vertices which are needed in the pertur-
bative calculation presented in the next section.

3.1 SQCD flow equation

All the fields that appear below depend on a flow time 7 > 0. For notational simplification, the
flow field corresponding to a boundary field is represented by the same symbol. For instance
the flowed field corresponding to A, (x) is represented by 4,,(¢, x) with the boundary condition
A,(t =0, x) = A,(x). The vector superfield V" and chiral superfield Q. are also 7-dependent
superfields while the definition of differential operators Q,, Qd, D, Dy isunchanged, and those
defined at the boundary ¢ = 0 are used for the flow field as they are. See Appendix B for the
notation of the superfield formalism.

The flowed vector superfield is defined by Vi(z, ) = V(z, 1) where z = (x,,, Ou, 03), and it is
invariant under four-dimensional Lorentz transformations and transforms as 6: V' = (§*Q, +
£,0%)V under the supersymmetry transformation. For the gauge multiplet, a supersymmetric
gradient flow is defined in the Minkowski space as

1 (SSSQCD
V=gV : 11
V= =50 (11
Here g*(V) is a metric derived from an invariant norm
1
18V = 3 f dztr(e 2 8¢ e 2 56 )(2), (12)

where [d®z = [d*xd’9d*. Note that this norm is invariant under both the supersymme-
try transformation and the extended gauge transformation e’ —¢24'¢2" ¢24 with a chiral su-
perfield A. The metric g?* can be read from |8V | = i d®zg(V)8V45V? and an identity
g8y = 89

The chiral superfields Q. which contain spinors are defined by superchiral conditions
DO+ = 0, which transform by the same rule as V for supersymmetry transformation. For
the matter multiplet, keeping the superchiral condition for flowed chiral superfields, the SUSY
flow equations are given by

1-- _ SSMAT
30y =—-DD e 13
IQ+ 4 (e SQE’_ ) s ( )
. 1-- SSMAT 1%

Note that the gradient of Syar 1s the same as Ssqcp since Ssym does not contain Q4. These
equations are covariant under z-independent super and extended gauge transformations O, —
e—2A Q+’ Q— N Q_€2A.

We consider flow equations for the component fields in the Wess—Zumino gauge. The flow
equations above, however, are not consistent with the gauge because the r.h.s. of Egs. (11), (13)
and (14) provide the breaking terms. In order to keep the Wess—Zumino gauge, the SUSY flow

'In Refs. [31,32] it is pointed out that the inclusion of terms with bare parameters, such as mass terms
in SQCD, is an obstacle to the renormalizability of the flow theory.
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equations should be modified by adding extended gauge transformation as

u 1 5SSQCD u
oVt = 58 +84V7,
1-- 3S.
9,0, = —-DD e SQfD + 68,04,
4 s0.
1 == (38Ssqcp
3;Q_ = _ZDD (Ee + (SAQ—a (15)

where &, is an infinitesimal transformation derived from an extended gauge transformation.
Taking the component fields of A so that 0,C =9,y = 9,M = 3,N = 0 where C, x, M, N are
component fields of the vector superfield (see Appendix B), the Wess—Zumino gauge is kept for
any nonzero flow time [28,29].

The action appearing on the r.h.s. of Eqgs. (15) is arbitrary. We use Ssyw instead of Ssqcp for
the first equation and Syt = o instead of Ssocp for the second and third equations. These
choices significantly simplify the component field equations. Although we consider the massive
SQCD at t =0, the flow equation has no mass terms. After the Wick rotation to Euclidean space,
these choices give us the flow equations of the component fields in the Euclidean SQCD;

A, = DyF,, + My,
3 = P*1 — i[ysx, D],
8D = D, DD + i(.ys Do+ D ysi.),
d¢r = DDy + V2P,
0oL = DDyl — V20 Poa,
0y = D™V + iV2P (yuADygs + iLGL) + iV2P_ (v hDyp- + irG_) — iDysy,
o) = U D + iV2(Dup! Ay, — iGL AP, + V2Dl iy, — iGL AP + irysD,
8,Gy = D, D, Gy F2iDGys + V20.Py DY — N2 D Py + 2Py,
8,Gy = D,D,GL F2iG\.D + V2§ D Pir — 2§ Py D+ 2ipliPi. (16)

These flow equations are gauge covariant. In addition, these flows are supersymmetric except
up to gauge transformation;

[8¢, 9] = 65, »=EPa, (17)

where 8% is the infinitesimal gauge transformation (6), and §; is the modified SUSY transfor-
mation (7).

In this paper, we define flow equations only for the gauge and matter fields but not for the
ghost field. In the Yang—Mills flow, the (D + 1)-dimensional action corresponding to the D-
dimensional flow is constructed in Ref. [3]. In the (D + 1)-dimensional theory, a term corre-
sponding to the ghost field flows is added to make the theory BRST invariant. However, the
flowed ghost loop does not exist from theoretical constraints, i.e., there is no physical contribu-
tion from flowed ghosts at nonzero flow time even if we consider the flow equations for ghosts.
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3.2 Iterative expansion of the flow equations
The #-independent gauge covariance of the flow equation for the gauge field in Eq. (16) implies
that the gauge degrees of freedom are not suppressed by the flow as in the case of the YM
flow [2]. To suppress the evolution, we consider the modified equations by adding the corre-
sponding gauge transformation (6) with w = —®(d, 4, where « is a gauge parameter.

For example, the flow equation for the gauge field is modified to the following:

A, = D,F,, + iry,h+ gD, d,4,, (18)

with the boundary condition 4, (t = 0, x) = A4,,(x). Solving the linearized equation by the use
of the heat kernel

eipz
Kt(z)lﬂ’ - / ? {(Sll-vpz - p,upv) e_[pz + pupve_ao[pz} P (19)
P

enables the flow equation (18) to be expressed in the integral form
A= [ @ {m(x i)+ 5K — 1) R y)} e
where R¢ represents the nonlinear terms given by
RA(t, x) = — [P 2451, x)3, 45, (1, x) — AD(t, X), AS(1, x) + (et — 1) AL(1, x)3, 4(2, x)}
— % SN, X)C At x) + fSNA (1, x) AL, x) A (1, x). (21)

It is useful to make a Fourier transform to the momentum space, and we find the integral
equation

t
4400, p) = K(p)poA%p) + fo dsK, () RY(s. p). 22)
where
1
Ki{(p)u = ; {(auvpz - pupv)eitpz + pupveia(ﬂpz} ’ (23)
1
Rit.p) =3 [ @oPo-ptgen)
q,r

2,0 c 2,0
x XD g s, AL AL ) + X T (—p g, PR g0t )

1
+ 3 Qm)P8(=p+ g1 + 2 + 43)
* Y q1,92,93
3,0
X X UAP a1 g2 a3l AV g AT, ) AR g3). (24)
Here, we introduce the flow vertices Xfﬂ, Xfﬁ), and Xfﬂ 4 given explicitly in Appendix D.

Solving the equation (22) iteratively, the flowed gauge field is obtained in powers of the
boundary fields at t = 0 as,

1 t
A1) = KD dlp) + 5 [ 5K [ @5t g0
q,r

< X (. . 10 K@) K (P YA (1)

+ X0 g B RDK MA@ + - (25)
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where K, (p) = ¢™'7" . The solution is represented diagrammatically as

s s
AL(t,p) = won® + T+ LT e +.o,
p p p p (26)

where open arrow lines represent the heat kernels K (or flow lines), open circles represent flow
vertices X, and cross circles are boundary fields. The direction of momentum is opposite to
that in Ref. [3], in the direction of the flow time. In perturbation theory, if rescaling the bound-
ary fields of the gauge multiplet to the canonical normalization by the bare coupling such as
(A,(x), A(x), D(x)) = (g04u(x), gor(x), goD(x)), the iterative expansion (25) can be shown to
be equivalent to the coupling expansion. Therefore, we treat the iterative solution as the cou-
pling expansion in the calculation of the flowed field correlators. As a result of the above, the
two-point function of the flowed gauge field is obtained as

(482 ) AL(s, @) = )P8(p + )8 | (Byup® = Pup)e™ T + Eoppue |
1
X W +0 (g?)) (27)

by combining the iterative expansion of the flowed fields and the coupling expansion of the
boundary theory using the Feynman rule summarized in Appendix C. The other flow equa-
tions can be solved iteratively in the same way. These equations in integral form, the correspond-
ing heat kernel, and flow vertices are given explicitly in Appendix D. The two-point functions
are written as

—i pC )
(2 (1, p) 22 (s, 9)) = Q)P 8 (p+ ) 8¢ ;—fe““”’ +0(g)
(D (¢, p) D* (q)) = 27)P 8 (p+ q) 8% Ge 7 + O (gl).,

(it P05 0) ={o-i . P (5. 0)) = Q1) 8 (P + @) 85— 7 + 0 (g)).

p2+m0

(01, p) 55 (5, ) = ) 5 (p+ q) 8y, —L T =097 4 0 (2),
p-+my

(Geit. )G (5. 0) = (G- (6.2 G 5.0) = @) 8 (04 @) 85”7 + O (gh). (28)
Note that the commutation relation (17) also holds for the modified equations,
[8¢, 9] = 85, & = E/DA — ap /A, (29)

so that the SQCD flow that we use here is supersymmetric in this sense.

4. One-loop renormalization of two-point function

In this section, we calculate two-point functions at the one-loop in SQCD and discuss the struc-
ture of their UV divergences. As in Sect. 2.2, we adopt the dimensional regularization and MS
scheme. Feynman rules necessary for one-loop calculations are summarized in Appendixes C
and D. In what follows, we set oy = 1 for simplicity.
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D\ww{::i}w wav\b M D’vvvwv+ Orvvvvvcl

-« e’
(12) (1.3) (1.4) (15)
,A :
(1.6) (1.9) (1.10)

(1.11) (1.12) (1.13) (1.14)

Fig. 1. One-loop diagrams contributing to the two-point function of the flowed gauge field. Flow di-
agrams are built from the conventional Feynman diagrams and flow diagrams. The former consist of
boundary vertices (filled circles), gauge field propagators (wavy lines), ghost field propagators (directed
dash-dotted lines), gaugino field propagators (solid lines with wavy lines), real scalar auxiliary field prop-
agators (dotted lines), squark field propagators (dashed lines), quark field propagators (solid lines with
filled arrow), and complex scalar auxiliary field propagators (circles lines). The latter are represented by
flow vertices (open circles) and flow propagators (each field line with an open arrow). An open square
indicates that the external lines are not amputated.

We first consider the divergence term of the flowed gauge multiplet and define its coefficients
A, B, C, D through

2¢ 4
a — S 2 M
(45,1, DAY )| e = C)P8(p + D (,,2)2 e (Hop ﬁ{(&wf — pupy) A+ Epup.Bl,
(30)
89 ( pC .
(. A5 @), = @)°8(p + )% e f;,j C, (1)
<Du(l,p)Db(S, q))|p01e _ (27T)D8(p+Q)8abe_([+S)p2% (32)

where € = (4 — D)/2 in dimensional regularization (see Appendix E). One-loop diagrams con-
tributing to the two-point functions of the flowed gauge multiplet are shown in Figs. 1, 2 and 3,
respectively, except for diagrams with closed flow-line loops. Closed flow-line loops diagrams
are set to zero [3]. Since the diagrams (1.1)-(1.7), (2.1)—~(2.2), and (3.1) include only the bound-
ary vertices, these diagrams are calculated by the ordinary calculation in the SQCD. The con-
tribution to the diagram including the flow vertices, for example diagram (1.8), is explicitly

9/25
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(2.2) (2.3) (2.4)
(2.5) (2.6) (2.7) (2.8)
(2.9) (2.10)

Fig. 2. One-loop diagrams contributing to the Ax.

~” T
(3.1) (3.2) (3.3)
o< m ....... o D..Q..O..D..D o--< Q ....... O
<
(3.4) (3.5) (3.6)

Fig. 3. One-loop diagrams contributing to the DD.

calculated as follows.

t
(diagram 1.8)[ o = /O de’ / e (=i f U (2g = )ubpo — 20080 +2(0 — Dpdou}]
q

dd'
—r(p=qp 0 %

(g — p))

I o
X Ebed {(Zq - p)v"sp’o’ +(—q+ 217),0’60’1)’ —(¢+ p)a’av’p’}
0

x e {800/(q — p)* — (1 = £0)(q — P)s(q — D)o}

cc
7[/q2 8 g(z)

xe (%) {‘Sﬂp’qz —(1- 50)‘]0%0’}
6bb’g2
_sp? 0 )
)4 —(pz)z {(Su’vp - (1 - fo)pv/pv} |p01e
o & _ 343
= —(t+s) 0 2
= ¢ " Toane Gl = pup) + Epup} x =5ENe63)

The other diagrams are calculated in a similar way and all the divergent factors are summa-
rized in Tables 1, 2 and 3. At all flow times, these singularities are canceled by the parameter
renormalization required at flow time zero (10). This property for the gauge field is similar to
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Table 1. Contribution to A4 from each diagram

Diagram
Factor (1.D=(1.7) (1.8) (1.9) (1.10) (1.11) (112 (1.13) (114 Total
A 3T§N - Ny %N( _9; *y, 0 %NC —N, 0 3N, — Ny
343 9= 3¢ 9-¢ 34&
B 0 N N 0 N —N. 0 5N
Table 2. Contribution to Ax from each diagram
Diagram
Factor 2.1)-2.2) (2.3) (2.4 25 (6 @7 29 (.10 Total
c —EN, — Ny (3 +26)N. (=3 - &N, 0 %N(. ;N( —%M - %NC 3N, — Ny
Table 3. Contribution to DD from each diagram
Diagram
Factor (3.1) (3.2) (3.3) (3.4) (3.5 (3.6) Total
D Ny EN, (=3 - &N, 0 2N, 4N, 3N, — Ny
n--<-{m}--<-n D-Q-u o <-¢ ‘:5--<-n n--<-Q-<-n
\~<‘l \~<_l
4.1) 4.2) 4.3) 4.4)

L

<{ %o <f ban
\ J \ J

(4.5) (4.6) @7 (4.8)
:r<1-Q<-n D--<I-Qr-l>-n :r<1-Q»<-n
(4.9) (4.10) (4.12)

Fig. 4. One-loop diagrams contributing to the gg¢.

that shown in the non-SUSY case [3]. On the other hand, gaugino and real auxiliary fields
differ from the case of a fermion flow [4]. The non-SUSY fermion flow needs wave function
renormalization, but our SUSY flow does not require extra renormalization.

Now we consider the matter supermultiplet (¢, ¥, G) and define £, F, G as

&

|
= 2m)P8(p + @)8;j———e TP

(ot ol 5. 0))| I =, (34)
. P50 e = )50+ iy e £ 7 (35)
(Geitt. PG (5. 0))| = Cm)P5(p+ g)se 7 £ (36)

One-loop diagrams contributing to the two-point functions are shown in Figs. 4, 5 and 6, re-
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<O e e A O

(5.1) (5 2) (5.4)

H@«ﬂmﬂ«ﬂmﬂmw@ﬂmﬂw

oao
(5.6) (5.7) (5.8) (5.9) (5.10)

®oqo® 0 0 X '''' ST

(5.11) (5.12) (5.13)

EQOD mmomODOD mmomMOD EOO<]<>Q: ;-DOI>0E|

00400 00400 OO<00
(6.1) (6.2) (6.3) (6.4)
o o 0§ & odg om mmoQoDou B oo ot o0
O<]O
(6.5) (6.6) (6.7)

Fig. 6. One-loop diagrams contributing to the GG'.

Table 4. Contribution to g from each diagram

Diagram
Factor  (4.1)-(4.4) 4.5) (4.6) 4.7) 4.8) 49) (4.100 (4.11) Total
& (1-¢6)Cr 26Cr (=3—-&)Cp 0 0 4CF 0 0 2CF

Table 5. Contribution to ¥ from each diagram

Diagram
Factor  (5.1)~(5.2) (5.3) (5.4) (5.5 (5.6) (5.7) (5.8) (59) (5.10) (5.11) (5.12) (5.13) Total
F (=1=&Cr (B+2)Cr (-3-8)Cr 0 %CF 2Cr 0 Cr 0 —Cr 0 —%CF 2CF

spectively. The diagrams (4.1)—(4.4) and (5.1)—(5.2) are calculated by the ordinary calculation in
the SQCD. The other diagrams are calculated in the same way as Eq. (33) and all the divergent
parts are summarized in Tables 4, 5 and 6.
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Table 6. Contribution to GG' from each diagram

Diagram
Factor (6.1) (6.2) (6.3) (6.4) (6.5) (6.6) (6.7) Total
g (=3-8)Cr ECy 0 —Cp  —=2Cr 4ACr 4Cr 2CF

As can be seen from the results, the remaining pole terms are all common in each component
and are found to be proportional to 2Cr. So, the two-point functions can be renormalized by
renormalizing the fields according to

F=2Z"F.  F=2zFk  Zr=1+ x 2CF, (37)

1672€

where F= ¢, ¥, Gx and F = ¢l ¥/, GL.

In QCD, correlation functions of flowed gauge fields are UV-finite and the flowed quark re-
ceives an extra wave function renormalization [3,4]. It is interesting to know that our results
can be viewed as simple supersymmetric extensions of Refs. [3,4] at the one-loop level. In fact,
two-point functions of fields in the gauge supermultiplet are UV-finite while matter multiplets
receive an overall wave function renormalization. For Z factors at = 0 presented in Eq. (10), su-
persymmetry is broken by the ghost and gauge fixing terms. Somewhat surprisingly, the SQCD
flow respects supersymmetry in a sense that the flowed gaugino does not receive extra renor-
malizations as the gauge field does and the common Z factor (37) is obtained for all fields of
matter multiplets at least at the one-loop level.

5. Conclusion

We have investigated the UV-divergence structure of a supersymmetric gradient flow in A/ = 1
SQCD with SU(N,) gauge group and Ny flavor fundamental quarks. We found that, at the one-
loop level, two-point functions of fields in a flowed gauge multiplet were U V-finite while wave
function renormalizations, which are common for all the fields, are needed for flowed matter
multiplets.

These results can be viewed as a naive extension from the non-SUSY flows [2-4], in which
correlation functions of the flowed gauge field are UV-finite and the flowed quark receives an
extra wave function renormalization. In SQCD, the renormalization factors of the component
fields in the Wess—Zumino gauge do not retain supersymmetry, but the UV-divergent part of
flowed fields appears in a supersymmetric fashion after renormalizing the boundary theory.
This interesting property would be a manifestation of supersymmetry in the SQCD flow which
is defined in a supersymmetric way up to a gauge transformation.

In this paper, we only investigated the case of two-point functions at the one-loop level. In
the YM flow, it is shown that UV divergences are absent in any flowed correlation function at
all orders of perturbation theory [3,5]. To obtain an all-order proof in the SQCD flow, we need
to construct (D + 1)-dimensional theory as Liischer and Weisz did in the YM flow [3]. Our
results provide useful information for such studies, and new and interesting results using the
SUSY flow will be obtained in the future.
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Appendix A. Notation
The theory is defined on four-dimensional Euclidean space whose coordinates are expressed as
x, where the Greek indices u, v, p, o run from 0 to 3. We use «, g for the spinor index which
runs from 1 to 4 and m, n for the flavor index which runs from I to Ny. The Einstein summation
convention is used throughout this paper.

Gamma matrices y,, are Hermitian matrices that satisfy

Vs Yo} = 28,00, (AT)
and y s is defined as
Vs = YoViyays = V. (A2)
The Majorana fermion A (SU(N,) adjoint rep.) is defined as
A= —CONT, A= aHTct, (A3)
where the charge conjugation matrix C satisfies
ch =—c, Cly,C=—y/, (A4)

and we have C~'ysC = .
The group generators 7% are Hermitian and satisfy the standard relation,

[Ta’ Tb] — ifabCTC, (AS)
and

tre(T9T?) = Tps®, (A6)

(T°T7);; = Créyj, (A7)

faca'fbcd _ C 6ab (AS)

with T = 5, Cp = 2N , L and Cy= N, for SU(N ). The fields of gauge multiplet are expressed

as matrix-valued fields such as 4,,(x) = Za;l AL ()T,
Fourier transformations in theD = 4 — 2¢ dimension are defined by

$(x) = / PR(p). B(p) = / dPx e P (x) (A9)
)4

where the momentum integral is abbreviated as

[= ] -

Flow diagrams contain a linear combination of terms as

t
/dt, 2Q(q p)2 Y-’y e (1 ), (All)
0 q°(q — p)

where Q(q, p) is a homogeneous polynomial in ¢ and p. It must be eventually integrated over ¢
from O to infinity, and then can be written as
/ 1 0(q.0)
g u+v(@)(q—p)*

(A12)
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Appendix B. Superfield formalism in the Minkowski spacetime
We review the superfield formalism according to Ref. [30]. In the superfield formalism, a super-
field F(z) is introduced as a function of z = (x,, 6., f;) which transforms under a supersym-
metry transformation as 8: F(z) = (§°Qy + &; O0%)F(z), where 0, 05, &, €, are two-component
anti-commuting global parameters and Q,, O, are differential operators defined by

Ou = 5 — 0"l 0= =+ i8(0 sl (B1)
where o* = (=1, ¢') and 6* = (-1, —c"). For later convenience, we introduce the supersym-

metric covariant derivatives as

d - - 0
D, = i (0c™) . 0%)3,, Dy=———10%0")y40,. B2
aea + l (G )Olot 12 80“ l (G ) 12 ( )
Note that {Q,, Q,g} = —{D,, D it = 2i05ﬂ. d,, and the other anti-commutation relations are zero.

The SQCD action involves chiral superfields O+ and vector superfields V. The chiral super-
fields Q4 (z) are defined by D3 Q1 = 0 and are expanded as

0:(0,0) = ¢ (1) + V209 (y) + 00 FL(p) (B3)

where y* = x* 4 ifo"0. Here ¢ are scalar fields, ¥ . are two-component spinors, and F.. are
auxiliary fields. Similarly, Q. satisfy Dg Ql = 0 and are expanded as

0Lo'.8) = LN + V20 L) +BOEL O (B4)
where pi* = x* — i0*6. The general form of a vector superfield defined by V' = Vis
Vi(x,0,0)=C(x)+i0x(x) — i1 (x)

- é@@(M(x) +iN(x)) — ééé(M(x) — iN(x)) — 00 0 A, (x)
+ i660 (l(x) + ééﬂaﬂx(x)) — 066 (A(x) - é&“aux(x)>

+ %999_9_ (D(x) + %DC(x)) , (BS)

where C, M, N, A,,, D are bosonic fields and y, A are fermionic fields. All components are in the

2_ .
adjoint representation of SU(N,)as V' = ZiV; 1 'yaTa The extended gauge transformation of
chiral and vector superfields generated by a chiral superfield A are

’ T —
2V 2V — €2A €2V€2A, Q+ — Q/+ —e 2AQ+’ Q— — Q/_ — Q_€2A. (B6)

e —>e
We can choose a special gauge called the Wess—Zumino gauge where the components C, x, M,
N are set to zero using an extended gauge transformation.

The SQCD action is given by Ssocp = Ssym + Smat With

1 o
Ssym = — | d*xte(wWew, W, W9 5-), B7
SsYM 27 / X r< log + |99> (B7)

Swar = [ atxf(@le¥ 0i 0O s m(Q-0uli + 010 )] (BY)
where
W, = —%DDezVDaezV, W = %DDeZVDO-,eW. (B9)
These actions (B.7), (B.8) are invariant under both the SUSY and extended gauge transforma-
tions. In the Wess—Zumino gauge, the SQCD action is written in
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1 1 -
Ssym = po / d*xtr (—EF,fv — ik DA+ D2> : (B10)
Swar = / d*x| = D42 = 1Dub P = i DY +|F P+ |F P+ (6] Dg. — oDy )
+ V2 (<2 — T gl + @l Ruy + o R )

+ my (—W +¢_Fy+F ¢, +¢lF + Fiqﬂ_)} (B11)

in terms of a gauge multiplet (4,, A, D) and N, matter multiplets (¢, V4, Fy)y for f =1, 2,
..., Ny. Here we used

A= (%Of), = Ta) v = (‘”_f“), V=), v = (f %“)(Blz)

w

to move on to the notation with four-component spinors.
The Euclidean theory is obtained by the Wick rotation given by

0 _ —it, Ay — iAy, (B13)

X =t— —ix
and replacements of auxiliary fields

D — iD, F.— iF., F| — iF]. (B14)

The Euclidean gamma matrix y, is defined from the Minkowski one y,(LM) as yy) = )/O(M), Vi=

iyl.(M). The Euclidean action Sk is read from the Minkowski action Sy as iSy — —Sg after the
Wick rotation. Redefining the component fields:

or=¢s. ¢-=¢', G, =F, G =F, (B15)

we obtain the Euclidean action (1), (2).
Appendix C. Feynman rules

The Feynman rule necessary for one-loop calculations is summarized. For simplicity of expla-
nation, we take Ny = 1 and drop the flavor index in the rule.
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Feynman propagators are

p
1
A ST Ab — gaby2 2 _
L NN Al/ ) 90 (p2)2 {5Myp (1 50)]7“]71/},
p .
<« - C
)\CL AcAAATATAS )\b = 5abg8 —;725 y
P

Da snnnnnguunnns Db :(Sabg%’

P 1
¢t --ms--- b = 5ab98—27
p
P 1
Pii-- - ao--- :
' e Y p2 4 m?
p .
- —ip + myg
. < s :
vi ¥ Y op? +md
(p_
G:t,i ooo«o o GT:EJ = 51]7 (Cl)

and the other two-point functions are zero. In the momentum space, the interaction terms are

1
Simw=— | @m0+ + )5 ana(p. 4. 15, AL (D) AL (@ AL ()

»q.r

1 :
+ f Qm)°8(p+ a1+ 42+ 43) 3 Viaaaa (P, 1, @2, @), A7 (P)ANG1)A],(42) 45 (43)
Pq1.92:93 :

1
= | QP+ gt ) i (p 4. DDA ()
pq.r :

- f @1)P5(p + 4+ Waaep. 4. & () A (@) ()
q.r

+ | QOPSP+ g+ 1Wiap(po g, 1) 0k (P)AL( @D (1)

bp.q.r

+ f QCm)Ps(p+q1 + g2 + ¢3)
D:q91,92,93

1
X 2—!V¢-w-AA¢(p, a1, 42, 432005 (D) A4 (a) AN g2 1(43)

- Q2m)P8(p+ g+ WVyipp(P. 4. 10k (P)D (@ ;(r)
p.q.r

+ [ @OP8(p+ g+ WV (g, 1) Ui D) AL (@ (r)
Y2UR

4 f Q1)P8(p + g+ Wi (0. 0. DT PN )
p.q.r

— | @08+ a+ 1V (b . 10k (D)2 (@)V5(r) (C2)
pq.r
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where vertices are _
i

VAAA(p» q,r Zl:fp = gfabc{(r - Q)uévp + (p - V)vfspu + (q - p)pauu},
0

1
VAAAA(P, q1, 492, QS)Z?)C’L){J = _? {fabef“d(aupaua - 8#08\1,0) + facefEdb((S;uTSpu - 3/,“)8,00')
0

+ fadefebc(suv(gpg _ 8#)08\)0')}7

Viar(p. q. 1) = gl(z)f “P(C ),
i
g

Vi (P @, 1)pij = —(p+ 1), T3,
Vit aag (0o @12 42, 43)%50 = =T T},
Voine(p, 4. 1) = +iT},
Viaw (. q. 1)y = —iTvu,
Vi (D, 4, 1)y = —V2iPE T,
Viing (p. q, 1) = +3/2iC PL T, (C3)

Here we abbreviated + of ¢ for Vwi Aps? Vg le " if the same rule applies to ¢..

VEAc(p’ q, r)ZbC = f‘abfp””

Appendix D. Flow vertices
The formal solutions of flow equations are summarized below, and flow vertices are straight-
forwardly derived from interaction terms.

The formal solution of gauge field is given by Egs. (22)—(24). Similarly, the formal solution
for the gaugino field and the auxiliary field D are given in the following form:

Wmm=mwwmwﬂdmn@mam, (D1)

where V' = X, D. Here the flow propagator is defined as K, (p) = e~ It is also straightforward
to give the formal solution for matter fields F = ¢, ¥, G+ and F = (pi, v, GL as

E(t, p) = Ki(p)ijFi(p) + /0 dsKi—s(p)ijRr (s, p), (D2)

Emm=E@m@m+Adﬂmmmmxmm (D3)

where the flow propagator K;(p);; = §; je_’f’z.
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The concrete forms of Ry, Rp, R 7 are defined as follows:

R, p) = f Q1)°8(—p+q+1)
q,r
< AXE0pog @ ag e n + X5 (= p gy e D0
+ f 1)°8(=p + 41 + a2 + @)
q1,92,93

X %Xfi’iﬁ(—n 1. 2. @) (1, ) A1, g2) AL ¢3), (D4)
Ryt )= [ @rPo(-p+ g+ 1)
.
x {Xéh%(—p, g 1 AL (L D (1) + %Xéi?(—p, ¢ PR, A, r)}
+ / @)5(=p+ a1 + 42 + 03)
41,9293

1 : :
x {5X5?220<—p, 4142, 430 AL (1 ) A5 g2)D? (1. 3)

1
+ 3%, S (=P @1 @2, @) PN, g, g2) A2, qa)} : (D5)

Ryoilt. p) = / r)°8(—p+ ¢ +1)
q,r

) AX (= p g ) AL s (1) + X5 (= p, g R, w2, 1)
b [ entseprratata)
q1-92-93

1 o1
x §X¢§,2)1/iw(_p’ Q1. @2 43)n; AL (L AL, q2)g+ (L. 43), (D6)

Ry = [ @oPapta+n
q.r

1,1 j i 1, T
< AXSD poa el e AL @ + XD (=p g e s 9)

+ / Q)PS8(=p + 1 + > + g3)
q1.92,93

1
X EX(;%;‘?AA(_I)’ 611, ‘]2» QS)ZILU(pji(t, (]3)AZ(Z» QI)AQ(Z, 42), (D7)
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Ryt, p) = / Q)°8(—p+q+7)
q,r

1,1
{X( AI//( pv Qa V)ZUAZ(I,Q)I//](t, r)+X1/(;1)Ll(p)( p» qv r)a)"a(taQ)(Pi,j(t» r)
+X(1)»G( pv CIa r)a)“a(taq)Gﬂ:,j(t’ r)+X(1D1//( pa q’ r)aDa(taq)w](tv r)}

+ / Qm)Ps(—p+ q1 + 42 + 93)
q1.92.93
1
{2X(2AA1//( D 611»(]2,(]3),m, (2, g AL, )0t ¢3)
Xv(flij(p( —Pq1, 92, 613)%,)»70, C]l)AZ(Z, q2)p+(t, q3)} , (D8)
R&’i(l‘,p) :/ (27T)D8(—p+q+r)

)X (=g AL ) + XD (= pog el (e )
+X(IGI.)A( —p.q. 1)SGL (8 A, q)+X$l;)p( g, 1)t 1D, q)}
+/ Qr)’8(—p+ a1+ 42+ q3)

q1.92,93
Aaxeh A% g AL, g2 (2, 43)
3,44 P d1s 425 43) 04,05 1 q2)¥;lt, g3
+ ,/(,lfjw( P q1, 92, 93 Z[:/)‘a(t»ql)Az([,QZ)(Pﬂ:,j(t»Q3)}, (D9)
RGi,i(l,p)=/ Qm)P8(=p+q+r)
X AL DG (07 + X (—p. 4. YD1, )G (0. 7)
X((?lklzp)( =P g, G @, r)}
+ / Qm)P8(—p+q1 + 42 + q3)

q1-492:93

e ANt )G

7 XG.aa6(=D: 41 2. 3)n AL (1, )AL, 42) G (L. 43)

+ X(lkAlﬂ( p’ ql’ QZ QS)Z[Z])‘Q(L ql)AZ(taq2)w](t, q3)

1
5 Xy (P 1 4, 4R gL g2)o (]3)} : (D10)
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Ry (t.0)= [ @xPs-ptq+n
q.r

1,1 1,1
x| X e (=2 @, 1 G (L DAL @)+ XS (=P g G GL (6D )

+ XD pg e )
+ [ enPsptatata
q1:92,93
X2, 028 6L 0, )AL )20 )
+ X((;:;‘;Ak(—p, Q1. @2 43) (. g3) ANt )24t q1)

1 2,1
+ EXé{q,)m(—p, 1. 42, @)L (1. q)A (. o)A (e, QI)} ,
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where flow vertices are

(2,0) be
XA g r /a,wcp =

2,0 b
X/El AA)(p’ q, r)ZC =

( ab1b2b3
XA AAA(p’ qi: 92, q3)uv1v2113

_ifubc{(q - r)/t(sup
_fabC(C—lyM)’

— fablcfb2b3c(81)11)26uu3 _
OB B, —

— 24580 + 21,8, + (@0 — 1) (18,0 — qud,0)},

51)11)3 6[,LV2)

8\)2”18#“3) + fab}cfblbzc(avgvlauvz - 81}3\)28;“)1),

1
ﬂﬂ@%ﬂ?z#bkﬂ+ﬂ—%m+iwm—m4»

1,1 b
X5 g )" =
)LAA(p ql’ q2, q3 ade

1,1
Xz() AD(p’ q,r

)abc = _l'fabC{er + (1 - aO)Qu}’

fabc Vs,

2facefbd63w, fabedee)/;;, Yo,

X5 g ry™ = if " C ys(d— ),
(fﬂbyfcde facefbde )auv ,
_(fahefcde + facefbde)c—l Y5V

2.1
XISA;D(P q1, 92, 43),, abed

X,ﬁ,i,\A(p, q1, 492, 613)ZM =

(1.1)
Xw Aw(p 7 r)/u/ -

1,1
X$ﬂn%m~

2,1
X200 a1 @0, 430
(1 1)
<p X

y @D
(,OT 1p)»(p’ q’ r)

A(p’ q, r),uzj

1,2

X( )AA(p q1, 92, 43 V-Vlj

(2.0
X Aw(P QaV)lejj

1,1
X]/(,w)(p,q,r)?j

1,1
X g

1,1
X)) (pog. )

2,1
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X ne(p ¢ 1)y = F2T,
XS5, q, 1) = =i 20 (f =) P TS,
X 06 a1, a2, g3 = =T T80,
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XS0 (0 a1, g2 g3 = 20T, T");C7' Py,
éi 1G)TA(19, q, 1)y = —{2ry — (1 — @0)qu} T},
Xéﬁ 0p(P q. 1) = F2uT,
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1,2
X2 (0 g1 g q) = V2T T [T, T)) 0, P

XG0Py 4, q3)) = 24T, T);,C ' P,

Appendix E. Dimensional regularization

We summarize useful formulas of the dimensional regularization. In the perturbative calcula-
tion with the dimensional regularization, we encounter the following integral,

Ig (pz, m%, m%) = /1 dxx"gg(A), (E1)
where :
gs(A) = (47[1)[)/2 F(ZA—Z_DDCZZ_; '3), A(p*, mi,m3) = p*x(1 — x) + mj(1 — x) + m3x. (E2)
The integral I , satisfies the recurrence relations
nlgu—1 —2alg_1 pp1 — blg_1, — ggla+b+c)+du0gp(c) =0  (n=0), (E3)
(2 - g - ﬁ) Ipnr —alg1np1 =blg 1w —clp1,1 =0  (n=1), (E4)
where a = —p*, b= p*> —m} +m3, ¢ =mj.

The formulas of dimensional regularization are summarized as follows: for o, 8 =1, 2,
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1

; = K7 (P mt, m3) (E5)
/q (42 +m3)" ((q — p +m3)’
qu af (2 2 2
— = p K" (p°, mi, m3) (E6)
/q (4 +m3) (g = p +m2)’
quqy « 1 «
f - Y i - 7 =pMpVK2ﬂ (p*, mi, m3) + Eé,wLOﬁ (p*, mi,m3), (E7)
¢ (¢ +mi)" ((q = p)* +m3)
qugvq o 1 «
a5 = Pubup, KT (07 i m3) +2 80P LT (7, i, i) (ES)
7 (2 +mi)" (g = p)* +m3)
quq9vqp9s B Kaﬁ( 2 2 mz) + 18 Laﬂ( 2 2 m2)
5 Y 5 B = PubPvPpPo By \P7, 1y, N, 5 (wvPpPoyln \Ps My, My
¢ (> +mi)” (g —p)* +m3)
1
+ 4—‘8(M(SM)M"”9 (P mi, m3), (E9)
where
Siuvk sy = 8uky + Supky + 8puks, (E10)
Sqwkoksy = Suvkpke + 81 pkuke + 8,ukvke 4+ 8uakyky 4 86 kvk, + 8pa kb, (E11)
818 pe) = 811080 + 8,000 + 8100 (E12)
Here K, L, M are defined by
1
K = f dx(1 — x)*f g, (), (E13)
0
1
Le# :/ dx(1 — x)* " IxP gy g(A), (E14)
0
1
MP = / dx(1 — 0% 5P gy as(A), (E15)
0

wherem=0,1,....,4andn=0, 1, 2.
In order to pick up the UV divergences quickly, we denote a divergent part of X as [X]. For
example, since

1 4 \° 1 1
we have [go(A)] = (42)& and
1 1 1
[Lo.n] = P e (E17)

Using the recurrence relations (E.3), (E.4), and (E.17), we can easily count the divergence of
each graph.
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